WO2005063827A1 - フルオロポリマーの製造方法 - Google Patents

フルオロポリマーの製造方法 Download PDF

Info

Publication number
WO2005063827A1
WO2005063827A1 PCT/JP2004/019219 JP2004019219W WO2005063827A1 WO 2005063827 A1 WO2005063827 A1 WO 2005063827A1 JP 2004019219 W JP2004019219 W JP 2004019219W WO 2005063827 A1 WO2005063827 A1 WO 2005063827A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
surfactant
emulsified dispersion
polymerization reaction
autoclave
Prior art date
Application number
PCT/JP2004/019219
Other languages
English (en)
French (fr)
Inventor
Masao Otsuka
Satoshi Tokuno
Katsuya Nakai
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to JP2005516604A priority Critical patent/JP4100431B2/ja
Priority to EP04807576.6A priority patent/EP1726599B1/en
Priority to US10/584,710 priority patent/US7566762B2/en
Publication of WO2005063827A1 publication Critical patent/WO2005063827A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • C08F214/225Vinylidene fluoride with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride

Definitions

  • the present invention relates to a method for producing a fluoropolymer that can carry out polymerization with high production efficiency in the presence of a small amount of a surfactant.
  • Fluoropolymers exhibit excellent chemical resistance, solvent resistance, and heat resistance, and are therefore used as raw materials for sealing materials and the like used under severe conditions, such as the automobile industry, the semiconductor industry, and the Iridaku Industry. Wide, etc.!, Used in industrial fields!
  • fluoropolymers are produced by emulsion polymerization or suspension polymerization of fluoroolefin.
  • surfactants are used in the emulsion polymerization method, but as the amount of surfactant used increases, the number of polymer particles generated at the beginning of emulsion polymerization increases, the polymerization speed increases, and the production of fluoropolymers increases. Efficiency is improved.
  • a surfactant is used in a large amount, there is a tendency that various properties such as water resistance of the fluoropolymer obtained from the surfactant are reduced. Therefore, it has been desired to develop a method for producing a fluoropolymer, which allows efficient polymerization in the presence of a small amount of a surfactant and does not adversely affect the properties of the fluoropolymer.
  • linear aliphatic sulfonates are used to replace expensive, perfluorooctanoic acid ammonium which is generally used in emulsion polymerization of fluoropolymers.
  • Fluoropolymers have been produced using salt-based surfactants (see, for example, US Pat. No. 6,512,033).
  • salt-based surfactants see, for example, US Pat. No. 6,512,033
  • the present invention relates to a method for producing a fluoropolymer that can carry out polymerization with high production efficiency in the presence of a small amount of a surfactant.
  • Means for solving the problem That is, the present invention relates to a method for producing a fluoropolymer containing at least one fluorofluorin, which comprises the formula (1):
  • R 2 is an alkyl group or an alkenyl group which may be the same or different
  • R 3 is a hydrogen atom, an alkyl group or an alkenyl group
  • the total number of carbon atoms of R 1 to R 3 Is 2—25 and L— is —SO—, —OSO—, —PO—, — OPO— or —COO—
  • M + is a monovalent cation
  • the surfactant is represented by the formula (2):
  • R 1 and R 2 are an alkyl group or an alkenyl group having a total of 2 to 25 carbon atoms, and may be the same or different, and L— is SO—, -OSO-, -PO-, one O
  • it is a surfactant.
  • the total carbon number is preferably 10-20.
  • the polymerization is preferably production polymerization of seed particles.
  • the fluoroolefin is 1,1-difluoroethylene.
  • FIG. 1 is a graph showing the relationship between the concentration of surfactant and the number of emulsified dispersions per lg of water (the number of particles) in Examples 118 and Comparative Examples 113.
  • the present invention is a process for producing a fluoropolymer containing at least one fluoroolefin, comprising the following formula (1):
  • R 2 is an alkyl group or an alkenyl group which may be the same or different
  • R 3 is a hydrogen atom, an alkyl group or an alkenyl group, and the total number of carbon atoms of R 1 to R 3 Is 2—25 and L— is —SO— OPO— or —COO—
  • M + is a monovalent cation
  • the fluorofluorin is not particularly limited, but in the present invention, the fluoropolymer is a copolymer of two or more fluorofluorin monomers, or a fluorofluorin monomer and a non-fluoroolefin. A copolymer of a refin monomer can be employed.
  • Fluoroolefin monomers include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), perfluoro (alkyl butyl ether) (PAVE), [0021] [Formula 4]
  • Perfluoroolefin monomers such as trifluoroethylene (CTFE), 1,1-difluoroethylene (VdF), trifluoroethylene, butyl fluoride, trifluoropropylene, and pentane
  • CTFE trifluoroethylene
  • VdF 1,1-difluoroethylene
  • N-perfluoroolefin monomers such as fluoropropylene, tetrafluoropropylene, and hexafluoroisobutene are exemplified.
  • PAVE include perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), and perfluoro (propyl vinyl ether) (PPVE).
  • a fluoroolefin monomer containing a functional group can be used.
  • a functional group-containing fluoroolefin for example, a compound represented by the formula (3):
  • X 1 and X 2 are the same or different, each of which is a hydrogen atom or a fluorine atom, and R is carbon atom 0-f
  • CF 2 CFOCF 2 CF 2 CH 2 OH
  • CF 2 CFO (CF 2 ) 3 COOH
  • CF 2 CFOCF 2 CF 2 COOCH 3
  • CF 2 CFOCF 2 CFOCF 2 CF 2 CH 2 OH
  • CF 2 CFCF 2 COOH
  • CF 2 CFCF 2 CH 2 OH
  • CF 2 CFCF 2 CF 2 CH 2 CHCH 2
  • CF 2 CFCF 2 OCF 2 CFCOOCH 3
  • CF 2 CFOCF-, CFOCF 2 CF 2 SOgF
  • CH 2 CFCF 2 OCFCH 2 OCH 3 ⁇ 4 CHCH 2
  • CH 2 CHCF 2 CF 2 CH 2 CH 2 COOH
  • CH 2 CH-e CF 2 CH 2 CH fH 2 0H
  • CH 2 CH -6 CF 2 CH 2 CH 2 COOCH 3
  • CH 2 CFCOOH
  • CH 2 CHCH 2 C—OH [0028].
  • an iodine-containing monomer such as perfluoro (6,6-dihydro-6-) described in Japanese Patent Publication No. 5-63482 and Japanese Patent Application Laid-Open No. 62-12734.
  • Iodides of perfluorovinyl ethers such as iodo-3oxa-1—hexene) and perfluoro (5—doodo3—year-old pentene) can also be copolymerized.
  • non-fluorene monomer examples include ⁇ -olefin monomers having 2 to 10 carbon atoms, such as ethylene (ET), propylene, butene, and pentene; methyl vinyl ether, ethynolebininoleatene, Examples thereof include alkylbutyl ether having an alkyl group having 120 carbon atoms, such as propynolebininoleatenore, cyclohexinolebininoleatenore, hydroxybutyl vinyl ether and butyl vinyl ether.
  • ⁇ -olefin monomers having 2 to 10 carbon atoms such as ethylene (ET), propylene, butene, and pentene
  • methyl vinyl ether examples thereof include alkylbutyl ether having an alkyl group having 120 carbon atoms, such as propynolebininoleatenore, cyclohexinolebininoleatenore, hydroxybutyl vinyl ether and but
  • a copolymer consisting of 1,1-difluoroethylene and hexafluoropropylene or a copolymer consisting of 1,1-difluoroethylene, hexafluoropropylene and tetrafluoroethylene, Preferred for the purpose of producing a fluoropolymer.
  • the composition of the fluoropolymer obtained at this time is preferably more than 100: 1 to 50:50 in molar ratio of the above-mentioned 1,1-difluoroethylene: hexafluoropropylene.
  • properly 90: 10- 60:40, and tetrafurfuryl O b ethylene force O-40 mole 0/0 preferably include a tool 0- 30 mol% is more preferable.
  • R 2 may be the same or different! /, And may be an alkyl group or an alkenyl group, and R 3 may be a hydrogen atom, an alkyl group or an alkaryl group.
  • the alkyl group or the alkenyl group may be linear or branched.
  • R 1 - total number of carbon atoms in R 3 is 2-25, and more preferably preferably fixture 10 20 der Rukoto is 5-20. If the total carbon number of R 1 -R 3 exceeds 25, the concentration in the water phase that is hardly soluble in water tends to be unable to be increased. Further, specific examples of such a surfactant include HostapurSAS93 of Clariant Japan KK.
  • R 3 is a hydrogen atom, and R 1 and R 2 may be the same or different from each other in terms of high emulsifying power.
  • the total number of carbon 2 25 Al kill group or Aruke - a is preferred instrument
  • R 3 it is Le group is a hydrogen atom, Yogu total carbon be different even with the same R 1 and R 2 1S number 5 20 alkyl group or the a is preferred instrument
  • R 3 is a hydrogen atom an alkenyl group,, respectively it R 1 and R 2 force Yogu total number of carbon atoms be different even in the same
  • it is a 10-20 alkyl or alkenyl group.
  • alkyl group or the alkyl group include, but are not limited to, fluorine, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, pentyl, and the like.
  • L- is a group represented by SO-OSO-PO-OPO- or COO-
  • the monovalent cations include lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, and ammonium ion. From the viewpoint of economical efficiency, sodium ion and ammonium ion are preferable.
  • the amount of the surfactant represented by the formula (1) is preferably 100 to 9000 ppm power S, and more preferably 500 5000 ppm power to the total amount of water! / ⁇ .
  • the surface active agent's 14 agent usage is less than 100 ppm, the effect as a surfactant is reduced, the number of generated particles is reduced, and 9000 pp If it exceeds m, aggregation of the dispersion due to the surfactant tends to occur.
  • the surfactant may be used in combination with another surfactant.
  • Surfactants that can be used in combination include, for example, F (CF) COOM, F (CF) COOM, C
  • Fluorinated surfactants such as F CF) CH CH SO M (M is a monovalent cation), CH (C
  • Hydrocarbon surfactants such as thione
  • Examples of the surfactant that can be used in combination include a reactive surfactant comprising a compound having a radical polymerizable unsaturated bond and a hydrophilic group in the molecule.
  • Reactive surfactants can form part of the polymer chain of the polymer when present in the reaction system during polymerization.
  • the reactive surfactant for example, the conjugate described in JP-A-8-67795 can be used.
  • the polymerization method of the present invention is not particularly limited, and may be a known method such as emulsion polymerization, suspension polymerization or the like.
  • the initial stage of seed polymerization that is, the production polymerization of seed particles can be suitably applied.
  • the seed polymerization method is not particularly limited, and may be a known method.
  • the stirring means for example, anchor blades, turbine blades, inclined blades and the like can be used. Stirring with large blades called full zone or max blend is preferred, in which monomer diffusion and polymer dispersion stability are good. ⁇ .
  • the stirring device may be a horizontal stirring device or a vertical stirring device.
  • the polymerization temperature is not particularly limited, and an optimum temperature is adopted according to the type of the polymerization initiator. However, if the temperature is too high, the monomer density in the gas phase may easily decrease, or a branching reaction of the polymer may occur, so that the desired copolymer may not be obtained. Preferably it is 40-120 ° C, more preferably 50-100 ° C.
  • the monomer may be supplied continuously or sequentially!
  • an oil-soluble peroxide compound can be used as a polymerization initiator.
  • Diisopropyl peroxydicarbonate (IPP) a typical oil-soluble initiator, is di-n-propyl peroxydicarbonate.
  • Peroxycarbonates such as (NPP) have the danger of explosion and are expensive, and they tend to adhere to scales on the walls of the polymerization tank during the polymerization reaction! There is.
  • a water-soluble radical polymerization initiator it is preferable to use a water-soluble radical polymerization initiator.
  • water-soluble radical polymerization initiator examples include, for example, persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, and ammonium, potassium, and sodium salts of percarbonate. Preferred are potassium and potassium persulfate.
  • the amount of the polymerization initiator to be added is not particularly limited !, but the amount is not less than a certain amount (for example, several ppm to water concentration), which is not significantly reduced at the beginning of the polymerization, or is not reduced significantly. Should be added sequentially or continuously.
  • the upper limit is within the range that can remove heat from polymerization reaction heat of the device.
  • a molecular weight modifier and the like may be further added.
  • the molecular weight regulator may be added all at once in the initial stage, or may be added continuously or in portions.
  • Examples of the molecular weight adjusting agent include esters of esters such as dimethyl malonate, getyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride , Cyclohexane, mono-iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, iodomethane, 1,2-iodomethane, 1,3-iodopropane and the like.
  • esters of esters such as dimethyl malonate, getyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride , Cyclohex
  • a buffering agent or the like may be appropriately added, but the amount is preferably in the range of V, which does not impair the effects of the present invention.
  • the particle size of the emulsified dispersion was determined using a Microtrac UPA (Nikkiso (The molecular weight of the fluoropolymer was measured using GPC (manufactured by Tosoh Corporation).
  • a mixed gas containing 65 mol% of hexafluoropropylene (HFP) and 1,1-difluoroethylene (VdF) power 3 ⁇ 45 mol% power was charged to IMPa in a vacuum state.
  • the autoclave was immersed in water nos with a horizontal stirrer whose temperature was adjusted to 80 ° C, and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
  • the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 95.2 nm.
  • the concentration of the emulsified dispersion was measured to 1.63% by evaporating a portion of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2 ⁇ 10 13 .
  • the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 60.8 nm.
  • the concentration of the emulsified dispersion was measured by evaporating a part of the emulsified dispersion to dryness, and found to be 0.71%.
  • the number (number of particles) of the emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 3.4 ⁇ 10 13 .
  • the water bath power autoclave was taken out, the remaining monomer was released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 15%.
  • the autoclave was taken out of the water bath, the remaining monomer was released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 19%.
  • Example 3 Since the particle size of the emulsified dispersion obtained in Example 3 was too strong to be measured by UPA, 5 g of the emulsified dispersion was diluted with 45 g of ion-exchanged water, and the surfactant concentration was the same as in Example 1. 1 OO ppm, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Example 1 was performed for 1 hour as seed polymerization. As a result, the concentration of the newly obtained emulsified dispersion was 1.28. %, And the particle size was 31.3 nm. From this, the particle number was calculated to be 4.5 ⁇ 10 ”. The particle number of the emulsified dispersion before dilution was calculated to be 4.5 ⁇ 10 15. Was.
  • the emulsified dispersion lg was diluted with 29 g of ion-exchanged water, and the surfactant concentration was the same as in Example 1. 1 OOppm, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Example 1 was performed for 1 hour as seed polymerization. The concentration of the newly obtained emulsified dispersion was 1.3. %, And the particle size was 33 nm. From this, the particle number was calculated to be 3.9 ⁇ 10 ′′. The particle number of the emulsified dispersion before dilution was calculated to be 1.2 ⁇ 10 16 .
  • IMPa is a mixture of hexafluoropropylene (HFP) with 65 mol% and 1,1-difluoroethylene (VdF) with 35 mol% power under vacuum.
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the temperature inside the autoclave was raised to 80 ° C while stirring the system with an electromagnetic stirrer, and the system was left until the pressure became constant. Then, an aqueous solution obtained by dissolving 1. Olg of ammonium persulfate in 5.00 g of ion-exchanged water was injected with nitrogen gas to initiate a polymerization reaction. Thereafter, the pressure decreased with the polymerization reaction. The polymerization reaction was performed for 3.5 hours.
  • the residual monomer was released into the atmosphere, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion.
  • the pressure drop is reduced by using a plunger pump to mix a gas mixture consisting of 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF). Supplemented by kacha. 266 g of a mixed gas containing 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) was charged into the polymerization tank to complete the polymerization.
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the particle size of the obtained emulsified dispersion was measured by UPA to be 123.5 nm.
  • a part of the emulsified dispersion was evaporated to dryness.
  • the concentration of the emulsified dispersion was measured to be 26.55%.
  • ML (1 + 10), 100 ° C was 82.6.
  • the molecular weight in terms of polystyrene was 21.4,000 in weight average molecular weight and 921,000 in number average molecular weight.
  • a mixed gas having a hexafluoropropylene (HFP) power of S60 mol% and a 1,1-difluoroethylene (VdF) power of 0 mol% power is supplied under vacuum.
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the autoclave was removed from the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 70.8 nm.
  • the concentration of the emulsified dispersion was measured by evaporating a portion of the emulsified dispersion to dryness, and found to be 0.72%.
  • the number of emulsified dispersions per lg of water (the number of particles) was calculated from the particle diameter and the concentration of the emulsified dispersion, it was 2.2 ⁇ 10 13 .
  • ion exchange water 0.05 g of ammonium persulfate (APS), and 0.1 g of APFO (ammonium perfluorooctanoate) as a surfactant in a 1 L stainless steel autoclave.
  • APS ammonium persulfate
  • APFO ammonium perfluorooctanoate
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 71. Inm.
  • the concentration of the emulsified dispersion was measured by evaporating a part of the emulsified dispersion to dryness, and found to be 0.7%. From the particle size and the concentration of the emulsified dispersion, emulsification per lg of water The number of dispersions (number of particles) was calculated to be 2.1 ⁇ 10 13 .
  • ion exchange water 0.05 g of ammonium persulfate (APS), and 0.1 g of APFO (ammonium perfluorooctanoate) as a surfactant in a 1 L stainless steel autoclave.
  • APS ammonium persulfate
  • APFO ammonium perfluorooctanoate
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 67.4 nm.
  • the concentration of the emulsified dispersion was measured to be 0.82% by evaporating part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
  • a stainless steel autoclave with an inner volume of 0.1 L, 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and APFO (ammonium perfluorooctanoate) as a surfactant 2.
  • APS ammonium persulfate
  • APFO ammonium perfluorooctanoate
  • a mixed gas containing 60 mol% of hexafluoropropylene (HFP) and 1,1-difluoroethylene (VdF) power of 0 mol 1% power is supplied in a vacuum state.
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the autoclave was immersed in a water bath having a horizontally moving stirrer whose temperature was previously adjusted to 80 ° C, and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction
  • the water bath autoclave was taken out, the remaining monomers were released into the air, and a part of the emulsified dispersion was evaporated to dryness to measure the concentration of the emulsified dispersion. 57%.
  • Comparative Example 5 Since the particle size of the emulsified dispersion obtained in Comparative Example 4 was too strong to be measured by UPA, 5 g of the emulsified dispersion was diluted with 45 g of ion-exchanged water, and the surfactant concentration was the same as in Comparative Example 3. As a surfactant concentration, 0.05 g of ammonium persulfate was added, and the same polymerization operation as in Comparative Example 3 was performed for 0.5 hours as seed polymerization. Was 8.32% and the particle size was 33.9 nm, which means that the force particle count was calculated to be 2.5 ⁇ 10 15 . The particle number of the emulsified dispersion before dilution was calculated to be 2.5 ⁇ 10 16 .
  • the concentration of the emulsified dispersion was measured to be 27%.
  • ML (1 + 10), 100 ° C. was 82.6.
  • the molecular weight in terms of polystyrene was 205,000, the weight average molecular weight, and 98,000 the number average molecular weight.
  • the number (number of particles) of the emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 2 ⁇ 10 14 .
  • the number of particles of the milk dispersion of Comparative Example 6 was calculated to be 1.1 ⁇ 10 16 .
  • 0.1 g of ion exchange water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium n-octanesulfonate as a surfactant were charged to a stainless steel autoclave with an inner volume of 0.1 L. After replacing with nitrogen and vacuum, a mixed gas consisting of 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) was charged to 2.4 MPa under vacuum. It is.
  • This autoclave was immersed in a water bath having a horizontal motion type stirrer that had been previously adjusted to 80 ° C. to start the polymerization reaction. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
  • the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 105.9 nm.
  • the concentration of the emulsified dispersion was measured to be 3.11% by evaporating a part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
  • a mixed gas containing 22 mol% of hexafluoropropylene (HFP) and 78 mol% of 1,1-difluoroethylene (VdF) at a vacuum of 2.4 MPa was charged to become.
  • This autoclave was immersed in a water bath having a horizontally moving stirrer that had been previously adjusted to 80 ° C., and the polymerization reaction was started. The pressure in the autoclave became constant after 3 minutes and then decreased with the polymerization reaction. The polymerization reaction was performed for one hour.
  • the water bath autoclave was taken out, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 105.9 nm.
  • the concentration of the emulsified dispersion was measured to be 3.11% by evaporating a part of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 2.9 ⁇ 10 13 .
  • 0.1 g of a 1 L stainless steel autoclave was charged with 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium lauryl sulfate as a surfactant. After that, a mixed gas consisting of 65 mol% of hexafluoropropylene (HFP) and 35 mol% of 1,1-difluoroethylene (VdF) was charged to 1 MPa under vacuum. . The autoclave was immersed in a water bath having a horizontal stirrer preliminarily controlled at 80 ° C. to start a polymerization reaction. The pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction. The polymerization reaction was performed for 1.8 hours.
  • HFP hexafluoropropylene
  • VdF 1,1-difluoroethylene
  • the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 70.5 nm.
  • the concentration of the emulsified dispersion was measured to be 0.89% by evaporating a part of the emulsified dispersion to dryness.
  • the number of emulsified dispersions per lg of water (number of particles) was calculated from the particle diameter and the concentration of the emulsified dispersion to be 2.7 ⁇ 10 13 .
  • 0.1 g of a 1 L stainless steel autoclave was charged with 50 g of ion-exchanged water, 0.05 g of ammonium persulfate (APS), and 0.05 g of sodium n-decane sulfate as a surfactant. After sufficiently replacing with nitrogen and vacuum, hexanefluoropropylene (vacuum)
  • a mixed gas containing 65 mol% of HFP) and 35 mol% of 1,1-difluoroethylene (VdF) was charged to IMPa.
  • the autoclave was immersed in a water bath having a horizontal stirrer preliminarily controlled at 80 ° C. to start a polymerization reaction.
  • the pressure in the autoclave became constant after 3 minutes, and then decreased with the polymerization reaction.
  • the polymerization reaction was performed for 1.5 hours.
  • the water bath autoclave was taken out, the remaining monomers were released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to find that it was 84.5 nm.
  • the concentration of the emulsified dispersion was determined to be 1.0% by evaporating a part of the emulsified dispersion to dryness.
  • the number (number of particles) of emulsified dispersion per lg of water was calculated from the particle diameter and the concentration of the emulsified dispersion to be 1.8 ⁇ 10 13 .
  • the water bath autoclave was taken out, the remaining monomers were released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 134.8 nm.
  • the concentration of the emulsified dispersion was 2.5% by evaporating a portion of the emulsified dispersion to dryness. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (the number of particles) was calculated to be 1.1 ⁇ 10 13 .
  • the autoclave was taken out of the water bath, the remaining monomer was released into the air, and the particle size of the obtained emulsified dispersion was measured by UPA to be 60 nm.
  • the concentration of the emulsified dispersion was measured by evaporating a portion of the emulsified dispersion to dryness, and found to be 0.5%. From the particle diameter and the concentration of the emulsified dispersion, the number of emulsified dispersions per lg of water (number of particles) was calculated to be 2.5 ⁇ 10 13 .
  • FIG. 1 shows the relationship between the surfactant concentration and the number of emulsified dispersions (particle number) per gram of water in Examples 118 and Comparative Examples 113.
  • the hollow circles in Fig. 1 show the relationship between the surfactant concentration and the number of particles in the emulsion polymers of Examples 14 and 7 in which seed polymerization was not performed, and the hollow squares show that seed polymerization was not performed.
  • the relationship between the surfactant concentration of the emulsion polymers of Examples 5, 6, and 8 and the number of particles is shown.
  • the black circles in Fig. 1 show the relationship between the surfactant concentration and the number of particles in the emulsion polymers of Comparative Examples 14 to 14, 6 and 8 to 13 without seed polymerization, and the black squares.
  • Example 1 the number of particles was 1. OX 10 14 or more, whereas in Examples 5 and 6 in which the concentration of the surfactant was Normal polymerization In Example 1, the number of particles was 2 ⁇ 10 13 , and it can be seen that the number of particles was significantly increased by performing the seed polymerization even when the surfactant concentration was the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Description

明 細 書
フルォロポリマーの製造方法
技術分野
[0001] 本発明は、少量の界面活性剤の存在下で、生産効率よぐ重合を行なうことができ るフルォロポリマーの製造方法に関する。 背景技術
[0002] フルォロポリマーは、その卓越した耐薬品性、耐溶剤性、耐熱性を示すことから、過 酷な条件下で使用されるシール材などの原料として、自動車工業、半導体工業、ィ匕 学工業等の広!、産業分野にお!、て使用されて!/、る。
[0003] これらのフルォロポリマーの製造は、フルォロォレフインを乳化重合または懸濁重合 することにより行なわれている。通常、乳化重合法では界面活性剤が使用されるが、 界面活性剤の使用量が多くなるほど、乳化重合の初期に生成する重合体粒子の数 が増え、その重合速度は早くなり、フルォロポリマーの生産効率が向上する。しかし、 界面活性剤を多量に使用した場合、界面活性剤が得られたフルォロポリマーの耐水 性などの諸物性を低下させる傾向がある。そのため、従来から、少量の界面活性剤 の存在下で、効率よく重合ができ、かつ、フルォロポリマーの諸物性に悪影響を与え ることのな 、フルォロポリマーの製造方法の開発が望まれて 、た。
[0004] このような、状況下、フルォロポリマーの乳化重合で一般的に使用されている、高価 な、パーフルォロオクタン酸アンモ-ゥムの代替を目的として、直鎖の脂肪族スルホ ン酸塩系の界面活性剤を使用して、フルォロポリマーの製造が行なわれている(たと えば、米国特許第 6512063号明細書参照)。しかし、この方法では発生粒子数が少 ないという問題がある。
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、少量の界面活性剤の存在下で、生産効率よぐ重合を行なうことができ るフルォロポリマーの製造方法に関する。 課題を解決するための手段 [0006] すなわち、本発明は、少なくとも一種のフルォロォレフインを含むフルォロポリマー の製造方法であって、式(1) :
[0007] [化 1]
R 3
i
R 1— C一 R 2
t ( I )
M+
[0008] (式中、
Figure imgf000004_0001
R2は、それぞれ同じであっても異なっていてもよぐアルキル基またはァ ルケニル基、 R3は、水素原子、アルキル基またはァルケ-ル基であって、 R1— R3の 合計炭素数が 2— 25であり、 L—は- SO―、 -OSO―、 -PO―、— OPO—または- COO—
3 3 3 3
であらわされる基であり、 M+は 1価のカチオンである)で示される界面活性剤の存在 下で、重合を行なうことからなるフルォロポリマーの製造方法に関する。
[0009] 界面活性剤が、式 (2) :
[0010] [化 2]
H
1
R 1一 C一 R 2
I ( 2 )
I
M+
[0011] (式中、 R1および R2は、合計炭素数 2— 25のアルキル基またはァルケ-ル基であつ て、それぞれ同じであっても異なっていてもよぐ L—は SO―、 -OSO―、 -PO―、 一 O
3 3 3
PO—または— COO—であらわされる基であり、 M+は 1価のカチオンである)で示される
3
界面活性剤であることが好ま 、。
[0012] 前記合計炭素数が 10— 20であることが好ましい。
[0013] 重合が、シード粒子の製造重合であることが好ましい。
[0014] フルォロォレフインが 1, 1ージフルォロエチレンであることが好ましい。 図面の簡単な説明
[0015] [図 1]実施例 1一 8、比較例 1一 13の界面活性剤の濃度と水 lgあたりの乳化分散体 の個数 (粒子数)との関係を示す図である。
発明を実施するための最良の形態
[0016] 本発明は、少なくとも一種のフルォロォレフインを含むフルォロポリマーの製造方法 であって、式(1):
[0017] [化 3]
R 3
i
R 1— C一 R 2
I ( ]· )
M+
[0018] (式中、
Figure imgf000005_0001
R2は、それぞれ同じであっても異なっていてもよぐアルキル基またはァ ルケニル基、 R3は、水素原子、アルキル基またはァルケ-ル基であって、 R1— R3の 合計炭素数が 2— 25であり、 L—は- SO― OPO—または- COO—
3、 -OSO―
3、 -PO―
3、—
3
であらわされる基であり、 M+は 1価のカチオンである)で示される界面活性剤の存在 下で、重合を行なうことからなるフルォロポリマーの製造方法に関する。
[0019] フルォロォレフインとしては、特に限定されないが、本発明において、フルォロポリ マーとしては、二種以上のフルォロォレフインモノマーの共重合体、またはフルォロォ レフインモノマーと非フルォロォレフインモノマーの共重合体などが採用できる。
[0020] フルォロォレフインモノマーとしては、テトラフルォロエチレン(TFE)、へキサフルォ 口プロピレン(HFP)、パーフルォロ(アルキルビュルエーテル)(PAVE)、 [0021] [化 4]
CF = CF
/ \
0 o
\ /
c
F 3 C CF3 、 CF 2 = CFOCF 2CF = CF ,>
[0022] などのパーフルォロォレフインモノマー;クロ口トリフルォロエチレン(CTFE)、 1 , 1 ジフルォロエチレン(VdF)、トリフルォロエチレン、フッ化ビュル、トリフルォロプロピレ ン、ペンタフルォロプロピレン、テトラフルォロプロピレン、へキサフルォロイソブテンな どの非パーフルォロォレフインモノマーがあげられる。 PAVEとしてはパーフルォロ( メチルビ-ルエーテル)(PMVE)、パーフルォロ(ェチルビ-ルエーテル)(PEVE) 、パーフルォロ(プロピルビュルエーテル)(PPVE)などがあげられる。
[0023] また、官能基含有フルォロォレフインモノマーも使用できる。官能基含有フルォロォ レフインとしては、たとえば式(3):
[0024] [化 5]
γ 2
I
C X C R f Y 1 ( 3 ) [0025] (式中、 Y1は、 OH、 一 COOH、—SO F、—SO M (Mは水素原子、 NH基またはァ
2 3 4 ルカリ金属)、カルボン酸塩、カルボキシエステル基、エポキシ基またはシァノ基、 X1 および X2は同じ力または異なりいずれも水素原子またはフッ素原子、 Rは炭素数 0— f
40の 2価の含フッ素アルキレン基または炭素数 0— 40のエーテル結合を含有する 2 価の含フッ素アルキレン基を表わす)
があげられ、具体例としては、たとえば ]
CF2= CFOCF2 CF2 CH2 OH、 CF2= CFO (CF2)3 COOH、 CF2= CFOCF2CF2COOCH3
CF2= CFOCF2CFOCF2CF2CH2OH、 CF2 = CFCF2 COOH 、
CF3
CF2= CFCF2CH2OH、 CF2= CFCF2CF2CH2CHCH2
O
CF2™ CFCF2OCF2CF2CF2COOH、
CF2= CFCF2OCF2CFCOOCH3、 CF2= CFOCF-, CFOCF2CF2 SOgF
CF2 = CFOCF2 CFOCF2 CF2 COOH、 CF, = CFOCF2 CF, SO^F、
CF3
Figure imgf000007_0001
CH0= CFCF2 CF2 CH2CH2OH、 CH2= CFCF^CF„COOH、
CH2=CFCF2CF CH2CHCH2 、 CH2= CF-^CF2 CF-^ COOH ,
O
CH2= CFCF„ OCFCH2OH 、 CH2= CFCFgOCFCOOH 、
CF3 CF, 3
CH2= CFCF2 OCFCH2OCH¾CHCH2
Figure imgf000007_0002
CH 2= CFCF2 OCFCF2 OCFCH 2OH、
CF3 CF3
CH2= CFCF OCFCF,OCFCOOH、
CF3 CF3 [0027] [ィ匕 7]
CH2= CHCF2 CF2 CH 2CH 2COOH、 CH2= CH-e CF2 CH2 CH fH 20H、 CH2= CH -6 CF2 CH2 CH2COOCH 3
CH2= CFCOOH、 CH2 = CHCH2C— OH [0028] などがあげられる。
[0029] そのほか、非パーフルォロォレフインモノマーとしてヨウ素含有モノマー、たとえば特 公平 5— 63482号公報や特開昭 62-12734号公報に記載されているパーフルォロ( 6, 6—ジヒドロ— 6—ョードー 3 ォキサ—1—へキセン)、パーフルォロ(5—ョードー 3—才 キサー 1 ペンテン)などのパーフルォロビニルエーテルのヨウ素化物も共重合できる
[0030] 非フルォロォレフインモノマーとしては、たとえばエチレン(ET)、プロピレン、ブテン 、ペンテンなどの炭素数 2— 10の α—ォレフインモノマー;メチルビ-ルエーテル、ェ チノレビニノレエーテノレ、プロピノレビニノレエーテノレ、シクロへキシノレビニノレエーテノレ、ヒド ロキシブチルビ-ルエーテル、ブチルビ-ルエーテルなどのアルキル基が炭素数 1 一 20であるアルキルビュルエーテルなどがあげられる。なかでも、 1, 1ージフルォロ エチレンおよびへキサフルォロプロピレンからなる共重合体、または 1, 1ージフルォロ エチレン、へキサフルォロプロピレンおよびテトラフルォロエチレンからなる共重合体 であることが、フルォロポリマーを製造する目的において好ましい。
[0031] また、このとき得られるフルォロポリマーの組成は、前記 1, 1ージフルォロエチレン: へキサフルォロプロピレンがモル比で 100 : 0— 50 : 50であることが好ましぐより好ま しくは 90 : 10— 60 :40であり、かつテトラフルォロエチレン力 O— 40モル0 /0を含むこと が好ましぐ 0— 30モル%がより好ましい。
[0032] 本発明では、前記式(1)で示される界面活性剤の存在下で重合を行なう。 [0033] R2は、それぞれ同じであっても異なって!/、てもよく、アルキル基またはァルケ- ル基であり、 R3は、水素原子、アルキル基またはァルケ-ル基である。アルキル基ま たはアルケニル基は、直鎖状であっても、分岐状であってもよい。
[0034] R1— R3の合計炭素数は、 2— 25であり、 5— 20であることが好ましぐ 10— 20であ ることがより好ましい。 R1— R3の合計炭素数が 25を超えると、水に溶け難ぐ水相中 の濃度が上げられなくなる傾向がある。また、このような界面活性剤の具体的としては 、例えば、クラリアントジャパン (株)の HostapurSAS93などをあげることができる。
[0035] 前記 R1— R3の組合せの中でも、乳化力の高さの点から、 R3が水素原子であり、 R1 および R2が、それぞれ同じであっても異なっていてもよぐ合計炭素数 2— 25のアル キル基またはァルケ-ル基であることが好ましぐ R3が水素原子であり、 R1および R2 1S それぞれ同じであっても異なっていてもよぐ合計炭素数 5— 20のアルキル基ま たはアルケニル基であることが好ましぐ R3が水素原子であり、 R1および R2力 それぞ れ同じであっても異なっていてもよぐ合計炭素数 10— 20のアルキル基またはアル ケニル基であることが好まし 、。
[0036] アルキル基またはァルケ-ル基の具体例としては、フッ素を含まな 、、メチル基、ェ チル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、 t ブチル基、ペンチ ル基、へキシル基、ヘプチル基、ォクチル基、ノニル基、デシル基、ビニル基、プロべ ニル基、ブテュル基、ペンテ-ル基、へキセ-ル基、ヘプタ-ル基、オタテュル基な どがあげられる。
[0037] L—は、 SO― OSO― PO― OPO—または一 COO—であらわされる基であるが
3 3 3 3
SO—であることが、分散体を凝祈し得られたポリマー中に界面活性剤が残留して
3
も、乾燥時、あるいは加熱時に分解しがたい点でより好ましい。
[0038] 1価のカチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジゥ ムイオン、セシウムイオン、アンモ-ゥムイオンがあげられる力 経済的観点から、ナト リウムイオン、アンモ-ゥムイオンが好ましい。
[0039] 式(1)で示される界面活性剤の使用量は、水の全量に対し、 100— 9000ppm力 S 好ましく、 500 5000ppm力より好まし!/ヽ。前記界面活' 14剤の使用量力 lOOppm 未満であると、界面活性剤としての効果が少なぐ発生粒子数が少なくなり、 9000pp mを超えると、界面活性剤に起因する分散体の凝集が発生する傾向にある。
[0040] また、前記界面活性剤は、他の界面活性剤と併用してもよい。
[0041] 併用できる、界面活性剤としては、例えば、 F (CF ) COOM、 F (CF ) COOM、 C
2 7 2 8
F CF CF OCF (CF ) CF OCF (CF ) COOM、 CF CF OCF (CF ) CF OCF (CF
3 2 2 3 2 3 3 2 3 2
) COOM、 CF OCF (CF ) CF OCF (CF ) COOM、 H (CF CF ) CH OCF (CF
3 3 3 2 3 2 2 2 2 3
) COOM、 H (CF ) COOM、 H (CF ) COOM, H (CF ) COOM、 C F CH CH
2 6 2 7 2 8 6 13 2 2
SO M、 F (CF CF ) CH CH SO M、 F (CF CF ) CH CH SO M、 F (CF CF )
3 2 2 2 2 2 3 2 2 3 2 2 3 2 2 4
CH CH SO M、 F (CF CF ) CH CH SO M、 F (CF CF ) CH CH SO M、 F (C
2 2 3 2 2 2 2 2 4 2 2 3 2 2 4
F CF ) CH CH SO M (Mは一価のカチオン)などの含フッ素界面活性剤、 CH (C
2 2 4 2 2 4 3
H ) SO Mゝ CH (CH ) SO Mゝ CH (CH ) SO Mゝ CH (CH ) SO Mゝ CH (
2 10 3 3 2 11 3 3 2 12 3 3 2 13 3 3
CH ) SO Mゝ CH (CH ) SO Mゝ CH (CH ) SO Mゝ CH (CH ) SO Mゝ CH
2 14 3 3 2 10 4 3 2 11 4 3 2 12 4
(CH ) SO M、 CH (CH ) SO M、 CH (CH ) COOM, CH (CH ) COOM
3 2 13 4 3 2 14 4 3 2 10 3 2 11
、 CH (CH ) COOMゝ CH (CH ) COOMゝ CH (CH ) COOM (Mは一価の力
3 2 12 3 2 13 3 2 14
チオン)などの炭化水素界面活性剤があげられる。
[0042] また、併用できる界面活性剤として、分子中にラジカル重合性不飽和結合と親水 基とを有する化合物からなる、反応性界面活性剤をあげることができる。反応性 界面活性剤は、重合時に反応系に存在させた場合、重合体のポリマー鎖の一部分 を構成することができる。
反応性界面活性剤としては、例えば、特開平 8-67795に記載されているィ匕 合物を用いることができる。
[0043] 本発明の重合法は特に限定されず、乳化重合、懸濁重合等の公知の方法でよい 力 得られた重合体中の界面活性剤が同量であっても、粒子数を多くできる点で、シ ード重合の初期すなわちシード粒子の製造重合が好適に適用することができる。ま た、シード重合の方法も特に限定されず、公知の方法でよい。
[0044] 攪拌手段としては、たとえばアンカー翼、タービン翼、傾斜翼なども使用できるが、 モノマーの拡散とポリマーの分散安定性が良好な点力 フルゾーンやマックスブレン ドと呼ばれる大型翼による攪拌が好ま ヽ。攪拌装置としては横型攪拌装置でも縦型 攪拌装置でもよい。 [0045] 重合温度は特に制限はなぐ重合開始剤の種類にしたがって最適な温度が採用さ れる。ただ、高くなりすぎると気相部分でのモノマー密度が容易に低下してしまったり 、ポリマーの分岐反応が生じ、目的とする共重合体が得られないことがある。好ましく は 40— 120°C、さらに好ましくは 50— 100°Cとする。
[0046] モノマーの供給は連続的であっても逐次供給してもよ!/、。
[0047] 重合開始剤としては、油溶性の過酸ィ匕物も使用できる力 これらの代表的な油溶性 開始剤であるジイソプロピルパーォキシジカーボネート(IPP)ゃジー n プロピルパー ォキシジカーボネート (NPP)などのパーォキシカーボネート類は爆発などの危険性 があるうえ、高価であり、し力も重合反応中に重合槽の壁面になどにスケールの付着 を生じやす!、と!、う問題がある。フルォロポリマーの圧縮永久歪みをより!/、つそう低下 させるためには、水溶性ラジカル重合開始剤を使用することが好ましい。水溶性ラジ カル重合開始剤としては、たとえば過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸 のアンモ-ゥム塩、カリウム塩、ナトリウム塩などが好ましくあげられ、特に過硫酸アン モ-ゥム、過硫酸カリウムが好ましい。
[0048] 重合開始剤の添加量は特に限定されな!、が、重合速度が著しく低下しな 、程度の 量 (たとえば数 ppm対水濃度)以上を、重合の初期に一括して、または逐次的に、ま たは連続して添加すればょ 、。上限は装置面力 重合反応熱を除熱できる範囲であ る。
[0049] 本発明の製造方法において、さらに分子量調整剤などを添加してもよい。分子量 調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい
[0050] 分子量調整剤としては、たとえばマロン酸ジメチル、マロン酸ジェチル、酢酸メチル 、酢酸ェチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほ力、イソペンタン 、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素、シクロへキサン、モノョ 一ドメタン、 1—ョードメタン、 1 ョードプロパン、ヨウ化イソプロピル、ジョードメタン、 1 , 2 ジョードメタン、 1, 3—ジョードプロパンなどがあげられる。
[0051] そのほか緩衝剤などを適宜添加してもよいが、その量は本発明の効果を損なわな V、範囲で用いることが好まし 、。 実施例
[0052] つぎに本発明について、実施例をあげて説明するが、本発明はかかる実施例のみ に限定されるものではない。
[0053] <分析装置 >
ム一-一粘度(1 + 10、 100°C)は、 MOON MV2000E (アルファ一テクノロージ ズ社 (ALPHA TECNOLOGIES社)製)を用いて、乳化分散体の粒子径は、マイ クロトラック UPA (日機装 (株)製)を用いて、フルォロポリマーの分子量は、 GPC (東 ソー (株)製)を用いて測定した。
[0054] 実施例 1
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、界面活性剤として HostapurSAS93 (クラリアントジャパ ン(株)製、第二級アルカンスルフォネート Na塩((CH (CH ) ) (CH (CH ) ) CHS
3 2 m 3 2 n
O Na、 m+n= 14— 17) )を 0. 005g仕込み、充分に窒素および真空にて置換した
3
後、真空状態でへキサフルォロプロピレン(HFP)が 65mol%と 1, 1ージフルォロェ チレン (VdF)力 ¾5mol%力もなる混合ガスを IMPaになるように仕込んだ。このォー トクレーブを、あら力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ ス に沈め、重合反応を開始した。オートクレープ内の圧力は 3分後に一定となり、その 後、重合反応とともに低下した。重合反応は 1時間行なった。
[0055] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 95. 2nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 1. 63%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2 X 1013であった。
[0056] 実施例 2
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、 HostapurSAS93 (クラリアントジャパン (株)製、第二級 アルカンスルフォネート Na塩((CH (CH ) ) (CH (CH ) ) CHSO Na
3 2 m 3 2 n 3 ゝ m+n= 1
4一 17) )を 0. 015g仕込み、充分に窒素および真空にて置換した後、真空状態で へキサフルォロプロピレン(HFP)が 65mol%と 1, 1ージフルォロエチレン(VdF)が 3 5mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 1. 67時間行なった。
[0057] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 60. 8nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 0. 71%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 3. 4 X 1013であった。
[0058] 実施例 3
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、 HostapurSAS93 (クラリアントジャパン (株)製、第二級 アルカンスルフォネート Na塩((CH (CH ) ) (CH (CH ) ) CHSO Na
3 2 m 3 2 n 3 ゝ m+n= 1
4一 17) )を 0. 05g仕込み、充分に窒素および真空にて置換した後、真空状態でへ キサフルォロプロピレン(HFP)が 65mol%と 1, 1ージフルォロエチレン (VdF)が 35 mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 1時間行なった。
[0059] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 0. 15%であった。
[0060] 実施例 4
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、 HostapurSAS93 (クラリアントジャパン (株)製、第二級 アルカンスルフォネート Na塩((CH (CH ) ) (CH (CH ) ) CHSO Na
3 2 m 3 2 n 3 ゝ m+n= 1
4一 17) )を 0. 15g仕込み、充分に窒素および真空にて置換した後、真空状態でへ キサフルォロプロピレン(HFP)が 65mol%と 1, 1ージフルォロエチレン (VdF)が 35 mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 1. 67時間行なった。
[0061] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 0. 19%であった。
[0062] 実施例 5
実施例 3で得られた乳化分散体の粒子径は UPAにて測定できな力つたため、乳化 分散体 5gを 45gのイオン交換水にて希釈し、界面活性剤濃度を実施例 1と同様の 1 OOppmとし、過硫酸アンモ-ゥム 0. 05gを加えて、種重合として実施例 1と同様の重 合操作を 1時間行なったところ、新たに得られた乳化分散体の濃度は 1. 28%であり 、粒子径は 31. 3nmであった、このことから粒子数は 4. 5 X 10"と計算された。希釈 前の乳化分散体の粒子数は 4. 5 X 1015と計算された。
[0063] 実施例 6
実施例 4で得られた乳化分散体の粒子径は UPAにて測定できな力つたため、乳化 分散体 lgを 29gのイオン交換水にて希釈し、界面活性剤濃度を実施例 1と同様の 1 OOppmとし、過硫酸アンモ-ゥム 0. 05gを加えて、種重合として実施例 1と同様の重 合操作を 1時間行なったところ、新たに得られた乳化分散体の濃度は 1. 3%であり、 粒子径は 33nmであった、このことから粒子数は 3. 9 X 10"と計算された。希釈前の 乳化分散体の粒子数は 1. 2 X 1016と計算された。
[0064] 実施例 7
1. 8Lの内容積のステンレス製オートクレーブにイオン交換水を 1010g、 Hostapu rSAS93 (クラリアントジャパン (株)製、第二級アルカンスルフォネート Na塩((CH (
3
CH ) ) (CH (CH ) ) CHSO Na、 m+n= 14 17) )を 1· 02g仕込み、充分に窒
2 m 3 2 n 3
素および真空にて置換した後、真空状態でへキサフルォロプロピレン (HFP)が 65m ol%と 1, 1—ジフルォロエチレン (VdF)が 35mol%力もなる混合ガスを IMPaになる ように仕込み、電磁式攪拌機で系を攪拌しながらオートクレープ内温を 80°Cに昇温 し、圧力が一定になるまで放置した。ついで、過硫酸アンモ-ゥム 1. Olgをイオン交 換水 5. 00gに溶力した水溶液を窒素ガスにて圧入して重合反応を開始した。その後 、重合反応とともに圧力が低下した。重合反応は 3. 5時間行なった。
[0065] 重合反応終了後、残存モノマーを大気に放出し、乳化分散体の一部を蒸発乾固さ せることによって、乳化分散体の濃度を測定したところ 0. 24%であった。
[0066] 実施例 8
1. 8Lの内容積のステンレス製オートクレーブにイオン交換水を 942g、また、実施 例 7で得られた乳化分散体内に残存している過硫酸アンモ-ゥムを分解させるため、 大気下で乳化分散体を 80°Cの温度で 12時間、加熱処理を行なった乳化分散体を 5 2. 08g仕込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォ 口プロピレン(HFP) 438gと 1, 1ージフルォロエチレン (VdF) 132gからなる混合ガス を 220g仕込み、電磁式攪拌機で系を攪拌しながらオートクレープ内温を 80°Cに昇 温し、圧力が一定になるまで放置した。ついで、マロン酸ジェチル 3. 78gと過硫酸ァ ンモ -ゥム 0. 15gを水 4. 94gに溶力した水溶液を窒素にて圧入して重合反応を開 始した。重合反応が進行するとともに圧力が低下するので、圧力低下をへキサフルォ 口プロピレン(HFP)が 22mol%と 1, 1ージフルォロエチレン (VdF)が 78mol%から なる混合ガスをプランジャーポンプにてカ卩えることによって補った。へキサフルォロプ ロピレン(HFP)が 22mol%と 1, 1—ジフルォロエチレン (VdF)が 78mol%力もなる 混合ガス 266gを重合槽に仕込み、重合終了とした。
[0067] 重合反応終了後、残存モノマーを大気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 123. 5nmであった、また、乳化分散体の一部を蒸発乾固 させることによって、乳化分散体の濃度を測定したところ 26. 55%であった。 ML (1 + 10)、 100°Cは 82. 6であった。 GPCによる、ポリスチレン換算分子量は、重量平 均分子量 21. 4万、数平均分子量 9. 21万であった。粒子径と乳化分散体の濃度よ り、水 lgあたりの乳化分散体の個数 (粒子数)を計算すると 2 X 1014であった。また、 実施例 7の乳化分散体の粒子数は 3. 8 X 1015と計算された。また、得られた乳化分 散体のム一-一粘度は、 82. 6であった。また19 F— NMR分析の結果、得られた重合 体のモノマー単位組成は、 VdF/HFP = 78. 2/21. 8モル%であった。
[0068] 比較例 1
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、界面活性剤として APFO (パーフルォロオクタン酸アンモ ユウム)を 0. 0028g仕込み、充分に窒素および真空にて置換した後、真空状態でへ キサフルォロプロピレン(HFP)力 S60mol%と 1, 1ージフルォロエチレン (VdF)力 0 mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 0. 5時間行なった。
[0069] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 70. 8nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 0. 72%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2. 2 X 1013であった。
[0070] 比較例 2
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、界面活性剤として APFO (パーフルォロオクタン酸アンモ ユウム)を 0. 0216g仕込み、充分に窒素および真空にて置換した後、真空状態でへ キサフルォロプロピレン(HFP)力 S60mol%と 1, 1ージフルォロエチレン (VdF)力 0 mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 0. 5時間行なった。
[0071] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 71. Inmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 0. 7%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳化 分散体の個数 (粒子数)を計算すると 2. 1 X 1013であった。
[0072] 比較例 3
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、界面活性剤として APFO (パーフルォロオクタン酸アンモ ユウム)を 0. 215g仕込み、充分に窒素および真空にて置換した後、真空状態でへ キサフルォロプロピレン(HFP)力 S60mol%と 1, 1ージフルォロエチレン (VdF)力 0 mol%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あら 力じめ 80°Cに温調された水平動型の攪拌機をもつウォーターノ スに沈め、重合反応 を開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応ととも に低下した。重合反応は 0. 5時間行なった。
[0073] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 67. 4nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 0. 82%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2. 9 X 1013であった。
[0074] 比較例 4
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム(APS)を 0. 05g、界面活性剤として APFO (パーフルォロオクタン酸アンモ ユウム)を 2. 15g仕込み、充分に窒素および真空にて置換した後、真空状態でへキ サフルォロプロピレン(HFP)が 60mol%と 1, 1ージフルォロエチレン(VdF)力 0mo 1%力もなる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あらかじ め 80°Cに温調された水平動型の攪拌機をもつウォーターバスに沈め、重合反応を 開始した。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応とともに 低下した。重合反応は 0. 5時間行なった。
[0075] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 3. 57%であった。
[0076] 比較例 5 比較例 4で得られた乳化分散体の粒子径は UPAにて測定できな力つたため、乳化 分散体 5gを 45gのイオン交換水にて希釈し界面活性剤濃度で比較例 3と同様の界 面活性剤濃度とし、過硫酸アンモ-ゥム 0. 05gを加えて、種重合として比較例 3と同 様の重合操作を 0. 5時間行なったところ、新たに得られた乳化分散体の濃度は 8. 3 2%であり、粒子径は 33. 9nmであった、このこと力 粒子数は 2. 5 X 1015と計算さ れた。希釈前の乳化分散体の粒子数は 2. 5 X 1016と計算された。
[0077] 比較例 6
1. 8Lの内容積のステンレス製オートクレーブにイオン交換水を 1000g、 APFO ( パーフルォロオクタン酸アンモ-ゥム)を 30g仕込み、充分に窒素および真空にて置 換した後、真空状態でへキサフルォロプロピレン (HFP)力 65mol%と 1, 1ージフル ォロエチレン (VdF)が 35mol%からなる混合ガスを 2MPaになるように仕込み、電磁 式攪拌機で系を攪拌しながらオートクレープ内温を 80°Cに昇温し、圧力が一定にな るまで放置した。ついで、過硫酸アンモ-ゥム 0. 6gをイオン交換水 5. 00gに溶かし た水溶液を窒素ガスにて圧入して重合反応を開始した。その後、重合反応とともに圧 力が低下した。重合反応は 0. 5時間行なった。
[0078] 重合反応終了後、残存モノマーを大気に放出し、乳化分散体の一部を蒸発乾固さ せることによって、乳化分散体の濃度を測定したところ 18%であった。
[0079] 比較例 7
1. 8Lの内容積のステンレス製オートクレーブにイオン交換水を 968g、また、比較 例 6で得られた乳化分散体内に残存している過硫酸アンモ-ゥムを分解させるため、 大気下で乳化分散体を 80°Cの温度で 12時間、加熱処理を行なった乳化分散体を 2 2. 2g仕込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロ プロピレン(HFP) 438gと 1, 1ージフルォロエチレン (VdF) 132gからなる混合ガスを 220g仕込み、電磁式攪拌機で系を攪拌しながらオートクレープ内温を 80°Cに昇温 し、圧力が一定になるまで放置した。ついで、マロン酸ジェチル 3. 78gと過硫酸アン モ -ゥム 0. 15gを水 5. Ogに溶力した水溶液を窒素にて圧入して重合反応を開始し た。重合反応が進行するとともに圧力が低下するので、圧力低下をへキサフルォロプ ロピレン(HFP)が 22mol%と 1, 1—ジフルォロエチレン (VdF)が 78mol%力もなる 混合ガスをプランジャーポンプにてカ卩えることによって補った。へキサフルォロプロピ レン(HFP)が 22mol%と 1, 1ージフルォロエチレン (VdF)が 78mol%力もなる混合 ガス 266gを重合槽に仕込み、重合終了とした。
[0080] 重合反応終了後、残存モノマーを大気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 118nmであった、また、乳化分散体の一部を蒸発乾固させ ることによって、乳化分散体の濃度を測定したところ 27%であった。 ML (1 + 10)、 1 00°Cは 82. 6であった。 GPCによる、ポリスチレン換算分子量は、重量平均分子量 2 0. 5万、数平均分子量 9. 8万であった。粒子径と乳化分散体の濃度より、水 lgあた りの乳化分散体の個数 (粒子数)を計算すると 2 X 1014であった。また、比較例 6の乳 化分散体の粒子数は 1. 1 X 1016と計算された。また19 F— NMR分析の結果、得られ た重合体のモノマー単位組成は、 VdFZHFP = 78. 3/21. 7モル%であった。
[0081] 比較例 8
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤として n—オクタンスルホン酸ナトリウムを 0. 0 05g仕込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプ ロピレン(HFP)が 22mol%と 1, 1—ジフルォロエチレン (VdF)が 78mol%力もなる 混合ガスを 2. 4MPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°C に温調された水平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した 。オートクレープ内の圧力は 3分後に一定となり、その後、重合反応とともに低下した 。重合反応は 1時間行なった。
[0082] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 105. 9nmで あった。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 3. 11%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2. 9 X 1013であった。
[0083] 比較例 9
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤として n—オクタンスルホン酸ナトリウムを 0. 0 5g仕込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプロ ピレン(HFP)が 22mol%と 1, 1ージフルォロエチレン (VdF)が 78mol%力もなる混 合ガスを 2. 4MPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°Cに 温調された水平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した。 オートクレープ内の圧力は 3分後に一定となり、その後、重合反応とともに低下した。 重合反応は 1時間行なった。
[0084] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 105. 9nmで あった。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 3. 11%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2. 9 X 1013であった。
[0085] 比較例 10
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤としてラウリル硫酸ナトリウムを 0. 05g仕込み 、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプロピレン (H FP)が 65mol%と 1, 1ージフルォロエチレン (VdF)が 35mol%力 なる混合ガスを 1 MPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°Cに温調された水 平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した。オートクレープ 内の圧力は 3分後に一定となり、その後、重合反応とともに低下した。重合反応は 1. 8時間行なった。
[0086] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 70. 5nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 0. 89%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 2. 7 X 1013であった。
[0087] 比較例 11
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤として n—デカン硫酸ナトリウムを 0. 05g仕込 み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプロピレン(
HFP)が 65mol%と 1, 1ージフルォロエチレン (VdF)が 35mol%力 なる混合ガスを IMPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°Cに温調された水 平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した。オートクレープ 内の圧力は 3分後に一定となり、その後、重合反応とともに低下した。重合反応は 1. 5時間行なった。
[0088] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 84. 5nmであ つた。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を 測定したところ 1. 0%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳化 分散体の個数 (粒子数)を計算すると 1. 8 X 1013であった。
[0089] 比較例 12
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤として n—デカン硫酸ナトリウムを 0. 005g仕 込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプロピレ ン(HFP)が 65mol%と 1, 1ージフルォロエチレン (VdF)が 35mol%力 なる混合ガ スを IMPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°Cに温調され た水平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した。オートタレ ーブ内の圧力は 3分後に一定となり、その後、重合反応とともに低下した。重合反応 は 1. 5時間行なった。
[0090] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 134. 8nmで あった。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度 を測定したところ 2. 5%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳 化分散体の個数 (粒子数)を計算すると 1. 1 X 1013であった。
[0091] 比較例 13
0. 1Lの内容積のステンレス製オートクレーブにイオン交換水を 50g、過硫酸アン モ -ゥム (APS)を 0. 05g、界面活性剤として n—ゥンデカン酸ナトリウムを 0. 05g仕 込み、充分に窒素および真空にて置換した後、真空状態でへキサフルォロプロピレ ン(HFP)が 22mol%と 1, 1ージフルォロエチレン (VdF)が 78mol%力 なる混合ガ スを 2. 4MPaになるように仕込んだ。このオートクレーブを、あらかじめ 80°Cに温調さ れた水平動型の攪拌機をもつウォーターバスに沈め、重合反応を開始した。オートク レーブ内の圧力は 3分後に一定となり、その後、重合反応とともに低下した。重合反 応は 1時間行なった。
[0092] 重合反応終了後、ウォーターバス力 オートクレープを取り出し、残存モノマーを大 気に放出し、得られた乳化分散体の粒子径を UPAにて測定したところ 60nmであつ た。また、乳化分散体の一部を蒸発乾固させることによって、乳化分散体の濃度を測 定したところ 0. 5%であった。粒子径と乳化分散体の濃度より、水 lgあたりの乳化分 散体の個数 (粒子数)を計算すると 2. 5 X 1013であった。
[0093] 実施例 1一 8、比較例 1一 13の界面活性剤の濃度と水 lgあたりの乳化分散体の個 数 (粒子数)との関係を図 1に示す。図 1の中抜きの丸は、シード重合を行なっていな い実施例 1一 4および 7の乳化重合体の界面活性剤濃度と粒子数の関係をあらわし 、中抜きの四角は、シード重合を行なった実施例 5、 6および 8の乳化重合体の界面 活性剤濃度と粒子数の関係をあらわす。また、図 1の黒塗りの丸は、シード重合を行 なっていない比較例 1一 4、 6および 8— 13の乳化重合体の界面活性剤濃度と粒子 数の関係をあらわし、黒塗りの四角は、シード重合を行なった比較例 5、 7の乳化重 合体の界面活性剤濃度と粒子数の関係をあらわす。矢印 Aは、実施例 3、 4および 7 で得られた乳化分散体を用いて、実施例 5、 6および 8でシード重合した場合におけ る、界面活性剤濃度と粒子数との関係の変化を示す。一方、矢印 Bは、比較例 4、 6 で得られた乳化分散体を用いて、比較例 5、 7でシード重合した場合における、界面 活性剤濃度と粒子数との関係の変化をあらわす。
[0094] 図 1からわ力るように、式(1)で示される界面活性剤の存在下で重合を行なうことに より、少量の界面活性剤を添加するだけで、大幅に粒子数を増加させることができる
[0095] また、実施例 1、 5および 6では、界面活性剤の濃度が lOOppmである力 シード重 合をした実施例 5、 6では粒子数が 1. O X 1014以上であるのに対し、通常の重合をし た実施例 1では粒子数が 2 X 1013であり、シード重合をすることにより界面活性剤濃 度が同じであっても大幅に粒子数が増加していることがわかる。
産業上の利用可能性
本発明によれば、少量の界面活性剤の存在下で、生産効率よぐ重合を行なうこと ができ、かつ、界面活性剤により耐水性などの諸物性を低下させることなぐフルォロ ポリマーを製造することができる。

Claims

請求の範囲 [1] 少なくとも一種のフルォロォレフインを含むフルォロポリマーの製造方法であって、 式 (1) :
[化 1]
R 3
! ( ]. )
L
I
M+
(式中、
Figure imgf000024_0001
R2は、それぞれ同じであっても異なっていてもよぐアルキル基またはァ ルケ-ル基、 R3は、水素原子、アルキル基またはァルケ-ル基であって、 R1— R3の 合計炭素数が 2— 25であり、 L—は SO― OSO― PO―、— OPO—または COO—
3 3 3 3
であらわされる基であり、 M+は 1価のカチオンである)で示される界面活性剤の存在 下で、重合を行なうことからなるフルォロポリマーの製造方法。
[2] 界面活性剤が、式 (2) :
[化 2]
H
I
I ( 2 )
I
(式中、 R1および R2は、合計炭素数 2— 25のアルキル基またはァルケ-ル基であつ て、それぞれ同じであっても異なっていてもよぐ L—は SO―、 -OSO―、 -PO― O
3 3 3
PO—または— COO—であらわされる基であり、 M+は 1価のカチオンである)で示される
3
界面活性剤であるフルォロポリマーの製造方法。
[3] 前記合計炭素数が 10— 20である請求の範囲第 1項または第 2項記載のフルォロ ポリマーの製造方法。 重合が、シード粒子の製造重合である請求の範囲第 1項一第 3項のいずれかに記 載のフルォロポリマーの製造方法。
フルォロォレフインが 1, 1ージフルォロエチレンである請求の範囲第 1項一第 4項の いずれかに記載のフルォロポリマーの製造方法。
PCT/JP2004/019219 2003-12-25 2004-12-22 フルオロポリマーの製造方法 WO2005063827A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005516604A JP4100431B2 (ja) 2003-12-25 2004-12-22 フルオロポリマーの製造方法
EP04807576.6A EP1726599B1 (en) 2003-12-25 2004-12-22 Process for producing fluoropolymer
US10/584,710 US7566762B2 (en) 2003-12-25 2004-12-22 Process for preparing fluoropolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-430765 2003-12-25
JP2003430765 2003-12-25

Publications (1)

Publication Number Publication Date
WO2005063827A1 true WO2005063827A1 (ja) 2005-07-14

Family

ID=34736358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/019219 WO2005063827A1 (ja) 2003-12-25 2004-12-22 フルオロポリマーの製造方法

Country Status (4)

Country Link
US (1) US7566762B2 (ja)
EP (1) EP1726599B1 (ja)
JP (1) JP4100431B2 (ja)
WO (1) WO2005063827A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001895A1 (fr) 2006-06-30 2008-01-03 Daikin Industries, Ltd. Procédé de fabrication d'un élastomère contenant du fluor
WO2009069320A1 (ja) 2007-11-28 2009-06-04 Unimatec Co., Ltd. フルオロエラストマーの製造法
US7659333B2 (en) 2005-11-24 2010-02-09 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
US7728087B2 (en) 2005-12-23 2010-06-01 3M Innovative Properties Company Fluoropolymer dispersion and method for making the same
US7754795B2 (en) 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
US7776946B2 (en) 2005-07-15 2010-08-17 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
WO2010104142A1 (ja) 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
US7838608B2 (en) 2005-12-21 2010-11-23 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2012043831A1 (ja) 2010-09-30 2012-04-05 ダイキン工業株式会社 含フッ素重合体の製造方法
US20120157621A1 (en) * 2009-08-28 2012-06-21 Daikin Industries, Ltd Method for producing fluorine-containing polymer
WO2012133582A1 (ja) 2011-03-31 2012-10-04 ダイキン工業株式会社 含フッ素共重合体の製造方法
US8404790B2 (en) 2005-07-15 2013-03-26 3M Innovative Properties Company Aqueous emulsion polymerization process for producing fluoropolymers
WO2014104416A1 (ja) * 2012-12-28 2014-07-03 ダイキン工業株式会社 ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
JP2015007218A (ja) * 2013-05-27 2015-01-15 ダイキン工業株式会社 フルオロポリマーの製造方法
US8952115B2 (en) 2009-08-28 2015-02-10 Daikin Industries, Ltd. Method for producing fluorine-containing polymer
WO2019031617A1 (ja) * 2017-08-10 2019-02-14 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
WO2020071503A1 (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
JP2022050308A (ja) * 2020-09-17 2022-03-30 ダイキン工業株式会社 含フッ素重合体及びその製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279522B2 (en) * 2001-09-05 2007-10-09 3M Innovative Properties Company Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant
EP1570917B1 (en) * 2004-03-01 2009-06-10 3M Innovative Properties Company Method of coating a substrate with a fluoropolymer dispersion
GB0514387D0 (en) * 2005-07-15 2005-08-17 3M Innovative Properties Co Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
GB2430437A (en) * 2005-09-27 2007-03-28 3M Innovative Properties Co Method of making a fluoropolymer
US20070276103A1 (en) * 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US8119750B2 (en) * 2006-07-13 2012-02-21 3M Innovative Properties Company Explosion taming surfactants for the production of perfluoropolymers
US20100084343A1 (en) * 2007-02-16 2010-04-08 Mader Brian T System and process for the removal of fluorochemicals from water
US20080264864A1 (en) 2007-04-27 2008-10-30 3M Innovative Properties Company PROCESS FOR REMOVING FLUORINATED EMULSIFIER FROM FLUOROPOLMER DISPERSIONS USING AN ANION-EXCHANGE RESIN AND A pH-DEPENDENT SURFACTANT AND FLUOROPOLYMER DISPERSIONS CONTAINING A pH-DEPENDENT SURFACTANT
CN101679790B (zh) * 2007-05-23 2012-09-19 3M创新有限公司 氟化表面活性剂的水性组合物及其使用方法
US8476385B2 (en) * 2007-06-06 2013-07-02 3M Innovative Properties Company Fluorinated ether compositions and methods of using the same
US8633288B2 (en) * 2008-07-18 2014-01-21 3M Innovative Properties Company Fluorinated ether compounds and methods of using the same
CN102317403A (zh) 2008-12-18 2012-01-11 3M创新有限公司 使含烃地层与氟化醚组合物接触的方法
CN106674392B (zh) 2010-11-09 2019-10-18 科慕埃弗西有限公司 含氟单体的含水聚合反应中的成核作用
EP2638083B1 (en) 2010-11-09 2019-04-10 The Chemours Company FC, LLC Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
WO2012064841A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluoromonomer using hydrocarbon surfactant
US20130303707A1 (en) * 2012-05-09 2013-11-14 E I Du Pont De Nemours And Company Fluorination of Fluoropolymer Resin to Reduce Discoloration
GB2517481A (en) * 2013-08-22 2015-02-25 3M Innovative Properties Co Method of making peroxide fluoropolymers using non-fluorindated emulsifiers
EP3074430B1 (en) 2013-11-26 2019-02-20 The Chemours Company FC, LLC Employing polyalkylene oxides for nucleation in aqueous polymerization of fluoromonomer
US11028198B2 (en) 2016-08-17 2021-06-08 3M Innovative Properties Company Tetrafluoroethylene and perfluorinated allyl ether copolymers
EP3284762A1 (en) 2016-08-17 2018-02-21 3M Innovative Properties Company Fluoropolymers comprising tetrafluoroethene and one or more perfluorinated alkyl allyl ether comonomers
JP2019534372A (ja) 2016-11-09 2019-11-28 スリーエム イノベイティブ プロパティズ カンパニー 過酸化物硬化性部分フッ素化ポリマー
EP3625201B1 (en) 2017-05-19 2021-09-29 3M Innovative Properties Company Methods of making a polyfluorinated allyl ether and compounds relating to the methods
EP3527634A1 (en) 2018-02-15 2019-08-21 3M Innovative Properties Company Fluoropolymers and fluoropolymer dispersions
GB201807544D0 (en) 2018-05-09 2018-06-20 3M Innovative Properties Co Fluoropolymers with very low amounts of a fluorinated alkanoic acid or its salts
TW202033573A (zh) 2018-12-17 2020-09-16 美商3M新設資產公司 包括可固化氟聚合物及固化劑之組成物及製造及使用其之方法
CN113906038A (zh) 2019-06-04 2022-01-07 3M创新有限公司 多官能氟化化合物、由该化合物制成的氟化聚合物以及相关方法
US20230357172A1 (en) 2020-03-19 2023-11-09 3M Innovative Properties Company Perfluorinated Allyl Ethers and Perfluorinated Allyl Amines and Methods of Making and Using the Same
WO2022180547A1 (en) 2021-02-26 2022-09-01 3M Innovative Properties Company Process for making a fluoropolymer and fluoropolymer made therefrom
WO2022259087A1 (en) 2021-06-11 2022-12-15 3M Innovative Properties Company Method of making a fluoropolymer dispersion having a low amount of perfluoroalkanoic acids or salts thereof and the fluoropolymer comprises a low ionic end group ratio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841413A (ja) * 1994-08-01 1996-02-13 Central Glass Co Ltd 含フッ素樹脂水性分散液の製造方法
WO2002024828A1 (fr) * 2000-09-21 2002-03-28 Daikin Industries, Ltd. Dispersion aqueuse d'eau et de d'oleofuge de son procede de fabrication
WO2002028925A2 (en) * 2000-10-04 2002-04-11 Dupont Dow Elastomers L.L.C. Emulsion polymerization process for producing fluoroelastomers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235459B (en) * 1989-08-09 1993-06-23 Toa Gosei Chem Ind Process for producing an aqueous resin dispersion
TW491824B (en) * 1997-04-30 2002-06-21 Daikin Ind Ltd Aqueous dispersion composition
EP1025190A2 (en) * 1997-10-23 2000-08-09 The Procter & Gamble Company Fatty acids, soaps, surfactant systems, and consumer products based thereon
DE19842952A1 (de) * 1998-09-18 2000-03-23 Basf Ag Dispergiermittel
US6767882B1 (en) * 1999-06-21 2004-07-27 The Procter & Gamble Company Process for producing coated detergent particles
US6607737B2 (en) * 2001-05-30 2003-08-19 The Procter & Gamble Company Topical composition comprising an activated, trans-structured cosmetic bonding agent
ATE302243T1 (de) * 2003-02-28 2005-09-15 3M Innovative Properties Co Fluoropolymerdispersion enthaltend kein oder wenig fluorhaltiges netzmittel mit niedrigem molekulargewicht

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841413A (ja) * 1994-08-01 1996-02-13 Central Glass Co Ltd 含フッ素樹脂水性分散液の製造方法
WO2002024828A1 (fr) * 2000-09-21 2002-03-28 Daikin Industries, Ltd. Dispersion aqueuse d'eau et de d'oleofuge de son procede de fabrication
WO2002028925A2 (en) * 2000-10-04 2002-04-11 Dupont Dow Elastomers L.L.C. Emulsion polymerization process for producing fluoroelastomers

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404790B2 (en) 2005-07-15 2013-03-26 3M Innovative Properties Company Aqueous emulsion polymerization process for producing fluoropolymers
US7776946B2 (en) 2005-07-15 2010-08-17 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
US7671112B2 (en) 2005-07-15 2010-03-02 3M Innovative Properties Company Method of making fluoropolymer dispersion
US7659333B2 (en) 2005-11-24 2010-02-09 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US7838608B2 (en) 2005-12-21 2010-11-23 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
US7728087B2 (en) 2005-12-23 2010-06-01 3M Innovative Properties Company Fluoropolymer dispersion and method for making the same
US7754795B2 (en) 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
US8598290B2 (en) 2006-06-30 2013-12-03 Daikin Industries, Ltd. Method for producing fluorine-containing elastomer
EP2039706A4 (en) * 2006-06-30 2009-06-03 Daikin Ind Ltd PROCESS FOR PRODUCING AN ELASTOMER CONTAINING FLUORINE
EP2039706A1 (en) * 2006-06-30 2009-03-25 Daikin Industries, Ltd. Method for producing fluorine-containing elastomer
WO2008001895A1 (fr) 2006-06-30 2008-01-03 Daikin Industries, Ltd. Procédé de fabrication d'un élastomère contenant du fluor
JP5617243B2 (ja) * 2007-11-28 2014-11-05 ユニマテック株式会社 フルオロエラストマーの製造法
JPWO2009069320A1 (ja) * 2007-11-28 2011-04-07 ユニマテック株式会社 フルオロエラストマーの製造法
WO2009069320A1 (ja) 2007-11-28 2009-06-04 Unimatec Co., Ltd. フルオロエラストマーの製造法
WO2010104142A1 (ja) 2009-03-12 2010-09-16 ダイキン工業株式会社 含フッ素シード重合体粒子の水性分散液の製造方法、および水性塗料組成物ならびに塗装物品
US20120157621A1 (en) * 2009-08-28 2012-06-21 Daikin Industries, Ltd Method for producing fluorine-containing polymer
US8735492B2 (en) 2009-08-28 2014-05-27 Daikin Industries, Ltd. Method for producing fluorine-containing polymer
US8952115B2 (en) 2009-08-28 2015-02-10 Daikin Industries, Ltd. Method for producing fluorine-containing polymer
WO2012043831A1 (ja) 2010-09-30 2012-04-05 ダイキン工業株式会社 含フッ素重合体の製造方法
US9567413B2 (en) 2010-09-30 2017-02-14 Daikin Industries, Ltd. Method for producing fluorine-containing polymer
WO2012133582A1 (ja) 2011-03-31 2012-10-04 ダイキン工業株式会社 含フッ素共重合体の製造方法
JP2014141673A (ja) * 2012-12-28 2014-08-07 Daikin Ind Ltd ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
WO2014104416A1 (ja) * 2012-12-28 2014-07-03 ダイキン工業株式会社 ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
US10150820B2 (en) 2012-12-28 2018-12-11 Daikin Industries, Ltd. Production method for polyvinylidene fluoride aqueous dispersion liquid, and polyvinylidene fluoride aqueous dispersion liquid
JP2015007218A (ja) * 2013-05-27 2015-01-15 ダイキン工業株式会社 フルオロポリマーの製造方法
US9834631B2 (en) 2013-05-27 2017-12-05 Daikin Industries, Ltd. Fluoropolymer production method
WO2019031617A1 (ja) * 2017-08-10 2019-02-14 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物
WO2020071503A1 (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
CN112771087A (zh) * 2018-10-03 2021-05-07 大金工业株式会社 聚四氟乙烯的制造方法
JPWO2020071503A1 (ja) * 2018-10-03 2021-09-02 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
CN112771087B (zh) * 2018-10-03 2023-01-20 大金工业株式会社 聚四氟乙烯的制造方法
JP7277799B2 (ja) 2018-10-03 2023-05-19 ダイキン工業株式会社 ポリテトラフルオロエチレンの製造方法
JP2022050308A (ja) * 2020-09-17 2022-03-30 ダイキン工業株式会社 含フッ素重合体及びその製造方法
JP7256409B2 (ja) 2020-09-17 2023-04-12 ダイキン工業株式会社 含フッ素重合体及びその製造方法

Also Published As

Publication number Publication date
US7566762B2 (en) 2009-07-28
JP4100431B2 (ja) 2008-06-11
EP1726599A1 (en) 2006-11-29
JPWO2005063827A1 (ja) 2007-07-19
US20070149733A1 (en) 2007-06-28
EP1726599A4 (en) 2009-12-23
EP1726599B1 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
WO2005063827A1 (ja) フルオロポリマーの製造方法
US9371405B2 (en) Nucleation in aqueous polymerization of fluoromonomer
EP2471825B1 (en) Method for producing fluorine-containing polymer
EP2686354A2 (en) Synthesis of 2,3,3,3-tetrafluoropropene containing fluoropolymers
JP6622209B2 (ja) フルオロモノマーの水性重合において核を形成するためのポリアルキレンオキシドの使用
JP5082212B2 (ja) フルオロエラストマーの製造方法
JP5598476B2 (ja) 含フッ素重合体の製造方法
US20220332854A1 (en) Method for making fluoropolymers
JP5077228B2 (ja) 含フッ素重合体の製造方法
US8623957B2 (en) Method of preparing fluoropolymers by aqueous emulsion polymerization
JP5454470B2 (ja) 含フッ素重合体の製造方法
WO2022025188A1 (ja) 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび水性分散液
EP1741729B1 (en) Polymerization process
CN103459441A (zh) 含氟共聚物的制造方法
JP2006111722A (ja) 含フッ素重合体の製造方法
WO2022025190A1 (ja) 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび水性分散液
JP2023551424A (ja) フルオロポリマーの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516604

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007149733

Country of ref document: US

Ref document number: 10584710

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2004807576

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004807576

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10584710

Country of ref document: US