WO2014104416A1 - ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液 - Google Patents

ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液 Download PDF

Info

Publication number
WO2014104416A1
WO2014104416A1 PCT/JP2014/050025 JP2014050025W WO2014104416A1 WO 2014104416 A1 WO2014104416 A1 WO 2014104416A1 JP 2014050025 W JP2014050025 W JP 2014050025W WO 2014104416 A1 WO2014104416 A1 WO 2014104416A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl group
carbon atoms
independently represent
polyvinylidene fluoride
surfactant
Prior art date
Application number
PCT/JP2014/050025
Other languages
English (en)
French (fr)
Inventor
真由美 飯田
泰宏 中野
井本 克彦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201480003736.2A priority Critical patent/CN104903357A/zh
Priority to EP14733060.9A priority patent/EP2940049B1/en
Priority to US14/758,034 priority patent/US10150820B2/en
Publication of WO2014104416A1 publication Critical patent/WO2014104416A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Definitions

  • the present invention relates to a method for producing an aqueous polyvinylidene fluoride dispersion and an aqueous polyvinylidene fluoride dispersion.
  • Polyvinylidene fluoride is excellent in heat resistance and chemical resistance, and at the same time has a large difference between the melting point and the thermal decomposition temperature and is easy to process.
  • emulsion polymerization is a method in which a fluoromonomer is polymerized in the presence of a surfactant to obtain an aqueous dispersion of the fluoropolymer.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctane sulfonic acid
  • Patent Document 3 discloses the following general formula (1) X- (CF 2 ) m -Y (1)
  • X represents H or F
  • m represents an integer of 3 to 5
  • Y represents —SO 3 M, —SO 4 M, —SO 3 R, —SO 4 R, —COOM
  • —PO 3 A fluorine-containing compound represented by M 2 , —PO 4 M 2 (M represents H, NH 4 or an alkali metal, and R represents an alkyl group having 1 to 12 carbon atoms); It describes that low molecular weight polytetrafluoroethylene is produced by carrying out emulsion polymerization in the presence of a reactive compound having a functional group and a hydrophilic group capable of reacting by radical polymerization.
  • the present invention can produce an aqueous dispersion containing polyvinylidene fluoride with high productivity, the dispersion stability of the obtained aqueous dispersion is high, and the crystallinity of the obtained polyvinylidene fluoride and It is an object of the present invention to provide a production method capable of easily adjusting the melting point. Another object of the present invention is to provide an aqueous dispersion having high dispersion stability.
  • the present invention contains polyvinylidene fluoride by emulsion polymerization of vinylidene fluoride in the presence of a surfactant having a surface tension of 55 mN / m or less at an addition amount of 1000 ppm, an organic peroxide, and water.
  • the surfactant is represented by the general formula (1):
  • R 1 and R 2 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and the alkyl group or halogenated alkyl group has carbon-carbon when the number of carbon atoms is 2 to 14;
  • An oxygen atom may be contained between atoms
  • R 3 represents H or — (CH 2 ) v —COOM 1.
  • R 4 represents —SO 3 M 2 or — (CH 2 ) v —COOM 1 , where v is And represents an integer of 0 to 3.
  • M 1 and M 2 are independently H, NR 4 or an alkali metal, and four Rs are independently H or an alkyl group having 1 to 3 carbon atoms.
  • R 5 and R 6 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and when the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be interposed between them, two M 1 are independently H, NR 4 or an alkali metal, and four R are independently H or an alkyl group having 1 to 3 carbon atoms).
  • R 7 and R 8 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and the alkyl group or halogenated alkyl group has a carbon-carbon atom when having 2 to 14 carbon atoms.
  • An oxygen atom may be present between them
  • R 9 represents —SO 3 M 2 or —COOM 1.
  • M 1 and M 2 are independently H, NR 4 or an alkali metal, and four R are independently H or It represents an alkyl group having 1 to 3 carbon atoms, and w represents an integer of 0 to 3.
  • the present invention relates to a general formula (1):
  • R 1 and R 2 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group. When the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be present between them, R 3 represents H or — (CH 2 ) v —COOM 1. R 4 represents —SO 3 M 2 or — (CH 2 ) v —COOM 1. v is 0. And M 1 and M 2 independently represent H, NR 4 or an alkali metal, and four Rs independently represent H or an alkyl group having 1 to 3 carbon atoms.
  • R 5 and R 6 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and when the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be interposed between them, two M 1 are independently H, NR 4 or an alkali metal, and four R are independently H or an alkyl group having 1 to 3 carbon atoms).
  • R 7 and R 8 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and the alkyl group or halogenated alkyl group has a carbon-carbon atom when having 2 to 14 carbon atoms. An oxygen atom may be present between them, R 9 represents —SO 3 M 2 or —COOM 1.
  • M 1 and M 2 are independently H, NR 4 or an alkali metal, and four R are independently H or An alkyl group having 1 to 3 carbon atoms, w represents an integer of 0 to 3, and at least one surfactant selected from the group consisting of:
  • the polyvinylidene fluoride is a polyvinylidene fluoride comprising a vinylidene fluoride unit derived from vinylidene fluoride and having a functional group derived from an organic peroxide at the end of the main chain. It is also an aqueous dispersion of nilidene fluoride.
  • the polyvinylidene fluoride is preferably composed only of vinylidene fluoride units derived from vinylidene fluoride.
  • the surfactant is represented by the general formula (4): C n X 1 2n + 1 —OOC—CH (SO 3 M 2 ) —CH 2 —COO—C m X 2 2m + 1 (In the formula, n and m independently represent an integer of 3 to 10, X 1 and X 2 independently represent H, F, Cl, Br or I. M 2 represents H, NR 4 or an alkali metal.
  • the four Rs are each preferably a surfactant represented by H or an alkyl group having 1 to 3 carbon atoms.
  • Organic peroxides include di-t-butyl peroxide, dinormal propyl peroxydicarbonate, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, It is preferably at least one selected from the group consisting of 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3 and t-butylperoxyisobutyrate.
  • the present invention is also a paint obtained from the aqueous polyvinylidene fluoride dispersion of the present invention.
  • the present invention is also a coated article having a coating film obtained from the aqueous polyvinylidene fluoride dispersion of the present invention.
  • the production method of the present invention can produce an aqueous dispersion containing polyvinylidene fluoride with high productivity, the dispersion stability of the obtained aqueous dispersion is high, and further, the obtained polyvinylidene fluoride is obtained. Crystallinity and melting point can be easily adjusted.
  • the aqueous dispersion of the present invention has high dispersion stability.
  • the production method of the present invention is a production method for obtaining an aqueous dispersion containing polyvinylidene fluoride [PVDF] by emulsion polymerization of vinylidene fluoride [VDF].
  • VDF may be polymerized as a radical polymerizable monomer, or other fluorinated monomer or non-fluorinated monomer copolymerizable with VDF and VDF may be polymerized.
  • VDF may be polymerized.
  • the production method of the present invention is characterized in that VDF is polymerized in the presence of a surfactant, an organic peroxide and water having a surface tension of 55 mN / m or less at an addition amount of 1000 ppm.
  • a surfactant having a surface tension of 55 mN / m or less an aqueous dispersion containing polyvinylidene fluoride can be produced with high productivity.
  • the upper limit of the surface tension of the surfactant is preferably 54 mN / m, more preferably 53 mN / m, and still more preferably 50 mN / m.
  • the lower limit of the surface tension of the surfactant is preferably 5 mN / m, more preferably 7 mN / m, and even more preferably 10 mN / m.
  • the surface tension can be measured by, for example, a surface tension meter.
  • the surfactant is preferably at least one of the surfactants represented by the following general formulas (1) to (3).
  • the two-chain surfactant represented by the general formulas (1) to (3) an aqueous dispersion containing polyvinylidene fluoride can be produced with high productivity.
  • R 1 and R 2 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group. When the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be present between them, R 3 represents H or — (CH 2 ) v —COOM 1. R 4 represents —SO 3 M 2 or — (CH 2 ) v —COOM 1. v is 0. And M 1 and M 2 independently represent H, NR 4 or an alkali metal, and four Rs independently represent H or an alkyl group having 1 to 3 carbon atoms. Surfactant.
  • R 5 and R 6 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and when the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be interposed between them, two M 1 are independently H, NR 4 or an alkali metal, and four R are independently H or an alkyl group having 1 to 3 carbon atoms).
  • Surfactant when R 5 and R 6 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and when the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be interposed between them, two M 1 are independently H, NR 4 or an alkali metal, and four R are independently H or an alkyl group having 1 to 3 carbon atoms).
  • R 7 and R 8 independently represent an alkyl group having 1 to 14 carbon atoms or a halogenated alkyl group, and when the alkyl group or halogenated alkyl group has 2 to 14 carbon atoms, An oxygen atom may be present between them, R 9 represents —SO 3 M 2 or —COOM 1.
  • M 1 and M 2 are independently H, NR 4 or an alkali metal, and four R are independently H or And a surfactant having a carbon number of 1 to 3.
  • w represents an integer of 0 to 3.
  • R 5 and R 6 may be a linear or branched alkyl group or a halogenated alkyl group.
  • examples of the surfactant represented by the general formula (2) include ammonium 2,2-dioctylmalonate.
  • R 7 and R 8 may be a linear or branched alkyl group or a halogenated alkyl group.
  • examples of the surfactant represented by the general formula (3) include sodium 9-heptadecasulfonate.
  • the organic peroxide is used as a polymerization initiator.
  • VDF is polymerized at a high temperature using a polymerization initiator other than organic peroxide, for example, persulfate
  • the product becomes a gel and an aqueous dispersion cannot be obtained.
  • the obtained PVDF is colored by heating and cannot be used at high temperatures.
  • organic peroxide examples include di-t-butyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl- Dialkyl peroxides such as 2,5-di (t-butylperoxy) hexyne-3; hydroperoxides such as 1,1,3,3-tetramethylbutyl hydroperoxide and t-butyl hydroperoxide; Diacyl peroxides such as oxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, succinic acid peroxide, bis ( ⁇ -hydrododecafluoroheptanoyl) peroxide ; Dinormalpropyl peroxydica Bonate, diisopropyl peroxydicarbonate, bis (4-t-butylcyclo
  • reducing agents such as Rongalite, ascorbic acid, tartaric acid, sodium disulfite, isoascorbic acid, and ferrous sulfate may be used in combination.
  • the amount of the organic peroxide used is preferably 1 to 10000 ppm, more preferably 300 to 3500 ppm relative to water. Each of these amounts is the amount of organic peroxide present at the start of polymerization. The organic peroxide may be further added after the start of polymerization.
  • the amount of the surfactant represented by the general formulas (1) to (3) is preferably 10 to 30000 ppm, more preferably 50 to 10000 ppm relative to water.
  • the surfactant is represented by the general formula (4): C n X 1 2n + 1 —OOC—CH (SO 3 M 2 ) —CH 2 —COO—C m X 2 2m + 1 (In the formula, n and m independently represent an integer of 3 to 10, and X 1 and X 2 independently represent H, F, Cl, Br or I. M 2 represents H, NR 4 or an alkali metal. More preferably, the four Rs independently represent a surfactant represented by H or an alkyl group having 1 to 3 carbon atoms.
  • M, M 1 and M 2 are each independently H, NR 4 or an alkali metal, and four Rs independently represent H or an alkyl group having 1 to 3 carbon atoms. Of the four Rs, at least one is preferably H, and the alkyl group is preferably a methyl group.
  • M, M 1 and M 2 are preferably H, NH 4 , Na or Li, and more preferably NH 4 , Na or Li.
  • the amount of the surfactant represented by the general formula (4) used is preferably 10 to 30000 ppm, more preferably 50 to 10000 ppm relative to water.
  • the above polymerization can be carried out with stirring, after adding water, the above surfactant, and a monomer such as VDF to a polymerization tank, and then adding an organic peroxide.
  • the polymerization time may be 1 to 30 hours.
  • the emulsion polymerization pressure is preferably 0.5 to 5.0 MPa, more preferably 1.0 to 4.5 MPa.
  • the temperature of the emulsion polymerization can be changed according to the physical properties of the target polymer by selecting an initiator.
  • the temperature of the emulsion polymerization may be 10 to 200 ° C.
  • a molecular weight regulator or the like may be further added.
  • the molecular weight modifier may be added all at once in the initial stage, or may be added continuously or dividedly.
  • the molecular weight regulator examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride, cyclohexane, mono Examples thereof include iodomethane, 1-iodomethane, 1-iodopropane, isopropyl iodide, diiodomethane, 1,2-diiodomethane, 1,3-diiodopropane and the like.
  • a buffering agent or the like may be added as appropriate, but the amount is preferably used within a range not impairing the effects of the present invention.
  • buffers include sodium carbonate, sodium bicarbonate, sodium orthophosphate, primary sodium phosphate, sodium chloride, sodium sulfate, sodium acetate, sodium citrate, boric acid-sodium hydroxide, boric acid-sodium carbonate, diphosphate
  • examples thereof include inorganic salts such as potassium hydrogen-sodium hydroxide.
  • paraffin may be added as appropriate in order to reduce adhesion of the produced polymer to the polymerization tank.
  • an aqueous PVDF dispersion containing at least one selected from the group consisting of surfactants represented by general formulas (1) to (3), water, and PVDF is also one aspect of the present invention.
  • the PVDF aqueous dispersion of the present invention can be suitably produced by the production method of the present invention.
  • the PVDF is composed of VDF units derived from VDF, and has a functional group derived from an organic peroxide at the end of the main chain.
  • the PVDF preferably has a main chain composed only of VDF units derived from VDF.
  • Examples of the functional group derived from the organic peroxide include CH 3 —CH 2 —CF 2 —CF 2 —, CH 3 —CF 2 —CH 2 —CF 2 —, and C (CH 3 ) 3 —CF 2 —CH 2. —CF 2 —, C (CH 3 ) 3 —CH 2 —CF 2 — and the like can be mentioned.
  • the type of functional group present at the end of the main chain can be specified by measurement by 1 H-NMR.
  • the surfactant and the organic peroxide are as described in the production method of the present invention.
  • PVDF contained in the aqueous dispersion preferably has an average particle size of 40 to 1000 nm, more preferably 50 nm or more, further preferably 100 nm or more, particularly preferably 150 nm or more, More preferably, it is 800 nm or less, and still more preferably 600 nm or less.
  • the average particle diameter can be measured using a microtrack UPA manufactured by HONEYWELL.
  • the PVDF contained in the aqueous dispersion may depend on the application, but the melt flow rate (MFR) may be 0 to 100 g / 10 minutes.
  • the MFR is preferably from 0 to 10 g / 10 minutes, more preferably from 0.5 to 5 g / 10 minutes, and for water treatment applications, the molecular weight is preferably 200,000 or more, and from 200,000 to More preferably, it is 1 million.
  • the MFR is a value obtained by measuring PVDF fine powder ASTM D1238 obtained from an aqueous dispersion at a temperature of 230 ° C. and a load of 10 kg, and the molecular weight is a value measured by GPC.
  • the PVDF contained in the aqueous dispersion preferably has a melting point of 120 to 185 ° C.
  • the melting point is more preferably 160 ° C. or higher, and more preferably 180 ° C. or lower.
  • the melting point can be measured using a differential scanning calorimeter [DSC].
  • the solid content concentration of the PVDF is preferably 3 to 50% by mass, more preferably 5 to 40% by mass with respect to the PVDF aqueous dispersion.
  • the content of the surfactant is preferably 10 to 10,000 ppm, more preferably 30 to 3000 ppm with respect to the PVDF aqueous dispersion.
  • PVDF fine powder can be obtained.
  • the PVDF aqueous dispersion of the present invention and the PVDF fine powder are paints, lining materials, sheets, films, pipes, joints, valves, pumps, round bars, planks, bolts, nuts, insulating materials, wire coating materials, and piezoelectric bodies. It can be suitably used for pyroelectric bodies, fishing lines, battery electrode binders, water treatment membranes, building materials, oil drilling materials, and the like.
  • the present invention is also a paint obtained from the PVDF aqueous dispersion of the present invention.
  • the PVDF aqueous dispersion of the present invention and the PVDF fine powder are further used as a coating material and a lining material for the innermost and outermost surfaces of fluid transfer metal pipes for crude oil and natural gas, regardless of the riser pipe, underground, ground, or seabed. Can also be suitably used.
  • the present invention is also a coated article having a coating film obtained from the PVDF aqueous dispersion of the present invention.
  • the purpose of forming a coating film by coating and lining on the innermost surface is that crude oil and natural gas contain carbon dioxide and hydrogen sulfide, which cause corrosion of metal pipes. This is to suppress or reduce the fluid friction of high viscosity crude oil.
  • the outermost surface is also for suppressing corrosion caused by seawater or acidic water.
  • glass fiber, carbon fiber, aramid resin, mica, silica, talc, celite, clay, titanium oxide Etc. may be filled.
  • Fluid transport members for food production equipment such as food packaging films, lining materials for fluid transfer lines used in food manufacturing processes, packing, sealing materials, sheets; Chemical liquid transfer members such as medicine stoppers, packaging films, lining materials for fluid transfer lines used in chemical manufacturing processes, packing, seal materials, sheets; Internal lining material for chemical tanks and piping in chemical plants and semiconductor factories; Fuel transfer members such as O (square) rings, tubes, packings, valve cores, hoses, seals, etc. used in automobile fuel systems and peripheral devices, hoses, seals, etc. used in automobile AT devices; Car parts such as carburetor flange gaskets, shaft seals, valve stem seals, sealing materials, hoses, etc.
  • Paint and ink components such as paint rolls, hoses, tubes, and ink containers for painting equipment; Tubes for food and drink or tubes for food and drink, hoses, belts, packings, food and drink transfer members such as joints, food packaging materials, glass cooking equipment; Waste liquid transport components such as waste liquid transport tubes and hoses; High temperature liquid transport members such as tubes and hoses for high temperature liquid transport; Steam piping members such as tubes and hoses for steam piping; Anticorrosion tape for piping such as tape wrapped around piping of ship decks; Various coating materials such as an electric wire coating material, an optical fiber coating material, a transparent surface coating material and a back surface agent provided on the light incident side surface of the photovoltaic element of the solar cell; Sliding members such as diaphragm pump diaphragms and various packings; Agricultural film, weatherproof covers such as various roof materials and side walls; Interior materials used in the construction field, glass covering materials such as non-flammable fire safety glass; Lining materials such as laminated steel sheets
  • Examples of the fuel transfer member used in the fuel system of the automobile further include a fuel hose, a filler hose, and an evaporation hose.
  • the fuel transfer member can also be used as a fuel transfer member for fuel containing gasoline additives such as for sour gasoline resistant, alcohol resistant fuel, methyl tertiary butyl ether / amine resistant, etc.
  • the above-mentioned drug stopper / packaging film has excellent chemical resistance against acids and the like.
  • medical solution transfer member can also mention the anticorrosion tape wound around chemical plant piping.
  • Examples of the molded body include a radiator tank, a chemical tank, a bellows, a spacer, a roller, a gasoline tank, a waste liquid transport container, a high temperature liquid transport container, and a fishery / fish farm tank.
  • molded products there are also automobile bumpers, door trims, instrument panels, food processing equipment, cooking equipment, water and oil repellent glass, lighting related equipment, display boards / housings for office automation equipment, electric signs, displays, liquid crystals Examples include members used for displays, mobile phones, printed boards, electrical and electronic parts, sundries, trash cans, bathtubs, unit baths, ventilation fans, lighting frames, and the like.
  • the average particle diameter was measured using Microtrac UPA manufactured by HONEYWELL.
  • Example 1 In a 3.0 L stainless steel autoclave, pure water 1700 g, H— (CF 2 CF 2 ) 3 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 — (CF 2 CF 2 ) 0.85 g of 3- H (surface tension 22 mN / m) (with respect to 500 ppm of polymerization water) and 17 g of paraffin were substituted with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 115 ° C. With stirring, 0.51 g of acetone and 5.6 g of di-t-butyl peroxide were added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 160.8 ° C., an average particle size of 171 nm, an abnormal bond rate of 5.5 mol%, and a crystallinity of 0.28.
  • Example 2 In a 3.0 L stainless steel autoclave, pure water 1700 g, H— (CF 2 CF 2 ) 3 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 — (CF 2 CF 2 ) 0.85 g of 3- H (surface tension 21 mN / m) (with respect to 500 ppm of polymerization water) and 17 g of paraffin were substituted with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 115 ° C. With stirring, 0.51 g of acetone and 5.6 g of di-t-butyl peroxide were added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 162.03 ° C., an average particle size of 185 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.33.
  • Example 3 In a 3.0 L stainless steel autoclave, pure water 1700 g, H— (CF 2 CF 2 ) 3 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 — (CF 2 CF 2 ) 0.85 g of 3- H (surface tension 22 mN / m) (with respect to 500 ppm of polymerization water) and 17 g of paraffin were substituted with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 115 ° C. With stirring, 0.51 g of acetone and 5.6 g of di-t-butyl peroxide were added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 161 ° C., an average particle size of 206 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.34.
  • Example 4 Pure water 1700 g, F- (CF 2 CF 2 ) 3 —CH 2 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 —CH 2 in a 3.0 L stainless steel autoclave -(CF 2 CF 2 ) 3 -F (surface tension 24 mN / m) 0.51 g (with respect to polymerization water 300 ppm) and paraffin 17 g were added to replace nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the inside of the tank was 115 ° C. The temperature was raised to. Under stirring, 0.51 g of acetone and 2.8 g of di-t-butyl peroxide were added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 161 ° C., an average particle size of 50 nm, an abnormal bond rate of 5.5 mol%, and a crystallinity of 0.34.
  • Example 5 In a 3.0 L stainless steel autoclave, pure water 1700 g, CF 3 —CHF—CF 2 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 —CF 2 —CHF—CF 3 (Surface tension 54 mN / m) 0.85 g and 17 g of paraffin were added to replace with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 115 ° C. Under stirring, 5.6 g of di-t-butyl peroxide was added to start the reaction. After 4 hours, 1758 g of a stable PVDF emulsion (solid concentration 4.8% by mass) was obtained. With respect to the obtained PVDF emulsion, a stability test was performed by the following method. The results are shown in Table 1.
  • the obtained polymer had a melting point of 161 ° C., an average particle size of 200 nm, an abnormal bond rate of 5.4 mol%, and a crystallinity of 0.35.
  • Example 6 A 3.0 L stainless steel autoclave was charged with 1400 g of pure water and 0.88 g of sodium di-2-ethylhexylsulfosuccinate (surface tension 45 mN / m), and the atmosphere was replaced with nitrogen. 198 g of vinylidene fluoride (VDF) was added, and the inside of the tank was 80 ° C. The temperature was raised to. Under stirring, 1.1 g of dinormalpropyl peroxydicarbonate was added to start the reaction. After 30 minutes, 1.1 g of dinormalpropyl peroxydicarbonate was added to obtain 1399 g of a stable PVDF emulsion after 1.5 hours (solid content concentration: 3.1% by mass). With respect to the obtained PVDF emulsion, a stability test was performed by the following method. The results are shown in Table 1.
  • the obtained polymer had a melting point of 168 ° C., an average particle size of 111 nm, an abnormal bond rate of 5.1 mol%, and a crystallinity of 0.37.
  • Example 7 In a 3.0 L stainless steel autoclave, pure water 1700 g, H— (CF 2 CF 2 ) 3 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O—CH 2 — (CF 2 CF 2 ) 0.85 g of 3- H (surface tension 54 mN / m) and 17 g of paraffin were substituted with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 80 ° C. To this was added 5.6 g of t-butyl peroxyisobutyrate with stirring to initiate the reaction. After 2 hours, 1730 g of a stable PVDF emulsion (solid content concentration 4.5% by mass) was obtained. With respect to the obtained PVDF emulsion, a stability test was performed by the following method. The results are shown in Table 1.
  • the resulting polymer had a melting point of 167 ° C., an average particle size of 98 nm, an abnormal bond rate of 5.1 mol%, and a crystallinity of 0.36.
  • Example 8 In a 3.0 L stainless steel autoclave, 2000 g of pure water, H— (CF 2 CF 2 ) 3 —CH 2 —O—CO—CH (CH 2 COONH 4 ) CH (CH 2 COONH 4 ) —CO—O—CH 2 — 4 g of (CF 2 CF 2 ) 3 —H (surface tension 28 mN / m) and 20 g of paraffin were added to replace nitrogen, 111 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 125 ° C. Under stirring, 6.6 g of di-t-butyl peroxide was added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 158.8 ° C., an average particle size of 390 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.30.
  • Example 9 3.0 L stainless steel autoclave, pure water 1700 g, CH 3 (CH 2 ) m —CH (—SO 3 Na) (CH 2 ) n —CH 3 (Clariant Hostar SAS 93) (surface tension 30 mN / m) 3 g, paraffin 17 g was added and the atmosphere was replaced with nitrogen, 150 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 125 ° C. Under stirring, 5.6 g of di-t-butyl peroxide was added to start the reaction. After 2 hours, 1735 g (solid content concentration: 4.0% by mass) of a stable PVDF emulsion was obtained. With respect to the obtained PVDF emulsion, a stability test was performed by the following method. The results are shown in Table 1.
  • the obtained polymer had a melting point of 156 ° C., an average particle size of 105 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.33.
  • Example 10 In a 3.0 L stainless steel autoclave, pure water 1700 g, F (CF 2 ) 4 —O—CF 2 CF 2 —O—CF 2 —CH 2 —O—CO—CH 2 CH (—SO 3 Na) —CO—O 0.85 g of —CH 2 —CF 2 —O—CF 2 CF 2 —O— (CF 2 ) 4 F (surface tension 22 mN / m) and 17 g of paraffin were substituted with nitrogen, and 150 g of vinylidene fluoride (VDF) was added. The temperature in the tank was raised to 125 ° C. Under stirring, 5.6 g of di-t-butyl peroxide was added to start the reaction. After 1.5 hours, 1748 g (solid content concentration: 4.0% by mass) of a stable PVDF emulsion was obtained. With respect to the obtained PVDF emulsion, a stability test was performed by the following method. The results are shown in Table 1.
  • the obtained polymer had a melting point of 158 ° C., an average particle size of 102 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.33.
  • Example 11 Pure water 2000 g, 3.0 g stainless steel autoclave, CF 3 (CF 2 ) 3 —CH 2 CH 2 C (COONH 4 ) 2 CH 2 CH 2 (CF 2 ) 3 CF 3 4 g (surface tension 40 mN / m), paraffin 20 g was added and replaced with nitrogen, 111 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 125 ° C. Under stirring, 6.6 g of di-t-butyl peroxide was added to start the reaction.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 158 ° C., an average particle size of 380 nm, an abnormal bond rate of 5.6 mol%, and a crystallinity of 0.31.
  • the obtained polymer had a melting point of 157 ° C., an average particle size of 199 nm, an abnormal bond rate of 6.1 mol%, and a crystallinity of 0.34.
  • Comparative Example 2 In a 3.0 L stainless steel autoclave, 1700 g of pure water, 17 g of paraffin, 1.1 g of CF 3 —CF 2 —CF 2 —CF 2 —CF 2 —CF 2 —COONH 4 (surface tension 63 mN / m), di 2.7 g of t-butyl peroxide was added and the atmosphere was replaced with nitrogen, 130 g of vinylidene fluoride (VDF) was added, and the temperature in the tank was raised to 125 ° C.
  • VDF vinylidene fluoride
  • the obtained polymer had a melting point of 157 ° C., an average particle size of 518 nm, an abnormal bond rate of 6.2 mol%, and a crystallinity of 0.33.
  • the obtained polymer had a melting point of 160 ° C., an average particle size of 597 nm, an abnormal bond rate of 6.0 mol%, and a crystallinity of 0.33.
  • Example 12 The emulsion obtained in Example 1 was coagulated and dried to obtain PVDF powder. 7 g of the obtained PVDF powder, 3 g of paraloid B44 (manufactured by Dow Chemical Co., Ltd.), 6 g of titanium oxide R960 (manufactured by DuPont), and 24 g of isophorone were prepared to prepare a paint, and applied to an aluminum plate at 240 ° C. 15 After partial baking, a coated plate was obtained. With respect to the obtained coated plate, the coating film properties were evaluated by the following methods. Further, when the obtained coated plate was subjected to an exposure test in Okinawa for one year, it showed a high gloss retention. The results are shown in Table 2.
  • Film hardness was measured by a pencil hardness test.

Abstract

本発明は、ポリビニリデンフルオライドを含有する水性分散液を高い生産性で製造することができる製造方法を提供することを目的とする。 本発明は、1000ppmの添加量における表面張力が55mN/m以下である界面活性剤、有機過酸化物及び水の存在下に、ビニリデンフルオライドを乳化重合することによって、ポリビニリデンフルオライドを含有する水性分散液を得る ことを特徴とするポリビニリデンフルオライド水性分散液の製造方法である。

Description

ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
本発明は、ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液に関する。
ポリビニリデンフルオライドは、耐熱性、耐薬品性等に優れると同時に、融点と熱分解温度との差が大きく、加工が容易であることから、幅広い用途に使用されている。
ポリビニリデンフルオライドに限るものではないが、フルオロポリマーの製造方法としては、乳化重合、懸濁重合、溶液重合、塊状重合等が知られている。このうち、乳化重合は、界面活性剤の存在下にフルオロモノマーを重合させて、フルオロポリマーの水性分散液を得る方法である。
従来は、上記界面活性剤として、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)が使用されてきたが、これらは環境に悪影響を与える可能性が懸念されている。
そこで、特許文献1には、式:A-R-B (I)
[式中、AおよびBは互いに等しいかまたは異なって、-(O)CFX-COOM(ここで、M=NH、アルカリ金属、H;
X=F、CF
pは、0または1に等しい整数である)であり;Rは、(I)の数平均分子量が300ないし1,800、好ましくは500ないし1,600、より好ましくは600ないし1,200となるような直鎖の、または分岐したパーフルオロアルキル鎖または(パー)フルオロポリエーテル鎖である]で表される2官能性のフッ素化界面活性剤を使用して、フルオロポリマー水性分散液を製造することが記載されている。
特許文献2には、一般式(1):
Y’-(P-CH(Y)-(Pn’-Y”(1)
(式中:Y、Y’およびY”は、アニオンまたはノニオン基であるが、但しY、Y’またはY”の少なくとも1つはアニオン基であり、かつ残りのY、Y’およびY”の少なくとも1つはノニオン基であり;PおよびPは、同一または異なって、任意に1以上の不飽和を有していてもよい、炭素数1~10、好ましくは1~6の直鎖状または分岐状のアルキレン基であり;
nおよびn’は同一または異なって、0または1である)
を有する1以上のアニオン界面活性剤を使用して、フッ素化ポリマーの分散液を製造することが記載されている。
特許文献3には、下記一般式(1)
X-(CF-Y (1)
(式中、XはH又はFを表し、mは3~5の整数を表し、Yは-SOM、-SOM、-SOR、-SOR、-COOM、-PO、-PO(MはH、NH又はアルカリ金属を表し、Rは炭素数1~12のアルキル基を表す。)を表す。)で表される含フッ素化合物と、更に、ラジカル重合で反応可能な官能基と親水基とを有する反応性化合物との存在下に乳化重合を行うことによって、低分子量ポリテトラフルオロエチレンを製造することが記載されている。
特開2003-286379号公報 特開2005-171250号公報 国際公開第2009/020187号
本発明は、ポリビニリデンフルオライドを含有する水性分散液を高い生産性で製造することができ、得られる水性分散液の分散安定性が高く、更に得られるポリビリニデンフルオライドの結晶性及び融点を容易に調整することができる製造方法を提供することを課題とする。本発明は、また、分散安定性が高い水性分散液を提供することを課題とする。
本発明は、1000ppmの添加量における表面張力が55mN/m以下である界面活性剤、有機過酸化物及び水の存在下に、ビニリデンフルオライドを乳化重合することによって、ポリビニリデンフルオライドを含有する水性分散液を得ることを特徴とするポリビニリデンフルオライド水性分散液の製造方法である。
上記製造方法において、界面活性剤は、一般式(1):
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基、を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。RはH又は-(CH-COOMを表す。Rは-SO又は-(CH-COOMを表す。vは0~3の整数を表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、一般式(2):
Figure JPOXMLDOC01-appb-C000008
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。2つのMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、及び、一般式(3):
Figure JPOXMLDOC01-appb-C000009
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。Rは-SO又は-COOMを表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。wは0~3の整数を表す。)で表される界面活性剤であることが好ましい。
上記製造方法において、ビニリデンフルオライドのみを乳化重合することが好ましい。
本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000010
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。RはH又は-(CH-COOMを表す。Rは-SO又は-(CH-COOMを表す。vは0~3の整数を表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、一般式(2):
Figure JPOXMLDOC01-appb-C000011
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。2つのMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、及び、一般式(3):
Figure JPOXMLDOC01-appb-C000012
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。Rは-SO又は-COOMを表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。wは0~3の整数を表す。)で表される界面活性剤、からなる群より選択される少なくとも1種の界面活性剤、水、及び、ポリビニリデンフルオライドを含み、上記ポリビニリデンフルオライドは、ビニリデンフルオライドに由来するビニリデンフルオライド単位からなり、主鎖の末端に有機過酸化物に由来する官能基を有することを特徴とするポリビニリデンフルオライド水性分散液でもある。
ポリビニリデンフルオライドは、ビニリデンフルオライドに由来するビニリデンフルオライド単位のみからなることが好ましい。
界面活性剤は、一般式(4):
2n+1-OOC-CH(SO)-CH-COO-C 2m+1
(式中、n及びmは独立に3~10の整数を表し、X及びXは独立にH、F、Cl、Br又はIを表す。MはH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤であることが好ましい。
有機過酸化物は、ジ-t-ブチルパーオキシド、ジノルマルプロピルパーオキシジカーボネート、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、及び、t-ブチルパーオキシイソブチレートからなる群より選択される少なくとも1種であることが好ましい。
本発明はまた、本発明のポリビニリデンフルオライド水性分散液から得られる塗料でもある。
本発明はまた、本発明のポリビニリデンフルオライド水性分散液から得られる塗膜を有する塗装物品でもある。
本発明の製造方法は、高い生産性でポリビニリデンフルオライドを含有する水性分散液を製造することができ、得られる水性分散液の分散安定性が高く、更に得られるポリビリニデンフルオライドの結晶性及び融点を容易に調整することができる。本発明の水性分散液は、高い分散液安定性を有する。
以下、本発明を具体的に説明する。
本発明の製造方法は、ビニリデンフルオライド〔VDF〕を乳化重合することによって、ポリビニリデンフルオライド〔PVDF〕を含有する水性分散液を得る製造方法である。
本発明の製造方法において、ラジカル重合性モノマーとして、VDFのみを重合してもよいし、VDF及びVDFと共重合可能な他のフッ素化単量体又は非フッ素化単量体を重合してもよいが、生産性の観点から、ビニリデンフルオライドのみを重合することが好ましい。
本発明の製造方法は、1000ppmの添加量における表面張力が55mN/m以下である界面活性剤、有機過酸化物及び水の存在下に、VDFを重合させることに特徴がある。表面張力が55mN/m以下である界面活性剤を使用することにより、高い生産性でポリビニリデンフルオライドを含有する水性分散液を製造することができる。界面活性剤の表面張力の上限は、54mN/mであることが好ましく、53mN/mであることがより好ましく、50mN/mであることが更に好ましい。界面活性剤の表面張力の下限は、5mN/mであることが好ましく、7mN/mであることがより好ましく、10mN/mであることが更に好ましい。
上記表面張力は、例えば、表面張力計により測定することができる。
上記界面活性剤は、下記の一般式(1)~(3)で表される界面活性剤の少なくとも1種であることが好ましい。一般式(1)~(3)で表される2鎖型の界面活性剤を使用することにより、高い生産性でポリビニリデンフルオライドを含有する水性分散液を製造することができる。
一般式(1):
Figure JPOXMLDOC01-appb-C000013
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。RはH又は-(CH-COOMを表す。Rは-SO又は-(CH-COOMを表す。vは0~3の整数を表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤。
一般式(2):
Figure JPOXMLDOC01-appb-C000014
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、上記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。2つのMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤。
一般式(3):
Figure JPOXMLDOC01-appb-C000015
(式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。Rは-SO又は-COOMを表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。wは0~3の整数を表す。)で表される界面活性剤。
一般式(2)において、R及びRは、直鎖または分岐したアルキル基又はハロゲン化アルキル基であってよい。一般式(2)で表される界面活性剤としては、2,2-ジオクチルマロン酸アンモニウムが挙げられる。
一般式(3)において、R及びRは、直鎖または分岐したアルキル基又はハロゲン化アルキル基であってよい。一般式(3)で表される界面活性剤としては、9-ヘプタデカスルホン酸ナトリウムが挙げられる。
上記有機過酸化物は重合開始剤として使用される。有機過酸化物以外の重合開始剤、例えば過硫酸塩を使用して、高温でVDFを重合させると、生成物がゲル状となり水性分散液が得られない。更に、得られたPVDFが加熱により着色してしまい、高温での使用ができない。
上記有機過酸化物としては、ジ-t-ブチルパーオキシド、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3等のジアルキルパーオキサイド;1,1,3,3-テトラメチルブチルハイドロパーオキシド、t-ブチルハイドロパーオキシド等のハイドロパーオキシド;イソブチルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシニックアシッドパーオキサイド、ビス(ω-ハイドロドデカフルオロヘプタノイル)パーオキサイド等のジアシルパーオキサイド;ジノルマルプロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-2-メトキシブチルパーオキシジカーボネート、ジエチルパーオキシジカーボネート等のパーオキシジカーボネート;1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート等のパーオキシエステル等が挙げられる。
なかでも、加熱しても発泡しにくいポリマーが製造できることから、ジ-t-ブチルパーオキシド、ジノルマルプロピルパーオキシジカーボネート、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、及び、t-ブチルパーオキシイソブチレートからなる群より選択される少なくとも1種であることが好ましい。
必要に応じて、ロンガリット、アスコルビン酸、酒石酸、二亜硫酸ナトリウム、イソアスコルビン酸、硫酸第一鉄などの還元剤を併用してもよい。
上記有機過酸化物の使用量は、水に対して1~10000ppmであることが好ましく、300~3500ppmであることがより好ましい。これらの使用量はいずれも重合開始時に存在する有機過酸化物の量である。上記有機過酸化物を重合開始後に更に追加してもよい。
また、一般式(1)~(3)で表される界面活性剤を使用することも、高温での乳化重合を実現するためには重要である。例えば、特許文献3の開示に従って、パーフルオロヘキサン酸アンモニウムと反応性化合物とを使用しても、分散安定性に優れたPVDF水性分散液を得ることはできない。
一般式(1)~(3)で表される界面活性剤の使用量は、水に対して10~30000ppmであることが好ましく、50~10000ppmであることがより好ましい。
一般式(1)~(3)で表される界面活性剤及び有機過酸化物の存在下に重合を行うことによって、高温での乳化重合が可能となり、生産性が向上するだけでなく、得られるPVDFに目的に応じた結晶性、融点を付与することができる。
上記界面活性剤は、一般式(4):
2n+1-OOC-CH(SO)-CH-COO-C 2m+1
(式中、n及びmは独立に3~10の整数を表し、X及びXは独立にH、F、Cl、Br又はIを表す。Mは、H、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤であることがより好ましい。
M、M及びMは、それぞれ独立に、H、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。4つのRのうち、少なくとも1つはHであることが好ましく、アルキル基としてはメチル基が好ましい。M、M及びMは、H、NH、Na又はLiであることが好ましく、NH、Na又はLiであることがより好ましい。
一般式(4)で表される界面活性剤の使用量は、水に対して10~30000ppmであることが好ましく、50~10000ppmであることがより好ましい。
上記重合は、重合槽に、水、上記界面活性剤、及び、VDF等のモノマーを仕込んだ後、有機過酸化物を添加して、攪拌しながら行うことができる。重合時間は、1~30時間であってよい。上記乳化重合の圧力は、0.5~5.0MPaであることが好ましく、1.0~4.5MPaであることがより好ましい。
上記乳化重合の温度は、開始剤の選定を行うことによって、目的とするポリマーの物性に応じて変更することができる。乳化重合の温度は10~200℃であってよい。
本発明の製造方法において、さらに分子量調整剤などを添加してもよい。分子量調整剤は、初期に一括して添加してもよいし、連続的または分割して添加してもよい。
分子量調整剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素、シクロヘキサン、モノヨードメタン、1-ヨードメタン、1-ヨードプロパン、ヨウ化イソプロピル、ジヨードメタン、1,2-ジヨードメタン、1,3-ジヨードプロパンなどがあげられる。
そのほか緩衝剤などを適宜添加してもよいが、その量は本発明の効果を損なわない範囲で用いることが好ましい。
緩衝剤としては、炭酸ナトリウム、重炭酸ナトリウム、オルソリン酸ナトリウム、第1リン酸ナトリウム、塩化ナトリウム、硫酸ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、ホウ酸-水酸化ナトリウム、ホウ酸-炭酸ナトリウム、燐酸二水素カリウム-水酸化ナトリウム等の無機塩が挙げられる。
さらに生成ポリマーの重合槽への付着軽減等のためパラフィンを適宜追加してもよい。
本発明は、一般式(1)~(3)で表される界面活性剤からなる群より選択される少なくとも1種、水、及び、PVDFを含むPVDF水性分散液も本発明の1つである。本発明のPVDF水性分散液は、本発明の製造方法により好適に製造することができる。
上記PVDFは、VDFに由来するVDF単位からなり、主鎖の末端に有機過酸化物に由来する官能基を有する。上記PVDFは、VDFに由来するVDF単位のみから主鎖が構成されていることが好ましい。
有機過酸化物に由来する官能基としては、CH-CH-CF-CF-、CH-CF-CH-CF-、C(CH-CF-CH-CF-、C(CH-CH-CF-等が挙げられる。主鎖の末端に存在する官能基の種類は、H-NMRによる測定によって、特定することができる。
界面活性剤及び有機過酸化物については、本発明の製造方法において説明したとおりである。
上記水性分散液に含まれるPVDFは、平均粒子径が40~1000nmであることが好ましく、50nm以上であることがより好ましく、100nm以上であることが更に好ましく、150nm以上であることが特に好ましく、800nm以下であることがより好ましく、600nm以下であることが更に好ましい。上記平均粒子径は、HONEYWELL社製のマイクロトラックUPAを用いて測定することができる。
上記水性分散液に含まれるPVDFは用途によるが、メルトフローレート(MFR)が0~100g/10分であってよい。塗料用途の場合、MFRが0~10g/10分であることが好ましく、0.5~5g/10分であることがより好ましく、水処理用途の場合、分子量20万以上が好ましく、20万~100万であることがより好ましい。上記MFRは、水性分散液から得られるPVDFのファインパウダーASTM D1238に準拠し、温度230℃、荷重10kgで測定して得られる値であり、分子量はGPCにより測定した値である。
上記水性分散液に含まれるPVDFは、融点が120~185℃であることが好ましい。融点は、160℃以上であることがより好ましく、180℃以下であることがより好ましい。上記融点は、示差走査熱量計〔DSC〕を用いて測定することができる。
上記PVDFの固形分濃度は、PVDF水性分散液に対して、3~50質量%であることが好ましく、5~40質量%であることがより好ましい。上記固形分濃度(P)は、試料約1g(X)を直径5cmのアルミカップにとり、150℃、1時間で乾燥した後、得られる加熱残分(Z)に基づき、式:P=Z/X×100(%)にて決定したものである。
上記界面活性剤の含有量は、PVDF水性分散液に対して、10~10000ppmであることが好ましく、30~3000ppmであることがより好ましい。
本発明のPVDF水性分散液から、PVDFファインパウダーを得ることができる。本発明のPVDF水性分散液及び上記PVDFファインパウダーは、塗料、ライニング材料、シート、フィルム、パイプ、継手、バルブ、ポンプ、丸棒、厚板、ボルト、ナット、絶縁材、電線被覆材、圧電体、焦電体、釣り糸、電池の電極用バインダー、水処理膜、建築建材、石油掘削材等に好適に利用することができる。本発明はまた、本発明のPVDF水性分散液から得られる塗料でもある。
本発明のPVDF水性分散液及び上記PVDFファインパウダーは、さらにライザー管、地中、地上、海底を問わず、原油や天然ガスの流体移送金属配管の最内面および最外面のコーティング材料、ライニング材料としても好適に使用できる。本発明はまた、本発明のPVDF水性分散液から得られる塗膜を有する塗装物品でもある。最内面にコーティング、ライニングにより塗膜を形成する目的は原油や天然ガス中には金属配管の腐食の原因となる二酸化炭素や硫化水素が含まれており、これをバリアーし、金属配管の腐食を抑制したり、高粘度の原油の流体摩擦を低減したりするためである。最外面も同じく海水や酸性水等による腐食を抑制するためである。最内面、最外面にライニング、コーティングする際には本発明のフッ素樹脂の剛性や強度をさらに向上させるために、ガラス繊維、炭素繊維、アラミド樹脂、マイカ、シリカ、タルク、セライト、クレー、酸化チタン等を充填してもよい。また、金属と接着させるため接着剤を使用したり金属表面を荒らしたりする処理を施してもよい。
更に、以下の成形体の成形材料としても好適に利用できる。
上記成形体としては、例えば、
食品包装用フィルム、食品製造工程で使用する流体移送ラインのライニング材、パッキン、シール材、シート等の食品製造装置用流体移送部材;
薬品用の薬栓、包装フィルム、薬品製造工程で使用される流体移送ラインのライニング材、パッキン、シール材、シート等の薬液移送部材;
化学プラントや半導体工場の薬液タンクや配管の内面ライニング部材;
自動車の燃料系統並びに周辺装置に用いられるO(角)リング・チューブ・パッキン、バルブ芯材、ホース、シール材等、自動車のAT装置に用いられるホース、シール材等の燃料移送部材;
自動車のエンジン並びに周辺装置に用いられるキャブレターのフランジガスケット、シャフトシール、バルブステムシール、シール材、ホース等、自動車のブレーキホース、エアコンホース、ラジエーターホース、電線被覆材等のその他の自動車部材;
半導体製造装置のO(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材、ロール、ガスケット、ダイヤフラム、継手等の半導体装置用薬液移送部材;
塗装設備用の塗装ロール、ホース、チューブ、インク用容器等の塗装・インク用部材;
飲食物用のチューブ又は飲食物用ホース等のチューブ、ホース、ベルト、パッキン、継手等の飲食物移送部材、食品包装材、ガラス調理機器;
廃液輸送用のチューブ、ホース等の廃液輸送用部材;
高温液体輸送用のチューブ、ホース等の高温液体輸送用部材;
スチーム配管用のチューブ、ホース等のスチーム配管用部材;
船舶のデッキ等の配管に巻き付けるテープ等の配管用防食テープ;
電線被覆材、光ファイバー被覆材、太陽電池の光起電素子の光入射側表面に設ける透明な表面被覆材および裏面剤等の各種被覆材;
ダイヤフラムポンプのダイヤフラムや各種パッキン類等の摺動部材;
農業用フィルム、各種屋根材・側壁等の耐侯性カバー;
建築分野で使用される内装材、不燃性防火安全ガラス等のガラス類の被覆材;
家電分野等で使用されるラミネート鋼板等のライニング材;
等が挙げられる。
上記自動車の燃料系統に用いられる燃料移送部材としては、更に、燃料ホース、フィラーホース、エバポホース等が挙げられる。上記燃料移送部材は、耐サワーガソリン用、耐アルコール燃料用、耐メチルターシャルブチルエーテル・耐アミン等ガソリン添加剤入燃料用の燃料移送部材として使用することもできる。
上記薬品用の薬栓・包装フィルムは、酸等に対し優れた耐薬品性を有する。また、上記薬液移送部材として、化学プラント配管に巻き付ける防食テープも挙げることができる。
上記成形体としては、また、自動車のラジエータタンク、薬液タンク、ベロース、スペーサー、ローラー、ガソリンタンク、廃液輸送用容器、高温液体輸送用容器、漁業・養魚タンク等が挙げられる。
上記成形体としては、更に、自動車のバンパー、ドアトリム、計器板、食品加工装置、調理機器、撥水撥油性ガラス、照明関連機器、OA機器の表示盤・ハウジング、電照式看板、ディスプレイ、液晶ディスプレイ、携帯電話、プリント基盤、電気電子部品、雑貨、ごみ箱、浴槽、ユニットバス、換気扇、照明枠等に用いられる部材も挙げられる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
表面張力
協和界面科学株式会社製表面張力計SURFACE CBVP-A3を用いて、水と界面活性剤のみを混ぜて1000ppmにした水溶液を用いて測定した。
NMR分析
次の装置及び条件により実施した。
NMR測定装置:VARIAN社製
H-NMR測定条件:400MHz(テトラメチルシラン=0ppm)
19F-NMR測定条件:376MHz(トリクロロフルオロメタン=0ppm)
異常結合率の測定
19F-NMR分析より求めた。具体的には、-114~117ppm付近のピーク面積(異常結合由来)の合計(=n2)と、-90~-96ppm付近のピーク面積(-CF-CH-由来)(=n1)から下記の計算式により算出した。
異常結合率(%)={n2/(n1+n2)}×100 /2
融点
示差走査熱量計(メトラートレド社製、DSC822e)を使用して測定した。
70℃~220℃  RATE 20℃/min  1st run  1st down  2nd run
結晶化度(Xc)
X線回折装置(リガク社製、RINT2000)を使用してX線回折測定を行い、得られたX線回折パターンに基づき、2θ(deg)8~25のピーク面積(X)、16~19のピーク面積(Y)、19~21.5のピーク面積(Z)から下記の計算式で算出した。
Xc=(Y+Z)/X
平均粒子径
HONEYWELL社製のマイクロトラックUPAを用いて測定した。
PVDFの固形分濃度(P)
試料約1g(X)を直径5cmのアルミカップにとり、150℃、1時間で乾燥した後、得られる加熱残分(Z)に基づき、式:P=Z/X×100(%)にて決定した。
実施例1
3.0Lステンレス製オートクレーブに純水1700g、H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H(表面張力22mN/m)0.85g(対重合水500ppm)、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を115℃まで昇温した。これに撹拌下、アセトン0.51g、ジ-t-ブチルパーオキシド5.6gを加え反応を開始した。槽内が4.0MPaに保たれるようフッ化ビニリデンを9時間かけて427g追加、途中H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H 1.45g(対重合水850ppm)を追加し、安定なPVDFエマルション 2112.45g(固形分濃度20.6質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は160.8℃、平均粒子径は171nm、異常結合率は5.5モル%、結晶化度は0.28であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.885ppm(CCH-CF);3.634ppm(C-O);6.577ppm(HCF-CH)が確認された。
実施例2
3.0Lステンレス製オートクレーブに純水1700g、H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H(表面張力21mN/m)0.85g(対重合水500ppm)、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を115℃まで昇温した。これに撹拌下、アセトン0.51g、ジ-t-ブチルパーオキシド5.6gを加え反応を開始した。槽内が4.0MPaに保たれるようフッ化ビニリデンを15.2時間かけて732g追加、途中H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H 1.45g(対重合水850ppm)、アセトン0.34gを追加し、安定なPVDFエマルション2311.49g(固形分濃度30.7質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は162.03℃、平均粒子径は185nm、異常結合率は5.6モル%、結晶化度は0.33であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.988ppm(CCH-CF);3.646ppm(C-O);6.568ppm(HCF-CH)が確認された。
実施例3
3.0Lステンレス製オートクレーブに純水1700g、H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H(表面張力22mN/m)0.85g(対重合水500ppm)、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を115℃まで昇温した。これに撹拌下、アセトン0.51g、ジ-t-ブチルパーオキシド5.6gを加え反応を開始した。槽内が4.0MPaに保たれるようフッ化ビニリデンを15.2時間かけて425g追加、安定なPVDFエマルション2020g(固形分濃度20.1質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は161℃、平均粒子径は206nm、異常結合率は5.6モル%、結晶化度は0.34であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.988ppm(CCH-CF);3.636ppm(C-O);6.577ppm(HCF-CH)が確認された。
実施例4
3.0Lステンレス製オートクレーブに純水1700g、F-(CFCF-CH-CH-O-CO-CHCH(-SONa)-CO-O-CH-CH-(CFCF-F(表面張力24mN/m)0.51g(対重合水300ppm)、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を115℃まで昇温した。これに撹拌下、アセトン0.51g、ジ-t-ブチルパーオキシド2.8gを加え反応を開始した。槽内を4.0MPaに保ちながら4時間加熱撹拌し、安定なPVDFエマルション 1728.18g(固形分濃度2.7質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は161℃、平均粒子径は50nm、異常結合率は5.5モル%、結晶化度は0.34であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.986ppm(CCH-CF);3.658ppm(C-O);6.572ppm(HCF-CH)が確認された。
実施例5
3.0Lステンレス製オートクレーブに純水1700g、CF―CHF―CF-CH-O-CO-CHCH(-SONa)-CO-O-CH-CF2―CHF―CF(表面張力54mN/m)0.85g、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を115℃まで昇温した。これに撹拌下ジ-t-ブチルパーオキシド5.6gを加え反応を開始した。4時間後安定なPVDFエマルション1758g(固形分濃度4.8質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は161℃、平均粒子径は200nm、異常結合率は5.4モル%、結晶化度は0.35であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.9ppm(CCH-CF);3.6ppm(C-O);6.6ppm(HCF-CH)が確認された。
実施例6
3.0Lステンレス製オートクレーブに純水1400g、ジ-2-エチルヘキシルスルホコハク酸ナトリウム(表面張力45mN/m)0.88gを入れ窒素置換し、フッ化ビニリデン(VDF)198gを加え、槽内を80℃まで昇温した。これに撹拌下ジノルマルプロピルパーオキシジカーボネート1.1gを加え反応を開始した。30分後ジノルマルプロピルパーオキシジカーボネート1.1gを追加し、1.5時間後安定なPVDFエマルション1399g(固形分濃度3.1質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は168℃、平均粒子径は111nm、異常結合率は5.1モル%、結晶化度は0.37であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.1ppm(CCHCH-O-CO-O-CFCH);1.9ppm(CHCH-O-CO-O-CFCH);2.0ppm(CCH-CF);4.3ppm(CHCH-O-CO-O-CHCF);4.7ppm(CHCHCH-O-CO-O-CCF)が確認された。
実施例7
3.0Lステンレス製オートクレーブに純水1700g、H-(CFCF-CH-O-CO-CHCH(-SONa)-CO-O-CH-(CFCF-H(表面張力54mN/m)0.85g、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を80℃まで昇温した。これに撹拌下t-ブチルパーオキシイソブチレート5.6gを加え反応を開始した。2時間後安定なPVDFエマルション1730g(固形分濃度4.5質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は167℃、平均粒子径は98nm、異常結合率は5.1モル%、結晶化度は0.36であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.9ppm(CCH-CF);3.6ppm(C-O);6.6ppm(HCF-CH)が確認された。
実施例8
3.0Lステンレス製オートクレーブに純水2000g、H-(CFCF-CH-O-CO-CH(CHCOONH)CH(CHCOONH)-CO-O-CH-(CFCF-H(表面張力28mN/m)4g、パラフィン20gを入れ窒素置換し、フッ化ビニリデン(VDF)111gを加え、槽内を125℃まで昇温した。これに撹拌下ジ-t-ブチルパーオキシド6.6gを加え反応を開始した。槽内が4.0MPaに保たれるようフッ化ビニリデンを3時間かけて147g追加し、安定なPVDFエマルション 2100g(固形分濃度6.5質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は158.8℃、平均粒子径は390nm、異常結合率は5.6モル%、結晶化度は0.30であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.8ppm(CCH-CF);3.6ppm(C-O);6.5ppm(HCF-CH)が確認された。
実施例9
3.0Lステンレス製オートクレーブに純水1700g、CH(CH-CH(-SONa)(CH-CH(クラリアント社ホスタパーSAS93)(表面張力30mN/m)3g、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を125℃まで昇温した。これに撹拌下ジt-ブチルパーオキサイド5.6gを加え反応を開始した。2時間後安定なPVDFエマルション1735g(固形分濃度4.0質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は156℃、平均粒子径は105nm、異常結合率は5.6モル%、結晶化度は0.33であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.9ppm(CCH-CF);3.6ppm(C-O);6.6ppm(HCF-CH)が確認された。
実施例10
3.0Lステンレス製オートクレーブに純水1700g、F(CF-O-CFCF-O-CF-CH-O-CO-CHCH(-SONa)-CO-O-CH-CF-O-CFCF-O-(CFF(表面張力22mN/m)0.85g、パラフィン17gを入れ窒素置換し、フッ化ビニリデン(VDF)150gを加え、槽内を125℃まで昇温した。これに撹拌下ジt-ブチルパーオキサイド5.6gを加え反応を開始した。1.5時間後安定なPVDFエマルション1748g(固形分濃度4.0質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は158℃、平均粒子径は102nm、異常結合率は5.6モル%、結晶化度は0.33であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:2.0ppm(CCH-CF);3.6ppm(C-O);6.6ppm(HCF-CH)が確認された。
実施例11
3.0Lステンレス製オートクレーブに純水2000g、CF(CF-CHCHC(COONHCHCH(CFCF 4g(表面張力40mN/m)、パラフィン20gを入れ窒素置換し、フッ化ビニリデン(VDF)111gを加え、槽内を125℃まで昇温した。これに撹拌下ジ-t-ブチルパーオキシド6.6gを加え反応を開始した。槽内が4.0MPaに保たれるようフッ化ビニリデンを3時間かけて130g追加し、安定なPVDFエマルション2085g(固形分濃度5.5質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は158℃、平均粒子径は380nm、異常結合率は5.6モル%、結晶化度は0.31であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.8ppm(CCH-CF);3.6ppm(C-O);6.5ppm(HCF-CH)が確認された。
比較例1
3.0Lステンレス製オートクレーブに純水2560g、CF-CF-CF-CF-CF-CF-CF-COONH(表面張力62mN/m)を1.6g、ジ-t-ブチルパーオキシド4.2gを入れ窒素置換し、フッ化ビニリデン(VDF)64gを加え、槽内を115℃まで昇温した。5時間後PVDFエマルションが2590g(固形分濃度2.4質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は157℃、平均粒子径は199nm、異常結合率は6.1モル%、結晶化度は0.34であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.9ppm(CCH-CF);3.55ppm(C-O);6.468ppm(HCF-CH)が確認された。
比較例2
3.0Lステンレス製オートクレーブに純水1700g、パラフィン17g,CF-CF-CF-CF-CF-CF-CF-COONH(表面張力63mN/m)を1.1g、ジ-t-ブチルパーオキシド2.7gを入れ窒素置換し、フッ化ビニリデン(VDF)130gを加え、槽内を125℃まで昇温した。槽内が4.0MPaに保たれるようフッ化ビニリデンを3.5時間かけて301g追加し、PVDFエマルションが1802g(固形分濃度12.9質量%)を得た。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は157℃、平均粒子径は518nm、異常結合率は6.2モル%、結晶化度は0.33であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.9ppm(CCH-CF);3.5ppm(C-O);6.5ppm(HCF-CH)が確認された。
比較例3
3.0Lステンレス製オートクレーブに純水2000g、CF-CF-CF-CF-CF-COOH(表面張力64mN/m)を8.3g、ジ-t-ブチルパーオキシド4.2gを入れ窒素置換し、フッ化ビニリデン(VDF)172gを加え、槽内を125℃まで昇温した。槽内が4.0MPaに保たれるようフッ化ビニリデンを4時間かけて90g追加し、PVDFエマルションが1980g(固形分濃度4.6質量%)と沈降ポリマーが78g生成した。得られたPVDFエマルションに関して、下記の方法で安定性試験を行った。結果を表1に示す。
得られたポリマーの融点は160℃、平均粒子径は597nm、異常結合率は6.0モル%結晶化度は0.33であった。
H-NMR(270MHz,DMF-d7)により、ポリマー末端:1.885ppm(CCH-CF);3.546ppm(C-O);6.468ppm(HCF-CH)が確認された。
安定性試験
エマルションの安定性を比較するため、エマルション1Lを常温(20℃)で一定時間(1日及び1か月)静置し、状態を確認した。
Figure JPOXMLDOC01-appb-T000016
実施例12
実施例1によって得られたエマルションを凝析、乾燥し、PVDF粉末を得た。
得られたPVDF粉末を7g、パラロイドB44(ダウケミカル社製)を3g、酸化チタンR960(デュポン社製)を6g、イソホロンを24g配合して塗料を作成し、アルミ板に塗装し、240℃15分焼付けた後、塗板を得た。得られた塗板に関して、下記の方法で塗膜物性を評価した。また、得られた塗板に関して、1年間沖縄にて暴露試験を行ったところ、高い光沢保持率を示した。結果を表2に示す。
光沢
光沢計(日本電色工業社製 VG7000)を用いて60度で測定した。
塗膜硬度
鉛筆硬度試験によって測定した。
乾燥塗膜密着性
塗膜にJIS K 5600-5-6:1999に規定された1cm角あたり100マスの碁盤目をカッターで引き、この面にセロテープ(登録商標)(ニチバン(株)製の粘着テープ)を充分に密着させ、ただちに引き剥がし、剥離のない場合を〇とした。
湿潤塗膜密着性
乾燥塗膜密着性試験後、38℃のイオン交換水に24時間浸漬し、試験面にセロテープ(登録商標)(ニチバン(株)製の粘着テープ)を充分に密着させ、ただちに引き剥がし、剥離のない場合を〇とした。
沸騰水密着
乾燥塗膜密着性試験後、99℃の沸騰水に20分浸漬、試験面にセロテープ(登録商標)(ニチバン(株)製の粘着テープ)を充分に密着させ、ただちに引き剥がし、剥離のない場合を〇とした。
耐薬品性塩酸試験
10%の塩酸を10滴垂らして10分間放置し、その後、目視で観察した。変化がない場合を〇とした。
耐薬品性硝酸試験
70%硝酸に30分浸漬、1時間放置し、試験前後の色差(ΔE)を測定した。
Figure JPOXMLDOC01-appb-T000017

Claims (11)

  1. 1000ppmの添加量における表面張力が55mN/m以下である界面活性剤、有機過酸化物及び水の存在下に、ビニリデンフルオライドを乳化重合することによって、ポリビニリデンフルオライドを含有する水性分散液を得る
    ことを特徴とするポリビニリデンフルオライド水性分散液の製造方法。
  2. 界面活性剤は、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。RはH又は-(CH-COOMを表す。Rは-SO又は-(CH-COOMを表す。vは0~3の整数を表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。2つのMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、及び、
    一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。Rは-SO又は-COOMを表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。wは0~3の整数を表す。)で表される界面活性剤、
    からなる群より選択される少なくとも1種の界面活性剤である請求項1記載の製造方法。
  3. 界面活性剤は、一般式(4):
    2n+1-OOC-CH(SO)-CH-COO-C 2m+1
    (式中、n及びmは独立に3~10の整数を表し、X及びXは独立にH、F、Cl、Br又はIを表す。MはH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤である請求項1又は2記載の製造方法。
  4. ビニリデンフルオライドのみを乳化重合する請求項1、2又は3記載の製造方法。
  5. 有機過酸化物は、ジ-t-ブチルパーオキシド、ジノルマルプロピルパーオキシジカーボネート、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、及び、t-ブチルパーオキシイソブチレートからなる群より選択される少なくとも1種である請求項1、2、3又は4記載の製造方法。
  6. 一般式(1):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。RはH又は-(CH-COOMを表す。Rは-SO又は-(CH-COOMを表す。vは0~3の整数を表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000005
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。2つのMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤、及び、
    一般式(3):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R及びRは独立に炭素数1~14のアルキル基又はハロゲン化アルキル基を表し、前記アルキル基又はハロゲン化アルキル基は炭素数が2~14の場合、炭素-炭素原子間に酸素原子を含んでもよい。Rは-SO又は-COOMを表す。M及びMは独立にH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。wは0~3の整数を表す。)で表される界面活性剤、
    からなる群より選択される少なくとも1種の界面活性剤、水、及び、ポリビニリデンフルオライドを含み、
    前記ポリビニリデンフルオライドは、ビニリデンフルオライドに由来するビニリデンフルオライド単位からなり、主鎖の末端に有機過酸化物に由来する官能基を有する
    ことを特徴とするポリビニリデンフルオライド水性分散液。
  7. 界面活性剤は、一般式(4):
    2n+1-OOC-CH(SO)-CH-COO-C 2m+1
    (式中、n及びmは独立に3~10の整数を表し、X及びXは独立にH、F、Cl、Br又はIを表す。MはH、NR又はアルカリ金属であり、4つのRは独立にH又は炭素数が1~3のアルキル基を表す。)で表される界面活性剤である請求項6記載のポリビニリデンフルオライド水性分散液。
  8. ポリビニリデンフルオライドは、ビニリデンフルオライドに由来するビニリデンフルオライド単位のみからなる請求項6又は7記載のポリビニリデンフルオライド水性分散液。
  9. 有機過酸化物は、ジ-t-ブチルパーオキシド、ジノルマルプロピルパーオキシジカーボネート、ジ-t-ヘキシルパーオキシド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、及び、t-ブチルパーオキシイソブチレートからなる群より選択される少なくとも1種である請求項6、7又は8記載のポリビニリデンフルオライド水性分散液。
  10. 請求項6、7、8又は9記載のポリビニリデンフルオライド水性分散液から得られる塗料。
  11. 請求項6、7、8又は9記載のポリビニリデンフルオライド水性分散液から得られる塗膜を有する塗装物品。
PCT/JP2014/050025 2012-12-28 2014-01-06 ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液 WO2014104416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480003736.2A CN104903357A (zh) 2012-12-28 2014-01-06 聚偏二氟乙烯水性分散液的制造方法和聚偏二氟乙烯水性分散液
EP14733060.9A EP2940049B1 (en) 2012-12-28 2014-01-06 Production method for polyvinylidene fluoride aqueous dispersion liquid, and polyvinylidene fluoride aqueous dispersion liquid
US14/758,034 US10150820B2 (en) 2012-12-28 2014-01-06 Production method for polyvinylidene fluoride aqueous dispersion liquid, and polyvinylidene fluoride aqueous dispersion liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012287794 2012-12-28
JP2012-287794 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014104416A1 true WO2014104416A1 (ja) 2014-07-03

Family

ID=51021466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050025 WO2014104416A1 (ja) 2012-12-28 2014-01-06 ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液

Country Status (5)

Country Link
US (1) US10150820B2 (ja)
EP (1) EP2940049B1 (ja)
JP (1) JP5696794B2 (ja)
CN (2) CN109762084A (ja)
WO (1) WO2014104416A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10315989B2 (en) * 2014-02-21 2019-06-11 Merck Patent Gmbh Fluorinated tensides
WO2019156175A1 (ja) * 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105377903B (zh) * 2013-07-18 2017-03-29 旭硝子株式会社 含氟聚合物水性分散液的制造方法、含氟聚合物水性分散液和含氟聚合物
JP2020525581A (ja) * 2017-06-30 2020-08-27 ソルベイ スペシャルティ ポリマーズ イタリー エス.ピー.エー. 部分フッ素化ポリマーの製造方法
US11280685B2 (en) * 2018-10-01 2022-03-22 Goodrich Corporation Additive manufactured resistance temperature detector
CN112266343A (zh) * 2020-12-02 2021-01-26 应急管理部消防产品合格评定中心 一种全氟己基乙基磺酸钠的合成方法
CN114621460B (zh) * 2022-04-08 2023-04-25 四川轻化工大学 一种水性聚偏氟乙烯浓缩乳液及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119204A (ja) * 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003286379A (ja) 2002-02-12 2003-10-10 Solvay Solexis Spa フルオロポリマーの分散液
JP2004359870A (ja) * 2003-06-05 2004-12-24 Daikin Ind Ltd 界面活性剤、含フッ素重合体の製造方法及び含フッ素重合体水性分散液
JP2005171250A (ja) 2003-12-04 2005-06-30 Solvay Solexis Spa Tfeコポリマー
WO2005063827A1 (ja) * 2003-12-25 2005-07-14 Daikin Industries, Ltd. フルオロポリマーの製造方法
JP2006188703A (ja) * 2004-12-30 2006-07-20 Solvay Solexis Spa フルオロポリマー分散液の製造方法
WO2006132368A1 (ja) * 2005-06-10 2006-12-14 Daikin Industries, Ltd. 含フッ素ポリマー水性分散液及びその製造方法
JP2007045970A (ja) * 2005-08-11 2007-02-22 Daikin Ind Ltd フルオロエラストマーの製造方法
WO2007026822A1 (ja) * 2005-09-01 2007-03-08 Daikin Industries, Ltd. フルオロポリマー水性分散液
WO2009020187A1 (ja) 2007-08-07 2009-02-12 Daikin Industries, Ltd. 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
WO2012043831A1 (ja) * 2010-09-30 2012-04-05 ダイキン工業株式会社 含フッ素重合体の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3598797A (en) * 1967-06-27 1971-08-10 Daikin Ind Ltd Process for manufacturing polyvinylidene fluoride
FR2852016B1 (fr) * 2003-03-03 2006-07-07 Atofina Procede de fabrication de pvdf thermiquement stable
US7968644B2 (en) * 2006-06-29 2011-06-28 Daikin Industries, Ltd. Method of producing a fluororesin aqueous dispersion
US7989568B2 (en) 2008-11-13 2011-08-02 E.I. Du Pont De Nemours And Company Fluorosulfonates
CN102365340B (zh) * 2009-03-25 2016-05-04 大金工业株式会社 包含含氟聚合物的表面活性剂
JP4858628B2 (ja) 2010-05-25 2012-01-18 ユニマテック株式会社 含フッ素ポリマー水性分散液
US9534106B2 (en) 2011-06-21 2017-01-03 Solvay Specialty Polymers Italy S.P.A. Method for polymerizng vinylidene fluoride

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119204A (ja) * 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2003286379A (ja) 2002-02-12 2003-10-10 Solvay Solexis Spa フルオロポリマーの分散液
JP2004359870A (ja) * 2003-06-05 2004-12-24 Daikin Ind Ltd 界面活性剤、含フッ素重合体の製造方法及び含フッ素重合体水性分散液
JP2005171250A (ja) 2003-12-04 2005-06-30 Solvay Solexis Spa Tfeコポリマー
WO2005063827A1 (ja) * 2003-12-25 2005-07-14 Daikin Industries, Ltd. フルオロポリマーの製造方法
JP2006188703A (ja) * 2004-12-30 2006-07-20 Solvay Solexis Spa フルオロポリマー分散液の製造方法
WO2006132368A1 (ja) * 2005-06-10 2006-12-14 Daikin Industries, Ltd. 含フッ素ポリマー水性分散液及びその製造方法
JP2007045970A (ja) * 2005-08-11 2007-02-22 Daikin Ind Ltd フルオロエラストマーの製造方法
WO2007026822A1 (ja) * 2005-09-01 2007-03-08 Daikin Industries, Ltd. フルオロポリマー水性分散液
WO2009020187A1 (ja) 2007-08-07 2009-02-12 Daikin Industries, Ltd. 低分子量ポリテトラフルオロエチレン水性分散液、低分子量ポリテトラフルオロエチレン粉末及び低分子量ポリテトラフルオロエチレンの製造方法
WO2012043831A1 (ja) * 2010-09-30 2012-04-05 ダイキン工業株式会社 含フッ素重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940049A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10315989B2 (en) * 2014-02-21 2019-06-11 Merck Patent Gmbh Fluorinated tensides
WO2019156175A1 (ja) * 2018-02-08 2019-08-15 ダイキン工業株式会社 フルオロポリマーの製造方法、重合用界面活性剤、界面活性剤の使用及び組成物
US11634514B2 (en) 2018-02-08 2023-04-25 Daikin Industries. Ltd. Method for manufacturing fluoropolymer, surfactant for polymerization, use for surfactant, and composition

Also Published As

Publication number Publication date
US20150337157A1 (en) 2015-11-26
JP2014141673A (ja) 2014-08-07
US10150820B2 (en) 2018-12-11
EP2940049B1 (en) 2018-12-19
JP5696794B2 (ja) 2015-04-08
EP2940049A1 (en) 2015-11-04
EP2940049A4 (en) 2016-07-13
CN104903357A (zh) 2015-09-09
CN109762084A (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
JP5696794B2 (ja) ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
JP5413454B2 (ja) フッ素樹脂及びライザー管
US9708430B2 (en) Vinylidene fluoride copolymer and preparation method therefor
JP2017197690A (ja) 共重合体及び成形体の製造方法
JP2017057379A (ja) フルオロポリマーの製造方法
US9394394B2 (en) Synthesis of chlorotrifluoroethylene-based block copolymers by iodine transfer polymerization
US20220195087A1 (en) Fluorine-containing copolymer
JP2010235667A (ja) 含フッ素ポリマーの製造方法
TW202120568A (zh) 含氟彈性共聚物及其製造方法
JP6705512B2 (ja) フッ素樹脂及び成形体
JP2017020013A (ja) フルオロポリマーの製造方法
JP6870794B1 (ja) 共重合体
JP2017020014A (ja) フッ素樹脂
JP6717303B2 (ja) フッ素樹脂及び成形体
JP2002179737A (ja) エチレン−ヘキサフルオロプロピレン系共重合体エラストマー
RU2789215C1 (ru) Фторсодержащий сополимер
JP5211497B2 (ja) フッ素樹脂組成物及びフッ素樹脂成形体
JP7473855B2 (ja) 含フッ素共重合体
JP2019031582A (ja) 海洋生物付着防止塗料
JP2018062547A (ja) 生物付着防止塗料
JP2002179736A (ja) エラストマー性エチレン−ヘキサフルオロプロピレン系共重合体の製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14733060

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14758034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014733060

Country of ref document: EP