WO2009097747A1 - 聚结型沸石吸附剂及其制备方法 - Google Patents

聚结型沸石吸附剂及其制备方法 Download PDF

Info

Publication number
WO2009097747A1
WO2009097747A1 PCT/CN2009/000117 CN2009000117W WO2009097747A1 WO 2009097747 A1 WO2009097747 A1 WO 2009097747A1 CN 2009000117 W CN2009000117 W CN 2009000117W WO 2009097747 A1 WO2009097747 A1 WO 2009097747A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
mass
zeolite
pore
solution
Prior art date
Application number
PCT/CN2009/000117
Other languages
English (en)
French (fr)
Inventor
Huiguo Wang
Jianfeng Ma
Dehua Wang
Zhuo YU
Original Assignee
China Petroleum & Chemical Corporation
Research Institute Of Petroleum Processing, Sinopec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum & Chemical Corporation, Research Institute Of Petroleum Processing, Sinopec filed Critical China Petroleum & Chemical Corporation
Priority to ROA201000687A priority Critical patent/RO126851B1/ro
Priority to US12/865,267 priority patent/US8791039B2/en
Publication of WO2009097747A1 publication Critical patent/WO2009097747A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/12Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers
    • C07C7/13Purification; Separation; Use of additives by adsorption, i.e. purification or separation of hydrocarbons with the aid of solids, e.g. with ion-exchangers by molecular-sieve technique
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a coalescing zeolite adsorbent and a preparation method thereof, and more particularly to an adsorbent for adsorbing and separating an aromatic isomer and a preparation method thereof.
  • the principle of the adsorption separation technology is to use a specific adsorbent to separate or purify the desired product from the mixed material by preferentially adsorbing or preferentially not adsorbing the characteristics of the intended product.
  • the adsorbent is the basis and core of the adsorption separation technique. It is known that the X-type zeolite which is exchanged by cesium or potassium ions alone or in combination has the property of preferentially adsorbing the para-isomer isomer. Therefore, BaX or BaKX is widely used as an adsorbent in the industry, and a continuous countercurrent simulated moving bed separation process is used to adsorb and separate para-xylene from a C 8 aromatic isomer.
  • the adsorbent preferentially adsorbs the p-xylene property, and after repeated countercurrent mass transfer, the para-xylene is adsorbed in the adsorbent, the concentration is continuously increased, and after the desired product purity is reached, the desorbent is desorbed and adsorbed.
  • the para-xylene, the rectification extract is used to recover the desorbent, and high-purity p-xylene is obtained.
  • the purity of p-benzoquinone produced by the method can reach 99.8% by mass, and the yield can reach 98% by mass.
  • such adsorbents are also disclosed for the separation of isomers such as diethyltoluene and methylphenol from USP 4,940,548 and USP 5,149,887.
  • Adsorbents with excellent performance should have the following three properties: high adsorption capacity, good adsorption selectivity, and fast mass transfer rate.
  • the adsorption capacity of the adsorbent is directly proportional to the zeolite content therein, and the higher the zeolite content, the larger the adsorption capacity of the adsorbent.
  • synthetic zeolites are usually in the form of powders, which require a certain amount of binder to be coalesced to meet the requirements of industrial applications, which inevitably results in partial capacity loss. Therefore, reduce the amount of inert binder in the adsorbent and try to make Its conversion to zeolites is an effective way to improve the performance of the adsorbent.
  • the selectivity of the adsorbent is primarily improved in terms of exchange ion species and zeolite properties.
  • USP 3997620 uses SbBaX type adsorbents for the exchange of ruthenium and osmium bimetals to improve the selectivity of para-xylene.
  • USP 4283587 treats the ion-exchanged X or Y-type zeolite with an alkylamine or alkylammonium hydrochloride salt to increase its para-isomer selectivity.
  • CN 1275926 A discloses a coalescing zeolite adsorbent which uses a low silica content X zeolite having a Si/Al atomic ratio of 1 to 1.15 as a raw material to prepare an adsorbent, and exchanges with barium and potassium ions for adsorption.
  • the exchangeable sites in the agent contain at least 70% cerium ions and up to 30% potassium ions.
  • the adsorbent uses kaolin as a binder and is crystallized in situ by alkali treatment to form X zeolite to increase the adsorbent capacity.
  • CN1448213A and CN1565718A respectively use small-grain X zeolites with crystal grains of 0.5 to 1.0 ⁇ m and 0.1 to 0.4 ⁇ m as active components of the adsorbent to increase the intragranular mass transfer rate of the adsorbent.
  • CN1358566A discloses an adsorbent and a method for preparing the same, which improve the performance of the adsorbent by improving the secondary pore distribution of the adsorbent.
  • the adsorbent mixes the X-type or Y-type zeolite with a binder, and adds 0.5 to 6.0% by mass of a pore-expanding agent, uniformly mixes and forms water, and is dried, activated, and subjected to alkali treatment and ion exchange to obtain an adsorbent.
  • the binder is one or more of kaolin, bentonite, organic bentonite, silica sol, aluminum sol, water glass, and the pore-expanding agent is one of lignin, cellulose sodium, and phthalocyanine powder.
  • An object of the present invention is to provide a coalescing zeolite adsorbent which has a high adsorption capacity and a fast mass transfer rate and a preparation method thereof.
  • the coalescing zeolite adsorbent provided by the invention comprises 95-99.9 mass% X zeolite and 0.5-5.0 mass% binder, and the exchangeable cationic sites of the X zeolite are ruthenium metal and/or K.
  • the total pore volume of the adsorbent measured by mercury intrusion method is not less than 0.26 liter/g, and the pore volume of the pore diameter of 100 500 nm accounts for at least 60% of the total pore volume.
  • the pore-forming agent is added to the mixed powder for preparing the adsorbent, so that the intragranular accumulation pores of the coalesced zeolite adsorbent particles obtained after the crystal transformation are developed, and the mercury intrusion method is large.
  • the pore ratio is high, the pore volume is large, and the mass transfer performance is good, the utilization ratio of the zeolite in the adsorbent and the degree of in-situ crystallization of the clay in the alkali treatment process are improved, thereby significantly increasing the adsorption capacity of the adsorbent, and further The productivity of the unit mass adsorbent is improved while maintaining good mechanical strength.
  • Figure 1 is a schematic view showing the diffusion curve obtained by evaluating the mass transfer rate of the adsorbent of the present invention.
  • 2 is a schematic view showing the flow of adsorption separation in the present invention. detailed description
  • the invention mixes the X-type zeolite and the zeolitic clay, adds the forming aid and adds the pore-forming agent during the ball forming, preferably sprays the aqueous solution of the pore-forming agent, and the pore-forming agent is decomposed into the volatile component by roasting, so that A well-developed pore system is formed inside the coalesced pellet, and the volume of the mercury intrusion of the final product adsorbent is not less than 0.26 mL/g, and the volume of the pore having a pore diameter of 100-500 nm accounts for at least 60% of the total pore volume.
  • the volume of the pores having a pore diameter of more than 500 nm accounts for 5 to 15%, preferably 9 to 15%, of the total pore volume.
  • the mass transfer performance of the adsorbent is good, the time to reach the adsorption equilibrium can be significantly shortened, and the utilization rate of the zeolite inside the adsorbent particles can be improved.
  • the coalesced pellets are calcined at a high temperature, and the original crystal structure of the clay is destroyed, and converted into a reactive amorphous aluminosilicate, which is subjected to alkali treatment under appropriate conditions to make most of the amorphous form.
  • the aluminosilicate is further converted into X zeolite, so that coalesced adsorbent particles containing at least 95% by mass of X zeolite can be obtained.
  • the alkali treatment of the crystallizing process also forms a tighter bond between the zeolite grains inside the pellets, so that the adsorbent has good mechanical strength.
  • the present invention uses a mercury intrusion method to determine the proportion of a large pore having a certain pore diameter contained in the adsorbent and the total pore volume.
  • the total pore volume of the adsorbent of the present invention measured by mercury intrusion method is preferably not less than 0.28 liter/g, and the pore volume having a pore diameter of 100 to 500 nm preferably accounts for at least 70% of the total pore volume.
  • the exchangeable cation sites of the X zeolite in the adsorbent are Group II A metals or potassium, or Group II A metals and potassium, and the Group II A metals are preferably ruthenium.
  • the adsorbent When the adsorbent When the cation of the X zeolite is Ba and K, the molar ratio of cerium oxide to potassium oxide in the adsorbent is 20 to 60, preferably 30 to 50.
  • the content of sodium oxide in the adsorbent should be not more than 1.0% by mass, preferably not more than 0.6% by mass.
  • the water content of the adsorbent is expressed by the amount of ignition after calcination at 600 ° C for 2 hours. Generally, the amount of ignition of the adsorbent is controlled to be not more than 7.0% by mass, and the preferred amount of ignition is 4.0 to 6.0% by mass.
  • the adsorbent of the present invention uses a small crystallite X zeolite having an average grain size of 0.1 to 2. (M ⁇ m, preferably 0.2 to 1.0 m.
  • the binder in the adsorbent is a matrix which is not crystallized by in-situ crystallization of kaolinite minerals, and the kaolinite minerals are kaolinite, dickite, pearlite, halloysite or a mixture thereof. .
  • the preparation method of the adsorbent provided by the invention comprises:
  • step (2) treating the pellets calcined in step (1) with sodium hydroxide solution or a mixed solution of sodium hydroxide and sodium silicate at 90 to 100 ° C to crystallize the clay therein into zeolite X. Then drying and roasting;
  • the obtained product of the step (2) is subjected to cation exchange and then activated by a soluble salt solution of a Group IIA metal or a mixed solution of a potassium salt and a soluble salt of a Group IIA metal.
  • the step (1) is a molding of the adsorbent, and the NaX or NaKX zeolite is mixed with the zeptiable clay in a predetermined ratio before molding, and a molding aid is added, and the obtained mixed powder is formed into a ball.
  • the equipment used for rolling forming can be a turntable, a sugar-coated pan or a drum.
  • the mixed powder is placed in a rotating device, and water is sprayed into the mixed powder while rolling, so that the powder gradually adheres to agglomerate and grows under the action of water.
  • the pellet After rolling to a pellet of a certain particle size, the pellet is taken out of the molding apparatus, and then sieved to obtain a pellet having a diameter of 0.2 to 1.5 mm, preferably 0.35 to 0.80 mm in diameter, after drying and roasting. A shaped ball is produced.
  • the zeolitic clay described in the step (1) is preferably a kaolin group mineral.
  • the kaolin group mineral is preferably kaolinite, dickite, pearlite, halloysite or a mixture thereof.
  • the forming aid is preferably a mixture of one or more of lignin, phthalocyanine powder, dry starch, carboxymethyl cellulose, and activated carbon.
  • the ratio of the molding aid added to the total mass of the NaX or NaKX zeolite to the binder is from 1 to 8%, preferably from 2 to 5%.
  • the pore-forming agent is selected from the group consisting of water-soluble carbonates or water-soluble polymer compounds, and the pore-forming agent becomes a volatile component in the process of pellet calcination and is removed from the adsorbent.
  • the water-soluble carbonate salt is preferably ammonium carbonate, sodium carbonate or sodium hydrogencarbonate; and the water-soluble polymer compound is preferably one or any of polyacrylamide, polyvinyl alcohol and polyethylene glycol.
  • an aqueous solution of a pore-forming agent is used, and the concentration of the aqueous solution of the pore-forming agent is 0.5 to 10.0% by mass, preferably 1.0 to 8.0% by mass.
  • the pore-forming agent is preferably formulated into an aqueous solution instead of water.
  • the sprayed powder is sprayed, and the aqueous solution of the pore-forming agent is added in an amount of 10 to 40%, preferably 20 to 30%, based on the total mass of the mixed powder.
  • the method step (2) is to subject the calcined pellet of the step (1) to alkali treatment to crystallize the zeolitic clay therein to form X zeolite.
  • the liquid/solids ratio in the in-situ crystallization treatment is 1.2 to 2.0: 1.
  • the lye used in the in-situ crystallization treatment is selected from the group consisting of sodium hydroxide or a mixed solution of sodium hydroxide and sodium silicate.
  • the concentration thereof is preferably 1.0 to 4.0 mol/liter; when the alkali solution used for the alkali treatment is a mixed solution of sodium hydroxide and sodium silicate, sodium oxide in the mixed solution
  • the content is 3.0 to 8.0% by mass, and the silica content is 1.0 to 7.0% by mass.
  • the treatment time for in-situ crystallization is preferably 3 to 10 hours. After the in-situ crystallization, the obtained pellets are dried, and the drying temperature in the above steps (1) and (2) is preferably 60 to 120 ° C, and the drying time is preferably 4 to 12 hours.
  • the calcination temperature is 500 to 700 ° C, and the calcination time is preferably 2 to 6 hours.
  • the cations in the in-situ crystallization treatment are subjected to cation exchange, and the cation sites of the X zeolite therein are converted into Group IIA metals and/or K to modulate the electrostatic field in the crystal pores of the zeolite. Properties, increase adsorption selectivity.
  • the cation exchange can be carried out in a kettle or column vessel, preferably in a continuous manner in an exchange column.
  • the exchange temperature is preferably 60 to 16 (TC, more preferably 90 to 100 ° C
  • the exchange volume volume velocity is 1.0 to 12.0, preferably 2.0 to 6.0
  • the exchange time is 5 to 40 hours, preferably 10 to 20 hours.
  • the ratio of the number of moles to the number of moles of sodium ions in the zeolite, that is, the exchange ratio is 1.5 to 5.0.
  • the cation exchange may be carried out by using a mixed solution of a potassium salt and a soluble salt of a Group II A metal, or may be first exchanged with a soluble salt solution of a lanthanide A metal, and then exchanged with a potassium salt solution for potassium exchange.
  • the cation exchanged pellets are washed, free metal ions are removed, and then activated.
  • the activation is preferably carried out in flowing air or nitrogen to remove moisture from the adsorbent.
  • the activation temperature is preferably 180 to 250 ° C, and the time is preferably 2 to 12 hours.
  • the soluble salt of the Group IIA metal used for the ion exchange is preferably a soluble salt of cerium, such as cerium nitrate or cerium chloride, and the potassium salt for ion exchange is preferably potassium chloride or nitrate.
  • the silica-alumina ratio of the X zeolite in the adsorbent i.e., the molar ratio of silica to alumina in the zeolite, should be low to increase the adsorption selectivity of the adsorbent, and the silica-alumina ratio of the X zeolite used is preferably 2.0 to 2.4.
  • the X zeolite used in the preparation of the adsorbent of the present invention is preferably a small crystallite X zeolite having an average grain size of 0.1 to 1.0 ⁇ m.
  • the adsorbent prepared by the method of the invention is suitable for the liquid phase adsorption separation process of aromatic isomers, in particular, the separation of para-disubstituted aromatic isomers from the isomers, such as from o-xylene, inter-di Separation of p-xylene by adsorption in a mixture of toluene, p-xylene and ethylbenzene. It can also be used for the adsorption separation of diethylbenzene isomers or diethyltoluene isomers and methylphenol isomers.
  • the liquid phase adsorption separation can be operated in a multi-column series mode, or can be operated using a simulated moving bed realized by a rotary valve or an electromagnetic wide group.
  • the operating pressure of the adsorption separation is preferably 0.5 to 1.6 MPa, and the temperature is preferably 120 to 200 °C.
  • the invention is further illustrated by the following examples, but the invention is not limited thereto.
  • the X zeolite content and the evaluation performance data in the adsorbent in the examples are as follows:
  • the X zeolite content of the adsorbent is calculated by measuring the adsorption amount of the sample to the toluene under certain conditions, and the measurement condition is a constant temperature water bath of 35 ° C, atmospheric pressure. The flowing nitrogen carries the toluene vapor through the adsorbent until the adsorption is saturated.
  • the relative pressure of the toluene vapor is 0.5 (relative pressure refers to the ratio of the partial pressure of toluene to the saturated vapor pressure of toluene at the test temperature), and the adsorption capacity of toluene is set equal to 0.235 g/g.
  • the X zeolite content in the sample was 100% by mass.
  • the mechanical strength of the adsorbent is characterized by the crushing resistance of the pellet. The determination method is as follows: Take an appropriate amount of adsorbent which is naturally saturated in the air, weigh it and put it into the stainless steel cylinder closed at the bottom end, and place the stainless steel above the adsorbent.
  • the cylindrical thimble fitted with the barrel was then placed on a pellet strength tester to be pressurized to 250 Newtons, the adsorbent was removed by pressure relief, and the sieve was sieved with a 0.3-inch sieve to weigh the small balls that did not pass through the mesh.
  • the amount of sample obtained after sieving and the mass percentage of the sample before pressurization are the crushing resistance of the sample to be tested. The lower the breaking rate, the better the strength of the sample.
  • the pore volume and pore size distribution of the adsorbent samples were determined by the American Micromedtics Autopore II - 9220 mercury intrusion meter using the ASTM D4382-03 method.
  • the mass transfer rate of the internal diffusion of the adsorbent is determined by: taking 3 to 4 g of a sample of the adsorbent which is pre-dehydrated and dried under nitrogen and cooled, and placed in a balanced kettle with magnetic stirring while adding 15 ml. O-xylene, the lid was sealed, and allowed to stand at 12 CTC for 4 hours to fully saturate the adsorbent with o-xylene, then magnetic stirring was started, 15 ml of p-xylene was quickly injected, the timing was started, and a small amount of equilibrium kettle was immediately extracted.
  • the liquid sample is analyzed by gas chromatography, the initial concentration Co of the paraxylene in the mixed solution is calculated, and then a small amount of the liquid sample is extracted at intervals to analyze the composition, and the corresponding time of the paraxylene concentration C t is calculated until the equilibrium kettle
  • the liquid composition no longer changes, that is, the diffusion equilibrium is reached, and the concentration of p-xylene in the solution is recorded as C ⁇ at equilibrium.
  • the diffusion curve shown in Fig. 1 is obtained. It can be seen from Fig. 1 that the internal diffusion process of para-xylene is divided into two stages, fast and slow.
  • the initial diffusion rate is faster, and the diffusion speed is slower after the equilibrium.
  • the corresponding diffusion time when ( Co - C t ) / ( Co - C ⁇ ) reaches 0.9 is used as an index to measure the mass transfer rate of the adsorbent. Diffusion mass transfer rate. (C.- C t ) / ( C 0
  • the adsorbent of the present invention is prepared and tested for adsorption performance.
  • the adsorbent was prepared according to the method of Example 1, except that the amount of the aqueous solution of ammonium carbonate sprayed at a concentration of 5.0% by mass during the step of ball forming was 28% by mass of the solid mixed powder, and the step (3) was calcined.
  • the back pellet is treated by in-situ crystallization with a mixed solution of sodium hydroxide and sodium silicate.
  • the mixed solution contains Na 2 0 4.3% by mass, Si0 2 2.1% by mass, and in-situ crystallization results in agglomerated pelletized toluene.
  • the adsorption capacity was 0.230 g/g, which corresponds to a content of X zeolite in the coalesced pellet of 97.9% by mass.
  • Example 3 The amount of ignition of the adsorbent A-2 obtained by ion exchange and activation at 600 °C for 2 hours is 4.5% by mass.
  • the composition and pore volume distribution, pore diameter distribution and other physical properties measured by mercury intrusion are shown in Table 1. .
  • Example 3 The amount of ignition of the adsorbent A-2 obtained by ion exchange and activation at 600 °C for 2 hours is 4.5% by mass.
  • the adsorbent was prepared as in Example 1, except that 63 kg of the NaX zeolite prepared in Example 1 was mixed with 5.4 kg of kaolin and 2.7 kg of carboxymethylcellulose (produced by Qingzhou Qingquan Cellulose Factory) in step (2). After being placed in a turntable, an appropriate amount of an aqueous solution of polyacrylamide (manufactured by Shanghai Hengyi Innovation Amide Co., Ltd.) having a concentration of 2.0% by mass is sprayed while being rolled, so that the solid mixed powder is agglomerated into small balls. The amount of the aqueous solution of the sprayed polyacrylamide was 20% by mass of the solid mixed powder.
  • polyacrylamide manufactured by Shanghai Hengyi Innovation Amide Co., Ltd.
  • the in-situ granulated beads were ion-exchanged with a cerium nitrate solution according to the method of the first step (4) of Example 1, except that the water-washed pellets after ion exchange were dried in a nitrogen stream at 200 ° C for 6 hours.
  • the adsorbent A-3 was measured and its calcination at 600 °C for 2 hours was 5.6% by mass.
  • the pore volume, pore diameter distribution and other physical properties measured by the composition and mercury intrusion method are shown in Table 1.
  • the adsorbent was prepared according to the method of Example 1, except that 63 kg of the NaX zeolite prepared in Example 1 was mixed with 5.4 kg of kaolin and 2.7 kg of carboxymethylcellulose in step (2), and then placed in a turntable, and rolled. Sprayed an appropriate amount of 2.0% by mass An aqueous solution of polyvinyl alcohol (produced by Shanghai Shaorong Trading Co., Ltd.) is used to agglomerate the solid mixed powder into small balls, and the aqueous solution of polyvinyl alcohol sprayed during the rolling ball is 22% by mass of the solid mixed powder.
  • polyvinyl alcohol produced by Shanghai Shaorong Trading Co., Ltd.
  • the in-situ granulated beads were ion-exchanged with a cerium nitrate solution according to the method of the first step (4) of Example 1, except that the water-washed pellets after ion exchange were dried in a nitrogen stream at 200 ° C for 6 hours.
  • the adsorbent A-4 was measured to have a reduction of 5.3% by mass for 2 hours of calcination at 60 CTC.
  • the composition, pore volume distribution, pore diameter distribution and other physical properties measured by mercury intrusion method are shown in Table 1.
  • a NaKX type zeolite was prepared as described in EP 0960854 A1.
  • a 100 liter synthesis kettle add 5.5 kg of sodium metaaluminate solution (containing A1 2 0 3 17.3 ⁇ *% 3 Na 2 0 21.0% by mass), 12.6 kg of deionized water and 7.4 kg of sodium hydroxide, and stir to make a solid base.
  • a 19.6 kg of sodium silicate solution (containing SiO 2 28.3 mass%, Na 2 0 8.8 mass%) was added, stirred until homogeneously mixed, and aged at 1000 ° C for 1.0 hour to obtain a directing agent.
  • the adsorbent A-5 was measured, and the amount of ignition of the adsorbent at 600 ° C for 2 hours was determined to be 4.2% by mass.
  • the composition and the pore volume, pore diameter distribution and other physical properties measured by mercury intrusion were shown in Table 1.
  • the adsorbent was prepared as in Example 5 except that the ion exchange of the beads obtained after in-situ crystallization was carried out using a K+ ion concentration of 0.1 mol/L of potassium chloride and Ba 2+ ion concentration of 0.20 mol/
  • the liter of the cerium nitrate mixed solution is an exchange liquid, and the volume ratio of the exchange liquid consumed by the exchange to the solid pellet is 40:1.
  • the obtained adsorbent A-6 contained 0.75% by mass of potassium oxide, 45% by mass of cerium oxide, and a molar ratio of cerium oxide to potassium oxide of 36.8, and the amount of ignition reduced by calcination at 600 ° C for 2 hours was 4.8 mass. %, its composition and pore volume, pore diameter distribution and other physical properties measured by mercury intrusion method are shown in Table 1. Comparative example 1
  • Example 1 70 kg of the NaX-type zeolite prepared in Example 1 was uniformly mixed with 7 kg of kaolin, placed in a turntable, and an appropriate amount of deionized water was sprayed while being rolled to agglomerate the solid powder into small balls, which were sprayed when the ball was rolled.
  • the amount of water is 30% by mass of the solid powder.
  • the pellets of 0.35 to 0.80 mm were sieved, dried at 80 ° C for 10 hours, and calcined at 54 CTC for 4 hours in an air stream.
  • the mixed solution containing 04.3 mass% & 2, 8102 2.1 mass% after in-situ crystallization, the resulting pellet treated with a mixed solution of sodium hydroxide and sodium silicate It was washed with deionized water until the pH of the washing liquid was 9.0, dried at 80 ° C for 12 hours, and calcined at 500 ° C for 2 hours.
  • the obtained agglomerated pellets had a toluene adsorption capacity of 0.219 g/g, which corresponds to a zeolite content of 93.2% by mass in the agglomerated pellets.
  • the agglomerated beads obtained by in-situ crystallization treatment were subjected to ion exchange and dry dehydration according to the method of the step (4) of Example 1, to obtain a comparative adsorbent B1.
  • the amount of ignition of the calcination at 600 ° C for 2 hours was determined to be 4.7% by mass.
  • the composition, pore volume distribution, pore diameter distribution and other physical properties measured by mercury intrusion were shown in Table 1.
  • Comparative example 2 70 kg of the NaX-type zeolite prepared in Example 1 was mixed with 7 kg of kaolin and 2.8 kg of carboxymethylcellulose to make a mixed powder into a turntable, and while spraying, an appropriate amount of deionized water was sprayed to make a solid powder.
  • the amount of water sprayed when the ball is ball is 32 mass 0 / of the solid mixed powder. .
  • Screen the ball from 0.35 to 0.80 mm, 80. C was dried for 10 hours and then calcined at 540 ° C for 4 hours in a stream of air. Then, the calcined pellet is treated by in-situ crystallization with a mixed solution of sodium hydroxide and sodium silicate, and the mixed solution contains Na 2 0 4.3% by mass, Si0 2 2.1% by mass, and is crystallized in situ.
  • the pellet was washed with deionized water to a pH of 9.0, dried at 80 °C for 12 hours, and calcined at 50 °C for 2 hours.
  • the obtained agglomerated pellet had a terpene adsorption capacity of 0.223 g/g, which corresponds to a content of X. zeolite of 95.7 mass% in the agglomerated pellet.
  • the agglomerated beads obtained by in-situ crystallization treatment were subjected to ion exchange and dry dehydration according to the method of the first step (4) to obtain a comparative adsorbent B-2.
  • the amount of ignition loss after calcination at 600 °C for 2 hours was determined to be 5.1% by mass.
  • the composition, pore volume distribution, pore diameter distribution and other physical properties measured by mercury intrusion method are shown in Table 1.
  • adsorption of p-xylene was carried out with adsorbent A-2 on a small counter-flowing simulated moving bed.
  • the small simulated moving bed unit comprises 24 columns of adsorption columns, each column having a length of 195 mm, a column diameter of 30 mm, and a total loading of adsorbent of 3,300 ml.
  • a closed loop is formed by connecting the ends of the 24 columns in series with a circulating pump, as shown in Figure 2.
  • the adsorption feedstock, desorbent, extract, and raffinate four inlet and outlet materials divide the 24 adsorption columns into four sections, that is, between the adsorption raw material (column 15) and the raffinate (column 21).
  • the root adsorption column is the adsorption zone, and the 9 adsorption columns between the extract (column 6) and the adsorbent material (column 14) are the purification zone, and 5 between the desorbent (column 1) and the extract (column 5).
  • the adsorption column is a desorption zone, and the three adsorption columns between the raffinate (column 22) and the desorbent (column 24) are buffer zones.
  • the temperature of the entire adsorption system was controlled at 177 °C and the pressure was 0.8 MPa.
  • the desorbent p-diethylbenzene and the adsorbent raw material were continuously injected into the above simulated moving bed apparatus at a flow rate of 1420 ml/hr and 1190 ml/hr, respectively, and the extract was discharged at a flow rate of 710 liter/hour.
  • the composition of the adsorbent raw material is 9.3 mass% of ethylbenzene, p-xylene 18.5 mass%, m-xylene 45.4 mass%, o-xylene 17.4 mass%, and non-aromatic component 9.4 mass%.
  • the adsorbent A-6 was loaded on a small moving bed device, and the experiment of adsorptive separation of p-benzoquinone was carried out according to the method of Example 7.
  • the purity of p-xylene obtained under stable operation was 99.80% by mass, and the recovery was 98.4% by mass. para-xylene production rate per hour per cubic meter of adsorbent separation of two benzene Yue 0.0656 m 3 pairs. Comparative example 3
  • the comparative adsorbent B-2 was loaded on a small moving bed apparatus, and the experiment of adsorbing and separating p-xylene was carried out according to the method of Example 7.
  • the purity of the p-xylene obtained under the stable operation state was 99.71% by mass, and the recovery rate was 90.5 mass%.
  • the para-xylene productivity is 0.0604 m 3 per 100 m of adsorbent per cubic metre of adsorbent.

Description

聚结型沸石吸附剂及其制备方法 技术领域
本发明为一种聚结型沸石吸附剂及其制备方法, 具体地说, 是 一种用于吸附分离芳烃同分异构体的吸附剂及其制备方法。 背景技术
在具有多取代基的芳烃类化合物生产过程中,由于反应工艺和 反应热力学平衡所限, 得到的往往是多种同分异构体并存的混合 产物, 必须经过进一步的分离才能获得其中最有应用价值的单体。 然而这些同分异构体通常具有非常接近的沸点, 采用传统的精馏 工艺很难分离, 为此工业上普遍采用选择性吸附的方法来实现同 分异构体之间的分离。
吸附分离技术的原理是采用特定的吸附剂,利用其优先吸附或 优先不吸附目的产品的特性, 再配合适当的工艺方式从混合物料 中分离、 提纯目的产品。 吸附剂是吸附分离技术的基础和核心, 目前已知由钡、 钾离子单独或混合交换的 X型沸石具有优先吸附 对位芳烃异构体的特性。 因此工业上广泛使用 BaX或 BaKX作为 吸附剂, 配合连续逆流模拟移动床分离工艺, 从 C8芳烃异构体中 吸附分离对二甲苯。 在吸附塔中, 利用吸附剂优先吸附对二甲苯 的性质, 经过反复逆流传质交换, 使对二甲苯吸附于吸附剂中, 浓度不断增加, 达到所需产品纯度后, 再由解吸剂解吸吸附的对 二甲苯, 精馏抽出液回收解吸剂, 得到高纯度的对二甲苯。 通过 该法生产的对二曱苯純度可达 99.8质量%、 收率可达 98质量%。 此外, USP4940548、 USP5149887中还披露了此类吸附剂用于二乙 基甲苯和甲基苯酚等异构体的分离。
性能优良的吸附剂应具备以下三方面的性质, 即吸附容量高、 吸附选择性好、 传质速率快。 显然, 吸附剂的吸附容量与其中的 沸石含量成正比, 沸石含量越高, 吸附剂具有的吸附容量越大。 然而人工合成的沸石通常为粉末状, 需要加入一定量的粘结剂将 其聚结成型才能满足工业应用的要求, 这就不可避免地会产生部 分容量损失。 因此, 减少吸附剂中的惰性粘结剂用量, 并尽量使 其转化成沸石成为提高吸附剂性能的有效方法。 USP3960774最早 公布了用氢氧化钠水溶液处理含 X或 Y沸石和粘结剂的吸附剂前 体来提高吸附剂的结晶度, 然后再进行钡、 钾离子交换。
吸附剂的选择性主要从交换离子种类和沸石性质方面进行改 善。 USP3997620采用锶和钡双金属离子交换制成 SrBaX型吸附剂 , 提高对二甲苯的选择性。 USP4283587将经过离子交换后的 X或 Y 型沸石再用烷基胺或烷基铵的盐酸盐处理, 以提高其对位异构体 的选择性。 CN 1275926 A公开了一种聚结型沸石吸附剂,使用 Si/Al 原子比为 1 ~ 1. 15的低二氧化硅含量的 X沸石为原料制备吸附剂, 并用钡和钾离子进行交换, 吸附剂中的可交换位点至少含 70%的 钡离子和至多 30%的钾离子。 所述吸附剂采用高岭土为粘结剂, 并通过碱液处理使其原位晶化为 X沸石提高吸附剂容量。
提高吸附剂性能, 除改善吸附剂的吸附容量和选择性外, 还要 提高其传盾速率。 CN1448213A 和 CN1565718A 分别采用晶粒为 0.5 ~ 1.0微米和 0. 1 ~ 0.4微米的小晶粒 X沸石为吸附剂的活性组 分, 以提高吸附剂的沸石晶内传质速率。
CN1358566A公开了一种吸附剂及其制备方法, 通过改善吸附 剂的二次孔分布来提高吸附剂的性能。 该吸附剂将 X型或 Y型沸 石和粘结剂混合,在其中加入 0.5 ~ 6.0质量%的扩孔剂,混合均匀、 加水成型, 干燥、 活化后经碱处理、 离子交换制得吸附剂。 所述 的粘结剂为高岭土、 膨润土、 有机皂土、 硅溶胶、 铝溶胶、 水玻 璃中的一种或几种, 扩孔剂为木质素、 纤维素钠、 田菁粉中的一 种或几种。 发明内容
本发明的目的是提供一种聚结型沸石吸附剂及其制备方法,该 吸附剂具有较高的吸附容量和较快的传质速率。
本发明提供的聚结型沸石吸附剂, 包括 95 ~ 99.5 质量%的 X 沸石和 0.5 ~ 5.0质量%的粘结剂, 所述 X沸石的可交换阳离子位 为 Π Α族金属和 /或 K, 所迷吸附剂采用压汞法测定的总孔体积不 小于 0.26 亳升 /克, 其中孔直径为 100 500纳米的孔的体积至少 占总孔体积的 60%。 本发明在吸附剂制备过程中,向制备吸附剂的混合粉料中加入 造孔剂, 以使转晶后所得的聚结型沸石吸附剂颗粒内部晶间堆积 孔道发达, 压汞法测定的大孔比例高、 孔体积大, 具有良好的传 质性能, 提高了吸附剂中沸石的利用率和碱处理过程中粘土的原 位晶化反应程度, 从而显著地提高了吸附剂的吸附容量, 进而提 高了单位质量吸附剂的生产能力, 同时保持了良好的机械强度。 附图说明
图 1为本发明评价吸附剂传质速率所得的扩散曲线示意图。 图 2为本发明进行吸附分离的流程示意图。 具体实施方式
本发明将 X 型沸石和可沸石化的粘土混合, 添加成型助剂并 在滚球成型时加入造孔剂, 优选喷洒造孔剂的水溶液, 造孔剂通 过焙烧分解为挥发组分去除, 使聚结小球内部形成发达的孔道体 系, 并使最终成品吸附剂的压汞孔体积不小于 0.26mL/g, 并且其 中孔直径 100 ~ 500纳米的孔的体积至少占总孔体积的 60% , 孔直 径大于 500纳米的孔的体积占总孔体积的 5 ~ 15% , 优选 9 ~ 15%。 所述吸附剂的传质性能良好, 可明显缩短达到吸附平衡的时间, 提高吸附剂颗粒内部沸石的利用率。 另外, 聚结成型的小球经过 高温焙烧, 粘土的原有晶体结构被破坏, 转变为具有反应活性的 无定型硅铝酸盐, 在适当条件下通过碱处理, 使其中大部分的无 定型硅铝酸盐进一步转化为 X沸石, 因此可获得至少包含 95质量 % X 沸石的聚结型吸附剂颗粒。 同时, 碱处理转晶过程还使小球 内部的沸石晶粒之间形成更紧密的结合, 以使吸附剂具有良好的 机械强度。
本发明采用压汞法测定吸附剂中含有的一定孔直径的大孔所 占的比例和总孔体积。 用压汞法测定的本发明吸附剂的总孔体积 优选不小于 0.28 亳升 /克, 孔直径为 100 ~ 500纳米的孔体积优选 至少占总孔体积的 70%。
所述吸附剂中 X沸石的可交换阳离子位为 II A族金属或钾, 或者是 II A族金属和钾, 所述 II A族金属优选钡。 当所述的吸附剂 中 X沸石的阳离子为 Ba和 K时, 吸附剂中氧化钡与氧化钾的摩 尔比为 20 ~ 60 ,优选 30 ~ 50。吸附剂中的氧化钠含量应不大于 1.0 质量%, 优选不大于 0.6 质量%。 吸附剂的水含量以 600 °C焙烧 2 小时后的灼减量表示,一般控制吸附剂的灼减量不大于 7.0质量% , 优选的灼减量为 4.0 - 6.0质量%。
为增加吸附剂的传质速率,本发明所述吸附剂选用小晶粒的 X 沸石, 其平均晶粒粒径为 0.1 ~ 2. (M敖米, 优选为 0.2 ~ 1.0 米。
所述吸附剂中的粘结剂为高岭土族矿物经原位晶化后未晶化 的基质, 所述的高岭土族矿物为高岭石、 地开石、 珍珠石、 埃洛 石或它们的混合物。
本发明提供的吸附剂的制备方法, 包括:
( 1 )将 NaX或 NaKX沸石、 可沸石化的粘土和成型助剂混合 制成混合粉料,其中所述沸石与沸石化的粘土的质量比为 88 ~ 95: 5 ~ 12 , 向混合粉料中加入水溶性碳酸盐或水溶性高分子化合物作 为造孔剂通过滚动使之聚结成小球, 然后干燥、 焙烧;
( 2 )将步骤 ( 1 )焙烧后的小球用氢氧化钠溶液或氢氧化钠与 硅酸钠的混合溶液在 90 ~ 100 °C处理,使其中的粘土原位晶化为 X 型沸石, 然后干燥、 焙烧;
( 3 ) 用 II A族金属的可溶性盐溶液或者是钾盐和 II A族金属 的可溶性盐的混合溶液对步骤 (2 ) 的获得物进行阳离子交换后活 化。
所述方法中, 步骤 ( 1 ) 为吸附剂的成型, 成型前将 NaX 或 NaKX 沸石与可沸石化的粘土按预定的比例混合, 并加入成型助 剂, 再将得到的混合粉料滚球成型, 滚动成型所用的设备可为转 盘、 糖衣锅或滚筒。 成型时将混合粉料放入转动设备中, 边滚动 边向混合粉料中喷洒水, 使粉料在水的作用下逐渐粘附团聚成小 球并长大。 滚动成型至一定粒径的小球后, 将小球从成型设备中 取出, 然后将其筛分, 取直径为 0.2 ~ 1.5毫米, 优选直径为 0.35 ~ 0.80亳米的小球, 干燥、 焙烧后制得成型小球。
步骤 ( 1 ) 中所述的可沸石化的粘土优选高岭土族矿物。 所述 的高岭土族矿物优选高岭石、 地开石、 珍珠石、 埃洛石或它们的 混合物。 所述的成型助剂优选木质素、田菁粉、干淀粉、羧甲基纤维素、 活性炭中的一种或几种的混合物。 加入的成型助剂与所迷的 NaX 或 NaKX沸石与粘结剂的总质量的比为 1 ~ 8%, 优选 2~5%。
步骤 ( 1 ) 所述的造孔剂选自水溶性碳酸盐或水溶性高分子化 合物, 造孔剂在小球焙烧过程中变为挥发性组分而从吸附剂中脱 除。 所述的水溶性碳酸盐优选碳酸铵、 碳酸钠或碳酸氢钠; 所述 的水溶性高分子化合物优选聚丙烯酰胺、 聚乙烯醇和聚乙二醇中 的一种或任意几种。 步骤 ( 1 ) 中优选使用造孔剂的水溶液, 所述 造孔剂的水溶液的浓度为 0.5 ~ 10.0质量%, 优选 1.0 ~ 8.0质量%, 滚球成型时优选将造孔剂配成水溶液代替水向混合粉料中喷洒, 加入的造孔剂的水溶液占混合粉料的总质量的 10 ~ 40%, 优选 20 ~ 30%。
所述方法步骤 (2)是将步骤 ( 1 )成型焙烧后的小球进行碱处 理, 以使其中的可沸石化的粘土原位晶化生成 X沸石。 原位晶化 处理时液 /固体积比为 1.2~2.0: 1, 原位晶化处理所用碱液选自氢 氧化钠或氢氧化钠与硅酸钠的混合溶液。 当碱处理所用的碱液为 氢氧化钠溶液时, 其浓度优选 1.0~4.0摩尔 /升; 当碱处理所用的 碱液为氢氧化钠与硅酸钠的混合溶液时, 该混合溶液中氧化钠含 量为 3.0~ 8.0质量%, 二氧化硅含量为 1.0~7.0质量%。 原位晶化 的处理时间优选 3~ 10 小时。 原位晶化后将所得小球进行干燥、 上述步骤( 1)、 步驟(2) 中所述的干燥温度优选 60 ~ 120°C, 干燥时间优选 4 ~ 12 小时。 焙烧温度为 500 ~ 700°C, 焙烧时间优 选 2 ~ 6小时。
所述方法步骤 (3 ) 是将原位晶化处理后的小球进行阳离子交 换, 使其中的 X沸石的阳离子位转化为 II A族金属和 /或 K, 以调 变沸石晶孔内静电场性质, 增大吸附选择性。 所述的阳离子交换 可以在釜式或柱式容器中进行, 优选在交换柱中以连续方式进行 交换。 交换温度优选 60~ 16(TC, 更优选 90~ 100°C, 交换液体积 空速 1.0 ~ 12.0时 , 优选 2.0 ~ 6.0时 交换时间 5 ~ 40小时, 优 选 10 ~ 20小时。 交换液中的阳离子摩尔数与沸石中钠离子摩尔数. 之比, 即交换比为 1.5~5.0。 若制备同时含有 II A族金属和钾的吸 附剂时,用钾盐和 II A族金属的可溶性盐的混合溶液进行阳离子交 换, 也可先用 Π A族金属的可溶性盐溶液进行交换, 再用钾盐溶液 进行钾交换。 经阳离子交换后的小球需洗涤, 除去游离金属离子, 然后进行活化。 所述的活化优选在流动的空气或氮气中进行以脱 除吸附剂中的水分, 活化温度优选 180 ~ 250 °C , 时间优选 2 ~ 12 小时。
所述离子交换所用的 II A 族金属的可溶性盐优选钡的可溶性 盐, 如硝酸钡或氯化钡, 所述的用于离子交换的钾盐优选氯化钾 或硝'酸 甲。
所述吸附剂中 X 沸石的硅铝比即沸石中氧化硅与氧化铝的摩 尔比应较低, 以利于增加吸附剂的吸附选择性, 所用 X沸石的硅 铝比优选为 2.0 ~ 2.4。
制备本发明吸附剂所用的 X沸石优选小晶粒的 X沸石, 其平 均晶粒粒径为 0.1 ~ 1.0微米。 制备小晶粒 X沸石的方法有多种, 如按 CN1448338A和 EP960854A1的方法制备。
本发明方法制备的吸附剂适用于芳烃异构体的液相吸附分离 过程, 特别是从所述的异构体中分离对位二取代基的芳烃异构体, 如从邻二甲苯、 间二甲苯、 对二甲苯和乙苯的混合物中吸附分离 对二甲苯。 也可用于二乙基苯异构体或二乙基甲苯异构体以及甲 基苯酚异构体的吸附分离。 所述液相吸附分离可采用多柱串联方 式进行操作 , 也可釆用借助旋转阀或电磁阔组实现的模拟移动床 进行操作。吸附分离的操作压力优选 0.5 ~ 1.6MPa ,温度优选 120 ~ 200 °C。
下面通过实例进一步说明本发明, 但本发明并不仅限于此。 实例中吸附剂中的 X沸石含量和评价性能数据的测定方法为: 吸附剂的 X 沸石含量通过测定样品在一定条件下对甲苯的吸 附量来计算, 测定条件为 35 °C恒温水浴、 常压流动的氮气携带甲 苯蒸气通过吸附剂直至吸附饱和, 甲苯蒸汽的相对压力为 0.5 (相 对压力指甲苯分压与测试温度下甲苯饱和蒸汽压的比值) , 并设 定甲苯吸附能力等于 0.235克 /克的样品中 X沸石含量为 100质量 %。 吸附剂的机械强度以小球的抗压破碎率来表征, 测定方法为: 取适量在空气中自然饱和的吸附剂, 称重后装入底端封闭的不锈 钢筒内, 吸附剂上方安放与不锈钢筒配合的圆柱顶针, 然后放置 在颗粒强度测定仪上加压至 250牛顿, 卸压取出吸附剂, 用 0.3亳 米的筛子筛分, 将未通过筛眼的小球称重。 过筛后所得样品减少 的量与加压前样品的质量百分比即为被测样品的抗压破碎率, 破 碎率越低, 表明样品的强度越好。
吸附剂样品的孔体积和孔尺寸分布用美国 Micromedtics 公司 Autopore II - 9220型压汞仪, 采用 ASTM D4382-03方法测定。
吸附剂的内扩散的传质速率的测定方法为: 取 3 ~ 4克经预先 脱水活化并在氮气保护下干燥冷却的吸附剂样品, 置于带有磁力 搅拌的平衡釜中, 同时加入 15毫升的邻二甲苯, 将釜盖密闭, 于 12CTC静置 4小时, 使吸附剂被邻二甲苯充分饱和, 然后开启磁力 搅拌, 迅速注入 15毫升对二甲苯, 开始计时, 并立即提取少量平 衡釜中的液体样品, 用气相色谱法分析其组成, 计算混合溶液中 对二甲苯的初始浓度 Co, 然后每间隔一段时间提取少量液体样品 分析组成, 计算对应时间的对二甲苯浓度 Ct, 直至平衡釜中液体 组成不再发生变化, 即达到了扩散平衡, 平衡时溶液中对二甲苯 的浓度记为 C。 以取样时间 t为横坐标, (C。- Ct ) / ( CQ - C ) 为纵坐标作图, 得到图 1 所示的扩散曲线。 由图 1 可知对二甲苯 的内扩散过程分为快、 慢两个阶段, 初始扩散速率较快, 接近平 衡后扩散速度明显变慢, 曲线在 ( C。- Ct ) / ( C。- C ) =0.9的附 近有一拐点。 为便于对比不同吸附剂样品之间的传质速率的差异, ( Co - Ct ) / ( Co - C ) 达到 0.9 时对应的扩散时间作为衡量吸 附剂传质速率快慢的指标, 称为内扩散传质速率。 (C。- Ct ) / ( C0
- C ) 达到 0.9 所需的时间越短, 表明样品的传质性能越好。 例 如由图 1所示吸附剂 A和 B的两条扩散曲线求得吸附剂 A的内扩 散传质速率为 tA, 吸附剂 B的内扩散传质速率为 tB, tA小于 tB , 说明吸附剂 A的传质性能优于吸附剂 B。 实例 1
制备本发明吸附剂并进行吸附性能测试。 ( 1 )制备小晶粒 X沸石: 在 100升合成釜中加入 16.4千克偏 铝酸钠溶液(其中含 A120317.3质量%, Na2021.0质量%) 、 11.0 千克去离子水和 2.9千克氢氧化钠, 搅拌使固体碱完全溶解, 然后 加入 11.8千克硅酸钠溶液(其中含 Si0228.3质量%, Na208.8质 量%) , 搅拌至混合均匀, 25°C静置老化 20小时制得导向剂。
25。C, 向 2000升釜中加入 255千克硅酸钠溶液、 1001千克去 离子水、 37 千克氢氧化钠, 搅拌使之充分混合, 并在搅拌下加入 227千克偏铝酸钠, 然后加入 15千克的导向剂, 继续搅拌至混合 均匀, 升温至 10CTC, 静止晶化 4小时。 产物经水洗至洗涤液 pH 值小于 10, 过滤、 80°C干燥 12小时得到 NaX型沸石。 由晶胞常 数计算得到该沸石的 Si02/Al203摩尔比为 2.19, 扫描电镜观测其 平均晶粒粒径为 0.7微米。
(2) 滚球成型: 将 88千克 (干基质量, 下同) 步骤 ( 1 ) 制 备的 NaX型沸石与 9千克高岭土 (含高冷石 90质量%, 山西临汾 产)和 3.4千克田菁粉混合均匀形成混合粉料, 放入转盘中边滚动 边喷入适量的浓度为 5.0质量%的碳酸钠水溶液, 以使固体混合粉 料附聚成小球, 滚球时喷入的碳酸钠水溶液量为固体混合粉料的 25质量%。 筛取直径为 0.35~0.80毫米的小球, 80°C干燥 10小时, 空气流中 540°C焙烧 4小时。
( 3) 原位晶化: 将上述焙烧后的小球按液 /固体积比 2.0 : 1 的比例,用 1.5moL/L的氢氧化钠溶液,在 96 °C静置处理 4.0小时, 使其中的高岭土原位晶化转化为 X沸石。 原位晶化处理后所得的 小球用去离子水洗涤至洗涤液 pH值为 9.0, 80°C干燥 12小时, 500 °C焙烧 2 小时, 测定其甲苯吸附容量为 0.225克 /克, 相当于聚结 小球中 X沸石的含量为 95.7质量%。
(4) 离子交换: 取原位晶化处理并焙烧后的小球用常规柱式 连续法进行离子交换, 交换液为 0.18moL/L的硝酸钡溶液, 在 92 °C、 常压、 交换液体积空速 4.0 时-1的条件下进行钡离子交换 10 小时, 所用硝酸钡溶液与小球的体积比为 40: 1。 交换完成后, 用 10倍小球体积的去离子水洗涤, 220°C氮气流中干燥 6小时, 制得 吸附剂 A-1, 600°C焙烧 2小时测定其灼减量为 4.3质量%, 吸附剂 的組成和压汞法测得的孔体积、 孔直径分布及其它物理性质见表 1。 实例 2
按实例 1 的方法制备吸附剂, 不同的是步骤 (2 ) 滚球成型时 喷入的浓度为 5.0质量%的碳酸铵水溶液的量为固体混合粉料的 28 质量%, 步骤 (3 ) 将焙烧后小球用氢氧化钠和硅酸钠的混合溶液 处理进行原位晶化, 混合溶液中含 Na20 4.3质量%、 Si02 2.1质 量%, 原位晶化后所得聚结小球的甲苯吸附容量为 0.230克 /克, 相 当于聚结小球中 X沸石含量为 97.9质量%。 离子交换并活化后得 到的吸附剂 A-2在 600 °C焙烧 2小时的灼减量为 4.5质量%, 其组 成和压汞法测得的孔体积、 孔直径分布及其它物理性质见表 1。 实例 3
按实例 1的方法制备吸附剂, 不同的是步骤(2 ) 中将 63千克 实例 1制备的 NaX型沸石与 5.4千克高岭土和 2.7千克羧甲基纤维 素 (山东青州清泉纤维素厂生产) 混合均匀后放入转盘中, 边滚 动边喷入适量的浓度为 2.0质量%的聚丙烯酰胺(上海恒皓创新酰 胺有限公司生产) 的水溶液, 以使固体混合粉料附聚成小球, 滚 球时喷入的聚丙烯酰胺的水溶液量为固体混合粉料的 20质量%。 然后按照实例 1所述的后续步骤进行干燥、 焙烧后进行原位晶化, 测定原位晶化后所得小球的甲苯吸附容量为 0.226 克 /克, 相当于 聚结小球中 X沸石的含量为 96.2质量%。
将原位晶化后的小球按实例 1 步骤 (4 ) 的方法用硝酸钡溶液 进行离子交换, 不同的是离子交换后经水洗的小球在 200 °C氮气流 中干燥 6小时, 制得吸附剂 A-3 , 测定其在 600 °C焙烧 2小时的灼 减量为 5.6质量%, 其组成和压汞法测得的孔体积、 孔直径分布及 其它物理性质见表 1。 实例 4
按实例 1的方法制备吸附剂, 不同的是步骤(2 ) 中将 63千克 实例 1制备的 NaX型沸石与 5.4千克高岭土和 2.7千克羧曱基纤维 素混合均勾后放入转盘中, 边滚动边喷入适量的浓度为 2.0质量% 的聚乙烯醇 (上海邵荣贸易有限公司生产) 的水溶液, 以使固体 混合粉料附聚成小球, 滚球时喷入的聚乙烯醇的水溶液为固体混 合粉料的 22质量%。 然后按照实例 1所述的后续步驟进行干燥、 焙烧后进行原位晶化, 测定原位晶化后所得小球的甲苯吸附容量 为 0.224克 /克, 相当于聚结小球中 X沸石的含量为 95.3质量%。
将原位晶化后的小球按实例 1 步骤 (4 ) 的方法用硝酸钡溶液 进行离子交换, 不同的是离子交换后经水洗的小球在 200 °C氮气流 中干燥 6小时, 制得吸附剂 A-4 , 测定其在 60CTC焙烧 2小时的灼 减量为 5.3质量%, 其组成和压汞法测得的孔体积、 孔直径分布及 其它物理性质见表 1。 实例 5
按 EP 0960854A1所述的方法制备 NaKX型沸石。 在 100升合 成釜中加入 5.5千克偏铝酸钠溶液(其中含 A1203 17.3 ^ *% 3 Na20 21.0质量%) 、 12.6千克去离子水和 7.4千克氢氧化钠, 搅拌使固 体碱完全溶解, 然后加入 19.6千克硅酸钠溶液 (其中含 Si02 28.3 质量%, Na20 8.8质量%) , 搅拌至混合均匀, 40 °C静置老化 1.0 小时制得导向剂。 4CTC下, 向 2000升釜中加入 198千克硅酸钠溶 液、 660千克去离子水、 90千克氢氧化钠、 105千克氢氧化钾, 搅 拌使之充分混合, 并在搅拌下加入 288千克偏铝酸钠, 然后加入 3 千克的导向剂, 继续搅拌至混合均勾, 40 °C、 250 转 /分钟的条件 下搅拌老化 4小时, 升温至 70度静止晶化 4小时。 产物经水洗至 洗涤液 pH值小于 10 , 过滤、 7CTC干燥 12小时得到 NaKX型沸石。 由晶胞常数计算沸石的 Si02/Al203摩尔比为 2.03 , 扫描电镜观测 平均晶粒粒径为 0.4微米。
将 75千克 NaKX沸石、 8.3千克高岭土和 3.0千克羧甲基纤维 素混合均勾制成混合粉料放入转盘中,边滚动边喷入浓度为 5.0质 量%的碳酸铵水溶液, 以使固体混合粉料附聚成小球, 滚球时喷入 的碳酸铵水溶液的量为固体混合粉料的 27质量%。 然后按照实例 1所述的后续步骤进行干燥、 焙烧后进行原位晶化, 测定原位晶化 后所得小球的甲苯吸附容量为 0.228 克 /克, 相当于聚结小球中 X 沸石的含量为 97.0质量%。 09000117 将原位晶化后的小球按实例 1 步骤 (4) 的方法用硝酸钡溶液 进行离子交换, 不同的是离子交换后经水洗的小球在 230°C氮气流 中干燥 4小时, 制得吸附剂 A-5, 测定其在 600°C焙烧 2小时的灼 减量为 4.2质量%, 其组成和压汞法测得的孔体积、 孔直径分布及 其它物理性质见表 1。 实例 6
按实例 5的方法制备吸附剂,不同的是对原位晶化后得到的小 球进行离子交换时, 采用 K+离子浓度为 0.1 摩尔 /升的氯化钾和 Ba2+离子浓度为 0.20摩尔 /升的硝酸钡混合溶液为交换液, 交换所 消耗的交换液与固体小球的体积比为 40: 1。 制得的吸附剂 A-6中 含氧化钾 0.75质量%、 含氧化钡 45质量%, 氧化钡与氧化钾的摩 尔比为 36.8, 测定其在 600°C焙烧 2小时的灼减量为 4.8质量%, 其组成和压汞法测得的孔体积、 孔直径分布及其它物理性质见表 1。 对比例 1
将 70千克实例 1制备的 NaX型沸石与 7千克高岭土混合均匀, 放入转盘中, 边滚动边喷入适量的去离子水, 以使固体粉料附聚 成小球, 滚球时喷入的水量为固体粉料的 30质量%。 筛取 0.35~ 0.80毫米的小球, 80°C干燥 10小时, 在空气流中 54CTC焙烧 4小 时。 再将焙烧后小球用氢氧化钠和硅酸钠的混合溶液处理进行原 位晶化, 混合溶液中含 &204.3质量%、 81022.1质量%, 原位晶 化后, 所得的小球用去离子水洗涤至洗涤液 pH值为 9.0, 80°C干 燥 12 小时, 500°C焙烧 2 小时。 得到的聚结小球的甲苯吸附容量 为 0.219克 /克, 相当于聚结小球中 X沸石含量为 93.2质量%。
将原位晶化处理得到的聚结小球按实例 1 步骤 (4) 的方法进 行离子交换和干燥脱水, 得对比吸附剂 B-l。 测定其在 600°C焙烧 2小时的灼减量为 4.7质量%, 其组成和压汞法测得的孔体积、 孔 直径分布及其它物理性质见表 1。 对比例 2 将 70千克实例 1制备的 NaX型沸石与 7千克高岭土和 2.8千 克羧甲基纤维素混合均勾制成混合粉料放入转盘中, 边滚动边喷 入适量的去离子水, 使固体粉料附聚成小球, 滚球时喷入的水量 为固体混合粉料的 32质量0 /。。 筛取 0.35 ~ 0.80毫米的小球, 80。C 干燥 10小时, 然后在空气流中 540 °C焙烧 4小时。 再将焙烧后小 球用氢氧化钠和硅酸钠的混合溶液处理进行原位晶化, 混合溶液 中含 Na20 4.3质量%、 Si02 2. 1质量%, 原位晶化后, 所得的小 球用去离子水洗涤至 pH值为 9.0 , 80 °C干燥 12小时, 50CTC焙烧 2小时。 得到的聚结小球的曱苯吸附容量为 0.223克 /克, 相当于聚 结小球中 X沸石的含量为 95.7质量%。
将原位晶化处理得到的聚结小球按实例 1 步骤 (4 ) 的方法进 行离子交换和干燥脱水, 得对比吸附剂 B-2。 测定其在 600 °C焙烧 2小时的灼减量为 5.1质量%, 其组成和压汞法测得的孔体积、 孔 直径分布及其它物理性质见表 1。 实例 7
在连续逆流的小型模拟移动床上用吸附剂 A-2 进行吸附分离 对二甲苯的实验。
所述小型模拟移动床装置包括 24根串联的吸附柱, 每根柱长 195毫米, 柱内直径 30毫米, 吸附剂的总装填量为 3300毫升。 在 串联的 24根柱子首尾两端用循环泵连接构成一个封闭的环路, 如 图 2所示。 图 2中, 吸附原料、 解吸剂、 提取液、 提余液四股进、 出物料将 24根吸附柱分成四个区段, 即吸附原料(柱 15 )和提余 液 (柱 21 ) 之间的 Ί根吸附柱为吸附区, 提取液 (柱 6 ) 和吸附 原料 (柱 14 ) 之间的 9根吸附柱为提純区, 解吸剂 (柱 1 ) 和提 取液 (柱 5 ) 之间的 5根吸附柱为解吸区, 提余液 (柱 22 ) 和解 吸剂 (柱 24 ) 之间的 3根吸附柱为緩冲区。 整个吸附体系的温度 控制为 177 °C , 压力为 0.8MPa。
操作过程中, 分别按 1420毫升 /时和 1 190毫升 /时的流量连续 地向上述模拟移动床装置中注入解吸剂对二乙苯和吸附原料, 并 以 710亳升 /时的流量将提取液抽出装置, 1900亳升 /时的流量将提 余液抽出装置。 所述吸附原料的组成为乙苯 9.3质量%、 对二甲苯 18.5质量%、 间二甲苯 45.4质量%、 邻二甲苯 17.4质量%、 非芳 烃组分 9.4质量%。 设定循环泵流量 4580亳升 /时, 根据模拟逆流 色谱的原理, 每隔 70秒四股物料位置按与液体流向相同的方向前 移 1根吸附柱。 在稳定的操作状态下得到的对二甲苯純度为 99.75 质量%, 回收率为 99.0质量%, 由此计算得出的对二甲苯生产率为 每立方米吸附剂每小时吸附分离对二甲苯 0.066米 3。 实例 8
在小型移动床装置上装填吸附剂 A-6 , 按实例 7的方法进行吸 附分离对二曱苯的实验, 稳定操作状态下得到的对二甲苯纯度为 99.80质量%, 回收率为 98.4质量%, 对二甲苯的生产率为每立方 米吸附剂每小时吸附分离对二曱苯 0.0656米 3。 对比例 3
在小型移动床装置上装填对比吸附剂 B-2 , 按实例 7的方法进 行吸附分离对二甲苯的实验, 稳定操作状态下得到的对二甲苯纯 度为 99.71质量%, 回收率为 90.5质量%, 对二甲苯生产率为每立 方米吸附剂每小时吸附分离对二甲苯 0.0604米 3
表 1
Figure imgf000016_0001

Claims

权 利 要 求
1. 一种聚结型沸石吸附剂,包括 95 - 99.5盾量%的 X沸石和 0.5 ~ 5.0质量%的粘结剂, 所述 X沸石的可交换阳离子位为 II A族 金属和 /或 K, 所述吸附剂采用压汞法测定的总孔体积不小于 0.26 亳升 /克,其中孔直径为 100 ~ 500纳米的孔的体积至少占总孔体积 的 60%。
2. 按照权利要求 1所述的吸附剂, 其特征在于所述的 II A族 金属为钡。 ·
3. 按照权利要求 1所述的吸附剂, 其特征在于所述吸附剂的 总孔体积不小于 0.28 毫升 /克, 孔直径 100 ~ 500纳米的孔的体积 至少占总孔体积的 70%。
4. 按照权利要求 1 所述的吸附剂, 其特征在于孔直径大于
500纳米的孔的体积占总孔体积的 5 ~ 15%。
5. 按照权利要求 1所述的吸附剂, 其特征在于所述的吸附剂 中 X沸石的阳离子为 Ba和 K时, 吸附剂中氧化钡与氧化钾的摩 尔比为 20 ~ 60。
6. 按照权利要求 1所述的吸附剂, 其特征在于经离子交换后 吸附剂中氧化钠的含量不大于 1.0质量%, 吸附剂 60CTC焙烧的灼 减量不大于 7.0质量%。
7. 按照权利要求 1所述的吸附剂,其特征在于所述 X沸石的 平均晶粒粒径为 0.1 ~ 1.0微米。
8. 按照权利要求 1所述的吸附剂, 其特征在于所述粘结剂为 高岭土族矿物经原位晶化后未晶化的基质。
9. 一种权利要求 1所述吸附剂的制备方法, 包括:
( 1 )将 NaX或 NaKX沸石、 可沸石化的粘土和成型助剂混合 制成混合粉料,其中所述沸石与沸石化的粘土的质量比为 88 ~ 95 : 5 ~ 12 , 然后与向涎合粉料中加入水溶性碳酸盐或水溶性高分子化 合物作为造孔剂通过滚动使之聚结成小球, 然后干燥、 焙烧;
( 2 )将步骤( 1 )中焙烧后的小球用氢氧化钠溶液或氢氧化钠 与硅酸钠的混合溶液在 90 ~ 100 °C处理,使其中的粘土原位晶化为 X型沸石, 然后干燥、 焙烧; (3) 用 ΠΑ族金属的可溶性盐溶液或者是钾盐和 II Α族金属 的可溶性盐的混合溶液对步骤 (2) 的所得物进行阳离子交换后活 化。
10. 按照权利要求 9 所述的方法, 其特征在于步骤 ( 1 ) 所述 的可沸石化的粘土为高岭土族矿物。
11. 按照权利要求 10 所述的方法, 其特征在于所述的高岭土 族矿物选自高岭石、 地开石、 珍珠石、 埃洛石或它们的混合物。
12. 按照权利要求 9 所述的方法, 其特征在于步驟 ( 1 ) 所述 的成型助剂选自木质素、 田菁粉、 干淀粉、 羧甲基纤维素、 活性 炭中的一种或 种的混合物。
13. 按照权利要求 9 所述的方法, 其特征在于步骤 ( 1) 加入 的成型助剂与所述的 NaX 或 NaKX 沸石与粘土的总质量的比为 1 ~ 8%。
14. 按照权利要求 9 所述的方法, 其特征在于步骤 ( 1) 所述 的水溶性碳酸盐为碳酸铵、 碳酸钠或碳酸氢钠。
15. 按照权利要求 9 所述的方法, 其特征在于步骤 ( 1) 所述 的水溶性高分子化合物选自聚丙烯酰胺、 聚乙烯醇和聚乙二醇中 的一种或任意几种。
16. 按照权利要求 9所述的方法, 其特征在于将所述造孔剂配 成水溶液加入混合粉料中,造孔剂水溶液的浓度为 0.5 ~ 10质量%, 加入的造孔剂的水溶液占混合粉料的总质量的 10 ~ 40%。
17. 按照权利要求 9 所迷的方法, 其特征在于步骤 (2) 所述 氢氧化钠溶液的浓度为 1.0 ~ 4.0摩尔 /升, 所述氢氧化钠与硅酸钠 的混合溶液中氧化钠的含量为 3.0~8.0质量%,二氧化硅的含量为 1.0~7.0质量%。
18. 按照权利要求 9 所迷的方法, 其特征在于步骤 (3) 所述 的 II A族金属的可溶性盐为硝酸钡或氯化钡,钾盐为氯化钾或硝酸 钾。
19. 按照权利要求 9 所迷的方法, 其特征在于步驟 (3) 所述 的活化在氮气流或空气流中进行, 活化温度为 180~ 250°C。
PCT/CN2009/000117 2008-01-31 2009-01-24 聚结型沸石吸附剂及其制备方法 WO2009097747A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ROA201000687A RO126851B1 (ro) 2008-01-31 2009-01-24 Adsorbanţi din zeolit aglomerat şi procedeu de producere a acestora
US12/865,267 US8791039B2 (en) 2008-01-31 2009-01-24 Agglomerated zeolite adsorbents and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810057262.6 2008-01-31
CN2008100572626A CN101497022B (zh) 2008-01-31 2008-01-31 聚结型沸石吸附剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2009097747A1 true WO2009097747A1 (zh) 2009-08-13

Family

ID=40944419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/000117 WO2009097747A1 (zh) 2008-01-31 2009-01-24 聚结型沸石吸附剂及其制备方法

Country Status (6)

Country Link
US (1) US8791039B2 (zh)
KR (1) KR101597342B1 (zh)
CN (1) CN101497022B (zh)
MY (1) MY154947A (zh)
RO (1) RO126851B1 (zh)
WO (1) WO2009097747A1 (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522357A (ja) * 2011-04-13 2014-09-04 ユーオーピー エルエルシー 少量のlta型ゼオライトを含む結合剤転化アルミノケイ酸塩x型ゼオライト組成物
KR101203258B1 (ko) * 2011-07-05 2012-11-21 한국화학연구원 BaX형 제올라이트 성형체 및 그의 제조방법
KR101273877B1 (ko) 2011-08-16 2013-06-25 한국화학연구원 결정성 하이브리드 나노세공체 분말을 포함하는 복합체 및 그 제조방법
US20130121911A1 (en) * 2011-11-10 2013-05-16 Sandia Corporation Pelletized molecular sieves and method of making molecular sieves
US9533280B2 (en) 2012-06-22 2017-01-03 Praxair Technology, Inc. High rate compositions
DE102012020217A1 (de) 2012-10-15 2014-04-17 Chemiewerk Bad Köstritz GmbH Bindemittelfreie kompakte zeolithische Formkörper und Verfahren zu deren Herstellung
CN103933932B (zh) * 2012-10-29 2016-04-27 中国石油化工股份有限公司 一种5a分子筛吸附剂及其制备方法
FR3002461B1 (fr) * 2013-02-22 2016-12-09 Ifp Energies Now Procede de separation des xylenes en lit mobile simule au moyen d'un solide adsorbant zeolithique de granulometrie comprise entre 150 et 500 microns
US20150105600A1 (en) * 2013-10-15 2015-04-16 Uop Llc Adsorbents for the separation of para-xylene from c8 alkyl aromatic hydrocarbon mixtures, methods for separating para-xylene using the adsorbents and methods for making the adsorbents
FR3013236B1 (fr) * 2013-11-20 2015-12-11 Ceca Sa Materiau granulaire zeolithique a structure connexe
CN103979573B (zh) * 2014-06-01 2016-02-17 许盛英 酸化后的沸石
FR3024666B1 (fr) 2014-08-05 2022-01-14 Ifp Energies Now Adsorbants zeolithiques comprenant une zeolithe a porosite hierarchisee
FR3038529B1 (fr) 2015-07-09 2020-10-23 Ceca Sa Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
FR3038528B1 (fr) * 2015-07-09 2020-10-23 Ifp Energies Now Adsorbants zeolithiques, leur procede de preparation et leurs utilisations
CN106552582B (zh) * 2015-09-29 2019-05-17 中国石油化工股份有限公司 从c8芳烃中分离乙苯的吸附剂及制备方法
FR3052986B1 (fr) * 2016-06-28 2021-04-09 Ifp Energies Now Adsorbant zeolithique sous forme d'agglomeres a faible tortuosite
KR102250288B1 (ko) 2017-02-24 2021-05-07 한화솔루션 주식회사 크레졸 흡착력이 우수한 제올라이트 흡착제의 제조방법 및 이를 이용한 제올라이트 흡착제
CN106817665A (zh) * 2017-03-06 2017-06-09 瑞声科技(南京)有限公司 沸石颗粒及其制作方法
RU2653033C1 (ru) * 2017-05-02 2018-05-04 ООО "Компания "Новые технологии" Способ получения гранулированного цеолита типа Х без связующих веществ
DE102017207817A1 (de) 2017-05-09 2018-11-15 Clariant International Ltd Zeolithhaltiges Adsorbens zur selektiven Abtrennung von Isomeren aus aromatischen Kohlenwasserstoffgemischen, seine Herstellung und Verwendung
FR3075793B1 (fr) 2017-12-22 2019-11-29 Arkema France Adsorbants zeolithiques a base de baryum, strontium et potassium, leur procede de preparation et leurs utilisations
FR3075792B1 (fr) 2017-12-22 2019-11-29 Arkema France Adsorbants zeolitiques contenant du strontium
CN108176376B (zh) * 2018-01-23 2020-06-05 合肥工业大学 一种用于去除污水中钴离子的吸附剂及其制备方法
CN109621921B (zh) * 2019-01-30 2022-01-07 浙江省环境科技有限公司 一种污水处理用类球状复合吸附剂
US11433373B2 (en) * 2019-03-11 2022-09-06 Saudi Arabian Oil Company Methods of making zeolite-templated carbon pellets and uses thereof
US20220258124A1 (en) * 2019-06-26 2022-08-18 China Petroleum & Chemical Corporation Composite layer agglomerating adsorbent and preparation process thereof
JP2022549944A (ja) 2019-09-29 2022-11-29 中国石油化工股▲ふん▼有限公司 エチルベンゼンを含むC8芳香族化合物からp-キシレンおよびエチルベンゼンを製造する方法
CN112642391B (zh) * 2019-10-10 2022-07-15 中国石油化工股份有限公司 一种聚结型对位二取代基苯吸附剂及其制备方法
CN110961087B (zh) * 2019-11-26 2022-06-21 浙江海洋大学 一种px吸附剂及其制备方法
CN114425297B (zh) * 2020-10-15 2024-03-12 中国石油化工股份有限公司 对位二取代基苯吸附剂及其制备方法
CN112408415A (zh) * 2020-10-30 2021-02-26 上海绿强新材料有限公司 一种颗粒状低硅13x分子筛及其制备方法与应用
CN114433014B (zh) * 2020-10-31 2023-07-28 中国石油化工股份有限公司 一种5a分子筛吸附剂的制备方法
CN114433012B (zh) * 2020-11-06 2023-06-02 中国石油化工股份有限公司 分子筛吸附剂的成型方法及其制得的分子筛吸附剂和应用
CN113083222A (zh) * 2021-03-30 2021-07-09 中触媒新材料股份有限公司 一种用于吸附分离的改性吸附剂及其制备方法与应用
CN115970637B (zh) * 2022-07-29 2023-08-08 正大能源材料(大连)有限公司 一种吸附剂及其制备方法与应用
CN115701829B (zh) * 2022-10-17 2023-12-15 大连理工大学 一种小孔分子筛成型吸附剂的制备方法及在吸附不饱和烃制备电子级笑气中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347339A (zh) * 1999-02-22 2002-05-01 策卡有限公司 附聚的沸石类吸附剂、其制备方法及其应用
CN1358566A (zh) * 2000-12-13 2002-07-17 北京燕山石油化工公司研究院 一种吸附剂、其制备方法及其在分离二甲苯中的应用
CN1552515A (zh) * 2003-05-30 2004-12-08 中国石油化工股份有限公司 对二甲苯吸附剂及其制备方法
JP2007238484A (ja) * 2006-03-07 2007-09-20 Toray Ind Inc パラ−キシレン異性体の分離方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3119660A (en) * 1960-09-26 1964-01-28 Union Carbide Corp Process for producing molecular sieve bodies
US3960774A (en) * 1973-05-02 1976-06-01 Universal Oil Products Company Zeolitic adsorbent for xylene separation
US3878129A (en) * 1973-05-02 1975-04-15 Universal Oil Prod Co Method of manufacturing a zeolitic adsorbent useful for aromatic separation
US3997620A (en) * 1975-10-28 1976-12-14 Uop Inc. Process for separating para-xylene
US4283587A (en) * 1980-06-16 1981-08-11 Uop Inc. Adsorptive separation of aromatic isomers
US4603040A (en) * 1985-03-27 1986-07-29 Air Products And Chemicals, Inc. Massive bodies of Maximum Aluminum X-type zeolite
US4940548A (en) * 1989-04-17 1990-07-10 Uop Chromatographic separation process for recovering individual diethyltoluene isomers
US5174979A (en) * 1989-10-06 1992-12-29 Uop Mixed ion-exchanged zeolites and processes for the use thereof in gas separations
US5149887A (en) * 1989-12-28 1992-09-22 Uop Separation of alkyl-substituted phenolic isomers with barium-potassium exchanged zeolitic adsorbent
FR2766476B1 (fr) * 1997-07-22 1999-09-03 Ceca Sa Adsorbant zeolitique ameliore pour la separation des gaz de l'air et son procede d'obtention
FR2767524B1 (fr) 1997-08-21 1999-09-24 Ceca Sa Procede ameliore d'obtention de paraxylene a partir de coupes de c8 aromatiques
CN1155433C (zh) * 1998-02-27 2004-06-30 普莱克斯技术有限公司 改进的psa吸附剂
US6306363B1 (en) 1998-05-29 2001-10-23 Tosoh Corporation Fine low silica faujasite type zeolite and process for its production
US6143057A (en) * 1999-04-23 2000-11-07 The Boc Group, Inc. Adsorbents and adsorptive separation process
FR2806643B1 (fr) * 2000-03-27 2002-05-03 Ceca Sa Methode de separation de molecules en phase gaz par adsorption au moyen d'adsorbants inorganiques solides agglomeres a distribution mesoporeuse etroite et calibree
CN1106880C (zh) 2000-08-18 2003-04-30 中国石油化工股份有限公司 一种选择吸附分离芳烃异构体的吸附剂的制备方法
KR20010070900A (ko) * 2001-06-18 2001-07-27 김대용 토목공사용 매설관 추진삽입장치
CN1191199C (zh) 2002-03-29 2005-03-02 中国石油化工股份有限公司 一种小晶粒x沸石的制备方法
CN1191118C (zh) * 2002-03-29 2005-03-02 中国石油化工股份有限公司 吸附分离对二甲苯的吸附剂及其制备方法
CN1267185C (zh) 2003-06-30 2006-08-02 中国石油化工股份有限公司 对二甲苯吸附剂及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1347339A (zh) * 1999-02-22 2002-05-01 策卡有限公司 附聚的沸石类吸附剂、其制备方法及其应用
CN1358566A (zh) * 2000-12-13 2002-07-17 北京燕山石油化工公司研究院 一种吸附剂、其制备方法及其在分离二甲苯中的应用
CN1552515A (zh) * 2003-05-30 2004-12-08 中国石油化工股份有限公司 对二甲苯吸附剂及其制备方法
JP2007238484A (ja) * 2006-03-07 2007-09-20 Toray Ind Inc パラ−キシレン異性体の分離方法

Also Published As

Publication number Publication date
RO126851A2 (ro) 2011-11-30
US8791039B2 (en) 2014-07-29
MY154947A (en) 2015-08-28
KR101597342B1 (ko) 2016-02-24
CN101497022A (zh) 2009-08-05
CN101497022B (zh) 2011-06-15
RO126851B1 (ro) 2017-12-29
KR20100106587A (ko) 2010-10-01
US20110105301A1 (en) 2011-05-05

Similar Documents

Publication Publication Date Title
WO2009097747A1 (zh) 聚结型沸石吸附剂及其制备方法
KR101672561B1 (ko) 개선된 물질 전달 특성을 갖는 무바인더 흡착제 및 파라-크실렌의 흡착 분리에서의 이의 용도
TWI423845B (zh) 聚集型沸石吸附劑、彼之製法及彼之用途
KR101703359B1 (ko) 무바인더 흡착제 및 파라-크실렌의 흡착 분리에서의 이의 용도
CN108854945B (zh) 附聚沸石吸附剂、它们的生产方法和它们的用途
JP5718054B2 (ja) 凝集ゼオライト吸着材、それらの調製方法およびそれらの使用
US20050170947A1 (en) Agglomerated zeolitic adsorbents, their process of preparation and their uses
CN111097370A (zh) 一种球形间二甲苯吸附剂及其制备方法
CN110508240B (zh) 一种聚结型吸附剂的制备方法
CN108262005B (zh) 一种吸附分离对二甲苯的小球吸附剂及其制备方法
WO2020259595A1 (zh) 一种复合层聚结型吸附剂及制备方法
CN108262004B (zh) 对二甲苯吸附剂及其制备方法
CN108525643B (zh) 一种对二甲苯吸附剂及其制备方法
CN112642391B (zh) 一种聚结型对位二取代基苯吸附剂及其制备方法
JP2023546276A (ja) m-キシレン吸着剤及びその調製方法
CN109692657B (zh) 一种介孔x沸石及吸附剂与吸附剂制备方法
CN108525641B (zh) 吸附分离对二甲苯的小球吸附剂及制备方法
CN114425297B (zh) 对位二取代基苯吸附剂及其制备方法
TWI491442B (zh) Adsorbent separation of m - xylene and its preparation
TW201028209A (en) Agglomerated zeolite adsorbents and process for producing the same
CN112642392B (zh) 一种聚结型间二甲苯吸附剂及其制备方法
CN115990456A (zh) 一种对二甲苯吸附剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09709381

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 5494/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010 201000687

Country of ref document: RO

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: PI 2010003579

Country of ref document: MY

ENP Entry into the national phase

Ref document number: 20107018465

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12865267

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09709381

Country of ref document: EP

Kind code of ref document: A1