WO2008001897A1 - Élément de câblage à suppression de bruit et planchette de câblage imprimé - Google Patents

Élément de câblage à suppression de bruit et planchette de câblage imprimé Download PDF

Info

Publication number
WO2008001897A1
WO2008001897A1 PCT/JP2007/063139 JP2007063139W WO2008001897A1 WO 2008001897 A1 WO2008001897 A1 WO 2008001897A1 JP 2007063139 W JP2007063139 W JP 2007063139W WO 2008001897 A1 WO2008001897 A1 WO 2008001897A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
noise suppression
region
conductor
copper foil
Prior art date
Application number
PCT/JP2007/063139
Other languages
English (en)
French (fr)
Inventor
Toshiyuki Kawaguchi
Kazutoki Tahara
Tsutomu Saga
Mitsuaki Negishi
Original Assignee
Shin-Etsu Polymer Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006181179A external-priority patent/JP5138185B2/ja
Priority claimed from JP2006199286A external-priority patent/JP4916803B2/ja
Application filed by Shin-Etsu Polymer Co., Ltd. filed Critical Shin-Etsu Polymer Co., Ltd.
Priority to CN2007800242028A priority Critical patent/CN101480112B/zh
Priority to EP07767924A priority patent/EP2048919A4/en
Priority to KR1020097001706A priority patent/KR101162405B1/ko
Publication of WO2008001897A1 publication Critical patent/WO2008001897A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0234Resistors or by disposing resistive or lossy substances in or near power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/167Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0183Dielectric layers
    • H05K2201/0191Dielectric layers wherein the thickness of the dielectric plays an important role
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • H05K2201/0317Thin film conductor layer; Thin film passive component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/093Layout of power planes, ground planes or power supply conductors, e.g. having special clearance holes therein
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09309Core having two or more power planes; Capacitive laminate of two power planes

Definitions

  • the present invention relates to a noise suppression wiring member and a printed wiring board for forming a printed wiring board.
  • the present invention also relates to a noise suppression structure and a multilayer printed wiring board.
  • the noise includes noise due to impedance mismatch of the conductor in the printed wiring board on which the MPU, electronic parts, etc. are mounted, noise due to crosstalk between the conductors, and power and ground layers due to simultaneous switching of semiconductor elements such as the MPU. There is noise or the like induced by resonance between layers.
  • the following printed wiring board is known as a printed wiring board in which these noises are suppressed.
  • a printed wiring board in which a metal film made of a metal having a resistivity larger than that of a copper foil is formed on both sides of a power supply layer and a ground layer which are also copper foil power Patent Document 1.
  • the high frequency eddy current flowing on the surface of the copper foil can be attenuated, and even if the semiconductor element causes simultaneous switching, the power supply potential etc. can be stabilized and unnecessary. It is said that the radiation of noise can be suppressed.
  • skin current high-frequency current flowing on the conductor surface (skin) with a metal film of several ⁇ m, which is about the same as the skin depth
  • the force based on the frequency of the target high-frequency current Materials with very high resistivity are needed.
  • such a material can not be obtained, and the printed wiring board of (1) can not obtain a sufficient noise suppression effect.
  • the high frequency eddy current can be similarly attenuated.
  • forming an anisotropically conductive film so as to have a copper foil surface roughness equal to or greater than the skin depth is a complicated process. Further, in the printed wiring board of (2), a sufficient noise suppression effect can not be obtained.
  • a method of suppressing the radiation noise there are (i) a method of using an electromagnetic wave shielding material which reflects an electromagnetic wave, and (ii) a method of using an electromagnetic wave absorbing material which absorbs an electromagnetic wave propagating in space.
  • a method of suppressing the conducted noise and the radiation noise there is a method of suppressing the high frequency current flowing in the conductor before becoming the conducted noise and the radiation noise.
  • the shielding effect of the radiation noise can be obtained, the radiation noise is returned to itself by the unnecessary radiation or reflection of the radiation noise by the shielding material.
  • the electromagnetic wave absorbing material for example, refer to Patent Documents 3 and 4
  • the electromagnetic wave absorbing material is thick and fragile, it is unsuitable for an apparatus for which a reduction in size and weight is required.
  • conducted noise can not be suppressed by the methods (i) and (ii). Therefore, attention has recently been paid to the method of (m) waiting.
  • Patent Document 1 discloses that a high resistance metal film is formed on a copper foil that constitutes a power supply layer and a ground layer.
  • the high-resistance metal film is a single-layer film or alloy film of nickel, cobalt, tin, tungsten, or the like, which is formed by plating and has a resistivity higher than copper, and the power supply layer and the ground layer It is possible to stabilize the potential fluctuation of the sensor, and to remove the high frequency current with the high-resistance metal film, thereby suppressing unnecessary electromagnetic waves (radiation noise) radiated to the outside.
  • Patent Document 5 discloses a multilayer printed wiring board in which a resistor such as carbon or graphite is provided between a power supply layer and a ground layer and at the peripheral end of the multilayer printed wiring board. .
  • Patent Document 6 includes a capacitor laminate in which a dielectric sheet is sandwiched between two conductive oils, and a capacitive print having a structure in which the two conductive oils are electrically connected to different devices.
  • a wiring board is disclosed.
  • the capacitive printed wiring board since the capacitor laminate has a certain thickness, the capacitive printed wiring board must be thick, which is unsuitable for high density mounting. In addition, when the capacitive printed wiring board is thickened, resonance is likely to occur between the conductors having a parallel plate structure, so that the radiation noise can not be sufficiently suppressed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-97810
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2006-66810
  • Patent Document 3 Japanese Patent Application Laid-Open No. 9 93034
  • Patent Document 4 Japanese Patent Application Laid-Open No. 9 181476
  • Patent Document 5 Patent No. 2867985
  • Patent Document 6 Patent No. 2738590
  • a wiring member according to the present invention comprises a copper foil having a smooth surface having a surface roughness Rz ⁇ m or less, a noise suppression layer having a thickness of 5 to 200 nm containing metal or conductive ceramic, and the above copper
  • the insulating resin layer is provided between the smooth surface side of the foil and the noise suppression layer.
  • the noise suppression layer preferably has a defect in which no metal or conductive ceramic is present.
  • the wiring member of the present invention preferably has an adhesion promoting layer between the smooth surface side of the copper foil and the insulating resin layer.
  • the wiring member of the present invention preferably has an adhesion promoting layer on the surface of the noise suppression layer opposite to the copper foil side.
  • the thickness of the insulating resin layer is preferably 0.1 to LO m.
  • the printed wiring board of the present invention is characterized by comprising the wiring member of the present invention.
  • the copper foil is a power supply layer
  • the noise suppression layer is disposed between the power supply layer and the land layer.
  • a first conductor layer, a second conductor layer, and a noise suppression layer provided between the first conductor layer and the second conductor layer.
  • the first conductor layer and the noise suppression layer And a second insulating layer provided between the second conductor layer and the noise suppression layer, and the noise suppression layer includes a first conductor layer and a second insulation layer provided between the second conductor layer and the noise suppression layer.
  • a region (I) which is a region of 5 to 300 nm thick that contains electromagnetically coupled metal material or conductive ceramic and is a region where the noise suppression layer and the first conductor layer face each other, and noise suppression A region (II) in which the layer and the first conductor layer face each other, and the noise suppression layer and the second conductor layer face each other, I) and region (II) are characterized in that they are adjacent.
  • the area of the noise suppression layer is substantially the same as the area of the second conductor layer.
  • the noise suppression structure of the present invention has a region (I) at the peripheral portion of the first conductor layer 11 and is a region where the first conductor layer 11 is present, and the first conductor layer 11 and the noise. It is preferable that the suppression layer 13 has a region (III) which is not a region facing the suppression layer 13.
  • the first conductor layer may be divided into a plurality.
  • the thickness of the first insulating layer is preferably 0.05 to 25 m.
  • the relative dielectric constant of the first insulating layer is preferably 2 or more.
  • the noise suppression layer preferably has a defect in the absence of the metallic material or the conductive ceramic.
  • the average width of the region (I) obtained from the following formula (1) is preferably 0.1 mm or more.
  • Average width of area (I) [mm] area of area (I) [mm 2 ] Length of boundary between Z area (I) and area ( ⁇ ) [mm] ⁇ ⁇ ⁇ (1).
  • the average width of the region (II) determined from the following equation (2) is preferably 1 to 50 mm! /.
  • Average width of area ( ⁇ ) [mm] area of area (II) [mm 2 ] Length of boundary between Z area (I) and area ( ⁇ ) [mm] ⁇ ⁇ ⁇ (2).
  • the multilayer printed wiring board of the present invention is characterized by comprising the noise suppression structure of the present invention.
  • one of the first conductor and the second conductor is a power supply layer, and the other is a ground layer.
  • the multilayer printed wiring board of the present invention preferably further comprises a signal transmission layer, and a power supply layer or a ground layer is preferably present between the signal transmission layer and the noise suppression layer.
  • the noise suppression structure comprises a capacitive laminate and Even preferred to function.
  • the wiring member of the present invention by suppressing the resonance between the power supply layer and the ground layer due to simultaneous switching in the printed wiring board, the power supply potential can be stabilized and unnecessary radiation of noise can be suppressed. it can.
  • the resonance between the power supply layer and the ground layer due to simultaneous switching is suppressed, the power supply potential is stabilized, and the emission of unnecessary noise is suppressed.
  • the noise suppression structure and the multilayer printed wiring board of the present invention can suppress the generation of conduction noise and radiation noise, and can be thinned.
  • FIG. 1 is a schematic cross-sectional view showing an example of a wiring member of the present invention.
  • FIG. 2 is a field transmission scanning electron microscope image of the surface of the noise suppression layer observed
  • FIG. 3 A schematic view of FIG.
  • FIG. 4 is a high resolution transmission electron microscope image of the cross section of the noise suppression layer of FIG.
  • FIG. 5 is a schematic cross-sectional view showing an example of a printed wiring board of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of the noise suppression structure of the present invention.
  • FIG. 7 is a top view of the noise suppression structure of FIG.
  • FIG. 8 is a top view of the noise suppression structure for illustrating the boundary between the region (I) and the region (II).
  • FIG. 9 A sectional view showing another example of the noise suppression structure of the present invention.
  • FIG. 10 is a cross-sectional view showing another example of the noise suppression structure of the present invention.
  • FIG. 11 is a cross-sectional view showing an example of the multilayer printed wiring board of the present invention.
  • FIG. 12 is a graph showing S21 (transmission attenuation) of printed wiring boards of Example 1 and Comparative Example 3.
  • FIG. 13 is a graph showing S21 (transmission attenuation) of printed wiring boards of Example 2 and Comparative Example 3.
  • FIG. 14 A graph showing S21 (transmission attenuation) of printed wiring boards of Example 3 and Comparative Example 3 is there.
  • FIG. 15 is a graph showing S21 (transmission attenuation) of printed wiring boards of Comparative Example 2 and Comparative Example 4.
  • FIG. 16 is a cross-sectional view showing a noise suppression structure in an example.
  • FIG. 17 is a block diagram showing an S-parameter measurement system.
  • FIG. 18 is a graph showing S21 (transmission attenuation) in Example 4 and Comparative Example 5.
  • FIG. 19 is a graph showing S21 (transmission attenuation) of the noise suppression structure in Example 5 and Comparative Example 6.
  • FIG. 20 is a graph showing S21 (transmission attenuation) in Example 6 and Comparative Example 7.
  • FIG. 21 is a graph showing S21 (transmission attenuation amount) in Comparative Example 8 and Comparative Example 9.
  • FIG. 22 is a cross-sectional view showing a multilayer printed wiring board in the example.
  • FIG. 23 is a cross-sectional view taken along line XVII-XVII in FIG.
  • FIG. 24 is a graph showing voltage fluctuations of power supply layers of Example 7 and Comparative Example 10.
  • FIG. 25 is a cross-sectional view showing another example of the noise suppression structure in the embodiment.
  • FIG. 26 is a graph showing S21 (transmission attenuation) in Examples 8 to 10.
  • Wiring member 11 Copper foil 12 Insulating resin layer 13 Noise suppression layer 15 Adhesion promoting layer 20 Printed wiring board 22 Ground layer 23 Power layer
  • FIG. 1 is a schematic cross-sectional view showing an example of the wiring member of the present invention.
  • the wiring member 10 has a copper foil 11, an insulating resin layer 12 provided on the copper foil 11, and a noise suppression layer 13 formed on the surface of the insulating resin layer 12.
  • the copper foil 11 examples include electrolytic copper foil, rolled copper foil and the like.
  • the surface of the copper foil is roughened by, for example, adhering fine copper particles on the surface in order to improve adhesion with the insulating resin layer 12.
  • the surface of the copper foil 11 on the side of the noise suppression layer 13 is a smooth surface having a surface roughness Rz of 2 m or less. If the surface roughness Rz of the smooth surface is 2 m or less, even if the insulating resin layer 12 is formed thin, defects such as pinholes occur on the surface of the copper foil 11 in the insulating resin layer 12. The short circuit between the copper foil 11 and the noise suppression layer 13 is suppressed, and a sufficient noise suppression effect can be obtained.
  • the surface roughness Rz is a ten-point average roughness Rz specified in JIS B 0601-1994.
  • the copper foil 11 is particularly preferably an electrolytic copper foil.
  • Electrolytic copper foil is obtained by depositing copper on the surface of the rotating drum of the cathode using electrolytic reaction and peeling it off from the rotating drum. The surface state of the drum is transferred on the surface in contact with the drum. Smooth surface.
  • the shape of the surface on which copper is electrolytically deposited is roughened because the crystal growth rate of the deposited copper is different for each crystal plane, making it a rough surface, which is convenient for bonding with other insulating resin layers (not shown). It is a good side.
  • the thickness of the copper foil 11 is preferably 3 to 50 m.
  • the insulating resin layer 12 is a layer made of a resin composition or a layer made of a fiber reinforced resin obtained by impregnating a resin composition with reinforcing fibers such as glass fibers.
  • the state of the fiber reinforced resin may be B stage (semi-cured state) or C-stage (cured state)! / ,.
  • the resin composition is a composition containing as a main component a resin. It is preferable that the resin resists heating during the production of the printed wiring board and has heat resistance required for the printed wiring board. Also, the dielectric constant, the dielectric loss tangent, and the like of the printed wiring board are preferable. It is preferred that the characteristic values required for the design are known. Examples of the resin include polyimide resin, epoxy resin, bismaleimide triazine resin, polytetrafluorinated ethylene, polyphenylene ether and the like.
  • resin composition those containing an epoxy resin, and optionally, a curing agent, a curing accelerator, a flexibility imparting agent and the like are preferable.
  • epoxy resin bisphenol A type epoxy resin, bis phenol F type epoxy resin Resins, bisphenol S-type epoxy resin, novolak-type epoxy resin, cresol novolac-type epoxy resin, alicyclic epoxy resin, brominated epoxy resin, glycidyl amine-type epoxy resin, etc.
  • the amount of epoxy resin is preferably 20 to 80% by mass in 100% by mass of the resin composition.
  • amines such as dicyandiamide, imidazoles, aromatic amines
  • phenols such as bisphenol A, brominated bisphenol A
  • novolaks such as phenol novolac resin, creosoyl novolac resin
  • acid anhydrides such as phthalic acid.
  • curing accelerator examples include tertiary amine, imidazole curing accelerator, urea curing accelerator and the like.
  • Examples of the flexibility imparting agent include polyether sulfone resin, aromatic polyamide resin, elastic resin and the like.
  • aromatic polyamide resin those synthesized by condensation polymerization of aromatic diamine and dicarboxylic acid can be mentioned.
  • aromatic diamine examples include 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, m-xylenediamine, 3,3′-hydroxydianilin and the like.
  • dicarboxylic acids examples include dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid and fumaric acid.
  • hydrophobic resin examples include natural rubber, styrene butadiene rubber, butadiene rubber, butyl rubber, ethylene-propylene rubber and the like.
  • a nitrile rubber, chloroprene rubber, silicone rubber, or urethane rubber may be used in combination.
  • CTBN carboxy-terminated butadiene-tolyl rubber
  • the insulating resin layer 12 is formed, for example, by applying a varnish obtained by dissolving or dispersing the resin composition in a solvent on the copper foil 11 (or on the adhesion promoting layer 15 described later) and drying it. It is done.
  • the application and drying of the varnish may be performed twice or more separately to form two or more insulating resin layers.
  • the varnish may be of the same type as each layer or different types for each layer.
  • the thickness of the insulating resin layer 12 is preferably 0.1 to 1: LO / zm. If the thickness of the insulating resin layer 12 is 0.1 ⁇ m or more, the insulation between the copper foil 11 and the noise suppression layer 13 is sufficiently maintained, and a short circuit between the copper foil 11 and the noise suppression layer 13 Therefore, a sufficient noise suppression effect can be obtained. Further, when the copper foil 11 is subjected to pattern etching by etching, the noise suppression layer 13 is not corroded by the etching.
  • the thickness of the insulating resin layer 12 is 10 m or less, the printed wiring board provided with the wiring member can be thinned. Further, as the noise suppression layer 13 and the copper foil 11 come close to each other, the electromagnetic coupling between the noise suppression layer 13 and the copper foil 11 becomes strong, and a sufficient noise suppression effect can be obtained. In addition, when applying the pattern force to the noise suppression layer 13 on the copper foil 11 side, the insulating resin layer 12 is removed and the processing time becomes short immediately.
  • the noise suppression layer 13 is a thin film having a thickness of 5 to 200 nm containing a metal material or a conductive ceramic.
  • the thickness of the noise suppression layer 13 is 5 nm or more, a sufficient noise suppression effect can be obtained.
  • the thickness of the noise suppression layer 13 is 200 nm or less, a homogeneous thin film in which the microclusters described later grow and the metal material and the like also does not form.
  • the surface resistance decreases, the metal reflection increases, and the noise suppression effect also decreases.
  • the thickness of the noise suppression layer 13 is determined based on the high resolution transmission electron microscopic image (for example, FIG. 4) of the cross section in the film thickness direction of the noise suppression layer (for example, FIG. 4). The thickness of is measured on an electron microscope image and determined by averaging.
  • the surface resistance of the noise suppression layer 13 is preferably 1 ⁇ 10 ° to 1 ⁇ 10 4 ⁇ ! /. If the noise suppression layer 13 is a homogeneous thin film, a limited material with a high volume resistivity is required, but if the volume resistivity of the material is not very high, the noise suppression layer 13 may be a metallic material or a conductive ceramic.
  • the surface resistance can be increased by providing a physical defect free of oxidization, forming an inhomogeneous thin film, or forming a chain of mic mouth clusters described later. The surface resistance of the noise suppression layer 13 is measured as follows.
  • the metal material examples include ferromagnetic metals and paramagnetic metals.
  • Ferromagnetic metals include iron and carboxyl iron; Fe—Ni, Fe—Co, Fe—Cr, Fe—Si, Fe—Al, Fe—Cr—Si, Fe—Cr—Al, Fe—Al— Iron alloys such as Si and Fe—Pt; cobalt, nickel; alloys of these, and the like.
  • paramagnetic metals include gold, silver, copper, tin, lead, tungsten, silicon, aluminum, titanium, chromium, molybdenum, their alloys, amorphous alloys, alloys with ferromagnetic metals, and the like.
  • nickel, iron-chromium alloys, tungsten and noble metals are preferable in terms of resistance to acidity.
  • precious metals are expensive, nickel, nickel-chromium alloy, iron-chromium alloy, and tungsten are practically preferable, and nickel or nickel alloy is particularly preferable!
  • conductive ceramics include alloys, intermetallic compounds, solid solutions, etc., composed of metal and one or more elements selected from boron, carbon, nitrogen, silicon, phosphorus and sulfur. Be Specifically, nickel nitride, titanium nitride, tantalum nitride, chromium nitride, nitride nitride,
  • Examples thereof include titanium carbide, zirconium carbide, chromium carbide, vanadium carbide, molybdenum carbide, tungsten carbide, silica carbide, chromium boride, molybdenum boride, chromium silicate, zirconium dioxide and the like.
  • the noise suppression layer containing the conductive ceramic does not excessively lower the characteristic impedance. Therefore, metal reflection in the noise suppression layer is reduced.
  • the conductive ceramic does not have a specific resonance frequency, the frequency at which the noise suppression effect is exhibited is in a wide band. Furthermore, it has advantages such as high chemical stability and high storage stability.
  • conductive ceramics nitrides or carbides easily obtained by using a reactive gas such as nitrogen gas or methane gas in the physical vapor deposition method described later are particularly preferable.
  • Examples of the method for forming the noise suppression layer 13 include a conventional wet plating method, a physical vapor deposition method, a chemical vapor deposition method and the like. In these methods, although depending on the conditions and the materials used, by terminating the growth of the thin film at the initial stage, it is not a homogeneous thin film, but it is possible to obtain a fine film. Thin films with various physical defects can be formed. Alternatively, an inhomogeneous thin film can be formed also by a method of forming a defect by etching a homogeneous thin film with an acid or the like, or a method of forming a defect in a homogeneous thin film by laser ablation.
  • FIG. 2 is a field emission scanning electron microscope image of the surface of the noise suppression layer capable of forming a metallic material formed by physical vapor deposition on the surface of the insulating resin layer
  • FIG. FIG. The noise suppression layer 13 is observed as an assembly of a plurality of micro clusters 14.
  • the micro cluster 14 is formed by physically depositing a very thin metal material on the (first) insulating resin layer 12 (or the second insulating layer 12 ′), and There are physical defects between the mouth clusters 14 and they are not homogeneous thin films. Although the microclusters 14 are in contact with each other and are clustered, many defects without metallic material exist among the clustered microclusters 14.
  • FIG. 4 is a high resolution transmission electron microscope image of a cross section of the noise suppression layer 13 in the film thickness direction.
  • a crystal lattice in which metal atoms of several A are arranged as very small crystals, and defects in which metal material does not exist in a very small range are recognized. That is, the microclusters are spaced apart from each other and do not grow on a homogeneous thin film made of a metal material.
  • the condition with such physical defects is the volume resistivity R ( ⁇ 'cm) converted from the measured value of the surface resistance of the noise suppression layer 13 and the metal material ( ⁇ 'cm) converted from the measured value of the surface resistance of the noise suppression layer 13 and the metal material ( ⁇ 'cm) converted from the measured value of the surface resistance of the noise suppression layer 13 and the metal material (
  • volume resistivity R and the volume resistivity R are such that 0.5 ⁇ log R-log R ⁇ 3
  • the noise suppression layer 13 may be formed with an anti-via such as a through hole which may be patterned in a desired shape.
  • the noise suppression layer 13 can be processed into a desired shape by an ordinary etching method, a laser abrasion method or the like.
  • the adhesion promoting layer 15 is preferably provided on the smooth surface of the copper foil 11.
  • the adhesion promoting layer 15 is formed by treating the smooth surface of the copper foil 11 with an adhesion promoter.
  • adhesion promoters silane coupling agents or titanate coupling agents are used. It can be mentioned.
  • silane coupling agents include bultriethoxysilane, murtris (2-methoxyethoxy) silane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropionate trimethoxysilane, 2- (3, 4 Epoxycyclohexylene) Ethynoretrimethoxysilane, N-2- (Aminoethyl) 3-Aminopropyltrimethoxysilane, N-2- (Aminoethyl) 3-Aminopropylmethyldimethoxysilane, 3-Aminopropyl Triethoxysilane, N 2 -phenyl 3-aminopropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-chloropropyltrimethoxysilane, and the like can be mentioned.
  • titanate coupling agent isopropyl triisostearoyl titanate, isopropyl tris (diocyl pyrophosphate) titanate, isopropyl tri (N aminoethyl monoaminoethyl) titanate, tetraoctyl bis (di tridecyl).
  • Titanate bis (diocylpyrophosphate) oxyacetate titanate, bis (diotylbirophosphate) ethylene titanate, isopropyl trioctanoyl titanate, isopropyl dimethacryl isostearoyl titanate, isopropyl isostearoyl di Acrylic titanates, tetraisopropyl bis (dioctyl phosphite) titanates and the like can be mentioned.
  • 3 glycidoxypropyl trimethoxysilane is used as the adhesion promoter, and in the case where the peel strength between the copper foil 11 and the insulating resin layer 12 is increased to 1.
  • 3— Mercaptopropyltrimethoxysilane is preferred.
  • Examples of the method of forming the adhesion promoting layer 15 include a coating method, an immersion method, a showering method, and a spraying method.
  • an adhesion promoting layer may be provided on the noise suppression layer 13 in order to improve the adhesion between the noise suppression layer 13 and another insulating resin layer (not shown).
  • the adhesion promoting layer can be formed by the method of applying the silane coupling agent or the titanate coupling agent, or the method of applying the coupling agent power S integral blended epoxy resin or the like.
  • the adhesion promoting layer is formed after patterning of the noise suppression layer 13.
  • the printed wiring board of the present invention comprises the wiring member of the present invention.
  • the copper foil in the wiring member is a signal wiring layer, a power supply layer or a ground layer in the printed wiring board.
  • the copper foil in the wiring member is more preferably a power supply layer or a power supply layer, which is preferably a ground layer.
  • a noise suppression layer be placed between the power supply layer and the ground layer, in order to fully exhibit the noise suppression effect.
  • FIG. 5 is a schematic cross-sectional view showing an example of the printed wiring board of the present invention.
  • the printed wiring board 20 is, in order from the top, the signal wiring layer 21 with the pattern cover, the ground layer 22 covering almost the entire surface of the printed wiring board 20, the power supply layer 23, and the signal wiring layer 21 with the pattern cover It is laminated via the layer 24.
  • the power supply layer 23 is the copper foil 11 of the wiring member 10, and on the ground layer 22 side of the power supply layer 23, a noise of approximately the same size as the ground layer 22 via the insulating resin layer 12.
  • a suppression layer 13 is provided. Further, the power supply layer 23 is divided into two, and the divided power supply layers 23 are insulated from each other.
  • the printed wiring board 20 is manufactured, for example, as follows.
  • a copper foil 11 of the wiring member 10 is a power supply layer 23, the other is a copper foil, and is cured by sandwiching a pre-predator, which is impregnated with epoxy resin or the like into glass fiber, between the wiring member 10 and the other copper foil. And the ground layer 22.
  • the copper foil 11 of the wiring member 10 is etched by a photolithographic method or the like so as to have a desired shape (two-divided pattern).
  • the insulating resin layer 12 is resistant to the etching solution and the insulating resin layer 12 has no pinholes or the like, the noise suppression layer 13 is present without being damaged by the etching.
  • a power supply layer 23 and a ground layer 22 are used as a core, and copper foils are bonded on both outer surfaces with a pre-predator to form a signal wiring layer 21.
  • a noise suppression of 5 to 200 nm in thickness including a copper foil having a smooth surface having a surface roughness Rz of 2 m or less and metal or conductive ceramic. Since the control layer and the insulating resin layer provided between the smooth surface side of the copper foil and the noise suppression layer are provided, sufficient insulation between the copper foil and the noise suppression layer can be secured.
  • the wiring member of the present invention is provided. Therefore, the noise suppression layer can attenuate high frequency current flowing into the power supply layer by simultaneous switching, and resonance between the power supply layer and the ground layer can be suppressed. As a result, it is possible to suppress the radiation of even the peripheral edge force of the substrate.
  • FIG. 6 is a cross-sectional view showing an example of the noise suppression structure of the present invention
  • FIG. 7 is a top view.
  • the noise suppression structure 110 includes a first conductor layer 111, a second conductor layer 112, a noise suppression layer 113 provided between the first conductor layer 111 and the second conductor layer 112, and A first insulating layer 114 provided between the conductor layer 111 and the noise suppression layer 113, and a second insulation layer provided between the second conductor layer 112 and the noise suppression layer 113. And a layer 115.
  • the noise suppression layer 113 is electromagnetically coupled to the first conductor layer 111.
  • the electromagnetic coupling is a phenomenon in which a magnetic flux generated by a current flowing through the first conductor layer 111 induces a voltage by linking to the noise suppression layer 113.
  • the noise suppression structure 110 exerts a noise suppression effect by having the area (I) and the area (II) adjacent to each other. The reason is considered as follows.
  • the noise suppression layer 113 has a fine conductive path such as a micro cluster described later!
  • the conductive path is a fine and complex plurality of open stub structures disposed on the second conductor layer 112 in the region (II). It is considered that the open stub structure functions as a transmission line filter by electromagnetically coupling with the first conductor layer 111 in the adjacent region (I).
  • region (II) it is necessary that noise suppression layer 113 and first conductor layer 111 do not face each other, and noise suppression layer 113 and second conductor layer 112 face each other.
  • the average width of the region (I) obtained from the following equation (1) is 0. 1 mm or more is preferable.
  • Average width of area (I) [mm] area of area (I) [mm 2 ] Length of boundary between Z area (I) and area ( ⁇ ) [mm] ⁇ ⁇ ⁇ (1).
  • the upper limit of the average width of the region (I) depends on the size of the first conductor layer 111 and is an arbitrary value.
  • the length of the boundary between the area (I) and the area (II) is as shown in FIG. 8 when the noise suppression layer 113 and the second conductor layer 112 are present on the entire surface of the noise suppression structure 110. , The border line between the region (I) where the first conductor layer 111 is present and the region (II) where the first insulating layer 114 is not exposed and where the first insulating layer 114 is exposed on the surface (thick line in the figure).
  • the average width of the region (II) determined from the following formula (2) is preferably 1 to 50 mm.
  • Average width of area ( ⁇ ) [mm] area of area (II) [mm 2 ] Length of boundary between Z area (I) and area ( ⁇ ) [mm] ⁇ ⁇ ⁇ (2).
  • the average width of the region (II) is lmm or more, a sufficient noise suppression effect can be obtained. In addition, the noise suppression effect at low frequencies of 100 MHz or less is exhibited. Even if the average width of the region (II) exceeds 50 mm, the area of the region (II) increases too much for the noise suppression effect, and the noise suppression structure 110 becomes too large for necessity. , Affect high density mounting. In addition, the impedance of the first conductor layer 111 may be increased.
  • both the noise suppression layer 113 and the second conductor layer 112 be as wide as possible.
  • the area of the noise suppression layer 113 is substantially the same as the area of the second conductor layer 112 (80 to 200 of the area of the second conductor layer 112). Preferred to be 100%)
  • the noise suppression structure 110 of FIG. 9 has a region (I) at the periphery of the first conductor layer 111, is a region where the first conductor layer 111 is present, and is the first conductor.
  • This is an example in which the layer 111 and the noise suppression layer 113 do not face each other and has a region (III) which is a region.
  • High speed flowing to the first conductor layer 111 Since the wave current is concentrated at the peripheral portion due to the edge effect, the noise suppression layer 113 can be efficiently electromagnetically coupled at the peripheral portion of the first conductor layer 111.
  • the region (III) is provided, it becomes easy to form a through hole or a via hole insulated from the noise suppression layer 113. Also, the area of the region (I), that is, the noise suppression effect is not affected by the through holes or via holes.
  • the noise suppression structure 110 of FIG. 10 is an example in which the first conductor layer 111 is divided into two to form a first conductor layer 11 la and a first conductor layer 11 lb.
  • the region of the first conductor layer 11 lb is a region in the first conductor layer 11 la. It can be regarded as (II), and even when the area (II) is restricted, a sufficient noise suppression effect can be obtained.
  • the region of the first conductor layer 11 la can be regarded as the region (II).
  • the division of the first conductor layer 111 is performed due to the difference between the digital circuit and the analog circuit, the difference in frequency, the difference in voltage, the difference in function, and the like.
  • each conductor layer a metal foil; a conductive particle dispersion film in which metal particles are dispersed in a polymer binder, a glassy binder or the like, and the like can be mentioned.
  • the metal include copper, silver, gold, aluminum, nickel and tungsten.
  • Each conductor layer is, in a multilayer printed circuit board, a layer to be a signal transmission layer, a power supply layer or a ground layer, and is usually copper foil.
  • the thickness of the copper foil is usually 3 to 35 / z m.
  • the copper foil may be subjected to a surface roughening treatment or a chemical conversion treatment with a silane coupling agent or the like in order to improve the adhesion to the insulating layer.
  • the noise suppression layer of the noise suppression structure is substantially the same as the noise suppression layer in the above-described wiring member described with reference to FIGS.
  • the insulating layer is a layer made of a dielectric having a surface resistance of 1 ⁇ 10 6 ⁇ or more.
  • the material of the insulating layer may be an inorganic material or an organic material as long as it is a dielectric.
  • the inorganic material include ceramics such as aluminum oxide aluminum, aluminum nitride, silicon oxide and silicon nitride, and foamed ceramics.
  • the insulating layer is a hard material such as ceramics, the microclusters are aggregated, and a homogeneous thin film is easily formed. By forming a thin film by suppressing the mass of a metallic material or the like, the microcluster is formed. Becomes difficult to aggregate, resulting in an inhomogeneous thin film with defects.
  • the organic material examples include polyolefin, polyamide, polyester, polyether, polycarbonate, polyimide, polyurethane, polysiloxane, polysilazane, phenol-based resin, epoxy-based resin, acrylic resin, polyatarylate, and salt.
  • Resins such as polyester resin, chlorinated polyethylene, etc.
  • Resins such as natural rubber, isoprene rubber, butadiene rubber, styrene butadiene rubber, etc. Butynol rubber, ethylene propylene rubber, urethane rubber, silicone rubber, etc. Non-gen-type rubber etc. are mentioned.
  • the organic material may be thermoplastic or uncured, which may be thermosetting.
  • modified substances such as the above-mentioned resins and rubbers, mixtures, and copolymers may be used.
  • the insulating layer is made of an organic material
  • the morphology of the organic polymer has a complex surface structure at the nano level due to the morphology of the organic polymer, the aggregation of the microclusters is suppressed and nonuniform microclusters are formed.
  • the structure of the assembly it is possible to immediately obtain a large-size noise suppression layer with noise suppression effect.
  • oxygen which can be covalently bonded to metal from the viewpoint of adhesion to clusters, inhibition of microcluster aggregation and growth, and stabilization of microcluster dispersion
  • a group containing an element such as nitrogen or sulfur on the surface, or one having the surface irradiated with ultraviolet light, plasma or the like to activate the surface.
  • Groups containing elements such as oxygen, nitrogen and sulfur include hydroxyl, carboxyl, ester, amino, amido, thiol, sulfone, carbo, epoxy, isocyanato, alkoxy and the like.
  • a hydrophilic group is mentioned.
  • the thickness of the first insulating layer 114 is preferably thinner than that of the second insulating layer 115 in order to make the first conductor layer 111 an object of noise suppression.
  • the thickness of the first insulating layer 114 is preferably 0.05 to 25 111. If the thickness of the first insulating layer 114 is not less than 0.05 m, the insulation between the noise suppression layer 113 and the first conductor layer 111 can be secured, and the noise suppression effect is sufficient. It is exhibited. Also, there is no short circuit between the divided first conductor layers 111 (for example, the first conductor layers 111a and 11 lb in FIG. 10). Further, when the first conductor layer 111 is etched, the noise suppression layer 113 can be protected from etching solution or the like. If the thickness of the first insulating layer 114 is 25 m or less, the noise suppression layer 113 sufficiently electromagnetically couples with the first conductor layer 111. In addition, the noise suppression structure 110 can be thinned.
  • the relative dielectric constant of the first insulating layer 114 is preferably 2.5 or more, more preferably 2 or more. If the relative dielectric constant of the first insulating layer 114 is 2 or more, the dielectric constant of the first insulating layer 114 increases, and the noise suppression layer 113 sufficiently electromagnetically couples with the first conductor layer 111.
  • the maximum value of relative permittivity is 100,000.
  • a capacitance made of the noise suppression structure 110 and the first conductor layer 111 and the second conductor layer 112 is used. It can be regarded as a sex laminate. If it also has a function as a capacitive laminate, on the low frequency side such as 1 GHz or less, the same effect as in the case of using a bypass capacitor with the conventional force is obtained. Therefore, the noise suppression structure 110 Even low frequency power can be wide to a high frequency of more than a dozen GHz!
  • the area of the first conductor layer 111 is increased, or the first conductor layer 111 and the second conductor layer 112 are The distance may be narrowed.
  • the method of forming the insulating layer a conventional method suitable for the material can be used.
  • sol-gel method, PVD method such as sputtering, CVD method, etc. may be mentioned.
  • the resin solution is directly coated on the conductor layer by spin coating method, spray coating method or the like, and the insulating layer coated on the releasable substrate is transferred onto the conductor layer. Methods etc.
  • the noise suppression layer 113 is a layer having a thickness of 5 to 300 nm including a metal material or conductive ceramic that is electromagnetically coupled to the first conductor layer 111.
  • the noise suppression layer 113 and the second conductor layer 112 have a region (II) which is a region facing each other, and since the force region (I) and the region ( ⁇ ) are adjacent, excellent noise suppression is achieved. An effect is exhibited.
  • the noise suppression layer 113 is very thin, the noise suppression structure 110 can be thinned without making the noise suppression structure 110 bulky.
  • An electronic component includes a conductor used for signal transmission, a power source, a ground, etc., and as an electronic component, for example, a system in package (SIP) on which an electronic element such as a semiconductor element or the semiconductor element is mounted. Etc., and printed circuit boards.
  • SIP system in package
  • I Signal Integrity
  • Integrity is required, and suppression of high frequency current is required. It is useful to apply this noise suppression structure to a multilayer printed circuit board.
  • the multilayer printed circuit board of the present invention comprises the noise suppression structure of the present invention.
  • the conductor in the noise suppression structure is a signal transmission layer, a power supply layer or a ground layer in a multilayer printed circuit board.
  • the noise suppression layer may deteriorate the high speed pulse signal of the signal transmission layer in order to suppress high frequency components. Therefore, it is preferable that a power supply layer or a ground layer be present between the signal transmission layer and the noise suppression layer.
  • the thickness of the signal transmission layer, the power supply layer, and the ground layer is usually the thickness of a copper foil and is 3 to 35 ⁇ m.
  • the thickness of the pre-plinder or adhesive sheet to be the second insulating layer is usually 3 m to 1.6 mm. The demand for thinning of multilayer printed circuit boards tends to make every layer thinner.
  • the multilayer printed circuit board is manufactured, for example, as follows.
  • An epoxy varnish or the like is applied on a copper foil, dried and cured to form a first insulating layer.
  • Power supply layer is applied on a copper foil, dried and cured to form a first insulating layer.
  • a noise suppression layer is formed on the first insulating layer, and the noise suppression layer is etched to have a desired pattern shape.
  • a pre-predder made of glass fiber etc. impregnated with epoxy resin or the like and a copper foil are laminated on the noise suppression layer, and the pre-preder is cured to have a power supply layer and a ground layer (noise suppression structure )).
  • the power supply layer or the ground layer on the core is etched to have a desired pattern shape by a photolithography method or the like.
  • copper foils are bonded on both outer surfaces of the power supply layer and the ground layer with a pre-predator to form a signal transmission layer, thereby completing a four-layer printed circuit board.
  • FIG. 11 is a cross-sectional view showing an example of the multilayer printed circuit board of the present invention.
  • the multilayer printed circuit board 120 has a signal transmission layer 121, an insulating layer 122, a ground layer 123 (second conductor layer 112), an insulating layer 124 (second insulating layer 115), and a noise suppression layer 113 in the order of upper force.
  • An insulating layer 125 (first insulating layer 114), a power supply layer 126 (first conductive layer 111), an insulating layer 127, and a signal transmission layer 128.
  • the signal transmission layer 121 and the signal transmission layer 128 are connected through the through hole 131, the power supply line 132 and the power supply layer 126 are connected through the via hole 133, and the ground line 134 and the ground layer 123 are Connected via the via hole 135.
  • electronic components 141 such as semiconductor elements and a bypass capacitor 142 are mounted on the power supply line 132 and the ground line 134.
  • the region where the noise suppression layer 113 and the power supply layer 126 (the first conductor layer 111) are facing each other is I)
  • a region where the noise suppression layer 113 and the power supply layer 126 (the first conductor layer 111) do not face each other, and the noise suppression layer 113 and the ground layer 123 (the second conductor layer 112) And the opposite region become the region (II).
  • the area (I) and the area (II) are adjacent to each other, the high frequency current is suppressed and the potential of the power supply layer 126 is stabilized.
  • conducted noise such as simultaneous switching noise and radiation noise due to resonance. Is reduced.
  • the cross section of the noise suppression layer was observed using a transmission electron microscope H9000NAR manufactured by Hitachi, Ltd., and the thicknesses of the five noise suppression layers were measured and averaged.
  • the peel strength between the copper foil of the wiring member and the insulating resin layer was measured with a tensile angle of 90 ° and a tensile speed of 50 mmZ minutes using a tensilon in accordance with JIS C5012.
  • a two-layer substrate consisting of a ground layer and a power supply layer is prepared, and an SMA connector connected to the power supply layer and the ground layer is mounted at both ends of one of the two divided power supply layers.
  • the S 21 (transmission attenuation, unit: dB) according to the S-parameter method was measured using (Anritsu 37247D) to confirm the resonance state of the S21 parameter. If there is a noise suppression effect, the amount of attenuation at the resonant frequency will be large, and the graph showing the amount of attenuation and frequency will be smooth.
  • a probe was applied to each of the two divided power supply layers, and resistance between the power supply layers was measured when a measurement voltage of 50 V was applied using a Toa DKK super-insulator SM-8210.
  • the varnish of the resin composition was applied onto the adhesion promoting layer using a gravure coater so that the thickness after drying was 10 m, to form a coating film.
  • the coating was air dried for 15 minutes and then cured by heating at 150 ° C. for 15 minutes to form an insulating resin layer.
  • nickel metal is physically deposited on the entire surface of the insulating resin layer by EB deposition. did.
  • the insulating resin layer is further cured by heating at 150 ° C. for 45 minutes to form an inhomogeneous noise suppression layer with a thickness of 15 nm having the surface shown in FIG. 2 to obtain a wiring member with a total thickness of 45 m.
  • the wiring member is also cut into a strip-shaped test piece having a width of 10 mm and a length of 100 mm, and the test pieces are arranged in a width direction of 35 mm, a length of 50 mm, and a thickness of 1 mm in the width direction of the pre-plader. After bonding the pre-preder with a press, measurement of peel strength and observation of peel state were performed. The results are shown in Table 1. The peel strength was taken as the average of the values of three test pieces.
  • the wiring member and a copper foil of 35 ⁇ m in thickness were integrally laminated via a 0.2 mm-thick pre-predator to prepare a two-layer substrate.
  • a test piece of 74 mm x 160 mm in size is cut out from the two-layer substrate, and the copper foil on the wiring member side of the test piece is divided into two power layers of 36.5 mm x 160 mm by etching. Placed apart.
  • the size of the noise suppression layer and the ground layer was 74 mm x 160 mm.
  • the power supply interlayer resistance was measured about this test piece. The results are shown in Table 1.
  • S21 according to the S-parameter method was measured for the test piece. The results are shown in Figure 12.
  • the varnish A of the resin composition was applied onto the adhesion promoting layer so that the thickness after drying was: L m to form a coating.
  • the coated film was air-dried for 10 minutes and then heated at 160 ° C. for 10 minutes to be cured to form an insulating resin layer A.
  • Bisphenol A type epoxy resin (manufactured by Japan Epoxy Resins Co., Ltd., 834) 26 parts by mass, 20 parts by mass of bisphenol A-type phenoxy resin (1256, manufactured by Japan Epoxy Resins Co., Ltd., 35 parts by mass of Creso 1 novolac resin (manufactured by Toto Kasei Co., YDCN-704) is dissolved in methyl ethyl ketone, and then curing of imidazole series is promoted. Add 0.2 parts by weight of an agent (Quazol 2 E4MZ, manufactured by Shikoku Kasei Co., Ltd.) to prepare Varnish B of 4% by mass of a resin composition.
  • an agent Quazol 2 E4MZ, manufactured by Shikoku Kasei Co., Ltd.
  • the varnish B of the resin composition was applied onto the insulating resin layer A using a gravure coater so that the thickness after drying was 2 m, to form a coating film.
  • the coating was air dried for 10 minutes and then cured by heating at 150 ° C. for 15 minutes to form an insulating resin layer B.
  • tantalum metal was physically deposited on the entire surface of the insulating resin layer B by the magnetron sputtering method while flowing nitrogen.
  • the insulating resin layer was further cured by heating at 150 ° C. for 45 minutes to form an inhomogeneous noise suppression layer with a thickness of 20 nm, and a wiring member with a total thickness of 21 ⁇ m was obtained.
  • the wiring member and a copper foil having a thickness of 18 / z m were integrally laminated via a 0.1 mm-thick pre-predator to prepare a two-layer substrate.
  • the power supply layer of the two-layer substrate was divided into two parts in the same manner as in Example 1, test pieces were prepared, and the power supply interlayer resistance was measured. The results are shown in Table 1.
  • S21 according to the S-parameter method was measured for the test piece. The results are shown in FIG.
  • the total thickness was the same as in Example 1 except that a roughened electrodeposited copper foil having a thickness of 35 / z m and a surface roughness Rz of both sides of 5. was used without forming an adhesion promoting layer.
  • the wiring member of m was obtained.
  • the peeling strength was measured and the peeling state was observed in the same manner as in Example 1 for the wiring member. The results are shown in Table 1.
  • a two-layer substrate was produced in the same manner as in Example 1 using the wiring member, and a test piece was produced in the same manner as in Example 1 to measure the power supply interlayer resistance.
  • the results are shown in Table 1. Measurement of S21 by the S parameter method was ineffective.
  • a wiring member was obtained in the same manner as in Example 1 except that the adhesion promoting layer was not formed and the thickness of the insulating resin layer was 25. In the same manner as in Example 1, the wiring member was peeled Measurement and observation of exfoliation state were performed. The results are shown in Table 1.
  • a two-layer substrate was produced in the same manner as in Example 1 using the wiring member, and a test piece was produced in the same manner as in Example 1 to measure the power supply interlayer resistance.
  • the results are shown in Table 1.
  • S21 was measured for the test piece by the S-parameter method. The results are shown in FIG.
  • a wiring member having a total thickness of 18 m was obtained in the same manner as in Example 2 except that the noise suppression layer was formed directly on the copper foil without providing the insulating resin layer.
  • the peeling strength was measured and the peeling state was observed in the same manner as in Example 1 for the wiring member. The results are shown in Table 1.
  • a two-layer board was produced in the same manner as in Example 1 using the wiring member.
  • the power supply layer was divided into two and the test piece was produced in the same manner as in Example 1 for this two-layer substrate, but since there is no insulating resin layer, the noise suppression layer is also divided. It became the same divided size (36.5 mm x 160 mm).
  • the size of the ground layer was 74 mm x 160 mm.
  • the power supply interlayer resistance of the test piece was measured. The results are shown in Table 1.
  • S21 was measured for the test piece by the S parameter one method. The results are shown in FIG.
  • a wiring member was obtained in the same manner as in Example 1 except that the noise suppression layer was not formed.
  • a two-layer substrate was produced in the same manner as in Example 1 using the wiring member, a test piece was produced in the same manner as in Example 1, and S21 was measured by the S-parameter method. The results are shown in Figures 12-14.
  • a wiring member was obtained in the same manner as Comparative Example 2 except that the noise suppression layer was not formed.
  • a two-layer substrate was produced in the same manner as in Example 1 using the wiring member, a test piece was produced in the same manner as in Example 1, and S21 was measured by the S-parameter method. The results are shown in FIG.
  • Peeling is sufficient adhesion strength as a substrate on the copper foil side
  • Comparative Example 1 A pinhole is found in the 1 .0.
  • the force at the interface with the resin layer is weak. Also with the noise suppression layer
  • Example 3 0. 68. Mother of insulating resin layer 2. 8 3 ⁇ 4 source layer slightly apart
  • the cross section of the noise suppression layer was observed using a transmission electron microscope H9000NAR manufactured by Hitachi, Ltd., and the thicknesses of the five noise suppression layers were measured and averaged.
  • the S parameter between the SMA connectors of the test piece was measured using an Anritsu vector network analyzer 37247D.
  • the voltage of the power supply layer was measured using a spectrum analyzer R3132 with tracking generator, manufactured by Advantest.
  • An epoxy-based varnish was applied onto a copper foil (first conductor layer) having a thickness of 18 m, dried and cured to form a first insulating layer having a thickness of 3 ⁇ m.
  • the surface resistance of the first insulating layer is 8 x 10 12 ⁇ O
  • nickel metal was physically deposited by reactive sputtering under a nitrogen gas atmosphere on the entire surface of the first insulating layer to form an inhomogeneous noise suppression layer having a thickness of 30 nm containing nickel nitride.
  • the surface resistance of the noise suppression layer was 97 ⁇ .
  • a 100 m thick epoxy prepreder (second insulating layer, surface resistance 6 x 10 14 ⁇ ) and an 18 ⁇ m thick copper foil (second conductive layer) are laminated Then, the pre-preda was cured to prepare a two-layer substrate.
  • a test piece having a size of 74 mm ⁇ 160 mm is cut out from the two-layer substrate, and both sides of the first conductor layer of the test piece along the longitudinal direction of the copper foil are etched to form a region as shown in FIG.
  • a noise suppression structure 110 having an average width (L) of II) of 1.5 mm was obtained.
  • an SMA connector 151 connected to the first conductor layer 111 and the second conductor layer 112 is mounted at both ends in the longitudinal direction of the noise suppression structure 110, and the SMA connector 151 is mounted.
  • a vector network analyzer 152 was connected, and S-parameters were measured at 400 points with frequencies of 50 MHz to 10 GHz to create a graph. The graph is shown in FIG. In addition, the sum of measured values at 400 points was calculated as a pseudo-integral value.
  • a two-layer substrate was produced in the same manner as in Example 4 except that no noise suppression layer was formed.
  • the two-layer substrate force test piece was cut out in the same manner as in Example 4, and the copper foil of the first conductor layer was etched in the same manner as in Example 4.
  • the S-parameters of the test piece were measured in the same manner as in Example 4 to create a graph.
  • the graph is shown in FIG.
  • the sum of measured values at 400 points was calculated as a pseudo-integral value.
  • the difference (absolute value) between the pseudo integral value of Example 4 and the pseudo integral value of Comparative Example 5 is shown in Table 2. The larger the absolute value, the higher the noise suppression effect of the noise suppression structure 110 of the fourth embodiment.
  • a noise suppression structure 110 was obtained in the same manner as in Example 4 except that the average width (L) of the region (II) shown in FIG. 16 was 9 mm.
  • the S parameter of the noise suppression structure 110 was measured in the same manner as in Example 4 to create a graph. The graph is shown in FIG. In addition, the sum of measured values at 400 points was obtained as a pseudo-integral value. (Comparative Example 6)
  • a two-layer substrate was produced in the same manner as in Example 4 except that no noise suppression layer was formed.
  • the two-layer substrate strength test piece was cut out in the same manner as in Example 4, and the copper foil of the first conductor layer was etched in the same manner as in Example 5.
  • the S-parameters of the test piece were measured in the same manner as in Example 4 to create a graph. The graph is shown in FIG.
  • the sum of measured values at 400 points was calculated as a pseudo-integral value.
  • the difference (absolute value) between the pseudo integral value of Example 5 and the pseudo integral value of Comparative Example 6 is shown in Table 2.
  • a noise suppressing structure 110 was obtained in the same manner as in Example 4 except that the average width (L) of the region (II) shown in FIG. 16 was 18 mm.
  • S-parameters of the noise suppression structure 110 were measured, and a graph was created. The graph is shown in FIG.
  • the sum of measured values at 400 points was obtained as a pseudo-integral value.
  • a two-layer substrate was produced in the same manner as in Example 4 except that no noise suppression layer was formed.
  • the two-layer substrate strength test piece was cut out in the same manner as in Example 4, and the copper foil of the first conductor layer was etched in the same manner as in Example 6.
  • the S-parameters of the test piece were measured in the same manner as in Example 4 to create a graph. The graph is shown in FIG.
  • the sum of measured values at 400 points was calculated as a pseudo-integral value.
  • the difference (absolute value) between the pseudo integral value of Example 6 and the pseudo integral value of Comparative Example 7 is shown in Table 2.
  • Example 4 The copper foil of the first conductor layer of the test piece in Example 4 was not etched. S-parameters were measured and a graph was created in the same manner as in Example 4 for a test piece in which the average width (L) of the region (II) shown in FIG. 16 is O mm. The graph is shown in FIG. Also, the sum of the measured values at 400 points was obtained as a pseudo-integral value.
  • a two-layer substrate was produced in the same manner as in Example 4 except that no noise suppression layer was formed.
  • the two-layer substrate strength test piece was cut out in the same manner as in Example 4.
  • the copper foil of the first conductor layer of the test piece was not etched.
  • the sum of measured values at 400 points was obtained as a pseudo-integral value.
  • Table 2 shows the difference (absolute value) between the pseudo integral value of Comparative Example 8 and the pseudo integral value of Comparative Example 9.
  • a two-layer substrate was produced in the same manner as in Example 4 except that the thickness of the noise suppression layer was 20 nm.
  • a test piece having a size of 100 mm ⁇ 200 mm is cut out from the two-layer substrate, and both sides of the first conductor layer of the test piece along the longitudinal direction of the copper foil are etched to form a region as shown in FIG.
  • the noise suppression structure 110 having an average width (L) of 30 mm was obtained.
  • an anti-via for contact with the through hole was previously formed on the first conductor layer, the second conductor layer, and the noise suppression layer.
  • the first conductor layer 111 of the noise suppression structure 110 is used as a power supply layer, and the second conductor layer 112 is used as a solid layer.
  • a copper foil with a thickness of 18 / zm is laminated on both outer surfaces of the power supply layer and the ground layer, and a 50 m-thick epoxy-based pre-plader is used to form a signal transmission layer, as shown in FIGS.
  • the transmission layer was etched into a predetermined shape.
  • the signal transmission layer 121 passes through the through hole 131 and crosses over to the signal transmission layer 128 and passes through the through hole 131 again.
  • a signal line 160 of impedance 50 ⁇ having a structure returning to the layer 121 was formed to obtain a multilayer printed wiring board 120.
  • An SMA connector for input was connected to the signal line 160 and the ground layer 123, and an output SMA connector was connected to the power layer 126 and the ground layer 123.
  • a 50 MHz to 3 GHz signal was input to the signal line 160 using a spectrum analyzer with a tracking generator, and the voltage fluctuation of the power supply layer 126 at that time was measured. The measurement results are shown in FIG.
  • a multilayer printed wiring board was obtained in the same manner as in Example 7 except that the average width (L) of the region (II) was changed to O mm. In the same manner as in Example 7, the voltage fluctuation of the power supply layer was measured. The measurement results are shown in FIG.
  • Example 7 and Comparative Example 10 are compared, when the average width (L) of the region ( ⁇ ) in which the power supply layer (first conductor layer) decreases is large, the excitation of the power supply layer due to the high frequency signal can be suppressed. . In Comparative Example 10 in which the region (II) was not present, no noise suppression effect was observed at all.
  • a noise suppression structure 110 having 115 surface resistance 3 ⁇ 10 ′ ′ ⁇
  • the average width (L) of the region (II) is 3 mm
  • the average width (M) of the region (III) is SO mm
  • the thickness is 15 nm.
  • Silver was physically deposited by electron beam (EB) evaporation.
  • the surface resistance of the noise suppression layer 113 was 55 ⁇ .
  • the S-parameters of the noise suppression structure 110 were measured in the same manner as in Example 4 to create a graph.
  • the graph is shown in FIG.
  • the sum of measured values at 400 points was obtained as a pseudo-integral value.
  • the difference (absolute value) between the pseudo integrated value and the pseudo integrated value when the noise suppression layer is not formed is shown in Table 3.
  • the noise suppression structure 110 is obtained in the same manner as in Example 8 except that the noise suppression layer 113 is formed so that the average width (M) of the region (III) is 15 mm, and the noise is performed in the same manner as in Example 4. Suppression The S-parameters of structure 110 were measured and a graph was created. The graph is shown in FIG. Also, the sum of the measured values at 400 points was obtained as a pseudo-integral value. The difference (absolute value) between the pseudo integral value and the pseudo integral value when the noise suppression layer is not formed is shown in Table 3.
  • the noise suppression structure 110 is obtained in the same manner as in Example 8 except that the noise suppression layer 113 is formed so that the average width (M) of the region (III) is 23 mm, and the noise is performed in the same manner as in Example 4.
  • the S-parameters of the inhibitory structure 110 were measured and a graph was generated. The graph is shown in FIG. Also, the sum of the measured values at 400 points was obtained as a pseudo-integral value. The difference (absolute value) between the pseudo integral value and the pseudo integral value when the noise suppression layer is not formed is shown in Table 3.
  • the wiring member of the present invention is useful as a member constituting a printed wiring board for supplying power and transmitting signals to semiconductor elements such as ICs and LSIs and electronic components.
  • the noise suppression structure and the multilayer printed wiring board of the present invention are useful as semiconductor elements such as IC and LSI, power supply layers in electronic parts, multilayer printed wiring boards for supplying power and transmitting signals to these electronic parts. It is.

Description

明 細 書
ノイズ抑制配線部材およびプリント配線基板
技術分野
[0001] 本発明は、プリント配線基板を構成するためのノイズ抑制配線部材およびプリント配 線基板に関する。また、本発明は、ノイズ抑制構造体および多層プリント配線基板に 関する。
本願は、 2006年 6月 30日に出願された日本国特許出願第 2006— 181179号及 び 2006年 7月 21日に出願された日本国特許出願第 2006— 199286号、に対して 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、インターネット利用の普及に伴 、、ノ ソコン、情報家電、無線 LAN、ブルート ウース、光モジュール、携帯電話、ゲーム機器、携帯情報端末、高度道路情報システ ム等、準マイクロ波帯(0. 3〜: LOGHz)の高いクロック周波数を持つ CPU、高周波バ スを利用した電子機器、電波を利用した情報通信機器が普及してきており、 MPUの 高速化、多機能化、複合化、並びに高速デジタル化および低電圧駆動化によるデバ イスの高性能化を必要とするュビキタス社会が訪れてきている。
[0003] しかし、これら機器の普及に伴って、これら機器カゝら放射される放射ノイズおよび機 器内の導体を伝導する伝導ノイズがもたらす、自身または他の電子機器、部品の誤 作動、人体に対する影響が問題となってきている。ノイズとしては、 MPU、電子部品 等が実装されたプリント配線板内の導体のインピーダンス不整合によるノイズ、導体 間のクロストークによるノイズ、 MPU等の半導体素子の同時スイッチングによる電源 層とグランド層との層間の共振よつて誘起されるノイズ等がある。例えば、多層プリント 配線基板においては、該基板に実装された半導体素子内の多数のトランジスタが同 時に駆動すると、不要な高周波電流が電源層やグランド層に流れ込み、電位変動が 発生する。該電位変動が原因となって、電源層やグランド層において同時スィッチン グノイズが発生する。さらに、電源層およびグランド層が、周端部が開放した平行平 板構造をとるため、電位変動が原因となつて電源層とグランド層との間に共振が発生 し、該周端部から放射ノイズが放射される。
[0004] これらノイズが抑えられたプリント配線基板としては、下記プリント配線基板が知られ ている。
(1)銅箔力もなる電源層およびグランド層の両面に、銅箔よりも抵抗率が大きい金 属からなる金属膜を形成したプリント配線基板 (特許文献 1)。
(2)銅箔力もなる電源層およびグランド層の両面に、導電性物質を含む、プリント配 線基板面に対して垂直方向の異方導電性を有する膜を形成したプリント配線基板( 特許文献 2)。
[0005] (1)のプリント配線基板においては、銅箔表面に流れる高周波うず電流を減衰させ ることができ、半導体素子が同時スイッチングを起こしても、電源電位等を安定ィ匕でき 、不要なノイズの放射を抑制できるとされている。なお、導体表面 (表皮)を流れる高 周波電流 (表皮電流)を、表皮の深さと同程度の数 μ mの金属膜で減衰させるため には、対象となる高周波電流の周波数にもよる力 力なりの高抵抗率を有する材料が 必要となる。しかし、このような材料は入手できず、(1)のプリント配線基板では、充分 なノイズ抑制効果が得られな ヽ。
[0006] (2)のプリント配線基板においても、同様に高周波うず電流を減衰させることができ るとされている。しかし、表皮の深さと同等以上の銅箔の表面粗さを有するように異方 導電性の膜を形成することは、工程が複雑である。また、(2)のプリント配線基板では 、充分なノイズ抑制効果が得られない。
[0007] また、放射ノイズを抑制する方法としては、(i)電磁波を反射する電磁波シールド材 を用いる方法、 (ii)空間を伝搬する電磁波を吸収する電磁波吸収材を用いる方法が ある。また、伝導ノイズおよび放射ノイズを抑制する方法としては、(iii)伝導ノイズおよ び放射ノイズとなる前に、導体中を流れる高周波電流を抑制する方法がある。
[0008] しかし、(i)の方法の場合、放射ノイズのシールド効果は得られるものの、シールド 材による放射ノイズの不要輻射または反射によって放射ノイズが自身に戻ってきてし まう。(ii)の方法の場合、電磁波吸収材 (例えば、特許文献 3、 4参照)が重ぐ厚ぐ かつ脆いため、小型化、軽量ィ匕が求められる機器には不向きである。また、(i)、 (ii) の方法では、伝導ノイズを抑制できない。そのため、最近では (m)の方法に注目が集 まっている。
[0009] また、上記特許文献 1には、電源層およびグランド層を構成する銅箔上に、高抵抗 金属膜を形成することが開示されている。高抵抗金属膜は、メツキにより形成された、 銅よりも抵抗率の高いニッケル、コバルト、錫、タングステン等の単層膜または合金膜 であり、半導体素子がスイッチングしたとしても、電源層およびグランド層の電位変動 を安定ィ匕することができ、また、高周波電流を高抵抗金属膜により除去するため、外 部に放射される不要な電磁波 (放射ノイズ)を抑制できるとされて ヽる。
[0010] しかし、例えばニッケル等の加工性のよい金属は抵抗が小さいため、充分な効果が 得られない。また、タングステン等の抵抗の高い金属は、加工が非常に難しぐ半導 体素子周囲のように複雑かつ微細なパターンを形成する必要がある部位に用いるこ とはできず、実用的ではない。また、放射ノイズの抑制も充分とは言えない。
[0011] 特許文献 5には、電源層とグランド層との間で、かつ多層プリント配線基板の周端部 に、カーボン、グラフアイト等の抵抗体を設けた多層プリント配線基板が開示されてい る。
しかし、周端部に抵抗体を設けただけでは、周端部のインピーダンスが変化して共 振周波数が変化するだけであり、多層プリント配線基板の別の箇所の電界強度、磁 界強度が高まってしまう。よって、依然として共振に起因する放射ノイズ等を抑制でき ず、さらなる対策が必要となる。
[0012] 特許文献 6には、誘電体シートを 2つの導電性フオイルで挟んだコンデンサ積層体 を備え、 2つの導電性フオイルがそれぞれ異なるデバイスに電気的に接続された構 造を有する容量性印刷配線基板が開示されて 、る。
しかし、コンデンサ積層体はある程度の厚みを有するため、容量性印刷配線基板を 厚くしなければならず、高密度実装には不向きである。また、容量性印刷配線基板を 厚くすると、平行平板構造を有する導体間で共振が生じやすくなるため、放射ノイズ を充分に抑制できない。
特許文献 1:特開平 11― 97810号公報
特許文献 2:特開 2006 - 66810号公報
特許文献 3:特開平 9 93034号公報 特許文献 4:特開平 9 181476号公報
特許文献 5:特許第 2867985号公報
特許文献 6:特許第 2738590号公報
発明の開示
発明が解決しょうとする課題
[0013] 本発明の一つの目的は、同時スイッチングによる電源層とグランド層との間の共振 を抑えることによって、電源電位を安定ィ匕でき、不要なノイズの放射を抑制できるプリ ント配線基板用の配線部材、および該配線部材を具備するプリント配線基板を提供 すること〖こある。また、本発明の他の目的は、伝導ノイズおよび放射ノイズの発生が抑 えられ、かつ薄肉化が可能なノイズ抑制構造体および多層プリント配線基板を提供 することにある。
課題を解決するための手段
[0014] 本発明の配線部材は、表面粗さ Rz Ι μ m以下である平滑面を有する銅箔と、金 属または導電性セラミックスを含む、厚さ 5〜200nmのノイズ抑制層と、前記銅箔の 平滑面側と前記ノイズ抑制層との間に設けられた絶縁性榭脂層とを有することを特徴 とする。
前記ノイズ抑制層は、金属または導電性セラミックスが存在しない欠陥を有すること が好ましい。
[0015] 本発明の配線部材は、前記銅箔の平滑面側と前記絶縁性榭脂層との間に接着促 進層を有することが好まし 、。
本発明の配線部材は、前記ノイズ抑制層の、前記銅箔側とは反対側の表面に、接 着促進層を有することが好ましい。
前記絶縁性榭脂層の厚さは、 0. 1〜: LO mであることが好ましい。
[0016] 本発明のプリント配線基板は、本発明の配線部材を具備することを特徴とする。
本発明のプリント配線基板においては、前記銅箔が、電源層であり、電源層とダラ ンド層との間に、前記ノイズ抑制層が配置されていることが好ましい。
[0017] また、本発明のノイズ抑制構造体は、第 1の導体層と、第 2の導体層と、第 1の導体 層と第 2の導体層との間に設けられたノイズ抑制層と、第 1の導体層とノイズ抑制層と の間に設けられた第 1の絶縁層と、第 2の導体層とノイズ抑制層との間に設けられた 第 2の絶縁層とを有し、ノイズ抑制層が、第 1の導体層と電磁結合する、金属材料ま たは導電性セラミックスを含む厚さ 5〜300nmの層であり、ノイズ抑制層と第 1の導体 層とが対向している領域である領域 (I)、およびノイズ抑制層と第 1の導体層とが対向 して 、な 、領域であり、かつノイズ抑制層と第 2の導体層とが対向して 、る領域である 領域 (II)を有し、かつ領域 (I)および領域 (II)が隣接することを特徴とする。
[0018] ノイズ抑制層の面積は、第 2の導体層の面積と実質的に同じであることが好ましい。
本発明のノイズ抑制構造体は、第 1の導体層 11の周縁部に領域 (I)を有し、第 1の 導体層 11が存在する領域であって、かつ第 1の導体層 11とノイズ抑制層 13とが対向 しな 、領域である領域 (III)を有することが好ま 、。
第 1の導体層は、複数に分割されていてもよい。
第 1の絶縁層の厚さは、 0. 05〜25 mが好ましい。
第 1の絶縁層の比誘電率は、 2以上が好ましい。
ノイズ抑制層は、金属材料または導電性セラミックスが存在しな 、欠陥を有すること が好ましい。
[0019] 下記式(1)から求めた領域 (I)の平均幅は、 0. 1mm以上が好ましい。
領域 (I)の平均幅〔mm〕 =領域 (I)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界線 の長さ〔mm〕 · ' ·(1)。
下記式(2)から求めた領域(II)の平均幅は、 l〜50mmが好まし!/、。
領域 (Π)の平均幅〔mm〕 =領域 (II)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界 線の長さ〔mm〕 · ' ·(2)。
[0020] 本発明の多層プリント配線基板は、本発明のノイズ抑制構造体を具備することを特 徴とする。
本発明の多層プリント配線基板においては、第 1の導体および第 2の導体のいずれ か一方が電源層であり、他方がグランド層であることが好ましい。
本発明の多層プリント配線基板は、さらに信号伝送層を有し、信号伝送層とノイズ 抑制層との間には、電源層またはグランド層が存在することが好ましい。
本発明の多層プリント配線基板においては、ノイズ抑制構造体が、容量性積層体と しても機能することが好ま 、。
発明の効果
[0021] 本発明の配線部材によれば、プリント配線基板において同時スイッチングによる電 源層とグランド層との間の共振を抑えることによって、電源電位を安定ィ匕でき、不要な ノイズの放射を抑制できる。
本発明のプリント配線基板は、同時スイッチングによる電源層とグランド層との間の 共振が抑えられ、電源電位が安定化され、不要なノイズの放射が抑制される。
本発明のノイズ抑制構造体および多層プリント配線基板は、伝導ノイズおよび放射 ノイズの発生が抑えられ、かつ薄肉化が可能なものである。 図面の簡単な説明
[0022] [図 1]本発明の配線部材の一例を示す概略断面図である。
[図 2]ノイズ抑制層の表面を観察したフィールドェミッション走査電子顕微鏡像である
[図 3]図 2の模式図である。
[図 4]図 2のノイズ抑制層の断面の高分解能透過型電子顕微鏡像である。
[図 5]本発明のプリント配線基板の一例を示す概略断面図である。
[図 6]本発明のノイズ抑制構造体の一例を示す断面図である。
[図 7]図 6のノイズ抑制構造体の上面図である。
[図 8]領域 (I)と領域 (II)との境界線を説明するためのノイズ抑制構造体の上面図で ある。
[図 9]本発明のノイズ抑制構造体の他の例を示す断面図である。
[図 10]本発明のノイズ抑制構造体の他の例を示す断面図である。
[図 11]本発明の多層プリント配線基板の一例を示す断面図である。
[図 12]実施例 1および比較例 3のプリント配線板の S21 (透過減衰量)を示すグラフで ある。
[図 13]実施例 2および比較例 3のプリント配線板の S21 (透過減衰量)を示すグラフで ある。
[図 14]実施例 3および比較例 3のプリント配線板の S21 (透過減衰量)を示すグラフで ある。
[図 15]比較例 2および比較例 4のプリント配線板の S21 (透過減衰量)を示すグラフで ある。
[図 16]実施例におけるノイズ抑制構造体を示す断面図である。
[図 17]Sパラメーター測定システムを示す構成図である。
[図 18]実施例 4および比較例 5における S21 (透過減衰量)を示すグラフである。
[図 19]実施例 5および比較例 6におけるノイズ抑制構造体の S21 (透過減衰量)を示 すグラフである。
[図 20]実施例 6および比較例 7における S21 (透過減衰量)を示すグラフである。
[図 21]比較例 8および比較例 9における S21 (透過減衰量)を示すグラフである。
[図 22]実施例における多層プリント配線基板を示す断面図である。
[図 23]図 22における XVII— XVII断面図である。
[図 24]実施例 7および比較例 10の電源層の電圧変動を示すグラフである。
[図 25]実施例におけるノイズ抑制構造体の他の例を示す断面図である。
[図 26]実施例 8〜10における S21 (透過減衰量)を示すグラフである。
符号の説明
[0023] 10 配線部材 11 銅箔 12 絶縁性榭脂層 13 ノイズ抑制層 15 接着促進 層 20 プリント配線基板 22 グランド層 23 電源層
110 ノイズ抑制構造体 111 第 1の導体層 112 第 2の導体層 113 ノイズ抑 制層 114 第 1の絶縁層 115 第 2の絶縁層 120 多層プリント配線基板 123 グランド層 124 絶縁層 125 絶縁層 126 電源層
発明を実施するための最良の形態
[0024] <配線部材>
図 1は、本発明の配線部材の一例を示す概略断面図である。配線部材 10は、銅箔 11と、銅箔 11上に設けられた絶縁性榭脂層 12と、絶縁性榭脂層 12の表面に形成さ れたノイズ抑制層 13とを有するものである。
[0025] (銅箔)
銅箔 11としては、電解銅箔、圧延銅箔等が挙げられる。 通常、銅箔の表面は、絶縁性榭脂層 12との接着性をよくするために、表面に微細 な銅粒を付着させる等により粗面化処理されている。一方、本発明においては、ノィ ズ抑制層 13側の銅箔 11の表面は、表面粗さ Rzが 2 m以下である平滑面とされて いる。平滑面の表面粗さ Rzが 2 m以下であれば、絶縁性榭脂層 12を薄く形成して も、絶縁性榭脂層 12に銅箔 11の表面の凹凸によるピンホール等の欠陥が発生しに くくなり、銅箔 11とノイズ抑制層 13との短絡が抑えられ、充分なノイズ抑制効果が得 られる。表面粗さ Rzは、 JIS B 0601— 1994に規定される十点平均粗さ Rzである
[0026] 銅箔 11としては、電解銅箔が特に好ましい。電解銅箔は、電解反応を利用して銅 を陰極の回転ドラム表面に析出させ、回転ドラムから引き剥がして得られるものであり 、ドラムと接触していた面は、ドラムの表面状態が転写された平滑面となる。一方、銅 が電解析出した面の形状は、析出する銅の結晶成長速度が結晶面ごとに異なるた め粗面となり、他の絶縁性榭脂層(図示略)との貼り合わせに都合のよい面となって いる。
銅箔 11の厚さは、 3〜50 mが好ましい。
[0027] (絶縁性樹脂層)
絶縁性榭脂層 12は、榭脂組成物からなる層、または榭脂組成物をガラス繊維等の 補強繊維に含浸させた繊維強化樹脂からなる層である。繊維強化樹脂の状態は、 B ステージ(半硬化状態)であってもよぐ C—ステージ (硬化状態)であってもよ!/、。
[0028] 榭脂組成物は、榭脂を主成分とする組成物である。該榭脂としては、プリント配線基 板の製造の際の加熱に耐え、かつプリント配線基板に要求される耐熱性を有するも のが好ましぐまた、誘電率、誘電正接等、プリント配線基板の設計に必要とされる特 性値が既知であるのものが好ましい。該榭脂としては、ポリイミド榭脂、エポキシ榭脂 、ビスマレイミドトリアジン榭脂、ポリ四フッ化工チレン、ポリフエ-レンエーテル等が挙 げられる。
[0029] 榭脂組成物としては、エポキシ榭脂、必要に応じて硬化剤、硬化促進剤、可とう性 付与剤等を含有するものが好まし 、。
エポキシ榭脂としては、ビスフエノール A型エポキシ榭脂、ビスフエノール F型ェポキ シ榭脂、ビスフエノール S型エポキシ榭脂、ノボラック型エポキシ榭脂、クレゾ一ルノボ ラック型エポキシ榭脂、脂環式エポキシ榭脂、臭素化エポキシ榭脂、グリシジルァミン 型エポキシ榭脂等が挙げられる。エポキシ榭脂の量は、榭脂組成物 100質量%のう ち、 20〜80質量%が好ましい。
[0030] 硬化剤としては、ジシアンジアミド、イミダゾール類、芳香族ァミン等のアミン類;ビス フエノール A、臭素化ビスフエノール A等のフエノール類;フエノールノボラック榭脂、 クレゾ一ルノボラック樹脂等のノボラック類;無水フタル酸等の酸無水物等が挙げられ る。
硬化促進剤としては、 3級ァミン、イミダゾール系硬化促進剤、尿素系硬化促進剤 等が挙げられる。
[0031] 可とう性付与剤としては、ポリエーテルサルホン榭脂、芳香族ポリアミド榭脂、弾性 榭脂等が挙げられる。
芳香族ポリアミド榭脂としては、芳香族ジァミンとジカルボン酸との縮重合により合成 されるものが挙げられる。芳香族ジァミンとしては、 4, 4'ージアミノジフエ-ルメタン、 3, 3'—ジアミノジフエニルスルホン、 m—キシレンジァミン、 3, 3'—才キシジァニリン 等が挙げられる。ジカルボン酸としては、フタル酸、イソフタル酸、テレフタル酸、フマ ル酸等のジカルボン酸が挙げられる。
[0032] 弹性榭脂としては、天然ゴム、スチレン ブタジエンゴム、ブタジエンゴム、ブチルゴ ム、エチレン—プロピレンゴム等が挙げられる。絶縁性榭脂層 12の耐熱性を確保す るために、二トリルゴム、クロロプレンゴム、シリコーンゴム、ウレタンゴムを併用してもよ い。二トリルゴムとしては、 CTBN (カルボキシ基末端ブタジエン-トリルゴム)が好まし い。
[0033] 絶縁性榭脂層 12は、例えば、榭脂組成物を溶剤に溶解または分散させたワニスを 銅箔 11上 (または後述の接着促進層 15上)に塗布し、乾燥させることにより形成され る。
また、該ワニスの塗布および乾燥を 2回以上に分けて行い、 2層以上の絶縁性榭脂 層を形成してもよい。ワニスは、各層が同じ種類のワニスであってもよぐ各層ごとに 違う種類であってもよい。 [0034] 絶縁性榭脂層 12の厚さは、 0. 1〜: LO /z mが好ましい。絶縁性榭脂層 12の厚さが 0 . 1 μ m以上であれば、銅箔 11とノイズ抑制層 13との絶縁が充分に維持され、銅箔 1 1とノイズ抑制層 13との短絡が抑えられ、充分なノイズ抑制効果が得られる。また、銅 箔 11をエッチングによってパターンカ卩ェする際に、エッチングによってノイズ抑制層 1 3が侵されることがない。一方、絶縁性榭脂層 12の厚さが 10 m以下であれば、配 線部材を具備するプリント配線基板を薄肉化できる。また、ノイズ抑制層 13と銅箔 11 とが接近することにより、ノイズ抑制層 13と銅箔 11との電磁結合が強くなり、充分なノ ィズ抑制効果が得られる。また、ノイズ抑制層 13にパターン力卩ェを銅箔 11側力ゝら施 す際に、絶縁性榭脂層 12を除去しやすぐ加工時間が短くなる。
[0035] (ノイズ抑制層)
ノイズ抑制層 13は、金属材料または導電性セラミックスを含む、厚さ 5〜_200nmの 薄膜である。
ノイズ抑制層 13の厚さが 5nm以上であれば、充分なノイズ抑制効果が得られる。一 方、ノイズ抑制層 13の厚さが 200nm以下であれば、後述のマイクロクラスターが成 長して金属材料等力もなる均質な薄膜が形成されることがな 、。均質な薄膜が形成 された場合、表面抵抗が小さくなつて、金属反射が強まり、ノイズ抑制効果も小さくな る。
ノイズ抑制層 13の厚さは、ノイズ抑制層の膜厚方向断面の高分解能透過型電子顕 微鏡像 (例えば、図 4)をもとにして、 5箇所のノイズ抑制層(色の濃い部分)の厚さを 電子顕微鏡像上で測定し、平均することにより求める。
[0036] ノイズ抑制層 13の表面抵抗は、 1 X 10°〜1 X 104 Ωが好まし!/、。ノイズ抑制層 13 が均質な薄膜の場合、体積抵抗率の高い限られた材料が必要となるが、材料の体積 抵抗率がそれほど高くない場合は、ノイズ抑制層 13に金属材料または導電性セラミ ッタスが存在しない物理的な欠陥を設け、不均質な薄膜とすること、または後述のマ イク口クラスターの連鎖物とすることによって、表面抵抗を上昇させることができる。ノィ ズ抑制層 13の表面抵抗は、以下のように測定する。
石英ガラス上に金等を蒸着して形成した、 2本の薄膜金属電極 (長さ 10mm、幅 5 mm、電極間距離 10mm)を用い、単位長さ隔置された測定電極に、被測定物を 50 g/cm2のような定荷重で押し付け、 1mA以下の測定電流で電極間の抵抗を測定 する。この値を持って表面抵抗とする。
[0037] 金属材料としては、強磁性金属、常磁性金属が挙げられる。強磁性金属としては、 鉄、カルボ-ル鉄; Fe— Ni、 Fe— Co、 Fe— Cr、 Fe— Si、 Fe— Al、 Fe— Cr— Si、 F e— Cr—Al、 Fe—Al—Si、 Fe— Pt等の鉄合金;コバルト、ニッケル;これらの合金等 が挙げられる。常磁性金属としては、金、銀、銅、錫、鉛、タングステン、ケィ素、アル ミニゥム、チタン、クロム、モリブデン、それらの合金、アモルファス合金、強磁性金属 との合金等が挙げられる。これらのうち、酸ィ匕に対して抵抗力のある点から、ニッケル 、鉄クロム合金、タングステン、貴金属が好ましい。なお、貴金属は高価であるため、 実用的にはニッケル、ニッケルクロム合金、鉄クロム合金、タングステンが好ましく、二 ッケルまたはニッケル合金が特に好まし!/、。
[0038] 導電性セラミックスとしては、金属と、ホウ素、炭素、窒素、ケィ素、リンおよび硫黄か らなる群力 選ばれる 1種以上の元素とからなる合金、金属間化合物、固溶体等が挙 げられる。具体的には、窒化ニッケル、窒化チタン、窒化タンタル、窒化クロム、窒化 ジノレコニゥム、
炭化チタン、炭化ジルコニウム、炭化クロム、炭化バナジウム、炭化モリブデン、炭化 タングステン、炭化ケィ素、ホウ化クロム、ホウ化モリブデン、ケィ化クロム、ケィ化ジル コニゥム等が挙げられる。
[0039] 導電性セラミックスは、金属よりも体積抵抗率が高 、ため、導電性セラミックスを含 むノイズ抑制層は、特性インピーダンスを低下させ過ぎない。よって、ノイズ抑制層に おける金属反射が少なくなる。また、導電性セラミックスは、特定の共鳴周波数を有さ ないため、ノイズ抑制効果を発揮する周波数が広帯域ィ匕する。さらに、化学安定性が 高ぐ保存安定性が高い等の利点を有する。導電性セラミックスとしては、後述の物 理的蒸着法において、窒素ガス、メタンガス等の反応性ガスを用いることによって容 易に得られる窒化物または炭化物力 特に好ま 、。
[0040] ノイズ抑制層 13の形成方法としては、通常の湿式メツキ法、物理的蒸着法、化学的 蒸着法等が挙げられる。これらの方法においては、条件や用いる材料によっても異な るが、薄膜の成長を初期の段階で終了することにより、均質な薄膜とはならず、微細 な物理的な欠陥を有する不均質な薄膜を形成できる。または、均質な薄膜を酸等に よりエッチングして欠陥を形成する方法、レーザーアブレーシヨンにより均質な薄膜に 欠陥を形成する方法によっても、不均質な薄膜を形成できる。
[0041] 図 2は、絶縁性榭脂層の表面に物理的蒸着法によって形成された金属材料力 な るノイズ抑制層の表面を観察したフィールドェミッション走査電子顕微鏡像であり、図 3は、その模式図である。ノイズ抑制層 13は、複数のマイクロクラスター 14の集合体と して観察される。マイクロクラスター 14は、(第 1の)絶縁性榭脂層 12 (または第 2の絶 縁層 12 ' )上に金属材料が非常に薄く物理的に蒸着されて形成されたものであり、マ イク口クラスター 14の間には物理的な欠陥があって均質な薄膜になっていない。マイ クロクラスター 14が互いに接触して集団化しているものの、集団化したマイクロクラス ター 14の間には、金属材料の存在しない欠陥が多く存在している。
[0042] 図 4は、ノイズ抑制層 13の膜厚方向断面の高分解能透過型電子顕微鏡像である。
図 2、図 4から、非常に小さな結晶として数 A間隔の金属原子が配列された結晶格子 (マイクロクラスター)、および非常に小さい範囲で金属材料が存在しない欠陥が認め られる。すなわち、マイクロクラスター同士の間隔が空いた状態であり、金属材料から なる均質な薄膜には成長していない。このような物理的な欠陥を有する状態は、ノィ ズ抑制層 13の表面抵抗の実測値カゝら換算した体積抵抗率 R ( Ω 'cm)と金属材料 (
1
または導電性セラミックス)の体積抵抗率 R ( Ω -cm)
0 (文献値)との関係から確認で きる。すなわち、体積抵抗率 R と体積抵抗率 R とが、 0. 5≤logR -logR ≤3を
1 0 1 0 満足する場合に、優れたノイズ抑制効果が発揮される。
[0043] ノイズ抑制層 13は、所望の形状にパターンカ卩ェされていてもよぐスルーホール等 のアンチビアが形成されていてもよい。ノイズ抑制層 13は、通常のエッチング法、レ 一ザ一アブレーシヨン法等により所望の形状に加工できる。
[0044] (接着促進層)
銅箔 11と絶縁性榭脂層 12との密着性を向上させるために、銅箔 11の平滑面に接 着促進層 15が設けられて 、ることが好ま 、。
接着促進層 15は、銅箔 11の平滑面を接着促進剤で処理することにより形成される 。接着促進剤としては、シラン系カップリング剤、またはチタネート系カップリング剤が 挙げられる。
[0045] シラン系カップリング剤としては、ビュルトリエトキシシラン、ビュルトリス(2—メトキシ エトキシ)シラン、 3—メタクリロキシプロピルトリメトキシシラン、 3—グリシドキシプロピ ノレトリメトキシシラン、 2- (3, 4 エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 N- 2- (アミノエチル) 3 ァミノプロピルトリメトキシシラン、 N— 2— (アミノエチル) 3 —ァミノプロピルメチルジメトキシシラン、 3—ァミノプロピルトリエトキシシラン、 N フ ェニル 3—ァミノプロピルトリメトキシシラン、 3—メルカプトプロピルトリメトキシシラン 、 3—クロ口プロピルトリメトキシシラン等が挙げられる。
[0046] チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、ィ ソプロピルトリス(ジォクチルパイロホスフェート)チタネート、イソプロピルトリ(N アミ ノエチル一アミノエチル)チタネート、テトラオクチルビス(ジ一トリデシルホスフアイト) チタネート、ビス(ジォクチルパイロホスフェート)ォキシアセテートチタネート、ビス(ジ オタチルバイロホスフェート)エチレンチタネート、イソプロピルトリオクタノィルチタネ ート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイ ルジアクリルチタネート、テトライソプロピルビス(ジォクチルホスフアイト)チタネート等 が挙げられる。
[0047] 接着促進剤としては、通常、 3 グリシドキシプロピルトリメトキシシランが用いられ、 銅箔 11と絶縁性榭脂層 12との剥離強度を 1. OkgfZcm以上に高める場合には、 3 —メルカプトプロピルトリメトキシシランが好ましい。
接着促進層 15の形成方法としては、塗布法、浸漬法、シャワーリング法、噴霧法等 が挙げられる。
[0048] また、ノイズ抑制層 13と他の絶縁性榭脂層(図示略)との密着性を向上させるため に、ノイズ抑制層 13上に接着促進層(図示略)を設けてもよい。
接着促進層は、前記シラン系カップリング剤またはチタネート系カップリング剤を塗 布する方法、該カップリング剤力 Sインテグラルブレンドされたエポキシ榭脂等を塗布 する方法によって形成できる。接着促進層は、ノイズ抑制層 13のパターン加工後に 形成してちょい。
[0049] <プリント配線基板 > 本発明のプリント配線基板は、本発明の配線部材を具備するものである。配線部材 における銅箔は、プリント配線基板においては、信号配線層、電源層またはグランド 層である。ノイズ抑制効果を充分に発揮させるためには、配線部材における銅箔は、 電源層またはグランド層であることが好ましぐ電源層であることがより好ましい。また、 ノイズ抑制効果を充分に発揮させるためには、電源層とグランド層との間にノイズ抑 制層が配置されて 、ることが好まし 、。
[0050] 図 5は、本発明のプリント配線基板の一例を示す概略断面図である。プリント配線 基板 20は、上から順に、パターンカ卩ェされた信号配線層 21、プリント配線基板 20の ほぼ全面にわたるグランド層 22、電源層 23、パターンカ卩ェされた信号配線層 21が、 絶縁層 24を介して積層されたものである。
[0051] 電源層 23は、配線部材 10の銅箔 11であり、電源層 23のグランド層 22側には、絶 縁性榭脂層 12を介して、グランド層 22とほぼ同じ大きさのノイズ抑制層 13が設けら れている。また、電源層 23は 2分割されていて、分割された電源層 23同士は絶縁さ れている。
[0052] プリント配線基板 20は、例えば以下のようにして製造される。
配線部材 10と他の銅箔との間に、エポキシ榭脂等をガラス繊維等に含浸させてな るプリプレダを挟んで硬化させ、配線部材 10の銅箔 11を電源層 23、他方の銅箔を グランド層 22とする。
ついで、フォトリソグラフィ一法等により、配線部材 10の銅箔 11に、所望の形状(2 分割パターン)となるようにエッチングを施す。この際、絶縁性榭脂層 12がエッチング 液に対し耐性を有し、また絶縁性榭脂層 12にはピンホール等がないことから、ノイズ 抑制層 13はエッチングにてダメージを受けずに存在する。電源層 23とグランド層 22 をコアに、その両外面に銅箔をプリプレダで張り合わせ信号配線層 21とする。
[0053] 以上説明した本発明の配線部材にあっては、表面粗さ Rzが 2 m以下である平滑 面を有する銅箔と、金属または導電性セラミックスを含む、厚さ 5〜200nmのノイズ抑 制層と、前記銅箔の平滑面側と前記ノイズ抑制層との間に設けられた絶縁性榭脂層 とを有するため、銅箔とノイズ抑制層との間の絶縁を充分に確保できる。
[0054] また、以上説明した本発明のプリント配線板にあっては、本発明の配線部材を具備 するため、同時スイッチングによって電源層に流れ込む高周波電流をノイズ抑制層 が減衰させ、電源層とグランド層との間の共振を抑えることができる。その結果、基板 の周端部力ものノイズの放射を抑えることができる。
[0055] <ノイズ抑制構造体 >
図 6は、本発明のノイズ抑制構造体の一例を示す断面図であり、図 7は上面図であ る。ノイズ抑制構造体 110は、第 1の導体層 111と、第 2の導体層 112と、第 1の導体 層 111と第 2の導体層 112との間に設けられたノイズ抑制層 113と、第 1の導体層 11 1とノイズ抑制層 113との間に設けられた第 1の絶縁層 114と、第 2の導体層 112とノ ィズ抑制層 113との間に設けられた第 2の絶縁層 115とを有する。
[0056] ノイズ抑制構造体 110においては、ノイズ抑制層 113が、第 1の導体層 111と電磁 結合する。電磁結合とは、第 1の導体層 111に流れる電流によって発生する磁束がノ ィズ抑制層 113に鎖交することによって電圧を誘起する現象である。本発明にお 、て は、ノイズ抑制層 113が、第 1の導体層 111と電気的に接続せず、第 1の絶縁層 114 を介して電磁結合することが必要である。また、ノイズ抑制構造体 110においては、ノ ィズ抑制層 113が、第 2の導体層 112と電磁結合することが好ま 、。
[0057] また、ノイズ抑制構造体 110においては、ノイズ抑制層 113と第 1の導体層 111とが 対向して!/ヽる領域である領域 (I)、およびノイズ抑制層 113と第 1の導体層 111とが対 向して 、な 、領域であり、かつノイズ抑制層 113と第 2の導体層 112とが対向して ヽ る領域である領域 (II)を有し、かつ領域 (I)および領域 (II)が隣接して!/、る。
[0058] ノイズ抑制構造体 110は、互いに隣接する領域 (I)および領域 (II)を有することによ り、ノイズ抑制効果を発揮する。この理由は、以下のように考えられる。
ノイズ抑制層 113は、後述のマイクロクラスターのような微細な導電パスを有して!/ヽ る。該導電パスは、領域 (II)においては第 2の導体層 112上に配置された微細かつ 複雑な複数のオープンスタブ構造となる。該オープンスタブ構造が、隣接する領域 (I )において第 1の導体層 111と電磁結合することによって、伝送線路フィルタ一として 機能して ヽるものと考えられる。
[0059] よって、領域 (II)においては、ノイズ抑制層 113と第 1の導体層 111とが対向せず、 かつノイズ抑制層 113と第 2の導体層 112とが対向している必要があり、また、領域 (I )においては、ノイズ抑制層 113と第 1の導体層 111とが対向し、かつノイズ抑制層 1 13が第 1の導体層 111と電磁結合する必要がある。
[0060] 領域 (I)において、ノイズ抑制層 113が第 1の導体層 111と充分に電磁結合するた めには、下記式(1)から求めた領域 (I)の平均幅は、 0. 1mm以上が好ましい。 領域 (I)の平均幅〔mm〕 =領域 (I)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界線 の長さ〔mm〕 · ' ·(1)。
領域 (I)の平均幅の上限は、第 1の導体層 111の大きさに依存し、任意の値となる。
[0061] 領域 (I)と領域 (II)との境界線の長さは、ノイズ抑制層 113および第 2の導体層 112 がノイズ抑制構造体 110全面に存在する場合、図 8に示すように、第 1の導体層 111 が存在する領域 (I)と、第 1の導体層 111が存在しない、第 1の絶縁層 114が表面に 露出した領域 (II)との境界線(図中、太線の符号 116)の長さである。
[0062] また、下記式(2)から求めた領域(II)の平均幅は、 l〜50mmが好ましい。
領域 (Π)の平均幅〔mm〕 =領域 (II)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界 線の長さ〔mm〕 · ' ·(2)。
領域 (II)の平均幅が lmm以上であれば、充分なノイズ抑制効果が得られる。また、 100MHz以下の低周波におけるノイズ抑制効果が発揮される。なお、領域 (II)の平 均幅が 50mmを超えても、ノイズ抑制効果の割には、領域 (II)の面積が増えすぎ、ノ ィズ抑制構造体 110が必要以上に大きくなりすぎて、高密度実装に影響を与える。ま た、第 1の導体層 111のインピーダンスが上昇するおそれがある。
[0063] また、ノイズ抑制層 113だけ、または第 2の導体層 112だけが広くても、領域 (II)の 面積を充分に確保できず、ノイズ抑制効果は小さい。領域 (II)の面積を充分に確保 するためには、ノイズ抑制構造体 110において、ノイズ抑制層 113および第 2の導体 層 112の両方が最大限の広さとなることが好ましい。また、領域 (II)の面積を充分に 確保するためには、ノイズ抑制層 113の面積は、第 2の導体層 112の面積と実質的 に同じ (第 2の導体層 112の面積の 80〜 100%)であることが好まし 、。
[0064] 図 9のノイズ抑制構造体 110は、第 1の導体層 111の周縁部に領域 (I)を有し、第 1 の導体層 111が存在する領域であって、かつ第 1の導体層 111とノイズ抑制層 113と が対向しな 、領域である領域 (III)を有する例である。第 1の導体層 111に流れる高周 波電流は、縁端効果により周縁部に集中しているため、ノイズ抑制層 113は、第 1の 導体層 111の周縁部において効率よく電磁結合できる。また、領域 (III)を有すれば、 ノイズ抑制層 113と絶縁されたスルーホールまたはビアホールを形成しやすくなる。 また、スルーホールまたはビアホールによって領域 (I)の面積、すなわちノイズ抑制効 果が影響を受けない。
[0065] 図 10のノイズ抑制構造体 110は、第 1の導体層 111が 2分割されて、第 1の導体層 11 laと第 1の導体層 11 lbとなった例である。このように第 1の導体層 111が分割され ていれば、領域 (II)が狭い場合であっても、第 1の導体層 11 laにおいては、第 1の導 体層 11 lbの領域を領域 (II)と見なすことができ、領域 (II)に制約がある場合でも、充 分なノイズ抑制効果を得ることができる。同様に、第 1の導体層 111bにおいても、第 1の導体層 11 laの領域を領域 (II)と見なすことができる。第 1の導体層 111の分割は 、デジタル回路とアナログ回路との違い、周波数の違い、電圧の違い、機能の違い等 により実施される。
[0066] (導体層)
各導体層としては、金属箔;金属粒子を高分子バインダー、ガラス質バインダー等 に分散させた導電粒子分散体膜等が挙げられる。金属としては、銅、銀、金、アルミ ユウム、ニッケル、タングステン等が挙げられる。
各導体層は、多層プリント回路基板においては、信号伝送層、電源層またはグラン ド層となる層あり、通常、銅箔である。銅箔の厚さは、通常 3〜35 /z mである。銅箔は 、絶縁層との接着性を向上させるために、粗面化処理、またはシランカップリング剤 等による化成処理が施されて ヽてもよ ヽ。
[0067] (ノイズ抑制層)
ノイズ抑制構造体のノイズ抑制層につ 、ては、図 2〜4を参照して説明した上述の 配線部材におけるノイズ抑制層と実質的に同一である。
[0068] (絶縁層)
絶縁層は、表面抵抗が 1 X 106 Ω以上の誘電体からなる層である。
絶縁層の材料は、誘電体であれば、無機材料であってもよぐ有機材料であっても よい。 [0069] 無機材料としては、酸ィ匕アルミニウム、窒化アルミニウム、酸化ケィ素、窒化ケィ素 等のセラミックス、発泡セラミックスが挙げられる。なお、絶縁層が、セラミックス等の硬 い材料の場合、マイクロクラスターが凝集し、均質な薄膜を形成しやすい状態にある 力 金属材料等の質量を低く抑えて薄膜を形成することにより、マイクロクラスターが 凝集しにくくなり、欠陥を有する不均質な薄膜となる。
[0070] 有機材料としては、ポリオレフイン、ポリアミド、ポリエステル、ポリエーテル、ポリケト ン、ポリイミド、ポリウレタン、ポリシロキサン、ポリシラザン、フエノール系榭脂、ェポキ シ系榭脂、アクリル系榭脂、ポリアタリレート、塩ィ匕ビュル系榭脂、塩素化ポリエチレン 等の榭脂;天然ゴム、イソプレンゴム、ブタジエンゴム、スチレンブタジエンゴム等のジ ェン系ゴム;ブチノレ系ゴム、エチレンプロピレンゴム、ウレタンゴム、シリコーンゴム等 の非ジェン系ゴム等が挙げられる。有機材料は、熱可塑性であっても、熱硬化性で あってもよぐその未硬化物であってよい。また、上記の榭脂、ゴム等の変性物、混合 物、共重合体であってもよい。
[0071] 絶縁層が有機材料カゝらなる場合は、有機高分子のモルフォロジ一によりナノレベル で複雑な表面構造を有しているため、マイクロクラスターの凝集が抑えられ、不均一 なマイクロクラスターの集合体の構造を維持しやすぐノイズ抑制効果の大き ゾィズ 抑制層を得ることができる。
[0072] 絶縁層としては、クラスターとの密着性の点、およびマイクロクラスターの凝集、成長 を阻害し、マイクロクラスターの分散を安定化させる点から、金属との共有結合が可 能となる酸素、窒素、硫黄等の元素を含む基を表面に有するもの、表面に紫外線、 プラズマ等を照射して表面を活性ィ匕したものが好ましい。酸素、窒素、硫黄等の元素 を含む基としては、水酸基、カルボキシル基、エステル基、アミノ基、アミド基、チォー ル基、スルホン基、カルボ-ル基、エポキシ基、イソシァネート基、アルコキシ基等の 親水性基が挙げられる。
[0073] 第 1の絶縁層 114の厚さは、第 1の導体層 111をノイズ抑制の対象とするためには 、第 2の絶縁層 115より薄くすることが好ましい。また、第 1の絶縁層 114の厚さは、 0 . 05〜25 111が好ましぃ。第1の絶縁層114の厚さが0. 05 m以上であれば、ノィ ズ抑制層 113と第 1の導体層 111との絶縁性が確保され、ノイズ抑制効果が充分に 発揮される。また、分割された第 1の導体層 111 (例えば図 10の第 1の導体層 111a および 11 lb)が短絡することがない。また、第 1の導体層 111をエッチングする際、ノ ィズ抑制層 113をエッチング液等カゝら保護できる。第 1の絶縁層 114の厚さが 25 m 以下であれば、ノイズ抑制層 113が第 1の導体層 111と充分に電磁結合する。また、 ノイズ抑制構造体 110を薄肉化できる。
[0074] 第 1の絶縁層 114の比誘電率は、 2以上が好ましぐ 2. 5以上がより好ましい。第 1 の絶縁層 114の比誘電率が 2以上であれば、第 1の絶縁層 114の誘電率が大きくな り、ノイズ抑制層 113が第 1の導体層 111と充分に電磁結合する。現在利用可能な材 料において、比誘電率の最大値は 100000である。
[0075] また、第 2の絶縁層 115にも、高 ヽ誘電率を有する材料を用いた場合、ノイズ抑制 構造体 110を、第 1の導体層 111と第 2の導体層 112とからなる容量性積層体と見な すことができる。容量性積層体としての機能も有すれば、 1GHz以下等の低周波側 においては、従来力も効果があるバイパスコンデンサを併用した場合と同様の効果が 得られる、よって、ノイズ抑制構造体 110は、低い周波数力も十数 GHzの高い周波 数まで幅広!/、範囲でノイズ抑制効果を発揮できる。誘電率を大きくする以外の方法 で容量性積層体の容量を大きくするためには、第 1の導体層 111の面積を広くする、 または第 1の導体層 111と第 2の導体層 112との間隔を狭くすればよい。
[0076] 絶縁層の形成方法は、材料にあった通常の方法を用いることができる。セラミックス の場合は、ゾルゲル法、スパッタリング等の PVD法、 CVD法等が挙げられる。有機 材料の場合は、榭脂溶液を導体層上に直接スピンコート法、スプレーコート法等によ りコートする方法、離型性のある基材にグラビアコートした絶縁層を導体層上に転写 する方法等が挙げられる。
[0077] 以上説明したノイズ抑制構造体 110にあっては、ノイズ抑制層 113が、第 1の導体 層 111と電磁結合する、金属材料または導電性セラミックスを含む厚さ 5〜300nmの 層であり、ノイズ抑制層 113と第 1の導体層 111とが対向している領域である領域 (I) 、およびノイズ抑制層 113と第 1の導体層 111とが対向していない領域であり、かつノ ィズ抑制層 113と第 2の導体層 112とが対向して 、る領域である領域 (II)を有し、力 つ領域 (I)および領域 (Π)が隣接するため、優れたノイズ抑制効果が発揮される。 また、ノイズ抑制層 113は非常に薄いため、ノイズ抑制構造体 110が嵩張ることが なぐノイズ抑制構造体 110を薄肉化できる。
[0078] 本発明のノイズ抑制構造体を電子部品中に組み込むことによって、伝導ノイズの原 因となる、電子部品の導体層中を流れる高周波電流を抑制でき、その結果、放射ノィ ズも未然に抑制できる。電子部品とは、信号伝送、電源、グランド等に用いられる導 体を具備するものであり、電子部品としては、例えば、半導体素子、該半導体素子等 の電子素子が実装されたシステムインパッケージ(SIP)などの半導体パッケージ、お よびプリント回路基板等が挙げられる。特に、半導体素子を実装した多層プリント回 路基板にぉ 、ては、信号伝送層に流れる波形の品質 (SI、 Signal Integrity)を維 持することが求められている一方、低消費電力化に伴い、電源電圧の低下が求めら れており、伝送信号の SN比が悪くなつてきている。このため電源を安定ィ匕すること(P I、 Power
Integrity)が必要となり、高周波電流の抑制が求められている。本ノイズ抑制構造 体を多層プリント回路基板に適用することは有用である。
[0079] <多層プリント回路基板 >
本発明の多層プリント回路基板は、本発明のノイズ抑制構造体を具備するものであ る。ノイズ抑制構造体における導体は、多層プリント回路基板においては、信号伝送 層、電源層またはグランド層である。ノイズ抑制効果を充分に発揮させるためには、 第 1の導体層および第 2の導体層のいずれか一方が電源層であり、他方がグランド 層であることが好ましい。また、ノイズ抑制層は、高周波成分を抑制するため、信号伝 送層の高速パルス信号を劣化させてしまうおそれがある。よって、信号伝送層とノイズ 抑制層との間には、電源層またはグランド層が存在することが好ましい。
[0080] 信号伝送層、電源層、グランド層の厚さは、通常、銅箔の厚さであり、 3〜35 μ mで ある。第 2の絶縁層となるプリプレダまたは接着シートの厚さは、通常、 3 m〜l. 6 mmである。多層プリント回路基板の薄肉化の要求から、いずれの層も薄くなる傾向 にある。
[0081] 多層プリント回路基板は、例えば以下のようにして製造される。
銅箔上にエポキシ系ワニス等を塗布し、乾燥、硬化させ、第 1の絶縁層が形成され た電源層を得る。第 1の絶縁層上にノイズ抑制層を形成し、該ノイズ抑制層を、所望 のパターン形状となるようエッチングする。
ついで、ノイズ抑制層上に、エポキシ榭脂等をガラス繊維等に含浸させてなるプリ プレダおよび銅箔を積層し、プリプレダを硬化させ、電源層とグランド層とを有するコ 了 (ノイズ抑制構造体)を作製する。
ついで、フォトリソグラフィ一法等により、コア上の電源層またはグランド層を、所望 のパターン形状となるようにエッチングする。その後、電源層およびグランド層の両外 面に銅箔をプリプレダで貼り合わせ信号伝送層をそれぞれ形成し、 4層のプリント回 路基板を完成させる。
[0082] 図 11は、本発明の多層プリント回路基板の一例を示す断面図である。該多層プリ ント回路基板 120は、上力も順に、信号伝送層 121、絶縁層 122、グランド層 123 (第 2の導体層 112)、絶縁層 124 (第 2の絶縁層 115)、ノイズ抑制層 113、絶縁層 125 ( 第 1の絶縁層 114)、電源層 126 (第 1の導体層 111)、絶縁層 127、信号伝送層 128 を有して構成される。信号伝送層 121と信号伝送層 128とは、スルーホール 131を介 して接続され、電源ライン 132と電源層 126とは、ビアホール 133を介して接続され、 グランドライン 134とグランド層 123とは、ビアホール 135を介して接続されている。電 源ライン 132およびグランドライン 134には、半導体素子等の電子部品 141およびバ ィパスコンデンサ 142が搭載されている。
[0083] 多層プリント回路基板 120にあっては、ノイズ抑制構造体 110を具備するため、ノィ ズ抑制層 113と電源層 126 (第 1の導体層 111)とが対向している領域が領域 (I)とな り、ノイズ抑制層 113と電源層 126 (第 1の導体層 111)とが対向していない領域であ り、かつノイズ抑制層 113とグランド層 123 (第 2の導体層 112)とが対向して 、る領域 が領域 (II)となる。そして、領域 (I)および領域 (II)が隣接しているため、高周波電流 が抑えられて電源層 126の電位が安定ィ匕し、結果、同時スイッチングノイズ等の伝導 ノイズ、および共振による放射ノイズが抑えられる。
実施例
[0084] 実施例 1〜3
(ノイズ抑制層の厚さ) (株)日立製作所製、透過型電子顕微鏡 H9000NARを用いてノイズ抑制層の断 面を観察し、 5箇所のノイズ抑制層の厚さを測定し、平均した。
[0085] (接着強度)
配線部材の銅箔と絶縁性榭脂層との間の剥離強度を、 JIS C5012に準拠し、テン シロンにより、引張角度 90° 、引張速度 50mmZ分にて測定した。
[0086] (ノイズ抑制効果)
グランド層と電源層とからなる 2層基板を作製し、 2分割された一方の電源層の両末 端に、電源層とグランド層に繋がる SMAコネクタを搭載し、該コネクタに接続された ネットワークアナライザー(アンリツ社製、 37247D)を用いて Sパラメータ一法による S 21 (透過減衰量、単位: dB)を測定し、 S21パラメータの共振状態を確認した。ノイズ 抑制効果がある場合は、共振周波数における減衰量が大きくなり、減衰量と周波数 を示すグラフは滑らかになる。
[0087] (電源層間抵抗)
分割された 2つの電源層のそれぞれにプローブをあて、東亜 DKK製超絶縁計 SM — 8210を用い、 50Vの測定電圧を印加した際の電源層間の抵抗を測定した。
[0088] (実施例 1)
一方の表面(平滑面)の表面粗さ Rzが 2 mであり、他方の粗面化された表面の表 面粗さ Rzが 5. 3 μ mである、厚さ 35 μ mの電解銅箔の平滑面上に、 1質量0 /0の 3— グリシドキシプロピルトリメトキシシラン溶液を塗布、乾燥し、接着促進層を形成した。
[0089] ビスフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製、 828) 30質量部、 臭素化ビスフエノール A型榭脂 (東都化成社製、 YDB- 500) 30質量部およびタレ ゾールノボラック榭脂 (東都化成社製、 YDCN- 704) 35質量部を、メチルェチルケ トンに溶解し、ついでイミダゾール系硬化促進剤(四国化成社製、キュアゾール 2E4 MZ) 0. 2質量部を加え、 8質量%の榭脂組成物のワニスを調製した。
該榭脂組成物のワニスを、接着促進層の上に乾燥後の厚さが 10 mとなるように グラビアコーターを用いて塗布し、塗膜を形成した。該塗膜を 15分間風乾した後、 1 50°Cで 15分間加熱して硬化させ、絶縁性榭脂層を形成した。
[0090] ついで、該絶縁性榭脂層の全面にニッケル金属を EB蒸着法により物理的に蒸着 した。 150°Cで 45分間加熱して絶縁性榭脂層をさらに硬化させ、図 2に示す表面を 有する、厚さ 15nmの不均質なノイズ抑制層を形成し、総厚 45 mの配線部材を得 た。
[0091] 該配線部材カも幅 10mm、長さ 100mmの短冊状の試験片を切り出し、該試験片 を、幅 35mm、長さ 50mm、厚さ lmmのプリプレダの幅方向に 3枚並べ、試験片とプ リプレダをプレスにより接着した後、剥離強度の測定および剥離状態の観察を行った 。結果を表 1に示す。剥離強度は、 3枚の試験片の値の平均値とした。
[0092] 前記配線部材と厚さ 35 μ mの銅箔とを厚さ 0. 2mmのプリプレダを介して一体ィ匕し 、 2層基板を作製した。該 2層基板から 74mm X 160mmの大きさの試験片を切り出 し、該試験片の配線部材側の銅箔をエッチングにより、大きさ 36. 5mm X 160mm の 2つの電源層に分割し、 lmm離して配置した。ノイズ抑制層とグランド層の大きさ は 74mm X 160mmであった。該試験片について、電源層間抵抗を測定した。結果 を表 1に示す。また、該試験片について、 Sパラメータ一法による S21を測定した。結 果を図 12に示す。
[0093] (実施例 2)
一方の表面(平滑面)の表面粗さ Rzが 0. 4 mであり、他方の粗面化された表面 の表面粗さ Rzが 5. 3 μ mである、厚さ 18 μ mの電解銅箔の平滑面上に、 1質量% の 3—メルカプトプロピルトリメトキシシラン溶液を塗布、乾燥し、接着促進層を形成し た。
[0094] ポリエーテルサルホン榭脂(住友化学社製、 PES5003P) 95質量部、ビスフエノー ル A型エポキシ榭脂(ジャパンエポキシレジン社製、 828EL、)5質量部、イミダゾー ル系硬化促進剤(四国化成社製、キュアゾール 2MZ) 0. 1質量部を、 N, N—ジメチ ルホルムアミド Zシクロへキサン混合溶剤(50Z50質量比)に溶解させ、 0. 5質量0 /0 の榭脂組成物のワニス Aを調製した。
該榭脂組成物のワニス Aを、接着促進層の上に乾燥後の厚さが: L mとなるように 塗布し、塗膜を形成した。該塗膜を 10分間風乾した後、 160°Cで 10分間加熱して硬 化させ、絶縁性榭脂層 Aを形成した。
[0095] ビスフエノール A型エポキシ榭脂(ジャパンエポキシレジン社製、 834) 26質量部、 ビスフエノール A型フエノキシ榭脂(ジャパンエポキシレジン社製、 1256) 20質量部、 クレゾ一ルノボラック樹脂 (東都化成社製、 YDCN- 704) 35質量部を、メチルェチ ルケトンに溶解し、ついでイミダゾール系硬化促進剤(四国化成社製、キュアゾール 2 E4MZ) 0. 2質量部加え、 4質量%の榭脂組成物のワニス Bを調製した。
該榭脂組成物のワニス Bを、絶縁性榭脂層 Aの上に乾燥後の厚さが 2 mとなるよ うにグラビアコーターを用いて塗布し、塗膜を形成した。該塗膜を 10分間風乾した後 、 150°Cで 15分間加熱して硬化させ、絶縁性榭脂層 Bを形成した。
[0096] ついで、該絶縁性榭脂層 Bの全面にタンタル金属を、窒素を流入しながらマグネト ロンスパッタリング法により物理的に蒸着した。 150°Cで 45分間加熱して絶縁性榭脂 層をさらに硬化させ、厚さ 20nmの不均質なノイズ抑制層を形成し、総厚 21 μ mの配 線部材を得た。
該配線部材について、実施例 1と同様にして剥離強度の測定および剥離状態の観 察を行った。結果を表 1に示す。
[0097] 前記配線部材と厚さ 18 /z mの銅箔とを厚さ 0. 1mmのプリプレダを介して一体ィ匕し 、 2層基板を作製した。該 2層基板について、実施例 1と同様にして、電源層を 2つに 分割し、試験片を作製して、電源層間抵抗を測定した。結果を表 1に示す。また、該 試験片について、 Sパラメータ一法による S21を測定した。結果を図 13に示す。
[0098] (比較例 1)
両面の表面粗さ Rzが 5. である、厚さ 35 /z mの粗面化した電解銅箔を用い、 接着促進層を形成しな力つた以外は、実施例 1と同様にして総厚 45 mの配線部材 を得た。該配線部材について、実施例 1と同様にして剥離強度の測定および剥離状 態の観察を行った。結果を表 1に示す。
前記配線部材を用いて、実施例 1と同様にして 2層基板を作製し、実施例 1と同様 にして試験片を作製して、電源層間抵抗を測定した。結果を表 1に示す。 Sパラメ一 ター法による S21の測定は行わな力つた。
[0099] (実施例 3)
接着促進層を形成せず、絶縁性榭脂層の厚さを 25 にした以外は、実施例 1と同 様にして配線部材を得た。該配線部材について、実施例 1と同様にして剥離強度の 測定および剥離状態の観察を行った。結果を表 1に示す。
前記配線部材を用いて、実施例 1と同様にして 2層基板を作製し、実施例 1と同様 にして試験片を作製して、電源層間抵抗を測定した。結果を表 1に示す。また、該試 験片について、 Sパラメータ一法による S21を測定した。結果を図 14に示す。
[0100] (比較例 2)
絶縁性榭脂層を設けずに直接ノイズ抑制層を銅箔上に形成した以外は、実施例 2 と同様にして総厚 18 mの配線部材を得た。該配線部材について、実施例 1と同様 にして剥離強度の測定および剥離状態の観察を行った。結果を表 1に示す。
[0101] 前記配線部材を用いて、実施例 1と同様に 2層基板を作製した。該 2層基板につい て、実施例 1と同様にして、電源層を 2つに分割し、試験片を作製したが、絶縁性榭 脂層がないため、ノイズ抑制層も分割され、電源層と同じ 2分割された大きさ(36. 5 mm X 160mm)となった。グランド層の大きさは 74mm X 160mmであった。該試験 片について、電源層間抵抗を測定した。結果を表 1に示す。また、該試験片について 、 Sパラメータ一法による S21を測定した。結果を図 15に示す。
[0102] (比較例 3)
ノイズ抑制層を形成しない以外は、実施例 1と同様にして配線部材を得た。前記配 線部材を用いて、実施例 1と同様にして 2層基板を作製し、実施例 1と同様にして試 験片を作製して、 Sパラメータ一法による S21を測定した。結果を図 12〜14に示す。
[0103] (比較例 4)
ノイズ抑制層を形成しない以外は、比較例 2と同様にして配線部材を得た。前記配 線部材を用いて、実施例 1と同様にして 2層基板を作製し、実施例 1と同様にして試 験片を作製して、 Sパラメータ一法による S21を測定した。結果を図 15に示す。
[0104] [表 1] 剝雜強度 電源層間抵抗
刺離状態 評価
(kgf/ crn ) χ ΐ θ1 2 ( Ω )
剥離は銅箔側において
発生するが、殆ど絶縁 銅箔とノイズ抑制層との短絡
実施例 1 1 . 1 8 2. 1
性樹脂層の母材破壊 はなく、分割された鼋源層間
でおつた。 の絶縁は確保されていた。ま
剥離は銅箔側において た基板として十分な接着強度
発生するが、殆ど絶縁 と優れたノイズ抑制効果が確
実施例 2 0. 9フ 3. 6
性樹脂層の母材破壊 認された。
でおつた。
剥離は銅箔側において
銅箔の表面状態が悪く、絶緣
発生するが,殆ど絶縁 リークが生じ
比較例 1 1 . 0フ 性榭脂層にピンホールが見ら
性樹脂層の母材破壊 計測不能
れ、短絡が見られた。
であった。
剥離は銅箔と絶緣¾ 銅箔と絶緣性樹脂層との密着
樹脂層との界面で起こ 力が弱い。またノイズ抑制層と
実施例 3 0. 68 り.絶縁性樹脂層の母 2. 8 ¾源層とが少し離れているも
材破壊は認められなか ののノイズ抑制効果は認めら
つに。 れた。
ノイズ抑制層と銅箔との密着
剥離は銅箔とノイズ抑 状態が特に悪かった。また、
比較例 2 0. 26 制層との界面で発生し 3. 1 充分な大きさのノイズ抑制層
fc。 を得ることができず、ノイズ抑
制効果は乏しかった。
[0105] 実施例 4〜10
(ノイズ抑制層の厚さ)
日立製作所製、透過型電子顕微鏡 H9000NARを用いてノイズ抑制層の断面を観 察し、 5箇所のノイズ抑制層の厚さを測定し、平均した。
[0106] (S21パラメーター測定)
アンリツ社製、ベクトルネットワークアナライザー 37247Dを用いて、試験片の SMA コネクタ間の Sパラメーターを測定した。
[0107] (電圧測定)
アドバンテスト社製、トラッキングジェネレータ付スペクトラムアナライザー R3132を 用い電源層の電圧を測定した。
[0108] (実施例 4)
厚さ 18 mの銅箔 (第 1の導体層)上にエポキシ系ワニスを塗布し、乾燥、硬化させ 、厚さ 3 μ mの第 1の絶縁層を形成した。第 1の絶縁層の表面抵抗は 8 X 1012 Ωであ つた o
ついで、第 1の絶縁層の全面に、窒素ガス雰囲気下でニッケル金属を反応性スパッ タリング法により物理的に蒸着し、窒化ニッケルを含む厚さ 30nmの不均質なノイズ 抑制層を形成した。ノイズ抑制層の表面抵抗は 97 Ωであった。
[0109] ノイズ抑制層上に、厚さ 100 mのエポキシ系プリプレダ (第 2の絶縁層、表面抵抗 6 X 1014 Ω )および厚さ 18 μ mの銅箔 (第 2の導体層)を積層し、プリプレダを硬化さ せ、 2層基板を作製した。
該 2層基板から 74mm X 160mmの大きさの試験片を切り出し、該試験片の第 1の 導体層の銅箔の長手方向に沿った両側部をエッチングし、図 16に示すような、領域( II)の平均幅(L)が 1. 5mmのノイズ抑制構造体 110を得た。
[0110] 図 17に示すように、ノイズ抑制構造体 110の長手方向の両末端に、第 1の導体層 1 11および第 2の導体層 112に繋がる SMAコネクタ 151を搭載し、 SMAコネクタ 151 にベクトルネットワークアナライザー 152を接続して、周波数 50MHzから 10GHzまで の 400点で Sパラメーターを測定し、グラフを作成した。グラフを図 18に示す。また、 擬似積分値として 400点の測定値の総和を求めた。
[0111] (比較例 5)
ノイズ抑制層を形成しなカゝつた以外は、実施例 4と同様にして 2層基板を作製した。 実施例 4と同様にして該 2層基板力 試験片を切り出し、実施例 4と同様にして第 1の 導体層の銅箔をエッチングした。実施例 4と同様にして該試験片の Sパラメーターを 測定し、グラフを作成した。グラフを図 18に示す。また、擬似積分値として 400点の測 定値の総和を求めた。実施例 4の擬似積分値と比較例 5の疑似積分値の差 (絶対値 )を表 2に示す。該絶対値が大きい程、実施例 4のノイズ抑制構造体 110のノイズ抑 制効果が高い。
[0112] (実施例 5)
図 16に示す領域 (II)の平均幅 (L)を 9mmとした以外は、実施例 4と同様にしてノィ ズ抑制構造体 110を得た。実施例 4と同様にして該ノイズ抑制構造体 110の Sパラメ 一ターを測定し、グラフを作成した。グラフを図 19に示す。また、擬似積分値として 4 00点の測定値の総和を求めた。 [0113] (比較例 6)
ノイズ抑制層を形成しなカゝつた以外は、実施例 4と同様にして 2層基板を作製した。 実施例 4と同様にして該 2層基板力 試験片を切り出し、実施例 5と同様にして第 1の 導体層の銅箔をエッチングした。実施例 4と同様にして該試験片の Sパラメーターを 測定し、グラフを作成した。グラフを図 19に示す。また、擬似積分値として 400点の測 定値の総和を求めた。実施例 5の擬似積分値と比較例 6の疑似積分値の差 (絶対値 )を表 2に示す。
[0114] (実施例 6)
図 16に示す領域 (II)の平均幅 (L)を 18mmとした以外は、実施例 4と同様にしてノ ィズ抑制構造体 110を得た。実施例 4と同様にして該ノイズ抑制構造体 110の Sパラ メーターを測定し、グラフを作成した。グラフを図 20に示す。また、擬似積分値として 400点の測定値の総和を求めた。
[0115] (比較例 7)
ノイズ抑制層を形成しなカゝつた以外は、実施例 4と同様にして 2層基板を作製した。 実施例 4と同様にして該 2層基板力 試験片を切り出し、実施例 6と同様にして第 1の 導体層の銅箔をエッチングした。実施例 4と同様にして該試験片の Sパラメーターを 測定し、グラフを作成した。グラフを図 20に示す。また、擬似積分値として 400点の測 定値の総和を求めた。実施例 6の擬似積分値と比較例 7の疑似積分値の差 (絶対値 )を表 2に示す。
[0116] (比較例 8)
実施例 4における試験片の第 1の導体層の銅箔をエッチングしな力つた。図 16に示 す領域 (II)の平均幅 (L)が Ommである試験片について、実施例 4と同様にして Sパ ラメーターを測定し、グラフを作成した。グラフを図 21に示す。また、擬似積分値とし て 400点の測定値の総和を求めた。
[0117] (比較例 9)
ノイズ抑制層を形成しなカゝつた以外は、実施例 4と同様にして 2層基板を作製した。 実施例 4と同様にして該 2層基板力 試験片を切り出した。試験片の第 1の導体層の 銅箔をエッチングしな力つた。実施例 4と同様にして該試験片の Sパラメーターを測定 し、グラフを作成した。グラフを図 21に示す。また、擬似積分値として 400点の測定値 の総和を求めた。比較例 8の擬似積分値と比較例 9の疑似積分値の差 (絶対値)を 表 2に示す。
[0118] [表 2]
Figure imgf000031_0001
[0119] 表 2の結果から、第 1の導体層 111が小さぐ領域 (II)の平均幅 (L)が大きくなるほ ど、ノイズ抑制効果が高いことがわかる。領域 (II)がない比較例 8では、ノイズ抑制効 果が全く認められない。
[0120] (実施例 7)
ノイズ抑制層の厚さを 20nmにした以外は、実施例 4と同様にして 2層基板を作製し た。該 2層基板から 100mm X 200mmの大きさの試験片を切り出し、該試験片の第 1の導体層の銅箔の長手方向に沿った両側部をエッチングし、図 16に示すような、 領域 (II)の平均幅 (L)が 30mmのノイズ抑制構造体 110を得た。なお、各層を積層 する前には、第 1の導体層、第 2の導体層およびノイズ抑制層に、スルーホールと接 触しな 、ためのアンチビアをあら力じめ形成してぉ 、た。
[0121] ノイズ抑制構造体 110の第 1の導体層 111を電源層とし、第 2の導体層 112をダラ ンド層とした。電源層およびグランド層の両外面に、厚さ 18 /z mの銅箔を、厚さ 50 mのエポキシ系プリプレダで貼り合わせ信号伝送層をそれぞれ形成し、図 22および 図 23に示すように、信号伝送層を所定形状にエッチングした。
図 22および図 23に示すように、アンチビアにスルーホール 131を形成することによ つて、信号伝送層 121からスルーホール 131を通って信号伝送層 128に渡り、再び スルーホール 131を通って信号伝送層 121に戻る構造を有するインピーダンス 50 Ω の信号ライン 160を形成し、多層プリント配線基板 120を得た。 [0122] 入力用 SMAコネクタを信号ライン 160およびグランド層 123に接続し、出力用 SM Aコネクタを電源層 126およびグランド層 123に接続した。トラッキングジェネレータ付 のスペクトラムアナライザーを用いて、信号ライン 160に 50MHzから 3GHzの信号を 入力し、そのときの電源層 126の電圧変動を測定した。測定結果を図 24に示す。
[0123] (比較例 10)
領域 (II)の平均幅 (L)を Ommとした以外は、実施例 7と同様にして多層プリント配 線基板を得た。実施例 7と同様にして電源層の電圧変動を測定した。測定結果を図 24に示す。
実施例 7と比較例 10とを比較すると、電源層(第 1の導体層)が小さぐ領域 (Π)の 平均幅 (L)が大きい場合は、高周波信号による電源層の励振を抑制できた。領域 (II )がない比較例 10では、ノイズ抑制効果が全く認められな力つた。
[0124] (実施例 8)
図 25の断面図に示すように、幅 25mm X長さ 60mm X厚さ 12 μ mの第 1の導体層 111と、幅 60mm X長さ 60mm X厚さ 12 mの第 2の導体層 112と、幅 60mm X長 さ 60mm X厚さ 0. 1 mの第 1の絶縁層 114 (表面抵抗 2 X 109 Ω )と、幅 60mm X 長さ 60mm X厚さ 50 μ mの第 2の絶縁層 115 (表面抵抗 3 X 10" Ω )とを有するノィ ズ抑制構造体 110を作製した。
ノイズ抑制層 113は、領域(II)の平均幅(L)が 3mmとなり、領域(III)の平均幅(M) 力 SOmmとなり、厚さが 15nmとなるように、第 1の絶縁層 114上に銀をエレクトロンビー ム (EB)蒸着法により物理的に蒸着させて形成した。ノイズ抑制層 113の表面抵抗は 55 Ωであった。
実施例 4と同様にしてノイズ抑制構造体 110の Sパラメーターを測定し、グラフを作 成した。グラフを図 26に示す。また、擬似積分値として 400点の測定値の総和を求め た。該擬似積分値と、ノイズ抑制層を形成しなかった場合の疑似積分値との差 (絶対 値)を表 3に示す。
[0125] (実施例 9)
領域 (III)の平均幅 (M)が 15mmとなるようにノイズ抑制層 113を形成した以外は、 実施例 8と同様にしてノイズ抑制構造体 110を得て、実施例 4と同様にしてノイズ抑制 構造体 110の Sパラメーターを測定し、グラフを作成した。グラフを図 26に示す。また 、擬似積分値として 400点の測定値の総和を求めた。該擬似積分値と、ノイズ抑制層 を形成しなかった場合の疑似積分値との差 (絶対値)を表 3に示す。
[0126] (実施例 10)
領域 (III)の平均幅 (M)が 23mmとなるようにノイズ抑制層 113を形成した以外は、 実施例 8と同様にしてノイズ抑制構造体 110を得て、実施例 4と同様にしてノイズ抑制 構造体 110の Sパラメーターを測定し、グラフを作成した。グラフを図 26に示す。また 、擬似積分値として 400点の測定値の総和を求めた。該擬似積分値と、ノイズ抑制層 を形成しなかった場合の疑似積分値との差 (絶対値)を表 3に示す。
[0127] [表 3]
Figure imgf000033_0001
[0128] 表 3の結果から、少なくとも第 1の導体層 111の周縁部に領域 (I)を有すれば、領域
(I)の平均幅 (N)の大きさに影響されることなぐノイズ抑制効果を発揮することがわ かった。
産業上の利用可能性
[0129] 本発明の配線部材は、 IC、 LSI等の半導体素子や電子部品に、電源供給や信号 伝送を行うプリント配線基板を構成する部材として有用である。
また、本発明のノイズ抑制構造体および多層プリント配線基板は、 IC、 LSI等の半 導体素子、電子部品内の電源層、これら電子部品に電源供給や信号伝送を行う多 層プリント配線基板として有用である。

Claims

請求の範囲
[1] 表面粗さ Rz Ι λ μ m以下である平滑面を有する銅箔と、
金属材料または導電性セラミックスを含む、厚さ 5〜200nmのノイズ抑制層と、 前記銅箔の平滑面側と前記ノイズ抑制層との間に設けられた絶縁性榭脂層と を有する、配線部材。
[2] 前記ノイズ抑制層が、金属材料または導電性セラミックスが存在しない欠陥を有す る、請求項 1に記載の配線部材。
[3] 前記銅箔の平滑面側と前記絶縁性榭脂層との間に接着促進層を有する、請求項 1 または 2に記載の配線部材。
[4] 前記ノイズ抑制層の、前記銅箔側とは反対側の表面に、接着促進層を有する、請 求項 1〜3のいずれかに記載の配線部材。
[5] 前記絶縁性榭脂層の厚さが、 0. 1〜: LO /z mである、請求項 1〜4のいずれかに記 載の配線部材。
[6] 請求項 1〜5のいずれかに記載の配線部材を具備する、プリント配線基板。
[7] 前記銅箔が、電源層であり、
電源層とグランド層との間に、前記ノイズ抑制層が配置されている、請求項 6に記載 のプリント配線基板。
[8] 第 1の導体層と、
第 2の導体層と、
第 1の導体層と第 2の導体層との間に設けられたノイズ抑制層と、
第 1の導体層とノイズ抑制層との間に設けられた第 1の絶縁層と、
第 2の導体層とノイズ抑制層との間に設けられた第 2の絶縁層とを有し、 ノイズ抑制層が、第 1の導体層と電磁結合する、金属材料または導電性セラミックス を含む厚さ 5〜300nmの層であり、
ノイズ抑制層と第 1の導体層とが対向している領域である領域 (I)、およびノイズ抑 制層と第 1の導体層とが対向していない領域であり、かつノイズ抑制層と第 2の導体 層とが対向して 、る領域である領域 (II)を有し、かつ領域 (I)および領域 (II)が隣接 する、ノイズ抑制構造体。
[9] ノイズ抑制層の面積が、第 2の導体層の面積と実質的に同じである、請求項 8に記 載のノイズ抑制構造体。
[10] 第 1の導体層 11の周縁部に領域 (I)を有し、
第 1の導体層 11が存在する領域であって、かつ第 1の導体層 11とノイズ抑制層 13 とが対向しな 、領域である領域 (III)を有する、請求項 7または 8に記載のノイズ抑制 構造体。
[11] 第 1の導体層が、複数に分割されている、請求項 8〜10のいずれかに記載のノイズ 抑制構造体。
[12] 第 1の絶縁層の厚さ力 0. 05〜25 /ζ πιである、請求項 8〜: L 1のいずれかに記載 のノイズ抑制構造体。
[13] 第 1の絶縁層の比誘電率が、 2以上である、請求項 12に記載のノイズ抑制構造体。
[14] ノイズ抑制層が、金属材料または導電性セラミックスが存在しない欠陥を有する、請 求項 8〜 13のいずれかに記載のノイズ抑制構造体。
[15] 下記式(1)から求めた領域 (I)の平均幅力 0. 1mm以上である、請求項 7〜13の
Vヽずれかに記載のノイズ抑制構造体。
領域 (I)の平均幅〔mm〕 =領域 (I)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界線 の長さ〔mm〕 · ' ·(1)。
[16] 下記式(2)から求めた領域(II)の平均幅力 l〜50mmである、請求項 8〜15のい ずれかに記載のノイズ抑制構造体。
領域 (Π)の平均幅〔mm〕 =領域 (II)の面積〔mm2〕 Z領域 (I)と領域 (Π)との境界 線の長さ〔mm〕 · ' ·(2)。
[17] 請求項 8〜16のいずれかに記載のノイズ抑制構造体を具備する、多層プリント配線 基板。
[18] 第 1の導体および第 2の導体のいずれか一方が電源層であり、他方がグランド層で ある、請求項 17記載の多層プリント配線基板。
[19] さらに信号伝送層を有し、
信号伝送層とノイズ抑制層との間には、電源層またはグランド層が存在する、請求 項 18記載の多層プリント配線基板。 [20] ノイズ抑制構造体が、容量性積層体である、請求項 17〜19のいずれかに記載の 多層プリント配線基板。
PCT/JP2007/063139 2006-06-30 2007-06-29 Élément de câblage à suppression de bruit et planchette de câblage imprimé WO2008001897A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800242028A CN101480112B (zh) 2006-06-30 2007-06-29 噪声抑制配线部件以及印刷线路基板
EP07767924A EP2048919A4 (en) 2006-06-30 2007-06-29 NOISE REDUCTION WIRE STRUCTURE AND CONDUCTOR PLATE
KR1020097001706A KR101162405B1 (ko) 2006-06-30 2007-06-29 노이즈 억제 배선 부재 및 프린트 배선 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006181179A JP5138185B2 (ja) 2006-06-30 2006-06-30 プリント配線基板
JP2006-181179 2006-06-30
JP2006199286A JP4916803B2 (ja) 2006-07-21 2006-07-21 多層プリント回路基板
JP2006-199286 2006-07-21

Publications (1)

Publication Number Publication Date
WO2008001897A1 true WO2008001897A1 (fr) 2008-01-03

Family

ID=38845660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063139 WO2008001897A1 (fr) 2006-06-30 2007-06-29 Élément de câblage à suppression de bruit et planchette de câblage imprimé

Country Status (5)

Country Link
US (1) US8134084B2 (ja)
EP (2) EP2222144B1 (ja)
KR (1) KR101162405B1 (ja)
TW (1) TWI341158B (ja)
WO (1) WO2008001897A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067696A (ja) * 2008-09-09 2010-03-25 Shin Etsu Polymer Co Ltd 光トランシーバ
JP2010073786A (ja) * 2008-09-17 2010-04-02 Shin Etsu Polymer Co Ltd プリント配線板
EP2249478A1 (en) * 2008-02-20 2010-11-10 Taiyo Yuden Co., Ltd. Filter, branching filter, communication module, and communication equipment
JP2019021837A (ja) * 2017-07-20 2019-02-07 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134084B2 (en) * 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board
US8761895B2 (en) * 2008-03-20 2014-06-24 Greatbatch Ltd. RF activated AIMD telemetry transceiver
CN101275308B (zh) * 2007-03-26 2010-06-02 上海特安纶纤维有限公司 全间位芳香族聚砜酰胺纤维的制造方法
TWI379621B (en) * 2007-08-02 2012-12-11 Shinetsu Polymer Co Conductive noise suppressing structure and wiring circuit substrate
KR100891531B1 (ko) * 2007-09-10 2009-04-03 주식회사 하이닉스반도체 패턴 정렬 불량 검출 장치
KR101385094B1 (ko) * 2007-09-11 2014-04-14 삼성디스플레이 주식회사 인쇄회로기판, 이를 갖는 표시장치 및 이의 제조방법
US7821796B2 (en) 2008-01-17 2010-10-26 International Business Machines Corporation Reference plane voids with strip segment for improving transmission line integrity over vias
WO2009117599A2 (en) 2008-03-20 2009-09-24 Greatbatch Ltd. Shielded three-terminal flat-through emi/energy dissipating filter
US9463329B2 (en) 2008-03-20 2016-10-11 Greatbatch Ltd. Shielded three-terminal flat-through EMI/energy dissipating filter with co-fired hermetically sealed feedthrough
US11147977B2 (en) 2008-03-20 2021-10-19 Greatbatch Ltd. MLCC filter on an aimd circuit board conductively connected to a ground pin attached to a hermetic feedthrough ferrule
US10080889B2 (en) 2009-03-19 2018-09-25 Greatbatch Ltd. Low inductance and low resistance hermetically sealed filtered feedthrough for an AIMD
JP5082060B2 (ja) * 2008-05-22 2012-11-28 学校法人明星学苑 低特性インピーダンス電源・グランドペア線路構造
JP2010050166A (ja) * 2008-08-19 2010-03-04 Shin Etsu Polymer Co Ltd プリント配線板
US8095224B2 (en) 2009-03-19 2012-01-10 Greatbatch Ltd. EMI shielded conduit assembly for an active implantable medical device
TWI425881B (zh) * 2009-04-29 2014-02-01 Compal Electronics Inc 電子裝置
KR101515693B1 (ko) * 2009-12-15 2015-04-27 아사히 가세이 셍이 가부시키가이샤 노이즈 흡수 포백
JP5380355B2 (ja) * 2010-04-15 2014-01-08 信越ポリマー株式会社 プリント配線板およびその製造方法
KR20120093035A (ko) * 2011-02-14 2012-08-22 주식회사 케이엠더블유 스트립라인 연결 장치
US10272252B2 (en) 2016-11-08 2019-04-30 Greatbatch Ltd. Hermetic terminal for an AIMD having a composite brazed conductive lead
US9427596B2 (en) 2013-01-16 2016-08-30 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10596369B2 (en) 2011-03-01 2020-03-24 Greatbatch Ltd. Low equivalent series resistance RF filter for an active implantable medical device
US11198014B2 (en) 2011-03-01 2021-12-14 Greatbatch Ltd. Hermetically sealed filtered feedthrough assembly having a capacitor with an oxide resistant electrical connection to an active implantable medical device housing
US9931514B2 (en) 2013-06-30 2018-04-03 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US10350421B2 (en) 2013-06-30 2019-07-16 Greatbatch Ltd. Metallurgically bonded gold pocket pad for grounding an EMI filter to a hermetic terminal for an active implantable medical device
US8587950B2 (en) * 2011-05-31 2013-11-19 Server Technology, Inc. Method and apparatus for multiple input power distribution to adjacent outputs
US20130046354A1 (en) 2011-08-19 2013-02-21 Greatbatch Ltd. Implantable cardioverter defibrillator designed for use in a magnetic resonance imaging environment
US9504843B2 (en) 2011-08-19 2016-11-29 Greatbach Ltd. Implantable cardioverter defibrillator designed for use in a magnetic resonance imaging environment
TW201316895A (zh) * 2011-10-14 2013-04-16 Hon Hai Prec Ind Co Ltd 可抑制電磁干擾的電路板
US8559678B2 (en) * 2011-10-31 2013-10-15 Cisco Technology, Inc. Method and apparatus for determining surface roughness of metal foil within printed circuits
JP6133884B2 (ja) * 2011-11-09 2017-05-24 サンミナ コーポレーションSanmina Corporation 高域伝送用電気工学受動素子を埋め込んだプリント回路基板
WO2013168761A1 (ja) * 2012-05-10 2013-11-14 日立化成株式会社 多層配線基板
US9093974B2 (en) 2012-09-05 2015-07-28 Avx Corporation Electromagnetic interference filter for implanted electronics
USRE46699E1 (en) 2013-01-16 2018-02-06 Greatbatch Ltd. Low impedance oxide resistant grounded capacitor for an AIMD
US20160029477A1 (en) * 2013-02-27 2016-01-28 Nec Corporation Wiring substrate, semiconductor device, printed board, and method for producing wiring substrate
TWI639515B (zh) * 2014-03-21 2018-11-01 Jx日鑛日石金屬股份有限公司 附載子金屬箔
US20160285171A1 (en) * 2015-03-27 2016-09-29 John Bernard Moylan Flexible Asymmetric Radio Frequency Data Shield
JP6278922B2 (ja) 2015-03-30 2018-02-14 Jx金属株式会社 電磁波シールド材
JP6129232B2 (ja) * 2015-03-31 2017-05-17 Jx金属株式会社 電磁波シールド材
KR102659671B1 (ko) * 2016-11-01 2024-04-22 삼성전자주식회사 크로스토크 노이즈의 감소를 위한 신호 전송 채널, 이를 포함하는 모듈 기판 및 메모리 모듈
US10088642B2 (en) 2016-11-09 2018-10-02 International Business Machines Corporation Coaxial wire and optical fiber trace via hybrid structures and methods to manufacture
US10249415B2 (en) 2017-01-06 2019-04-02 Greatbatch Ltd. Process for manufacturing a leadless feedthrough for an active implantable medical device
JP6338750B1 (ja) * 2017-03-03 2018-06-06 株式会社トーキン 装置
EP3439438A1 (en) * 2017-08-02 2019-02-06 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Non-uniform magnetic foil embedded in component carrier
US10905888B2 (en) 2018-03-22 2021-02-02 Greatbatch Ltd. Electrical connection for an AIMD EMI filter utilizing an anisotropic conductive layer
US10912945B2 (en) 2018-03-22 2021-02-09 Greatbatch Ltd. Hermetic terminal for an active implantable medical device having a feedthrough capacitor partially overhanging a ferrule for high effective capacitance area
TWI787258B (zh) * 2018-05-02 2022-12-21 日商麥克賽爾股份有限公司 電磁波吸收薄片
JP6962289B2 (ja) * 2018-07-31 2021-11-05 株式会社オートネットワーク技術研究所 配線部材
US11152903B2 (en) 2019-10-22 2021-10-19 Texas Instruments Incorporated Ground noise suppression on a printed circuit board

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08309918A (ja) * 1995-05-22 1996-11-26 Nippon Denkai Kk 銅張積層板とそれを用いたプリント回路板およびこれらの製法
JPH0993034A (ja) 1995-09-22 1997-04-04 Tokin Corp 複合磁性体及びその製造方法ならびに電磁干渉抑制体
JPH09181476A (ja) 1995-12-26 1997-07-11 Mitsui Mining & Smelting Co Ltd 超微結晶磁性膜からなる電波吸収体
JP2738590B2 (ja) 1989-08-23 1998-04-08 ザイコン コーポレーション 印刷配線基板のためのコンデンサ積層体
JPH10190237A (ja) * 1996-12-20 1998-07-21 Nec Corp プリント回路基板
JP2001068801A (ja) * 1999-08-27 2001-03-16 Sony Corp プリント配線板
JP2005076091A (ja) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk キャリア付き極薄銅箔の製造方法、及びその製造方法で製造されたキャリア付き極薄銅箔
JP2005317880A (ja) * 2004-04-30 2005-11-10 Nikko Metal Manufacturing Co Ltd プリント配線基板用金属材料
JP2006066810A (ja) 2004-08-30 2006-03-09 Fuji Xerox Co Ltd プリント配線基板及びこれを備えた画像形成装置
JP2006068986A (ja) * 2004-09-01 2006-03-16 Toray Ind Inc 多層ポリイミドフィルム及びこれを用いた金属層付き積層フィルム
JP2006140430A (ja) * 2004-10-12 2006-06-01 Shin Etsu Polymer Co Ltd 伝導ノイズ抑制体および伝導ノイズ抑制体付電子部品
JP2006181179A (ja) 2004-12-28 2006-07-13 Sekigiku:Kk 仏具
JP2006199286A (ja) 2005-01-18 2006-08-03 Soc De Technol Michelin 軽量転動組立体及びesp装置を有するシステム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561584A (en) 1993-09-30 1996-10-01 Vimak Corporation Electrical ground plane apparatus
JPH1197810A (ja) 1997-09-17 1999-04-09 Toshiba Corp 回路基板
JP3626354B2 (ja) 1998-09-21 2005-03-09 株式会社東芝 配線基板
US6469259B2 (en) 2000-02-29 2002-10-22 Kyocera Corporation Wiring board
JP4191888B2 (ja) 2000-11-10 2008-12-03 Necトーキン株式会社 電磁雑音抑制体およびそれを用いた電磁雑音の抑制方法
US6653573B2 (en) 2000-04-04 2003-11-25 Nec Tokin Corporation Wiring board comprising granular magnetic film
US6606792B1 (en) 2000-05-25 2003-08-19 Oak-Mitsui, Inc. Process to manufacturing tight tolerance embedded elements for printed circuit boards
US6556453B2 (en) * 2000-12-13 2003-04-29 Intel Corporation Electronic circuit housing with trench vias and method of fabrication therefor
JP3922039B2 (ja) 2002-02-15 2007-05-30 株式会社日立製作所 電磁波吸収材料及びそれを用いた各種製品
JP2003283073A (ja) 2002-03-27 2003-10-03 Kyocera Corp 配線基板
JP2004119961A (ja) 2002-09-02 2004-04-15 Furukawa Techno Research Kk チップオンフィルム用、プラズマディスプレイ用、または高周波プリント配線板用銅箔
WO2004086837A1 (ja) * 2003-03-25 2004-10-07 Shin-Etsu Polymer Co., Ltd. 電磁波ノイズ抑制体、電磁波ノイズ抑制機能付物品、およびそれらの製造方法
US20080029476A1 (en) * 2004-03-31 2008-02-07 Tadahiro Ohmi Circuit Board And Manufacturing Method Thereof
JP4426900B2 (ja) 2004-05-10 2010-03-03 三井金属鉱業株式会社 プリント配線基板、その製造方法および半導体装置
JP4611699B2 (ja) 2004-09-24 2011-01-12 信越ポリマー株式会社 伝導ノイズ抑制体および伝導ノイズ対策方法
US8134084B2 (en) * 2006-06-30 2012-03-13 Shin-Etsu Polymer Co., Ltd. Noise-suppressing wiring-member and printed wiring board

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2738590B2 (ja) 1989-08-23 1998-04-08 ザイコン コーポレーション 印刷配線基板のためのコンデンサ積層体
JPH08309918A (ja) * 1995-05-22 1996-11-26 Nippon Denkai Kk 銅張積層板とそれを用いたプリント回路板およびこれらの製法
JPH0993034A (ja) 1995-09-22 1997-04-04 Tokin Corp 複合磁性体及びその製造方法ならびに電磁干渉抑制体
JPH09181476A (ja) 1995-12-26 1997-07-11 Mitsui Mining & Smelting Co Ltd 超微結晶磁性膜からなる電波吸収体
JPH10190237A (ja) * 1996-12-20 1998-07-21 Nec Corp プリント回路基板
JP2867985B2 (ja) 1996-12-20 1999-03-10 日本電気株式会社 プリント回路基板
JP2001068801A (ja) * 1999-08-27 2001-03-16 Sony Corp プリント配線板
JP2005076091A (ja) * 2003-09-01 2005-03-24 Furukawa Circuit Foil Kk キャリア付き極薄銅箔の製造方法、及びその製造方法で製造されたキャリア付き極薄銅箔
JP2005317880A (ja) * 2004-04-30 2005-11-10 Nikko Metal Manufacturing Co Ltd プリント配線基板用金属材料
JP2006066810A (ja) 2004-08-30 2006-03-09 Fuji Xerox Co Ltd プリント配線基板及びこれを備えた画像形成装置
JP2006068986A (ja) * 2004-09-01 2006-03-16 Toray Ind Inc 多層ポリイミドフィルム及びこれを用いた金属層付き積層フィルム
JP2006140430A (ja) * 2004-10-12 2006-06-01 Shin Etsu Polymer Co Ltd 伝導ノイズ抑制体および伝導ノイズ抑制体付電子部品
JP2006181179A (ja) 2004-12-28 2006-07-13 Sekigiku:Kk 仏具
JP2006199286A (ja) 2005-01-18 2006-08-03 Soc De Technol Michelin 軽量転動組立体及びesp装置を有するシステム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2048919A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2249478A1 (en) * 2008-02-20 2010-11-10 Taiyo Yuden Co., Ltd. Filter, branching filter, communication module, and communication equipment
EP2249478A4 (en) * 2008-02-20 2011-03-23 Taiyo Yuden Kk FILTER, CONNECTION FILTER, COMMUNICATION MODULE, AND COMMUNICATION EQUIPMENT
JP2010067696A (ja) * 2008-09-09 2010-03-25 Shin Etsu Polymer Co Ltd 光トランシーバ
JP2010073786A (ja) * 2008-09-17 2010-04-02 Shin Etsu Polymer Co Ltd プリント配線板
JP2019021837A (ja) * 2017-07-20 2019-02-07 信越ポリマー株式会社 電磁波シールドフィルム及びその製造方法、並びに電磁波シールドフィルム付きプリント配線板及びその製造方法

Also Published As

Publication number Publication date
US8134084B2 (en) 2012-03-13
TWI341158B (en) 2011-04-21
US20080049410A1 (en) 2008-02-28
EP2048919A4 (en) 2010-01-06
EP2222144B1 (en) 2014-07-30
KR101162405B1 (ko) 2012-07-04
EP2048919A1 (en) 2009-04-15
EP2222144A3 (en) 2011-04-20
EP2222144A2 (en) 2010-08-25
TW200814896A (en) 2008-03-16
KR20090024821A (ko) 2009-03-09

Similar Documents

Publication Publication Date Title
WO2008001897A1 (fr) Élément de câblage à suppression de bruit et planchette de câblage imprimé
JP5380355B2 (ja) プリント配線板およびその製造方法
JP5081831B2 (ja) 配線部材およびその製造方法
JP5138185B2 (ja) プリント配線基板
JP4916803B2 (ja) 多層プリント回路基板
JP2018172790A (ja) 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP2009283901A (ja) カバーレイフィルムおよびフレキシブルプリント配線板
JP2017149861A (ja) 支持体付き樹脂シート
US8507801B2 (en) Printed wiring board
JP5869496B2 (ja) 電磁波ノイズ抑制体、その使用方法及び電子機器
JP5103088B2 (ja) 伝導ノイズ抑制構造体および配線回路基板
JP5925981B1 (ja) 表面処理銅箔及びその製造方法、プリント配線板用銅張積層板、並びにプリント配線板
JP2011091082A (ja) プリント配線板の製造方法
JP2005327853A (ja) 電磁波ノイズ抑制体およびその製造方法
JP4920336B2 (ja) 配線部材の製造方法
JP4001067B2 (ja) プリント配線用基板
JP2005122915A (ja) 電気コネクタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024202.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 649/DELNP/2009

Country of ref document: IN

Ref document number: 1020097001706

Country of ref document: KR

Ref document number: 2007767924

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU