JP2009079101A - 封止剤 - Google Patents

封止剤 Download PDF

Info

Publication number
JP2009079101A
JP2009079101A JP2007248334A JP2007248334A JP2009079101A JP 2009079101 A JP2009079101 A JP 2009079101A JP 2007248334 A JP2007248334 A JP 2007248334A JP 2007248334 A JP2007248334 A JP 2007248334A JP 2009079101 A JP2009079101 A JP 2009079101A
Authority
JP
Japan
Prior art keywords
norbornene
ring
opening
polymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007248334A
Other languages
English (en)
Inventor
Takeshi Hirata
剛 平田
Koichi Ikeda
功一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2007248334A priority Critical patent/JP2009079101A/ja
Publication of JP2009079101A publication Critical patent/JP2009079101A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

【課題】 防湿性と耐溶剤性に優れた、LCD素子、有機EL素子、無機EL素子等のディスプレイ表示素子や太陽電池素子等の各種機能素子を実装した基板の封止剤を提供する。
【解決手段】 2−ノルボルネン又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物を開環重合して得られる開環重合体の、炭素−炭素二重結合の80%以上を水素化して得られるノルボルネン系開環重合体水素化物であって、2−ノルボルネン由来の繰り返し単位の全繰り返し単位に対する存在割合が90〜100重量%、置換基含有ノルボルネン系単量体由来の繰り返し単位の全繰り返し単位に対する存在割合が0〜10重量%であり、かつ、融点が110〜145℃の範囲であるノルボルネン系開環重合体水素化物を含有する封止剤。
【選択図】 なし

Description

本発明は、LCD素子、有機EL素子、無機EL素子等のディスプレイ表示素子や太陽電池素子等の各種機能素子を実装した基板の封止剤に関する。
液晶ディスプレイ、有機ELディスプレイ、無機ELディスプレイ等の発光装置の表示素子や色素増感型の太陽電池素子などの機能素子は、一般的に化学的に不安定であるために、空気中の水分や酸素との反応によって腐食や酸化を生じ、これが上記のような機能素子の経時的な特性劣化の原因となることが知られている。
例えば、太陽電池において、変換効率が最も高いと言われる液体電解質を用いた場合には、液漏れ等の問題が起こり得る。また、有機EL素子の場合には、有機発光層等が酸素や水分にふれると発光特性が急激に劣化する。
従来、これらの素子の劣化を防止するための封止剤として、樹脂材料の開発が進められている。
例えば、スチレンとジエン系炭化水素の共重合体を主体とする熱可塑性エラストマー(特許文献1)やポリエステル系樹脂(特許文献2)、ノルボルネン系開環重合体水素化物やビニル脂環式炭化水素重合体(特許文献3)、分子中にカルボン酸基を有する熱可塑性樹脂からなる接着剤(特許文献4)などが挙げられる。
しかしながら、これらの素子の使用範囲が広がるに連れ、より高い防湿性や耐溶剤性が求められているのが実情である。
特開2005−306946号公報 特開2005−213470号公報 特開2003−059645号公報 特開2007−115513号公報
本発明は、このような従来技術の実情に鑑みてなされたものであり、防湿性と耐溶剤性優れる封止剤を提供することを課題とする。
電子部品用の封止剤に関する特開平7−21458号公報(段落0003)では、耐熱性、剛性、電気絶縁性、耐薬品性、難燃性に優れた熱可塑性樹脂であるポリフェニレンスルフィド樹脂は、結晶性ポリマーであるため、金属との密着性に劣り、金属との界面から水が侵入する問題を指摘している。
ところが本発明者らが検討した結果、特定の構造のノルボルネン系樹脂は、融点を有する結晶性ポリマーでありながら、防湿性と耐溶剤性に優れた封止剤となることを見出し、本発明を完成するに至った。
かくして本発明によれば、2−ノルボルネン、又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物を開環重合して得られる開環重合体の、炭素−炭素二重結合の80%以上を水素化することにより得られるノルボルネン系開環重合体水素化物であって、2−ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合が90〜100重量%、置換基含有ノルボルネン系単量体由来の繰り返し単位(B)の全繰り返し単位に対する存在割合が0〜10重量%であり、かつ、融点が110〜145℃の範囲であるノルボルネン系開環重合体水素化物を含有することを特徴とする封止剤が提供される。
本発明の封止剤においては、前記ノルボルネン系開環重合体水素化物が、ゲル・パーミエーション・クロマトグラフィーによる標準ポリスチレン換算での重合平均分子量が、50,000〜200,000であり、かつ、分子量分布が1.5〜7.0の高分子であるのが好ましい。
本発明によれば、防湿性と耐溶剤性に優れる封止剤が提供される。
以下、本発明を詳細に説明する。
本発明の封止剤は、2−ノルボルネン、又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物を開環重合して得られる開環重合体の、炭素−炭素二重結合の80%以上を水素化することにより得られるノルボルネン系開環重合体水素化物であって、2−ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合が90〜100重量%で、置換基含有ノルボルネン系単量体由来の繰り返し単位(B)の全繰り返し単位に対する存在割合が0〜10重量%であり、かつ、融点が110〜145℃の範囲であるノルボルネン系開環重合体水素化物を含有することを特徴とする。
(ノルボルネン系開環重合体水素化物)
本発明に用いるノルボルネン系開環重合体水素化物は、(i)2−ノルボルネンを、メタセシス重合触媒の存在下に開環重合することにより、2−ノルボルネン単独開環重合体を得た後、得られる開環重合体の炭素−炭素二重結合の80%以上を水素化して得られるものであるか、(ii)2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物を、メタセシス重合触媒の存在下に開環重合することにより、2−ノルボルネン及び置換基含有ノルボルネン系単量体の開環共重合体を得た後、得られる開環共重合体の炭素−炭素二重結合の80%以上を水素化して得られるものである。
2−ノルボルネン(ビシクロ[2.2.1]ヘプト−2−エン)は、公知の化合物であり、例えば、シクロペンタジエンとエチレンとを反応させることにより得ることができる。
置換基含有ノルボルネン系単量体は、分子内にノルボルネン骨格を有する化合物である(ただし、2−ノルボルネンを除く)。本発明に用いる「置換基含有ノルボルネン系単量体」には、置換基を有する2−ノルボルネン誘導体のほか、縮合した環を有するノルボルネン化合物も含まれる。
置換基含有ノルボルネン系単量体としては、分子内にノルボルネン環と縮合する環を有しないノルボルネン系単量体、及び3環以上の多環式ノルボルネン系単量体等が挙げられる。
前記分子内にノルボルネン環と縮合する環を有しないノルボルネン系単量体の具体例としては、5−メチル−2−ノルボルネン、5−エチル−2−ノルボルネン、5−ブチル−2−ノルボルネン、5−ヘキシル−2−ノルボルネン、5−デシル−2−ノルボルネン、5−シクロヘキシル−2−ノルボルネン、5−シクロペンチル−2−ノルボルネン等のアルキル基を有するノルボルネン類;5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネン、5−プロペニル−2−ノルボルネン、5−シクロヘキセニル−2−ノルボルネン、5−シクロペンテニル−2−ノルボルネン等のアルケニル基を有するノルボルネン類;5−フェニル−2−ノルボルネン等の芳香環を有するノルボルネン類;5−メトキシカルボニル−2−ノルボルネン、5−エトキシカルボニル−2−ノルボルネン、5−メチル−5−メトキシカルボニル−2−ノルボルネン、5−メチル−5−エトキシカルボニル−2−ノルボルネン、ノルボルネニル−2−メチルプロピオネイト、ノルボルネニル−2−メチルオクタネイト、5−ヒドロキシメチルノルボルネン、5,6−ジ(ヒドロキシメチル)−2−ノルボルネン、5,5−ジ(ヒドロキシメチル)−2−ノルボルネン、5−ヒドロキシイソプロピル−2−ノルボルネン、5,6−ジカルボキシ−2−ノルボルネン、5−メトキシカルボニル−6−カルボキシ−2−ノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;5−シアノ−2−ノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;等が挙げられる。
3環以上の多環式ノルボルネン系単量体とは、分子内にノルボルネン環と、該ノルボルネン環と縮合している1つ以上の環とを有するノルボルネン系単量体である。その具体例としては、下記に示す式(1)又は式(2)で示される単量体が挙げられる。
Figure 2009079101
(式中、R及びRはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、互いに結合して環を形成していてもよい。Rは置換基を有していてもよい炭素数1〜20の二価の炭化水素基である。)
Figure 2009079101
(式中、R〜Rはそれぞれ独立に水素原子;ハロゲン原子;置換基を有していてもよい炭素数1〜20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、RとRは互いに結合して環を形成していてもよい。mは1又は2である。)
式(1)で示される単量体としては、具体的には、ジシクロペンタジエン(トリシクロ[4.3.0.12,5]デカ−3,7−ジエン)、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ−8−エン等を挙げることができる。また、テトラシクロ[9.2.1.02,10.03,8]テトラデカ−3,5,7,12−テトラエン(1,4−メタノ−1,4,4a,9a−テトラヒドロ−9H−フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ−4,6,8,13−テトラエン(1,4−メタノ−1,4,4a,9,9a,10−ヘキサヒドロアントラセンともいう)等の芳香環を有するノルボルネン誘導体も挙げることができる。
式(2)で示される単量体としては、mが1であるテトラシクロドデセン類、mが2であるヘキサシクロヘプタデセン類が挙げられる。
テトラシクロドデセン類の具体例としては、テトラシクロドデセン(テトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン)、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、8−シクロヘキシルテトラシクロドデセン、8−シクロペンチルテトラシクロドデセン等の無置換又はアルキル基を有するテトラシクロドデセン類;8−メチリデンテトラシクロドデセン、8−エチリデンテトラシクロドデセン、8−ビニルテトラシクロドデセン、8−プロペニルテトラシクロドデセン、8−シクロヘキセニルテトラシクロドデセン、8−シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;8−フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−メトキシカルボニルテトラシクロドデセン、8−ヒドロキシメチルテトラシクロドデセン、8−カルボキシテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸、テトラシクロドデセン−8,9−ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;8−シアノテトラシクロドデセン、テトラシクロドデセン−8,9−ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;8−クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;8−トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類等が挙げられる。
ヘキサシクロヘプタデセン類の具体例としては、ヘキサシクロヘプタデセン、12−メチルヘキサシクロヘプタデセン、12−エチルヘキサシクロヘプタデセン、12−シクロヘキシルヘキサシクロヘプタデセン、12−シクロペンチルヘキサシクロヘプタデセン等の無置換又はアルキル基を有するヘキサシクロヘプタデセン類;12−メチリデンヘキサシクロヘプタデセン、12−エチリデンヘキサシクロヘプタデセン、12−ビニルヘキサシクロヘプタデセン、12−プロペニルヘキサシクロヘプタデセン、12−シクロヘキセニルヘキサシクロヘプタデセン、12−シクロペンテニルヘキサシクロヘプタデセン等の環外に二重結合を有するヘキサシクロヘプタデセン類;12−フェニルヘキサシクロヘプタデセン等の芳香環を有するヘキサシクロヘプタデセン類;12−メトキシカルボニルヘキサシクロヘプタデセン、12−メチル−12−メトキシカルボニルヘキサシクロヘプタデセン、12−ヒドロキシメチルヘキサシクロヘプタデセン、12−カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸、ヘキサシクロヘプタデセン12,13−ジカルボン酸無水物等の酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13−ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;12−クロロヘキサシクロヘプタデセン等のハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;12−トリメトキシシリルヘキサシクロヘプタデセン等のケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類等が挙げられる。これらのノルボルネン系単量体は1種単独で、あるいは2種以上を組み合わせて用いることができる。
本発明においては、上記した2−ノルボルネン及び/又は置換基含有ノルボルネン系単量体と開環共重合可能なその他の単量体とを組み合わせて用いることもできる。
2−ノルボルネン及び/又は置換基含有ノルボルネン系単量体と開環共重合可能なその他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテン等のモノ環状オレフィン類及びその誘導体;シクロヘキサジエン、シクロヘプタジエン等の環状ジエン及びその誘導体;等が挙げられる。
2−ノルボルネン、又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物の組成は、2−ノルボルネンが、通常90〜100重量%、好ましくは95〜99重量%、より好ましくは97〜99重量%であり、置換基含有ノルボルネン系単量体は、通常0〜10重量%、好ましくは1〜5重量%、より好ましくは1〜3重量%である。
メタセシス重合触媒としては、例えば、特公昭41−20111号公報、特開昭46−14910号公報、特公昭57−17883号公報、特公昭57−61044号公報、特開昭54−86600号公報、特開昭58−127728号公報、特開平1−240517号公報等に記載された、本質的に(a)遷移金属化合物触媒成分と(b)金属化合物助触媒成分からなる一般のメタセシス重合触媒;シュロック型重合触媒(特開平7−179575号公報、Schrock et al.,J.Am.Chem.Soc.,1990年,第112巻,3875頁〜等)や、グラブス型重合触媒(Fu et al.,J.Am.Chem.Soc.,1993年,第115巻,9856頁〜;Nguyen et al.,J.Am.Chem.Soc.,1992年,第114巻,3974頁〜;Grubbs et al.,WO98/21214号パンフレット等)等のリビング開環メタセシス触媒;等が挙げられる。
これらの中でも、得られる重合体の分子量分布を好適な範囲に調節するには、(a)遷移金属化合物触媒成分と(b)金属化合物助触媒成分とからなるメタセシス重合触媒が好ましい。
前記(a)遷移金属化合物触媒成分は、周期律表第3〜11族の遷移金属の化合物である。例えば、これらの遷移金属のハロゲン化物、オキシハロゲン化物、アルコキシハロゲン化物、アルコキシド、カルボン酸塩、(オキシ)アセチルアセトネート、カルボニル錯体、アセトニトリル錯体、ヒドリド錯体、これらの誘導体、これら又はこれらの誘導体のP(C等の錯化剤による錯化物が挙げられる。
具体例としては、TiCl、TiBr、VOCl、WBr、WCl、WOCl、MoCl、MoOCl、WO、HWO等が挙げられる。なかでも、重合活性等の点から、W、Mo、Ti、又はVの化合物が好ましく、特にこれらのハロゲン化物、オキシハロゲン化物、又はアルコキシハロゲン化物が好ましい。
前記(b)金属化合物助触媒成分は、周期律表第1〜2族、及び第12〜14族の金属の化合物で少なくとも一つの金属元素−炭素結合、又は金属元素−水素結合を有するものである。例えば、Al、Sn、Li、Na、Mg、Zn、Cd、B等の有機化合物等が挙げられる。
具体例としては、トリメチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムモノクロリド、メチルアルミニウムセスキクロリド、エチルアルミニウムジクロリド等の有機アルミニウム化合物;テトラメチルスズ、ジエチルジメチルスズ、テトラブチルスズ、テトラフェニルスズ等の有機スズ化合物;n−ブチルリチウム等の有機リチウム化合物;n−ペンチルナトリウム等の有機ナトリウム化合物;メチルマグネシウムイオジド等の有機マグネシウム化合物;ジエチル亜鉛等の有機亜鉛化合物;ジエチルカドミウム等の有機カドミウム化合物;トリメチルホウ素等の有機ホウ素化合物;等が挙げられる。これらの中で、第13族の金属の化合物が好ましく、特にAlの有機化合物が好ましい。
また、前記(a)成分、(b)成分の他に第三成分を加えて、メタセシス重合活性を高めることができる。用いる第三成分としては、脂肪族第三級アミン、芳香族第三級アミン、分子状酸素、アルコール、エーテル、過酸化物、カルボン酸、酸無水物、酸クロリド、エステル、ケトン、含窒素化合物、含ハロゲン化合物、その他のルイス酸等が挙げられる。
これらの成分の配合比は、(a)成分:(b)成分が金属元素のモル比で、通常1:1〜1:100、好ましくは1:2〜1:10の範囲である。また、(a)成分:第三成分がモル比で、通常1:0.005〜1:50、好ましくは1:1〜1:10の範囲である。
また、重合触媒の使用割合は、(重合触媒中の遷移金属):(全単量体)のモル比で、通常1:100〜1:2,000,000、好ましくは1:1,000〜1:20,000、より好ましくは1:5,000〜1:8,000である。触媒量が多すぎると重合反応後の触媒除去が困難になったり、また、分子量分布が広がるおそれがあり、一方、少なすぎると十分な重合活性が得られない。
開環重合は無溶媒で行うこともできるが、適当な溶媒中で行うことが好ましい。用いる有機溶媒としては、重合体及び重合体水素化物が所定の条件で溶解もしくは分散し、かつ、重合及び水素化反応に影響しないものであれば特に限定されないが、工業的に汎用されている溶媒が好ましい。
このような有機溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;ジクロロメタン、クロロホルム、1,2−ジクロロエタン等のハロゲン系脂肪族炭化水素;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素;ジエチルエ−テル、テトラヒドロフラン等のエ−テル類等の溶媒を使用することができる。これらの有機溶媒は、それぞれ単独で、あるいは2種以上を組み合わせて使用することができる。
これらの中でも、工業的に汎用されている芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素及びエーテル類が好ましい。
重合を有機溶媒中で行う場合には、2−ノルボルネン及び所望により2−ノルボルネンと開環共重合可能なその他の単量体、又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物、並びに所望によりこれらと開環共重合可能なその他の単量体(以下、これらをまとめて「単量体」ということがある。)の濃度は、1〜50重量%が好ましく、2〜45重量%がより好ましく、3〜40重量%が特に好ましい。前記単量体の濃度が1重量%より小さいと生産性が低くなるおそれがあり、50重量%より大きいと重合後の溶液粘度が高すぎて、その後の水素化反応が困難となるおそれがある。
開環重合においては、反応系に分子量調節剤を添加することができる。分子量調節剤を添加することで、得られる開環重合体の分子量を調整することができる。
用いる分子量調節剤としては特に限定されず、従来公知のものが使用できる。例えば、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン等のα−オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、イソブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;グリシジルメタクリレート等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;1,4−ペンタジエン、1,4−ヘキサジエン、1,5−ヘキサジエン、1,6−ヘプタジエン、2−メチル−1,4−ペンタジエン、2,5−ジメチル−1,5−ヘキサジエン等の非共役ジエン、又は1,3−ブタジエン、2−メチル−1,3−ブタジエン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、1,3−ヘキサジエン等の共役ジエン等を挙げることができる。これらの中で、分子量調節のし易さから、α−オレフィン類が好ましい。
分子量調節剤の添加量は、所望の分子量を持つ重合体を得るに足る量であればよく、(分子量調節剤):(全単量体)のモル比で、通常1:50〜1:1,000,000、好ましくは1:100〜1:5,000、より好ましくは1:300〜1:3,000である。
開環重合は、単量体と重合触媒とを混合することにより開始される。
開環重合を行う温度は、特に限定されないが、通常−20〜+100℃、好ましくは10〜80℃である。開環重合を行う温度が低すぎると反応速度が低下し、高すぎると副反応により、分子量分布が広がるおそれがある。
重合時間は、特に制限はなく、通常1分間から100時間である。
重合時の圧力条件は特に限定されないが、通常0〜1MPaの加圧下で重合を行う。
反応終了後においては、通常の後処理操作により目的とするノルボルネン系開環重合体を単離することができる。
得られたノルボルネン系開環重合体は、次の水素化反応工程へ供される。
また後述するように、開環重合を行った反応溶液に水素化触媒を添加して、ノルボルネン系開環重合体を単離することなく、連続的に水素化反応を行うこともできる。
ノルボルネン系開環重合体の水素化反応は、ノルボルネン系開環重合体の主鎖及び/又は側鎖に存在する炭素−炭素二重結合に水素化する反応である。この水素化反応は、ノルボルネン系開環重合体の不活性溶媒溶液に水素化触媒を添加し、反応系内に水素を供給して行う。
水素化触媒としては、オレフィン化合物の水素化に際して一般に使用されているものであれば、均一系触媒、不均一系触媒のいずれも使用することができる。得られる重合体中の残留金属の除去等を考慮すると、不均一系触媒が好ましい。
均一系触媒としては、例えば、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n−ブチルリチウム、ジルコノセンジクロリド/sec−ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウム等の組み合わせ等の遷移金属化合物とアルカリ金属化合物の組み合わせからなる触媒系;ジクロロビス(トリフェニルホスフィン)パラジウム、クロロヒドリドカルボニルトリス(トリフェニルホスフィン)ルテニウム、クロロトリス(トリフェニルホスフィン)ロジウム等の貴金属錯体触媒;等が挙げられる。
不均一触媒としては、例えば、ニッケル/シリカ、ニッケル/ケイソウ土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/ケイソウ土、パラジウム/アルミナ等の、ニッケル、パラジウム、白金、ロジウム、ルテニウム、又はこれらの金属をカーボン、シリカ、ケイソウ土、アルミナ、酸化チタン等の担体に担持させた固体触媒系が挙げられる。
水素化触媒の使用量は、ノルボルネン系開環重合体100重量部に対し、通常0.05〜10重量部である。
水素化反応に用いる不活性有機溶媒としては、前述した2−ノルボルネンと置換基含有ノルボルネン系単量体との開環重合において用いることができる有機溶媒として例示した
ものと同様の、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素、ハロゲン系芳香族炭化水素、含窒素炭化水素、エーテル類等が挙げられる。
水素化反応の温度は、使用する水素化触媒によって適する条件範囲が異なるが、水素化温度は、通常−20℃〜+300℃、好ましくは0℃〜+250℃である。水素化温度が低すぎると反応速度が遅くなるおそれがあり、高すぎると副反応が起こる可能性がある。
水素圧力は、通常0.01〜20MPa、好ましくは0.1〜10MPa、より好ましくは1〜5MPaである。水素圧力が低すぎると水素化速度が遅くなり、高すぎると高耐圧反応装置が必要となるので好ましくない。
ノルボルネン系開環重合体水素化物(以下、「開環重合体水素化物」ということがある)は、重合体中の炭素−炭素二重結合の水素化率が80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは99%以上、特に好ましくは99.9%以上である。上記の範囲にあると、得られる封止剤は防湿性と耐溶剤性に優れる。
開環重合体水素化物の水素化率は、溶媒に重クロロホルムを用い、1H−NMRにより測定して求めることができる。
水素化反応終了後は、反応溶液から水素化触媒等を濾別し、濾別後の重合体溶液から溶媒等の揮発成分を除去することにより、目的とする開環重合体水素化物を得ることができる。
溶媒等の揮発成分を除去する方法としては、凝固法や直接乾燥法等公知の方法を採用することができる。
凝固法は、重合体溶液を重合体の貧溶媒と混合することにより、重合体を析出させる方法である。用いる貧溶媒としては、エチルアルコール、n−プロピルアルコール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;酢酸エチル、酢酸ブチル等のエステル類;等の極性溶媒が挙げられる。
凝固して得られた粒子状の成分は、例えば、真空中又は窒素中若しくは空気中で加熱して乾燥させて粒子状にするか、さらに必要に応じて溶融押出機から押し出してペレット状にすることができる。
直接乾燥法は、重合体溶液を減圧下加熱して溶媒を除去する方法である。この方法には、遠心薄膜連続蒸発乾燥機、掻面熱交換型連続反応器型乾燥機、高粘度リアクタ装置等の公知の装置を用いて行うことができる。真空度や温度はその装置によって適宜選択され、限定されない。
以上のようにして得られる開環重合体水素化物の2−ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合は、90〜100重量%、好ましくは95〜99重量%、より好ましくは97〜99重量%であり、置換基含有ノルボルネン系単量体由来の繰り返し単位(B)の全繰り返し単位に対する存在割合は、0〜10重量%、好ましくは1〜5重量%、より好ましくは1〜3重量%である。
繰り返し単位(B)の存在割合が上記範囲であると、封止剤の耐水トリー性に優れ、機械的特性にも優れ好ましい。繰り返し単位(B)の存在割合が多すぎると、封止剤の耐水トリー性が悪化するおそれがある。一方、繰り返し単位(B)の存在割合が少なすぎると、封止剤の機械的特性が低下するおそれがある。
得られる開環重合体水素化物は、その重量平均分子量(Mw)が、1,2,4−トリクロロベンゼンを溶離液とするゲル・パーミエーション・クロマトグラフィ(GPC)による標準ポリスチレン換算で、通常50,000〜200,000、好ましくは70,000〜180,000、より好ましくは80,000〜150,000である。
Mwが高すぎると、封止剤の加工性が悪化するおそれがある。また、Mwが低すぎると、封止剤の機械的特性、耐熱性が低下するおそれがあり、開環重合体水素化物が溶剤から析出し易くなり、ポリマー精製が困難になるおそれがある。
開環重合体水素化物は、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)が、通常1.5〜7.0、好ましくは2.0〜6.5、より好ましくは2.5〜6.0、さらに好ましくは2.5〜5.5である。
Mw/Mnが狭すぎると、封止剤の加工性が悪化するおそれがある。また、Mw/Mnが広すぎると、機械的特性が低下するおそれがある。
ちなみに、Mnは1,2,4−トリクロロベンゼンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により標準ポリスチレン換算として測定した数平均分子量である。
開環重合体水素化物の融点は、110〜145℃、好ましくは120〜145℃、より好ましくは、130℃〜145℃である。上記の範囲にあると、封止剤の耐熱性に優れるため好ましい。
ちなみに、開環重合体水素化物の融点は、開環重合体水素化物の分子量、分子量分布、異性化率、組成比等により変化する。
開環重合体水素化物の異性化率は、通常0〜40%、好ましくは0〜20%、より好ましくは1〜10%、特に好ましくは3〜9%である。
異性化率は、溶媒に重クロロホルムを用い、13C−NMRにより測定した33.0ppmピーク積分値/(31.8ppmピーク積分値+33.0ppmピーク積分値)×100から算出することができる。
ちなみに、31.8ppmピークは、該重合体中の2−ノルボルネンの繰り返し単位のシス体由来のもの、33.0ppmピークは、該重合体中の2−ノルボルネンの繰り返し単位のトランス体由来のものである。
本発明では、開環重合により、実質的にシス体である開環重合体を合成し、これを水素化して開環重合体水素化物とすることが好ましい。水素化反応の際に、通常、トランス体への異性化が生じるが、この異性化を抑制して、トランス体の含有量を低く抑えることが好ましい。
開環重合体水素化物の異性化率が高すぎると、耐熱性が低下するおそれがある。一方、異性化率が低すぎると、開環重合体水素化物の有機溶剤に対する溶解性が低下し、析出するおそれがある。そのため、開環重合体水素化物の異性化率は、0%であってもよいが、10%以下の範囲内である程度の異性化率を示すものであることが好ましい。
異性化率を上記範囲にするためには、開環重合体の水素化反応において、反応温度を好ましくは120〜170℃、より好ましくは130〜160℃とし、かつ、使用する水素化触媒の使用量を、開環重合体100重量部に対し、好ましくは0.2〜5重量部、より好ましくは0.2〜1重量部とする。
用いる開環重合体水素化物は、異物が少ないことが好ましい。封止剤中の金属残渣や異物等は、電子部品への適用において電気特性の低下を招くおそれがある。重合反応後又は水素化反応後に、孔径が0.2μm以下のフィルターにて重合体溶液を濾過することによって金属残査や異物等を精密に取り除くことができる。
本発明の封止剤は、上記開環重合体水素化物の一種又は二種以上を含有するものであるが、必要に応じて、酸化防止剤(安定剤)、架橋剤、発泡剤、難燃剤、熱可塑性樹脂や軟質重合体等のその他の重合体、滑剤等の配合剤や、染料、帯電防止剤、紫外線吸収剤、耐光安定剤、ワックス等の樹脂工業分野で通常使用されるその他の配合剤を含有していてもよい。
なお、本発明の封止剤を構成する重合体全体に対して、開環重合体水素化物の割合は、通常50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上である。
本発明の封止剤は、開環重合体水素化物の一種若しくは二種以上か、又は開環重合体水素化物の一種若しくは二種以上に、上記配合剤を混合して得られる樹脂組成物のいずれかである。
開環重合体水素化物に上記配合剤を混合して樹脂組成物を調製する方法としては、特に制約はないが、開環重合体水素化物と配合剤を、単軸押出機、2軸押出機、ロール、バンバリーミキサー等の混練機によって溶融混合する方法が挙げられる。
配合剤と混合する際の開環重合体水素化物は、開環重合体水素化物を含む反応液から単離したものであっても、前記反応液から不溶物を濾過した溶液のものであっても、濾過前の反応溶液のものであってもよい。また、配合剤は、それぞれ適当な溶媒に溶解したものであってもよい。開環重合体水素化物の溶液及び/又は配合剤の溶液は、必要に応じて加熱して用いてもよい。
以上のようにして、開環重合体水素化物、又は開環重合体水素化物に配合剤が添加された樹脂組成物からなる本発明の封止剤を得ることができる。
本発明の封止剤は、通常、取り扱いやすいようにペレットと呼ばれる米粒程度の大きさに加工されて使用に供される。
以下、本発明を実施例及び比較例によりさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。なお、以下の実施例及び比較例において、部又は%は、特に断りがない限り、重量基準である。
以下の実施例及び比較例において、各種物性の測定法は次のとおりである。
(1)開環(共)重合体の重量平均分子量(Mw)及び数平均分子量(Mn)は、トルエンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として測定した。
測定装置として、GPC−8020シリーズ(DP8020、SD8022、AS8020、CO8020、RI8020、東ソー社製)を用いた。
標準ポリスチレンとしては、東ソー社製標準ポリスチレン(Mwが500、2630、10200、37900、96400、427000、1090000、5480000のものの計8点)を用いた。
サンプルは、サンプル濃度1mg/mlになるように、測定試料をトルエンに溶解後、カートリッジフィルター(ポリテトラフルオロエチレン製、孔径0.5μm)で濾過して調製した。
測定は、カラムに、TSKgel GMHHR・H(東ソー社製)を2本直列に繋いで用い、流速1.0ml/分、サンプル注入量100μml、カラム温度40℃の条件で行った。
(2)開環(共)重合体水素化物の重量平均分子量(Mw)及び数平均分子量(Mn)は、1,2,4−トリクロロベンゼンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として測定した。
測定装置として、HLC8121GPC/HT(東ソー社製)を用いた。
標準ポリスチレンとしては、東ソー社製標準ポリスチレン(Mwが988、2580、5910、9010、18000、37700、95900、186000、351000、889000、1050000、2770000、5110000、7790000、20000000のものの計16点)を用いた。
サンプルは、サンプル濃度1mg/mlになるように、140℃にて測定試料を1,2,4−トリクロロベンゼンに加熱溶解させて調製した。
測定は、カラムに、TSKgel GMHHR・H(20)HT(東ソー社製)を3本直列に繋いで用い、流速1.0ml/分、サンプル注入量300μml、カラム温度140℃の条件で行った。
(3)開環共重合体水素化物の水素化率は、溶媒に重クロロホルムを用い、1H−NMRにより測定して求めた。
(4)異性化率は、溶媒に重クロロホルムを用い、13C−NMRにより測定した33.0ppmピーク積分値/(31.8ppmピーク積分値+33.0ppmピーク積分値)×100から算出して求めた。
ちなみに、31.8ppmピークは、該重合体中の2−ノルボルネンの繰り返し単位のシス体由来のもの、33.0ppmピークは、該重合体中の2−ノルボルネンの繰り返し単位のトランス体由来のものである。
(5)融点は、示差走査熱量分析計(DSC6220、SIIナノテクノロジー社製)を用いて、JIS K 7121に基づき、試料を融点より30℃以上に加熱した後、冷却速度−10℃/分で室温まで冷却し、その後、昇温速度10℃/分で測定した。
(6)ガラス転移温度は、示差走査熱量分析計(DSC6220、SIIナノテクノロジー社製)を用いて、JIS K 6911に基づいて測定した。
(7)EL素子の耐久性は、封止層を形成したEL素子の製造直後、及び下記の条件で連続発光させた後の、それぞれの発光面の平均輝度を測定し、製造直後の平均輝度を100とした場合の連続発光後の平均輝度の割合を測定して評価した。
連続発光条件:温度90℃、湿度95%、500時間
輝度の測定:発光面を縦横等間隔に3等分に分割して得られた9エリアの中心点の輝度(発光面から20cm)を、輝度計(BM−7:トプコン社製)にて測定して平均値を求めた。
(8)アセトニトリル浸漬試験は、フィルム(100μm、5.0cm×5.0cm)を、ガラス製ビーカーにいれたアセトニリル(特級、関東化学社製)に、室温で24時間浸漬し、浸漬前からの面積の増加率を評価した。
実施例1
(開環重合)
窒素雰囲気下、脱水したシクロヘキサン500部に、1−ヘキセン0.55部、ジイソプロピルエーテル0.30部、トリイソブチルアルミニウム0.20部、及びイソブチルアルコール0.075部を室温で反応器に入れ混合した。そこへ、2−ノルボルネン(以下、「2−NB」ということがある。)250部及び六塩化タングステン1.0%トルエン溶液15部を、55℃に保ちながら、2時間かけて連続的に添加し、重合を行った。
得られた開環重合体(A)の重量平均分子量(Mw)は、83,000、分子量分布(Mw/Mn)は1.8であった。重合転化率は、ほぼ100%であった。
(水素化反応)
上記で得た重合反応液を耐圧の水素化反応器に移送し、そこへ、ケイソウ土担持ニッケル触媒(T8400、ニッケル担持率58%、日産ズードヘミー社製)0.5部を加え、160℃、水素圧4.5MPaで6時間反応させた。この溶液を、ラジオライト#500(昭和化学社製)を濾過床として、加圧濾過器(フンダフィルター、石川島播磨重工社製)を使用し、圧力0.25MPaで加圧濾過して、開環重合体水素化物(A)の無色透明な溶液を得た。
(重合体物性)
得られた開環重合体水素化物(A)の水素化率は99.9%、重量平均分子量(Mw)は、82,200、分子量分布(Mw/Mn)は2.9、異性化率は5%、融点は140℃であった。
(樹脂組成物の調製)
得られた溶液に、重合体固形分100部当り、酸化防止剤(テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、イルガノックス1010、チバガイギー社製)(以下「酸化防止剤(A)」と略す)0.1部を加え、溶解させた。
(乾燥)
この溶液を金属ファイバー製フィルター(孔径0.5μm、ニチダイ社製)にて濾過した後、ろ液を「ゼータプラスフィルター30S」(孔径0.5〜1μm、キュノ社製)で濾過し、さらに、金属ファイバー製フィルター(孔径0.2μm、ニチダイ社製)で濾過して異物を除去した。得られたろ液を予備加熱装置で200℃に加熱し、圧力3MPaで薄膜乾燥機(日立製作所社製)に連続的に供給した。薄膜乾燥機の運転条件は、圧力13.4kPa下、内部の濃縮された重合体溶液の温度を240℃とした(第一段階乾燥)。
次に、濃縮された溶液を、薄膜乾燥機から連続的に導出し、さらに同型の薄膜乾燥機に温度240℃を保ったまま、圧力1.5MPaで供給した。運転条件は、圧力0.7kPa、温度240℃とした(第二段階乾燥)。
(ペレット化)
溶融状態の重合体を、薄膜乾燥機から連続的に導出し、クラス100のクリーンルーム内でダイから押し出し、水冷後、ペレタイザー(OSP−2、長田製作所社製)でカッティングして樹脂組成物(A)のペレットを得た。
(フィルム成形)
スクリュー径20mmφ、圧縮比2.5又は3.1、L/D=30のスクリューを備えたハンガーマニュホールドタイプのTダイ式フィルム溶融押出成形機(据置型、GSIクレオス社製)を使用し、以下の条件で、ペレット状の樹脂(2−ノルボルネン開環重合体水素化物)を、下記の成形条件によるTダイ成形を行い、フィルム(層厚100μm)を得た。
<成形条件>
ダイリップ:0.8mm
溶融樹脂温度:180℃
Tダイの幅:300mm
Tダイ温度:190℃
冷却ロール:120℃
キャストロール:130℃
シート引き取り速度:2.5m/分
スクリュー圧縮比:3.1
また、シート引き取り速度5.0m/分にした以外は上記と同じ条件でTダイ成形を行い、フィルム(層厚50μm)を得た。
(EL素子製造)
得られた厚さ100μmのフィルムを20×100mmの短冊状に切り取って透明基板とし、片面にインジウムスズ酸化物(ITO)をスパッタリングして一次表示電極層を形成した。次いで、有機EL発光体として、正孔輸送層にアゾメチンを、発光層に8−ヒドロキシキノリンのアルミニウム錯体(Alq錯体)を、それぞれ真空蒸着した。さらに、発光層表面に、アルミニウムをスパッタリングして二次電極層を形成し、3層積層体を得た。
得られた3層積層体を、50μmのフィルム(26×106mm)2枚で挟み、プレス成形機を用いて、温度120℃、圧力1MPaで1分加熱溶融プレスを行い、両面封止されたEL素子を製造した。
実施例2
(開環重合)
実施例1において、モノマーを、2−ノルボルネン240部、ジシクロペンダジエン(以下「DCP」と略すことがある)10部とし、ジイソプロピルエーテルを0.40部、トリイソブチルアルミニウムを0.27部、イソブチルアルコールを0.10部、六塩化タングステン1.0%トルエン溶液を20部用いた以外は実施例1と同様にして開環共重合体(B)を得た。
開環共重合体(B)の重量平均分子量(Mw)は、83,000、分子量分布(Mw/Mn)は2.7であった。重合転化率は、ほぼ100%であった。(水素化反応)
実施例1と同様にして、得られた開環共重合体(B)を水素化して開環重合体水素化物(B)を得た。
(重合体物性)
開環重合体水素化物(B)の水素化率は99.9%、重量平均分子量(Mw)は、81,300、分子量分布(Mw/Mn)は3.8、異性化率は9%、融点は134℃であった。
(樹脂組成物の調製)
得られた開環重合体水素化物(B)の溶液を用い、実施例1と同様にして樹脂組成物(B)を得た。
(フィルム成形)
実施例1において、溶融樹脂温度を174℃、Tダイ温度を184℃、冷却ロール温度を114℃、キャストロール温度を124℃にした以外は、実施例1と同様にして樹脂組成物(B)のTダイ成形を行い、フィルムを得た。
(EL素子製造)
得られたフィルムを用いて、実施例1と同様にして3層積層体を得た。
溶融プレス温度を124℃にした以外は、実施例1と同様にしてEL素子を製造した。
実施例3
(開環重合)
実施例1において、モノマーを、2−ノルボルネン245部とメチルノルボルネン(以下、「MNB」と略すことがある。)5部とし、1−ヘキセンを0.40部、ジイソプロピルエーテルを0.31部、トリイソブチルアルミニウムを0.20部、イソブチルアルコールを0.08部、六塩化タングステン1.0%トルエン溶液を15部用いた以外は実施例1と同様にして開環重合体(C)を得た。重合転化率は、ほぼ100%であった。
得られた開環共重合体(C)の重量平均分子量(Mw)は、103,000で、分子量分布(Mw/Mn)は、1.9であった。
(水素化反応)
実施例1と同様にして、得られた開環共重合体(B)を水素化して開環重合体水素化物(C)を得た。
(重合体物性)
得られた開環重合体水素化物(C)の水素化率は99.9%、重量平均分子量(Mw)は100,000、分子量分布(Mw/Mn)は2.9、異性化率は8%、融点は136℃であった。
(樹脂組成物の調製)
得られた開環重合体水素化物(C)の溶液を用い、実施例1と同様にして樹脂組成物(C)を得た。
(フィルム成形)
実施例1において、溶融樹脂温度を176℃、Tダイ温度を186℃、冷却ロール温度を116℃、キャストロール温度を126℃にした以外は、実施例1と同様にして、樹脂組成物(C)のTダイ成形を行い、フィルムを得た。
(EL素子製造)
得られたフィルムを用いて、実施例1と同様にして3層積層体を得た。
溶融プレス温度を126℃にした以外は、実施例1と同様にしてEL素子を製造した。
比較例1
(開環重合)
窒素雰囲気下、攪拌機付きオートクレーブに、70%の2−ノルボルネンのトルエン溶液33.4部、ジシクロペンタジエン2.86部、1−ヘキセン0.020部、シクロヘキサン49.3部を加え、全容を攪拌した。続いて、ビス(トリシクロヘキシルフォスフィン)ベンジリジンルテニウム(IV)ジクロリド0.023部を8.6部のトルエンに溶解した溶液を加えて、60℃にて30分間反応させ、開環重合体(D)を得た。重合転化率は、ほぼ100%であった。
得られた開環共重合体(D)の重量平均分子量(Mw)は、81,000、分子量分布(Mw/Mn)は3.6であった。
(水素化反応)
上記で得た重合溶液にエチルビニルエーテル0.020部を加えて攪拌した後、水素圧力1.0MPa、150℃で20時間水素化反応を行なった。その後、室温まで冷却し、活性炭粉末0.5部をシクロヘキサン10部に懸濁させた溶液を添加し、水素圧力1.0MPa、150℃で2時間反応させた。次いで反応液を孔径0.2μmのフィルターで濾過し、活性炭粉末を除去した。
(重合体物性)
得られた開環重合体水素化物(D)の水素化率は99.9%、重量平均分子量(Mw)は、85,000、分子量分布(Mw/Mn)は3.9、融点は101℃であった。
(樹脂組成物の調製)
得られた開環重合体水素化物(D)の溶液を用い、実施例1と同様にして樹脂組成物(D)を得た。
(フィルム成形)
実施例1において、溶融樹脂温度を141℃、Tダイ温度を151℃、冷却ロール温度を81℃、キャストロール温度を91℃にした以外は、実施例1と同様にして、樹脂組成物(D)のTダイ成形を行い、フィルムを得た。
(EL素子製造)
得られたフィルムを用いて、実施例1と同様にして3層積層体を得た。
溶融プレス温度を91℃にした以外は、実施例1と同様にしてEL素子を製造した。
比較例2
(開環重合)
実施例1において、モノマーを、8−エチルテトラシクロ[4.4.0.12,5.17,10]−ドデカ−3−エン(以下「ETD」と略すことがある)30部、DCP170部とし、ジイソプロピルエーテルを0.18部、トリイソブチルアルミニウムを0.59部、イソブチルアルコールを0.45部、六塩化タングステン1.0%トルエン溶液を10部用いた以外は実施例1と同様にして開環共重合体(B)を得た。
開環共重合体(B)の重量平均分子量(Mw)は、24,700、分子量分布(Mw/Mn)は2.8であった。重合転化率は、ほぼ100%であった。
(水素化反応)
実施例1と同様にして、得られた開環共重合体(E)を水素化して開環重合体水素化物(E)を得た。
(重合体物性)
得られた開環重合体水素化物(D)の水素化率は99.9%、重量平均分子量(Mw)は、31,000、分子量分布(Mw/Mn)は3.0、Tgは100℃であった。
(樹脂組成物の調製)
得られた開環重合体水素化物(E)の溶液を用い、実施例1と同様にして樹脂組成物(E)を得た。
(フィルム成形)
実施例1において、溶融樹脂温度を200℃、Tダイ温度を210℃、冷却ロール温度を85℃、キャストロール温度を95℃にした以外は、実施例1と同様にして、樹脂組成物(E)のTダイ成形を行い、フィルムを得た。
(EL素子製造)
得られたフィルムを用いて、実施例1と同様にして3層積層体を得た。
溶融プレス温度を120℃にした以外は、実施例1と同様にしてEL素子を製造した。
比較例3
(フィルム成形)
実施例1において、樹脂組成物(A)のペレットの代わりにハイミラン1702(三井・デュポンポリケミカル社製)を用い溶融樹脂温度を160℃、Tダイ温度を170℃、冷却ロール温度を70℃、キャストロール温度を80℃にした以外は、実施例1と同様にしてフィルムを得た。
(EL素子製造)
得られたフィルムを用いて、実施例1と同様にして3層積層体を得た。
溶融プレス温度を80℃にした以外は、実施例1と同様にしてEL素子を製造した。 上記実施例及び比較例における評価結果を第1表に示す。
Figure 2009079101
第1表から、実施例1〜3の封止剤を用いて作成したEL素子は、高温高湿下でも耐久性に優れていた。また、実施例1〜3の封止剤はアセトニトリルへの耐性に優れていた。一方、比較例1、2の封止剤を用いて作成したEL素子は、実施例の封止剤に比して耐久性に劣っていた。また、比較例3の封止剤を用いて作成したEL素子は、耐久性に著しく劣っており、比較例3の封止剤はアセトニトリルへの耐性にも劣るものであった。

Claims (2)

  1. 2−ノルボルネン、又は2−ノルボルネン及び置換基含有ノルボルネン系単量体からなる単量体混合物を開環重合して得られる開環重合体の、炭素−炭素二重結合の80%以上を水素化することにより得られるノルボルネン系開環重合体水素化物であって、2−ノルボルネン由来の繰り返し単位(A)の全繰り返し単位に対する存在割合が90〜100重量%、置換基含有ノルボルネン系単量体由来の繰り返し単位(B)の全繰り返し単位に対する存在割合が0〜10重量%であり、かつ、融点が110〜145℃の範囲であるノルボルネン系開環重合体水素化物を含有することを特徴とする封止剤。
  2. 前記ノルボルネン系開環重合体水素化物が、ゲル・パーミエーション・クロマトグラフィーによる標準ポリスチレン換算での重合平均分子量が、50,000〜200,000であり、かつ、分子量分布が1.5〜7.0の高分子である請求項1記載の封止剤。
JP2007248334A 2007-09-26 2007-09-26 封止剤 Pending JP2009079101A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007248334A JP2009079101A (ja) 2007-09-26 2007-09-26 封止剤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007248334A JP2009079101A (ja) 2007-09-26 2007-09-26 封止剤

Publications (1)

Publication Number Publication Date
JP2009079101A true JP2009079101A (ja) 2009-04-16

Family

ID=40654115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007248334A Pending JP2009079101A (ja) 2007-09-26 2007-09-26 封止剤

Country Status (1)

Country Link
JP (1) JP2009079101A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108600A1 (ja) * 2010-03-02 2011-09-09 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2012073971A1 (ja) 2010-11-30 2012-06-07 三菱樹脂株式会社 太陽電池用多層体及びそれを用いて作製された太陽電池モジュール
JP2013127970A (ja) * 2009-12-24 2013-06-27 Mitsubishi Plastics Inc 発光装置の表示素子の封止材及びそれを用いて作製された発光装置
CN107017355A (zh) * 2015-12-03 2017-08-04 双叶电子工业株式会社 密封结构、有机el显示装置以及传感器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013127970A (ja) * 2009-12-24 2013-06-27 Mitsubishi Plastics Inc 発光装置の表示素子の封止材及びそれを用いて作製された発光装置
WO2011108600A1 (ja) * 2010-03-02 2011-09-09 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2012073971A1 (ja) 2010-11-30 2012-06-07 三菱樹脂株式会社 太陽電池用多層体及びそれを用いて作製された太陽電池モジュール
US9660118B2 (en) 2010-11-30 2017-05-23 Dai Nippon Printing Co., Ltd. Laminate for solar cell and solar cell module produced using same
CN107017355A (zh) * 2015-12-03 2017-08-04 双叶电子工业株式会社 密封结构、有机el显示装置以及传感器

Similar Documents

Publication Publication Date Title
JP5598326B2 (ja) 結晶性ノルボルネン系開環重合体水素化物及び成形体
JP5564945B2 (ja) 樹脂組成物およびこれを用いたフィルム
JP5365603B2 (ja) 重合体組成物およびその利用
JP5083530B2 (ja) フィルム
JP2008195890A (ja) 樹脂組成物及びフィルム
JP2009179650A (ja) 重合体組成物およびそれを用いてなるフィルム
JP2009079101A (ja) 封止剤
JP4952178B2 (ja) 酸素吸収性多層構造体
JP5041233B2 (ja) プラスチック成形品
JP2012007117A (ja) 熱硬化性架橋環状オレフィン樹脂フィルム及びその製造方法
JP4984856B2 (ja) 食品用容器
JP5003219B2 (ja) 多孔質フィルム及びその製造方法
JP5810531B2 (ja) 押出ラミネート用樹脂組成物及び積層体
JP2002020464A (ja) 射出成形品
JP2011006498A (ja) 樹脂組成物およびフィルム
WO2012063579A1 (ja) 熱硬化性架橋環状オレフィン樹脂フィルム及びその製造方法
JP2010195953A (ja) ノルボルネン系樹脂組成物および成形体
JP2010059380A (ja) 開環共重合体水素化物及びこれを含有する樹脂組成物
JP5895738B2 (ja) 重合体組成物及びそれを用いてなるシート
JP2009209276A (ja) 架橋性ノルボルネン樹脂組成物、樹脂フィルム
JP5707940B2 (ja) ノルボルネン系開環重合体水素化物
JP2009209172A (ja) 結晶性ノルボルネン単量体開環重合体水素添加物の製造方法
JP2008111033A (ja) ノルボルネン系開環重合体水素化物を含有する樹脂溶液、および物品
JP2013171797A (ja) 密閉型二次電池電槽用成形材料
JP5304471B2 (ja) 重合体組成物およびそれを用いてなるフィルム