WO2011024857A1 - 含フッ素重合体の製造方法 - Google Patents

含フッ素重合体の製造方法 Download PDF

Info

Publication number
WO2011024857A1
WO2011024857A1 PCT/JP2010/064381 JP2010064381W WO2011024857A1 WO 2011024857 A1 WO2011024857 A1 WO 2011024857A1 JP 2010064381 W JP2010064381 W JP 2010064381W WO 2011024857 A1 WO2011024857 A1 WO 2011024857A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
water
carbon atoms
compound
ppm
Prior art date
Application number
PCT/JP2010/064381
Other languages
English (en)
French (fr)
Inventor
井本 克彦
秀実 西井
良成 福原
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2011528823A priority Critical patent/JP5673541B2/ja
Priority to US13/392,814 priority patent/US8735492B2/en
Priority to EP10811906.6A priority patent/EP2471825B1/en
Priority to CN201080037777.5A priority patent/CN102482362B/zh
Publication of WO2011024857A1 publication Critical patent/WO2011024857A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/24Trifluorochloroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • C08F220/286Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety and containing polyethylene oxide in the alcohol moiety, e.g. methoxy polyethylene glycol (meth)acrylate

Definitions

  • the present invention relates to a method for producing a fluoropolymer using a non-fluorine compound having surface activity.
  • Fluoropolymers have excellent chemical resistance, solvent resistance, heat resistance, and antifouling properties, so as raw materials for various products that take advantage of these properties, the automotive industry, semiconductor industry, chemical industry, It is used in a wide range of industrial fields such as paint.
  • fluoropolymers are produced by emulsion polymerization, suspension polymerization or solution polymerization of fluoroolefin.
  • a surfactant is used in the emulsion polymerization method.
  • the amount of the surfactant used increases, the number of polymer particles generated at the initial stage of the emulsion polymerization increases, and the polymerization rate increases, and the fluorine-containing weight increases. Combined production efficiency is improved.
  • a large amount of surfactant is used, there is a tendency to reduce various physical properties such as water resistance of the fluoropolymer from which the surfactant is obtained. Therefore, it has been desired to develop a production method that can be efficiently polymerized in the presence of a small amount of a surfactant and that does not adversely affect various physical properties of the fluoropolymer.
  • Patent Documents 2 and 3 a production method using alkyl phosphoric acid or an ester thereof (Patent Documents 2 and 3), a method using a compound in which phosphoric acid, sulfonic acid, carboxylic acid or the like is bonded to a quaternary carbon atom. (Patent Document 4) has been proposed.
  • alkyl phosphoric acid or its ester when alkyl phosphoric acid or its ester is used, it is not always sufficient in terms of the number of generated particles, the polymerization rate, the molecular weight of the obtained polymer, the polymer concentration of the dispersion, the polymerization temperature, the polymerization pressure, etc.
  • a further increase in the number of generated particles is desired.
  • An object of the present invention is to provide a method for producing a fluorine-containing polymer having a large number of generated particles and a small particle diameter by using a specific non-fluorine compound having a surface activity.
  • the present invention Formula (1): CH 2 ⁇ CR 1 —R 2 —O— (AO) p —X (1)
  • R 1 is a hydrogen atom or an alkyl group
  • R 2 is an alkylene group having 2 or more carbon atoms
  • AO is a linear or branched oxyalkylene group having 2 to 4 carbon atoms
  • p is a positive integer
  • X is H or SO 3 Y (Y is NH 4 or an alkali metal atom); when a plurality of AO are present, they may be the same or different from each other, and may form two or more types of block structures
  • the formula (2) CH 2 ⁇ CR 3 —R 4 —O— (BO) m — (EO) n —X (2) (Wherein R 3 is an alkyl group having 1 to 10 carbon atoms; R 4 is a linear alkylene group having 2 to 10 carbon atoms; X is the same as in formula (1); BO is a butylene oxide unit; EO is CH 2 CH 2 O or CH (CH 3 ) O unit; m is preferably an integer of 0 to 50; n is an integer of 0 to 100; m + n is an integer of 1 to 150).
  • a fluorine-containing surfactant having 6 or less carbon atoms may be used in combination.
  • the fluoroolefin to be used for polymerization contains at least one fluoroolefin selected from the group consisting of vinyl fluoride, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene and chlorotrifluoroethylene. From the viewpoint of good properties and solvent resistance.
  • aqueous dispersion polymerization emulsion polymerization or suspension polymerization is preferable.
  • a fluorine-containing polymer having a large number of generated particles and a small particle diameter can be produced by using a specific non-fluorine compound having surface activity.
  • the production method of the fluoropolymer of the present invention is represented by the formula (1): CH 2 ⁇ CR 1 —R 2 —O— (AO) p —X (1)
  • R 1 is a hydrogen atom or an alkyl group
  • R 2 is an alkylene group having 2 or more carbon atoms
  • AO is a linear or branched oxyalkylene group having 2 to 4 carbon atoms
  • p is a positive integer
  • X is H or SO 3 Y (Y is NH 4 or an alkali metal atom such as K or Na); when a plurality of AO are present, they may be the same or different from each other, and two or more block structures may be used.
  • a monomer containing at least one fluoroolefin is subjected to aqueous dispersion polymerization in the presence of the compound (1) represented by (which may be formed).
  • R 1 is a hydrogen atom or an alkyl group, and an alkyl group having 1 to 10 carbon atoms, particularly a methyl group is preferred from the viewpoint of good stability of the resulting dispersion.
  • R 2 is an alkylene group having 2 or more carbon atoms, and may be linear or branched. Of these, an alkylene group having 2 to 10 carbon atoms, particularly a linear alkylene group having 2 to 4 carbon atoms is preferable from the viewpoint of good dispersion stability.
  • AO is a linear or branched oxyalkylene group having 2 to 4 carbon atoms such as ethylene oxide (—CH 2 CH 2 O—), propylene oxide, butylene oxide, tetrahydrofuran, and —CH (CH 3 ) O—. And can be obtained by a method such as addition polymerization of alkylene oxide.
  • AO is formed by addition polymerization of alkylene oxide, AO is determined by the alkylene oxide to be added.
  • a polymerization form such as alkylene oxide to be added is not limited, and may be homopolymerization of one alkylene oxide, random copolymerization, block copolymerization or random / block copolymerization of two or more alkylene oxides.
  • P is a positive integer, for example, preferably 1 to 1,000, more preferably 1 to 200, especially 10 to 40.
  • the formula (2) CH 2 ⁇ CR 3 —R 4 —O— (BO) m — (EO) n —X (2)
  • R 3 is an alkyl group having 1 to 10 carbon atoms
  • R 4 is a linear alkylene group having 2 to 10 carbon atoms
  • X is the same as in formula (1)
  • BO is a butylene oxide unit
  • EO is CH 2 CH 2 O or CH (CH 3 ) O unit
  • m is preferably an integer of 0 to 50
  • n is an integer of 0 to 100
  • m + n is an integer of 1 to 150).
  • the compound (1) include the following, but are not limited thereto. CH 2 ⁇ C (CH 3 ) CH 2 CH 2 —O— (BO) m — (EO) n —H, CH 2 ⁇ C (CH 3 ) CH 2 CH 2 —O— (BO) m — (EO) n —SO 3 NH 4 , (Wherein BO, EO, n and m are the same as those in formula (2)) are preferred.
  • the fluoroolefin polymerized by the production method of the present invention is not particularly limited, and one kind or two or more kinds can be used.
  • the fluoroolefin include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alkyl vinyl ether) (PAVE), Perfluoroolefins such as: chlorotrifluoroethylene (CTFE), vinyl fluoride (VF), vinylidene fluoride (VdF), trifluoroethylene, trifluoropropylene, pentafluoropropylene, tetrafluoropropylene, hexafluoroisobutene, etc. And perfluoroolefin.
  • PAVE include perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), and the like.
  • functional group-containing fluoroolefin monomers can be used.
  • a group; X 1 and X 2 are the same or different and each is a hydrogen atom or a fluorine atom; R f is a divalent fluorine-containing alkylene group having 1 to 40 carbon atoms or a divalent containing an ether bond having 1 to 40 carbon atoms A fluorine-containing alkylene group; and m is 0 or 1).
  • Non-perfluoroolefins include iodine-containing monomers such as perfluoro (6,6-dihydro-6-iodo-3-oxa-acid described in JP-B-5-63482 and JP-A-62-12734. Periodinated vinyl ethers such as 1-hexene) and perfluoro (5-iodo-3-oxa-1-pentene) can also be used.
  • a non-fluorinated monomer copolymerizable with a fluoroolefin may be used in combination.
  • aqueous dispersion polymerization is carried out in the presence of compound (1) (surfactant).
  • surfactant examples include emulsion polymerization and suspension polymerization.
  • emulsion polymerization is preferable from the viewpoint of producing a large number of polymer particles having a small particle diameter.
  • emulsion polymerization applied to the initial stage of seed polymerization, that is, seed particle production is preferable in that the number of particles can be increased even if the amount of the surfactant in the obtained fluoropolymer is the same.
  • the amount of compound (1) used is preferably 10 to 5000 ppm, more preferably 20 to 4000 ppm based on the total amount of water. Of these, 50 to 1000 ppm, particularly 100 to 700 ppm is preferable.
  • the amount of the compound (1) used is less than 10 ppm, the surface activity tends to decrease and the number of generated particles tends to decrease, and when it exceeds 5000 ppm, the polymerization rate tends to decrease.
  • the compound (1) can be used alone, or the emulsion polymerization proceeds sufficiently stably, but may be used in combination with other surfactants.
  • the other surfactant may be a fluorine-containing surfactant or a non-fluorine (hydrocarbon) surfactant (except for the compound of the formula (1)).
  • the fluorine-containing surfactant is preferably a fluorine-containing anionic surfactant from the viewpoint of polymerization stability.
  • fluorine-containing anionic surfactant known ones can be used.
  • US Patent Application Publication No. 2007/0015864 US Patent Application Publication No. 2007/0015865, US Patent Application Publication No. 2007/0015866.
  • No. Frets, WO 2007/119526 pamphlet, WO 2007/046482 pamphlet, those described in WO 2007/046345 pamphlet can be exemplified.
  • fluorine-containing surfactants that can be used in combination include, for example, F (CF 2 ) n COOM, CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOM, CF 3 CF 2 OCF (CF 3) CF 2 OCF (CF 3 ) COOM, CF 3 OCF (CF 3) CF 2 OCF (CF 3) COOM, H (CF 2 CF 2) 2 CH 2 OCF (CF 3) COOM, H (CF 2) m COOM, C 6 F 13 CH 2 CH 2 SO 3 M, F (CF 2 CF 2 ) p CH 2 CH 2 SO 3 M, F (CF 2 CF 2 ) q CH 2 CH 2 SO 4 M (where M Is a monovalent cation; n is an integer of 2 to 5; m is an integer of 2 to 10; p is an integer of 2 to 10; q is an integer of 2 to 10).
  • fluorine-containing surfactants having 6 or less carbon atoms can increase the concentration of the fluorine-containing polymer in the resulting polymerization product liquid and can be stably dispersed. It is preferable because it can be used as a liquid.
  • the amount of other surfactants that can be used in combination is, for example, in the case of emulsion polymerization, the total amount with compound (1) is preferably 10 to 5000 ppm, more preferably 20 to 4000 ppm, based on the total amount of water.
  • the total amount of the compound (1) and the other surfactant is less than 10 ppm, the surface active ability tends to decrease and the number of generated particles tends to decrease, and when it exceeds 5000 ppm, the polymerization rate tends to decrease. .
  • examples of the surfactant that can be used in combination include a fluorine-containing reactive surfactant composed of a fluorine-containing compound having a radical polymerizable unsaturated bond and a hydrophilic group in the molecule.
  • the fluorine-containing reactive surfactant can constitute a part of the polymer chain of the polymer when it is present in the reaction system during the polymerization.
  • a fluorine-containing compound described in JP-A-8-67795 can be used.
  • Polymerization temperature is not particularly limited, and an optimum temperature is employed according to the type of polymerization initiator. However, if it is too high, the monomer density in the gas phase part may easily decrease or a branching reaction of the polymer may occur, and the desired copolymer may not be obtained. It may slow down and lead to a decrease in production efficiency.
  • the temperature is preferably 40 to 120 ° C, more preferably 50 to 100 ° C.
  • Monomer may be supplied continuously or sequentially.
  • oil-soluble peroxides can also be used. These typical oil-soluble initiators such as diisopropyl peroxydicarbonate (IPP) and di-n-propyl peroxydicarbonate (NPP) These peroxycarbonates have a risk of explosion and the like, are expensive, and have a problem that scales easily adhere to the wall of the polymerization tank during the polymerization reaction. In order to further reduce the compression set of the fluoropolymer, it is preferable to use a water-soluble radical polymerization initiator.
  • IPP isopropyl peroxydicarbonate
  • NPP di-n-propyl peroxydicarbonate
  • water-soluble radical polymerization initiator In order to further reduce the compression set of the fluoropolymer, it is preferable to use a water-soluble radical polymerization initiator.
  • water-soluble radical polymerization initiator examples include persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, ammonium percarbonate, potassium salt, sodium salt, and the like. Particularly, ammonium persulfate and potassium persulfate are used. preferable.
  • the addition amount of the polymerization initiator is not particularly limited, but it is added all at once in the initial stage of polymerization, sequentially or continuously, such that the polymerization rate is not significantly reduced (for example, several ppm to water concentration). do it.
  • the upper limit is a range in which the heat of polymerization reaction can be removed from the surface of the apparatus.
  • a molecular weight modifier or the like may be further added.
  • the molecular weight modifier may be added all at once in the initial stage, or may be added continuously or dividedly.
  • the molecular weight regulator examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride, cyclohexane, mono Examples thereof include iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, diiodomethane, 1,2-diiodomethane, 1,3-diiodopropane and the like.
  • a buffering agent or the like may be added as appropriate, but the amount is preferably used within a range not impairing the effects of the present invention.
  • the polymerization pressure may be appropriately selected within the range of 0.1 to 10 MPa, and further 0.2 to 8 MPa, and within this range, the pressure may be low (0.1 to 1 MPa) or high (1 to 10 MPa).
  • the stirring means for example, anchor blades, turbine blades, inclined blades and the like can be used, but stirring with a large blade called a full zone or max blend is preferable from the viewpoint of good monomer diffusion and polymer dispersion stability.
  • the stirring device may be a horizontal stirring device or a vertical stirring device.
  • the concentration of the fluoropolymer in the polymerization product liquid is increased.
  • a stable fluoropolymer dispersion can be obtained even when the fluoropolymer concentration is about 45% by mass.
  • a fluorine-containing anionic surfactant having 6 or less carbon atoms is used in combination, a dispersion of a fluorine-containing polymer having a high concentration exceeding 45% by mass, for example, 45 to 55% by mass, should be obtained in a stable state. Can do.
  • the equipment and measurement conditions used for the evaluation of characteristics are as follows.
  • Average particle size measuring device Microtrack UPA manufactured by HONEYWELL Measurement method: dynamic light scattering method
  • the emulsion to be measured is diluted to a concentration measurable with pure water to make a sample, and measurement is performed at room temperature.
  • the number average diameter of the obtained data is defined as the particle diameter.
  • Example 1 In a 2 L stainless steel autoclave, 500 g of ion exchange water, formula: CH 2 ⁇ C (CH 3 ) —CH 2 CH 2 —O— (BO) 6 — (EO) 10 —SO 3 NH 4 (In the formula, BO is the same as formula (2), EO is CH 2 CH 2 O, and so on) 0.10 g (200 ppm / water (water as a polymerization medium; the same applies hereinafter)) of the compound (1-1) represented by the formula (1) was charged, and the system was sufficiently replaced with nitrogen gas, and then the pressure was reduced.
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer.
  • the number average molecular weight and weight average molecular weight measured by GPC were 2.50 ⁇ 10 4 and 10.01 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 4.00.
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer.
  • the number average molecular weight and weight average molecular weight measured by GPC were 1.40 ⁇ 10 4 and 9.20 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 6.57.
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer.
  • the number average molecular weight and weight average molecular weight measured by GPC were 7.81 ⁇ 10 3 and 7.54 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 9.65.
  • This dispersion 200g was frozen at -10 ° C for 24 hours for coagulation.
  • the obtained coagulated product was washed with water and dried to obtain a fluoropolymer. Since this fluoropolymer does not dissolve in THF, the molecular weight using GPC could not be measured.
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer. The number average molecular weight and the weight average molecular weight measured by GPC of this fluoropolymer were 3.86 ⁇ 10 4 and 7.71 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 2.00.
  • Example 4 A 2 L stainless steel autoclave was charged with 500 g of ion-exchanged water and 0.10 g (200 ppm / water) of the above compound (1-2), and the system was sufficiently replaced with nitrogen gas, and then the pressure was reduced. Subsequently, VdF was injected into the polymerization tank so that the internal pressure was 0.75 to 0.80 MPa, and the temperature was raised to 70 ° C.
  • VdF VdF homopolymer
  • the average particle diameter of the obtained PVdF was 345 nm, and the number of particles in the dispersion was 1.02 ⁇ 10 12 (pieces / 1 g of water).
  • Example 6 A 2 L stainless steel autoclave was charged with 1000 g of ion-exchanged water and 0.4 g (400 ppm / water) of the compound (1-2), and the system was sufficiently replaced with nitrogen gas, and then the pressure was reduced. Subsequently, VdF was injected into the polymerization tank so that the internal pressure became 2.3 to 2.5 MPa, and the temperature was raised to 70 ° C.
  • VdF VdF homopolymer
  • the average particle diameter of the obtained PVdF was 118.5 nm, and the number of particles in the dispersion was 6.62 ⁇ 10 13 (pieces / water 1 g).
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer.
  • the number average molecular weight and weight average molecular weight measured by GPC of this fluoropolymer were 2.02 ⁇ 10 4 and 9.93 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 4.92.
  • Coagulation was carried out by freezing 200 g of this dispersion at ⁇ 10 ° C. for 24 hours. The obtained coagulated product was washed with water and dried to obtain a fluoropolymer.
  • the number average molecular weight and weight average molecular weight measured by GPC of this fluoropolymer were 1.23 ⁇ 10 4 and 7.14 ⁇ 10 4 , respectively, and the molecular weight distribution Mw / Mn was 5.80.
  • Comparative Example 3 In a 2 L stainless steel autoclave, ion exchange water 1000 g 0.5% ammonium perfluorohexanoate 50% aqueous solution (ammonium perfluorohexanoate concentration 1000 ppm / water) was charged, and the system was thoroughly replaced with nitrogen gas. Reduced pressure. Subsequently, VdF was injected into the polymerization tank so that the internal pressure was 0.75 to 0.80 MPa, and the temperature was raised to 70 ° C.

Abstract

 界面活性能を有する特定の非フッ素系化合物を用いて、発生粒子数が多くかつ粒子径の小さい含フッ素重合体を製造する方法であって、CH2=CR1-R2-O-(AO)p-X(式中、R1は水素原子またはアルキル基;R2は炭素数2以上のアルキレン基;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;pは正の整数;XはHまたはSO3Y(YはNH4またはアルカリ金属原子);AOが複数個存在する場合は同一でも互いに異なっていてもよく、また、2種以上のブロック構造を形成していてもよい)で示される化合物(1)の存在下に少なくとも1種のフルオロオレフィンを含む単量体を水性分散重合することを特徴とする含フッ素重合体の製造方法を提供する。

Description

含フッ素重合体の製造方法
 本発明は、界面活性能を有する非フッ素系化合物を用いる含フッ素重合体の製造方法に関する。
 含フッ素重合体は、その卓越した耐薬品性、耐溶剤性、耐熱性、防汚性を示すことから、これらの特性を活かした各種の製品の原料として、自動車工業、半導体工業、化学工業、塗料等の広い産業分野において使用されている。
 これらの含フッ素重合体の製造は、フルオロオレフィンを乳化重合、懸濁重合または溶液重合することにより行なわれている。通常、乳化重合法では界面活性剤が使用されるが、界面活性剤の使用量が多くなるほど、乳化重合の初期に生成する重合体粒子の数が増え、その重合速度は早くなり、含フッ素重合体の生産効率が向上する。しかし、界面活性剤を多量に使用した場合、界面活性剤が得られた含フッ素重合体の耐水性などの諸物性を低下させる傾向がある。そのため、従来から、少量の界面活性剤の存在下で、効率よく重合ができ、かつ、含フッ素重合体の諸物性に悪影響を与えることのない製造方法の開発が望まれていた。
 このような、状況下、含フッ素重合体の乳化重合で一般的に使用されている、高価な、パーフルオロオクタン酸アンモニウムの代替を目的として、直鎖の脂肪族スルホン酸塩系の界面活性剤を使用した含フッ素重合体の製造方法が提案されている(特許文献1)。しかし、この方法では発生粒子数が少ないという問題がある。
 また、非フッ素系の界面活性剤として、アルキルリン酸またはそのエステルを用いる製造方法(特許文献2、3)、4級炭素原子にリン酸やスルホン酸、カルボン酸などが結合した化合物を用いる方法(特許文献4)などが提案されている。
 しかし、アルキルリン酸またはそのエステルを用いる場合、発生粒子数、重合速度、得られた重合体の分子量、ディスパージョンのポリマー濃度、重合温度、重合圧などの点で必ずしも十分とは言えず、また、4級炭素原子にリン酸やスルホン酸、カルボン酸などが結合した化合物を用いる方法では発生粒子数の更なる増加が望まれる。
米国特許第6512063号明細書 米国特許出願公開第2007/0032591号明細書 米国特許出願公開第2007/0018783号明細書 国際公開第2005/063827号パンフレット
 本発明は、界面活性能を有する特定の非フッ素系化合物を用いて、発生粒子数が多くかつ粒子径の小さい含フッ素重合体を製造する方法を提供することを目的とする。
 すなわち本発明は、
式(1):
 CH2=CR1-R2-O-(AO)p-X     (1)
(式中、R1は水素原子またはアルキル基;R2は炭素数2以上のアルキレン基;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;pは正の整数;XはHまたはSO3Y(YはNH4またはアルカリ金属原子);AOが複数個存在する場合は同一でも互いに異なっていてもよく、また、2種以上のブロック構造を形成していてもよい)で示される化合物(1)の存在下に少なくとも1種のフルオロオレフィンを含む単量体を水性分散重合することを特徴とする含フッ素重合体の製造方法に関する。
 化合物(1)としては、式(2):
 CH2=CR3-R4-O-(BO)m-(EO)n-X     (2)
(式中、R3は炭素数1~10のアルキル基;R4は炭素数2~10の直鎖状のアルキレン基;Xは式(1)と同じ;BOはブチレンオキサイド単位;EOはCH2CH2OまたはCH(CH3)O単位;mは0~50の整数;nは0~100の整数;m+nは1~150の整数)で示される化合物(2)であることが好ましい。
 また、炭素数が6以下の含フッ素界面活性剤を併用してもよい。
 重合に供するフルオロオレフィンとしては、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンよりなる群れから選ばれる少なくとも1種のフルオロオレフィンを含むことが、耐光性、耐薬品性、耐溶剤性が良好な点から好ましい。
 特に、フッ化ビニリデン、テトラフルオロエチレンおよびクロロトリフルオロエチレンの重合、または、フッ化ビニリデンおよびヘキサフルオロプロピレンの重合に有効である。
 水性分散重合としては、乳化重合または懸濁重合が好ましい。
 本発明によれば、界面活性能を有する特定の非フッ素系化合物を用いることにより、発生粒子数が多くかつ粒子径の小さい含フッ素重合体を製造することができる。
 本発明の含フッ素重合体の製造方法は、式(1):
 CH2=CR1-R2-O-(AO)p-X     (1)
(式中、R1は水素原子またはアルキル基;R2は炭素数2以上のアルキレン基;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;pは正の整数;XはHまたはSO3Y(YはNH4またはアルカリ金属原子、たとえばKまたはNaなど);AOが複数個存在する場合は同一でも互いに異なっていてもよく、また、2種以上のブロック構造を形成していてもよい)で示される化合物(1)の存在下に少なくとも1種のフルオロオレフィンを含む単量体を水性分散重合することを特徴とする。
 式(1)において、R1は水素原子またはアルキル基であり、得られる分散液の安定性が良好な点から炭素数1~10のアルキル基、特にメチル基が好ましい。
 式(1)において、R2は炭素数2以上のアルキレン基であり、直鎖状でも分岐鎖状でもよい。なかでも、分散液の安定性が良好な点から、炭素数2~10のアルキレン基、特に炭素数2~4の直鎖状のアルキレン基が好ましい。
 AOは、エチレンオキサイド(-CH2CH2O-)、プロピレンオキサイド、ブチレンオキサイド、テトラヒドロフラン、-CH(CH3)O-などの炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基であり、アルキレンオキシドを付加重合するなどの方法により得ることができる。AOがアルキレンオキシドの付加重合により形成される場合は、付加されるアルキレンオキシドなどによりAOが決定される。付加されるアルキレンオキシドなどの重合形態は限定されず、1種のアルキレンオキシドの単独重合、2種以上のアルキレンオキシドのランダム共重合、ブロック共重合またはランダム/ブロック共重合であってもよい。
 pは正の整数であり、たとえば1~1,000、さらには1~200、特に10~40が好ましい。
 特に、化合物(1)としては、式(2):
 CH2=CR3-R4-O-(BO)m-(EO)n-X     (2)
(式中、R3は炭素数1~10のアルキル基;R4は炭素数2~10の直鎖状のアルキレン基;Xは式(1)と同じ;BOはブチレンオキサイド単位;EOはCH2CH2OまたはCH(CH3)O単位;mは0~50の整数;nは0~100の整数;m+nは1~150の整数)で示される化合物(2)であることが好ましい。
 化合物(1)の具体例としては、つぎのものが例示できるが、これらに限定されるものではない。
 CH2=C(CH3)CH2CH2-O-(BO)m-(EO)n-H、
 CH2=C(CH3)CH2CH2-O-(BO)m-(EO)n-SO3NH4
(式中、BO、EO、nおよびmは式(2)と同じ)で示される化合物が好ましい。
 本発明の製造方法で重合するフルオロオレフィンは特に限定されず、1種または2種以上が使用できる。フルオロオレフィンとしては、たとえばテトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)、
Figure JPOXMLDOC01-appb-C000001
などのパーフルオロオレフィン;クロロトリフルオロエチレン(CTFE)、フッ化ビニル(VF)、フッ化ビニリデン(VdF)、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、テトラフルオロプロピレン、ヘキサフルオロイソブテンなどの非パーフルオロオレフィンがあげられる。PAVEとしてはパーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)などがあげられる。
 また、官能基含有フルオロオレフィンモノマーも使用できる。官能基含有フルオロオレフィンとしては、たとえば式(3):
 CX1 2=CX2-(Rf)m-Y1     (3)
(式中、Y1は-OH、-COOH、-SO2F、-SO32(M2は水素原子、NH4基またはアルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基またはシアノ基;X1およびX2は同じかまたは異なりいずれも水素原子またはフッ素原子;Rfは炭素数1~40の2価の含フッ素アルキレン基または炭素数1~40のエーテル結合を含有する2価の含フッ素アルキレン基;mは0または1)で示される化合物があげられる。
 具体例としては、たとえば
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
などがあげられる。
 非パーフルオロオレフィンとしては、ヨウ素含有モノマー、たとえば特公平5-63482号公報や特開昭62-12734号公報に記載されているパーフルオロ(6,6-ジヒドロ-6-ヨード-3-オキサ-1-ヘキセン)、パーフルオロ(5-ヨード-3-オキサ-1-ペンテン)などのパーフルオロビニルエーテルのヨウ素化物も使用できる。
 本発明においては、フルオロオレフィンと共重合可能な非フッ素系単量体を併用してもよい。
 本発明では、化合物(1)(界面活性剤)の存在下で水性分散重合を行なう。水性分散重合としては、乳化重合または懸濁重合が例示でき、特に粒子径の小さい重合体粒子を多数生成させる点から、乳化重合が好適である。特に、得られた含フッ素重合体中の界面活性剤が同量であっても、粒子数を多くできる点で、シード重合の初期、すなわちシード粒子の製造に適用する乳化重合が好適である。
 化合物(1)の使用量は、たとえば乳化重合の場合、水の全量に対し、10~5000ppmが好ましく、20~4000ppmがより好ましい。なかでも、50~1000ppm、特に100~700ppmが好ましい。前記化合物(1)の使用量が、10ppm未満であると、界面活性能が小さくなり発生粒子数が少なくなる傾向にあり、5000ppmを超えると、重合速度が低下する傾向にある。
 また、前記化合物(1)は単独で使用しても十分に乳化重合が安定して進むが、他の界面活性剤と併用してもよい。
 他の界面活性剤としては含フッ素界面活性剤でも非フッ素(炭化水素)界面活性剤(ただし、前記式(1)の化合物は除く)でもよい。
 含フッ素界面活性剤としては、重合安定性の観点から、含フッ素アニオン性界面活性剤が好ましい。
 含フッ素アニオン性界面活性剤としては、公知のものが使用でき、たとえば米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号パンフレット、国際公開第2008/060461号パンフレット、国際公開第2007/046377号パンフレット、国際公開第2007/119526号パンフレット、国際公開第2007/046482号パンフレット、国際公開第2007/046345号パンフレットに記載されたものが例示できる。
 併用できる、具体的な含フッ素界面活性剤としては、たとえばF(CF2nCOOM、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COOM、CF3CF2OCF(CF3)CF2OCF(CF3)COOM、CF3OCF(CF3)CF2OCF(CF3)COOM、H(CF2CF22CH2OCF(CF3)COOM、H(CF2mCOOM、C613CH2CH2SO3M、F(CF2CF2pCH2CH2SO3M、F(CF2CF2qCH2CH2SO4M(式中、Mは1価のカチオン;nは2~5の整数;mは2~10の整数;pは2~10の整数;qは2~10の整数)などがあげられる。
 なかでも、炭素数6以下の含フッ素界面活性剤、特に炭素数6以下の含フッ素アニオン性界面活性剤が、得られる重合生成液中の含フッ素重合体の濃度を高くでき、かつ安定な分散液とすることができる点から好ましい。
 また、非フッ素(炭化水素)界面活性剤としては、たとえばCH3(CH2rSO3M、CH3(CH2sSO4M、CH3(CH2tCOOM、H(CH2uCOO(CH2CH2O)vH、(NaSO3)CH((CH2wCH3)((CH2xCH3)(式中、Mは1価のカチオン;rは2~16の整数;sは2~16の整数;tは2~16の整数;uは2~40の整数;vは2~45の整数;w+x=10~20)などの炭化水素界面活性剤があげられる。
 併用可能な他の界面活性剤の使用量は、たとえば乳化重合の場合、化合物(1)との合計量が、水の全量に対し、10~5000ppmが好ましく、20~4000ppmがより好ましい。前記化合物(1)と他の界面活性剤の合計量が、10ppm未満であると、界面活性能が小さくなり発生粒子数が少なくなる傾向にあり、5000ppmを超えると重合速度が低下する傾向にある。
 また、併用できる界面活性剤として、分子中にラジカル重合性不飽和結合と親水基とを有する含フッ素化合物からなる含フッ素反応性界面活性剤もあげることができる。含フッ素反応性界面活性剤は、重合時に反応系に存在させた場合、重合体のポリマー鎖の一部分を構成することができる。
 反応性界面活性剤としては、たとえば、特開平8-67795号公報に記載されている含フッ素化合物を用いることができる。
 重合温度は特に制限はなく、重合開始剤の種類にしたがって最適な温度が採用される。ただ、高くなりすぎると気相部分でのモノマー密度が容易に低下したり、ポリマーの分岐反応が生じたりし、目的とする共重合体が得られないことがあり、低くなりすぎると重合速度が遅くなり、生産効率の低下に繋がることがある。好ましくは40~120℃、さらに好ましくは50~100℃とする。
 単量体の供給は連続的であっても逐次供給してもよい。
 重合開始剤としては、油溶性の過酸化物も使用できるが、これらの代表的な油溶性開始剤であるジイソプロピルパーオキシジカーボネート(IPP)やジ-n-プロピルパーオキシジカーボネート(NPP)などのパーオキシカーボネート類は爆発などの危険性があるうえ、高価であり、しかも重合反応中に重合槽の壁面などにスケールの付着を生じやすいという問題がある。フルオロポリマーの圧縮永久歪みをよりいっそう低下させるためには、水溶性ラジカル重合開始剤を使用することが好ましい。水溶性ラジカル重合開始剤としては、たとえば過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸のアンモニウム塩、カリウム塩、ナトリウム塩などが好ましくあげられ、特に過硫酸アンモニウム、過硫酸カリウムが好ましい。
 重合開始剤の添加量は特に限定されないが、重合速度が著しく低下しない程度の量(たとえば数ppm対水濃度)以上を、重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は装置面から重合反応熱を除熱できる範囲である。
 本発明の製造方法において、さらに分子量調整剤などを添加してもよい。分子量調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい。
 分子量調整剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素、シクロヘキサン、モノヨードメタン、1-ヨードメタン、1-ヨードプロパン、ヨウ化イソプロピル、ジヨードメタン、1,2-ジヨードメタン、1,3-ジヨードプロパンなどがあげられる。
 そのほか緩衝剤などを適宜添加してもよいが、その量は本発明の効果を損なわない範囲で用いることが好ましい。
 重合圧力は0.1~10MPa、さらには0.2~8MPaの範囲で適宜選択すればよく、この範囲内であれば、低圧(0.1~1MPa)でも高圧(1~10MPa)でもよい。
 攪拌手段としては、たとえばアンカー翼、タービン翼、傾斜翼なども使用できるが、モノマーの拡散とポリマーの分散安定性が良好な点からフルゾーンやマックスブレンドと呼ばれる大型翼による攪拌が好ましい。攪拌装置としては横型攪拌装置でも縦型攪拌装置でもよい。
 本発明の製造方法によれば、重合生成液中の含フッ素重合体濃度を高くしても安定して得ることができる。たとえば式(1)の化合物を単独で使用した場合では、含フッ素重合体濃度が約45質量%においても安定した含フッ素重合体のディスパージョンを得ることができるが、含フッ素界面活性剤、特に炭素数6以下の含フッ素アニオン性界面活性剤を併用するときは、45質量%を超えた高濃度、たとえば45~55質量%の濃度の含フッ素重合体のディスパージョンを安定した状態で得ることができる。
 つぎに実施例をあげて本発明を具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。
 なお、特性の評価に使用した装置および測定条件は以下のとおりである。
(1)平均粒子径
測定装置:HONEYWELL社製のマイクロトラックUPA
測定方法:動的光散乱法
 測定する乳濁液を純水で計測可能な濃度に希釈して試料とし、室温にて測定を行う。得られたデータの個数平均径を粒子径とする。
(2)粒子数
 計算方法:(1)で求めた平均粒子径と固形分含有量から、重合体比重を1.8として計算する。
(3)NMR分析:
NMR測定装置:VARIAN社製
1H-NMR測定条件:400MHz(テトラメチルシラン=0ppm)
19F-NMR測定条件:376MHz(トリクロロフルオロメタン=0ppm)
(4)分子量分析:
 昭和電工製Shodex GPC-104を使用し、標準ポリスチレン換算の重量平均分子量および数平均分子量を求める。
 測定条件
  キャリア:テトラヒドロフラン(THF)
  流速:0.6ml/min
  カラム温度:40℃
  試料:測定する樹脂の3%THF溶液
実施例1
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、式:
CH2=C(CH3)-CH2CH2-O-(BO)6-(EO)10-SO3NH4
(式中、BOは式(2)と同じ、EOはCH2CH2O。以下同様)
で示される化合物(1-1)0.10g(200ppm/水(重合媒体としての水。以下同様))を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75~0.80MPaとなるようにVdF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が0.75~0.80MPaを維持するように供給した。重合開始から2時間5分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度10.6質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/CTFE=70.0/12.5/17.5(モル%)であった。また、得られた含フッ素重合体の平均粒径は85.3nmであり、上記ディスパージョン中の粒子数は、2.11×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。GPCにより測定した数平均分子量および重量平均分子量はそれぞれ2.50×104および10.01×104であり、分子量分布Mw/Mnは4.00であった。
実施例2
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、式:
CH2=C(CH3)-CH2CH2-O-(BO)6-(EO)20-H
で示される化合物(1-2)0.10g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.60~0.65MPaとなるようにVdF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が0.60~0.65MPaを維持するように供給した。重合開始から2時間50分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度11.5質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/CTFE=70.9/12.1/17.0(モル%)であった。また、得られた含フッ素重合体の平均粒径は78.7nmであり、上記ディスパージョン中の粒子数は、2.83×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。またGPCにより測定した数平均分子量および重量平均分子量はそれぞれ1.40×104および9.20×104であり、分子量分布Mw/Mnは6.57であった。
比較例1
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、式:
NaSO3CH((CH2mCH3)((CH2nCH3
(m+n=14~17の混合物)で示される化合物0.1g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.60~0.65MPaとなるようにVdF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が0.60~0.65MPaを維持するように供給した。重合開始から3時間7分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度10.2質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/CTFE=72.2/12.8/15.0(モル%)であった。また、得られた含フッ素重合体の平均粒径は160.8nmであり、上記ディスパージョン中の粒子数は、2.90×1013(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。またGPCにより測定した数平均分子量および重量平均分子量はそれぞれ7.81×103および7.54×104であり、分子量分布Mw/Mnは9.65であった。
比較例2
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、パーフルオロオクタン酸アンモニウム50%水溶液0.50g(パーフルオロオクタン酸アンモニウムの濃度1000ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が1.00~1.10MPaとなるようにVdF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、60℃に昇温した。
 ついで過硫酸アンモニウム(APS)0.20g(400ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が1.00~1.10MPaを維持するように供給した。また、3時間が経過した時点でAPS0.20g(400ppm/水)を窒素ガスで圧入した。重合開始から8時間後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度25.5質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/CTFE=78.5/11.4/10.1(モル%)であった。また、得られた含フッ素重合体の平均粒径は115nmであり、上記ディスパージョン中の粒子数は、2.23×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。この含フッ素重合体はTHFに溶解しないため、GPCを用いての分子量は測定できなかった。
実施例3
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、前記化合物(1-2)0.10g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75~0.80MPaとなるようにVdF/HFP(=78/22モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/HFP(=78/22モル%)混合単量体を内圧が0.75~0.80MPaを維持するように供給した。重合開始から5時間6分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度10.1質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/HFP=86.7/13.3(モル%)であった。また、得られた含フッ素重合体の平均粒径は55.0nmであり、上記ディスパージョン中の粒子数は、7.16×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。この含フッ素重合体のGPCにより測定した数平均分子量および重量平均分子量はそれぞれ3.86×104および7.71×104であり、分子量分布Mw/Mnは2.00であった。
実施例4
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、前記化合物(1-2)0.10g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75~0.80MPaとなるようにVdFを圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.00g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdFを内圧が0.75~0.80MPaを維持するように供給した。重合開始から8時間31分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度3.8質量%のVdFの単独重合体(PVdF)のディスパージョンを得た。
 得られたPVdFの平均粒径は345nmであり、上記ディスパージョン中の粒子数は、1.02×1012(個/水1g)であった。
実施例5
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、前記化合物(1-2)0.10g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.80MPaとなるようにVdF/TFE/HFP(=50/20/30モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.00g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/HFP(=50/20/30モル%)混合単量体を内圧が0.80MPaを維持するように供給した。重合開始から4時間30分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度6.6質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/HFP=60.6/25.4/14.0(モル%)であった。また、得られた含フッ素重合体の平均粒径は53.7nmであり、上記ディスパージョン中の粒子数は、4.84×1014(個/水1g)であった。
実施例6
 2Lのステンレススチール製のオートクレーブに、イオン交換水1000g、前記化合物(1-2)0.4g(400ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が2.3~2.5MPaとなるようにVdFを圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(1000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液を窒素ガスで圧入し、300rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdFを内圧が2.3~2.5MPaを維持するように供給した。重合開始から5時間48分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度9.4質量%のVdFの単独重合体(PVdF)のディスパージョンを得た。
 得られたPVdFの平均粒径は118.5nmであり、上記ディスパージョン中の粒子数は、6.62×1013(個/水1g)であった。
実施例7
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、前記化合物(1-2)0.10g(200ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75~0.80MPaとなるようにVdF/TFE(=60/40モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE(=60/40モル%)混合単量体を内圧が0.75~0.80MPaを維持するように供給した。重合開始から2時間13分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度11質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE=62.1/37.9(モル%)であった。また、得られた含フッ素重合体の平均粒径は75.4nmであり、上記ディスパージョン中の粒子数は、3.06×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。この含フッ素重合体のGPCにより測定した数平均分子量および重量平均分子量はそれぞれ2.02×104および9.93×104であり、分子量分布Mw/Mnは4.92であった。
実施例8
 2Lのステンレススチール製のオートクレーブに、イオン交換水500g、前記化合物(1-2)0.10g(200ppm/水)とパーフルオロヘキサン酸アンモニウム50%水溶液0.50g(パーフルオロヘキサン酸アンモニウムの濃度1000ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.60~0.65MPaとなるようにVdF/TFE/CTFE(=74/14/12モル%)混合単量体を圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(2000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、600rpmで攪拌しながら反応を開始した。
 重合の進行に伴い内圧が降下し始めた時点で、VdF/TFE/CTFE(=74/14/12モル%)混合単量体を内圧が0.60~0.65MPaを維持するように供給した。重合開始から3時間11分後に未反応単量体を放出し、オートクレーブを冷却して、固形分濃度13.4質量%の含フッ素重合体のディスパージョンを得た。
 NMR分析により共重合組成を調べたところ、VdF/TFE/CTFE=72.3/12.9/14.8(モル%)であった。また、得られた含フッ素重合体の平均粒径は70.1nmであり、上記ディスパージョン中の粒子数は、4.77×1014(個/水1g)であった。
 このディスパージョン200gを-10℃で24時間凍結させ凝析を行った。得られた凝析物を水洗、乾燥して、含フッ素重合体を得た。この含フッ素重合体のGPCにより測定した数平均分子量および重量平均分子量はそれぞれ1.23×104および7.14×104であり、分子量分布Mw/Mnは5.80であった。
比較例3
 2Lのステンレススチール製のオートクレーブに、イオン交換水1000gパーフルオロヘキサン酸アンモニウム50%水溶液0.50g(パーフルオロヘキサン酸アンモニウムの濃度1000ppm/水)を仕込み、系内を窒素ガスで充分に置換後、減圧にした。続いて重合槽内を系内圧力が0.75~0.80MPaとなるようにVdFを圧入し、70℃に昇温した。
 ついで過硫酸アンモニウム(APS)1.0g(1000ppm/水)を4mlのイオン交換水に溶解した重合開始剤溶液および酢酸エチル0.75g(1500ppm/水)を窒素ガスで圧入し、300rpmで攪拌しながら反応を開始した。
 10時間1分ほどこの状態に維持したが重合は進行せず、VdFの重合体は得られなかった。

Claims (7)

  1. 式(1):
     CH=CR-R-O-(AO)-X     (1)
    (式中、Rは水素原子またはアルキル基;Rは炭素数2以上のアルキレン基;AOは炭素数2~4の直鎖状または分岐鎖状のオキシアルキレン基;pは正の整数;XはHまたはSOY(YはNHまたはアルカリ金属原子);AOが複数個存在する場合は同一でも互いに異なっていてもよく、また、2種以上のブロック構造を形成していてもよい)で示される化合物(1)の存在下に少なくとも1種のフルオロオレフィンを含む単量体を水性分散重合することを特徴とする含フッ素重合体の製造方法。
  2. 化合物(1)が、式(2):
     CH=CR-R-O-(BO)-(EO)-X   (2)
    (式中、Rは炭素数1~10のアルキル基;Rは炭素数2~10の直鎖状のアルキレン基;Xは式(1)と同じ;BOはブチレンオキサイド単位;EOはCHCHOまたはCH(CH)O単位;mは0~50の整数;nは0~100の整数;m+nは1~150の整数)で示される化合物(2)である請求項1記載の製造方法。
  3. 炭素数が6以下の含フッ素界面活性剤を併用する請求項1または2記載の製造方法。
  4. フルオロオレフィンが、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンよりなる群れから選ばれる少なくとも1種のフルオロオレフィンを含む請求項1~3のいずれかに記載の製造方法。
  5. フルオロオレフィンが、フッ化ビニリデン、テトラフルオロエチレンおよびクロロトリフルオロエチレンである請求項1~4のいずれかに記載の製造方法。
  6. フルオロオレフィンが、フッ化ビニリデンおよびヘキサフルオロプロピレンである請求項1~4のいずれかに記載の製造方法。
  7. 水性分散重合が、乳化重合である請求項1~6のいずれかに記載の製造方法。
PCT/JP2010/064381 2009-08-28 2010-08-25 含フッ素重合体の製造方法 WO2011024857A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011528823A JP5673541B2 (ja) 2009-08-28 2010-08-25 含フッ素重合体の製造方法
US13/392,814 US8735492B2 (en) 2009-08-28 2010-08-25 Method for producing fluorine-containing polymer
EP10811906.6A EP2471825B1 (en) 2009-08-28 2010-08-25 Method for producing fluorine-containing polymer
CN201080037777.5A CN102482362B (zh) 2009-08-28 2010-08-25 含氟聚合物的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-198187 2009-08-28
JP2009198187 2009-08-28
JP2009-265131 2009-11-20
JP2009265131 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011024857A1 true WO2011024857A1 (ja) 2011-03-03

Family

ID=43627957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064381 WO2011024857A1 (ja) 2009-08-28 2010-08-25 含フッ素重合体の製造方法

Country Status (5)

Country Link
US (1) US8735492B2 (ja)
EP (1) EP2471825B1 (ja)
JP (1) JP5673541B2 (ja)
CN (1) CN102482362B (ja)
WO (1) WO2011024857A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563670B2 (en) 2010-11-09 2013-10-22 E I Du Pont De Nemours And Company Nucleation in aqueous polymerization of fluoromonomer
US9074025B2 (en) 2010-11-09 2015-07-07 The Chemours Company Fc, Llc Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
US9255164B2 (en) 2010-11-09 2016-02-09 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2749576B1 (en) * 2011-08-25 2016-07-13 Daikin Industries, Ltd. Method for producing aqueous polytetrafluoroethylene dispersion
US9532567B2 (en) * 2012-11-29 2017-01-03 Honeywell International Inc. Synthesis and use of trans-1,3,3,3-tetrafluoropropene/vinylidene fluoride copolymers
CN106414510B (zh) 2013-11-26 2018-11-30 得凯莫斯公司弗罗里达有限公司 采用聚环氧烷在含氟单体的水相聚合中成核
EP4001322A4 (en) * 2019-07-16 2023-08-02 Daikin Industries, Ltd. METHOD OF PREPARING A FLUORINE CONTAINING ELASTOMER AND COMPOSITION
WO2021085470A1 (ja) * 2019-10-29 2021-05-06 Agc株式会社 ポリテトラフルオロエチレン水性分散液の製造方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
JPS6212734A (ja) 1985-03-28 1987-01-21 Daikin Ind Ltd 新規フルオロビニルエ−テルおよびそれを含む共重合体
JPH0867795A (ja) 1994-08-31 1996-03-12 Daikin Ind Ltd ビニリデンフルオライド系共重合体水性分散液、ビニリデンフルオライド系シード重合体水性分散液およびそれらの製法
JP2003119203A (ja) * 2001-10-10 2003-04-23 Asahi Kasei Corp 改良された小粒子径の共重合体ラテックス
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
JP2008231173A (ja) * 2007-03-19 2008-10-02 Toray Fine Chemicals Co Ltd アクリルエマルジョン塗料組成物
WO2009145117A1 (ja) * 2008-05-26 2009-12-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2010104142A1 (ja) * 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3489403B2 (ja) * 1997-04-23 2004-01-19 ダイキン工業株式会社 含フッ素樹脂水性分散組成物および塗装物
JP4052744B2 (ja) * 1997-12-13 2008-02-27 株式会社コーセー 油中水型乳化化粧料
JP4082810B2 (ja) * 1997-12-13 2008-04-30 株式会社コーセー 油性化粧料
US6512063B2 (en) 2000-10-04 2003-01-28 Dupont Dow Elastomers L.L.C. Process for producing fluoroelastomers
US6869997B2 (en) * 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
EP1665900A1 (en) 2003-09-04 2006-06-07 Koninklijke Philips Electronics N.V. Digital addressable lighting interface translation method
WO2005063827A1 (ja) * 2003-12-25 2005-07-14 Daikin Industries, Ltd. フルオロポリマーの製造方法
JP5048228B2 (ja) 2005-02-23 2012-10-17 中央理化工業株式会社 水性エマルジョン組成物
JP4325719B2 (ja) 2005-08-04 2009-09-02 ダイキン工業株式会社 含フッ素複合重合体粒子の水性分散体の製法、水性分散体および複合重合体粒子
US8124699B2 (en) 2005-08-08 2012-02-28 Arkema Inc. Polymerization of fluoropolymers using alkyl phosphonate surfactants

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JPS6212734A (ja) 1985-03-28 1987-01-21 Daikin Ind Ltd 新規フルオロビニルエ−テルおよびそれを含む共重合体
JPH0563482B2 (ja) 1985-03-28 1993-09-10 Daikin Ind Ltd
JPH0867795A (ja) 1994-08-31 1996-03-12 Daikin Ind Ltd ビニリデンフルオライド系共重合体水性分散液、ビニリデンフルオライド系シード重合体水性分散液およびそれらの製法
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003119203A (ja) * 2001-10-10 2003-04-23 Asahi Kasei Corp 改良された小粒子径の共重合体ラテックス
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
JP2008231173A (ja) * 2007-03-19 2008-10-02 Toray Fine Chemicals Co Ltd アクリルエマルジョン塗料組成物
WO2009145117A1 (ja) * 2008-05-26 2009-12-03 ダイキン工業株式会社 含フッ素重合体の製造方法
WO2010104142A1 (ja) * 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2471825A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563670B2 (en) 2010-11-09 2013-10-22 E I Du Pont De Nemours And Company Nucleation in aqueous polymerization of fluoromonomer
US9074025B2 (en) 2010-11-09 2015-07-07 The Chemours Company Fc, Llc Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
US9255164B2 (en) 2010-11-09 2016-02-09 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant
US9371405B2 (en) 2010-11-09 2016-06-21 The Chemours Company Fc, Llc Nucleation in aqueous polymerization of fluoromonomer
US9518170B2 (en) 2010-11-09 2016-12-13 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant
US10703829B2 (en) 2010-11-09 2020-07-07 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant
US11655312B2 (en) 2010-11-09 2023-05-23 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant

Also Published As

Publication number Publication date
JP5673541B2 (ja) 2015-02-18
CN102482362A (zh) 2012-05-30
EP2471825B1 (en) 2014-11-26
EP2471825A4 (en) 2013-05-22
EP2471825A1 (en) 2012-07-04
JPWO2011024857A1 (ja) 2013-01-31
US8735492B2 (en) 2014-05-27
US20120157621A1 (en) 2012-06-21
CN102482362B (zh) 2014-05-14

Similar Documents

Publication Publication Date Title
JP4100431B2 (ja) フルオロポリマーの製造方法
JP5673541B2 (ja) 含フッ素重合体の製造方法
JP4714991B2 (ja) 含フッ素ポリマーの製造法
JP5598476B2 (ja) 含フッ素重合体の製造方法
JP5588679B2 (ja) フルオロポリエーテル酸または塩および短鎖フッ素系界面活性剤を含む重合剤を用いるフッ素化モノマーの水性重合
JP5439186B2 (ja) フルオロポリエーテル酸または塩および炭化水素系界面活性剤を含む重合剤を用いるフッ素化モノマーの水性重合
JP5742384B2 (ja) 含フッ素重合体の製造方法
JP6622209B2 (ja) フルオロモノマーの水性重合において核を形成するためのポリアルキレンオキシドの使用
JP6225683B2 (ja) フルオロポリマー水性分散液の製造方法
JP5454470B2 (ja) 含フッ素重合体の製造方法
JP5077228B2 (ja) 含フッ素重合体の製造方法
JP2009227754A (ja) 含フッ素共重合体の製造法
JP6341633B2 (ja) パーフルオロゴム水性分散液の製造方法
JP2014132098A (ja) 含フッ素共重合体の製造方法
EP1741729A1 (en) Polymerization process

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037777.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811906

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011528823

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13392814

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811906

Country of ref document: EP