WO2007119526A1 - インラインヒータ及びその製造方法 - Google Patents

インラインヒータ及びその製造方法 Download PDF

Info

Publication number
WO2007119526A1
WO2007119526A1 PCT/JP2007/056408 JP2007056408W WO2007119526A1 WO 2007119526 A1 WO2007119526 A1 WO 2007119526A1 JP 2007056408 W JP2007056408 W JP 2007056408W WO 2007119526 A1 WO2007119526 A1 WO 2007119526A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbide
heater
temperature
carbon
line heater
Prior art date
Application number
PCT/JP2007/056408
Other languages
English (en)
French (fr)
Inventor
Masafumi Yamakawa
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006112517A external-priority patent/JP2007183085A/ja
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP07739846.9A priority Critical patent/EP2009365A4/en
Priority to US12/297,185 priority patent/US20090269044A1/en
Publication of WO2007119526A1 publication Critical patent/WO2007119526A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/16Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled
    • F24H1/162Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form helically or spirally coiled using electrical energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium
    • F24H1/14Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form
    • F24H1/142Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium by tubes, e.g. bent in serpentine form using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/14Arrangements for connecting different sections, e.g. in water heaters 
    • F24H9/146Connecting elements of a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • F24H9/1827Positive temperature coefficient [PTC] resistor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels

Definitions

  • the present invention relates to an inline heater and a method for manufacturing the same.
  • the in-line heater As means for solving the problem, it has been proposed to arrange an in-line heater as a heating device in the vicinity of a necessary part and finely adjust the temperature of the liquid or the like with the in-line heater.
  • the in-line heater is preferably small from the viewpoint of securing a work space, and is preferably capable of rapid heating in order to finely adjust the temperature of the liquid or the like.
  • Patent Document 1 JP-A-7-129252
  • the present invention relates to the following items:
  • An in-line heater having a ceramic heater and two sets of piping blocks including a piping block main body formed with a flow pipe and a lid member, which are arranged to face each other with the ceramic heater interposed therebetween.
  • the piping block is an inline heater as described in any one of (1) to (3), which also has SUS force.
  • the piping block is made of aluminum (1) to (3)!
  • the reflector is the in-line heater according to (7), wherein the reflector has a gold plating layer on the surface.
  • FIG. 1 shows a perspective view of an in-line heater that works on the first embodiment.
  • FIG. 2 is a cross-sectional view of an in-line heater that works on the first embodiment.
  • FIGS. 3 (a), (b), and (c) are manufacturing process diagrams of an in-line heater that works on the first embodiment.
  • Fig. 3 (a) is a front view
  • Fig. 3 (b) is a side view
  • Fig. 3 (c) is a cross-sectional view.
  • FIGS. 4 (a), (b), and (c) are production process diagrams of an in-line heater that is useful for the first embodiment (part 2).
  • FIG. 4 (a) is a front view
  • FIG. 4 (b) is a side view
  • FIG. 4 (c) is a cross-sectional view.
  • FIGS. 5 (a), 5 (b), and 5 (c) are manufacturing process diagrams of an in-line heater that is effective in the first embodiment (part 5).
  • FIG. 3 (a) is a front view
  • FIG. 5 (b) is a side view
  • FIG. 5 (c) is a cross-sectional view.
  • FIGS. 6 (a), 6 (b), and 6 (c) are manufacturing process diagrams of an in-line heater that works on the first embodiment.
  • FIG. 4 (a) is a front view
  • FIG. 6 (b) is a side view
  • FIG. 6 (c) is a cross-sectional view.
  • FIGS. 7 (a) and 7 (b) show a manufacturing process diagram (part 5) of the in-line heater that is useful for the first embodiment, FIG. 7 (a) is a front view, and FIG. 7 (b) is a side view. The figure is shown.
  • FIG. 8 is a side view of an in-line heater that works on the first embodiment.
  • FIG. 9 is a diagram showing a temperature rise characteristic of the in-line heater that is effective in the first embodiment.
  • FIG. 10 is a perspective view of an in-line heater that works on the second embodiment.
  • FIG. 11 is a cross-sectional view of an in-line heater that works on the second embodiment.
  • the in-line heater 1 that works on the first embodiment of the present invention includes a ceramic heater 7 and
  • the inline heater 1 further includes insulating plates 5 and 9 disposed between the ceramic heater 7 and the piping blocks 3a and 3b.
  • the ceramic heater 7 is connected to a power source (not shown) through electrode plates 13a and 13b and wirings 12a and 12b.
  • the inline heater 1 is connected to a pump (not shown) via the inlet 6 la of the first flow pipe!
  • the ceramic heater 7 preferably has a sintered carbon carbide strength. This is because the sintered carbide body has a very low possibility of contaminating the object to be heated when heated to a high purity.
  • the ceramic heater 7 having carbon carbide sintered body strength can be manufactured by using, for example, a reactive sintering method or a hot press sintering method or a forming method described later.
  • the first piping block 3a also acts as a force with the piping block body 3a and the lid member 3b. Piping block
  • a groove (6a) is provided on the main surface of the ceramic block 7 side of the piping block body 3a.
  • the piping block body 3a and the lid member 3b are joined by welding or the like. Second plumber pro
  • the hook 3b has the same configuration as the first piping block 3a.
  • the formed outlet 63a of the first flow tube and the inlet 61b of the second flow tube are connected by a flexible tube or a metal tube (for example, a SUS tube) 8.
  • the first and second piping blocks 3a, 3b are made of aluminum (or stainless steel (SUS)), and can be manufactured using, for example, a forging method or a milling lathe method.
  • the insulating plates 5 and 9 are not necessarily used, but are preferably provided from the viewpoint of preventing an electrical short circuit with the ceramic heater 7.
  • Insulating plates 5 and 9 are, for example, aluminum, quartz, aluminum nitride, etc., and materials with high thermal conductivity are preferred.
  • Aluminum nitride is particularly insulative, and it also favors the viewpoint of high thermal conductivity.
  • the lid member 3b is joined to the piping block body 3b by welding or the like.
  • a second flow pipe 62b shown in FIG. 3 (c) is formed.
  • the insulating plate 5 is disposed on the formed piping block 3b. Further, as shown in FIGS. 5, 6, and 7, the ceramic heater 7, the insulating plate 9, and the piping block 3a are arranged in this order. Then, the piping blocks 3a and 3b, the insulating plates 5 and 9, and the ceramic heater 7 are fixed by screws 16a and 16b through the through holes 11a and ib provided in the ceramic heater 7.
  • the in-line heater 1 is placed on the bases 10a and 10b, and the outlet 63a of the first fluid pipe and the inlet 6 lb of the second fluid pipe are connected to the flexible tube 8 Connect with Connect wires 12a and 12b to ceramic heater 7 using bolts 16d and 16e.
  • the inline heater 1 may be covered with an outer case 14 indicated by virtuality.
  • the outer case 14 is preferably made of aluminum or SUS, for example. Thus, the inline heater 1 is formed.
  • the in-line heater 1 that works on the first embodiment includes the above-described invention-specific matters, the object to be heated introduced from the inlet 61a of the first flow pipe as shown in FIGS.
  • the second flow pipe 62b flows from the first flow pipe 62a through the flexible tube 8 and is discharged from the outlet 63b of the second flow pipe and sent to a necessary portion.
  • the object to be heated is heated from both sides of the ceramic heater 7 by flowing in the first flow pipe 62a and the second flow pipe 62b. Therefore, the heating efficiency is improved as compared with the case where the single-sided force of the ceramic heater 7 heats the object to be heated.
  • the piping blocks 3a and 3b are arranged with the ceramic heater 7 in between, and the temperature rise outside the inline heater 1 is suppressed, so there is no need to arrange heat insulating material on the outer periphery of the inline heater 1. .
  • the inline heater 1 can be reduced in size and simplified.
  • the in-line heater 1 which is useful for the first embodiment is easy to handle because there is no restriction on the power source or the like.
  • the heated object heated by the in-line heater 1 includes gas in addition to liquid.
  • FIG. 9 is a diagram showing the temperature rise characteristics when electric power of 0.9 KW, 2. OKW, and 2.9 KW is applied to the in-line heater 1 that is effective in the first embodiment.
  • the vertical axis indicates the temperature difference ⁇ between the incoming water temperature and the outgoing water temperature before being introduced into the in-line heater 1, and the horizontal axis is the elapsed time until the saturation temperature of the fluid heated by the in-line heater 1 is reached. (T) is shown.
  • the in-line heater 1 that works in the first embodiment has very good rise characteristics.
  • An in-line heater 1 that is effective in the second embodiment of the present invention shown in FIGS. 10 and 11 includes a ceramic heater 7 and a pair of piping blocks 32a and 32b arranged to face each other with the ceramic heater 7 interposed therebetween. . Further, the in-line heater 1 includes insulating plates 5 and 9 disposed between the ceramic heater 7 and the piping blocks 32a and 32b, and reflectors 100a and 100b disposed with the piping blocks 32a and 32b interposed therebetween.
  • the ceramic heater 7 is connected to a power source (not shown) via electrode plates 13a and 13b and self-wires 12a and 12b.
  • the inline heater 1 is connected to a pump (not shown) via the inlet 6 la of the first flow pipe.
  • the first piping block 32a has the same configuration as the first piping block 3a of the first embodiment, except that a quartz force is also configured. The same applies to the second piping block 32b. Since the first piping block 32a and the second piping block 32b are made of quartz, the metal-free high-purity liquid such as pure water can flow without being contaminated by impurities. An effect is obtained.
  • the reflectors 100a and 100b in addition to the heat from the ceramic heater 7, radiant heat can be used, so that an effect of improving thermal efficiency can be obtained.
  • the reflectors 10 Oa and 100b are not particularly limited as long as radiant heat can be used, but aluminum, SUS, or the like can be used. From the viewpoint of improving the utilization efficiency of radiant heat, it is preferable to provide a gold plating layer on the surfaces of the reflectors 100a and 100b.
  • a sintered carbide carbide having a free carbon content of 2 to 10% by weight Such carbonized clay
  • the bonded body can be obtained by firing a mixture of a silicon carbide powder and a nonmetallic sintering aid.
  • the carbon carbide powder will be described.
  • the carbide powder ⁇ -type,) 8-type, amorphous, or a mixture thereof can be widely used, and commercially available products may be used. Among them, type 8 carbide carbide powder is preferably used. In order to increase the density of the sintered carbide, it is better that the particle size of the used carbide powder is small.
  • the particle size force is less than ⁇ O. 01 ⁇ m, handling in processing steps such as weighing and mixing becomes difficult.
  • the particle size exceeds 10 / zm, the specific surface area of the powder, that is, contact with adjacent powder. This is not preferable because the area becomes small and high density becomes difficult.
  • high-purity silicon carbide powder is preferred because the resulting sintered carbide carbide is also highly pure.
  • a high-purity carbon carbide powder is obtained by mixing a key compound (hereinafter sometimes referred to as a “key source”), an organic material that generates carbon by heating, and a Z polymerization catalyst or a crosslinking catalyst.
  • the obtained solid can be produced by firing in a non-oxidizing atmosphere.
  • the key source liquid and solid compounds can be widely used, but at least one liquid compound is used.
  • the liquid key source include polymers of alkoxysilanes (mono-, G, tree, tetra). Among the alkoxysilane polymers, tetraalkoxysilane polymers are preferably used.
  • a solid key source that can be used in combination with a liquid key source includes carbon carbide.
  • Carbide carbides here include mono-acid silicate (SiO), diacid silicate (SiO 2), silica sol (colloidal ultrafine silica)
  • a tetraalkoxysilane oligomer having a good homogeneity and a ring ring property, or a mixture of an oligomer of tetraalkoxysilane and fine powder silica is preferable.
  • the initial impurity content is preferably 20 ppm or less. More preferably, it is 5 ppm or less.
  • a liquid material and a solid material can be used in combination.
  • An organic material having a high residual carbon ratio and capable of being polymerized or crosslinked by a catalyst or heating is preferable.
  • monomers such as phenol resin, furan resin, polyimide, polyurethane, polybulal alcohol, and prepolymers are preferred.
  • liquid materials such as cellulose, sucrose, pitch, and tar are also used.
  • resole type phenolic resin is preferable in terms of thermal decomposability and purity.
  • the purity of the organic material may be appropriately controlled according to the purpose.
  • the blending ratio of the key source and the organic material can be determined by intensifying a preferable range based on the molar ratio of carbon to key (hereinafter abbreviated as "CZSi").
  • CZSi here refers to CZSi obtained from the elemental analysis of a carbonized carbon intermediate obtained by carbonizing a mixture of a key source and an organic material at 1000 ° C. As shown in the following reaction formula, carbon reacts with oxide silicon and changes to carbonized carbide.
  • free carbon in the carbide carbide intermediate is 0%, but in practice, SiO gas and the like are volatilized, so free carbon is generated even if CZSi is lower. Since free carbon has an effect of suppressing grain growth, CZSi should be determined according to the particle size of the target powder particles, and the key source and the organic material should be blended so as to achieve the ratio. . For example, when firing a mixture of a key source and an organic material at about 1 atm and 1600 ° C or more, if carbon / Si is blended in the range of 2.0 to 2.5, free carbon is generated. Can be suppressed.
  • the blending ratio can be determined as appropriate according to the purpose. Note that the action and effect of free carbon attributed to the carbonized carbide powder is very weak compared to the action and effect of free carbon that also generates sintering aid force. The effect of the invention is not essentially affected.
  • the total amount of carbon contained in the carbonized carbide powder is preferably about 30 wt% or more and about 40 wt% or less.
  • the total carbon content of silicon carbide (SiC) is theoretically about 30% by weight. However, when it contains non-carbon impurities, it decreases from 30% by weight, and when it contains free carbon, it increases from 30% by weight.
  • the carbon carbide powder obtained by adding an organic material and firing as described above contains carbon-based impurities, so the carbon content is greater than 30% by weight. Accordingly, if the carbon content in the carbide powder is less than 30% by weight, the proportion of non-carbon impurities is high, which is not preferable in terms of purity. On the other hand, when it exceeds 40% by weight, the density of the obtained sintered carbide body is lowered, which is not preferable in terms of strength and oxidation resistance.
  • the mixture of the key source and the organic material may be cured to form a solid.
  • Curing methods include a method using a crosslinking reaction by heating, a method using a curing catalyst, and a method using electron beam or radiation.
  • the curing catalyst to be used can be appropriately selected according to the organic material to be used. However, when phenol resin or furan resin is used as the organic material, carboxylic acid such as toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, etc. And inorganic acids such as sulfuric acid and amines such as hexamine.
  • carboxylic acid such as toluenesulfonic acid, toluenecarboxylic acid, acetic acid, oxalic acid, hydrochloric acid, etc.
  • inorganic acids such as sulfuric acid and amines such as hexamine.
  • the solid material containing the key source and the organic material is
  • Carbonization is performed by heating at 800 ° C to 1000 ° C for 30 to 120 minutes in a non-acidic atmosphere such as nitrogen or argon. Furthermore, when heated at 1350 ° C to 2000 ° C in a non-oxidizing atmosphere, carbide is formed.
  • the firing temperature and firing time affect the particle size and the like of the resulting carbide powder, and may be appropriately determined. However, firing at 1600-1900 ° C is efficient and preferable.
  • the method for obtaining the high-purity silicon carbide powder described above is described in detail in JP-A-9-48605.
  • the sintered carbide body used in the present invention has a free carbon content of 2 to 10% by weight. This free carbon originates from the organic material used in the nonmetallic sintering aid, and the amount of free carbon can be reduced by adjusting the loading conditions such as the addition amount of the nonmetallic sintering aid. Can range.
  • non-metallic sintering aid a material containing an organic material that can be a free carbon source, that is, carbon is generated by heating (hereinafter sometimes referred to as "carbon source") may be used.
  • carbon source a material containing an organic material that can be a free carbon source, that is, carbon is generated by heating
  • the above organic material may be used alone or as a sintering aid with the above organic material coated on the surface of a carbide powder (particle size: about 0.01 to 1 micron). From the point of It is preferable to use an organic material alone.
  • organic materials that generate carbon by heating include coal tar pitch, pitch tar, phenol resin, furan resin, epoxy resin, phenoxy resin, saccharides, which have a high residual carbonization rate, Examples thereof include monosaccharides such as darcos, small saccharides such as sucrose, polysaccharides such as cellulose and starch, and the like.
  • the organic material is preferably liquid at room temperature, dissolved in a solvent, or softened by heating such as having thermoplasticity and heat melting properties.
  • the use of phenol resin increases the strength of the sintered carbonized carbide, and is more preferably resol type phenol resin.
  • the non-metallic sintering aid may be dissolved in an organic solvent if desired, and the solution and the carbide carbide powder may be mixed.
  • the organic solvent to be used varies depending on the non-metallic sintering aid. For example, when phenol resin is used as the sintering aid, lower alcohols such as ethyl alcohol, ethyl ether, acetone, etc. may be selected. it can.
  • high-purity silicon carbide sintered bodies not only high-purity silicon carbide powder, but also sintering aids and organic solvents with low impurity content! Favored ,.
  • the amount of the nonmetallic sintering aid added to the carbide carbide powder is determined so that the free carbon of the sintered carbide carbide is 2 to 10% by weight. If the free carbon is outside this range, the chemical change to SiC that progresses during the bonding process, and the bonding between the sintered carbide bodies becomes insufficient.
  • the content (% by weight) of free carbon is determined by heating the carbonized carbide sintered body at 800 ° C for 8 minutes in an oxygen atmosphere.
  • the measured force can be calculated.
  • the amount of sintering aid added varies depending on the type of sintering aid used and the amount of surface silica (silicon oxide) in the carbide powder.
  • the amount of surface silica (silicon oxide) of the carbide powder is quantified using hydrogen fluoride water in advance, and the stoichiometry sufficient to reduce this oxide oxide ( Calculate the stoichiometry calculated by formula (I).
  • This and non-metallic sintering aids produce carbon by heating
  • the amount added can be determined so that the free carbon falls within the above-mentioned suitable range.
  • the description of the non-metallic sintering aid for the sintered carbide carbide described above is described in more detail in the specification of Japanese Patent Application No. 9-041048.
  • a method for sintering a mixture of a carbide carbide powder and a nonmetallic sintering aid will be described.
  • the silicon carbide powder and the nonmetallic sintering aid are mixed homogeneously.
  • a solution obtained by dissolving a sintering aid in an organic solvent as described above may be used.
  • the mixing method include known methods such as a method using a mixer, a planetary ball mill and the like.
  • the equipment used for mixing is preferably a synthetic resin material in order to prevent metal element impurities from being mixed. Mixing is preferably performed for about 10 to 30 hours, particularly for about 16 to 24 hours, and mixed thoroughly. After thorough mixing, the solvent is removed and the mixture is evaporated to dryness. Thereafter, the mixture is sieved to obtain a raw material powder of the mixture. For drying, a granulator such as a spray dryer may be used.
  • the raw material powder thus obtained is placed in a molding die.
  • the molding die to be used is made of graphite because metal impurities are not mixed in the sintered carbide body.
  • the contact part is made of graphite so that the raw material powder and the metal part of the mold are not in direct contact with each other, or a polytetrafluoroethylene sheet (Teflon) is used for the contact part. (Registered trademark) sheet) can be used preferably.
  • Teflon polytetrafluoroethylene sheet
  • a high-purity graphite material for the mold and the heat insulating material in the furnace.
  • a graphite material or the like that is sufficiently baked at a temperature of 2500 ° C. or higher and does not generate impurities even when used at a high temperature can be used.
  • the raw material powder placed in the molding die is subjected to hot pressing.
  • the pressure in the hot pressing can be carried out by the pressure of a wide range of 300 ⁇ 700kgfZcm 2. However, when pressurizing at 400 kgfZcm 2 or more, it is necessary to use hot press components such as dies and punches that have excellent pressure resistance.
  • the holding time at the constant temperature varies depending on the size of the sintered carbonized carbide, and may be set appropriately.
  • the determination of whether or not the force has sufficient holding time can be based on the time point when the degree of vacuum decrease is reduced to some extent.
  • the temperature is raised from 700 ° C to 1500 ° C in 6 to 9 hours and held at 1500 ° C for about 1 to 5 hours. While the temperature is maintained at 1500 ° C., the reaction in which the oxide oxide is reduced and converted to carbide is advanced (Equation (1)).
  • Insufficient holding time is not preferable because silicon dioxide remains and adheres to the surface of the silicon carbide powder, thus preventing densification of the particles and causing large grains to grow.
  • the determination of whether the holding time is sufficient or not is based on whether the generation of by-product carbon monoxide or carbon monoxide has stopped, that is, the reduction in vacuum has stopped and the reduction reaction start temperature is 1300. It can be used as a guideline to recover to a vacuum of ° C.
  • the hot pressing is preferably performed after the inside of the furnace is heated to about 1500 ° C. at which sintering starts, and then filled with an inert gas in order to make the inside of the furnace a non-oxidizing atmosphere.
  • an inert gas it is preferable to use argon gas that is non-reactive even at high temperatures, such as nitrogen gas or argon gas. If a high-purity silicon carbide sintered body is produced, use an inert gas with a high purity.
  • the temperature forces 2000 o C ⁇ 2400 o C, pressure Caro heat and Caro the furnace so that the pressure force S300 ⁇ 700kgf / cm 2. If the maximum temperature is less than 2000 ° C, the densification is insufficient.
  • the powder or raw material of the compact may be sublimated (decomposed). It is preferable to raise the temperature from around 1500 ° C to the maximum temperature over 2 to 4 hours and hold at the maximum temperature for 1 to 3 hours. Sintering proceeds rapidly at 1850-1900 ° C and completes during the maximum temperature holding time. Further, if the pressurizing condition is less than 300 kgfZcm 2 , the densification is insufficient, and if it exceeds 700 kgfZcm 2 , the graphite mold may be damaged, which is not preferable in terms of production efficiency.
  • the pressure is 300 to prevent abnormal grains from growing. preferably pressurized with kgf / cm 2 ⁇ 700kgf / cm 2 approximately.
  • the sintered carbonized sintered body is densified, and preferably has a density of 2.9 g / cm 3 or more and a porosity of 1% or less.
  • the preferred density is 3. OgZcm 3 or more.
  • the rate is particularly preferably 0.8% or less.
  • a method for increasing the density of the sintered carbide carbide there is a method in which a forming step is performed in advance of the sintering step.
  • This molding process is performed at a lower temperature and lower pressure than the sintering process.
  • the bulky powder can be made compact (small volume) in advance, and by repeating this step many times, it becomes easy to produce a large compact.
  • An example of various conditions of the molding process performed in advance prior to the sintering process is shown below.
  • the raw material powder obtained by homogeneously mixing the silicon carbide powder and the nonmetallic sintering aid is placed in a molding die, and the temperature is 80 ° C to 300 ° C, preferably 120 ° C to 140 ° C., pressure 50 kgfZcm 2 ⁇ : LOOkgfZcm 2 is pressed for 5 to 60 minutes, preferably 20 to 40 minutes to obtain a molded body.
  • the heating temperature may be appropriately determined according to the characteristics of the nonmetallic sintering aid.
  • the density of the resulting molded product is 1.8 gZcm 2 or more when using powder with an average particle size of about 1 m, and 1 when using powder with an average particle size of 0.5 m. It is preferable to press at 5 g / cm 2 . If the density of the molded body to be used is within this range, it is preferable because it becomes easy to increase the density of the sintered carbide body. Cut the molded body so that the resulting molded body is compatible with the mold used in the s
  • Impurity elements in the sintered carbonized carbide used in the present invention (elements with atomic number of 3 or more excluding C, N, 0, Si in the periodic table of elements in the 1989 IUPAC inorganic chemical nomenclature revised edition)
  • a total content of 5 ppm or less is preferable because it can be used in processes requiring high cleanliness, for example, semiconductor manufacturing processes. More preferably, it is 3 ppm or less, and particularly preferably 1 ppm or less.
  • the impurity content by chemical analysis is actually used. It only has a meaning as a reference value in case.
  • the evaluation of the contamination property of the carbon-carbide assembly may differ depending on the force that the impurities are uniformly distributed and whether the impurities are unevenly distributed.
  • the materials specifically exemplified above and the exemplified sintering method are used, a sintered carbide body having an impurity content of 1 ppm or less can be obtained.
  • the content of impurity elements contained in the raw materials used for example, carbide carbide powder and non-metallic sintering aid
  • inactive gas is reduced.
  • Examples include a method of removing impurities by adjusting the sintering conditions such as sintering time, temperature, etc. to 1 ppm or less.
  • the impurity element here is the same as described above. In the periodic table of the 1989 IUPAC inorganic chemical nomenclature revised edition, atomic number 3 or more (except for C, N, 0, Si) )).
  • Other physical property values of the sintered carbide carbide used in the present invention are: bending strength at room temperature 550 to 800 kgfZmm 2 , Young's modulus 3.5 X 10 4 to 4.5 X 10 4 , Pickers hardness 550 to 80 OkgfZmm 2 , Poisson's ratio 0.14 to 0.21, coefficient of thermal expansion 3.8 X 10— 6 to 4.2 X 10 ” 6 1 / ° C, thermal conductivity 150 WZm'K or more, specific heat 0.15 to 0 18. & 173 ′ ° ⁇ , thermal shock resistance 500-700 AT ° C, specific resistance 1 ⁇ 'cm is preferable because various properties of the obtained carbide composite body are improved.
  • the carbide carbide sintered body of the present invention the carbide carbide sintered body described in Japanese Patent Application No. 9-041048 of the present inventors can be suitably used.
  • a sintered carbide body (porous body) suitable for a carbide carbide heater is obtained by the following process.
  • a slurry-like mixed powder is produced by dispersing a silicon carbide powder and an antifoaming agent in a solvent.
  • the mixture is stirred and mixed for 6 to 48 hours, particularly 12 to 24 hours, using a stirring and mixing means such as a mixer or a planetary ball mill. This is because the pores are not uniformly dispersed in the green body if the stirring and mixing are not sufficiently performed.
  • the obtained slurry-like mixed powder is poured into a mold for molding. Then, after leaving and demolding, the solvent is removed by heat drying or natural drying under the temperature condition of 40 ° C-60 ° C. In this way, a green body having a prescribed size, that is, a molded body of carbonized carbide containing many pores obtained by removing the slurry-like mixed powder force solvent is obtained.
  • the temperature of the obtained green body is raised from 550 ° C to 650 ° C over about 2 hours in a vacuum atmosphere. If the heating temperature is less than 550 ° C, degreasing will be insufficient. Degreasing should be completed at around 650 ° C. Therefore, it heats at the fixed temperature within the above-mentioned heating temperature range.
  • the heating rate is 300 ° CZlhr or less to prevent explosion due to rapid thermal decomposition of the binder in the compound. Then, after reaching a certain temperature, the calcined body can be obtained by maintaining the temperature for 30 minutes in a vacuum atmosphere.
  • the obtained calcined body is heated to a temperature of 1500 ° C. or higher in a nitrogen gas atmosphere.
  • the temperature is 1500. C-2000. C or 1500. C-1950.
  • the upper limit of the calothermal temperature was set to 2000 ° C because the amount of nitrogen doped in the nitrogen atmosphere reached an equilibrium state at about 2000 ° C, so heating at higher temperatures is an uneconomical force. is there. This is because the furnace breaks above 2400 ° C.
  • the heating temperature is out of the range of 1500 ° C to 2000 ° C, the strength decreases. Therefore, it is heated to a certain temperature within this temperature range.
  • the heating temperature is preferably 1700 ° C to 20000 ° C. After reaching a certain temperature, the temperature is maintained for 0.5 to 8 hours in a nitrogen gas-containing atmosphere. If the heating temperature is the same, the amount of nitrogen in the sintered carbonized carbide can be reduced by setting at least one of (a) increasing the holding time and (b) increasing the pressure (atm). To increase.
  • the pressure in the nitrogen gas atmosphere is preferably ⁇ 0.5 kg / m 2 to 0.2 kg / m 2 .
  • the nitrogen content of the embodiment of the present invention is 500 ppm or more, preferably 500 ppm to 12 OO ppm, more preferably 550 ppm to 900 ppm.
  • a heater is manufactured by forming a cylindrical sample (sintered body), slicing it in the radial direction, and then forming spiral or concentric grooves in the molded body.
  • an in-line heater that is small in size and capable of rapid heating with high power is provided.

Abstract

 小型でしかも急速加熱が可能なインラインヒータを提供する。かかるインラインヒータは、セラミックヒータと、セラミックヒータを挟んで互いに対向して配置された、流動管が形成された配管ブロック本体及び蓋部材からなる2組の配管ブロックと、を有する。

Description

明 細 書
インラインヒータ及びその製造方法
技術分野
[0001] 本発明はインラインヒータ及びその製造方法に関する。
背景技術
[0002] 液体や空気の加熱方法としては、例えば大型の加熱装置で液体を加熱し、加熱さ れた液体を、配管を介して必要部位に供給する方法等が提案されている(例えば、 特許文献 1参照。 ) oところが、大型の加熱装置と必要部位との距離が長くなると、液 体の温度が低下してしまうという問題があった。特に温度制御が必要な技術分野に お!、ては重要な問題であった。
[0003] 力かる問題を解決する手段としては、必要部位の近傍に加熱装置としてインライン ヒータを配置し、カゝかるインラインヒータで液体等の温度の微調整を行うことが提案さ れている。この場合、インラインヒータはワークスペースを確保する観点からは小型で あることが好ましぐまた液体等の温度の微調整を図るためには急速加熱できること が好ましい。し力しながら、小型でし力も急速加熱が可能なインラインヒータは見当ら なかった。
以上より、小型でし力も急速加熱が可能なインラインヒータが求められていた。 特許文献 1 :特開平 7— 129252号公報
発明の開示
[0004] 本発明は以下の記載事項に関する:
(1)セラミックヒータと、セラミックヒータを挟んで互いに対向して配置された、流動管 が形成された配管ブロック本体及び蓋部材からなる 2組の配管ブロックと、を有するィ ンラインヒータ。
(2)セラミックヒータは炭化ケィ素焼結体力もなる(1)記載のインラインヒータ。
(3)さらに、セラミックヒータと配管ブロックの間に配置された絶縁体を有する(1)又は (2)記載のインラインヒータ。
(4)配管ブロックは SUS力もなる(1)〜(3)の 、ずれかに記載のインラインヒータ。 (5)配管ブロックはアルミニウムからなる(1)〜(3)の!、ずれかに記載のインラインヒー タ。
(6)配管ブロックは石英力もなる(1)〜(3)の 、ずれかに記載のインラインヒータ。
(7)さら〖こ、配管ブロックの外側に配置されたリフレクタを有する(1)〜(6)のいずれ 力に記載のインラインヒータ。
(8)リフレクタは、表面に金メッキ層を備える(7)に記載のインラインヒータ。
図面の簡単な説明
[0005] [図 1]図 1は第 1の実施形態に力かるインラインヒータの斜視図を示す。
[図 2]図 2は第 1の実施形態に力かるインラインヒータの断面図を示す。
[図 3]図 3 (a) (b) (c)は第 1の実施形態に力かるインラインヒータの製造工程図(その
1)を示し、図 3 (a)は正面図、図 3 (b)は側面図、図 3 (c)は断面図を示す。
[図 4]図 4 (a) (b) (c)は第 1の実施形態に力かるインラインヒータの製造工程図(その
2)を示し、図 4 (a)は正面図、図 4 (b)は側面図、図 4 (c)は断面図を示す。
[図 5]図 5 (a) (b) (c)は第 1の実施形態に力かるインラインヒータの製造工程図(その
3)を示し、図 5 (a)は正面図、図 5 (b)は側面図、図 5 (c)は断面図を示す。
[図 6]図 6 (a) (b) (c)は第 1の実施形態に力かるインラインヒータの製造工程図(その
4)を示し、図 6 (a)は正面図、図 6 (b)は側面図、図 6 (c)は断面図を示す。
[図 7]図 7 (a) (b)は第 1の実施形態に力かるインラインヒータの製造工程図(その 5)を 示し、図 7 (a)は正面図、図 7 (b)は側面図を示す。
[図 8]図 8は第 1の実施形態に力かるインラインヒータの側面図を示す。
[図 9]図 9は第 1の実施形態に力かるインラインヒータの昇温特性を示す図である。
[図 10]図 10は第 2の実施形態に力かるインラインヒータの斜視図を示す。
[図 11]図 11は第 2の実施形態に力かるインラインヒータの断面図を示す。
発明を実施するための最良の形態
[0006] 以下本発明について実施形態を挙げて説明するが、本発明は以下の実施形態に 限定されない。同一又は同様の機能を有する部材については同一又は同様の符号 を付すことで説明を省略する:
(第 1の実施形態) 図 1, 8に示す本発明の第 1の実施形態に力かるインラインヒータ 1は、 セラミックヒータ 7と、
セラミックヒータ 7を挟んで対向して配置された一組の配管ブロック 3a、 3bと、を備え る。さらにインラインヒータ 1は、セラミックヒータ 7と配管ブロック 3a、 3bの間に配置さ れた絶縁板 5, 9と、を備える。セラミックヒータ 7は、電極板 13a、 13b、配線 12a, 12b を介して電源(図示せず)に接続されている。またインラインヒータ 1は、第 1の流動管 の入口 6 laを介してポンプ(図示せず)に接続されて!、る。
[0007] セラミックヒータ 7は炭化ケィ素焼結体力もなることが好ま 、。炭化ケィ素焼結体は 純度が高ぐ加熱した際に被加熱物を汚染するおそれが極めて低いからである。炭 化ケィ素焼結体力 なるセラミックヒータ 7は、例えば反応焼結法や後に説明するホッ トプレス焼結法ゃ铸込み成形法を用いて製造することができる。
[0008] 第 1の配管ブロック 3aは、配管ブロック本体 3aと蓋部材 3bと力もなる。配管ブロッ
1 2
ク 3aは、配管ブロック本体 3a上に蓋部材 3bを配置した際に、第 1の流動管 62aを
1 2
形成するように、配管ブロック本体 3aのセラミックヒータ 7側主面に、溝 (6a)を備える 。配管ブロック本体 3aと蓋部材 3bは溶接等により接合されている。第 2の配管プロ
1 2
ック 3bも、第 1の配管ブロック 3aと同様の構成を備える。形成された第 1の流動管の 出口 63aと、第 2の流動管の入口 61bとは、可撓性チューブまたは金属管(例えば S US管) 8で連結されている。第 1及び第 2の配管ブロック 3a、 3bは、アルミニウム (ま たはステンレス鋼 (SUS) )からなり、例えば铸造法やフライス旋盤法を用いて製造す ることがでさる。
[0009] 絶縁板 5、 9は、特に用いなければならないわけではないが、セラミックヒータ 7との 電気ショートを防止する観点からは設けることが好ましい。絶縁板 5, 9は例えばアル ミナ、石英、窒化アルミニウム等であり、熱伝導の高い材料が好ましぐ特に窒化アル ミニゥムが絶縁性、高熱伝導性の観点力も好ま U、。
[0010] 〔インラインヒータの製造方法〕
図 3〜8を用いたインラインヒータ 1の製造方法の説明を介して、インラインヒータ 1の 構成をより詳しく説明する。まず図 3 (a)の仮想線で示される溝 6bと、第 2の流動管の 入口 6 lbと、第 2の流動管の出口 63bとを備える SUSからなる配管ブロック本体 3b を成形する。次に配管ブロック本体 3bに蓋部材 3bを溶接等により接合する。そして
1 2
図 3 (c)に示す第 2の流動管 62bを形成する。
[0011] 続いて図 4 (a) (b) (c)に示すように、成形された配管ブロック 3bの上に絶縁板 5を 配置する。さらに、図 5, 6, 7に示すようにセラミックヒータ 7、絶縁板 9、配管ブロック 3 aの順に配置する。そして配管ブロック 3a, 3b、絶縁板 5、 9、セラミックヒータ 7に設け られた貫通孔 11a, l ibを介してビス 16a、 16bで全体を固定する。
[0012] 次に図 8に示すようにインラインヒータ 1を台座 10a, 10bに配置し、そして第 1の流 動管の出口 63aと第 2の流動管の入口 6 lbとを可撓性チューブ 8で連結する。またセ ラミックヒータ 7に配線 12a, 12bをボルト 16d、 16eを用いて接続する。さらに仮想性 で示される外部ケース 14でインラインヒータ 1を覆ってもよい。外部ケース 14は例え ばアルミニウムや SUS力もなることが好ましい。以上によりインラインヒータ 1が形成さ れる。
[0013] 第 1の実施形態に力かるインラインヒータ 1は以上の発明特定事項を備えることより 、図 1, 8に示すように第 1の流動管の入口 61aから導入された被加熱体は、第 1の流 動管 62aから可撓性チューブ 8を介して第 2の流動管 62bを流動して第 2の流動管の 出口 63bから排出されて必要部位に送られる。被加熱体は第 1の流動管 62aと第 2の 流動管 62b内を流動することで、セラミックヒータ 7の両面から加熱される。そのため、 セラミックヒータ 7の片面力も被加熱体を加熱することに比べ、加熱効率が向上する。 また片面加熱方式のヒータ装置の場合、ヒータ装置外部の温度上昇を防止するため 、ヒータの被加熱体に接する面の他面に、断熱材を配置する必要がある。第 1の実施 形態においてはセラミックヒータ 7を挟んで配管ブロック 3a、 3bが配置され、インライ ンヒータ 1外部の温度上昇が抑制されるため、インラインヒータ 1の外周に断熱材を配 置する必要がない。その結果インラインヒータ 1の小型簡略ィ匕を図ることができる。ま た第 1の実施形態に力かるインラインヒータ 1は電源等の制限がなく取り扱いが簡単 である。
[0014] インラインヒータ 1により加熱される被加熱体としては、液体の他に気体も含まれる。
液体としては例えば水、フッ素系溶剤としてガルデン、パーフルォロカーボン、フロリ ナート等が挙げられ、気体としては例えば窒素等が挙げられる。 [0015] 図 9は第 1の実施形態に力かるインラインヒータ 1に 0. 9KW、 2. OKW、 2. 9KWの 電力をかけた際の昇温特性を示す図である。図 9中、縦軸はインラインヒータ 1に導 入される前の入水温度と出水温度の温度差 ΔΤを示し、横軸はインラインヒータ 1で 昇温された流体の飽和温度に達するまでの経過時間(t)を示す。第 1の実施形態に 力かるインラインヒータ 1は、立ち上がり特性が極めて良好である。
[0016] (第 2の実施形態)
図 10、 11に示す本発明の第 2の実施形態に力かるインラインヒータ 1は、 セラミックヒータ 7と、セラミックヒータ 7を挟んで対向して配置された一組の配管ブロ ック 32a、 32bと、を備える。さらにインラインヒータ 1は、セラミックヒータ 7と配管ブロッ ク 32a、 32bの間に配置された絶縁板 5, 9と、配管ブロック 32a、 32bを挟んで配置さ れたリフレクタ 100a、 100bと、を備える。セラミックヒータ 7は、電極板 13a、 13b、酉己 線 12a, 12bを介して電源(図示せず)に接続されている。またインラインヒータ 1は、 第 1の流動管の入口 6 laを介してポンプ(図示せず)に接続されて!、る。
[0017] 第 1の配管ブロック 32aは、石英力も構成されていることを除いて、第 1の実施形態 の第 1の配管ブロック 3aと同様の構成を備える。第 2の配管ブロック 32bについても同 様である。第 1の配管ブロック 32a及び第 2の配管ブロック 32bを石英カゝら構成されて いることより、不純物に汚染されることなく純水などのメタルフリーで高純度の液体を 流すことができるという作用効果が得られる。
[0018] リフレクタ 100a、 100bを設けることにより、セラミックヒータ 7からの熱に加えて輻射 熱が利用可能となるため熱効率が向上するという作用効果が得られる。リフレクタ 10 Oa、 100bとしては、輻射熱を利用できるものであれば特に制限はないが、アルミ-ゥ ム、 SUS等を用いることができる。輻射熱の利用効率を向上させる観点からはリフレ クタ 100a、 100bの表面に金メッキ層を設けることが好ましい。
[0019] 〔ホットプレス焼結法〕
以下にインラインヒータ 1の製造に用いられる炭化ケィ素の製造方法について説明 する:
第 1の実施形態に力かるインラインヒータ 1の製造方法には、遊離炭素含有率が 2 〜10重量%の炭化ケィ素焼結体を使用することが好ましい。このような炭化ケィ素焼 結体は、炭化ケィ素粉末と、非金属系焼結助剤との混合物を焼成することにより得ら れる。まず、炭化ケィ素粉末について説明する。炭化ケィ素粉末としては、 α型、 )8 型、非晶質、あるいはこれらの混合物等を広く用いることができ、市販品を用いてもよ い。中でも )8型炭化ケィ素粉末が好適に用いられる。炭化ケィ素焼結体を高密度化 するためには、用いる炭化ケィ素粉末の粒径は小さいほうがよい。好ましくは 0. 01〜 10 μ m程度、より好ましくは 0. 05〜2 μ mである。粒径力 ^O. 01 ^ m未満であると、 計量、混合等の処理工程における取り扱いが困難となり、一方 10 /z mを超えると、粉 体の比表面積、即ち、隣接する粉体との接触面積が小さくなり、高密度化が困難とな るので好ましくない。
高純度の炭化ケィ素粉末を用いると、得られる炭化ケィ素焼結体も高純度になるの で好ましい。高純度の炭化ケィ素粉末は、例えば、ケィ素化合物(以下「ケィ素源」と いう場合がある。)と、加熱により炭素を発生する有機材料と、 Z重合触媒または架橋 触媒とを混合し、得られた固形物を非酸化性雰囲気中で焼成することにより製造する ことができる。ケィ素源としては、液状、および固体状の化合物を広く用いることがで きるが、少なくとも液状の化合物を 1種以上用いる。液状のケィ素源としては、アルコ キシシラン (モノ—、ジー、トリー、テトラー)の重合体等が挙げられる。アルコキシシラ ンの重合体の中では、テトラアルコキシシランの重合体が好適に用いられる。具体的 には、メトキシシラン、エトキシシラン、プロピロキシシラン、ブトキシシラン等が挙げら れるが、ハンドリングの点からはエトキシシランが好ましい。テトラアルコキシシラン重 合体の重合度は 2〜 15程度であると液状の低分子量重合体 (オリゴマー)となる。そ の他、重合度が高いケィ酸ポリマーで液状のものもある。液状のケィ素源と併用可能 な固体状のケィ素源としては、炭化ケィ素が挙げられる。ここにいう炭化ケィ素には、 一酸ィ匕ケィ素(SiO)、二酸ィ匕ケィ素(SiO )の他、シリカゾル (コロイド状超微細シリカ
2
含有液であって、コロイド分子内に OH基やアルコキシ基を含有するもの)、微細シリ 力、石英粉体等も含まれる。これらのケィ素源の中でも、均質性ゃノヽンドリング性が良 好であるテトラアルコキシシランのオリゴマー、またはテトラアルコキシシランのオリゴ マーと微粉体シリカとの混合物等が好ましい。また、これらのケィ素源は高純度である ことが好ましぐ具体的には初期の不純物含有量が 20ppm以下であるのが好ましぐ 5ppm以下であるのがさらに好ましい。
[0021] 加熱により炭素を生成する有機材料としては、液状のものの他、液状のものと固体 状のものを併用することもできる。残炭率が高ぐかつ触媒あるいは加熱により重合ま たは架橋する有機材料が好ましい。具体的には、フエノール榭脂、フラン榭脂、ポリイ ミド、ポリウレタン、ポリビュルアルコール等のモノマー、およびプレポリマーが好まし い。その他、セルロース、しょ糖、ピッチ、タール等の液状物も用いられる。中でもレゾ ール型フエノール榭脂が、熱分解性および純度の点で好ましい。有機材料の純度は 、目的に応じて適宜、制御すればよい。特に高純度の炭化ケィ素粉末が必要な場合 は、不純物元素の含有量が各々 5ppm未満である有機材料を用いるのが好ましい。
[0022] ケィ素源と有機材料の配合比率は、炭素とケィ素のモル比(以下「CZSi」と略記す る。)を目安に好ましい範囲をあら力じめ決定することができる。ここにいう CZSiとは 、ケィ素源と有機材料との混合物を 1000°Cにて炭化した炭化ケィ素中間体を元素 分析し、その分析値より得られる CZSiである。炭素は、以下の反応式で表わされる ように、酸化ケィ素と反応し、炭化ケィ素に変化する。
[0023] 式(I) SiO +3C→SiC + 2COに従って、化学量論的には、 CZSiが 3. 0であると
2
、炭化ケィ素中間体中の遊離炭素は 0%になるが、実際には SiOガス等が揮散する ため、 CZSiがより低い値であっても遊離炭素が発生する。遊離炭素は粒成長を抑 制する効果を有するので、目的とする粉末粒子の粒径に応じて、 CZSiを決定し、そ の比となるようにケィ素源と有機材料とを配合すればよい。例えば、約 1気圧、 1600 °C以上で、ケィ素源と有機材料との混合物を焼成する場合、 C/Siが 2. 0〜2. 5の 範囲になるように配合すると、遊離炭素の発生を抑制することができる。同条件で、 C ZSiが 2. 5を超えるように配合すると、遊離炭素の発生が顕著となり、粒子の小さな 炭化ケィ素粉末が得られる。このように、目的に応じて、配合比率を適宜決定すること ができる。尚、炭化ケィ素粉末に起因する遊離炭素の作用および効果は、焼結助剤 力も生じる遊離炭素の作用および効果と比較して非常に弱いので、炭化ケィ素粉末 に起因する遊離炭素は、本発明の効果には本質的に影響しないものである。
[0024] また、炭化ケィ素粉末に含まれる全炭素量は、約 30重量%以上約 40重量%以下 であるのが好ましい。炭化ケィ素(SiC)の全炭素含有量は理論的には約 30重量% であるが、非炭素系不純物を含有する場合は 30重量%より減少し、遊離炭素を含有 する場合は 30重量%より増加する。前述のように有機材料を添加し、焼成することに より得られた炭化ケィ素粉末は、炭素系不純物を含有するので、炭素の含有量は 30 重量%より大きくなる。従って、炭化ケィ素粉末中の炭素含有量が 30重量%未満で あると、非炭素系不純物の割合が高いこととなり、純度の点で好ましくない。一方、 40 重量%を超えると、得られる炭化ケィ素焼結体の密度が低下し、強度、耐酸化性等 の点で好ましくない。
[0025] ケィ素源と有機材料との混合物を硬化させ、固形物にすることもできる。硬化の方 法としては、加熱による架橋反応を利用する方法、硬化触媒により硬化する方法、電 子線や放射線を利用する方法等がある。用いる硬化触媒は、用いる有機材料に応じ て適宜選択できるが、フエノール榭脂、フラン榭脂を有機材料に用いた場合は、トル エンスルホン酸、トルエンカルボン酸、酢酸、蓚酸等のカルボン酸、塩酸、硫酸等の 無機酸類、へキサミン等のアミン類等が挙げられる。ケィ素源と有機材料を含有する 固形物は、必要に応じ加熱炭化される。炭化は、窒素またはアルゴン等の非酸ィ匕性 雰囲気中 800°C〜 1000°Cにて 30〜 120分間加熱することにより行われる。さらに、 非酸化性雰囲気中 1350°C〜2000°Cで加熱すると炭化ケィ素が生成する。焼成温 度と焼成時間は、得られる炭化ケィ素粉末の粒径等に影響するので、適宜決定すれ ばよいが、 1600〜1900°Cで焼成すると効率的で好ましい。以上に説明した高純度 の炭化ケィ素粉末を得る方法は、特開平 9— 48605号明細書により詳細に記載され ている。
[0026] 次に非金属系焼結助剤について説明する。本発明に用いられる炭化ケィ素焼結 体は、遊離炭素 2〜10重量%のものである。この遊離炭素は、非金属系焼結助剤に 用いられる有機材料に起因するものであり、非金属系焼結助剤の添加量等の添カロ 条件を調整することにより遊離炭素量を前述の範囲にすることができる。
[0027] 非金属系焼結助剤としては、前述したように遊離炭素源となり得る、即ち加熱により 炭素を生じる有機材料 (以下「炭素源」 ヽぅ場合がある。 )を含有するものを用いる。 前述の有機材料を単独で、または前述の有機材料を炭化ケィ素粉末 (粒径:約 0. 0 1〜1ミクロン)表面に被覆させたものを焼結助剤として用いてもよいが、効果の点から は、有機材料を単独で用いるのが好ましい。加熱により炭素を生成する有機材料とし ては、具体的には、残炭化率の高いコールタールピッチ、ピッチタール、フエノール 榭脂、フラン榭脂、エポキシ榭脂、フエノキシ榭脂の他、各種糖類、例えば、ダルコ一 ス等の単糖類、しょ糖等の小糖類、セルロース、でんぷん等の多糖類等が挙げられる 。有機材料を炭化ケィ素粉末と均質に混合するには、有機材料は常温で液状のもの 、溶媒に溶解するもの、または熱可塑性、熱融解性を有する等加熱により軟化するも のが好ましい。中でも、フエノール榭脂を用いると炭化ケィ素焼結体の強度が向上す るので好ましぐさらにレゾール型フエノール榭脂が好ましい。これらの有機材料の作 用機構は明確にはなっていないが、有機材料は加熱されると系中にカーボンブラッ ク、グラフアイトの如き無機炭素系化合物を生成する。この無機炭素系化合物が焼結 助剤として有効に作用しているものと考えられる。但し、カーボンブラック等を焼結助 剤として用いても、同様な効果は得られない。
[0028] 非金属系焼結助剤は、所望により有機溶媒に溶解し、その溶液と炭化ケィ素粉末 を混合してもよい。使用する有機溶媒は、非金属系焼結助剤により異なり、例えば、 焼結助剤としてフエノール榭脂を用いる場合は、エチルアルコール等の低級アルコ ール類、ェチルエーテル、アセトン等を選択することができる。高純度の炭化ケィ素 焼結体を作製する場合は、高純度の炭化ケィ素粉末を使用するのみならず、焼結助 剤および有機溶媒も不純物含有量の少な!/、ものを用いるのが好ま 、。
[0029] 非金属系焼結助剤の炭化ケィ素粉末に対する添加量は、炭化ケィ素焼結体の遊 離炭素が 2〜10重量%になるように決定する。遊離炭素がこの範囲外であると、接合 処理中に進行する SiCへの化学変化、および炭化ケィ素焼結体間の接合が不十分 となる。ここで、遊離炭素の含有率 (重量%)は、炭化ケィ素焼結体を酸素雰囲気下 において、 800°Cで 8分間加熱し、発生した CO
2、 COの量を炭素分析装置で測定し
、その測定値力 算出することができる。焼結助剤の添加量は、用いる焼結助剤の種 類および炭化ケィ素粉末の表面シリカ(酸化ケィ素)量によって異なる。添加量を決 定する目安としては、あらかじめ炭化ケィ素粉末の表面シリカ(酸化ケィ素)量を弗化 水素水を用いて定量し、この酸化ケィ素を還元するのに十分な化学量論 (式 (I)で算 出される化学量論)を算出する。これと、非金属系焼結助剤が加熱により炭素を生成 する割合を考慮し、遊離炭素が前述の適する範囲となるように添加量を決定すること ができる。以上に説明した炭化ケィ素焼結体の非金属系焼結助剤についての説明 は、特願平 9— 041048号明細書中により詳細に記載されている。
[0030] 次に、炭化ケィ素粉末と非金属系焼結助剤の混合物を焼結する方法について説 明する。炭化ケィ素粉末と非金属系焼結助剤は均質に混合する。均質の混合物を 得るために、前述したように焼結助剤を有機溶媒に溶解した溶液を用いてもよい。混 合方法としては、公知の方法、例えば、ミキサー、遊星ボールミル等を用いる方法が 挙げられる。混合に使用する器具は、金属元素不純物の混入を防止するため、合成 榭脂素材のものを用いるのが好ましい。混合は 10〜30時間程度、特に 16〜24時間 程度行い、十分に混合するのが好ましい。十分に混合した後、溶媒を除去し、混合 物を蒸発乾固させる。その後、篩にかけて混合物の原料粉体を得る。乾燥には、スプ レードライヤー等の造粒装置を使用してもよい。
[0031] このようにして得られた原料粉体は、成形金型中に配置される。使用する成形金型 が黒鉛製のものであると、金属不純物が炭化ケィ素焼結体中に混入しないので好ま しい。金属製の成形金型であっても、原料粉体と金型の金属部とが直接接触しない ように、接触部を黒鉛製とするか、または接触部にポリテトラフルォロエチレンシート( テフロン (登録商標)シート)を介在させれば、好適に使用できる。特に、高純度の炭 化ケィ素焼結体を製造したい場合は、金型、および炉内の断熱材等には高純度の 黒鉛材料を用いるのが好ましい。具体的には、 2500°C以上の温度で、あら力じめ十 分にベーキング処理され、高温使用しても不純物の発生がな 、黒鉛材料等が挙げら れる。
[0032] 成形金型中に配置された原料粉体は、ホットプレス加工を施される。ホットプレスの 圧力については、 300〜700kgfZcm2の広い範囲の圧力により行うことができる。伹 し、 400kgfZcm2以上で加圧する場合は、ホットプレス用の部品、例えば、ダイス、 パンチ等は耐圧性に優れたものを用いる必要がある。
[0033] ホットプレスは、 2000°C〜2400°Cにて行う力 このホットプレス加工温度までの昇 温は穏やかに、かつ段階的に行うのが好ましい。このように昇温すると、各々の温度 で生じる化学変化、状態変化等を十分に進行させることができ、その結果、不純物混 入や亀裂および空孔の発生を防止することができる。好まし 、昇温工程の一例を以 下に示す。まず、 5〜: LOgの原料粉体をいれた成形金型を炉内に配置し、炉内を 10 _4torrの真空状態にする。室温から 200°Cまで穏やかに昇温し、約 30分間 200°Cに 保つ。その後、 700°Cまで 6〜10時間で昇温し、 2〜5時間 700°Cに保つ。室温から 700°Cまでの昇温工程で、吸着水分や有機溶媒の脱離が起こり、また、非金属系焼 結助剤の炭化も進行する。一定温度の保持時間は、炭化ケィ素焼結体のサイズによ つて異なり、適宜好適な時間に設定すればよい。また、保持時間が十分である力否 かの判断は、真空度の低下がある程度少なくなる時点を目安にすることができる。次 に、 700°C〜1500°Cまで 6〜9時間で昇温し、 1〜5時間程 1500°Cに保持する。 15 00°Cに保持している間、酸化ケィ素が還元され炭化ケィ素に変化する反応が進行 する (式 (1) )。保持時間が不十分であると、二酸化ケイ素が残留し、炭化ケィ素粉末 表面に付着するので、粒子の緻密化を妨げ、大粒の成長原因となるので好ましくな い。保持時間が十分である力否かの判断は、副生成物である一酸ィ匕炭素の発生が 停止しているかを目安に、即ち、真空度の低下がおさまり、還元反応開始温度である 1300°Cの真空度まで回復して 、るかを目安にすることができる。
ホットプレスは、焼結が開始する 1500°C程度まで炉内を昇温し、次に炉内を非酸 化性雰囲気とするために、不活性ガスを充填した後行うのが好ましい。不活性ガスと しては、窒素ガス、あるいはアルゴンガス等が用いられる力 高温においても非反応 性であるアルゴンガスを用いるのが好ま 、。高純度炭化ケィ素焼結体を製造した ヽ 場合は、不活性ガスも高純度のものを用いる。炉内を非酸化性雰囲気とした後、温度 力 2000oC〜2400oC、圧力力 S300〜700kgf/cm2となるように炉内をカロ熱およびカロ 圧する。最高温度が 2000°C未満であると、高密度化が不十分となる。一方、最高温 度が 2400°Cを超えると、粉体もしくは成形体原料が昇華 (分解)する虞があるため好 ましくない。 1500°C近傍〜最高温度までの昇温は 2〜4時間かけて行い、最高温度 で 1〜3時間保持するのが好ましい。 1850〜1900°Cで焼結は急速に進行し、最高 温度保持時間中に焼結が完了する。また加圧条件が、 300kgfZcm2未満であると 高密度化が不十分となり、 700kgfZcm2を超えると黒鉛製の成形金型が破損するこ ともあり、製造効率上好ましくない。圧力は異常粒が成長するのを抑えるために、 300 kgf/cm2〜700kgf/cm2程度で加圧するのが好ましい。
[0035] 用いる炭化ケィ素焼結体は、高密度化されて 、て、密度が 2. 9g/cm3以上、気孔 率が 1%以下であると好ましぐ密度が 3. OgZcm3以上、気孔率が 0. 8%以下であ ると特に好ましい。高密度化された炭化ケィ素焼結体を用いると、得られる炭化ケィ 素接合体の曲げ強度、破壊強度等の力学的特性、および電気的物性が向上する。 また、高密度化された炭化ケィ素焼結体を用いると、構成粒子が小粒化されているの で汚染性の点でも好ましい。一方、低密度の、例えば多孔性の炭化ケィ素焼結体を 用いると、炭化ケィ素接合体の耐熱性、耐酸化性、耐薬品性、および機械的強度が 劣り、また接合強度が不十分となる場合もある。
[0036] 炭化ケィ素焼結体を高密度化する方法として、焼結工程に先立って予め成形工程 を実施する方法がある。この成形工程は、焼結工程と比較して低温低圧で行われる ものである。この焼結工程を実施すると、嵩のある粉体を予めコンパクト(小容量化) にできるので、この工程を何度も繰り返すことによって、大型の成形体が製造しやすく なる。焼結工程に先立って予め実施される成形工程の諸条件の一例を以下に示す。 炭化ケィ素粉末と非金属系焼結助剤とを、均質に混合して得られた原料粉体を成形 金型内に配置し、温度 80°C〜300°C、好ましくは 120°C〜140°C、圧力 50kgfZcm 2〜: LOOkgfZcm2で 5〜60分間、好ましくは 20〜40分間プレスして成形体を得る。 加熱温度は非金属系焼結助剤の特性に応じて、適宜決定すればよい。得られる成 形体の密度は、平均粒径 1 m程度の粉体を用いた場合は 1. 8gZcm2以上となる ように、また平均粒径 0. 5 mの粉体を用いた場合は 1. 5g/cm2となるようにプレス するのが好ましい。用いる成形体の密度がこの範囲であると、炭化ケィ素焼結体の高 密度化が容易となるので好まし 、。得られた成形体が焼結工程に用いる成形金型に 適合するように、成形体に切削加工を施してもょ ヽ。
[0037] 本発明に用いる炭化ケィ素焼結体中の不純物元素(1989年 IUPAC無機化学命 名法改訂版の元素周期表において、 C、 N、 0、 Siを除ぐ原子番号 3以上の元素) の総含有量は 5ppm以下であると、高い清浄度が要求されるプロセス、例えば、半導 体製造プロセス等にも使用し得るので好ましい。より好ましくは 3ppm以下、特に好ま しくは lppm以下である。但し、化学的分析による不純物含有量は、実際に使用する 場合の参考値としての意味を有するに過ぎない。例えば、不純物含有量は同一であ つても、不純物が均一に分布している力、局所的に偏在しているかによってその炭化 ケィ素接合体に対する汚染性の評価は異なる場合もある。尚、以上に具体的に例示 した材料、および例示した焼結方法を用いれば、不純物含有量 lppm以下の炭化ケ ィ素焼結体が得られる。また、炭化ケィ素焼結体の不純物元素含有量を減少させる には、用いる原料 (例えば、炭化ケィ素粉末と非金属系焼結助剤)、および不活性ガ スに含まれる不純物元素含有量を lppm以下にしたり、焼結時間、温度等、焼結の 諸条件を調整して不純物を除去する方法等が挙げられる。尚、ここでいう不純物元 素とは、前述と同様であり、 1989年 IUPAC無機化学命名法改訂版の周期律表に おける、原子番号 3以上(但し、 C、 N、 0、 Si、を除く。)の元素をいう。
[0038] 本発明に用いる炭化ケィ素焼結体の、その他の物性値は、室温における曲げ強度 550〜800kgfZmm2、ヤング率 3. 5 X 104〜4. 5 X 104、ピッカース硬度 550〜80 OkgfZmm2、ポアソン比 0. 14〜0. 21、熱膨張係数 3. 8 X 10— 6〜4. 2 X 10"61/°C 、熱伝導率 150WZm'K以上、比熱 0. 15〜0. 18。&173'°〇、而す熱衝撃性500〜7 00 AT°C、比抵抗 1 Ω 'cmであると、得られる炭化ケィ素接合体の諸特性が良好とな るので好ましい。尚、本発明の炭化ケィ素焼結体として、本発明者等の特願平 9— 0 41048号明細書に記載の炭化ケィ素焼結体を好適に使用することができる。
[0039] 〔铸込み成形法〕
以下の工程により炭化ケィ素ヒータに適した炭化ケィ素焼結体 (多孔体)が得られる
(1)混合粉体を得る工程
まず炭化ケィ素粉末と消泡剤を溶媒中に分散させてスラリー状の混合粉体を製造 する。次に、ミキサー、遊星ボールミルなどの攪拌混合手段を用いて、 6時間〜 48時 間、特に 12時間〜 24時間に渡って攪拌混合を行う。攪拌混合が十分に行われてい ないと、グリーン体中に気孔が均一分散されなくなるからである。
[0040] (2)グリーン体を得る工程
得られたスラリー状の混合粉体を铸込み成形用型に流し込む。その後、放置、脱型 した後、 40°C〜60°Cの温度条件下で加熱乾燥又は自然乾燥して溶媒を除去する。 このようにして規定寸法のグリーン体、即ちスラリー状の混合粉体力 溶媒を除去し て得られる多くの気孔が内在する炭化ケィ素成形体が得られる。
[0041] (3)第 1の加熱工程
得られたグリーン体を真空雰囲気下 550°C〜650°Cまで約 2時間程度かけて昇温 する。加熱温度が 550°C未満だと脱脂が不十分になる。また脱脂は 650°C前後で終 了する。そのため、前述の加熱温度範囲内の一定の温度で加熱する。昇温速度は、 配合物中のバインダーの急激な熱分解による爆裂を防止するため 300°CZlhr以下 とする。そして、一定の温度に達した後、真空雰囲気下その温度条件に 30分間保持 することで仮焼体が得られる。
[0042] (4)第 2の加熱工程
次に得られた仮焼体を、窒素ガス雰囲気下で 1500°C以上の温度まで昇温する。 好ましくは温度 1500。C〜2000。C、又は 1500。C〜1950。Cまで昇温する。カロ熱温 度の上限を 2000°Cとしたのは、窒素雰囲気においてドープされる窒素量は、 2000 °C程度で平衡状態に達するため、それ以上の温度で加熱することは不経済だ力 で ある。また 2400°C以上では炉が壊れてしまうからである。また加熱温度が 1500°C〜 2000°Cの範囲から外れると強度が低下する。そのため、この温度範囲内の一定の 温度まで加熱する。その際、強度が増加する観点からは、加熱温度を 1700°C〜20 00°Cとすることが好ましい。そして、一定の温度に達した後、窒素ガス含有雰囲気下 その温度条件に 0. 5〜8時間保持する。同じ加熱温度であれば、(a)保持時間を長 くする、(b)圧力(atm)を高くする、の少なくともいずれか一方の条件に設定すること で炭化ケィ素焼結体中の窒素量が増加する。窒素ガス雰囲気下における圧力は、 -0. 5kg/m2〜0. 2kg/m2が好ましい。
[0043] 〔炭化ケィ素焼結体 (多孔体)〕
以上の製造方法により得られた本発明の実施形態に力かるヒータ用炭化ケィ素焼 結体(多孔体)は、空隙率が 1%〜32%、好ましくは 5%〜29%である。また 100°C における抵抗力 ^O. 02 Q cm~0. 06 Ω cm、好ましくは 0. 03 Q cm~0. 05 Ω cmで あり、 100°Cにおける抵抗を Aとし、 1000°Cにおける抵抗を Bとした際に、 BZA=0 . 2〜2である。このような物性を有することから温度依存性の問題が大幅に改善され る。さらに本発明の実施形態の窒素含量は 500ppm以上、好ましくは 500ppm〜12 OOppm、より好ましくは 550ppm〜900ppmである。そのため、導電性を有すること から放電加工法により複雑形状に加工可能である。例えばヒータは、円柱状試料 (焼 結体)を形成しこれを径方向にスライス加工し、その後成形体に螺旋状や同心円状 の溝を形成することにより製造される。
[0044] 本出願は、同出願人により先にされた日本国特許出願、すなわち、 #112006- 1 12517号(出願日 2006年 4月 14日)に基づく優先権主張を伴うものであって、これ らの明細書を参照のためにここに組み込むものとする。
産業上の利用の可能性
[0045] 本発明によれば小型でし力も急速加熱が可能なインラインヒータが提供される。

Claims

請求の範囲
[1] セラミックヒータと、
前記セラミックヒータを挟んで互いに対向して配置された、流動管が形成された配 管ブロック本体及び蓋部材カ なる 2組の配管ブロックと、
を有することを特徴とするインラインヒータ。
[2] 前記セラミックヒータは炭化ケィ素焼結体力 なることを特徴とする請求項 1記載の インラインヒータ。
[3] さらに、前記セラミックヒータと前記配管ブロックの間に配置された絶縁体を有するこ とを特徴とする請求項 1又は 2記載のインラインヒータ。
[4] 前記配管ブロックは SUSからなることを特徴とする請求項 1〜3のいずれかに記載 のインラインヒータ。
[5] 前記配管ブロックはアルミニウム力 なることを特徴とする請求項 1〜3のいずれか に記載のインラインヒータ。
[6] 前記配管ブロックは石英力 なることを特徴とする請求項 1〜3のいずれかに記載 のインラインヒータ。
[7] さらに、前記配管ブロックの外側に配置されたリフレクタを有することを特徴とする請 求項 1〜6の!、ずれかに記載のインラインヒータ。
[8] 前記リフレクタは、表面に金メッキ層を備えることを特徴とする請求項 7に記載のイン ラインヒータ。
PCT/JP2007/056408 2006-04-14 2007-03-27 インラインヒータ及びその製造方法 WO2007119526A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07739846.9A EP2009365A4 (en) 2006-04-14 2007-03-27 IN-LINE HEATING DEVICE AND METHOD FOR THE PRODUCTION THEREOF
US12/297,185 US20090269044A1 (en) 2006-04-14 2007-03-27 Bridgestone corporation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006112517A JP2007183085A (ja) 2005-12-06 2006-04-14 インラインヒータ及びその製造方法
JP2006-112517 2006-04-14

Publications (1)

Publication Number Publication Date
WO2007119526A1 true WO2007119526A1 (ja) 2007-10-25

Family

ID=38609305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056408 WO2007119526A1 (ja) 2006-04-14 2007-03-27 インラインヒータ及びその製造方法

Country Status (4)

Country Link
US (1) US20090269044A1 (ja)
EP (1) EP2009365A4 (ja)
TW (1) TW200804740A (ja)
WO (1) WO2007119526A1 (ja)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104142A1 (ja) 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
WO2010113950A1 (ja) 2009-03-30 2010-10-07 ダイキン工業株式会社 ポリテトラフルオロエチレン及びその製造方法
WO2011024857A1 (ja) 2009-08-28 2011-03-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2011024856A1 (ja) 2009-08-28 2011-03-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2014084400A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2014084399A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
WO2014084397A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2015080289A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 変性ポリテトラフルオロエチレンファインパウダー及び一軸延伸多孔質体
WO2015080292A1 (ja) 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 高分子電解質膜
WO2015080290A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜
WO2019156175A1 (ja) 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
WO2019168183A1 (ja) 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020022355A1 (ja) 2018-07-23 2020-01-30 ダイキン工業株式会社 ポリテトラフルオロエチレン及び延伸体
WO2020071503A1 (ja) 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020071504A1 (ja) 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020105651A1 (ja) 2018-11-19 2020-05-28 ダイキン工業株式会社 変性ポリテトラフルオロエチレンの製造方法及び組成物
WO2020105650A1 (ja) 2018-11-19 2020-05-28 ダイキン工業株式会社 組成物及び延伸体
WO2020158940A1 (ja) 2019-02-01 2020-08-06 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020162623A1 (ja) 2019-02-07 2020-08-13 ダイキン工業株式会社 組成物、延伸体及びその製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2020218618A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法
WO2020218622A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2020218621A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 水の処理方法および組成物
WO2020218620A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
WO2020226010A1 (ja) 2019-05-09 2020-11-12 ダイキン工業株式会社 中空微粒子の製造方法及び中空微粒子
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
WO2021045228A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液
WO2021045227A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
WO2021045165A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 パーフルオロエラストマーの製造方法および組成物
WO2021131996A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2022050430A1 (ja) 2020-09-07 2022-03-10 ダイキン工業株式会社 変性ポリテトラフルオロエチレン水性分散液
WO2022191273A1 (ja) 2021-03-10 2022-09-15 ダイキン工業株式会社 塗料組成物、塗布膜、積層体および塗装物品
US11518826B2 (en) 2017-12-25 2022-12-06 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene powder

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2354704A1 (de) * 2009-12-30 2011-08-10 Rauschert Steinbach GmbH Heizeinrichtung zur Erzeugung extrem heißer Gase
GB2484321A (en) * 2010-10-06 2012-04-11 Otter Controls Ltd A thick film heater/ heat dissipater assembly associate with a flow heater flow channel.
DE112012002052T5 (de) * 2011-05-12 2014-02-20 Nxstage Medical, Inc. Fluidheizgeräte, -systeme und -verfahren
CN202126081U (zh) * 2011-05-25 2012-01-25 上海科勒电子科技有限公司 应用于厨卫产品的瞬时加热器
KR20130013710A (ko) * 2011-07-28 2013-02-06 엘지이노텍 주식회사 잉곳 성장 방법
ES2920882T3 (es) * 2014-12-24 2022-08-11 Nestle Sa Dispositivo y sistema de transferencia de calor que integra tal dispositivo
RU2017125538A (ru) * 2014-12-24 2019-01-24 Нестек С.А. Одноразовое теплообменное устройство и система, включающая такое устройство
CN106793193B (zh) * 2015-04-08 2020-08-14 无锡国威陶瓷电器有限公司 一种热敏陶瓷发热器
CN110873462B (zh) * 2018-08-29 2023-10-24 宁波方太厨具有限公司 一种带积碳提醒的燃气热水器的积碳提醒控制方法
JPWO2021241199A1 (ja) * 2020-05-28 2021-12-02

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074739A (ja) * 1993-06-16 1995-01-10 Asahi Glass Co Ltd 液体加熱装置
JPH07129252A (ja) 1993-11-09 1995-05-19 Hiroshima Nippon Denki Kk ワーク乾燥機
JPH0941048A (ja) 1995-07-26 1997-02-10 Nippon Steel Corp 含亜鉛製鉄ダストの脱亜鉛方法
JPH0948605A (ja) 1995-05-31 1997-02-18 Bridgestone Corp 炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法及び単結晶
JPH10160249A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 温水装置
JPH10318605A (ja) * 1997-05-21 1998-12-04 Matsushita Electric Ind Co Ltd 温水装置およびそれを用いた人体局部洗浄装置
JP2002151236A (ja) * 2000-11-07 2002-05-24 Sumitomo Electric Ind Ltd 流体加熱用ヒータ
JP2006112517A (ja) 2004-10-14 2006-04-27 Nsk Ltd ボールねじ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3002358C2 (de) * 1980-01-23 1981-12-17 Siemens AG, 1000 Berlin und 8000 München Elektrischer Durchlauferhitzer
TW373047B (en) * 1997-04-02 1999-11-01 Matsushita Electric Ind Co Ltd Apparatus for washing human private
AU2002313719A1 (en) * 2001-08-03 2003-02-24 Integrated Circuit Development Corporation In-line fluid heating system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH074739A (ja) * 1993-06-16 1995-01-10 Asahi Glass Co Ltd 液体加熱装置
JPH07129252A (ja) 1993-11-09 1995-05-19 Hiroshima Nippon Denki Kk ワーク乾燥機
JPH0948605A (ja) 1995-05-31 1997-02-18 Bridgestone Corp 炭化ケイ素単結晶製造用高純度炭化ケイ素粉体の製造方法及び単結晶
JPH0941048A (ja) 1995-07-26 1997-02-10 Nippon Steel Corp 含亜鉛製鉄ダストの脱亜鉛方法
JPH10160249A (ja) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd 温水装置
JPH10318605A (ja) * 1997-05-21 1998-12-04 Matsushita Electric Ind Co Ltd 温水装置およびそれを用いた人体局部洗浄装置
JP2002151236A (ja) * 2000-11-07 2002-05-24 Sumitomo Electric Ind Ltd 流体加熱用ヒータ
JP2006112517A (ja) 2004-10-14 2006-04-27 Nsk Ltd ボールねじ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2009365A4

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104142A1 (ja) 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
WO2010113950A1 (ja) 2009-03-30 2010-10-07 ダイキン工業株式会社 ポリテトラフルオロエチレン及びその製造方法
WO2011024857A1 (ja) 2009-08-28 2011-03-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2011024856A1 (ja) 2009-08-28 2011-03-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2014084400A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2014084399A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
WO2014084397A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2015080292A1 (ja) 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 高分子電解質膜
WO2015080290A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 多孔質体、高分子電解質膜、フィルター用濾材及びフィルターユニット
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜
WO2015080289A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 変性ポリテトラフルオロエチレンファインパウダー及び一軸延伸多孔質体
US11518826B2 (en) 2017-12-25 2022-12-06 Daikin Industries, Ltd. Method for producing polytetrafluoroethylene powder
WO2019156175A1 (ja) 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
WO2019168183A1 (ja) 2018-03-01 2019-09-06 ダイキン工業株式会社 フルオロポリマーの製造方法
EP4317214A2 (en) 2018-03-01 2024-02-07 Daikin Industries, Ltd. Method for manufacturing fluoropolymer
WO2019172382A1 (ja) 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2020022355A1 (ja) 2018-07-23 2020-01-30 ダイキン工業株式会社 ポリテトラフルオロエチレン及び延伸体
WO2020071503A1 (ja) 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020071504A1 (ja) 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020105650A1 (ja) 2018-11-19 2020-05-28 ダイキン工業株式会社 組成物及び延伸体
WO2020105651A1 (ja) 2018-11-19 2020-05-28 ダイキン工業株式会社 変性ポリテトラフルオロエチレンの製造方法及び組成物
WO2020158940A1 (ja) 2019-02-01 2020-08-06 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
WO2020162623A1 (ja) 2019-02-07 2020-08-13 ダイキン工業株式会社 組成物、延伸体及びその製造方法
WO2020213691A1 (ja) 2019-04-16 2020-10-22 ダイキン工業株式会社 フルオロポリマー粉末の製造方法
WO2020218618A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法
WO2020218622A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法及びフルオロポリマー水性分散液
WO2020218621A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 水の処理方法および組成物
WO2020218620A1 (ja) 2019-04-26 2020-10-29 ダイキン工業株式会社 フルオロポリマー水性分散液の製造方法、排水の処理方法、及び、フルオロポリマー水性分散液
WO2020226010A1 (ja) 2019-05-09 2020-11-12 ダイキン工業株式会社 中空微粒子の製造方法及び中空微粒子
WO2021015291A1 (ja) 2019-07-23 2021-01-28 ダイキン工業株式会社 フルオロポリマーの製造方法、ポリテトラフルオロエチレン組成物及びポリテトラフルオロエチレン粉末
WO2021045228A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液
WO2021045165A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 パーフルオロエラストマーの製造方法および組成物
WO2021045227A1 (ja) 2019-09-05 2021-03-11 ダイキン工業株式会社 組成物およびその製造方法
WO2021131996A1 (ja) 2019-12-25 2021-07-01 ダイキン工業株式会社 フルオロポリマーの製造方法
WO2022050430A1 (ja) 2020-09-07 2022-03-10 ダイキン工業株式会社 変性ポリテトラフルオロエチレン水性分散液
WO2022191273A1 (ja) 2021-03-10 2022-09-15 ダイキン工業株式会社 塗料組成物、塗布膜、積層体および塗装物品

Also Published As

Publication number Publication date
EP2009365A1 (en) 2008-12-31
US20090269044A1 (en) 2009-10-29
TW200804740A (en) 2008-01-16
EP2009365A4 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
WO2007119526A1 (ja) インラインヒータ及びその製造方法
JPH10163079A (ja) ウェハ
JP2007183085A (ja) インラインヒータ及びその製造方法
WO2004043876A1 (ja) 炭化ケイ素焼結体及びその製造方法
JP4602662B2 (ja) セラミックヒータユニット
JPH1167427A (ja) ヒーター部品
JP5303103B2 (ja) 炭化ケイ素焼結体及びその製造方法
KR101152628B1 (ko) 탄화규소/카본 복합분말과 그 복합분말을 이용하여 제조된 고순도 및 고강도의 반응소결 탄화규소
WO2006057404A1 (ja) ヒータユニット
JP4490304B2 (ja) サセプタ
JPH1067565A (ja) 炭化ケイ素焼結体及びその製造方法
JP4390872B2 (ja) 半導体製造装置用部材および半導体製造装置用部材の製造方法
JP2008143748A (ja) 反りのない炭化ケイ素焼結体及びその製造方法
JP2008074667A (ja) 炭化ケイ素焼結体シート及びその製造方法
US20060240287A1 (en) Dummy wafer and method for manufacturing thereof
JPH1179843A (ja) 炭化ケイ素構造体の製造方法および該製造方法による炭化ケイ素構造体
JP2001130971A (ja) 炭化ケイ素焼結体、及びその製造方法
JP5130099B2 (ja) 炭化ケイ素焼結体の製造方法
JP2000154063A (ja) 炭化ケイ素焼結体の製造方法
JP2002128566A (ja) 炭化ケイ素焼結体及び電極
JPH1179847A (ja) 炭化ケイ素焼結体の製造方法
JP4002325B2 (ja) 炭化ケイ素焼結体の製造方法
JPH10101432A (ja) ドライエッチング装置用部品
WO2006080423A1 (ja) モニターウェハ及びウェハのモニター方法
JP2006339056A (ja) 炭化ケイ素焼結体からなるパイプヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12297185

Country of ref document: US