WO2021085470A1 - ポリテトラフルオロエチレン水性分散液の製造方法 - Google Patents

ポリテトラフルオロエチレン水性分散液の製造方法 Download PDF

Info

Publication number
WO2021085470A1
WO2021085470A1 PCT/JP2020/040421 JP2020040421W WO2021085470A1 WO 2021085470 A1 WO2021085470 A1 WO 2021085470A1 JP 2020040421 W JP2020040421 W JP 2020040421W WO 2021085470 A1 WO2021085470 A1 WO 2021085470A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
polytetrafluoroethylene
ptfe
mass
aqueous
Prior art date
Application number
PCT/JP2020/040421
Other languages
English (en)
French (fr)
Inventor
信弥 ▲樋▼口
政博 ▲高▼澤
インウェイ ライ
志郎 江畑
丈裕 巨勢
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080075974.XA priority Critical patent/CN114630849B/zh
Priority to JP2021553650A priority patent/JPWO2021085470A1/ja
Priority to EP20880885.7A priority patent/EP4053181A4/en
Publication of WO2021085470A1 publication Critical patent/WO2021085470A1/ja
Priority to US17/659,182 priority patent/US20220235156A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F120/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a method for producing an aqueous dispersion of polytetrafluoroethylene.
  • Polytetrafluoroethylene is used in various applications due to its excellent properties.
  • a fluorine-based surfactant such as perfluorooctanoate has been used in the production of polytetrafluoroethylene.
  • fluorine-based surfactant such as perfluorooctanoate
  • the crack limit film thickness (Critical Film Stickness, hereinafter also referred to as CFT) of the formed coating film is large.
  • the CFT corresponds to a thickness at which cracks begin to occur when an aqueous dispersion containing polytetrafluoroethylene particles is applied to form a coating film having a film thickness of a certain level or more and fired.
  • An object of the present invention is to provide a method for producing a polytetrafluoroethylene aqueous dispersion, which produces a small amount of a fluorine-based oligomer as a by-product and a large CFT of a coating film to be formed.
  • Step A2 in which tetrafluoroethylene is polymerized in solution 1 to obtain an aqueous emulsion containing polytetrafluoroethylene particles, without substantially adding a surfactant to solution 1.
  • a method for producing an aqueous dispersion of polytetrafluoroethylene wherein the amount of the non-fluorine-based monomer used is 200 mass ppm or less with respect to the amount of tetrafluoroethylene supplied to the polymerization system.
  • the content of the polytetrafluoroethylene particles in the polytetrafluoroethylene aqueous dispersion is 50 to 70% by mass with respect to the total amount of the polytetrafluoroethylene aqueous dispersion.
  • Step B2 in which tetrafluoroethylene is polymerized in solution 2 to obtain an aqueous emulsion containing polytetrafluoroethylene particles, without substantially adding a surfactant to the solution 2.
  • the meanings of the terms in the present invention are as follows.
  • the "unit” is a general term for an atomic group derived from one molecule of a monomer, which is directly formed by polymerizing a monomer.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • a feature of the method for producing an aqueous dispersion of polytetrafluoroethylene (hereinafter, also referred to as "PTFE") of the present invention is a polymer containing a unit based on a non-fluorine-based monomer (hereinafter, "specific polymer"). Also referred to as) and a solution 1 containing an aqueous medium, or in an aqueous medium, at least one nucleating additive and oxidizing agent selected from the group consisting of polyalkylene oxide compounds and hydrocarbon-containing surfactants.
  • Solution 1 and Solution 2 can provide a place for a hydrophobic environment in which the polymerization of TFE can proceed well, and further, by substantially not using a surfactant, the polymerization of TFE can be carried out while suppressing the occurrence of chain transfer. It can proceed stably. As a result, the formation of fluorine-based oligomers, which are by-products, can be suppressed.
  • the fluorine-based oligomer mainly contains an oligomer in which CF 2 having about 6 to 34 carbon atoms is linked.
  • Step A1 A non-fluorine-based monomer is polymerized in an aqueous medium to obtain a solution 1 containing a specific polymer.
  • Step A2 In the solution 1 without substantially adding a surfactant to the solution 1.
  • Step A3 Add a nonionic surfactant to the aqueous emulsion to obtain an aqueous emulsion containing PTFE particles by polymerizing TFE, and then concentrate the aqueous emulsion to concentrate the PTFE aqueous dispersion.
  • the amount of the non-fluorine-based monomer used is 200% by mass or less with respect to the amount of TFE supplied to the polymerization system.
  • Step A1 is a step of polymerizing a non-fluorine-based monomer in an aqueous medium to obtain a solution 1 containing a specific polymer.
  • the material used in the step A1 will be described in detail, and then the procedure of the step A1 will be described in detail.
  • the non-fluorine-based monomer is a monomer that does not contain a fluorine atom.
  • the non-fluorine-based monomer usually has a polymerizable group, and the number of polymerizable groups is preferably 1 to 3, more preferably 1.
  • an ethylenically unsaturated group is preferable. More specifically, acryloyl group, methacryloyl group, vinyl ether group, vinyl ester group, vinyl group and allyl group are mentioned, and acryloyl group, methacryloyl group, vinyl ester group and vinyl ether group are preferable.
  • R 12 represents a hydrogen atom, an alkyl group, an alkenyl group or a nitrile group.
  • R 12 is a nitrile group.
  • the number of carbon atoms of the alkyl group and the alkenyl group is preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4.
  • the alkyl group may be chain-like or cyclic. When the alkyl group is cyclic, it corresponds to a cycloalkyl group.
  • the alkenyl group may be chain or cyclic.
  • Examples of the monomer represented by the formula (1) include a monomer represented by the formula (1-1), a monomer represented by the formula (1-2), and a monomer represented by the formula (1-3).
  • a monomer selected from the group consisting of the monomer represented by the formula (1-4) and the monomer represented by the formula (1-4) is preferable.
  • CH 2 CR 11- O-CO-R 14 Equation (1-3)
  • CH 2 CR 11- OR 15 Equation (1-4)
  • CH 2 CR 11- R 16
  • the definition of R 11 is as described above.
  • R 13 represents a hydrogen atom, an alkyl group or an alkenyl group, and an alkyl group having 1 to 6 carbon atoms or an alkenyl group having 1 to 6 carbon atoms is preferable.
  • R 14 represents an alkyl group, preferably an alkyl group having 1 to 3 carbon atoms, and more preferably a methyl group.
  • R 15 represents an alkyl group, preferably a linear alkyl group or a cyclic alkyl group.
  • R 16 represents a nitrile group.
  • non-fluorinated monomer examples include methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, butyl acrylate, butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, vinyl methacrylate, vinyl acetate, and acrylic acid.
  • examples thereof include methacrylic acid, acrylonitrile, methacrylnitrile, ethyl vinyl ether and cyclohexyl vinyl ether.
  • the non-fluorine-based monomer one type may be used alone, or two or more types may be used in combination.
  • a monomer represented by the formula (1-1) or a monomer represented by the formula (1-2) is preferable, and the formula (1- ) in which R 13 is an alkyl group is preferable.
  • the monomer represented by 1) is more preferable. Since the monomer represented by the formula (1-1) and the monomer represented by the formula (1-2) have an ester group or a carboxy group which are hydrophilic groups, the monomer or the monomer represented by the formula (1-2) has an ester group or a carboxy group.
  • the polymer has hydrophilicity. Therefore, it is considered that the monomer and its polymer are stably dispersed in the aqueous medium without the need for a surfactant, especially at a low concentration.
  • the specific polymer is a polymer containing a unit based on a non-fluorine-based monomer.
  • the specific polymer usually contains only units based on non-fluorine-based monomers, but may contain units based on fluorine-based monomers as long as the effects of the present invention are not impaired. That is, in addition to the non-fluorine-based monomer, a fluorine-based monomer may be used in step A1.
  • the fluorine-based monomer is a monomer having a fluorine atom, and examples thereof include TFE.
  • the content of the unit based on the non-fluorine-based monomer in the specific polymer is preferably 90% by mass or more, more preferably 95% by mass or more, based on all the units of the specific polymer. The upper limit is 100% by mass.
  • aqueous medium examples include water, a mixture of water and a water-soluble organic solvent.
  • water-soluble organic solvent examples include tert-butanol, propylene glycol and dipropylene glycol.
  • the water-soluble organic solvent concentration is preferably 10% by mass or less.
  • the aqueous medium is preferably water only.
  • a polymerization initiator may be used. That is, a polymerization initiator may be used when polymerizing the non-fluorine-based monomer.
  • a water-soluble radical initiator and a water-soluble redox catalyst are preferable.
  • water-soluble radical initiator persulfates such as ammonium persulfate and potassium persulfate, water-soluble organic peroxides such as disuccinic acid peroxide, bisglutaric acid peroxide, and tert-butyl hydroperoxide are preferable.
  • water-soluble redox catalyst examples include an oxidizing agent such as bromic acid or a salt thereof, chloric acid or a salt thereof, persulfate or a salt thereof, permanganic acid or a salt thereof, hydrogen peroxide, and sulfite or a salt thereof, hydrogen sulfite.
  • an oxidizing agent such as bromic acid or a salt thereof, chloric acid or a salt thereof, persulfate or a salt thereof, permanganic acid or a salt thereof, hydrogen peroxide, and sulfite or a salt thereof, hydrogen sulfite.
  • a combination thereof with a salt thereof, thiosulfate or a salt thereof, or a reducing agent such as an organic acid is preferable.
  • a combination of bromic acid or a salt thereof and sulfurous acid or a salt thereof eg, ammonium sulfite
  • a combination of permanganate or a salt thereof eg, potassium permanganate
  • oxalic acid e.g., ammonium persulfate alone or a mixed system of persulfate and disuccinic acid peroxide
  • ammonium persulfate alone or a mixed system of ammonium persulfate and disuccinic acid peroxide is more preferable.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the entire amount of the polymerization initiator may be charged into the polymerization system before the polymerization reaction is started, or may be continuously or intermittently added to the polymerization system.
  • step A1 the non-fluorine-based monomer is polymerized in the aqueous medium. Specifically, it is preferable to mix the non-fluorine-based monomer and the aqueous medium and polymerize the non-fluorine-based monomer in the obtained mixed liquid. As described above, a fluorine-based monomer may be used in combination, if necessary.
  • the amount of the non-fluorine-based monomer used is 200 mass ppm or less, and 1 to 150 mass ppm or less, relative to the amount of TFE supplied to the polymerization system (the amount of TFE used) used in step A2 described later.
  • initial batch addition is preferable in which the entire amount of the non-fluorine-based monomer is charged into the polymerization system before the polymerization reaction is started.
  • the content of the non-fluorinated monomer in the dispersion liquid obtained by mixing the non-fluorinated monomer and the aqueous medium is preferably 0.000015 to 0.0030% by mass with respect to the total mass of the dispersion liquid. , 0.000075 to 0.0023% by mass is more preferable. Since the entire amount of the non-fluorine-based monomer is usually polymerized to become a specific polymer, the concentration of the specific polymer in the obtained solution 1 is within the above numerical range.
  • the non-fluorine-based monomer concentration and the specific polymer concentration are the concentrations when the obtained solution 1 is used in step A2 without being diluted with an aqueous medium.
  • the obtained solution 1 is diluted with an aqueous medium to obtain the above-mentioned specific polymer concentration, and when the diluted solution is used in step A2, a high-concentration solution corresponding to the dilution ratio is produced in step A1.
  • the dilution ratio is not particularly limited, but is preferably 10 times or less.
  • the amount of the polymerization initiator used is preferably 0.2 to 1000% by mass, more preferably 0.2 to 500% by mass, based on the total amount of the non-fluorinated monomer.
  • the amount of the polymerization initiator used is preferably 0.1 to 1000 mol%, more preferably 0.1 to 300 mol%, based on the total amount of the non-fluorine-based monomer.
  • the polymerization temperature of the non-fluorine-based monomer is preferably 10 to 95 ° C, more preferably 50 to 90 ° C.
  • the polymerization time is preferably 5 to 400 minutes, more preferably 5 to 300 minutes, still more preferably 5 to 200 minutes.
  • the pressure condition at the time of polymerization is preferably a reduced pressure condition or a normal pressure condition. Among them, 0 to 2.0 MPa is preferable, 0 to 1.0 MPa is more preferable, and 0 to 0.5 MPa is further preferable.
  • the polymerization may be carried out by using the atmosphere at the time of polymerization as the TFE atmosphere. In general, the polymerization of non-fluorine-based monomers in an aqueous medium proceeds in preference to the polymerization of TFE.
  • the solution 1 containing the specific polymer is obtained.
  • the specific polymer may be dissolved in the solution 1 or may be dispersed in an aqueous medium in the form of particles.
  • the specific polymer is not an emulsifier, but the specific polymer is present at the boundary between the aqueous medium and the PTFE particles due to the balance of interfacial tension with respect to both the aqueous medium and the PTFE particles. It is presumed to contribute to the stabilization of dispersion in the inside.
  • the particle size of the particles of the specific polymer is preferably 0.1 to 100 nm, more preferably 0.1 to 50 nm.
  • the solution 1 obtained in step A1 may contain an unreacted non-fluorine-based monomer.
  • the atmosphere in the polymerization system of step A1 may be performed in a TFE-containing atmosphere in consideration of step A2.
  • a part of the specific polymer in step A2 may be a polymer containing TFE units.
  • the PTFE particles obtained in step A2 are not limited to particles composed of a physical mixture of a specific polymer and PTFE, and are TFE copolymers having a unit based on a non-fluorine-based monomer. It is also considered to be a particle containing.
  • Step A2 is a step of polymerizing TFE in the solution 1 obtained in step A1 to obtain an aqueous emulsion containing PTFE particles without substantially adding a surfactant to the solution 1.
  • the material used in the step A2 will be described in detail, and then the procedure of the step A2 will be described in detail.
  • TFE TFE In step A2, TFE is used.
  • a monomer other than TFE may be further used as long as the effect of the present invention is not impaired.
  • examples of other monomers include monomers having a polar group (hereinafter, also simply referred to as “specific monomers”). Since the polar group in the specific monomer interacts with the aqueous medium, it is presumed that it is located between the TFE and the aqueous medium during the polymerization of TFE and exhibits a surfactant-like function. .. As a result, the polymerization of TFE proceeds well and the occurrence of chain transfer is suppressed.
  • Examples of the polar group contained in the specific monomer include a sulfonic acid group, a sulfonic acid base, a carboxylic acid group, a carboxylic acid base, a phosphonic acid group, and a phosphonic acid base.
  • the group represented by the formula (A) or the group represented by the formula (B) is preferable, and the group represented by the formula (A) is more preferable in that the formation of the fluorine-based oligomer is further suppressed. .. Equation (A) -SO 3 M Equation (B) -COM
  • M represents a hydrogen atom, NH 4 , or an alkali metal atom.
  • Examples of the alkali metal atom include a lithium atom, a sodium atom and a potassium atom.
  • the specific monomer usually has a polymerizable group, and the number of polymerizable groups is preferably 1 to 3, and more preferably 1.
  • the polymerizable group an ethylenically unsaturated group is preferable. More specifically, acryloyl group, methacryloyl group, vinyl ether group, vinyl ester group, vinyl group and allyl group are mentioned, and acryloyl group, methacryloyl group, vinyl ester group and vinyl ether group are preferable.
  • the monomer represented by the formula (3) is preferable as the specific monomer in that the formation of the fluorine-based oligomer is further suppressed.
  • R 31 and R 32 independently represent a hydrogen atom or a fluorine atom, respectively.
  • R 33 represents a hydrogen atom, a fluorine atom, or an alkyl group optionally substituted with a fluorine atom.
  • a hydrogen atom or a fluorine atom is preferable in that the copolymerizability with TFE is better.
  • the "alkyl group in which a fluorine atom may be substituted" means an alkyl group in which at least one hydrogen atom in the alkyl group may be substituted with a fluorine atom.
  • the number of carbon atoms of the alkyl group in which the fluorine atom may be substituted is preferably 1 to 3, and more preferably 1.
  • L 3 represents a single bond or a divalent linking group. Of these, a single bond is preferable because it has better copolymerizability with TFE.
  • the divalent linking group may be, for example, a divalent hydrocarbon group (a divalent saturated hydrocarbon group, a divalent aromatic hydrocarbon group, an alkenylene group, or an alkynylene group. Divalent saturated hydrocarbon group.
  • the hydrogen group may be linear, branched or cyclic, and examples thereof include an alkylene group.
  • the carbon number is preferably 1 to 20, and the divalent aromatic hydrocarbon group has a carbon number of carbon. 5 to 20 is preferable, and examples thereof include a phenylene group.
  • an alkenylene group having 2 to 20 carbon atoms and an alkynylene group having 2 to 20 carbon atoms may be used.
  • a divalent heterocyclic group. -O-, -S-, -SO 2- , -C (O)-, -Si (R a ) 2- , -N (R b )-, and a group combining two or more of these. Be done.
  • Ra represents an alkyl group (preferably 1 to 10 carbon atoms) or a phenyl group.
  • R b represents a hydrogen atom or an alkyl group (preferably having 1 to 10 carbon atoms).
  • Examples of the group in which two or more of these are combined include -OC (O)-, -C (O) N (R b )-, an alkylene group-O-alkylene group, and an alkylene group-OC (O) -alkylene.
  • Examples thereof include a group, an alkylene group-Si (R a ) 2 -phenylene group-Si (R a ) 2 .
  • the divalent hydrocarbon group may have a substituent.
  • Examples of the substituent include a halogen atom (for example, a fluorine atom and a chlorine atom). That is, the hydrogen atom in the divalent hydrocarbon group may be substituted with a halogen atom.
  • R 34 represents a group represented by the above formula (A) or a group represented by the above formula (B).
  • Examples of the monomer represented by the formula (3) include a monomer represented by the formula (3-1), a monomer represented by the formula (3-2), and a monomer represented by the formula (3-3). From the monomer represented by the formula (3-4), the monomer represented by the formula (3-5), and the monomer represented by the formula (3-6). The monomer selected from the above group is preferable, and the monomer represented by the formula (3-1) is more preferable.
  • CR 31 R 32 CR 33- R 34 Equation (3-2)
  • CR 31 R 32 CR 33 - (CF 2) m1 -R 34 Equation (3-3)
  • CR 31 R 32 CR 33- (CF 2 C (CF 3 ) F) m2- R 34 Equation (3-4)
  • CR 31 R 32 CR 33 -O- (CFR 35 ) m3- R 34 Equation (3-5)
  • CR 31 R 32 CR 33 -O- (CF 2 CFR 35 O) m4 -CF 2 CF 2 -R 34 Equation (3-6)
  • CR 31 R 32 CR 33 -CF 2- O- (CF (CF 3 ) CF 2 O) m5- CF (CF 3 ) -R 34
  • R 31 to R 34 are as described above.
  • m1 represents an integer from 1 to 10.
  • m2 represents an integer of 1-5.
  • m3 represents an integer from 1 to 10.
  • R 35 represents a fluorine atom or CF 3 .
  • m4 represents an integer from 1 to 10.
  • the definition of R 35 is as described above.
  • m5 represents 0 or an integer from 1 to 10.
  • Specific examples of the specific monomer include ammonium vinyl sulfonate.
  • the specific monomer one type may be used alone, or two or more types may be used in combination.
  • a polymerization initiator may be used. That is, a polymerization initiator may be used when polymerizing TFE.
  • the polymerization initiator used include the polymerization initiator described in step A1.
  • a mixed system of persulfate and disuccinic acid peroxide is preferable, and a mixed system of ammonium persulfate and disuccinic acid peroxide is more preferable.
  • the amount of the polymerization initiator used is preferably 0.10% by mass or more, more preferably 0.10 to 1.5% by mass, and 0.20 to 1.0% by mass with respect to the total amount of TFE supplied to the polymerization system. % Is more preferable.
  • a stabilizing aid may be used.
  • the stabilizing aid paraffin wax, a fluorine-based solvent, and silicone oil are preferable, and paraffin wax is more preferable.
  • the paraffin wax may be liquid, semi-solid or solid at room temperature. Of these, saturated hydrocarbons having 12 or more carbon atoms are preferable.
  • the melting point of the paraffin wax is preferably 40 to 65 ° C, more preferably 50 to 65 ° C.
  • the stabilizing aid may be used alone or in combination of two or more.
  • step A2 a monomer other than TFE and a specific monomer may be used as long as the effect of the present invention is not impaired, but the amount of TFE used is high in that various characteristics of PTFE are more excellent. , 99.5% by mass or more is preferable, and 99.8% by mass or more is more preferable with respect to the total amount of the monomers used in the step A2.
  • step A2 substantially no surfactant is added to solution 1. That is, in step A2, TFE is polymerized in the solution 1 without substantially adding a new surfactant to the solution 1.
  • a surfactant is a compound having a hydrophilic group (for example, a polar group) and a hydrophobic group (for example, a hydrocarbon group).
  • the definition of polar group is the same as the definition of polar group contained in a specific monomer.
  • the surfactant include known surfactants, nonionic surfactants and ionic surfactants, and more specifically, hydrocarbon-containing surfactants and fluorine-based surfactants. Can be mentioned.
  • the definition of the hydrocarbon-containing surfactant is as described later.
  • step A2 it is preferable that at least one selected from the group consisting of the hydrocarbon-containing surfactant and the fluorine-based surfactant is substantially not added to the solution 1.
  • substantially not added means that the surfactant is not added, or even if the surfactant is added, the amount of the surfactant added is 200 mass ppm or less with respect to the total mass of 1 solution. Means that.
  • the lower limit is not particularly limited, but 0 mass ppm is preferable. That is, it is preferable not to add the surfactant to the solution 1 in the step A2.
  • TFE is charged into a polymerization system (that is, a polymerization reaction vessel) by a conventional method.
  • a polymerization system that is, a polymerization reaction vessel
  • TFE is continuously or intermittently charged into the polymerization system so that the polymerization pressure becomes a predetermined pressure.
  • the polymerization initiator may be added to the polymerization system all at once or may be added separately.
  • the amount of the specific monomer used based on the total amount of TFE is preferably 0.150% by mass or less. That is, the amount of the specific monomer charged with respect to the total amount of TFE charged is preferably 0.150% by mass or less. From the viewpoint of the stability of the emulsion during polymerization, the amount of the specific monomer used with respect to the total amount of TFE is preferably 0.100% by mass or less, more preferably 0.090% by mass or less. Further, from the viewpoint of improving the molecular weight, the amount of the specific monomer used with respect to the total amount of TFE is preferably 0.005% by mass or more, more preferably 0.010% by mass or more. When two or more kinds of specific monomers are used, the total amount of the specific monomers used may be within the above range.
  • the amount of the specific monomer used based on the total amount of TFE is preferably 0.150 mol% or less. That is, the amount of the specific monomer charged with respect to the total amount of TFE charged is preferably 0.150 mol% or less. From the viewpoint of the stability of the emulsion during polymerization, the amount of the specific monomer used with respect to the total amount of TFE is preferably 0.100 mol% or less, more preferably 0.090 mol% or less. Further, from the viewpoint of improving the molecular weight, the amount of the specific monomer used with respect to the total amount of TFE is preferably 0.001 mol% or more, more preferably 0.005 mol% or more. When two or more kinds of specific monomers are used, the total amount of the specific monomers used may be within the above range.
  • the polymerization temperature is preferably 10 to 95 ° C, more preferably 15 to 90 ° C.
  • the polymerization pressure is preferably 0.5 to 4.0 MPa, more preferably 0.6 to 3.5 MPa.
  • the polymerization time is preferably 50 to 520 minutes, more preferably 50 to 450 minutes, and even more preferably 50 to 300 minutes.
  • the steps A1 and A2 may be continuously performed in the same polymerization reaction vessel. Further, in the production method of the present invention, the specific polymer may be formed in the step A1, and the step A2 may be carried out before the non-fluorine-based monomer is completely consumed in the step A1.
  • an aqueous emulsion in which PTFE is dispersed in particles (an aqueous emulsion containing PTFE particles) is obtained.
  • the concentration of PTFE particles in the aqueous emulsion is preferably 10 to 45% by mass, more preferably 10 to 30% by mass, still more preferably 10 to 25% by mass, based on the total amount of the aqueous emulsion.
  • the PTFE particles in the aqueous emulsion can be more easily coagulated, and the white turbidity of the coagulated liquid can be suppressed.
  • the average primary particle size of the PTFE particles is preferably 100 to 500 nm, more preferably 150 to 300 nm.
  • the average primary particle size of the PTFE particles corresponds to D50 measured by a laser scattering particle size distribution analyzer.
  • the PTFE in the PTFE particles obtained by the above procedure usually contains a TFE unit as a main component.
  • the main component is intended to have a TFE unit content of 99.700% by mass or more with respect to all the units of PTFE, and is preferably 99.900% by mass or more.
  • the upper limit is 100% by mass.
  • the PTFE contains units based on the specific monomer
  • the content of the units based on the specific monomer is preferably 0.005 to 0.150% by mass, and 0.010 to 0, based on all the units of PTFE. .100% by mass is more preferable.
  • the total content of the units based on each specific monomer may be in the above range.
  • the content of the unit based on the non-fluorine-based monomer is preferably 200 mass ppm or less, preferably 1 to 150 mass ppm, based on all the units of the PTFE. More preferably, 5 to 100 mass ppm is further preferable, and 5 to 50 mass ppm is particularly preferable.
  • the total content of units based on each non-fluorine-based monomer may be within the above range.
  • Step A3 is a step of adding a nonionic surfactant to the aqueous emulsion obtained in step A2, and then concentrating the aqueous emulsion to obtain a PTFE aqueous dispersion. That is, a nonionic surfactant is added to the PTFE low-concentration aqueous dispersion (corresponding to the above aqueous emulsion) obtained in step A2, and then the PTFE low-concentration aqueous dispersion is concentrated to concentrate the PTFE high-concentration aqueous dispersion. This is a step of obtaining an aqueous dispersion (corresponding to the above-mentioned PTFE aqueous dispersion).
  • step A3 a PTFE aqueous dispersion showing a PTFE particle concentration higher than the PTFE particle concentration of the aqueous dispersion can be obtained.
  • the material used in the step A3 will be described in detail, and then the procedure of the step A3 will be described in detail.
  • Nonionic surfactants include nonionic surfactants. Further, as the nonionic surfactant, a nonionic surfactant represented by the formula (4) and a nonionic surfactant represented by the formula (5) are preferable. Equation (4): R 41- OA-H Equation (5): R 51- C 6 H 4- OB-H In the formula, R 41 represents an alkyl group having 8 to 18 carbon atoms. A represents a polyoxyalkylene chain composed of 5 to 20 oxyethylene groups and 0 to 2 oxypropylene groups. In the formula, R 51 represents an alkyl group having 4 to 12 carbon atoms. B represents a polyoxyethylene chain composed of 5 to 20 oxyethylene groups.
  • Equation (6) R 61- ODH
  • R 61 represents an alkyl group having 8 to 18 carbon atoms.
  • D represents a polyoxyalkylene chain composed of 5 to 20 oxyethylene groups and 0.1 to 3 oxybutylene groups.
  • the alkyl group represented by R 41 has 8 to 18 carbon atoms, preferably 10 to 16 carbon atoms, and more preferably 12 to 16 carbon atoms.
  • the number of carbon atoms is 18 or less, the PTFE particles are less likely to settle even when the PTFE aqueous dispersion is left for a long period of time, and the storage stability is excellent.
  • the number of carbon atoms is 8 or more, the surface tension of the PTFE aqueous dispersion is low, and the permeability and wettability are excellent.
  • the hydrophilic group A a polyoxyalkylene chain composed of 7 to 12 oxyethylene groups and 0 to 2 oxypropylene groups is preferable. Among them, when the number of oxypropylene groups in A is 0.5 to 1.5, the foam disappearance property is good, which is preferable.
  • the alkyl group represented by R 51 has 4 to 12 carbon atoms, preferably 6 to 10 and more preferably 8 to 9.
  • the number of carbon atoms of the alkyl group is 4 or more, the surface tension of the PTFE aqueous dispersion is low, and the permeability and wettability are excellent.
  • the number of carbon atoms is 12 or less, even if the PTFE aqueous dispersion is left for a long period of time, the PTFE particles are hard to settle and the storage stability is excellent.
  • the number of oxyethylene groups in B which is a hydrophilic group, is preferably 6 to 16, and more preferably 7 to 12.
  • the alkyl group represented by R 61 has 8 to 18 carbon atoms, preferably 10 to 16 carbon atoms, and more preferably 12 to 16 carbon atoms.
  • the number of carbon atoms is 18 or less, the PTFE particles are less likely to settle even when the PTFE aqueous dispersion is left for a long period of time, and the storage stability is excellent.
  • the number of carbon atoms is 8 or more, the surface tension of the PTFE aqueous dispersion is low, and the permeability and wettability are excellent.
  • the hydrophilic group D a polyoxyalkylene chain having 7 to 12 oxyethylene groups and 0.1 to 3 oxybutylene groups is preferable.
  • the number of oxybutylene groups in D is 0.5 to 2, the defoaming property is good, which is preferable. Further, the number of oxybutylene groups is more preferably 0.7 to 1.7, and even more preferably 0.9 to 1.5. The number of oxyethylene groups is preferably 6 to 15, and more preferably 7 to 12.
  • the average molecular weight of the activator is preferably 450 to 800, more preferably 500 to 750, and even more preferably 550 to 700, respectively.
  • Nonionic surfactants of the formula (4) for example, C 13 H 27 - (OC 2 H 4) 10 -OH, C 12 H 25 - (OC 2 H 4) 10 -OH, C 10 H 21 CH (CH 3) CH 2 - (OC 2 H 4) 9 -OH, C 13 H 27 - (OC 2 H 4) 9 -OCH (CH 3) CH 2 -OH, C 16 H 33 - ( OC 2 H 4 ) 10- OH, HC (C 5 H 11 ) (C 7 H 15 )-(OC 2 H 4 ) 9- OH can be mentioned.
  • Examples of commercially available products include Dow Inc.'s Tagitol® 15S series and Lion's Lionol® (registered trademark) TD series.
  • Nonionic surfactants of the formula (5) for example, C 8 H 17 -C 6 H 4 - (OC 2 H 4) 10 -OH, C 9 H 19 -C 6 H 4 - ( OC 2 H 4 ) 10- OH can be mentioned.
  • Examples of commercially available products include Dow's Triton (registered trademark) X series, Nikko Chemical's Nikkor (registered trademark) OP series or NP series.
  • Examples of the nonionic surfactant represented by the formula (6) include C 13 H 27 OCH 2 CH (C 2 H 5 ) O (C 2 H 4 O) 8 H and C 10 H 21 CH (CH).
  • the nonionic surfactant represented by the formula (4) and / or the nonionic surfactant represented by the formula (5) may be used alone or in combination of two or more. May be good. Further, the nonionic surfactant represented by the formula (6) may be used alone or in combination of two or more. Further, the nonionic surfactant represented by the formula (6) is mixed with the nonionic surfactant represented by the formula (4) and the nonionic surfactant represented by the formula (5). Can be used.
  • the nonionic surfactant is a mixture of a plurality of substances having different molecular structures, and has the carbon number of the alkyl group in the nonionic surfactant, the oxyethylene group, the oxypropylene group, and the oxybutylene group in the polyoxyalkylene chain.
  • the number of is treated as an average value.
  • Each numerical value is not limited to an integer.
  • the method for concentrating the aqueous emulsion is not particularly limited, and a conventionally known method can be adopted.
  • the concentration method include a centrifugal sedimentation method, an electrophoresis method, and a phase separation method, as described on page 32 of the Fluororesin Handbook (edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun).
  • Electrophoresis is a method that utilizes the fact that PTFE particles are negatively charged. Specifically, 1 to 10% by mass (preferably 2 to 8% by mass) of a nonionic surfactant is dissolved in an aqueous emulsion based on the mass of PTFE. Next, a voltage of 50 to 500 V / m (preferably 100 to 300 V / m) was applied to the obtained aqueous emulsion in a container having a semipermeable membrane such as a cellulose membrane, and the PTFE particles were electrophoresed. This is a method of recovering a PTFE aqueous dispersion that accumulates on the surface of a semipermeable membrane and then settles on the bottom due to a difference in specific gravity.
  • the pH of the aqueous emulsion before concentration is preferably 2 to 10, more preferably 3 to 9.
  • the phase separation method is a method in which PTFE particles are settled by heating and leaving them for a certain period of time. Specifically, 8 to 20% by mass (preferably 12 to 18% by mass) of a nonionic surfactant is dissolved in an aqueous emulsion based on the mass of PTFE. Next, the obtained aqueous emulsion was heated at 50 to 100 ° C. (preferably 60 to 90 ° C.), left to stand for 1 to 100 hours (preferably 5 to 20 hours), and accumulated at the bottom due to the difference in specific gravity. This is a method for recovering an aqueous dispersion of PTFE.
  • an anionic surfactant for example, ammonium laurate, triethanolamine laurate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, etc.
  • an anionic surfactant for example, ammonium laurate, triethanolamine laurate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, etc.
  • the polymerization initiator residue or the like may be adsorbed and removed by the ion exchange resin or the like before the aqueous emulsion is concentrated. ..
  • excess water-soluble ionic compounds are removed, the coating film performance of the PTFE aqueous dispersion is improved, and application to an insulating material becomes easy.
  • the concentration of PTFE particles in the PTFE aqueous dispersion obtained by the above procedure is preferably 15 to 70% by mass, more preferably 20 to 70% by mass, based on the total mass of the PTFE aqueous dispersion.
  • the PTFE aqueous dispersion having a concentration of 15 to 70% by mass of PTFE particles is used for impregnating a cloth or string woven with fibers such as glass fiber with the PTFE aqueous dispersion, for mixing with inorganic powder or plastic powder, and for paints. It can be preferably used for applications where a small amount is added.
  • the concentration of PTFE particles is preferably 50 to 70% by mass, more preferably 52 to 68% by mass.
  • the pH of the aqueous PTFE dispersion is preferably 2 to 13, more preferably 3 to 11.
  • the PTFE particles constituting the PTFE particles in the aqueous PTFE dispersion include not only the copolymer of TFE but also a trace amount of ethylene halide such as chlorotrifluoroethylene and hexafluoropropylene that cannot be melt-processed substantially. Also included is so-called modified PTFE containing a polymerization unit based on a copolymerizable component capable of copolymerizing with TFE, such as fluorovinyl ether such as propylene halide and perfluoro (alkyl vinyl ether).
  • the content of the nonionic surfactant in the aqueous PTFE aqueous dispersion is preferably 1 to 20% by mass, more preferably 1.5 to 15% by mass, still more preferably 2 to 10% by mass with respect to the mass of PTFE. ..
  • the content is 1% by mass or more, the mechanical stability of the PTFE aqueous dispersion is excellent and the wettability is also excellent. Further, when the content is 20% by mass or less, cracks are less likely to occur in the coated coating film, and the durability of the PTFE product is excellent.
  • the content of the nonionic surfactant in the PTFE aqueous dispersion is particularly preferably 3 to 10% by mass in order to improve the wettability at the time of coating and prevent cracks from occurring.
  • the surface tension of the PTFE aqueous dispersion is preferably 24 to 35 mN / m, more preferably 25 to 32 mN / m.
  • the surface tension is 24 mN / m or more, the defoaming property is excellent, and when the surface tension is 35 mN / m or less, repelling is unlikely to occur.
  • the PTFE aqueous dispersion may contain one or more non-fluorine-containing emulsifiers, various leveling agents, preservatives, colorants, fillers, organic solvents, aqueous ammonia, and other known components. Further, when the PTFE aqueous dispersion contains a polyethylene oxide or a polyurethane-based viscosity modifier, the mechanical stability of the PTFE aqueous dispersion is excellent.
  • the viscosity of the PTFE aqueous dispersion is preferably 300 mPa ⁇ s or less at 23 ° C., more preferably 3 to 100 mPa ⁇ s, and even more preferably 5 to 50 mPa ⁇ s, from the viewpoint of ease of application.
  • the thickening temperature of the PTFE aqueous dispersion is preferably 30 to 60 ° C, more preferably 35 to 55 ° C, still more preferably 40 to 50 ° C. When the thickening temperature is within the above range, the viscosity change due to the fluctuation of the coating temperature is unlikely to occur, and the repelling is unlikely to occur.
  • Step B1 In an aqueous medium, at least one nucleating additive selected from the group consisting of a polyalkylene oxide compound and a hydrocarbon-containing surfactant is mixed with an oxidizing agent to obtain a solution 2.
  • Step B2 TFE polymerization in the solution 2 obtained in step B1 without substantially adding a surfactant to the solution 2 to obtain an aqueous emulsion containing PTFE particles
  • Step B3 Aqueous emulsion A step of adding a nonionic surfactant to the mixture and then concentrating the aqueous emulsion to obtain a PTFE aqueous dispersion.
  • nucleation is formed with respect to the amount of TFE supplied to the polymerization system.
  • the amount of the additive used is 100% by mass or less.
  • Step B1 is a step of mixing at least one nucleation additive selected from the group consisting of a polyalkylene oxide compound and a hydrocarbon-containing surfactant and an oxidizing agent in an aqueous medium to obtain a solution 2. is there.
  • the material used in step B1 will be described in detail, and then the procedure of step B1 will be described in detail.
  • the polyalkylene oxide compound is a compound for forming a nucleus (seed) during the polymerization of TFE. That is, it corresponds to a nucleation additive.
  • the polyalkylene oxide compound is a compound containing a polyalkylene oxide chain, and examples of the polyalkylene oxide chain include a polymethylene oxide chain, a polyethylene oxide chain, a polypropylene oxide chain, and a polytetramethylene oxide chain.
  • the polyalkylene oxide compound preferably has a surface tension in water exceeding about 40 dynes / cm at a concentration of 1000 ppm.
  • the surface tension is more preferably more than about 42 dynes / cm, and even more preferably more than about 45 dynes / cm.
  • the surface tension is preferably about 73 dynes / cm or less.
  • the number average molecular weight of the polyalkylene oxide compound is preferably 50 to 2000, more preferably 100 to 1500, and even more preferably 150 to 1300.
  • the compound represented by the formula (2) is preferable as the polyalkylene oxide compound in that the formation of the fluorine-based oligomer is further suppressed.
  • Equation (2) R 21- (OL 2 ) n- OR 22
  • R 21 and R 22 independently represent a hydrogen atom, an alkyl group, an acryloyl group, or a methacryloyl group, respectively.
  • L 2 represents an alkylene group having 1 to 4 carbon atoms, and may be linear or branched.
  • n represents 1 to 50.
  • polyalkylene oxide compound examples include polyethylene glycol, polyethylene glycol acrylate, polyethylene glycol methacrylate, polyethylene glycol methyl ether, polyethylene glycol dimethyl ether, polyethylene glycol butyl ether, polypropylene glycol, polypropylene glycol acrylate, polypropylene glycol methacrylate, polypropylene glycol dimethacrylate, and polypropylene.
  • examples thereof include glycol methyl ether, polypropylene glycol dimethyl ether, polypropylene glycol butyl ether, polypropylene glycol dimethacrylate, and polytetramethylene glycol.
  • the polyalkylene oxide compound may be used alone or in combination of two or more.
  • the hydrocarbon-containing surfactant is a surfactant containing a hydrocarbon. More specifically, at least some of the monovalent substituents in the carbon atom are hydrogen atoms, and substitution by halogen atoms such as fluorine atom and chlorine atom is also possible. In a preferred hydrocarbon-containing surfactant, at least 75%, preferably at least 85%, more preferably at least 95% of the monovalent substituent substituting for a carbon atom is a hydrogen atom.
  • hydrocarbon-containing surfactant examples include a hydrocarbon surfactant and a siloxane surfactant.
  • Hydrocarbon surfactant means a surfactant that does not contain a silicon atom and does not contain a halogen atom such as a chlorine atom and a fluorine atom because 100% of monovalent substituents that replace carbon atoms are hydrogen atoms.
  • the siloxane surfactant means a hydrocarbon-containing surfactant having a hydrophobic group containing a siloxane skeleton containing a large number of siloxane units.
  • an anionic hydrocarbon surfactant is preferable.
  • Anionic hydrocarbon surfactants include negatively charged hydrophilic portions such as carboxylic acid groups, sulfonic acid groups, sulfate groups, phosphonic acid groups, and phosphoric acid groups, and alkyl groups as hydrophobic portions. It means a hydrocarbon surfactant having a hydrocarbon portion of the above.
  • Examples of anionic hydrocarbon surfactants include highly branched C10 tertiary carboxylic acids supplied as Versatic® 10 by Resolution Performance Products.
  • Other examples of anionic hydrocarbon surfactants include sodium linear alkyl polyether sulfonate supplied by BASF as Avanel® S series.
  • R 71- L 7- M R 71 represents an alkyl group.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear. The number of carbon atoms of the alkyl group is, for example, 6 to 20.
  • L 7 is, -ArSO 3 -, -SO 3 - , -SO 4 -, -PO 3 -, -PO 4 -, or, -COO - it represents a.
  • Ar represents an arylene group.
  • M represents a monovalent cation. Examples of the monovalent cations, e.g., H +, Na +, K +, include NH 4 +.
  • Examples of the anionic hydrocarbon surfactant represented by the formula (7) include sodium dodecyl sulfate.
  • anionic hydrocarbon surfactant is Akzo Nobel Surface Chemistry LLC. Examples thereof include Lancropol® K8300, a sulfosuccinate surfactant available from.
  • Nonionic hydrocarbon surfactants do not have a charged group, but have a hydrophobic moiety, which is often a long chain hydrocarbon.
  • Examples of the hydrophilic portion of the nonionic hydrocarbon surfactant include water-soluble functional groups such as polyethylene oxide chains obtained from the polymerization of ethylene oxide.
  • Nonionic hydrocarbon surfactants include block copolymers having various types of polyalkylene oxide blocks, such as polyethylene oxide and polypropylene oxide.
  • Suitable nonionic hydrocarbon surfactants include the surfactants described in paragraphs 0043 to 0052 of JP-A-2016-537499.
  • Suitable siloxane surfactants include the surfactants described in US Pat. Nos. 6,841,616 (Wille et al.) And 7,977,438 (Brothers et al.).
  • oxidizing agent examples include hydrogen peroxide and a polymerization initiator.
  • polymerization initiator examples include the compounds exemplified by the polymerization initiator described in step A1 described above.
  • persulfate is preferable, and ammonium persulfate or potassium persulfate is more preferable.
  • aqueous medium examples include the aqueous medium used in step A1.
  • step B1 the nucleation additive and the oxidizing agent are mixed in an aqueous medium to obtain a solution 2.
  • the nucleation additive is exposed to the oxidizing agent in the aqueous medium.
  • Mixing the nucleation additive and the oxidizing agent in an aqueous medium gives a solution in which the lipophilic nucleation site is dispersed in the aqueous medium.
  • a nucleation additive such as a polyalkylene oxide compound and a hydrocarbon-containing surfactant is mixed with an oxidizing agent, the hydrophilic portion of the nucleation additive is decomposed and the hydrophobicity of the nucleation additive is decomposed.
  • the part becomes the lipophilic nucleation site.
  • the lipophilic nucleation sites are dispersed in the aqueous medium, and the fluoropolymer can be finely dispersed at these sites. Since the lipophilic nucleation site has an excellent affinity with TFE, the polymerization of TFE tends to proceed in the solution 2 containing the lipophilic nucleation site. That is, the lipophilic nucleation site can be a place for a hydrophobic environment for TFE to polymerize.
  • the amount of the nucleating additive used is 100 mass ppm or less, preferably 1 to 50 mass ppm or less, with respect to the amount of TFE supplied to the polymerization system (the amount of TFE used) used in step B2 described later. More preferably 1 to 25 mass ppm.
  • the amount of the oxidizing agent used is preferably 0.5 to 100 mass ppm, more preferably 0.5 to 50 mass ppm, based on the total mass of the aqueous medium.
  • the temperature at which the nucleation additive and the oxidizing agent are mixed is preferably 20 to 120 ° C, more preferably 40 to 120 ° C.
  • the mixing time when the nucleation additive and the oxidizing agent are mixed is preferably 0.05 to 1.0 hours.
  • the water-soluble inorganic salt it is preferable to add the water-soluble inorganic salt to the aqueous medium before or during the mixing of the nucleation additive and the oxidizing agent.
  • the addition of water-soluble inorganic salts is useful for increasing the number of fluoropolymer particles formed during nucleation.
  • the amount of the water-soluble inorganic salt used is preferably 0.01 to 80 mass ppm, more preferably 1 to 50 mass ppm, based on the total mass of the aqueous medium.
  • water-soluble inorganic salt examples include sodium sulfite, sodium hydrogen sulfite, sodium chloride, potassium sulfite, potassium hydrogen sulfite, potassium carbonate, ammonium oxalate, sodium tetraborate, sodium acetate, ammonium carbonate, ammonium dihydrogen phosphate, and phosphorus.
  • examples thereof include diammonium acid, preferably sulfite, and more preferably sodium sulfite and ammonium sulfite.
  • Step B2 is a step of polymerizing TFE in the solution 2 obtained in step B1 to obtain an aqueous emulsion containing PTFE particles without substantially adding a surfactant to the solution 2. Since the same procedure as in step A2 described above is carried out in this step except that solution 2 is used instead of solution 1, the description thereof will be omitted.
  • the various characteristics of PTFE obtained in step B2 are as described in the various characteristics of PTFE obtained in step A2.
  • Step 3 is a step of adding a nonionic surfactant to the aqueous emulsion obtained in step B2 and then concentrating the aqueous emulsion to obtain a PTFE aqueous dispersion. That is, a nonionic surfactant is added to the PTFE low-concentration aqueous dispersion (corresponding to the above aqueous emulsion) obtained in step B2, and then the PTFE low-concentration aqueous dispersion is concentrated to concentrate the PTFE high-concentration aqueous dispersion. This is a step of obtaining an aqueous dispersion (corresponding to the above-mentioned PTFE aqueous dispersion).
  • step B3 a PTFE aqueous dispersion having a PTFE particle concentration higher than that of the aqueous dispersion can be obtained. Since the same procedure as in step A3 described above is carried out in this step except that the aqueous emulsion obtained in step B2 is used instead of the aqueous emulsion obtained in step A2, the description thereof will be omitted.
  • the various characteristics of the PTFE aqueous dispersion obtained in step B3 are as described in the various characteristics of the PTFE aqueous dispersion obtained in step A3.
  • the polymerization initiator residue and the like may be adsorbed and removed by the ion exchange resin or the like before the aqueous emulsion is concentrated. ..
  • excess water-soluble ionic compounds are removed, the coating film performance of the PTFE aqueous dispersion is improved, and application to an insulating material becomes easy.
  • the PTFE product means a film or sheet or fiber containing PTFE as a main component, a heat-resistant article having a PTFE coating film, or an article containing PTFE as a sub-ingredient, which is obtained by using an aqueous dispersion of PTFE.
  • Examples of PTFE products include packings made by impregnating a base material consisting of a cloth or braided string woven with glass fibers, aramid fibers, carbon fibers, various other synthetic fibers or natural fibers, and drying the PTFE aqueous dispersion.
  • filler such as lead, zinc, carbon powder and PTFE aqueous dispersion Sliding material such as oil-free bearing material, which is a mixture of a mixture mixed with a liquid and coated on a porous material; a thickener such as viscose is added to a PTFE aqueous dispersion and spun under pressure in a coagulation bath. Then fired PTFE fiber; PTFE aqueous dispersion coated on a heat-resistant sheet base material such as an aluminum plate or stainless steel plate, fired, and then the PTFE layer is peeled off to obtain a PTFE ultra-thin sheet; cast from the PTFE aqueous dispersion.
  • filler such as lead, zinc, carbon powder and PTFE aqueous dispersion Sliding material such as oil-free bearing material, which is a mixture of a mixture mixed with a liquid and coated on a porous material
  • a thickener such as viscose is added to a PTFE aque
  • a thin film obtained by film formation, etc. which has heat resistance, high insulation, and low dielectric adjunct ability, and is used for coil insulation, interlayer insulation film, and electrical insulation material for motors, transformers, relays, switches, etc .; PTFE water-based. Examples thereof include paints, resins and rubber materials whose lubricity and antifouling properties have been improved by adding a dispersion liquid.
  • the PTFE product is obtained by coating or mixing a PTFE aqueous dispersion and then drying or heat treating at a temperature of room temperature to 420 ° C.
  • the temperature of the drying or heat treatment is preferably 50 to 400 ° C, more preferably 100 to 395 ° C.
  • the PTFE content in the PTFE product varies depending on the application, but is preferably 0.01 to 100% by mass, more preferably 0.1 to 100% by mass, still more preferably 1 to 100% by mass.
  • A Average primary particle size of PTFE particles (hereinafter, also referred to as "PPS”) Using a PTFE aqueous dispersion as a sample, the measurement was performed using a laser scattering method particle size distribution analyzer (manufactured by HORIBA, Ltd., trade name "LA-920").
  • B Standard specific gravity (hereinafter, also referred to as "SSG”) Measured according to ASTM D4895-04. A 12.0 g sample (PTFE powder) was weighed and held in a cylindrical mold having an inner diameter of 28.6 mm at 34.5 MPa for 2 minutes.
  • PTFE concentration (mass%) [(W3-W0) / (W1-W0)] ⁇ 100
  • Surfactant concentration (mass% / PTFE) [(W2-W3) / (W3-W0)] ⁇ 100
  • Viscosity The viscosity of the PTFE aqueous dispersion was measured at a liquid temperature of 23 ° C. and 60 rpm using a # 1 spindle with a Brookfield type viscometer.
  • Example 1 Paraffin wax (1500 g) and deionized water (60 L) were charged into a 100 L stainless steel autoclave. After the autoclave was replaced with nitrogen, the pressure was reduced, and i-butyl methacrylate (i-BMA) (0.1 g) and deionized water (0.5 L) were charged while pouring into the autoclave. Next, the temperature inside the autoclave was kept below atmospheric pressure, and the temperature was raised to 75 ° C. while stirring the solution in the autoclave.
  • i-BMA i-butyl methacrylate
  • Step A2 After 20 minutes, pressurize with TFE to 1.96 MPa to dissolve ammonium persulfate (0.54 g) and disuccinic acid peroxide (concentration 80% by mass, remaining water) (53 g) in warm water (1 L) at about 70 ° C. The solution was poured into an autoclave. After the internal pressure in the autoclave dropped to 1.89 MPa, TFE was added so as to keep it at 1.96 MPa, and the polymerization of TFE was allowed to proceed. The reaction was terminated when the amount of TFE added reached 9 kg, and the TFE in the autoclave was released to the atmosphere. The polymerization time was 94 minutes.
  • the solid content concentration (concentration of PTFE particles) of the aqueous emulsion was about 11% by mass.
  • the average primary particle size of the PTFE particles in the aqueous emulsion was 0.24 ⁇ m (240 nm).
  • a part of the obtained aqueous emulsion was adjusted to 20 ° C. and stirred to aggregate PTFE particles to obtain a PTFE powder.
  • this PTFE powder was dried at 275 ° C. together with an aqueous ammonium carbonate solution.
  • the SSG of the obtained PTFE powder was 2.201. In addition, no by-product fluorine-based oligomer was confirmed in the obtained PTFE powder.
  • Step A3 The aqueous emulsion obtained in step A2, the non-ionic surfactant (a) (Nippon Emulsifier Co. Newcol 1308FA, C 13 H 27 - ( OC 2 H 4) 8 -OCH (CH 3) CH 2 - OH) was dissolved in a proportion of 2.7% by mass with respect to the mass of PTFE, ammonium laurate in an amount of 0.06% by mass with respect to the mass of PTFE, and triethanolamine lauryl sulfate dissolved in an amount of 0.02% by mass with respect to the mass of PTFE. The mixture was concentrated by electrophoresis.
  • the non-ionic surfactant (a) Naippon Emulsifier Co. Newcol 1308FA, C 13 H 27 - ( OC 2 H 4) 8 -OCH (CH 3) CH 2 - OH
  • a PTFE aqueous dispersion having a PTFE concentration of 65.8% by mass and a nonionic surfactant (a) concentration of 2.1% by mass based on the mass of PTFE.
  • a nonionic surfactant (b) (Newcol G1301H, C 13 H 27- OCH 2 CH (C 2 H 5 )-(OC 2 H 4 ) 8- OH manufactured by Nippon Emulsifier Co., Ltd.) 1.2% by mass based on the mass of PTFE
  • nonionic surfactant (c) (New Coal FAA09801, C 13 H 27- OCH 2 CH (C 2 H 5 )-(OC 2 H 4) manufactured by Nippon Emulsifier Co., Ltd.
  • PTFE 11- OH was added in an amount of 1.2% by mass based on the mass of PTFE
  • PEO was added in an amount of 0.1% by mass based on the mass of PTFE
  • water and aqueous ammonia were added to the nonionic surfactant (a) with respect to the mass of PTFE.
  • the nonionic surfactant (a) was added so that the content was 2.4% by mass to obtain a PTFE aqueous dispersion having a PTFE concentration of 60.5% by mass and a pH of 10.2.
  • the obtained PTFE aqueous dispersion had a viscosity at 23 ° C.
  • the average primary particle size of the PTFE particles in the aqueous PTFE dispersion was the same as the average primary particle size of the PTFE particles measured in the aqueous emulsion.
  • Step B2 After 10 minutes, pressurize with TFE to 1.96 MPa to dissolve ammonium persulfate (0.54 g) and disuccinic acid peroxide (concentration 80% by mass, remaining water) (53 g) in warm water (1 L) at about 70 ° C. The solution was poured into an autoclave. After the internal pressure in the autoclave dropped to 1.89 MPa, TFE was added so as to keep it at 1.96 MPa, and the polymerization of TFE was allowed to proceed. The reaction was terminated when the amount of TFE added reached 9 kg, and the TFE in the autoclave was released to the atmosphere. The polymerization time was 88 minutes.
  • the solid content concentration (concentration of PTFE particles) of the aqueous emulsion was about 11% by mass.
  • the average primary particle size of the PTFE particles in the aqueous emulsion was 0.24 ⁇ m (240 nm).
  • a part of the obtained aqueous emulsion was adjusted to 20 ° C. and stirred to aggregate PTFE particles to obtain a PTFE powder.
  • this PTFE powder was dried at 275 ° C. together with an aqueous ammonium carbonate solution.
  • the SSG of the obtained PTFE powder was 2.204. In addition, no by-product fluorine-based oligomer was confirmed in the obtained PTFE powder.
  • Step B3 The aqueous emulsion obtained in step B2 was concentrated in the same manner as in Example 1 to obtain a PTFE aqueous dispersion.
  • the average primary particle size of the PTFE particles in the aqueous PTFE dispersion was the same as the average primary particle size of the PTFE particles measured in the aqueous emulsion.
  • the evaluation results are shown in Table 1.
  • nonionic surfactant (d) (DOW Corp. Tergitol TMN100X, C 12 H 25 - (OC 2 H 4) 10 -OH) except using the A PTFE aqueous dispersion was obtained according to the same procedure as in Example 1. The evaluation results are shown in Table 1.
  • Example 4 A PTFE aqueous dispersion was obtained according to the same procedure as in Example 2 except that the nonionic surfactant (d) was used instead of the nonionic surfactant (a). The evaluation results are shown in Table 1.
  • Step A2 After 20 minutes, pressurize with TFE to 1.96 MPa to dissolve ammonium persulfate (0.54 g) and disuccinic acid peroxide (concentration 80% by mass, remaining water) (53 g) in warm water (1 L) at about 70 ° C. The solution was poured into an autoclave. Next, TFE was added so as to keep the internal pressure in the autoclave at 1.96 MPa, and the polymerization of TFE was allowed to proceed. After adding 1 kg of TFE, a solution prepared by dissolving ammonium vinyl sulfonate (5.0 g) in deionized water (1.5 L) gives 0.15 g of ammonium vinyl sulfonate to 1 kg of supplied TFE.
  • ammonium vinyl sulfonate was supplied while checking the amount of TFE to be supplied with a flow meter.
  • the reaction was terminated when the amount of TFE added reached 9 kg, and the TFE in the autoclave was released to the atmosphere.
  • the polymerization time was 97 minutes.
  • the solid content concentration (concentration of modified PTFE) of the aqueous emulsion was about 12% by mass.
  • the average primary particle size of the modified PTFE particles in the aqueous emulsion was 0.21 ⁇ m.
  • a part of the obtained aqueous emulsion was adjusted to 20 ° C. and stirred to aggregate the modified PTFE particles to obtain a modified PTFE powder.
  • the modified PTFE powder was dried at 275 ° C. together with an aqueous ammonium carbonate solution.
  • the SSG of the obtained modified PTFE powder was 2.193.
  • no by-product fluorine-based oligomer was confirmed in the obtained modified PTFE
  • Step A3 The aqueous emulsion obtained in step A2 was concentrated in the same manner as in Example 1 to obtain a PTFE aqueous dispersion.
  • the average primary particle size of the PTFE particles in the aqueous PTFE dispersion was the same as the average primary particle size of the PTFE particles measured in the aqueous emulsion.
  • the evaluation results are shown in Table 1.
  • the evaluation results are shown in Table 1.
  • Example 6 A PTFE aqueous dispersion was obtained according to the same procedure as in Example 5 except that the nonionic surfactant (d) was used instead of the nonionic surfactant (a). The evaluation results are shown in Table 1.
  • Example 7 In [Step B1] of (Example 2), the amount of PEG1000 used was changed from 0.05 g to 0.39 g, and in [Step B2] of (Example 2), the internal pressure in the autoclave was maintained at 1.96 MPa.
  • TFE was added and the polymerization of TFE proceeded, 1 kg of TFE was added, and then a solution of sodium lauryl sulfate (SLS) dissolved in deionized water was added to 1 kg of TFE to be supplied. While checking the amount of TFE supplied so as to be 48 g with a flow meter, SLS was supplied and the drying temperature was changed from 275 ° C to 220 ° C. PTFE powder was obtained.
  • SLS sodium lauryl sulfate
  • the column “Amount of non-fluorine-based monomer used” represents the amount of non-fluorine-based monomer used with respect to the amount of TFE supplied to the polymerization system.
  • the “Nucleation additive usage amount” column represents the amount of the nucleation additive used with respect to the supply amount of TFE to the polymerization system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paints Or Removers (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

副生成物であるフッ素系オリゴマーの生成が少なく、形成される塗膜のCFTが大きい、ポリテトラフルオロエチレン水性分散液の製造方法の提供。 水性媒体中で非フッ素系単量体を重合させて、非フッ素系単量体に基づく単位を含む重合体を含む溶液1を得る工程A1と、溶液1に界面活性剤を実質的に添加することなく、溶液1中にて、テトラフルオロエチレンの重合を行い、ポリテトラフルオロエチレン粒子を含む水性乳化液を得る工程A2と、水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、ポリテトラフルオロエチレン水性分散液を得る工程A3と、を有し、テトラフルオロエチレンの重合系への供給量に対する、非フッ素系単量体の使用量が200質量ppm以下である、ポリテトラフルオロエチレン水性分散液の製造方法。

Description

ポリテトラフルオロエチレン水性分散液の製造方法
 本発明は、ポリテトラフルオロエチレン水性分散液の製造方法に関する。
 ポリテトラフルオロエチレンは、その優れた性質のため種々の用途に用いられている。
 従来、ポリテトラフルオロエチレンの製造の際には、パーフルオロオクタン酸塩等のフッ素系界面活性剤が用いられていた。しかしながら、環境面の点から、フッ素系界面活性剤の使用を控えることが望まれていた。
 そこで、ポリテトラフルオロエチレンの新たな製造方法の一つとして、テトラフルオロエチレンを重合する際に、炭化水素含有界面活性剤を用いる方法が提案されている(特許文献1)。
特表2016-537499号公報
 一方で、炭化水素含有界面活性剤を用いると、テトラフルオロエチレンを重合する際に、炭化水素含有界面活性剤に対して連鎖移動反応が起こる。そのため、この炭化水素含有界面活性剤を用いる方法においては、フッ素系界面活性剤を用いた従来の方法では確認されたことがない、様々な鎖長分布を有するフッ素系オリゴマー(特に、親水性官能基を有するフッ素系オリゴマー)の存在が生成物中に確認された。このようなフッ素系オリゴマーは、上述したように、炭化水素含有界面活性剤が連鎖移動の起点となり生成された副生成物である。このような副生成物の存在は、環境面から望ましくない。
 また、ポリテトラフルオロエチレン粒子を含む水性分散液に関しては、形成される塗膜のクラック限界膜厚(Critical Film Thickness。以下、CFTともいう。)が大きいことが望まれている。上記CFTとは、ポリテトラフルオロエチレン粒子を含む水性分散液を塗布して、一定以上の膜厚の塗膜を形成して、焼成した際に、クラックが発生し始める厚みに該当する。
 本発明は、副生成物であるフッ素系オリゴマーの生成が少なく、形成される塗膜のCFTが大きい、ポリテトラフルオロエチレン水性分散液の製造方法の提供を課題とする。
 本発明者らは、鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。
(1) 水性媒体中で非フッ素系単量体を重合させて、非フッ素系単量体に基づく単位を含む重合体を含む溶液1を得る工程A1と、
 溶液1に界面活性剤を実質的に添加することなく、溶液1中にて、テトラフルオロエチレンの重合を行い、ポリテトラフルオロエチレン粒子を含む水性乳化液を得る工程A2と、
 水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、ポリテトラフルオロエチレン水性分散液を得る工程A3と、を有し、
 テトラフルオロエチレンの重合系への供給量に対する、非フッ素系単量体の使用量が200質量ppm以下である、ポリテトラフルオロエチレン水性分散液の製造方法。
(2) 非フッ素系単量体が、後述する式(1)で表される単量体である、(1)に記載のポリテトラフルオロエチレン水性分散液の製造方法。
(3) ポリテトラフルオロエチレン水性分散液中のポリテトラフルオロエチレン粒子の含有量が、ポリテトラフルオロエチレン水性分散液全量に対して、50~70質量%である、(1)または(2)に記載のポリテトラフルオロエチレン水性分散液の製造方法。
(4) 前記ポリテトラフルオロエチレン水性分散液中の前記非イオン性界面活性剤の含有量が、ポリテトラフルオロエチレン質量に対して1~20質量%である、(1)~(3)のいずれかのポリテトラフルオロエチレン水性分散液の製造方法。
(5) 水性媒体中で、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤からなる群から選択される少なくとも1種の核形成添加剤と酸化剤とを混合して、溶液2を得る工程B1と、
 溶液2に界面活性剤を実質的に添加することなく、溶液2中にて、テトラフルオロエチレンの重合を行い、ポリテトラフルオロエチレン粒子を含む水性乳化液を得る工程B2と、
 水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、ポリテトラフルオロエチレン水性分散液を得る工程B3と、を有し、
 テトラフルオロエチレンの重合系への供給量に対する、核形成添加剤の使用量が100質量ppm以下である、ポリテトラフルオロエチレン水性分散液の製造方法。
(6) ポリテトラフルオロエチレン水性分散液中のポリテトラフルオロエチレン粒子の含有量が、ポリテトラフルオロエチレン水性分散液全量に対して、50~70質量%である、(5)に記載のポリテトラフルオロエチレン水性分散液の製造方法。
(7) 前記核形成添加剤がポリアルキレンオキシド化合物である、(5)または(6)のポリテトラフルオロエチレン水性分散液の製造方法。
(8) 前記酸化剤の使用量が、前記水性媒体全質量に対して、0.5~100質量ppmである、(5)~(7)のいずれかのポリテトラフルオロエチレン水性分散液の製造方法。
(9) 前記ポリテトラフルオロエチレン水性分散液中の前記非イオン性界面活性剤の含有量が、ポリテトラフルオロエチレン質量に対して1~20質量%である、(5)~(8)のいずれかのポリテトラフルオロエチレン水性分散液の製造方法。
 本発明によれば、副生成物であるフッ素系オリゴマーの生成が少なく、形成される塗膜のCFTが大きい、ポリテトラフルオロエチレン水性分散液の製造方法を提供できる。
 本発明における用語の意味は以下の通りである。
 「単位」とは、単量体が重合して直接形成された、単量体1分子に由来する原子団の総称である。
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明のポリテトラフルオロエチレン(以下、「PTFE」ともいう。)水性分散液の製造方法の特徴点としては、非フッ素系単量体に基づく単位を含む重合体(以下、「特定重合体」ともいう。)および水性媒体を含む溶液1を用いる、または、水性媒体中で、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤からなる群から選択される少なくとも1種の核形成添加剤と酸化剤とを混合して得られる溶液2を用いる点、テトラフルオロエチレン(以下、「TFE」ともいう。)の重合を行う際に界面活性剤を実質的に使用しない点、および、非フッ素系単量体および核形成添加剤の使用量を調整している点が挙げられる。
 溶液1および溶液2がTFEの重合が良好に進行し得る疎水性環境の場を提供でき、さらに、界面活性剤を実質的に使用しないことにより、連鎖移動の発生を抑制しつつTFEの重合を安定的に進行できる。結果として、副生成物であるフッ素系オリゴマーの生成を抑制できる。また、非フッ素系単量体および核形成添加剤の使用量を調整することにより、形成される塗膜のCFTが大きくなることを知見している。
 なお、フッ素系オリゴマーには、主に、炭素数6~34程度のCF2が連結してなるオリゴマーが含まれる。
<<第1実施態様>>
 PTFE水性分散液の製造方法の第1実施態様としては、以下の3つの工程を有する態様が挙げられる。
工程A1:水性媒体中で非フッ素系単量体を重合させて、特定重合体を含む溶液1を得る工程
工程A2:溶液1に界面活性剤を実質的に添加することなく、溶液1中にて、TFEの重合を行い、PTFE粒子を含む水性乳化液を得る工程
工程A3:水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、PTFE水性分散液を得る工程
 なお、第1実施態様においては、TFEの重合系への供給量に対する、非フッ素系単量体の使用量が200質量ppm以下である。
 以下、上記好適態様を例として本発明を詳述する。
<工程A1>
 工程A1は、水性媒体中で非フッ素系単量体を重合させて、特定重合体を含む溶液1を得る工程である。
 以下では、まず、工程A1で使用される材料について詳述し、その後、工程A1の手順について詳述する。
(非フッ素系単量体)
 非フッ素系単量体とは、フッ素原子を含まない単量体である。
 非フッ素系単量体は、通常、重合性基を有し、重合性基の数は、1~3個が好ましく、1個がより好ましい。
 重合性基としては、エチレン性不飽和基が好ましい。より具体的には、アクリロイル基、メタクリロイル基、ビニルエーテル基、ビニルエステル基、ビニル基、アリル基が挙げられ、アクリロイル基、メタクリロイル基、ビニルエステル基、ビニルエーテル基が好ましい。
 非フッ素系単量体としては、式(1)で表される単量体が好ましい。
 式(1)  CH2=CR11-L1-R12
 R11は、水素原子またはアルキル基を表す。アルキル基の炭素数は、1~3が好ましく、1がより好ましい。
 L1は、単結合、-CO-O-*、-O-CO-*または-O-を表す。*はR12との結合位置を表す。例えば、L1が-CO-O-*である場合、式(1)はCH2=CR11-CO-O-R12を表す。
 R12は、水素原子、アルキル基、アルケニル基またはニトリル基を表す。ただし、Lが単結合の場合、R12はニトリル基である。
 アルキル基およびアルケニル基の炭素数は、1~10が好ましく、1~6がより好ましく、1~4がさらに好ましい。
 アルキル基は、鎖状であっても、環状であってもよい。アルキル基が環状である場合、シクロアルキル基に該当する。
 アルケニル基は、鎖状であっても、環状であってもよい。
 式(1)で表される単量体としては、式(1-1)で表される単量体、式(1-2)で表される単量体、式(1-3)で表される単量体、および、式(1-4)で表される単量体からなる群から選択される単量体が好ましい。
 式(1-1)  CH2=CR11-CO-O-R13
 式(1-2)  CH2=CR11-O-CO-R14
 式(1-3)  CH2=CR11-O-R15
 式(1-4)  CH2=CR11-R16
 R11の定義は、上述した通りである。
 R13は、水素原子、アルキル基またはアルケニル基を表し、炭素数1~6のアルキル基または炭素数1~6のアルケニル基が好ましい。
 R14は、アルキル基を表し、炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。
 R15は、アルキル基を表し、直鎖状アルキル基または環状アルキル基が好ましい。
 R16は、ニトリル基を表す。
 非フッ素系単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、ブチルアクリレート、ブチルメタクリレート、ヘキシルメタクリレート、シクロヘキシルメタクリレート、ビニルメタクリレート、酢酸ビニル、アクリル酸、メタクリル酸、アクリロニトリル、メタクリロニトリル、エチルビニルエーテル、シクロヘキシルビニルエーテルが挙げられる。
 非フッ素系単量体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 非フッ素系単量体としては、式(1-1)で表される単量体または式(1-2)で表される単量体が好ましく、R13がアルキル基である式(1-1)で表される単量体がより好ましい。式(1-1)で表される単量体および式(1-2)で表される単量体は水親和性の基であるエステル基やカルボキシ基を有することより、該単量体やその重合体は水親和性を有する。従って、特に低濃度では、該単量体やその重合体は、界面活性剤を必要とすることなく水性媒体中に安定に分散すると考えられる。
(特定重合体)
 特定重合体は、非フッ素系単量体に基づく単位を含む重合体である。
 特定重合体は、通常、非フッ素系単量体に基づく単位のみを含むが、本発明の効果を損なわない範囲でフッ素系単量体に基づく単位を含んでいてもよい。つまり、非フッ素系単量体以外に、フッ素系単量体を工程A1で用いてもよい。フッ素系単量体とは、フッ素原子を有する単量体であり、例えば、TFEが挙げられる。
 特定重合体中における非フッ素系単量体に基づく単位の含有量は、特定重合体の全単位に対して、90質量%以上が好ましく、95質量%以上がより好ましい。上限としては、100質量%が挙げられる。
(水性媒体)
 水性媒体としては、例えば、水、水と水溶性有機溶媒との混合物が挙げられる。
 水溶性有機溶媒としては、例えば、tert-ブタノール、プロピレングリコール、ジプロピレングリコールが挙げられる。水と水溶性有機溶媒との混合物の場合、水溶性有機溶媒濃度は、10質量%以下が好ましい。
 水性媒体としては、水のみであることが好ましい。
(重合開始剤)
 工程A1では、重合開始剤を用いてもよい。つまり、非フッ素系単量体の重合の際に、重合開始剤を用いてもよい。
 重合開始剤としては、水溶性ラジカル開始剤、水溶性酸化還元系触媒が好ましい。
 水溶性ラジカル開始剤としては、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、ジコハク酸過酸化物、ビスグルタル酸過酸化物、tert-ブチルヒドロパーオキシド等の水溶性有機過酸化物が好ましい。
 水溶性酸化還元系触媒としては、臭素酸またはその塩、塩素酸またはその塩、過硫酸またはその塩、過マンガン酸またはその塩、過酸化水素等の酸化剤と、亜硫酸またはその塩、亜硫酸水素またはその塩、チオ硫酸またはその塩、有機酸等の還元剤と、の組み合わせが好ましい。なかでも、臭素酸またはその塩と、亜硫酸またはその塩(例:亜硫酸アンモニウム)との組み合わせ、過マンガン酸またはその塩(例:過マンガン酸カリウム)と、シュウ酸との組み合わせがより好ましい。
 重合開始剤としては、過硫酸アンモニウム単独、または、過硫酸塩とジコハク酸過酸化物との混合系が好ましく、過硫酸アンモニウム単独、または、過硫酸アンモニウムとジコハク酸過酸化物との混合系がより好ましい。
 重合開始剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 なお、重合開始剤の仕込み方法としては、重合反応を開始する前にその全量を重合系に仕込んでおいてもよく、連続的または断続的に重合系に添加してもよい。
(工程A1の手順)
 工程A1では、水性媒体中にて非フッ素系単量体の重合を行う。具体的には、非フッ素系単量体と水性媒体とを混合して、得られた混合液中にて非フッ素系単量体の重合を行うのが好ましい。
 なお、上述したように、必要に応じて、フッ素系単量体を併用してもよい。
 非フッ素系単量体の使用量は、後述する工程A2で用いられるTFEの重合系への供給量(TFEの使用量)に対して、200質量ppm以下であり、1~150質量ppm以下が好ましく、5~100質量ppmがより好ましく、5~50質量ppmがさらに好ましい。
 なお、非フッ素系単量体の仕込み方法としては、重合反応を開始する前に、その全量を重合系に仕込んでおく、初期一括添加が好ましい。
 非フッ素系単量体と水性媒体とを混合して得られる分散液中における非フッ素系単量体の含有量は、分散液全質量に対して、0.000015~0.0030質量%が好ましく、0.000075~0.0023質量%がより好ましい。
 非フッ素系単量体は通常その全量が重合して特定重合体となることより、得られた溶液1中における特定重合体濃度は、上記数値範囲となる。
 上記非フッ素系単量体濃度および特定重合体濃度は、得られた溶液1を水性媒体で希釈することなく工程A2に使用する場合の濃度である。得られた溶液1を水性媒体で希釈して上記特定重合体濃度とし、その希釈液を工程A2に使用する場合は、工程A1で希釈倍率に応じた高濃度の溶液を製造する。希釈倍率は特に限定されるものではないが、10倍以下が好ましい。
 重合開始剤の使用量は、非フッ素系単量体全量に対して、0.2~1000質量%が好ましく、0.2~500質量%がより好ましい。
 重合開始剤の使用量は、非フッ素系単量体全量に対して、0.1~1000mol%が好ましく、0.1~300mol%がより好ましい。
 非フッ素系単量体の重合温度は、10~95℃が好ましく、50~90℃がより好ましい。重合時間は、5~400分が好ましく、5~300分がより好ましく、5~200分がさらに好ましい。
 重合時の圧力条件は、減圧条件または常圧条件が好ましい。中でも、0~2.0MPaが好ましく、0~1.0MPaがより好ましく、0~0.5MPaがさらに好ましい。
 また、重合時の雰囲気をTFE雰囲気として、重合を行ってもよい。なお、通常、水性媒体中での非フッ素系単量体の重合が、TFEの重合よりも優先して進行する。
 上記工程A1により、特定重合体を含む溶液1が得られる。
 特定重合体は、溶液1中に溶解していてもよいし、粒子状で水性媒体中に分散していてもよい。後述する工程A2のTFEの重合の際に、特定重合体は乳化剤ではないが、水性媒体およびPTFE粒子双方に対する界面張力のバランスにより特定重合体が双方の境界に存在して、PTFE粒子の水性媒体中における分散安定化に寄与すると推測される。
 特定重合体の粒子の粒子径は、0.1~100nmが好ましく、0.1~50nmがより好ましい。
 なお、工程A1で得られる溶液1中には、未反応の非フッ素系単量体が含まれていてもよい。また、工程A1の重合系中の雰囲気を、工程A2を考慮してTFE含有雰囲気下で行うこともある。このような場合、工程A2における特定重合体の一部はTFE単位を含む重合体となる場合があると考えられる。
 また、別の見方からすれば、工程A2で得られるPTFE粒子は、特定重合体とPTFEとの物理的混合物からなる粒子に限られず、非フッ素系単量体に基づく単位を有するTFE共重合体を含む粒子であるとも考えられる。
<工程A2>
 工程A2は、溶液1に界面活性剤を実質的に添加することなく、工程A1で得られた溶液1中、TFEの重合を行い、PTFE粒子を含む水性乳化液を得る工程である。
 以下では、まず、工程A2で使用される材料について詳述し、その後、工程A2の手順について詳述する。
(TFE)
 工程A2では、TFEが用いられる。
(他のモノマー)
 工程A2では、本発明の効果を損なわない範囲において、TFE以外の他のモノマーをさらに用いてもよい。
 他のモノマーとしては、極性基を有する単量体(以下、単に「特定単量体」ともいう。)が挙げられる。特定単量体中の極性基は水性媒体に対して相互作用を示すため、TFEの重合の際にTFEと水性媒体との間に位置して、界面活性剤的な機能を示すと推測される。結果として、TFEの重合が良好に進行すると共に、連鎖移動の発生も抑制される。
 特定単量体に含まれる極性基としては、例えば、スルホン酸基、スルホン酸塩基、カルボン酸基、カルボン酸塩基、ホスホン酸基、ホスホン酸塩基が挙げられる。なかでも、フッ素系オリゴマーの生成がより抑制される点で、式(A)で表される基または式(B)で表される基が好ましく、式(A)で表される基がより好ましい。
 式(A)  -SO3
 式(B)  -COOM
 式(A)および式(B)中、Mは、水素原子、NH4、または、アルカリ金属原子を表す。アルカリ金属原子としては、例えば、リチウム原子、ナトリウム原子、カリウム原子が挙げられる。
 特定単量体は、通常、重合性基を有し、重合性基の数は、1~3個が好ましく、1個がより好ましい。
 重合性基としては、エチレン性不飽和基が好ましい。より具体的には、アクリロイル基、メタクリロイル基、ビニルエーテル基、ビニルエステル基、ビニル基、アリル基が挙げられ、アクリロイル基、メタクリロイル基、ビニルエステル基、ビニルエーテル基が好ましい。
 フッ素系オリゴマーの生成がより抑制される点で、特定単量体としては、式(3)で表される単量体が好ましい。
 式(3)  CR3132=CR33-L3-R34
 式(3)中、R31およびR32は、それぞれ独立に、水素原子またはフッ素原子を表す。
 R33は、水素原子、フッ素原子、または、フッ素原子が置換していてもよいアルキル基を表す。なかでも、TFEとの共重合性がより良好である点で、水素原子またはフッ素原子が好ましい。
 なお、「フッ素原子が置換していてもよいアルキル基」とは、アルキル基中の少なくとも一個の水素原子がフッ素原子で置換されていてもよいアルキル基を意味する。
 フッ素原子が置換していてもよいアルキル基の炭素数は、1~3が好ましく、1がより好ましい。
 L3は、単結合または2価の連結基を表す。なかでも、TFEとの共重合性がより良好である点で、単結合が好ましい。
 2価の連結基としては、例えば、2価の炭化水素基(2価の飽和炭化水素基、2価の芳香族炭化水素基、アルケニレン基、アルキニレン基であってもよい。2価の飽和炭化水素基は、直鎖状、分岐鎖状または環状であってもよく、例えば、アルキレン基が挙げられる。炭素数は1~20が好ましい。また、2価の芳香族炭化水素基は、炭素数5~20が好ましく、例えば、フェニレン基が挙げられる。それ以外にも、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基であってもよい。)、2価の複素環基、-O-、-S-、-SO2-、-C(O)-、-Si(Ra2-、-N(Rb)-、および、これらを2種以上組み合わせた基が挙げられる。ここで、Raは、アルキル基(好ましくは炭素数1~10)またはフェニル基を表す。Rbは、水素原子またはアルキル基(好ましくは炭素数1~10)を表す。
 上記これらを2種以上組み合わせた基としては、例えば、-OC(O)-、-C(O)N(Rb)-、アルキレン基-O-アルキレン基、アルキレン基-OC(O)-アルキレン基、アルキレン基-Si(Ra2-フェニレン基-Si(Ra2が挙げられる。
 なお、上記2価の炭化水素基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(例えば、フッ素原子、塩素原子)が挙げられる。つまり、上記2価の炭化水素基中の水素原子はハロゲン原子で置換されていてもよい。
 R34は、上記式(A)で表される基または上記式(B)で表される基を表す。
 式(3)で表される単量体としては、式(3-1)で表される単量体、式(3-2)で表される単量体、式(3-3)で表される単量体、式(3-4)で表される単量体、式(3-5)で表される単量体、および、式(3-6)で表される単量体からなる群から選択される単量体が好ましく、式(3-1)で表される単量体がより好ましい。
 式(3-1)  CR3132=CR33-R34
 式(3-2)  CR3132=CR33-(CF2m1-R34
 式(3-3)  CR3132=CR33-(CF2C(CF3)F)m2-R34
 式(3-4)  CR3132=CR33-O-(CFR35m3-R34
 式(3-5)  CR3132=CR33-O-(CF2CFR35O)m4-CF2CF2-R34
 式(3-6)  CR3132=CR33-CF2-O-(CF(CF3)CF2O)m5-CF(CF3)-R34
 式(3-1)~式(3-6)中、R31~R34の定義は、上述した通りである。
 式(3-2)中、m1は1~10の整数を表す。
 式(3-3)中、m2は1~5の整数を表す。
 式(3-4)中、m3は1~10の整数を表す。R35は、フッ素原子またはCF3を表す。
 式(3-5)中、m4は1~10の整数を表す。R35の定義は、上述した通りである。
 式(3-6)中、m5は0または1~10の整数を表す。
 特定単量体の具体例としては、ビニルスルホン酸アンモニウムが挙げられる。
 特定単量体は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(重合開始剤)
 工程A2では、重合開始剤を用いてもよい。つまり、TFEの重合の際に、重合開始剤を用いてもよい。
 使用される重合開始剤としては、工程A1で説明した重合開始剤が挙げられる。
 重合開始剤としては、過硫酸塩とジコハク酸過酸化物との混合系が好ましく、過硫酸アンモニウムとジコハク酸過酸化物との混合系がより好ましい。
 重合開始剤の使用量は、重合系に供給するTFEの全量に対して、0.10質量%以上が好ましく、0.10~1.5質量%がより好ましく、0.20~1.0質量%がさらに好ましい。
(安定化助剤)
 工程A2では、安定化助剤を用いてもよい。
 安定化助剤としては、パラフィンワックス、フッ素系溶媒、シリコーンオイルが好ましく、パラフィンワックスがより好ましい。パラフィンワックスとしては、室温で、液体でも、半固体でも、固体であってもよい。なかでも、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、40~65℃が好ましく、50~65℃がより好ましい。
 安定化助剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(その他)
 また、工程A2では、本発明の効果を損なわない範囲で、TFEおよび特定単量体以外の単量体を使用してもよいが、PTFEの各種特性がより優れる点で、TFEの使用量が、工程A2で使用される単量体の合計使用量に対して、99.5質量%以上が好ましく、99.8質量%以上がより好ましい。
(工程A2の手順)
 工程A2の際、溶液1には界面活性剤を実質的に添加されない。つまり、工程A2においては、溶液1に新たに界面活性剤を実質的に添加することなく、溶液1中にて、TFEの重合を行う。
 界面活性剤とは、親水性基(例えば、極性基)および疎水性基(例えば、炭化水素基)を有する化合物である。極性基の定義は、特定単量体に含まれる極性基の定義と同じである。
 界面活性剤としては、公知の界面活性剤が挙げられ、非イオン性界面活性剤、イオン性界面活性剤が挙げられ、より具体的には、炭化水素含有界面活性剤およびフッ素系界面活性剤が挙げられる。炭化水素含有界面活性剤の定義は、後述する通りである。
 工程A2において、溶液1には炭化水素含有界面活性剤およびフッ素系界面活性剤からなる群から選択される少なくとも1種を実質的に添加しないことが好ましい。
 上記「実質的に添加しない」とは、界面活性剤を添加しないか、または、添加する場合であっても、界面活性剤の添加量が、溶液1全質量に対して200質量ppm以下であることを意味する。下限は特に制限されないが、0質量ppmが好ましい。つまり、工程A2において、溶液1に界面活性剤を添加しないことが好ましい。
 TFEは、常法により、重合系(つまり、重合反応容器)に投入される。例えば、TFEは、重合圧力が所定の圧力となるように、連続的または断続的に重合系に投入される。
 重合開始剤を用いる場合、重合開始剤は重合系に一括して添加されてもよいし、分割して添加されてもよい。
 特定単量体を使用する場合、TFE全量に対する特定単量体の使用量は、0.150質量%以下が好ましい。つまり、TFE全仕込み量に対する特定単量体の仕込み量は、0.150質量%以下が好ましい。
 重合中の乳液の安定性の点から、TFE全量に対する特定単量体の使用量は、0.100質量%以下が好ましく、0.090質量%以下がより好ましい。また、分子量向上の点から、TFE全量に対する特定単量体の使用量は、0.005質量%以上が好ましく、0.010質量%以上がより好ましい。
 なお、2種以上の特定単量体を用いる場合、特定単量体の合計使用量が上記範囲であればよい。
 特定単量体を使用する場合、TFE全量に対する特定単量体の使用量は、0.150mol%以下が好ましい。つまり、TFE全仕込み量に対する特定単量体の仕込み量は、0.150mol%以下が好ましい。
 重合中の乳液の安定性の点から、TFE全量に対する特定単量体の使用量は、0.100mol%以下が好ましく、0.090mol%以下がより好ましい。また、分子量向上の点から、TFE全量に対する特定単量体の使用量は、0.001mol%以上が好ましく、0.005mol%以上がより好ましい。
 なお、2種以上の特定単量体を用いる場合、特定単量体の合計使用量が上記範囲であればよい。
 重合温度は、10~95℃が好ましく、15~90℃がより好ましい。重合圧力は、0.5~4.0MPaが好ましく、0.6~3.5MPaがより好ましい。重合時間は、50~520分が好ましく、50~450分がより好ましく、50~300分がさらに好ましい。
 なお、工程A1および工程A2は、同一の重合反応容器内で連続的に行ってもよい。
 また、本発明の製造方法においては、工程A1において特定重合体が形成されればよく、工程A1において完全に非フッ素系単量体が消費される前に、工程A2を実施してもよい。
 上記手順によって、PTFEが粒子状に分散した水性乳化液(PTFE粒子を含む水性乳化液)が得られる。水性乳化液中でのPTFE粒子の濃度は、水性乳化液全量に対して、10~45質量%が好ましく、10~30質量%がより好ましく、10~25質量%がさらに好ましい。上記範囲内であれば、水性乳化液中のPTFE粒子をより容易に凝析でき、かつ、凝析液の白濁を抑制できる。
 PTFE粒子の平均一次粒子径は、100~500nmが好ましく、150~300nmがより好ましい。
 PTFE粒子の平均一次粒子径は、レーザー散乱法粒子径分布分析計により測定されるD50に該当する。
 上記手順によって得られるPTFE粒子中のPTFEは、通常、TFE単位を主成分として含む。主成分とは、PTFEの全単位に対して、TFE単位の含有量が99.700質量%以上を意図し、99.900質量%以上が好ましい。上限としては、100質量%が挙げられる。
 PTFEが特定単量体に基づく単位を含む場合、特定単量体に基づく単位の含有量は、PTFEの全単位に対して、0.005~0.150質量%が好ましく、0.010~0.100質量%がより好ましい。
 なお、2種以上の特定単量体を用いる場合、それぞれの特定単量体に基づく単位の合計含有量が上記範囲であればよい。
 PTFEが非フッ素系単量体に基づく単位を含む場合、非フッ素系単量体に基づく単位の含有量は、PTFEの全単位に対して、200質量ppm以下が好ましく、1~150質量ppmがより好ましく、5~100質量ppmがさらに好ましく、5~50質量ppmが特に好ましい。
 なお、2種以上の非フッ素系単量体を用いる場合、それぞれの非フッ素系単量体に基づく単位の合計含有量が上記範囲であればよい。
<工程A3>
 工程A3は、工程A2で得られた水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、PTFE水性分散液を得る工程である。つまり、工程A2で得られたPTFE低濃度水性分散液(上記水性乳化液に該当)に非イオン性界面活性剤を添加して、その後、PTFE低濃度水性分散液を濃縮して、PTFE高濃度水性分散液(上記PTFE水性分散液に該当)を得る工程である。工程A3を実施することにより、水性分散液のPTFE粒子濃度よりも高いPTFE粒子濃度を示すPTFE水性分散液が得られる。
 以下では、まず、工程A3で使用される材料について詳述し、その後、工程A3の手順について詳述する。
(非イオン性界面活性剤)
 非イオン性界面活性剤としては、ノニオン性界面活性剤が挙げられる。
 また、非イオン性界面活性剤としては、式(4)で表される非イオン性界面活性剤、式(5)で表される非イオン性界面活性剤が好ましい。
式(4):R41-O-A-H
式(5):R51-C64-O-B-H
 式中、R41は、炭素数8~18のアルキル基を表す。Aは、オキシエチレン基数5~20およびオキシプロピレン基数0~2より構成されるポリオキシアルキレン鎖を表す。
 式中、R51は、炭素数4~12のアルキル基を表す。Bは、オキシエチレン基数5~20より構成されるポリオキシエチレン鎖を表す。
 また、非イオン性界面活性剤としては、式(6)で表される非イオン性界面活性剤も好ましい。
式(6):R61-O-D-H
 式中、R61は、炭素数8~18のアルキル基を表す。Dは、オキシエチレン基数5~20およびオキシブチレン基数0.1~3より構成されるポリオキシアルキレン鎖を表す。
 式(4)において、R41で表されるアルキル基の炭素数は8~18であり、10~16が好ましく、12~16がより好ましい。炭素数が18以下の場合、PTFE水性分散液を長期間放置した場合でもPTFE粒子が沈降しにくく、保存安定性に優れる。また、炭素数が8以上の場合、PTFE水性分散液の表面張力が低くなり、浸透性やぬれ性が優れる。
 式(4)において、親水基であるAとしては、オキシエチレン基数7~12およびオキシプロピレン基数0~2より構成されるポリオキシアルキレン鎖が好ましい。なかでも、A中のオキシプロピレン基数が0.5~1.5である場合、泡消え性が良好であり好ましい。
 式(5)において、R51で表されるアルキル基の炭素数は4~12であり、6~10が好ましく、8~9がより好ましい。アルキル基の炭素数が4以上の場合、PTFE水性分散液の表面張力が低くなり、浸透性やぬれ性が優れる。炭素数が12以下の場合、PTFE水性分散液を長期間放置しても、PTFE粒子が沈降しづらく、保存安定性に優れる。
 式(5)において、親水基であるB中のオキシエチレン基数は、6~16が好ましく、7~12がより好ましい。
 式(6)において、R61で表されるアルキル基の炭素数は8~18であり、10~16が好ましく、12~16がより好ましい。炭素数が18以下の場合、PTFE水性分散液を長期間放置した場合でもPTFE粒子が沈降しにくく、保存安定性に優れる。また、炭素数が8以上の場合、PTFE水性分散液の表面張力が低くなり、浸透性やぬれ性が優れる。
 式(6)において、親水基であるDとしては、オキシエチレン基数7~12およびオキシブチレン基数0.1~3のポリオキシアルキレン鎖が好ましい。なかでも、D中のオキシブチレン基数が0.5~2である場合、泡消え性が良好であり、好ましい。さらに、オキシブチレン基数は、0.7~1.7がより好ましく、0.9~1.5がさらに好ましい。オキシエチレン基数は、6~15が好ましく、7~12がより好ましい。
 式(4)で表される非イオン性界面活性剤の平均分子量、式(5)で表される非イオン性界面活性剤の平均分子量、および、式(6)で表される非イオン性界面活性剤の平均分子量は、それぞれ、450~800が好ましく、500~750がより好ましく、550~700がさらに好ましい。
 式(4)で表される非イオン性界面活性剤としては、例えば、C1327-(OC2410-OH、C1225-(OC2410-OH、C1021CH(CH3)CH2-(OC249-OH、C1327-(OC249-OCH(CH3)CH2-OH、C1633-(OC2410-OH、HC(C511)(C715)-(OC249-OHが挙げられる。市販品としては、ダウ社製タージトール(登録商標)15Sシリーズ、ライオン社製ライオノール(登録商標)TDシリーズが挙げられる。
 式(5)で表される非イオン性界面活性剤としては、例えば、C817-C64-(OC2410-OH、C919-C64-(OC2410-OHが挙げられる。市販品としては、ダウ社製トライトン(登録商標)Xシリーズ、日光ケミカル社製ニッコール(登録商標)OPシリーズまたはNPシリーズが挙げられる。
 式(6)で表される非イオン性界面活性剤としては、例えば、C1327OCH2CH(C25)O(C24O)8H、C1021CH(CH3)CH2OCH2CH(C25)O(C24O)8H、C1225OCH2CH(C25)O(C24O)8H、C817OCH2CH(C25)O(C24O)10H、C1327OCH2CH2OCH2CH(C25)O(C24O)8H、C1021CH(CH3)CH2O(C24O)9CH2CH(C25)OH、C1633OC24OCH(C25)CH2O(C24O)9H、C1225OCH2CH(C25)O(C24O)8CH2CH(C25)OH、C1327OCH(CH3)CH(CH3)O(C24O)8H、C1225OCH(CH3)CH(CH3)O(C24O)8H、C1327O(CH24O(C24O)8H、C1225O(CH22CH(CH3)O(C24O)8Hが挙げられる。
 式(4)で表される非イオン性界面活性剤および/または式(5)で表される非イオン性界面活性剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 また、式(6)で表される非イオン性界面活性剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
 さらに、式(6)で表される非イオン性界面活性剤と、式(4)で表される非イオン性界面活性剤や式(5)で表される非イオン性界面活性剤とを混合して使用できる。
 なお、非イオン性界面活性剤は分子構造の異なる複数物質の混合物であり、非イオン性界面活性剤中のアルキル基の炭素数、ポリオキシアルキレン鎖におけるオキシエチレン基、オキシプロピレン基、オキシブチレン基の数を平均値で扱うものとする。各数値は整数に限らない。
(工程A3の手順)
 水性乳化液の濃縮方法は特に制限されず、従来公知の方法が採用できる。濃縮方法としては、例えば、ふっ素樹脂ハンドブックの32頁(里川孝臣編、日刊工業新聞社発行)に記載されるように、遠心沈降法、電気泳動法、相分離法が挙げられる。
 電気泳動法とは、PTFE粒子が負に帯電していることを利用する方法である。具体的には、水性乳化液に、PTFE質量に対して1~10質量%(好ましくは、2~8質量%)の非イオン性界面活性剤を溶解させる。次に、得られた水性乳化液をセルロース膜等の半透膜を有する容器中で50~500V/m(好ましくは、100~300V/m)の電圧を印加し、PTFE粒子を電気泳動させ、半透膜表面に溜まったのちに比重差により底部に沈降するPTFE水性分散液を回収する方法である。濃縮前の水性乳化液のpHは、2~10が好ましく、3~9がより好ましい。
 相分離法とは、加熱して一定時間放置してPTFE粒子を沈降させる方法である。具体的には、水性乳化液に、PTFE質量に対して8~20質量%(好ましくは、12~18質量%)の非イオン性界面活性剤を溶解させる。次に、得られた水性乳化液を、50~100℃(好ましくは、60~90℃)で加熱し、1~100時間(好ましくは、5~20時間)放置し、比重差により底部に溜まったPTFE水性分散液を回収する方法である。
 なお、濃縮の際には、アニオン性界面剤(例えば、ラウリン酸アンモニウム、ラウリン酸トリエタノールアミン、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン等)をPTFE質量に対して0.20質量%以下でPTFE水性乳化液に添加して、濃縮を速めてもよい。また、これらの添加剤はPTFE水性乳化液の濃縮を速めるだけでなく、粘度や分散安定性を改良する効果も有する。
 なお、工程A2で得られた水性乳化液に非イオン性界面活性剤を添加した後、水性乳化液を濃縮する前に、重合開始剤残渣等をイオン交換樹脂等に吸着・除去させてもよい。これにより、余剰の水溶性イオン化合物が除去され、PTFE水性分散液の塗膜性能が向上し、絶縁素材への適用が容易になる。
 上記手順によって得られるPTFE水性分散液中のPTFE粒子の濃度は、PTFE水性分散液全質量に対して、15~70質量%が好ましく、20~70質量%がより好ましい。PTFE粒子の濃度が15~70質量%のPTFE水性分散液は、PTFE水性分散液をガラス繊維等の繊維を織った布や紐に含浸させる用途、無機粉末やプラスチック粉末と混合する用途、塗料に少量添加する用途に好ましく使用できる。
 また、特に、PTFE水性分散液をコーティングする用途や、PTFE繊維に加工する用途においては、PTFE粒子の濃度は50~70質量%が好ましく、52~68質量%がより好ましい。
 PTFE水性分散液のpHは、2~13が好ましく、3~11がより好ましい。
 PTFE水性分散液中のPTFE粒子を構成するPTFEとしては、TFEの単独重合物のみでなく、実質的に溶融加工のできない程度の微量のクロロトリフルオロエチレン等のハロゲン化エチレン、ヘキサフルオロプロピレン等のハロゲン化プロピレン、パーフルオロ(アルキルビニルエーテル)等のフルオロビニルエーテル等の、TFEと共重合しうる共重合成分に基づく重合単位を含むいわゆる変性PTFEも含まれる。
 PTFE水性分散液中の、非イオン性界面活性剤の含有量は、PTFE質量に対して1~20質量%が好ましく、1.5~15質量%がより好ましく、2~10質量%がさらに好ましい。
 上記含有量が1質量%以上の場合、PTFE水性分散液の機械的安定性が優れ、ぬれ性にも優れる。また、上記含有量が20質量%以下の場合、コーティングされた塗膜にクラックが生じにくく、PTFE製品の耐久性が優れる。
 特に、コーティング時のぬれ性を向上させ、クラックを発生しにくくするために、PTFE水性分散液中の、非イオン性界面活性剤の含有量は、3~10質量%が特に好ましい。
 PTFE水性分散液の表面張力は、24~35mN/mが好ましく、25~32mN/mがより好ましい。表面張力が24mN/m以上の場合、消泡性に優れ、35mN/m以下の場合、はじきを生じにくい。
 PTFE水性分散液は、非含フッ素乳化剤、各種レベリング剤、防腐剤、着色剤、フィラー、有機溶剤、アンモニア水、その他公知の他の成分を1種以上含んでいてもよい。
 また、PTFE水性分散液がポリエチレンオキシドやポリウレタン系の粘性調整剤を含む場合、PTFE水性分散液の機械的安定性が優れる。
 PTFE水性分散液の粘度は、塗布しやすさの点から、23℃で300mPa・s以下が好ましく、3~100mPa・sがより好ましく、5~50mPa・sがさらに好ましい。
 PTFE水性分散液の増粘温度は30~60℃が好ましく、35~55℃がより好ましく、40~50℃がさらに好ましい。増粘温度が上記範囲内である場合、塗布温度の変動による粘度変化が生じにくく、かつ、はじきを生じにくい。
<<第2実施態様>>
 PTFE水性分散液の製造方法の第2実施態様としては、以下の3つの工程を有する態様が挙げられる。
工程B1:水性媒体中で、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤からなる群から選択される少なくとも1種の核形成添加剤と酸化剤とを混合して、溶液2を得る工程
工程B2:溶液2に界面活性剤を実質的に添加することなく、工程B1で得られた溶液2中にて、TFEの重合を行い、PTFE粒子を含む水性乳化液を得る工程
工程B3:水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、PTFE水性分散液を得る工程
 なお、第2実施態様においては、TFEの重合系への供給量に対する、核形成添加剤の使用量が100質量ppm以下である。
 以下、上記好適態様を例として本発明を詳述する。
<工程B1>
 工程B1は、水性媒体中で、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤からなる群から選択される少なくとも1種の核形成添加剤と酸化剤とを混合して、溶液2を得る工程である。
 以下では、まず、工程B1で使用される材料について詳述し、その後、工程B1の手順について詳述する。
(ポリアルキレンオキシド化合物)
 ポリアルキレンオキシド化合物は、TFEの重合の際の核(シード)を形成するための化合物である。つまり、核形成添加剤に該当する。
 ポリアルキレンオキシド化合物とは、ポリアルキレンオキシド鎖を含む化合物であり、ポリアルキレンオキシド鎖としては、例えば、ポリメチレンオキシド鎖、ポリエチレンオキシド鎖、ポリプロピレンオキシド鎖、ポリテトラメチレンオキシド鎖が挙げられる。
 ポリアルキレンオキシド化合物は、1000ppmの濃度で約40ダイン/cmを超える水中における表面張力を有するのが好ましい。上記表面張力は、約42ダイン/cm超がより好ましく、約45ダイン/cm超がさらに好ましい。上記表面張力は、約73ダイン/cm以下が好ましい。
 ポリアルキレンオキシド化合物の数平均分子量は、50~2000が好ましく、100~1500がより好ましく、150~1300がさらに好ましい。
 フッ素系オリゴマーの生成がより抑制される点で、ポリアルキレンオキシド化合物としては、式(2)で表される化合物が好ましい。
 式(2)  R21-(O-L2n-O-R22
 式(2)中、R21およびR22は、それぞれ独立に、水素原子、アルキル基、アクリロイル基、または、メタクリロイル基を表す。
 L2は、炭素数1~4のアルキレン基を表し、直鎖状であっても、分岐鎖状であってもよい。
 nは、1~50を表す。
 ポリアルキレンオキシド化合物としては、例えば、ポリエチレングリコール、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、ポリエチレングリコールメチルエーテル、ポリエチレングリコールジメチルエーテル、ポリエチレングリコールブチルエーテル、ポリプロピレングリコール、ポリプロピレングリコールアクリレート、ポリプロピレングリコールメタクリレート、ポリプロピレングリコールジメタクリレート、ポリプロピレングリコールメチルエーテル、ポリプロピレングリコールジメチルエーテル、ポリプロピレングリコールブチルエーテル、ポリプロピレングリコールジメタクリレート、ポリテトラメチレングリコールが挙げられる。
 ポリアルキレンオキシド化合物は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
(炭化水素含有界面活性剤)
 炭化水素含有界面活性剤とは、炭化水素を含む界面活性剤である。より具体的には、炭素原子における1価置換基の少なくとも幾つかが水素原子であり、フッ素原子および塩素原子等のハロゲン原子による置換も可能である。好ましい炭化水素含有界面活性剤においては、炭素原子に置換する1価置換基の少なくとも75%、好ましくは少なくとも85%、より好ましくは少なくとも95%が水素原子である。
 炭化水素含有界面活性剤としては、例えば、炭化水素界面活性剤およびシロキサン界面活性剤が挙げられる。
 炭化水素界面活性剤とは、ケイ素原子を含まず、炭素原子に置換する1価置換基の100%が水素原子であるので、塩素原子およびフッ素原子等のハロゲン原子を含まない界面活性剤を意味する。
 シロキサン界面活性剤とは、多数のシロキサン単位を含むシロキサン骨格を含む疎水性基を有する炭化水素含有界面活性剤を意味する。
 炭化水素界面活性剤としては、アニオン性炭化水素界面活性剤が好ましい。アニオン性炭化水素界面活性剤とは、カルボン酸基、スルホン酸基、硫酸基、ホスホン酸基、および、リン酸基等の負に帯電している親水性部分と、疎水性部分としてアルキル基等の炭化水素部分とを有する炭化水素界面活性剤を意味する。
 アニオン性炭化水素界面活性剤の一例としては、Resolution Performance ProductsによってVersatic(登録商標)10として供給されている、高度に分岐しているC10三級カルボン酸が挙げられる。
 アニオン性炭化水素界面活性剤の他の例としては、BASFによってAvanel(登録商標)Sシリーズとして供給されている直鎖アルキルポリエーテルスルホン酸ナトリウムが挙げられる。
 アニオン性炭化水素界面活性剤としては、式(7)で表されるアニオン性炭化水素界面活性剤も好ましい。
 式(7)  R71-L7-M
 R71は、アルキル基を表す。アルキル基は直鎖状でも、分岐鎖状でも、環状でもよく、直鎖状が好ましい。アルキル基の炭素数は、例えば、6~20が挙げられる。
 L7は、-ArSO3 、-SO3 、-SO4 、-PO3 、-PO4 、または、-COOを表す。なお、Arは、アリーレン基を表す。
 Mは、1価のカチオンを表す。1価のカチオンとしては、例えば、H+、Na+、K+、NH4 +が挙げられる。
 式(7)で表されるアニオン性炭化水素界面活性剤としては、例えば、ドデシル硫酸ナトリウムが挙げられる。
 アニオン性炭化水素界面活性剤の別の例としては、Akzo Nobel Surface Chemistry LLC.から入手可能なスルホサクシネート界面活性剤Lankropol(登録商標)K8300が挙げられる。
 炭化水素界面活性剤としては、非イオン性炭化水素界面活性剤も好ましい。非イオン性炭化水素界面活性剤は、荷電基を有さないが、長鎖炭化水素であることが多い疎水性部分を有する。非イオン性炭化水素界面活性剤の親水性部分としては、エチレンオキシドの重合から得られるポリエチレンオキシド鎖等の水溶性官能基が挙げられる。
 非イオン性炭化水素界面活性剤としては、様々な種類のポリアルキレンオキシドブロック、例えば、ポリエチレンオキシドおよびポリプロピレンオキシドを有するブロックコポリマーが挙げられる。
 好適な非イオン性炭化水素界面活性剤としては、特表2016-537499号公報の段落0043~0052に記載の界面活性剤が挙げられる。
 好適なシロキサン界面活性剤としては、米国特許第6,841,616号(Willeら)および同第7,977,438号(Brothersら)に記載の界面活性剤が挙げられる。
(酸化剤)
 酸化剤としては、例えば、過酸化水素および重合開始剤が挙げられる。
 重合開始剤としては、上述した工程A1で説明した重合開始剤で例示された化合物が挙げられる。重合開始剤としては、過硫酸塩が好ましく、過硫酸アンモニウムまたは過硫酸カリウムがより好ましい。
 水性媒体としては、工程A1で使用される水性媒体が挙げられる。
(工程B1の手順)
 工程B1では、水性媒体中にて、核形成添加剤と酸化剤とを混合して、溶液2を得る。言い換えれば、本工程では、水性媒体中にて、核形成添加剤を酸化剤に曝露している。
 水性媒体中にて、核形成添加剤と酸化剤とを混合すると、親油性核形成部位が水性媒体中に分散された溶液が得られる。より具体的には、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤等の核形成添加剤と酸化剤とを混合すると、核形成添加剤の親水性部分が分解され、核形成添加剤の疎水性部分が親油性核形成部位になる。親油性核形成部位は、水性媒体中に分散され、これらの部位において、フルオロポリマーを微細に分散させることが可能となる。
 親油性核形成部位はTFEとの親和性に優れるため、親油性核形成部位が含まれる溶液2中においては、TFEの重合が進行しやすい。つまり、親油性核形成部位は、TFEが重合するための疎水性環境の場となりえる。
 核形成添加剤の使用量は、後述する工程B2で用いられるTFEの重合系への供給量(TFEの使用量)に対して、100質量ppm以下であり、1~50質量ppm以下が好ましく、1~25質量ppmがより好ましい。
 酸化剤の使用量は、水性媒体全質量に対して、0.5~100質量ppmが好ましく、0.5~50質量ppmがより好ましい。
 核形成添加剤と酸化剤とを混合する際の温度は、20~120℃が好ましく、40~120℃がより好ましい。
 核形成添加剤と酸化剤とを混合する際の混合時間は、0.05~1.0時間が好ましい。
 核形成添加剤と酸化剤とを混合する前、または、混合している間に、水溶性無機塩を水性媒体に添加するのが好ましい。水溶性無機塩の添加は、核形成中に形成されるフルオロポリマー粒子の数を増加させるのに有用である。
 水溶性無機塩の使用量は、水性媒体全質量に対して、0.01~80質量ppmが好ましく、1~50質量ppmがより好ましい。
 水溶性無機塩としては、例えば、亜硫酸ナトリウム、亜硫酸水素ナトリウム、塩化ナトリウム、亜硫酸カリウム、亜硫酸水素カリウム、炭酸カリウム、シュウ酸アンモニウム、テトラホウ酸ナトリウム、酢酸ナトリウム、炭酸アンモニウム、リン酸二水素アンモニウム、リン酸二アンモニウムが挙げられ、亜硫酸塩が好ましく、亜硫酸ナトリウム、亜硫酸アンモニウムがより好ましい。
<工程B2>
 工程B2は、溶液2に界面活性剤を実質的に添加することなく、工程B1で得られた溶液2中にて、TFEの重合を行い、PTFE粒子を含む水性乳化液を得る工程である。
 本工程は、溶液1のかわりに溶液2を用いた以外は、上述した工程A2と同様の手順を実施するため、その説明を省略する。
 工程B2によって得られるPTFEの各種特性は、工程A2によって得られるPTFEの各種特性で説明した通りである。
 なお、上記「実質的に添加しない」とは、界面活性剤を添加しないか、または、添加する場合であっても、界面活性剤の添加量が、溶液2全質量に対して200質量ppm以下であることを意味する。下限は特に制限されないが、0質量ppmが好ましい。つまり、工程B2において、溶液2に界面活性剤を添加しないことが好ましい。
<工程B3>
 工程3は、工程B2で得られた水性乳化液に非イオン性界面活性剤を添加して、その後、水性乳化液を濃縮して、PTFE水性分散液を得る工程である。つまり、工程B2で得られたPTFE低濃度水性分散液(上記水性乳化液に該当)に非イオン性界面活性剤を添加して、その後、PTFE低濃度水性分散液を濃縮して、PTFE高濃度水性分散液(上記PTFE水性分散液に該当)を得る工程である。工程B3を実施することにより、水性分散液のPTFE粒子濃度よりも高いPTFE粒子濃度を示すPTFE水性分散液が得られる。
 本工程は、工程A2で得られた水性乳化液のかわりに工程B2で得られた水性乳化液を用いた以外は、上述した工程A3と同様の手順を実施するため、その説明を省略する。
 工程B3によって得られるPTFE水性分散液の各種特性は、工程A3によって得られるPTFE水性分散液の各種特性で説明した通りである。
 なお、工程B2で得られた水性乳化液に非イオン性界面活性剤を添加した後、水性乳化液を濃縮する前に、重合開始剤残渣等をイオン交換樹脂等に吸着・除去させてもよい。これにより、余剰の水溶性イオン化合物が除去され、PTFE水性分散液の塗膜性能が向上し、絶縁素材への適用が容易になる。
<<PTFE製品>>
 PTFE製品とは、PTFE水性分散液を用いて得られる、PTFEを主成分とするフィルムやシートや繊維、PTFE塗膜を有する耐熱物品、PTFEを副成分として含む物品を意味する。
 PTFE製品としては、例えば、ガラス繊維、アラミド繊維、カーボン繊維、その他各種合成繊維または天然繊維を織った布や編組した紐からなる基材に、PTFE水性分散液を含浸させ乾燥させたパッキン;ガラス繊維、アラミド繊維、カーボン繊維等の耐熱繊維を織った布や編組した紐からなる基材に、PTFE水性分散液を含浸させPTFEの融点以上の温度で焼成した搬送用耐熱ベルト、建築用膜構造シート、パッキン、プリント基板用材料;顔料や耐熱樹脂を配合したPTFE水性分散液を、アルミニウム、ステンレス等の金属板にコーティング後、焼成したフライパンや電気釜等の厨房機器;炭素、二酸化マンガン、水酸化ニッケル等の電池用活物質粉末とPTFE水性分散液を混練した結着体;ポリカーボネート、ABS樹脂等のプラスチック成形体の燃焼時のたれ落ち防止のためにPTFE水性分散液を混合した成形用原料および成形体(アンチドリッピング剤);化学肥料、石灰、焼却灰等にPTFE水性分散液を混合して発塵性を低下させた粉体;鉛、亜鉛、カーボン粉末等のフィラーとPTFE水性分散液とを混合してペースト化した混合物を多孔質材料にコーティングした無給油軸受け材等の摺動材;PTFE水性分散液にビスコース等の増粘剤を加えて凝固浴中に加圧紡出したのち焼成したPTFE繊維;PTFE水性分散液をアルミ板やステンレス板等の耐熱シート基材にコーティングし焼成したのちにPTFE層を剥離して得られるPTFE極薄シート;PTFE水性分散液からのキャスト製膜等で得られ、耐熱性・高絶縁性・低誘電正接能力を有する薄膜であり、モーター、変圧器、リレー、スイッチなどに使用するコイル絶縁、層間絶縁膜、及び電気絶縁材料;PTFE水性分散液を添加して潤滑性や防汚性を改良した塗料や樹脂やゴム材料等が挙げられる。
 PTFE製品は、PTFE水性分散液をコーティングまたは混合したのちに、室温~420℃の温度で乾燥または熱処理して得られる。上記乾燥または熱処理の温度は、50~400℃が好ましく、100~395℃がより好ましい。
 PTFE製品中のPTFE含有量は、用途により異なるが、0.01~100質量%が好ましく、0.1~100質量%がより好ましく、1~100質量%がさらに好ましい。
 以下に、実施例および比較例により本発明をより詳細に説明するが、本発明はこれらに限定されない。なお、後述する例1~6は実施例に、例7は比較例に該当する。
 各種測定方法および評価方法は下記のとおりである。
(A)PTFE粒子の平均一次粒子径(以下、「PPS」ともいう。)
 PTFE水性分散液を試料とし、レーザー散乱法粒子径分布分析計(堀場製作所製、商品名「LA-920」)を用いて測定した。
(B)標準比重(以下、「SSG」ともいう。)
 ASTM D4895-04に準拠して測定した。
 12.0gの試料(PTFE粉末)を計量し、内径28.6mmの円筒金型で34.5MPaで2分間保持した。これを290℃のオーブンへ入れて120℃/hrで昇温した。さらに、380℃で30分間保持した後、60℃/hrで降温して294℃で24分間保持した。試料を23℃のデシケーター中で12時間保持した後、23℃での試料の水に対する比重値を測定し、これを標準比重とした。SSGの値が小さいほど、分子量が大きいことを示す。
(C)PTFE濃度および界面活性剤濃度
 アルミ皿(質量W0)にPTFE水性分散液を約7g入れて秤量し(質量W1)、120℃1時間乾燥後の質量(質量W2)、および、380℃35分間乾燥後の質量(質量W3)から、PTFE濃度および界面活性剤濃度(PTFE質量に対する界面活性剤の割合)を次式によって求めた。
 PTFE濃度(質量%)=[(W3-W0)/(W1-W0)]×100
 界面活性剤濃度(質量%/PTFE)=[(W2-W3)/(W3-W0)]×100
(D)粘度
 ブルックフィールド型粘度計で#1スピンドルを用い、液温23℃、60rpmでPTFE水性分散液の粘度を測定した。
(E)pH
 ガラス電極法によって、PTFE水性分散液のpHを測定した。
(F)表面張力
 白金線リングを用い、輪環法によりPTFE水性分散液の表面張力を測定した。
(G)CFT(クラック限界膜厚)
 厚み200μmまで連続的に塗布厚みが変化するアプリケーターを用い、厚み0.5mmのアルミ板上にPTFE水性分散液を塗布し、120℃で10分間乾燥後、380℃10分間焼成した。
 PTFE塗膜を観察し、発生したクラックの先端部の厚みをパーマスコープで5点測定し平均値(μm)を求め、CFT(クラック限界膜厚)とした。
(H)フッ素系オリゴマーの測定
 試料(PTFE粉末)に対して、エタノールによるソックスレー抽出を5時間行い、エタノールによる抽出物に対してLC/MS分析を行い、パーフルオロオクチルスルホン酸、パーフルオロオクタン酸を標品として、主に、炭素数6~34のCF2連鎖のオリゴマー群を定量した。オリゴマーの存在が確認される場合を「有り」、確認されない場合を「無し」とした。
 なお、LC/MS分析においては、Agilent 1260シリーズHPLC/6460MSを用いて、カラムとしてはImtakt製cadenza CD-C18 2mmφ×100mm 3μm粒径を用いた。また、測定に際しては、酢酸アンモニウム水溶液とメタノールのグラジェントをかけた。
(例1)
[工程A1]
 100Lのステンレス鋼製オートクレーブに、パラフィンワックス(1500g)、脱イオン水(60L)を仕込んだ。オートクレーブを窒素置換した後、減圧にして、i-ブチルメタクリレート(i-BMA)(0.1g)と脱イオン水(0.5L)とを、オートクレーブ内に注ぎながら仕込んだ。
 次に、オートクレーブ内を大気圧以下の状態として、オートクレーブ内の溶液を撹拌しながら75℃に昇温した。その後、重合開始剤である過硫酸アンモニウム(0.055g)を脱イオン水(1L)に溶解させた溶液を、オートクレーブ内に注入し、i-ブチルメタクリレートを重合させた。
[工程A2]
 20分後に、TFEで1.96MPaまで加圧し、過硫酸アンモニウム(0.54g)およびジコハク酸過酸化物(濃度80質量%、残り水)(53g)を約70℃の温水(1L)に溶解させた溶液を、オートクレーブ内に注入した。
 オートクレーブ内の内圧が1.89MPaまで降下した後、1.96MPaに保つようにTFEを添加し、TFEの重合を進行させた。
 TFEの添加量が9kgになったところで反応を終了させ、オートクレーブ内のTFEを大気放出した。重合時間は94分だった。
 水性乳化液の固形分濃度(PTFE粒子の濃度)は約11質量%であった。また、水性乳化液中のPTFE粒子の平均一次粒子径は0.24μm(240nm)だった。
 得られた水性乳化液の一部を、20℃に調整して撹拌し、PTFE粒子を凝集させ、PTFE粉末を取得した。次に、このPTFE粉末を、炭酸アンモニウム水溶液と共に275℃で乾燥した。得られたPTFE粉末のSSGは2.201だった。
 また、得られたPTFE粉末中には、副生フッ素系オリゴマーは確認されなかった。
[工程A3]
 工程A2で得られた水性乳化液に、非イオン性界面活性剤(a)(日本乳化剤社製ニューコール1308FA、C1327-(OC248-OCH(CH3)CH2-OH)をPTFE質量に対して2.7質量%の割合で、ラウリン酸アンモニウムをPTFE質量に対して0.06質量%、ラウリル硫酸トリエタノールアミンをPTFE質量に対して0.02質量%溶解させて、電気泳動法により濃縮を行った。上澄みを除去し、PTFE濃度が65.8質量%であり、非イオン性界面活性剤(a)濃度がPTFE質量に対して2.1質量%であるPTFE水性分散液を得た。
 このPTFE水性分散液に、非イオン性界面活性剤(b)(日本乳化剤社製ニューコールG1301H、C1327-OCH2CH(C25)-(OC248-OH)をPTFE質量に対して1.2質量%、非イオン性界面活性剤(c)(日本乳化剤社製ニューコールFAA09801、C1327-OCH2CH(C25)-(OC2411-OH)をPTFE質量に対して1.2質量%、PEOをPTFE質量に対して0.1質量%、水およびアンモニア水を加え、非イオン性界面活性剤(a)のPTFE質量に対する含有量が2.4質量%となるように非イオン性界面活性剤(a)を添加し、PTFE濃度が60.5質量%、pH10.2であるPTFE水性分散液を得た。得られたPTFE水性分散液の23℃での粘度は25.8mPa・s、pH=10.2、表面張力は30(mN/m)であった。なお、PTFE水性分散液中のPTFE粒子の平均一次粒子径は、上記水性乳化液中で測定したPTFE粒子の平均一次粒子径と同じであった。
 このPTFE水性分散液を用い、クラック限界膜厚を行った。得られたPTFE水性分散液の評価結果を表1に示す。
(例2)
[工程B1]
 100Lのステンレス鋼製オートクレーブに、パラフィンワックス(1500g)、脱イオン(60L)を仕込んだ。オートクレーブを窒素置換した後、減圧にして、PEG1000(数平均分子量:1000、ポリエチレングリコール)(0.05g)と脱イオン水(1L)とを、オートクレーブ内に注ぎながら仕込んだ。
 次に、オートクレーブ内を大気圧以下の状態として、オートクレーブ内の溶液を撹拌しながら75℃に昇温した。その後、酸化剤である過硫酸アンモニウム(0.11g)を脱イオン水(1L)に溶解させた溶液を、オートクレーブ内に注入した。
[工程B2]
 10分後に、TFEで1.96MPaまで加圧し、過硫酸アンモニウム(0.54g)およびジコハク酸過酸化物(濃度80質量%、残り水)(53g)を約70℃の温水(1L)に溶解させた溶液を、オートクレーブ内に注入した。
 オートクレーブ内の内圧が1.89MPaまで降下した後、1.96MPaに保つようにTFEを添加し、TFEの重合を進行させた。
 TFEの添加量が9kgになったところで反応を終了させ、オートクレーブ内のTFEを大気放出した。重合時間は88分だった。
 水性乳化液の固形分濃度(PTFE粒子の濃度)は約11質量%であった。また、水性乳化液中のPTFE粒子の平均一次粒子径は0.24μm(240nm)だった。
 得られた水性乳化液の一部を、20℃に調整して撹拌し、PTFE粒子を凝集させ、PTFE粉末を取得した。次に、このPTFE粉末を、炭酸アンモニウム水溶液と共に275℃で乾燥した。得られたPTFE粉末のSSGは2.204だった。
 また、得られたPTFE粉末中には、副生フッ素系オリゴマーは確認されなかった。
[工程B3]
 工程B2で得られた水性乳化液を例1と同様に濃縮して、PTFE水性分散液を得た。なお、PTFE水性分散液中のPTFE粒子の平均一次粒子径は、上記水性乳化液中で測定したPTFE粒子の平均一次粒子径と同じであった。評価結果を表1に示す。
(例3)
 非イオン性界面活性剤(a)の代わりに、非イオン性界面活性剤(d)(DOW社製Tergitol TMN100X、C1225-(OC2410-OH)を用いた以外は、例1と同様の手順に従って、PTFE水性分散液を得た。評価結果を表1に示す。
(例4)
 非イオン性界面活性剤(a)の代わりに、非イオン性界面活性剤(d)を用いた以外は、例2と同様の手順に従って、PTFE水性分散液を得た。評価結果を表1に示す。
(例5)
[工程A1]
 100Lのステンレス鋼製オートクレーブに、パラフィンワックス(1500g)、脱イオン(60L)を仕込んだ。オートクレーブを窒素置換した後、減圧にして、i-ブチルメタクリレート(i-BMA)(0.1g)と脱イオン水(0.5L)とを、オートクレーブ内に注ぎながら仕込んだ。
 次に、オートクレーブ内を大気圧以下の状態として、オートクレーブ内の溶液を撹拌しながら75℃に昇温した。その後、重合開始剤である過硫酸アンモニウム(0.055g)を脱イオン水(1L)に溶解させた溶液を、オートクレーブ内に注入し、i-ブチルメタクリレートを重合させた。
[工程A2]
 20分後に、TFEで1.96MPaまで加圧し、過硫酸アンモニウム(0.54g)およびジコハク酸過酸化物(濃度80質量%、残り水)(53g)を約70℃の温水(1L)に溶解させた溶液を、オートクレーブ内に注入した。次に、オートクレーブ内の内圧を1.96MPaに保つようにTFEを添加し、TFEの重合を進行させた。TFEを1kg添加した後、ビニルスルホン酸アンモニウム(5.0g)を脱イオン水(1.5L)に溶解させた溶液を、供給されるTFE1kgに対して、ビニルスルホン酸アンモニウムが0.15gとなるように、供給されるTFE量を流量計で確認しながら、ビニルスルホン酸アンモニウムの供給を行った。
 TFEの添加量が9kgになったところで反応を終了させ、オートクレーブ内のTFEを大気放出した。重合時間は97分だった。
 水性乳化液の固形分濃度(変性PTFEの濃度)は約12質量%であった。また、水性乳化液中の変性PTFE粒子の平均一次粒子径は0.21μmだった。
 得られた水性乳化液の一部を、20℃に調整して撹拌し、変性PTFE粒子を凝集させ、変性PTFE粉末を取得した。次に、この変性PTFE粉末を、炭酸アンモニウム水溶液と共に275℃で乾燥した。得られた変性PTFE粉末のSSGは2.193だった。
 また、得られた変性PTFE粉末中には、副生フッ素系オリゴマーは確認されなかった。
[工程A3]
 工程A2で得られた水性乳化液を例1と同様に濃縮して、PTFE水性分散液を得た。なお、PTFE水性分散液中のPTFE粒子の平均一次粒子径は、上記水性乳化液中で測定したPTFE粒子の平均一次粒子径と同じであった。評価結果を表1に示す。評価結果を表1に示す。
(例6)
 非イオン性界面活性剤(a)の代わりに、非イオン性界面活性剤(d)を用いた以外は、例5と同様の手順に従って、PTFE水性分散液を得た。評価結果を表1に示す。
(例7)
 (例2)の[工程B1]において、PEG1000の使用量を0.05gから0.39gに変更し、(例2)の[工程B2]において、オートクレーブ内の内圧を1.96MPaに保つようにTFEを添加し、TFEの重合を進行させる際に、TFEを1kg添加した後、ラウリル硫酸ナトリウム(SLS)を脱イオン水に溶解させた溶液を、供給されるTFE1kgに対して、SLSが1.48gとなるように、供給されるTFE量を流量計で確認しながら、SLSの供給を行い、乾燥温度を275℃から220℃に変更した以外は、上記(例2)と同様の手順に従って、PTFE粉末を得た。得られたPTFE粉末中には、フッ素系オリゴマー群(H(CFCFSOH(n=3~16))として、n=9、10付近をピークとした分布があり、合計で230質量ppm検出された。フッ素系オリゴマー群が検出され、イオン交換樹脂等で完全に除去する事は不可能なので、濃縮は行わなかった。
 表1中、「非フッ素系単量体使用量」欄は、TFEの重合系への供給量に対する、非フッ素系単量体の使用量を表す。
 「核形成添加剤使用量」欄は、TFEの重合系への供給量に対する、核形成添加剤の使用量を表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明の製造方法によれば、所望の効果を示すPTFE水性分散液を製造できる。
 なお、2019年10月29日に出願された日本特許出願2019-196139号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  水性媒体中で非フッ素系単量体を重合させて、前記非フッ素系単量体に基づく単位を含む重合体を含む溶液1を得る工程A1と、
     前記溶液1に界面活性剤を実質的に添加することなく、前記溶液1中にて、テトラフルオロエチレンの重合を行い、ポリテトラフルオロエチレン粒子を含む水性乳化液を得る工程A2と、
     前記水性乳化液に非イオン性界面活性剤を添加して、その後、前記水性乳化液を濃縮して、ポリテトラフルオロエチレン水性分散液を得る工程A3と、を有し、
     前記テトラフルオロエチレンの重合系への供給量に対する、前記非フッ素系単量体の使用量が200質量ppm以下である、ポリテトラフルオロエチレン水性分散液の製造方法。
  2.  前記非フッ素系単量体が、式(1)で表される単量体である、請求項1に記載のポリテトラフルオロエチレン水性分散液の製造方法。
     式(1)  CH2=CR11-L1-R12
    式(1)中、R11は、水素原子またはアルキル基を表す。L1は、単結合、-CO-O-*、-O-CO-*または-O-を表す。*はR12との結合位置を表す。R12は、水素原子、アルキル基、アルケニル基またはニトリル基を表す。ただし、Lが単結合の場合、R12はニトリル基である。
  3.  前記ポリテトラフルオロエチレン水性分散液中の前記ポリテトラフルオロエチレン粒子の含有量が、前記ポリテトラフルオロエチレン水性分散液全量に対して、50~70質量%である、請求項1または2に記載のポリテトラフルオロエチレン水性分散液の製造方法。
  4.  前記ポリテトラフルオロエチレン水性分散液中の前記非イオン性界面活性剤の含有量が、ポリテトラフルオロエチレン質量に対して1~20質量%である、請求項1~3のいずれか1項に記載のポリテトラフルオロエチレン水性分散液の製造方法。
  5.  水性媒体中で、ポリアルキレンオキシド化合物および炭化水素含有界面活性剤からなる群から選択される少なくとも1種の核形成添加剤と酸化剤とを混合して、溶液2を得る工程B1と、
     前記溶液2に界面活性剤を実質的に添加することなく、前記溶液2中にて、テトラフルオロエチレンの重合を行い、ポリテトラフルオロエチレン粒子を含む水性乳化液を得る工程B2と、
     前記水性乳化液に非イオン性界面活性剤を添加して、その後、前記水性乳化液を濃縮して、ポリテトラフルオロエチレン水性分散液を得る工程B3と、を有し、
     前記テトラフルオロエチレンの重合系への供給量に対する、前記核形成添加剤の使用量が100質量ppm以下である、ポリテトラフルオロエチレン水性分散液の製造方法。
  6.  前記ポリテトラフルオロエチレン水性分散液中の前記ポリテトラフルオロエチレン粒子の含有量が、前記ポリテトラフルオロエチレン水性分散液全量に対して、50~70質量%である、請求項5に記載のポリテトラフルオロエチレン水性分散液の製造方法。
  7.  前記核形成添加剤がポリアルキレンオキシド化合物である、請求項5または6に記載のポリテトラフルオロエチレン水性分散液の製造方法。
  8.  前記酸化剤の使用量が、前記水性媒体全質量に対して、0.5~100質量ppmである、請求項5~7のいずれか1項に記載のポリテトラフルオロエチレン水性分散液の製造方法。
  9.  前記ポリテトラフルオロエチレン水性分散液中の前記非イオン性界面活性剤の含有量が、ポリテトラフルオロエチレン質量に対して1~20質量%である、請求項5~8のいずれか1項に記載のポリテトラフルオロエチレン水性分散液の製造方法。
PCT/JP2020/040421 2019-10-29 2020-10-28 ポリテトラフルオロエチレン水性分散液の製造方法 WO2021085470A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080075974.XA CN114630849B (zh) 2019-10-29 2020-10-28 聚四氟乙烯水性分散液的制造方法
JP2021553650A JPWO2021085470A1 (ja) 2019-10-29 2020-10-28
EP20880885.7A EP4053181A4 (en) 2019-10-29 2020-10-28 METHOD FOR PRODUCING AN AQUEOUS POLYTETRAFLUORETHYLENE DISPERSION
US17/659,182 US20220235156A1 (en) 2019-10-29 2022-04-14 Method for producing aqueous dispersion of polytetrafluoroethylene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019196139 2019-10-29
JP2019-196139 2019-10-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/659,182 Continuation US20220235156A1 (en) 2019-10-29 2022-04-14 Method for producing aqueous dispersion of polytetrafluoroethylene

Publications (1)

Publication Number Publication Date
WO2021085470A1 true WO2021085470A1 (ja) 2021-05-06

Family

ID=75716277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040421 WO2021085470A1 (ja) 2019-10-29 2020-10-28 ポリテトラフルオロエチレン水性分散液の製造方法

Country Status (5)

Country Link
US (1) US20220235156A1 (ja)
EP (1) EP4053181A4 (ja)
JP (1) JPWO2021085470A1 (ja)
CN (1) CN114630849B (ja)
WO (1) WO2021085470A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181662A1 (ja) * 2021-02-24 2022-09-01 Agc株式会社 ポリテトラフルオロエチレン水性分散液の製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841616B2 (en) 2003-03-28 2005-01-11 Arkema Inc. Polymerization of halogen-containing monomers using siloxane surfactant
JP2005501956A (ja) * 2001-09-05 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー 低分子量フッ素化界面活性剤を全くまたは殆ど含まないフルオロポリマー分散
JP2007511657A (ja) * 2003-11-17 2007-05-10 スリーエム イノベイティブ プロパティズ カンパニー 少量のフッ素化界面活性剤を有するポリテトラフルオロエチレンの水性分散液
JP2009029723A (ja) * 2007-07-24 2009-02-12 Daikin Ind Ltd 含窒素カルボン酸誘導体、含窒素カルボン酸誘導体の製造方法
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
JP2013542309A (ja) * 2010-11-09 2013-11-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの水性重合における核形成
JP2016537499A (ja) 2013-11-26 2016-12-01 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー フルオロモノマーの水性重合において核を形成するためのポリアルキレンオキシドの使用
WO2019065640A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 変性ポリテトラフルオロエチレン、成形物、延伸多孔体の製造方法
JP2019196139A (ja) 2018-05-11 2019-11-14 株式会社デンソー 流体吹出装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938337A (zh) * 2004-04-07 2007-03-28 大金工业株式会社 含氟弹性体聚合物的制造方法
JP4788139B2 (ja) * 2004-12-17 2011-10-05 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液
GB0511779D0 (en) * 2005-06-10 2005-07-20 3M Innovative Properties Co Aqueous emulsion polymerization of fluorinated monomers in the presence of a partially fluorinated oligomer as an emulsifier
US20100222494A1 (en) * 2005-08-04 2010-09-02 Daikin Industries, Ltd. Process for preparing aqueous dispersion of fluorine-containing composite polymer particles, aqueous dispersion and composite polymer particles
CN101243108B (zh) * 2005-08-08 2012-08-22 阿科玛股份有限公司 使用非氟化的表面活性剂聚合含氟聚合物
US7728087B2 (en) * 2005-12-23 2010-06-01 3M Innovative Properties Company Fluoropolymer dispersion and method for making the same
JP2009029853A (ja) * 2007-07-24 2009-02-12 Daikin Ind Ltd フルオロポリマーの製造方法
WO2009022579A1 (ja) * 2007-08-10 2009-02-19 Daikin Industries, Ltd. コーティング用組成物
JP5003633B2 (ja) * 2008-08-22 2012-08-15 旭硝子株式会社 フッ素樹脂塗膜の形成方法
US8058375B2 (en) * 2008-12-23 2011-11-15 E I. Du Pont De Nemours And Company Use of ethylene-tetrafluoroethylene carboxylic acids and salts as surfactants for aqueous emulsion polymerization of fluorinated monomer
CN102482363B (zh) * 2009-08-28 2014-01-01 大金工业株式会社 含氟聚合物的制造方法
CN102482362B (zh) * 2009-08-28 2014-05-14 大金工业株式会社 含氟聚合物的制造方法
KR20140067149A (ko) * 2011-09-27 2014-06-03 다이킨 고교 가부시키가이샤 수성 분산체 및 그 제조 방법
JP2017057379A (ja) * 2015-09-18 2017-03-23 ダイキン工業株式会社 フルオロポリマーの製造方法
EP3546517B1 (en) * 2016-11-28 2023-03-08 Agc Inc. Aqueous polytetrafluoroethylene dispersion
WO2019065638A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 変性ポリテトラフルオロエチレンの製造方法、変性ポリテトラフルオロエチレン粉末の製造方法、延伸多孔体の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005501956A (ja) * 2001-09-05 2005-01-20 スリーエム イノベイティブ プロパティズ カンパニー 低分子量フッ素化界面活性剤を全くまたは殆ど含まないフルオロポリマー分散
US6841616B2 (en) 2003-03-28 2005-01-11 Arkema Inc. Polymerization of halogen-containing monomers using siloxane surfactant
JP2007511657A (ja) * 2003-11-17 2007-05-10 スリーエム イノベイティブ プロパティズ カンパニー 少量のフッ素化界面活性剤を有するポリテトラフルオロエチレンの水性分散液
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
JP2009029723A (ja) * 2007-07-24 2009-02-12 Daikin Ind Ltd 含窒素カルボン酸誘導体、含窒素カルボン酸誘導体の製造方法
JP2013542309A (ja) * 2010-11-09 2013-11-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー フルオロモノマーの水性重合における核形成
JP2016537499A (ja) 2013-11-26 2016-12-01 ザ ケマーズ カンパニー エフシー リミテッド ライアビリティ カンパニー フルオロモノマーの水性重合において核を形成するためのポリアルキレンオキシドの使用
WO2019065640A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 変性ポリテトラフルオロエチレン、成形物、延伸多孔体の製造方法
JP2019196139A (ja) 2018-05-11 2019-11-14 株式会社デンソー 流体吹出装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Fluoropolymer Handbook", NIKKAN KOGYO SHIMBUN, LTD.
See also references of EP4053181A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022181662A1 (ja) * 2021-02-24 2022-09-01 Agc株式会社 ポリテトラフルオロエチレン水性分散液の製造方法

Also Published As

Publication number Publication date
CN114630849A (zh) 2022-06-14
EP4053181A1 (en) 2022-09-07
US20220235156A1 (en) 2022-07-28
CN114630849B (zh) 2024-08-23
EP4053181A4 (en) 2024-03-06
JPWO2021085470A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP4829122B2 (ja) 少量のフッ素化界面活性剤を有するポリテトラフルオロエチレンの水性分散液
RU2294940C2 (ru) Дисперсия фторполимера, не содержащая либо содержащая малое количество низкомолекулярного фторированного поверхностно-активного вещества
EP2927247B1 (en) Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
EP2638082B1 (en) Nucleation in aqueous polymerization of fluoromonomer
WO2021045228A1 (ja) ポリテトラフルオロエチレン水性分散液
JP6746608B2 (ja) ポリテトラフルオロエチレン水性分散液
EP2902424B1 (en) Tetrafluoroethene polymer dispersions stabilized with aliphatic non-ionic surfactants
JPWO2007046482A1 (ja) ポリテトラフルオロエチレン水性分散液およびその製品
JP6979031B2 (ja) ポリテトラフルオロエチレン水性分散液
US11104787B2 (en) Polytetrafluoroethylene aqueous dispersion
JP2008037914A (ja) フッ素樹脂水性分散液
WO2022050430A1 (ja) 変性ポリテトラフルオロエチレン水性分散液
JPWO2019208707A1 (ja) 変性ポリテトラフルオロエチレンの製造方法、変性ポリテトラフルオロエチレン粉末の製造方法、延伸多孔体の製造方法
WO2021085470A1 (ja) ポリテトラフルオロエチレン水性分散液の製造方法
JP2020510737A (ja) フルオロポリマーの製造方法
RU2826226C1 (ru) Способ производства водной дисперсии политетрафторэтилена
WO2022181662A1 (ja) ポリテトラフルオロエチレン水性分散液の製造方法
JP2024027028A (ja) ポリテトラフルオロエチレン混合水性分散液の製造方法
JP2006169448A (ja) ポリテトラフルオロエチレン水性分散液
JP2006117912A (ja) 変性ポリテトラフルオロエチレン及びその製造方法
KR20240146065A (ko) 도료 조성물, 피막, 적층 피막, 및, 도장 물품
JPWO2017094801A1 (ja) テトラフルオロエチレン共重合体水性分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553650

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020880885

Country of ref document: EP

Effective date: 20220530