US7968644B2 - Method of producing a fluororesin aqueous dispersion - Google Patents
Method of producing a fluororesin aqueous dispersion Download PDFInfo
- Publication number
- US7968644B2 US7968644B2 US11/766,532 US76653207A US7968644B2 US 7968644 B2 US7968644 B2 US 7968644B2 US 76653207 A US76653207 A US 76653207A US 7968644 B2 US7968644 B2 US 7968644B2
- Authority
- US
- United States
- Prior art keywords
- fluororesin
- aqueous dispersion
- concentration
- fluorine
- fluororesin aqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 125
- 238000000034 method Methods 0.000 title claims abstract description 38
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 67
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 67
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 44
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000011737 fluorine Substances 0.000 claims abstract description 28
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 28
- 239000004094 surface-active agent Substances 0.000 claims abstract description 27
- 238000005191 phase separation Methods 0.000 claims abstract description 23
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000003792 electrolyte Substances 0.000 claims abstract description 22
- 239000003456 ion exchange resin Substances 0.000 claims abstract description 22
- 229920003303 ion-exchange polymer Polymers 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000012736 aqueous medium Substances 0.000 claims abstract description 7
- 150000003839 salts Chemical class 0.000 claims description 27
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims 1
- 239000003945 anionic surfactant Substances 0.000 abstract description 29
- 239000002736 nonionic surfactant Substances 0.000 description 35
- 239000011164 primary particle Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 15
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000178 monomer Substances 0.000 description 12
- 239000006228 supernatant Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 9
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 150000005215 alkyl ethers Chemical class 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 8
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 8
- 235000011130 ammonium sulphate Nutrition 0.000 description 8
- SNGREZUHAYWORS-UHFFFAOYSA-M 2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoate Chemical compound [O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-M 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 238000004128 high performance liquid chromatography Methods 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 150000007513 acids Chemical class 0.000 description 4
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 150000002430 hydrocarbons Chemical group 0.000 description 4
- YFSUTJLHUFNCNZ-UHFFFAOYSA-N perfluorooctane-1-sulfonic acid Chemical compound OS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YFSUTJLHUFNCNZ-UHFFFAOYSA-N 0.000 description 4
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical compound [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 3
- 125000001931 aliphatic group Chemical group 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 229960000878 docusate sodium Drugs 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 241000282320 Panthera leo Species 0.000 description 2
- 238000000944 Soxhlet extraction Methods 0.000 description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 239000003957 anion exchange resin Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- MOTZDAYCYVMXPC-UHFFFAOYSA-N dodecyl hydrogen sulfate Chemical compound CCCCCCCCCCCCOS(O)(=O)=O MOTZDAYCYVMXPC-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- SNGREZUHAYWORS-UHFFFAOYSA-N perfluorooctanoic acid Chemical compound OC(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F SNGREZUHAYWORS-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- ZDPHROOEEOARMN-UHFFFAOYSA-N undecanoic acid Chemical compound CCCCCCCCCCC(O)=O ZDPHROOEEOARMN-UHFFFAOYSA-N 0.000 description 2
- OXLXSOPFNVKUMU-UHFFFAOYSA-N 1,4-dioctoxy-1,4-dioxobutane-2-sulfonic acid Chemical compound CCCCCCCCOC(=O)CC(S(O)(=O)=O)C(=O)OCCCCCCCC OXLXSOPFNVKUMU-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- LDMOEFOXLIZJOW-UHFFFAOYSA-N 1-dodecanesulfonic acid Chemical compound CCCCCCCCCCCCS(O)(=O)=O LDMOEFOXLIZJOW-UHFFFAOYSA-N 0.000 description 1
- WBIQQQGBSDOWNP-UHFFFAOYSA-N 2-dodecylbenzenesulfonic acid Chemical compound CCCCCCCCCCCCC1=CC=CC=C1S(O)(=O)=O WBIQQQGBSDOWNP-UHFFFAOYSA-N 0.000 description 1
- YDZIJQXINJLRLL-UHFFFAOYSA-N 2-hydroxydodecanoic acid Chemical compound CCCCCCCCCCC(O)C(O)=O YDZIJQXINJLRLL-UHFFFAOYSA-N 0.000 description 1
- 125000003229 2-methylhexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 150000001449 anionic compounds Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- YOALFLHFSFEMLP-UHFFFAOYSA-N azane;2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoic acid Chemical compound [NH4+].[O-]C(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YOALFLHFSFEMLP-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- ABDBNWQRPYOPDF-UHFFFAOYSA-N carbonofluoridic acid Chemical compound OC(F)=O ABDBNWQRPYOPDF-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 235000019329 dioctyl sodium sulphosuccinate Nutrition 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 229940060296 dodecylbenzenesulfonic acid Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012875 nonionic emulsifier Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- ONJQDTZCDSESIW-UHFFFAOYSA-N polidocanol Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCO ONJQDTZCDSESIW-UHFFFAOYSA-N 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/244—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
- D06M15/256—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
Definitions
- the present invention relates to a method of producing a fluororesin aqueous dispersion.
- Polytetrafluoroethylene-based fluororesin aqueous dispersions when applied in the manner of coating or dipping, for instance, can form films or layers excellent in such characteristics as chemical stability, nonstickiness and weather resistance and, therefore, are widely used in such fields of application as cooking utensils, pipe linings and impregnated glass cloth membranes.
- fluororesin aqueous dispersions having a high fluororesin concentration are generally preferred, so that those products obtained by polymerizing a fluoromonomer(s) in an aqueous medium in the presence of a fluorine-containing surfactant, followed by concentration are in current use. From the cost viewpoint, however, it is desirable that fluororesin aqueous dispersions be deprived of such a fluorine-containing surfactant.
- Patent Document 1 Japanese Kokai (Laid-open) Publication 2005-126715
- Patent Document 2 Japanese Kokai Publication 2005-171250
- Patent Document 3 (United States Patent Application Publication 2004/186219) and Patent Document 4 (United States Patent Application Publication 2004/171736), there is described a fluororesin aqueous dispersion reduced in the content of ammonium perfluorooctanoate [PFOA] by means of an anion-exchange resin and further reduced in viscosity by addition of a fluorine-free anionic surfactant in an amount within the range of 1 to 12% relative to the fluororesin.
- PFOA ammonium perfluorooctanoate
- the invention provides a method of producing a fluororesin aqueous dispersion which comprises subjecting a crude fluororesin aqueous dispersion comprising a polytetrafluoroethylene particle dispersed in an aqueous medium to treatment with an ion-exchange resin and to treatment for concentration by phase separation in the presence of an electrolyte and/or a fluorine-free anionic surfactant.
- the method of producing a fluororesin aqueous dispersion according to the invention makes it possible to reduce the fluorine-containing surfactant concentration in the product fluororesin aqueous dispersion to levels corresponding to 100 ppm of polytetrafluoroethylene [PTFE] or below and increase the PTFE concentration to levels of 45 to 75% by mass relative to the fluororesin aqueous dispersion.
- PTFE polytetrafluoroethylene
- the fluororesin aqueous dispersion can be obtained efficiently by carrying out ion-exchange resin treatment and concentration treatment by phase separation in the presence of an electrolyte and/or a fluorine-free anionic surfactant while fulfilling both the surfactant reduction and resin concentration increase requirements.
- the method of producing a fluororesin aqueous dispersion according to the invention is intended to produce a fluororesin aqueous dispersion from a crude fluororesin aqueous dispersion.
- the crude fluororesin aqueous dispersion comprises a PTFE particle dispersed in an aqueous medium.
- modified PTFE means a non-melt-processable copolymer of TFE and a small proportion of a minor component monomer other than TFE.
- the minor component monomer includes, among others, fluoroolefins such as hexafluoropropylene and chlorotrifluoroethylene, fluoro(alkyl vinyl ether) compounds with an alkyl group containing 1 to 5 carbon atoms, in particular 1 to 3 carbon atoms; fluorodioxole; perfluoroalkylethylenes; and ⁇ -hydroperfluoroolefins.
- fluoroolefins such as hexafluoropropylene and chlorotrifluoroethylene
- fluorodioxole perfluoroalkylethylenes
- ⁇ -hydroperfluoroolefins ⁇ -hydroperfluoroolefins.
- the content of the minor component monomer units derived from the minor component monomer relative to all the monomer units in the modified PTFE is generally 0.001 to 2 mole percent.
- the “content (in mole percent) of the minor component monomer units relative to all the monomer units” so referred to herein means the mole fraction (mole percent) of the minor component monomer from which the minor component monomer units are derived relative to the total amount of the monomers from which the “all monomer units” are derived, namely the total amount of the fluoropolymer-constituting monomers.
- the PTFE particle generally has an average primary particle diameter of 40 to 400 nm.
- the average primary particle diameter is determined based on the transmittance, per unit length, of a sample aqueous dispersion adjusted to a PTFE concentration of 0.22% by mass at an incident light wavelength of 550 nm, using a working curve showing the relation between such transmittance and the average primary particle diameter determined by measurements of images on a scanning electron photomicrograph in a predetermined direction.
- the aqueous medium mentioned above is not particularly restricted but any liquid containing water; thus, in addition to water, it may be an aqueous medium containing, for example, a fluorine-free organic solvent such as an alcohol, ether, ketone or paraffin wax and/or a fluorine-containing organic solvent.
- a fluorine-free organic solvent such as an alcohol, ether, ketone or paraffin wax and/or a fluorine-containing organic solvent.
- the crude fluororesin aqueous dispersion may be one obtained by such after-treatment as fluorine-containing surfactant reducing treatment and/or concentration following the production of the above-mentioned PTFE by polymerization or one as obtained by carrying out the polymerization but not yet subjected to any concentration treatment (the so-called virgin aqueous dispersion).
- the fluorine-containing surfactant content in the virgin aqueous dispersion is generally at a level corresponding to 500 to 20000 ppm of the PTFE.
- the concentration of the above-mentioned PTFE in the crude fluororesin aqueous dispersion is generally 5 to 70% by mass, preferably 5 to 60% by mass, more preferably 10 to 40% by mass, still more preferably 15 to 35% by mass.
- the method of producing a fluororesin aqueous dispersion according to the invention gives a fluororesin aqueous dispersion by subjecting the above-mentioned crude fluororesin aqueous dispersion to treatment with an ion-exchange resin and concentration by phase separation in the presence of an electrolyte and/or a fluorine-free anionic surfactant.
- the ion-exchange treatment can be preferably carried out by the method described in Japanese Kohyo Publication 2002-532583 (International Publication WO 00/35971) and, in cases where the content of such a fluorine-containing anionic surfactant as PFOA is to be reduced, the treatment is generally carried out using an anion-exchange resin.
- the above-mentioned ion-exchange resin treatment can be effected, for example, by bringing the crude fluororesin aqueous dispersion, if necessary supplemented with a fluorine-free nonionic surfactant, into contact with an anion exchanger comprising a strongly basic resin adjusted in advance to the OH form.
- the fluorine-free nonionic surfactant is not particularly restricted but may be any of those comprising a fluorine-free nonionic compound(s) known in the art.
- the nonionic surfactant there may be mentioned, for example, ether type nonionic surfactants such as polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl ethers and polyoxyethylenealkylene alkyl ethers; polyoxyethylene derivatives such as ethylene oxide-propylene oxide block copolymers; ester type nonionic surfactants such as sorbitan fatty acid esters, polyoxyethylenesorbitol fatty acid esters, glycerol fatty acid esters and polyoxyethylene fatty acid esters; amine type nonionic surfactants such as polyoxyethylenealkylamines and alkylalkanolamides; and so forth.
- ether type nonionic surfactants such as polyoxyethylene alkylphenyl ethers, polyoxyethylene alkyl ethers and polyoxy
- the hydrophobic group in the compound constituting the fluorine-free nonionic surfactant may be an alkylphenol group, a straight alkyl group or a branched alkyl group.
- a benzene ring-free compound such a compound having no alkylphenol group in the structure thereof is preferred, however.
- the fluorine-free nonionic surfactant is preferably a polyoxyethylene alkyl ether type nonionic surfactant, in particular.
- the polyoxyethylene alkyl ether type nonionic surfactant preferably has a polyoxyethylene alkyl ether structure having an alkyl group containing 10 to 20 carbon atoms, more preferably a polyoxyethylene alkyl ether structure having an alkyl group containing 10 to 15 carbon atoms.
- the alkyl group in the polyoxyethylene alkyl ether structure preferably has a branched structure.
- polyoxyethylene alkyl ether type nonionic surfactant there may be mentioned, for example, Genapol X080 (product name, product of Clariant), Tergitol 9-S-15 (product name, product of Clariant), Noigen TDS-80 (product name, product of Daiichi Kogyo Seiyaku) and Leocol TD90 (product name, product of Lion Corp.).
- the concentration thereof is preferably at a level corresponding to 1 to 40% by mass, more preferably 1 to 30% by mass, still more preferably 1 to 20% by mass, relative to the PTFE.
- the above-mentioned concentration by phase separation can be effected by adding, if necessary, such a fluorine-free nonionic surfactant to the crude fluororesin aqueous dispersion to such a concentration as described later herein, heating the crude fluororesin aqueous dispersion to cause separation into a PTFE-free phase (supernatant phase) and a PTFE-containing phase (concentrated phase) and removing the PTFE-free phase to obtain the PTFE-containing phase.
- the separation of the PTFE-free phase from the PTFE-containing phase is preferably carried out within a temperature range of the cloud point of the fluorine-free nonionic surfactant ⁇ 15° C., more preferably ⁇ 10° C.
- the cloud point so referred to above means the temperature at which the aqueous fluorine-free nonionic surfactant solution rendered cloudy by heating becomes again wholly transparent upon gradual cooling.
- the cloud point so referred to herein is the value measured by placing 15 ml of the diluted measurement sample in a test tube, heating the same until it becomes completely opaque and, then, cooling the same gradually with stirring and measuring the temperature at which the whole liquid becomes transparent, according to ISO 1065 (Method A).
- the method of removing the PTFE-free phase is not particularly restricted but may be any of the methods known in the art, for example decantation.
- the concentration by phase separation is carried out in the presence of an electrolyte and/or a fluorine-free anionic surfactant.
- the method of producing a fluororesin aqueous dispersion according to the invention makes it possible to efficiently concentrate an aqueous dispersion, even when it is very low in fluorine-containing surfactant content, by causing an electrolyte and/or a fluorine-free anionic surfactant in the step of concentration by phase separation.
- the pH is not particularly restricted but it is preferably 4 to 11, more preferably 9 to 10.
- the concentration by phase separation is preferably carried out in the presence of an electrolyte in an amount corresponding to 10 to 10000 ppm of PTFE and/or a fluorine-free anionic surfactant in an amount corresponding to 10 to 10000 ppm of PTFE.
- an electrolyte in an amount corresponding to 10 to 10000 ppm of PTFE
- a fluorine-free anionic surfactant in an amount corresponding to 10 to 10000 ppm of PTFE.
- the concentration by phase separation is preferably carried out in the presence of an electrolyte and a fluorine-free anionic surfactant.
- the amount of the electrolyte in the concentration by phase separation is preferably at a level corresponding to not lower than 100 ppm but not higher than 5000 ppm.
- the amount of the fluorine-free anionic surfactant in the concentration by phase separation is preferably at a level corresponding to not lower than 100 ppm but not higher than 5000 ppm.
- the electrolyte is not particularly restricted but includes, among others, sulfuric acid, succinic acid and carbonic acid, and salts of these. Among them, ammonium sulfate is preferred.
- the fluorine-free anionic surfactant so referred to herein has emulsifying activity.
- the fluorine-free anionic surfactant conceptually differs from the above-mentioned electrolyte in its having the above-mentioned activity.
- fluorine-free anionic surfactant there may be mentioned a compound whose 0.1% by mass aqueous solution shows a surface tension of, for example not higher than 60 mN/m, preferably not higher than 50 mN/m.
- the fluorine-free anionic surfactant is not particularly restricted but may be any one such that the above-mentioned surface tension is within the above range.
- alkylsulfuric acids such as laurylsulfuric acid
- alkylarylsulfonic acids such as dodecylbenzenesulfonic acid
- sulfosuccinic acid alkyl esters and salts of these, among others.
- the fluorine-free anionic surfactant may comprise one single species or a combination of two or more of these compounds.
- the surface tension value mentioned above is the value measured at 25° C. by the Wilhelmy method.
- the sulfosuccinic acid alkyl esters or salts thereof may be monoesters but preferably are diesters.
- sulfosuccinic acid alkyl esters or salts thereof there may be mentioned, for example, sulfosuccinic acid alkyl esters or salts thereof represented by the general formula (I): R 1 —OCOCH(SO 3 A)CH 2 COO—R 2 (I) Wherein R 1 and R 2 are the same or different and each represents an alkyl group containing 4 to 12 carbon atoms and A represents an alkali metal, an alkaline earth metal or NH 4 .
- R 1 and R 2 in the above general formula (I) there may be mentioned, for example, such straight-chain or branched alkyl groups as n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl, tert-pentyl, n-hexyl, isohexyl, tert-hexyl, n-heptyl, isoheptyl, tert-heptyl, n-octyl, isooctyl, tert-octyl, n-nonyl, isononyl, tert-nonyl, n-decyl and 2-ethylhexyl.
- straight-chain or branched alkyl groups as n-butyl, isobutyl, sec-butyl, n-pentyl, isopentyl, neopentyl
- Preferred as A in the above general formula (I) are, for example, Na, NH 4 and the like.
- the sulfosuccinic acid alkyl esters there may specifically be mentioned, for example, di-n-octyl sulfosuccinate and di-2-ethylhexyl sulfosuccinate.
- the fluorine-free anionic surfactant may have an acid group provided that the above-defined surface tension is within the above range.
- the acid group is preferably selected from the group consisting of carboxyl, sulfonic acid and phosphoric acid groups and salts thereof, in particular from the group consisting of carboxyl and sulfonic acid groups and salts thereof.
- the fluorine-free anionic surfactant so defined herein may further have, in addition to the above-mentioned acid group, one or more of polyoxyalkylene groups whose oxyalkylene group contains 2 to 4 carbon atoms, amino and other groups.
- the amino group in the surfactant referred to herein is not in the protonated form.
- the above-mentioned fluorine-free anionic surfactant is preferably an anionic hydrocarbon-based surfactant comprising a hydrocarbon residue as the main chain.
- the hydrocarbon residue is, for example, one having a saturated or unsaturated aliphatic chain containing 6 to 40 carbon atoms, preferably 8 to 20 carbon atoms.
- the saturated or unsaturated aliphatic chain may be straight-chained or branched and may contain a cyclic structure.
- the hydrocarbon residue may have aromaticity or may contain an aromatic group.
- the hydrocarbon residue may contain one or more of such hetero atoms as oxygen, nitrogen and sulfur atoms.
- alkylsulfonic acids such as laurylsulfonic acid, and salts thereof; alkylaryl sulfates and salts thereof; aliphatic (carboxylic) acids such as lauric acid, and salts thereof; phosphoric acid alkyl esters, phosphoric acid alkylaryl esters, and salts thereof; and so forth.
- alkylsulfonic acids such as laurylsulfonic acid, and salts thereof
- alkylaryl sulfates and salts thereof such as aliphatic (carboxylic) acids such as lauric acid, and salts thereof; phosphoric acid alkyl esters, phosphoric acid alkylaryl esters, and salts thereof; and so forth.
- preferred ones are selected from the group consisting of sulfonic acids and carboxylic acids, and salts thereof; aliphatic carboxylic acids or salts thereof are more preferred.
- aliphatic carboxylic acids or salts thereof are saturated or unsaturated aliphatic carboxylic acids containing 9 to 13 carbon atoms whose terminal H may be substituted by —OH, or salts thereof, and monocarboxylic acids are preferred as the aliphatic carboxylic acids.
- Preferred monocarboxylic acids are decanoic acid, undecanoic acid, undecenic acid, lauric acid and hydroxydodecanoic acid.
- the fluorine-free anionic surfactant is also preferably a sulfosuccinic acid alkyl ester or a salt thereof, more preferably dioctyl sulfosuccinate or laurylsulfuric acid, or a salt thereof, still more preferably dioctyl sulfosuccinate sodium salt or sodium laurylsulfate.
- the concentration by phase separation in the present invention is preferably carried out after adding the above-mentioned electrolyte and/or fluorine-free anionic surfactant to the crude fluororesin aqueous dispersion to give a dispersion showing, at 25° C., an electric conductivity of not lower than 100 ⁇ S/cm, preferably not lower than 200 ⁇ S/cm.
- the upper limit to the above-mentioned electric conductivity is not particularly restricted but the conductivity is preferably not higher than 10000 ⁇ S/cm, more preferably not higher than 5000 ⁇ S/cm.
- the electric conductivity so referred to herein is the value measured using an electric conductivity meter (product of ORION).
- the fluorine-free anionic surfactant to be used in the concentration by phase separation there may be mentioned those specifically mentioned hereinabove referring to the ion-exchange resin treatment and, among them, those nonionic surfactants which show an inorganicity/organicity ratio of 1.07 to 1.50 are preferred.
- the concentration of the fluorine-free nonionic surfactant in the concentration by phase separation is preferably at a level corresponding to 1 to 40% by mass, more preferably 1 to 30% by mass, still more preferably 1 to 20% by mass, relative to the above-mentioned PTFE.
- concentration of the fluorine-free nonionic surfactant is lower than a level corresponding to 1% by mass, the concentration by phase separation may become difficult in certain cases and, when it is above a level exceeding 40% by mass, the economic efficiency may be impaired.
- the concentration by phase separation is carried out after carrying out the ion-exchange resin treatment mentioned above.
- the concentration by phase separation may also be carried out prior to the ion-exchange resin treatment according to need, without any restriction, provided that it is carried out after the ion-exchange resin treatment mentioned above without fail.
- the PTFE concentration in the fluororesin aqueous dispersion obtained can amount to 45 to 75% by mass relative to the fluororesin aqueous dispersion.
- the concentration mentioned above is preferably not lower than 50% by mass and is preferably not higher than 70% by mass.
- the PTFE concentration is within the above range, it becomes possible to reduce the cost of transportation of the fluororesin aqueous dispersion and increase the thickness of the coatings to be obtained.
- the fluororesin aqueous dispersion obtained by the method of producing a fluororesin aqueous dispersion according to the invention can have an electrolyte content not exceeding a level corresponding to 10000 ppm, preferably 5000 ppm of the above-mentioned PTFE and/or a fluorine-free anionic surfactant content not exceeding a level corresponding to 10000 ppm, preferably 5000 ppm of the above-mentioned PTFE.
- the electrolyte content is preferably not lower than a level corresponding to 10 ppm.
- the fluorine-free anionic surfactant content is preferably not lower than a level corresponding to 10 ppm.
- the electrolyte and/or fluorine-free anionic surfactant When the electrolyte and/or fluorine-free anionic surfactant is below the range mentioned above, the dispersion stability may be poor in certain instances and, when it is above the above range, the economic efficiency may be impaired.
- the fluororesin aqueous dispersion obtained by the method of producing a fluororesin aqueous dispersion according to the invention has a fluorine-containing surfactant content reduced to a level corresponding to 100 ppm of the above-mentioned PTFE or below. Since the fluorine-containing surfactant causes impairments in those characteristics of fluororesins which are excellent, it is important to reduce the content thereof as far as possible. From the ease-of-removal viewpoint, the fluorine-containing surfactant preferably has an average molecular weight not exceeding 1000, more preferably not exceeding 500, and preferably contains 5 to 12 carbon atoms.
- fluorine-containing surfactant there may be mentioned fluorine-containing anionic surfactants.
- fluorine-containing anionic surfactants there may be mentioned, for example, perfluorooctanoic acid and/or a salt thereof (hereinafter “perfluorooctanoic acid and/or a salt thereof” will be sometimes collectively referred to as “PFOA”), perfluorooctylsulfonic acid and/or a salt thereof (hereinafter “perfluorooctylsulfonic acid and/or a salt thereof” will be sometimes collectively referred to as “PFOS”) and the like.
- PFOA perfluorooctanoic acid and/or a salt thereof
- PFOS perfluorooctylsulfonic acid and/or a salt thereof
- the above-mentioned fluorine-containing surfactant preferably comprises a perfluorocarboxylic acid and/or a salt thereof.
- the counter ion forming the salt is, for example, an alkali metal ion or NH 4 + .
- the alkali metal ion there may be mentioned Na + and K + , among others.
- NH 4 + among others, is preferred as the above-mentioned counter ion.
- the salt is not particularly restricted but may be the ammonium salt, for instance.
- the fluororesin aqueous dispersion obtained can have a content of the above-mentioned fluorine-containing surfactant as reduced to a level not exceeding 100 ppm of PTFE.
- the content of the above-mentioned fluorine-containing surfactant may be preferably lower than a level corresponding to 50 ppm of PTFE, more preferably lower than a level corresponding to 20 ppm of PTFE, still more preferably lower than a level corresponding to 10 ppm of PTFE. Most preferably, it is below the detection limit, namely substantially zero.
- the fluorine-containing surfactant content so referred to herein is measured by adding methanol, in an amount equal to that of the fluororesin aqueous dispersion, to the dispersion to cause coagulation and, after Soxhlet extraction, subjecting the extract to high-performance liquid chromatography [HPLC].
- the fluorine-free nonionic surfactant content in the fluororesin aqueous dispersion obtained by the method of producing a fluororesin aqueous dispersion according to the invention is preferably at a level corresponding to 0.1 to 15% by mass relative to PTFE.
- the fluorine-free nonionic surfactant content is preferably not lower than a level corresponding to 0.2% by mass and is preferably not higher than a level corresponding to 10% by mass.
- the fluorine-free nonionic surfactant concentration is above a level corresponding to 15% by mass, the economic efficiency may be impaired and, when it is lower than a level corresponding to 0.1% by mass, the dispersion stability of the fluororesin aqueous dispersion may possibly become insufficient.
- the fluororesin aqueous dispersion obtained by the method of producing a fluororesin aqueous dispersion according to the invention has good dispersion stability, without being markedly impaired in crack resistance and mechanical stability.
- the above-mentioned fluororesin aqueous dispersion can have an electric conductivity, at 25° C., of not lower than 10 ⁇ S/cm, preferably not lower than 100 ⁇ S/cm.
- the fluororesin aqueous dispersion which has an electric conductivity within such range, is excellent in dispersion stability. So long as the electric conductivity is within the above range, the upper limit thereto is not particularly restricted but preferably is 10000 ⁇ S/cm, more preferably 5000 ⁇ S/cm.
- the fluororesin aqueous dispersion obtained by The method of producing a fluororesin aqueous dispersion according to the invention can be processed into or used in making coatings, cast films, impregnated bodies and so forth. They may be diluted according to need or may be used in admixture with another dispersion.
- fluororesin aqueous dispersion As the fields of application of the above-mentioned fluororesin aqueous dispersion, there may be mentioned, for example, oven linings, ice trays and like cooking utensils, electric wires, pipes, ship bottoms, high-frequency printed circuit boards, conveyer belts, iron bottom coatings; fibrous substrates, woven and nonwoven fabrics and so forth.
- the fibrous substrates are not particularly restricted but the dispersions can be processed into impregnated articles using glass fibers, carbon fibers, aramid fibers (Kevlar® fibers etc.) as substrates to be impregnated.
- Such processing of the fluororesin aqueous dispersion can be carried out by any of the methods known in the art.
- the fluororesin aqueous dispersion can also be processed, for example, into fluororesin powders or moldings.
- fluororesin powders are very low in fluorine-containing surfactant content and, therefore, are useful as excellent molding materials.
- the fluororesin powders can be prepared by any of the conventional methods according to the intended use thereof.
- the method of producing a fluororesin aqueous dispersion according to the invention which has the constitution described hereinabove, can efficiently produce a fluororesin aqueous dispersion very low in fluorine-containing surfactant content and high in PTFE concentration.
- the aqueous dispersion obtained was subjected to coagulation treatment by addition of an equal amount of methanol followed by Soxhlet extraction, and the concentration in question was determined by carrying out high-performance liquid chromatography [HPLC] under the conditions given below.
- HPLC high-performance liquid chromatography
- the average primary particle diameter is determined based on the transmittance, per unit length, of a sample aqueous dispersion adjusted to a PTFE concentration of 0.22% by mass at an incident light wavelength of 550 nm, using a working curve showing the relation between such transmittance and the average primary particle diameter determined by measurements of images on a scanning electron photomicrograph in a predetermined direction.
- the electric conductivity was measured using an electric conductivity meter (product of ORION).
- a 5% aqueous solution (150 L) of the fluorine-free nonionic emulsifier Leocol TD90 (trade name, product of Lion Corp.) was passed, over 1 hour, through a column (30 cm in diameter, 200 cm in height) packed with 150 L of the OH form ion-exchange resin Amberjet IRA40020H (trade name, product of Rohm and Haas).
- the PFOA concentration in the PTFE dispersion obtained was below the detection limit (10 ppm) and the pH was 10.3.
- a fluororesin aqueous dispersion having a fluororesin concentration of 62%, a fluorine-free nonionic surfactant concentration at a level corresponding to 5.1% of the fluororesin, an average primary particle diameter of PTFE particles of 235 nm, and an electric conductivity at 25° C. of 480 ⁇ S/cm.
- a fluororesin aqueous dispersion having a fluororesin concentration of 61%, a fluorine-free nonionic surfactant concentration at a level corresponding to 5.0% relative to the fluororesin, an average primary particle diameter of PTFE particles of 235 nm, and an electric conductivity at 25° C. of 130 ⁇ S/cm.
- a fluororesin aqueous dispersion having a fluororesin concentration of 53%, a fluorine-free nonionic surfactant concentration at a level corresponding to 3.1% relative to the fluororesin, an average primary particle diameter of PTFE particles of 235 nm, and an electric conductivity at 25° C. of 150 ⁇ S/cm.
- the method of producing a fluororesin aqueous dispersion according to the invention is suited for use in obtaining a fluororesin aqueous dispersion capable of being processed into coatings, cast films, impregnated articles and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
R1—OCOCH(SO3A)CH2COO—R2 (I)
Wherein R1 and R2 are the same or different and each represents an alkyl group containing 4 to 12 carbon atoms and A represents an alkali metal, an alkaline earth metal or NH4.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-180246 | 2006-06-29 | ||
JP2006180246 | 2006-06-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080004393A1 US20080004393A1 (en) | 2008-01-03 |
US7968644B2 true US7968644B2 (en) | 2011-06-28 |
Family
ID=38877528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/766,532 Active 2029-06-04 US7968644B2 (en) | 2006-06-29 | 2007-06-21 | Method of producing a fluororesin aqueous dispersion |
Country Status (2)
Country | Link |
---|---|
US (1) | US7968644B2 (en) |
CN (1) | CN101096420A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120077915A1 (en) * | 2006-06-29 | 2012-03-29 | Daikin Industries, Ltd. | Aqueous fluororesin dispersion and method for producing the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102504451B (en) * | 2011-12-11 | 2014-02-26 | 浙江大学 | Preparation method of fluororesin/nanocomposite material |
WO2014104416A1 (en) * | 2012-12-28 | 2014-07-03 | ダイキン工業株式会社 | Production method for polyvinylidene fluoride aqueous dispersion liquid, and polyvinylidene fluoride aqueous dispersion liquid |
CN105338808A (en) * | 2013-06-24 | 2016-02-17 | 大金工业株式会社 | Fabrics for preventing the attachment of aquatic organisms |
CN111675814B (en) * | 2020-04-27 | 2022-06-07 | 山东东岳高分子材料有限公司 | High-fluidity fluororesin slurry and preparation method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1329622A (en) | 1998-12-11 | 2002-01-02 | 迪尼昂两合公司 | Aqueous dispersions of fluoropolymers |
US20040171736A1 (en) * | 2003-02-28 | 2004-09-02 | 3M Innovative Properties Company | Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant |
US20040186219A1 (en) * | 2001-09-05 | 2004-09-23 | Dadalas Michael C. | Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant |
US20050107506A1 (en) * | 2003-10-21 | 2005-05-19 | Solvay Solexis S.P.A. | Process for preparing fluoropolymer dispersions |
JP2005171250A (en) | 2003-12-04 | 2005-06-30 | Solvay Solexis Spa | TFE copolymer |
US20060041051A1 (en) * | 2002-11-29 | 2006-02-23 | Yasukazu Nakatani | Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles |
US20070282044A1 (en) * | 2006-05-31 | 2007-12-06 | Robert John Cavanaugh | Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersing agents |
WO2008001846A1 (en) * | 2006-06-29 | 2008-01-03 | Daikin Industries, Ltd. | Aqueous fluororesin dispersion and method for producing the same |
-
2007
- 2007-06-21 US US11/766,532 patent/US7968644B2/en active Active
- 2007-06-28 CN CNA2007101268224A patent/CN101096420A/en active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1329622A (en) | 1998-12-11 | 2002-01-02 | 迪尼昂两合公司 | Aqueous dispersions of fluoropolymers |
US6833403B1 (en) | 1998-12-11 | 2004-12-21 | 3M Innovative Properties Company | Aqueous dispersions of fluoropolymers |
US20040186219A1 (en) * | 2001-09-05 | 2004-09-23 | Dadalas Michael C. | Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant |
US20060041051A1 (en) * | 2002-11-29 | 2006-02-23 | Yasukazu Nakatani | Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles |
US20040171736A1 (en) * | 2003-02-28 | 2004-09-02 | 3M Innovative Properties Company | Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant |
US20050107506A1 (en) * | 2003-10-21 | 2005-05-19 | Solvay Solexis S.P.A. | Process for preparing fluoropolymer dispersions |
JP2005126715A (en) | 2003-10-21 | 2005-05-19 | Solvay Solexis Spa | Preparation method of fluoropolymer dispersion liquid |
JP2005171250A (en) | 2003-12-04 | 2005-06-30 | Solvay Solexis Spa | TFE copolymer |
CN1637025A (en) | 2003-12-04 | 2005-07-13 | 索尔维索莱克西斯公司 | TFE copolymers |
US20050154104A1 (en) | 2003-12-04 | 2005-07-14 | Solvay Solexis S.P.A. | TFE copolymers |
US20070282044A1 (en) * | 2006-05-31 | 2007-12-06 | Robert John Cavanaugh | Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersing agents |
WO2008001846A1 (en) * | 2006-06-29 | 2008-01-03 | Daikin Industries, Ltd. | Aqueous fluororesin dispersion and method for producing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120077915A1 (en) * | 2006-06-29 | 2012-03-29 | Daikin Industries, Ltd. | Aqueous fluororesin dispersion and method for producing the same |
US8540901B2 (en) * | 2006-06-29 | 2013-09-24 | Daikin Industries, Ltd. | Aqueous fluororesin dispersion and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
US20080004393A1 (en) | 2008-01-03 |
CN101096420A (en) | 2008-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1452571B1 (en) | Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant | |
US7968644B2 (en) | Method of producing a fluororesin aqueous dispersion | |
US7279522B2 (en) | Fluoropolymer dispersions containing no or little low molecular weight fluorinated surfactant | |
US9080035B2 (en) | Aqueous fluoropolymer dispersion | |
US7514484B2 (en) | Aqueous dispersion of polytetrafluoroethylene and process for its production | |
US8299155B2 (en) | Aqueous fluoropolymer dispersion | |
US20110294945A1 (en) | Aqueous fluorine-containing polymer dispersion | |
US8540901B2 (en) | Aqueous fluororesin dispersion and method for producing the same | |
US20180298160A1 (en) | Polytetrafluoroethylene aqueous dispersion | |
CN101538394B (en) | Aqueous Fluoropolymer Dispersions | |
US20090069493A1 (en) | Process for Producing Aqueous Fluoropolymer Dispersion | |
US20090312443A1 (en) | Method for producing aqueous fluorine-containing polymer dispersion and aqueous fluorine-containing polymer dispersion | |
US20100222491A1 (en) | Aqueous fluoropolymer dispersion | |
JP5251013B2 (en) | Method for producing fluororesin aqueous dispersion | |
US7619018B2 (en) | Process for removing fluorosurfactant from aqueous fluoropolymer dispersions and reducing scum formation | |
US20060074178A1 (en) | Process for preparing aqueous fluoropolymer dispersions and the concentrated aqueous fluoropolymer dispersions produced by such process | |
US20090069492A1 (en) | Process for producing aqueous fluoropolymer dispersion | |
JPWO2007074901A1 (en) | Fluoropolymer aqueous dispersion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAIKIN INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAWAUCHI, CHIE;TSUDA, NOBUHIKO;REEL/FRAME:019465/0352 Effective date: 20070514 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |