WO2021045228A1 - ポリテトラフルオロエチレン水性分散液 - Google Patents

ポリテトラフルオロエチレン水性分散液 Download PDF

Info

Publication number
WO2021045228A1
WO2021045228A1 PCT/JP2020/033806 JP2020033806W WO2021045228A1 WO 2021045228 A1 WO2021045228 A1 WO 2021045228A1 JP 2020033806 W JP2020033806 W JP 2020033806W WO 2021045228 A1 WO2021045228 A1 WO 2021045228A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
ptfe
mass
fluorine
preferable
Prior art date
Application number
PCT/JP2020/033806
Other languages
English (en)
French (fr)
Inventor
絵美 山本
拓也 山部
義浩 左右田
拓 山中
平良 隆博
陽平 藤本
丈人 加藤
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20860627.7A priority Critical patent/EP4026854A4/en
Priority to CN202080062052.5A priority patent/CN114341209A/zh
Priority to JP2021544073A priority patent/JP7307368B2/ja
Publication of WO2021045228A1 publication Critical patent/WO2021045228A1/ja
Priority to US17/687,086 priority patent/US20220275237A1/en
Priority to JP2023104455A priority patent/JP2023123689A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/18Homopolymers or copolymers of tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present disclosure relates to an aqueous dispersion of polytetrafluoroethylene.
  • polytetrafluoroethylene (hereinafter referred to as "PTFE") is produced by emulsion polymerization of tetrafluoroethylene (hereinafter referred to as "TFE") using a surfactant in an aqueous medium.
  • TFE tetrafluoroethylene
  • an aqueous dispersion in which PTFE particles are dispersed in an aqueous medium can be obtained.
  • a nonionic surfactant is added as a dispersant to this aqueous dispersion to stabilize it.
  • Patent Document 1 describes a fluorocarboxylic acid containing 15 to 70% by mass of PTFE particles having an average primary particle size of 0.1 to 0.5 ⁇ m, having 4 to 7 carbon atoms, and having an ethereal oxygen atom.
  • a fluorine-containing surfactant selected from the group consisting of and salts thereof was used at 0.1 to 20,000 ppm based on the mass of the PTFE particles, and a nonionic surfactant having a specific structure was used as 100 of the PTFE particles.
  • a PTFE characterized by containing 1 to 20 parts by mass with respect to parts by mass, 0.01 to 3.0 parts by mass with respect to 100 parts by mass of the PTFE particles, and water with a compound having a specific structure.
  • Aqueous dispersions are listed.
  • Patent Document 2 describes a tetrafluoroethylene core-shell polymer and a general formula: R 1 O- [CH 2 CH 2 O] n- [R 2 O] m R 3 (I) [In the formula, R 1 represents a linear or branched aliphatic hydrocarbon group having at least 6 carbon atoms, preferably 8 to 18 carbon atoms, and R 2 is 3 or 4 carbon atoms. Represents an alkylene unit having an atom, R 3 represents hydrogen, a C 1 to C 3 alkyl group, or a C 1 to C 3 hydroxyalkyl group, n has a value of 0 to 40, and m is 0.
  • An aqueous dispersion comprising at least one non-fluorinated nonionic surfactant corresponding to [having a value of ⁇ 40 and the sum of n + m is at least 2], said core-shell.
  • polymer contains an outer shell having a molecular weight greater than the core, the dispersion, the formula Y-R f -Z-M [In the formula, Y represents hydrogen, Cl, or F, R f represents a linear or branched chain wholly fluorinated or partially fluorinated alkylene, and the alkylene chain is one or more times depending on the oxygen atom.
  • Patent Document 3 states that (a) 45 to 70% by weight of PTFE particles based on the total weight of the dispersion, and the PTFE particles are non-meltable; (b) 1 to 15% by weight.
  • An aqueous dispersion of a fluoropolymer comprising (c) 1-10% by weight of a water-soluble alkaline earth metal salt or 0.1-10% by weight of colloidal silica; The aqueous dispersion is described in which the weight% of the component (b) or (c) is% with respect to the weight of the PTFE particles.
  • the present disclosure provides a PTFE aqueous dispersion having a low viscosity at high temperatures, preferably further excellent in mechanical stability.
  • the present disclosure contains PTFE and a nonionic surfactant, the solid content concentration of PTFE is 50 to 70% by mass, substantially no fluorine-containing surfactant, and the viscosity at 55 ° C. is 50 mPa.
  • a PTFE aqueous dispersion characterized in that it is s or less.
  • the content of the fluorine-containing surfactant is 100 ppb or more, preferably 1.0 ppm or less.
  • the aqueous dispersion of the present disclosure preferably has a ratio [viscosity at 55 ° C./viscosity at 25 ° C.] of 4.00 or less.
  • the content of the nonionic surfactant is preferably 4% by mass or more and 12% by mass or less with respect to PTFE.
  • the aqueous dispersion of the present disclosure preferably has a stability retention time of 30 minutes or more at 60 ° C.
  • the aqueous dispersion of the present disclosure preferably has a stability retention time of 40 minutes or more at 60 ° C.
  • the nonionic surfactant has the following general formula (i): R 3- OA 1- H (i) (In the formula, R 3 is an alkyl group having 8 to 18 carbon atoms, and A 1 is a polyoxyalkylene chain composed of oxyethylene units or oxypropylene units.) It is preferable to contain a compound represented by. ..
  • R 3 is the following general formula (i-1): CHR 31 R 32- (i-1) (In the formula, R 31 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms, R 32 represents an alkyl group having 1 to 17 carbon atoms, and the total carbon number of R 31 and R 32 is 7 to 17 It is preferable that it is an alkyl group represented by).
  • R 3 is preferably an alkyl group having 8 to 18 carbon atoms having an average methyl group number of 2.0 or more.
  • R 3 is preferably a 2,6,8-trimethyl-4-nonyl group.
  • a 1 is preferably a polyoxyethylene chain having an average number of oxyethylene units of 10.1 to 10.8.
  • the nonionic surfactant preferably has an HLB of 14.00 or more.
  • Nonionic surfactants it is preferable that the average number of oxyethylene units A 1 is a mixture of compounds represented by different formulas (i).
  • R 3 of the formula (i) is a 2,6,8-trimethyl-4-nonyl group
  • a 1 is a polyoxyethylene having an average number of oxyethylene units of 7.0 to 9.0.
  • the compound which is a chain and R 3 of the formula (i) are 2,6,8-trimethyl-4-nonyl groups
  • a 1 is a polyoxyethylene chain having an average number of oxyethylene units of 10.0 to 12.0. It is preferably a mixture with a compound.
  • R 3 of the formula (i) is a 2,6,8-trimethyl-4-nonyl group
  • a 1 is a polyoxyethylene having an average number of oxyethylene units of 7.0 to 9.0.
  • the chain compound (first component) and R 3 of the formula (i) are 2,6,8-trimethyl-4-nonyl groups, and A 1 has an average number of oxyethylene units of 10.0 to 12.0. It is a mixture with a compound (second component) which is a polyoxyethylene chain, and preferably contains 5% by mass or more and 25% by mass or less of the first component and 75% by mass or more and 95% by mass or less of the second component.
  • the present disclosure is also a method for producing a PTFE aqueous dispersion.
  • Step A to obtain a dispersion containing PTFE by emulsion polymerization of TFE in the presence of a fluorine-containing anionic surfactant.
  • Step B in which the nonionic surfactant (1) is added to the dispersion obtained in Step A, The fluorine-containing anionic surfactant is removed from the dispersion obtained in step B, and the dispersion is further concentrated, or the dispersion obtained in step B is concentrated, and the fluorine-containing anionic surfactant is further removed.
  • Process C which is a process
  • Step D in which the nonionic surfactant (2) and the fluorine-free anionic surfactant are added to the dispersion obtained in Step C,
  • a method for producing an aqueous dispersion of PTFE which comprises.
  • Step A polymerizes TFE with at least one monomer selected from the group consisting of perfluoro (alkyl vinyl ether) (hereinafter referred to as "PAVE”), (perfluoroalkyl) ethylene and cyclic monomers. It is preferable that the step is to perform.
  • PAVE perfluoro (alkyl vinyl ether)
  • Step A is a step of obtaining a dispersion of modified polytetrafluoroethylene having a core-shell structure.
  • Step A-1 for producing the core by polymerizing TFE with at least one modified monomer selected from the group consisting of perfluoro (alkyl vinyl ether), (perfluoroalkyl) ethylene and cyclic monomers, and TFE and
  • step A-2 for producing the shell by polymerizing at least one selected from the group consisting of hexafluoropropylene and a chain transfer agent.
  • the nonionic surfactant (1) has the following formula (1): R 4- O-A 2- H (1) (In the formula, R 4 is a linear or branched primary or secondary alkyl group having 8 to 18 carbon atoms having an average number of methyl groups of 4.0 or more per molecule, and A 2 is It is a polyoxyalkylene chain having an average number of oxyethylene units of 7.0 to 12.0 and an average number of oxypropylene units of 0.0 to 2.0).
  • R 4 is preferably a 2,6,8-trimethyl-4-nonyl group.
  • the nonionic surfactant (2) has the following formula (2): R 5- OA 3- H (2) (Wherein, R 5 is 1 linear or branched primary or secondary alkyl group having an average methyl radix 8 carbon atoms is 4.0 or more to 18 per molecule, A 3 is It is a polyoxyalkylene chain having an average number of oxyethylene units of 10.0 to 12.0)).
  • R 5 represents preferably a 2,6,8-trimethyl-4-nonyl group.
  • Step D is a step of adding the nonionic surfactant (2) so that the concentration of the nonionic surfactant in the dispersion liquid is 4% by mass or more and 12% by mass or less with respect to PTFE. Is preferable.
  • the cloud point of the nonionic surfactant is preferably 60 to 80 ° C.
  • the PTFE aqueous dispersion preferably has a nonionic surfactant HLB of 14.00 or more.
  • the removal of the fluorine-containing anionic surfactant in the step C is preferably carried out by bringing the aqueous dispersion into contact with the anion exchange resin.
  • the content of the fluorine-containing anionic surfactant in the PTFE aqueous dispersion is preferably 1.0 ppm or less with respect to the aqueous dispersion.
  • the fluorine-containing anion surfactant is preferably a fluorine-containing anion surfactant having a Log POW of 3.5 or less.
  • the fluorine-containing anion surfactant is preferably a fluorine-containing anion surfactant having a Log POW of 3.4 or less.
  • the fluorine-free anionic surfactant is preferably at least one selected from the group consisting of alkyl sulfates and salts thereof, and fatty acids and salts thereof.
  • the content of the fluorine-free anionic surfactant in the aqueous PTFE aqueous dispersion is preferably 50 to 5000 ppm with respect to PTFE.
  • the production method of the present disclosure preferably further includes a step of adding a preservative to the aqueous dispersion.
  • the preservative is preferably an organic iodine-based compound or an organic nitrogen-sulfur-based compound.
  • the production method of the present disclosure preferably further includes a step of adding a coating material.
  • the present disclosure also provides a PTFE aqueous dispersion obtained by the above production method.
  • the aqueous dispersion of the present disclosure is preferably an aqueous coating material.
  • the present disclosure also provides a coating film obtained by applying the above aqueous dispersion.
  • the present disclosure also provides an impregnated film obtained by impregnating the aqueous dispersion.
  • the present disclosure also decomposes (A) polytetrafluoroethylene resin particles, (B) a high boiling point polyhydric alcohol containing no nitrogen atom and having a boiling point of 100 ° C. or higher and having two or more hydroxyl points, and (C) decomposition. It contains depolymerizable acrylic resin particles whose vaporization temperature is within the temperature range up to the decomposition temperature of the PTFE resin, (D) a nonionic surfactant, and (E) an aqueous medium.
  • the blending amounts of the high boiling point polyhydric alcohol (B) and the depolymerizable acrylic resin particles (C) are 5 to 18 parts by mass and 5 to 25 parts by mass, respectively, with respect to 100 parts by mass of polytetrafluoroethylene (A).
  • a polytetrafluoroethylene aqueous dispersion containing no oxidizing agent and an amine-based solvent is provided.
  • the present disclosure also includes polytetrafluoroethylene resin particles, depolymerizable acrylic resin particles, and water, and if each resin particle is replaced with a true sphere having the same volume as the primary average particle of each resin particle, each resin particle is the most suitable.
  • a polytetrafluoroethylene aqueous dispersion which is substantially non-volatile in a temperature range and is a solvent that volatilizes or thermally decomposes at a temperature lower than the thermal decomposition temperature of resin particles.
  • the present disclosure further provides a coated article having a coating film obtained by applying the above-mentioned polytetrafluoroethylene aqueous dispersion.
  • the above painted items include metal cookware, bearings, valves, electric wires, metal foil, boilers, pipes, ship bottoms, oven linings, iron bottom plates, pan-baking molds, rice cookers, grill pans, electric pots, ice trays, snow shovels, plows, etc. It is preferably at least one selected from the group consisting of tools, rice cookers, scissors, hoppers, industrial containers, and molds.
  • the PTFE aqueous dispersion of the present disclosure has a low viscosity at high temperatures.
  • the stirring blade used for the evaluation of mechanical stability is shown, (a) is a plan view seen from above, and (b) is a side view.
  • the PTFE aqueous dispersion of the present disclosure (hereinafter, also referred to as "the first PTFE aqueous dispersion of the present disclosure”) contains PTFE (or PTFE resin particles) and a nonionic surfactant, and is a solid of PTFE.
  • the component concentration is 50 to 70% by mass, the fluorine-containing surfactant is substantially not contained, and the viscosity at 55 ° C. is 50 mPa ⁇ s or less.
  • the first PTFE aqueous dispersion of the present disclosure has a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the first PTFE aqueous dispersion of the present disclosure has a viscosity at 55 ° C. of 50 mPa ⁇ s or less, and is particularly suitable for applications used at high temperatures such as in the field of impregnating fiber substrates. Since the impregnation process requires a firing process, the temperature tends to be high environmentally.
  • the first PTFE aqueous dispersion of the present disclosure has good permeability to the fiber substrate even in a high temperature environment and can be uniformly impregnated.
  • the lower limit of the viscosity at 55 ° C. is not particularly limited, but may be, for example, 10 mPa ⁇ s or more.
  • the first PTFE aqueous dispersion of the present disclosure preferably has a ratio [viscosity at 55 ° C./viscosity at 25 ° C.] of 4.00 or less.
  • the first PTFE aqueous dispersion of the present disclosure is particularly suitable for impregnation processing of a fiber base material. In the impregnation process, there is a firing process, so the temperature tends to be high environmentally. Since the amount of PTFE adhered to the fiber substrate during the impregnation process is easily affected by the viscosity of the aqueous dispersion, an aqueous dispersion having a low viscosity-temperature dependence is required.
  • the first PTFE aqueous dispersion of the present disclosure is excellent in that the viscosity-temperature dependence is low and the quality is stable because the above ratio is 4.00 or less.
  • the ratio [viscosity at 55 ° C./viscosity at 25 ° C.] is more preferably 3.00 or less, further preferably 2.00 or less, further preferably 1.50 or less, and particularly further preferably 1.20 or less. It is preferable, 1.10 or less is particularly preferable, and 1.00 or less is particularly particularly preferable.
  • the viscosity at 25 ° C. is a value measured using a B-type rotational viscometer under the conditions shown in Examples described later.
  • the viscosity at 55 ° C. is a value measured under the same conditions as the viscosity measurement at 25 ° C. after raising the liquid temperature to 55 ° C. and holding for 60 minutes. In the case of 80 mPa ⁇ s or more, the viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of the measurement, and the average value thereof is adopted.
  • the first PTFE aqueous dispersion of the present disclosure preferably has a viscosity-temperature transition [VTT] of more than 55 ° C, more preferably 60 ° C or higher. By exceeding 55 ° C, there is a technical significance that it is not necessary to change the processing conditions at 25 ° C and 55 ° C. VTT represents the viscosity-temperature dependence of the PTFE aqueous dispersion. The VTT was measured by raising the PTFE aqueous dispersion at 25 ° C., 35 ° C., 45 ° C., and 55 ° C. to each temperature for 60 minutes, and then using a B-type rotational viscometer to measure under the conditions shown in Examples described later. Obtained by doing.
  • VTT viscosity-temperature transition
  • the VTT point is the temperature at which the viscosity reaches the same value as when measured at 25 ° C. If the viscosity is 80 mPa ⁇ s or more, a viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of measurement, and the average value thereof is adopted.
  • the first PTFE aqueous dispersion of the present disclosure has a solid content concentration of PTFE of 50 to 70% by mass.
  • the solid content concentration is preferably 55% by mass or more, more preferably 57% by mass or more. Further, 65% by mass or less is preferable, and 60% by mass or less is more preferable. Even if the solid content concentration of PTFE is in the above range, the aqueous dispersion of the present disclosure can have a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the content of the nonionic surfactant is preferably 4% by mass or more, more preferably 5% by mass or more, and 5.5% by mass or more with respect to PTFE. Is more preferable, 12% by mass or less is preferable, 10% by mass or less is more preferable, 8% by mass or less is further preferable, and 7% by mass or less is particularly preferable. If the amount of the nonionic surfactant is too large, the viscosity may become too high, and if it is too small, the storage stability and mechanical stability may be lowered.
  • the nonionic surfactant is preferably a nonionic surfactant that does not contain fluorine.
  • R 3- OA 1- H (i) (In the formula, R 3 is a linear or branched primary or secondary alkyl group having 8 to 18 carbon atoms, and A 1 is a polyoxyalkylene chain.) Can be mentioned.
  • the carbon number of R 3 is preferably 8 to 16, and more preferably 10 to 14. When the carbon number of R 3 is in the above range, the affinity with PTFE in the aqueous dispersion is high, and a lower viscosity at 55 ° C. and excellent mechanical stability can be achieved.
  • the above R 3 is the following general formula (i-1).
  • R 31 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms
  • R 32 represents an alkyl group having 1 to 17 carbon atoms
  • the total carbon number of R 31 and R 32 is 7 to 17 It is preferable that it is an alkyl group represented by).
  • the R 31 is more preferably a hydrogen atom or an alkyl group having 1 to 15 carbon atoms, further preferably a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and further preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. preferable.
  • R 32 an alkyl group having 1 to 15 carbon atoms is more preferable, an alkyl group having 1 to 14 carbon atoms is further preferable, and an alkyl group having 1 to 13 carbon atoms is even more preferable.
  • the R 3 is preferably an alkyl group having 8 to 18 carbon atoms having an average methyl group number of 2.0 or more.
  • the average number of methyl groups of R 3 is more preferably 2.5 or more, further preferably 3.0 or more, further preferably 3.5 or more, and particularly preferably 4.0 or more.
  • the upper limit of the average number of methyl groups of R 3 is preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less.
  • the average number of methyl groups per molecule of R 3 is preferably 4.0 or more, more preferably 4.3 or more, further preferably 4.7 or more, and 5.0.
  • the above is the most preferable.
  • Particularly preferred as the R 3, it is 2,6,8-trimethyl-4-nonyl group.
  • the average number of methyl groups is a value obtained by adding methanol to a sample, performing Soxhlet extraction, and then measuring the extract by 1 H-NMR.
  • Nonionic surfactants examples include Genapol X080 (product name, manufactured by Clariant), Neugen TDS-80 (trade name), and Neugen TDS-100 (trade name). (Manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Leocol TD-90 (trade name) as an example, Leocol TD series (manufactured by Lion), Lionol (registered trademark) TD series (manufactured by Lion), T-Det A138 (trade name) ), Examples thereof include T-Det A series (manufactured by Harcros Chemicals), Tagitol (registered trademark) 15S series (manufactured by Dow), Dispanol TOC (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) and the like.
  • the non-ionic surfactant may be a mixture of two different non-ionic surfactants, for example, an average oxyethylene number of units of 7.0 to 12 A 1 in formula (i). 0, and, the compound is a polyoxyalkylene chain number average oxypropylene units is 0.0 to 2.0, and the average number of oxyethylene units of a 1 in formula (i) 10.0 to 12 carbon atoms. It may be a mixture with a compound which is a polyoxyalkylene chain of 0.
  • the average oxy number of ethylene units of A 1 in formula (i) is 7.0 or more, the compound is less than 10.0, the average number of oxyethylene units of A 1 in formula (i) is It may be a mixture with a compound which is a polyoxyalkylene chain of 10.0 or more and 12.0 or less.
  • nonionic surfactant examples include poly (oxyethylene) 2,6,8-trimethyl-4-nonyl ether having an average number of oxyethylene units of 4.0 to 18.0, and an average number of oxyethylene units of 6. More preferably, it is a poly (oxyethylene) 2,6,8-trimethyl-4-nonyl ether of 0 to 12.0, or a mixture thereof.
  • This type of nonionic surfactant is also commercially available, for example, as TERGITOR TMN-6, TERGITOR TMN-10, and TERGITOR TMN-100X (all product names, manufactured by Dow Chemical Co., Ltd.).
  • the average number oxyalkylene units of A 1 in is preferably 5.0 to 20.0 and more preferably 8.0 to 15.0 10.0 to 12.0 is more preferable.
  • it preferably contains oxyethylene units, and the average number of oxyethylene units is preferably 10.1 or more, more preferably 10.2 or more, preferably 10.8 or less, more preferably 10.7 or less, and 10.6. The following is even more preferable, and 10.5 or less is even more preferable.
  • the average number of oxyalkylene units is a value obtained by adding methanol to a sample, performing Soxhlet extraction, and then measuring the extract by 1 H-NMR.
  • a 1 in the above formula (i) may be composed of an oxyethylene unit and an oxypropylene unit.
  • it may be a polyoxyalkylene chain having an average number of oxyethylene units of 5.0 to 20.0 and an average number of oxypropylene units of 0.0 to 2.0.
  • the number of oxyethylene units can include either the broad or narrow monomodal distribution normally provided, or the broader or bimodal distribution obtained by blending.
  • the average number of oxypropylene units is more than 0.0, the oxyethylene units and the oxypropylene units in the polyoxyalkylene chain may be arranged in a block shape or randomly.
  • a polyoxyalkylene chain composed of an average oxyethylene unit number of 7.0 to 12.0 and an average oxypropylene unit number of 0.0 to 2.0 preferable. It is preferable that A 1 has an average number of propylene units of 0.5 to 1.5 in that low foaming property is good.
  • the nonionic surfactant preferably has an HLB of 13.00 or more, more preferably 13.20 or more, further preferably 14.00 or more, and 14.05 or more. Is even more preferable, and 14.10 or more is particularly preferable. Further, 14.50 or less is preferable, 14.40 or less is more preferable, 14.30 or less is further preferable, 14.20 or less is further preferable, and 14.15 or less is particularly preferable.
  • HLB is in the above range, the viscosity at high temperature can be lowered while maintaining the mechanical stability.
  • N is the neutralization of the fatty acids constituting the ester. Value)] is used to mean the value calculated.
  • the HLB is calculated from the HLBs of the respective nonionic surfactants and their mass ratios.
  • the nonionic surfactant having an HLB of 14.00 is 60% by mass and the nonionic surfactant having an HLB of 15.00 is 40% by mass based on the total content of the nonionic surfactant.
  • the aqueous dispersion of the present disclosure it is preferable to add two types of nonionic surfactants having different hydrophilicity.
  • the index indicating the difference in hydrophilicity include the above-mentioned HLB.
  • the aqueous dispersion of the present disclosure has a nonionic surfactant having an HLB of 13.00 or more and less than 14.10 and an HLB of 14.10 or more. It preferably contains 15.00 or less of a nonionic surfactant.
  • foaming can be suppressed without adding a defoaming agent.
  • the aqueous dispersion of the present disclosure includes a nonionic surfactant having an HLB of 13.00 or more and less than 13.50, and an HLB of 13.50 or more and 15.00 or less (preferably 14.50 or less, etc.). It preferably contains a nonionic surfactant (14.00 or less).
  • the cloud point of a nonionic surfactant is a measure of the solubility of the surfactant in water.
  • the surfactant used in the aqueous dispersion of the present disclosure has a cloud point of 30 to 90 ° C., preferably 35 to 85 ° C., more preferably 40 to 80 ° C., still more preferably 45 to 75 ° C.
  • the aqueous dispersion of the present disclosure preferably contains a nonionic surfactant having a cloud point of 30 ° C. or higher and 60 ° C. or lower, and a nonionic surfactant having a cloud point of more than 60 ° C. and 90 ° C. or lower. It is more preferable to contain a nonionic surfactant having a cloud point of 35 to 60 ° C. and a nonionic surfactant having a cloud point of 65 to 80 ° C. Mechanical stability can be improved by using a nonionic surfactant having a high cloud point.
  • the aqueous dispersion of the present disclosure includes a nonionic surfactant having a cloud point of 30 ° C. or higher and 60 ° C. or lower, and a nonionic surfactant having a cloud point of more than 60 ° C. and 90 ° C. or lower. It is more preferable to contain a nonionic surfactant having a cloud point of 35 to 60 ° C. and a nonionic surfactant having a cloud point of 65 to 80 ° C.
  • the viscosity of 50 mPa ⁇ or less at 55 ° C. can be achieved by appropriately adjusting the HLB of the nonionic surfactant and the average number of oxyalkylene units.
  • the HLB of the nonionic surfactant is 14.05 to 14.35 and the average number of oxyalkylene units is 10.2 to 10.9.
  • R 3 of the formula (i) is a 2,6,8-trimethyl-4-nonyl group, and A 1 is an average number of oxyethylene units of 7.0.
  • the nonionic surfactant preferably contains 10% by mass or more of the first component, more preferably 15% by mass or less, and more preferably 85% by mass or more of the second component, 90% by mass. It is more preferable to include the following.
  • the viscosity of 50 mPa ⁇ or less at 55 ° C. can be achieved by appropriately adjusting the HLB of the nonionic surfactant and the average number of oxyalkylene units.
  • the HLB of the nonionic surfactant is 13.00 to 13.50 and the average number of oxyalkylene units is 7.0 to 12.0.
  • a non-ionic surfactant Compound A 1 is a polyoxyethylene chain having an average oxyethylene units number from 7.0 to 9.5 of formula (i) and (first component)
  • a 1 of the formula (i) is a mixture with a compound (second component) which is a polyoxyethylene chain having an average number of oxyethylene units of 10.0 to 12.0
  • the first component is 40% by mass or more and 70% by mass. % Or less, preferably containing the second component in an amount of 30% by mass or more and 60% by mass or less.
  • the nonionic surfactant preferably contains 45% by mass or more of the first component, more preferably 65% by mass or less, and more preferably 35% by mass or more of the second component, 55% by mass. It is more preferable to include the following.
  • the above-mentioned PTFE may be a homopolymer of TFE, or is a modified PTFE containing 99.0% by mass or more of a polymerization unit based on TFE and 1.0% by mass or less of a polymerization unit based on a modified monomer. May be good. Modified PTFE is preferred from the perspective of further improving mechanical stability at high temperatures.
  • the modified PTFE preferably has a polymerization unit based on the modified monomer (hereinafter, also referred to as “modified monomer unit”) in the range of 0.00001 to 1.0% by mass.
  • modified monomer unit a polymerization unit based on the modified monomer (hereinafter, also referred to as “modified monomer unit”) in the range of 0.00001 to 1.0% by mass.
  • the lower limit of the modified monomer unit 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is further more preferable, 0.010% by mass is particularly more preferable, and 0.030% by mass is particularly preferable. % Is even more preferable.
  • the upper limit of the modified monomer unit is preferably 0.90% by mass, more preferably 0.50% by mass, further preferably 0.40% by mass, and even more preferably 0.30% by mass.
  • the modified monomer unit means a portion of the molecular structure of PTFE that is derived from the modified monomer.
  • each monomer constituting PTFE can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the modified monomer is not particularly limited as long as it can be copolymerized with TFE.
  • perfluoroolefin such as hexafluoropropylene [HFP]; hydrogen such as trifluoroethylene and vinylidene fluoride [VDF].
  • fluoroolefin; perhaloolefin such as chlorotrifluoroethylene; perfluorovinyl ether: perfluoroallyl ether; (perfluoroalkyl) ethylene, ethylene and the like can be mentioned.
  • the modified monomer used may be one kind or a plurality of kinds.
  • Rf represents a perfluoroorganic group.
  • perfluoroorganic group means an organic group in which all hydrogen atoms bonded to carbon atoms are replaced with fluorine atoms.
  • the perfluoroorganic group may have ether oxygen.
  • perfluorovinyl ether examples include perfluoro (alkyl vinyl ether) [PAVE] in which Rf is a perfluoroalkyl group having 1 to 10 carbon atoms in the above general formula (A).
  • the number of carbon atoms of the perfluoroalkyl group is preferably 1 to 5.
  • Examples of the perfluoroalkyl group in PAVE include a perfluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group and the like.
  • Rf is a perfluoro (alkoxyalkyl) group having 4 to 9 carbon atoms, and Rf is the following formula:
  • Rf is the following formula:
  • n an integer of 1 to 4.
  • the (perfluoroalkyl) ethylene (PFAE) is not particularly limited, and examples thereof include (perfluorobutyl) ethylene (PFBE) and (perfluorohexyl) ethylene.
  • perfluoroallyl ether examples include, for example.
  • General formula: CF 2 CF-CF 2- ORf 11 (In the formula, Rf 11 represents a perfluoroorganic group.) Fluoromonomer represented by.
  • the Rf 11 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms.
  • the modified monomer examples include a cyclic monomer.
  • the cyclic monomer has the following general formula (ii): (In the formula, X 2 and X 3 represent the same or different hydrogen atom or fluorine atom, Y represents -CR 1 R 2- , and R 1 and R 2 represent the same or different fluorine atom. , An alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.) Is preferable.
  • the vinyl heterocyclic body represented by the general formula (ii) for example, those in which X 2 and X 3 are fluorine atoms are preferable, and R 1 and R 2 are fluoroalkyl groups having 1 to 6 carbon atoms.
  • X 2 and X 3 are fluorine atoms, and R 1 and R 2 are perfluoromethyl groups. Perfluoro-2,2-dimethyl-1,3- Dioxol [PDD] is preferred.
  • the modified monomer at least one selected from the group consisting of PAVE, PFAE and the cyclic monomer is preferable from the viewpoint of the transparency of the coating film.
  • a modified monomer (3) having a monomer reactivity ratio of 0.1 to 8 is also preferably exemplified.
  • PTFE particles having a small particle size can be obtained, and an aqueous dispersion having high dispersion stability can be obtained.
  • the monomer reactivity ratio in the copolymerization with TFE is the rate constant when the growth radical reacts with TFE when the growth radical is less than the repeating unit based on TFE, and the growth radical is a modified monomer. It is a value divided by the rate constant when reacting with. The lower this value is, the more reactive the modified monomer is with TFE.
  • the monomer reactivity ratio can be calculated from the Fineman-Loss formula by obtaining the composition in the produced polymer immediately after the start by copolymerizing TFE and the modified monomer.
  • the above copolymerization was carried out using 3600 g of deionized degassed water in a stainless steel autoclave having an internal volume of 6.0 L, 1000 ppm of ammonium perfluorooctane and 100 g of paraffin wax with respect to the water, at a pressure of 0.78 MPa.
  • the temperature is 70 ° C.
  • 0.05 g, 0.1 g, 0.2 g, 0.5 g, and 1.0 g of modified monomers were added to the reactor, 0.072 g of ammonium persulfate (20 ppm with respect to water) was added, and the polymerization pressure was 0.78 MPa.
  • TFE is continuously supplied for maintenance.
  • the amount of TFE charged reaches 1000 g, stirring is stopped and decompression is performed until the reactor reaches atmospheric pressure. After cooling, the paraffin wax is separated to obtain an aqueous dispersion containing the produced polymer. The aqueous dispersion is stirred to coagulate the resulting polymer and dried at 150 ° C.
  • the composition in the obtained produced polymer is calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the modified monomer (3) having a monomer reactivity ratio of 0.1 to 8 is preferably at least one selected from the group consisting of modified monomers represented by the formulas (3a) to (3d).
  • CH 2 CH-Rf 1 (3a) (In the formula, Rf 1 is a perfluoroalkyl group having 1 to 10 carbon atoms.)
  • CF 2 CF-O-Rf 2 (3b) (In the formula, Rf 2 is a perfluoroalkyl group having 1 to 2 carbon atoms.)
  • CF 2 CF-O- (CF 2 )
  • n CF CF 2 (3c) (In the formula, n is 1 or 2.)
  • X 3 and X 4 are F, Cl or methoxy groups, and Y is the formula Y1 or Y2.
  • the content of the modified monomer (3) is preferably in the range of 0.00001 to 1.0% by mass with respect to PTFE.
  • 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is further more preferable, 0.010% by mass is particularly preferable, and 0.030% by mass is more particularly particularly preferable. Is preferable.
  • As the upper limit 0.90% by mass is preferable, 0.50% by mass is more preferable, 0.40% by mass is further preferable, and 0.30% by mass is further more preferable.
  • the modified monomer has low viscosity at high temperature and is excellent in mechanical stability at high temperature, hexafluoropropylene, vinylidene fluoride, fluoro (alkyl vinyl ether), perfluoroallyl ether, (perfluoroalkyl). It is preferable to contain at least one selected from the group consisting of ethylene, ethylene, and a modified monomer having a functional group and a hydrophilic group capable of reacting with radical polymerization.
  • the modified monomer preferably contains at least one selected from the group consisting of hexafluoropropylene, perfluoro (alkyl vinyl ether) and (perfluoroalkyl) ethylene, and is preferably perfluoro (alkyl vinyl ether). More preferably, it is perfluoro (propyl vinyl ether) (hereinafter, also referred to as PPVE).
  • the total amount of the hexafluoropropylene unit, the perfluoro (alkyl vinyl ether) unit and the (perfluoroalkyl) ethylene unit is preferably in the range of 0.00001 to 1% by mass with respect to PTFE.
  • 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is further preferable, 0.010% by mass is particularly preferable, and 0.030% by mass is particularly preferable. Is even more preferable.
  • 0.50% by mass is more preferable, 0.40% by mass is further preferable, and 0.30% by mass is even more preferable.
  • modified monomer (4) a modified monomer having a functional group and a hydrophilic group capable of reacting by radical polymerization
  • modified monomer (4) a modified monomer having a functional group and a hydrophilic group capable of reacting by radical polymerization
  • the amount of the modified monomer (4) is preferably more than 0.1 ppm of the aqueous medium, more preferably 5 ppm or more, and more preferably 10 ppm or more. Is more preferable. If the amount of the modified monomer (4) is too small, the particle size of the obtained PTFE may be large.
  • the modified monomer (4) may be in the above range, but the upper limit may be, for example, 5000 ppm. Further, in the above production method, the modified monomer (4) may be added to the system during the reaction in order to improve the stability of the aqueous dispersion during or after the reaction.
  • modified monomer (4) Since the modified monomer (4) is highly water-soluble, even if the unreacted modified monomer (4) remains in the aqueous dispersion, removal in the concentration step or the coagulation / washing step can be carried out with fluorine content, which will be described later. As easy as a compound.
  • the modified monomer (4) is incorporated into the produced polymer in the process of polymerization, but the concentration of the modified monomer (4) in the polymerization system itself is low and the amount incorporated into the polymer is small, so that the heat resistance of PTFE is lowered. There is no problem of coloring after firing.
  • the modified monomer (4) has a functional group and a hydrophilic group that can be reacted by radical polymerization.
  • the hydrophilic group in the modified monomer (4) include -NH 2 , -PO 3 M, -OPO 3 M, -SO 3 M, -OSO 3 M, and -COOM (in each formula, M is H, metal atom, NR 7 4, which may imidazolium substituted phosphonium may have a good pyridinium or substituted group which may have a substituent, R 7 is H or an organic radical Yes, they may be the same or different. Any two of them may be bonded to each other to form a ring).
  • the hydrophilic groups -SO 3 M and -COOM are preferable.
  • the metal atom is preferably an alkali metal, and examples of the alkali metal include Na, K and the like.
  • Examples of the "functional group capable of reacting by radical polymerization" in the modified monomer (4) include a group having an unsaturated bond such as a vinyl group and an allyl group.
  • the modified monomer (4) Since the modified monomer (4) has a functional group capable of reacting by radical polymerization, when used in the polymerization, it reacts with a fluorine-containing monomer at the initial stage of the polymerization reaction and has a hydrophilic group derived from the modified monomer (4). It is presumed that highly stable particles are formed. Therefore, it is considered that the number of emulsified particles increases when the polymerization is carried out in the presence of the modified monomer (4).
  • one kind of the modified monomer (4) may be present, or two or more kinds of the modified monomer (4) may be present.
  • a compound having an unsaturated bond can be used as the above-mentioned modified monomer (4).
  • R 7 is H or an organic group, and is the same or different. Either two may be bonded to each other to form a ring.).
  • -SO 3 M or -COOM is particularly preferable.
  • R 7 an organic group of H or C 1-10 is preferable, an organic group of H or C 1-4 is more preferable, and an alkyl group of H or C 1-4 is further preferable.
  • the metal atom include monovalent or divalent metal atoms, and examples thereof include alkali metals (Group 1) and alkaline earth metals (Group 2), with Na, K or Li being preferable.
  • Ra is a linking group.
  • linking group refers to a divalent linking group.
  • the linking group may be a single bond and preferably contains at least one carbon atom, and the number of carbon atoms may be 2 or more, 4 or more, or 8 or more. It may be 10 or more, and may be 20 or more. The upper limit is not limited, but may be 100 or less, and may be 50 or less, for example.
  • the linking group may be chain or branched, cyclic or acyclic, saturated or unsaturated, substituted or unsubstituted, and may optionally be one or more selected from the group consisting of sulfur, oxygen, and nitrogen.
  • the linking group does not contain a carbon atom and may be a catenary heteroatom such as oxygen, sulfur or nitrogen.
  • the Ra is preferably a catenary heteroatom such as oxygen, sulfur, or nitrogen, or a divalent organic group.
  • the hydrogen atom bonded to the carbon atom may be replaced with a halogen other than fluorine, for example, chlorine, and may or may not contain a double bond.
  • R a is linear and may be either branched, may be either cyclic or acyclic.
  • Ra may contain a functional group (for example, an ester, an ether, a ketone, an amine, a halide, etc.).
  • Ra may also be a non-fluorinated divalent organic group or a partially fluorinated or perfluorinated divalent organic group.
  • the modified monomer (4) is preferably at least one selected from the group consisting of the compounds represented by the following formulas (4a) to (4e).
  • CF 2 CF- (CF 2 ) n1- Y 3 (4a)
  • n1 represents an integer from 1 to 10
  • Y 3 represents -SO 3 M 1 or -COOM 1
  • M 1 represents H, NH 4 or an alkali metal.
  • CF 2 CF- (CF 2 C (CF 3 ) F) n2- Y 3 (4b)
  • n2 represents an integer of 1 ⁇ 5, Y 3 is as previously defined.
  • CF 2 CF-O- (CFX 1) n3 -Y 3 (4c)
  • X 1 represents F or CF 3
  • n 3 represents an integer of 1 to 10
  • Y 3 is the same as the above definition.
  • CF 2 CF-O- (CF 2 CFX 1 O) n4 -CF 2 CF 2 -Y 3 (4d) (
  • the above n1 is preferably an integer of 5 or less, and more preferably an integer of 2 or less.
  • the above Y 3 is preferably ⁇ COOM 1 in that appropriate water solubility and surface activity can be obtained, and M 1 is difficult to remain as an impurity and the heat resistance of the obtained molded product is improved. It is preferably H or NH 4.
  • the n2 is in terms of emulsifying ability is preferably 3 or less an integer
  • Y 3 is in that the proper water solubility and surfactant activity, a -COOM 1 Is preferable
  • M 1 is preferably H or NH 4 in that it does not easily remain as an impurity and the heat resistance of the obtained molded product is improved.
  • said n3 is preferably 5 or less integer in terms of water-soluble
  • the Y 3 is in that the proper water solubility and surfactant activity, a -COOM 1 Is preferable
  • M 1 is preferably H or NH 4 in terms of improving dispersion stability.
  • the above X 1 is preferably ⁇ CF 3 in terms of surface activity
  • the above n4 is preferably an integer of 5 or less in terms of water solubility
  • the above Y 3 Is preferably -COOM 1 in that appropriate water solubility and surface activity can be obtained
  • M 1 is preferably H or NH 4 .
  • the above n5 is preferably 0 or an integer of 1 to 5, more preferably 0, 1 or 2, and further preferably 0 or 1.
  • the above-mentioned Y 3 is preferably ⁇ COOM 1 in that appropriate water solubility and surface activity can be obtained, and the above-mentioned M 1 is difficult to remain as an impurity and the heat resistance of the obtained molded product is improved.
  • the PTFE preferably has a core-shell structure.
  • Fluoropolymers having a core-shell structure include, for example, modified PTFE containing a high molecular weight PTFE core in the particles and a lower molecular weight PTFE or modified PTFE shell. Examples of such modified PTFE include PTFE described in JP-A-2005-527652.
  • the core-shell structure may have the following structure.
  • Core TFE homopolymer Shell: TFE homopolymer Core: Modified PTFE Shell: TFE homopolymer Core: Modified PTFE Shell: Modified PTFE Core: TFE homopolymer Shell: Modified PTFE
  • the above structures can take high molecular weight and low molecular weight embodiments, respectively. For example, high molecular weight TFE homopolymer core and low molecular weight TFE homopolymer shell structure, high molecular weight modified PTFE core, low molecular weight TFE homopolymer shell structure, high molecular weight modification.
  • PTFE core low molecular weight modified PTFE shell structure, high molecular weight TFE homopolymer core, low molecular weight modified PTFE shell structure, low molecular weight TFE homopolymer core, high molecular weight TFE homopolymer shell structure, low molecular weight modified PTFE core and high molecular weight TFE homopolymer shell structure, low molecular weight modified PTFE core and high molecular weight modified PTFE shell structure, low It can have a core of a molecular weight TFE homopolymer and a shell of a high molecular weight modified PTFE.
  • the PTFE has a core-shell structure having a modified PTFE core and a low molecular weight PTFE shell.
  • the shell can be made into low molecular weight PTFE, which greatly improves mechanical stability.
  • the monomer composition containing TFE may contain only TFE, or may contain TFE and a modified monomer.
  • the modified monomer of the modified PTFE constituting the core is preferably at least one selected from the group consisting of PAVE, PFAE and the cyclic monomer.
  • PAVE include PPVE, PEVE, PMVE and the like, but PPVE is preferable.
  • PFAE include PFBE and (perfluorohexyl) ethylene, and PFBE is preferable.
  • cyclic monomer include vinyl heterocyclics represented by the above-mentioned general formula (ii), and perfluoro-2,2-dimethyl-1,3-dioxol [PDD] is preferable.
  • the content of the polymerization unit based on the modified monomer is preferably in the range of 0.00001 to 1.0% by mass with respect to PTFE.
  • the lower limit 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is further more preferable, 0.010% by mass is particularly preferable, and 0.030% by mass is more particularly particularly preferable. Is preferable.
  • As the upper limit 0.90% by mass is preferable, 0.50% by mass is more preferable, 0.40% by mass is further preferable, and 0.30% by mass is further more preferable.
  • the low molecular weight PTFE in the shell can be obtained by polymerizing a monomer composition containing TFE in the presence of a chain transfer agent.
  • the chain transfer agent is not particularly limited as long as it reduces the molecular weight of PTFE constituting the shell, and is, for example, a non-peroxide organic compound such as a water-soluble alcohol, a hydrocarbon, or a fluorinated hydrocarbon; Water-soluble organic peroxides such as oxide [DSP]; persulfates such as ammonium persulfate [APS] and potassium persulfate [KPS] can be mentioned.
  • the non-oxidized organic compound In the polymerization forming the shell, it is preferable to use at least one of the non-oxidized organic compound, the water-soluble organic peroxide and the persulfate as the chain transfer agent.
  • the chain transfer agent one or more non-oxidized organic compounds, water-soluble organic peroxides and persulfates can be used, respectively.
  • the chain transfer agent has good dispersibility and uniformity in the reaction system, and has 1 to 4 carbon atoms, a water-soluble alcohol having 1 to 4 carbon atoms, a hydrocarbon having 1 to 4 carbon atoms, and 1 to 4 carbon atoms. It is preferably composed of at least one selected from the group consisting of fluorinated hydrocarbons, and more preferably composed of at least one selected from the group consisting of methane, ethane, n-butane, isobutane, methanol and isopropanol. It is more preferably composed of at least one selected from the group consisting of methanol and isobutane.
  • the polymerization is usually carried out in an aqueous medium.
  • the amount of the chain transfer agent is preferably 0.001 to 10000 ppm with respect to the aqueous medium.
  • the amount of the chain transfer agent is more preferably 0.01 ppm or more, further preferably 0.05 ppm or more, and particularly preferably 0.1 ppm or more with respect to the aqueous medium. Further, 1000 ppm or less is more preferable, 750 ppm or less is further preferable, and 500 ppm or less is particularly preferable with respect to the aqueous medium.
  • the upper limit of the core ratio is preferably 99.5% by mass, more preferably 99.0% by mass, still more preferably 98.0% by mass, still more preferably 97.0% by mass. , Particularly preferably 95.0% by mass, and most preferably 90.0% by mass.
  • the lower limit of the shell ratio is preferably 0.5% by mass, more preferably 1.0% by mass, still more preferably 3.0% by mass, and particularly preferably 5.0% by mass. Most preferably, it is 10.0% by mass.
  • the core or the shell may have two or more layers.
  • it may have a three-layer structure having a core core portion of modified PTFE, a core outer layer portion of a TFE homopolymer, and a shell of low molecular weight PTFE.
  • the PTFE having the core-shell structure has an extrusion pressure of 80 MPa or less, more preferably 70 MPa or less, and even more preferably 60 MPa or less at a reduction ratio of 1500.
  • the extrusion pressure within the above range at the reduction ratio 1500 can be achieved by the method for producing the first PTFE aqueous dispersion liquid of the present disclosure, which will be described later.
  • the above-mentioned "extrusion pressure at reduction ratio 1500" is measured according to the following procedure.
  • the first aqueous dispersion of PTFE of the present disclosure is coagulated with methanol, and the obtained wet PTFE powder is further soxhlet-extracted with methanol to remove additives containing a nonionic surfactant.
  • the removed wet PTFE powder is dried at 150 ° C. for 18 hours to obtain a PTFE powder.
  • the PTFE aqueous dispersion is diluted with deionized water so that the PTFE concentration is 10 to 15% by mass, and then mechanically sheared is applied to wet PTFE. Get the powder.
  • the wet PTFE powder is dried at 150 ° C. for 18 hours to obtain a PTFE powder.
  • Hydrocarbon oil (trade name: Isopar G, manufactured by Exxon Chemical Co., Ltd.) was added to 100 parts by mass (60 g) of PTFE powder as an extrusion aid to add 20.5 parts by mass (12.3 g) to room temperature (25 ⁇ 1 ° C.).
  • PTFE powder as an extrusion aid to add 20.5 parts by mass (12.3 g) to room temperature (25 ⁇ 1 ° C.).
  • paste extrusion molding is carried out with an extrusion die with a cylinder (reduction ratio 1500) having an inner diameter of 25.4 mm. In the latter half of extrusion, the value obtained by dividing the pressure at the portion where the pressure is in equilibrium by the cylinder cross-sectional area was taken as the extrusion pressure at the reduction ratio 1500.
  • the average primary particle size of the PTFE is preferably 500 nm or less, more preferably 400 nm or less, and further preferably 350 nm or less.
  • the lower limit of the average primary particle diameter is not particularly limited, but may be, for example, 100 nm. From the viewpoint of molecular weight, for example, in the case of high molecular weight PTFE, it is preferably 150 nm or more, and more preferably 200 nm or more.
  • the average primary particle size is obtained by measuring the transmittance of projected light at 550 nm with respect to the unit length of the aqueous dispersion whose resin solid content concentration is adjusted to 0.15% by mass, and the directional diameter in a transmission electron micrograph. It was determined from the above-mentioned transmittance based on the calibration curve with the determined number reference length average primary particle diameter.
  • the content of PTFE particles having an aspect ratio of 5 or more is preferably less than 1.5% by mass with respect to the total content of the PTFE particles.
  • a PTFE aqueous dispersion diluted so as to have a solid content concentration of about 1% by mass was observed with a scanning electron microscope (SEM), and image processing was performed on 200 or more randomly selected particles. It is calculated from the average of the ratio of the major axis to the minor axis.
  • the standard specific gravity (SSG) of the above-mentioned PTFE is preferably 2.220 or less, and more preferably 2.190 or less. Further, it is preferably 2.140 or more, and more preferably 2.150 or more.
  • the SSG is measured by a water substitution method based on ASTM D-792 using a sample molded according to ASTM D 4895-89.
  • the PTFE usually has stretchability, fibrillation properties and non-molten secondary processability.
  • the non-melt secondary processability means a property that the melt flow rate cannot be measured at a temperature higher than the crystallization melting point, that is, a property that does not easily flow even in the melting temperature region, in accordance with ASTM D-1238 and D-2116. To do.
  • the first PTFE aqueous dispersion of the present disclosure is substantially free of fluorine-containing surfactants.
  • substantially free of a fluorine-containing surfactant means that the content of the fluorine-containing surfactant with respect to the aqueous PTFE aqueous dispersion is 1.0 ppm or less.
  • the first PTFE aqueous dispersion of the present disclosure has a low viscosity at high temperatures and excellent mechanical stability at high temperatures, even though it does not substantially contain a fluorine-containing surfactant. Can be done.
  • the content of the fluorine-containing surfactant may be at least the concentration at the lower limit of detection, at least the concentration at the lower limit of quantification, or at 100 ppb or more. It is preferably 700 ppb or less, more preferably 600 ppb or less, and further preferably 500 ppb or less.
  • the content of the fluorine-containing surfactant is a value measured by using a liquid chromatography-mass spectrometry method as described in Examples described later. Specifically, it can be measured by the following method.
  • a method of adding methanol to the aqueous dispersion to perform Soxhlet extraction may be used.
  • the fluorine-containing surfactant in the extract obtained above is measured using a liquid chromatograph mass spectrometer.
  • the first PTFE aqueous dispersion of the present disclosure is obtained by polymerization using a fluorine-containing surfactant
  • a nonionic surfactant is added to the polymerized PTFE aqueous dispersion and concentrated.
  • the amount of the fluorine-containing surfactant can be set in the above range by the above.
  • fluorine-containing surfactant examples include a fluorine-containing anionic surfactant and the like.
  • the fluorine-containing anionic surfactant may be, for example, a surfactant containing a fluorine atom having a total carbon number of 20 or less in a portion excluding the anion group Y 0 in the following general formula (N 0).
  • the fluorine-containing surfactant may also be a fluorine-containing surfactant having an anionic portion having a molecular weight of 800 or less.
  • the "anionic portion” means a portion of the fluorine-containing surfactant excluding the cation. For example, in the case of F (CF 2) n1 COOM of formula (I) to be described later, a part of the "F (CF 2) n1 COO".
  • the fluorine-containing surfactant examples include a fluorine-containing surfactant having a Log POW of 3.5 or less, preferably 3.4 or less.
  • the LogPOW is the partition coefficient between 1-octanol and water.
  • P is the octanol when the octanol / water (1: 1) mixture containing the fluorine-containing interface active agent is phase-separated. Represents the concentration of the fluorine-containing surfactant in water / the concentration of the fluorine-containing surfactant in water].
  • For standard substances heptanoic acid, octanoic acid, nonanoic acid and decanoic acid having a known octanol / water partition coefficient under the conditions of 1.0 ml / min, sample volume; 300 ⁇ L, column temperature; 40 ° C., detection light; UV210 nm.
  • HPLC is performed to prepare a calibration line of each elution time and a known octanol / water partition coefficient, and the calculation is made from the HPLC elution time in the sample solution based on this calibration line.
  • the fluorine-containing anionic surfactant includes the following general formula (N 0 ): X n0- Rf n0- Y 0 (N 0 ) (In the formula, X n0 is H, Cl or F. Rf n0 has 3 to 20 carbon atoms, is chain-like, branched-chain or cyclic, and some or all H is substituted with F. The alkylene group may contain one or more ether bonds, and a part of H may be substituted with Cl . Y 0 is an anionic group). Can be mentioned. Anionic groups of Y 0 is, -COOM, -SO 2 M, or may be a -SO 3 M, -COOM, or may be a -SO 3 M.
  • M is, H, a metal atom, NR 7 4, which may imidazolium substituted, a good phosphonium also have a pyridinium which may have a substituent or substituents, R 7 Is H or an organic group.
  • the metal atom include alkali metals (Group 1), alkaline earth metals (Group 2), and the like, and examples thereof include Na, K, and Li.
  • R 7 may be an organic group of H or C 1-10 , an organic group of H or C 1-4 , or an alkyl group of H or C 1-4.
  • M is, H, may be a metal atom or NR 7 4, H, an alkali metal (Group 1), alkaline earth metal (Group 2) or NR 7 may be 4, H, Na, K, Li or It may be NH 4.
  • the Rf n0 may be such that 50% or more of H is replaced with fluorine.
  • Rf n1 is a perfluoroalkyl group having 1 to 5 carbon atoms
  • m2 is an integer of 0 to 3
  • X n1 is F or CF 3
  • Y 0 is defined above.
  • Rf n2 (CH 2 ) m3- (Rf n3 ) q- Y 0 (N 3 )
  • Rf n2 is a partially or fully fluorinated alkyl group capable of containing an ether bond having 1 to 13 carbon atoms
  • m3 is an integer of 1 to 3
  • Rf n3 is linear.
  • it is a branched perfluoroalkylene group having 1 to 3 carbon atoms
  • q is 0 or 1
  • Y 0 is the one defined above.
  • Rf m4 is a linear or branched chain moiety or fully fluorinated aliphatic group that may contain ether bonds and / or chlorine, and L is a partially or fully fluorinated direct group.
  • a compound represented by a chain alkylene group or an aliphatic hydrocarbon group, where Y 0 is defined above) (more specifically, the following general formula (N 4a ): Rf n4- O- (CY n1 Y n2 ) p CF 2- Y 0 (N 4a )
  • Rf n4 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds and / or chlorine having 1 to 12 carbon atoms
  • Y n1 and Y n2 are , Same or different, H or F, p is 0 or 1, Y 0 is defined above
  • X n2 , X n3 and X n4 may be the same or different, and may contain an ether bond of H, F, or 1 to 6 carbon atoms, which is a linear or branched chain portion or complete.
  • Rf n5 is a linear or branched chain moiety or a fully fluorinated alkylene group that may contain an ether bond having 1 to 3 carbon atoms, and L is a linking group.
  • Y 0 is defined above. However, the total carbon number of X n2 , X n3 , X n4 and Rf n5 is 18 or less).
  • Perfluorocarboxylic acid (II) perfluoropolyether carboxylic acid (III) represented by the following general formula (III), perfluoroalkylalkylene carboxylic acid (IV) represented by the following general formula (IV), the following general Perfluoroalkoxyfluorocarboxylic acid (V) represented by the formula (V), perfluoroalkylsulfonic acid (VI) represented by the following general formula (VI), ⁇ -H represented by the following general formula (VII).
  • the perfluorocarboxylic acid (I) has the following general formula (I).
  • F (CF 2 ) n1 COM (I) (Wherein, n1 is 3 is an integer of ⁇ 14, M is H, a metal atom, NR 7 4, which may imidazolium substituted, pyridinium which may have a substituent or It is a phosphonium which may have a substituent, and R 7 is represented by H or an organic group).
  • ⁇ -H perfluorocarboxylic acid (II) has the following general formula (II).
  • H (CF 2 ) n2 COM (II) (In the formula, n2 is an integer of 4 to 15, and M is the one defined above.).
  • the perfluoropolyether carboxylic acid (III) has the following general formula (III).
  • Rf 1- O- (CF (CF 3 ) CF 2 O) n3 CF (CF 3 ) COM (III) (In the formula, Rf 1 is a perfluoroalkyl group having 1 to 5 carbon atoms, n3 is an integer of 0 to 3, and M is the one defined above.) ..
  • a perfluoropolyether carboxylic acid (III) a perfluoropolyether carboxylic acid having a total carbon number of 7 or less and a Log POW of 3.5 or less is preferable. The total number of carbon atoms is particularly preferably 5 to 7. Further, the Log POW is more preferably 3.4 or less.
  • the perfluoroalkylalkylenecarboxylic acid (IV) is represented by the following general formula (IV).
  • Rf 2 (CH 2 ) n4 Rf 3 COM (IV) (In the formula, Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms, Rf 3 is a linear or branched perfluoroalkylene group having 1 to 3 carbon atoms, and n4 is a perfluoroalkylene group having 1 to 3 carbon atoms. It is an integer, and M is as defined above.).
  • the alkoxyfluorocarboxylic acid (V) has the following general formula (V).
  • Rf 4- O-CY 1 Y 2 CF 2- COMM (V) (In the formula, Rf 4 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds and / or chlorine having 1 to 12 carbon atoms, and Y 1 and Y 2 are , Same or different, H or F, where M is as defined above).
  • the perfluoroalkyl sulfonic acid (VI) has the following general formula (VI). F (CF 2 ) n5 SO 3 M (VI) (In the formula, n5 is an integer of 3 to 14, and M is the one defined above.).
  • ⁇ -H perfluorosulfonic acid has the following general formula (VII).
  • H (CF 2 ) n6 SO 3 M (VII) (In the formula, n6 is an integer of 4 to 14, and M is the one defined above.).
  • the perfluoroalkylalkylene sulfonic acid (VIII) has the following general formula (VIII).
  • Rf 5 (CH 2 ) n7 SO 3 M (VIII) (In the formula, Rf 5 is a perfluoroalkyl group having 1 to 13 carbon atoms, n7 is an integer of 1 to 3, and M is the one defined above.) ..
  • the alkylalkylene carboxylic acid (IX) has the following general formula (IX).
  • Rf 6 (CH 2 ) n8 COM (IX) (In the formula, Rf 6 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain an ether bond having 1 to 13 carbon atoms, and n8 is an integer of 1 to 3. M is as defined above).
  • the fluorocarboxylic acid (X) has the following general formula (X).
  • Rf 7- O-Rf 8- O-CF 2- COM (X) (In the formula, Rf 7 is a linear or branched chain moiety or a fully fluorinated alkyl group that may contain ether bonds and / or chlorine having 1 to 6 carbon atoms, and Rf 8 is a carbon number of carbon atoms. 1 to 6 linear or branched chain moieties or fully fluorinated alkyl groups, where M is as defined above).
  • the above alkoxyfluorosulfonic acid (XI) has the following general formula (XI).
  • Rf 9- O-CY 1 Y 2 CF 2- SO 3 M (XI) (In the formula, Rf 9 is a partially or fully fluorinated alkyl group that is linear or branched and may contain chlorine and may contain ether bonds of 1-12 carbon atoms, Y. 1 and Y 2 are the same or different, H or F, and M is as defined above).
  • the compound (XII) has the following general formula (XII):
  • X 1 , X 2 and X 3 may be the same or different and are linear or branched chain moieties or fully fluorinated which may contain ether bonds of H, F and 1-6 carbon atoms. It is an alkyl group, Rf 10 is a perfluoroalkylene group having 1 to 3 carbon atoms, L is a linking group, and Y 0 is an anion group. ).
  • Y 0 may be -COOM, -SO 2 M, or -SO 3 M, and may be -SO 3 M, or COM (in the formula, M is defined above).
  • Examples of L include a single bond, a moiety capable of containing an ether bond having 1 to 10 carbon atoms, or a completely fluorinated alkylene group.
  • examples of the fluorine-containing anionic surfactant include carboxylic acid-based surfactants and sulfonic acid-based surfactants.
  • a compound represented by the number of carbon atoms of Rf m in the formula (N 1) is preferably an integer of 3-6.
  • m1 in the formula (N 1a ) is preferably an integer of 3 to 6.
  • n1 in the general formula (I) is preferably an integer of 3 to 6.
  • the fluorine-containing anionic surfactant is a group consisting of a fluorine-containing carboxylic acid having a carbon number of 4 to 9, preferably 4 to 7, and may have etheric oxygen and / or chlorine, and a salt thereof. Compounds selected from are preferred.
  • the carbon number means the total carbon number in one molecule. Two or more kinds of the above-mentioned fluorine-containing anion surfactant may be used in combination.
  • a compound having a carbon number of 4 to 9, preferably 4 to 7, and selected from the group consisting of a fluorine-containing carboxylic acid having ether oxygen and / or chlorine and a salt thereof is preferable.
  • the fluorine-containing carboxylic acid having etheric oxygen is a compound having 4 to 9 carbon atoms, preferably 4 to 7 carbon atoms, having ethereal oxygen in the middle of the carbon chain of the main chain, and having -COOH at the end.
  • the terminal -COOH may form a salt.
  • the number of etheric oxygens present in the middle of the main chain is 1 or more, preferably 1 to 4, and more preferably 1 or 2.
  • the number of carbon atoms is preferably 5 to 7.
  • the main chain has 6 to 7 carbon atoms, the main chain has 1 to 4 etheric oxygen, and the main chain has a linear, branched or cyclic shape. It is preferably a partially or fully fluorinated carboxylic acid or a salt thereof.
  • the "main chain” means a continuous chain having the maximum number of carbon atoms.
  • fluorine-containing surfactant examples include F (CF 2 ) 7 COOM, F (CF 2 ) 5 COOM, H (CF 2 ) 6 COOM, CF 3 O (CF 2 ) 3 OCHFCF 2 COOM, C 3 F 7 OCF.
  • the first PTFE aqueous dispersion of the present disclosure preferably contains an anionic surfactant for the purpose of adjusting the viscosity or improving the miscibility of pigments, fillers and the like.
  • the anionic surfactant can be appropriately added as long as there is no problem in terms of economy and environment.
  • anionic surfactant examples include fluorine-free fluorine-free anionic surfactants and fluorine-containing anionic surfactants, and fluorine-free fluorine-free anionic surfactants (that is, hydrocarbon-based anionic surfactants). Agent) is preferred.
  • the type is not particularly limited as long as it is a known anionic surfactant, but for example, the fluorine-free anionic interface described in International Publication No. 2013/146950 and International Publication No. 2013/146947.
  • Activators can be used.
  • those having a saturated or unsaturated aliphatic chain having 6 to 40 carbon atoms, preferably 8 to 20 carbon atoms, and more preferably 9 to 13 carbon atoms can be mentioned.
  • the saturated or unsaturated aliphatic chain may be either a straight chain or a branched chain, and may have a cyclic structure.
  • the hydrocarbon may be aromatic or may have an aromatic group.
  • the hydrocarbon may have heteroatoms such as oxygen, nitrogen and sulfur.
  • fluorine-free anionic surfactant examples include alkyl sulfonates, alkyl sulfates, alkyl aryl sulfates and salts thereof; fatty acids (aliphatic carboxylic acids) and salts thereof; alkyl phosphates, alkyl aryl phosphates or salts thereof. ; Etc., among others, alkyl sulfonates, alkyl sulfates, aliphatic carboxylic acids or salts thereof are preferable.
  • alkyl sulfate or a salt thereof ammonium lauryl sulfate, sodium lauryl sulfate and the like are preferable.
  • fatty acid aliphatic carboxylic acid
  • succinic acid decanoic acid, undecanoic acid, undecenoic acid, lauric acid, hydrododecanoic acid, or salts thereof are preferable.
  • the fluorine-free anionic surfactant is preferably at least one selected from the group consisting of alkyl sulfates and salts thereof, and fatty acids and salts thereof.
  • the content of the fluorine-free anionic surfactant depends on the type of the fluorine-free anionic surfactant and other compounding agents, but is preferably 10 ppm to 5000 ppm with respect to the solid content mass of PTFE.
  • As the lower limit of the amount of the fluorine-free anionic surfactant added 50 ppm or more is more preferable, and 100 ppm or more is further preferable. If the amount added is too small, the viscosity adjusting effect is poor.
  • the upper limit of the amount of the fluorine-free anionic surfactant added is more preferably 4000 ppm or less, further preferably 3000 ppm or less. If the amount added is too large, the viscosity may increase, especially at a high temperature. In addition, foaming may increase.
  • the first PTFE aqueous dispersion of the present disclosure preferably has a pH of 8 to 13. More preferably, it is 9 to 12, and even more preferably, it is 9 to 11. The pH is a value measured at 25 ° C. in accordance with JIS K6893.
  • the first PTFE aqueous dispersion of the present disclosure may contain other water-soluble polymer compounds as long as the characteristics of the aqueous dispersion are not impaired.
  • the other water-soluble polymer compounds are not particularly limited, and for example, polyethylene oxide (dispersion stabilizer), polyethylene glycol (dispersion stabilizer), polyvinylpyrrolidone (dispersion stabilizer), phenol resin, urea resin, epoxy resin, and the like. Examples thereof include melamine resin, polyester resin, polyether resin, acrylic silicone resin, silicone resin, silicone polyester resin, and polyurethane resin.
  • preservatives such as isothiazolone-based, azole-based, pronopol, chlorotalonil, methylsulfonyltetrachloropyrodin, carventazim, fluoroforbet, sodium diacetate, and diiodomethyltolylsulfone.
  • the first PTFE aqueous dispersion of the present disclosure may contain an antifoaming agent.
  • the defoaming agent can be appropriately added as long as there is no problem in terms of economy and environment.
  • Various aqueous defoaming agents can be used, for example, lower alcohols such as methanol, ethanol, butanol; higher alcohols such as amyl alcohol, polypropylene glycol and derivatives thereof; oleic acid, tall oil, mineral oil. , Fats and oils such as soap; Surfactants such as sorbitan fatty acid ester, polyethylene glycol fatty acid ester, pluronic nonionic surfactant; Silicone surfactants such as siloxane, silicone resin, etc., alone or in combination. Is used.
  • Typical commercial products of defoaming agents include B-series (manufactured by Asahi Denka Kogyo Co., Ltd.) such as Adecanate B and Adecanate B1068; SN deformers such as Formaster DL, Nopco NXZ, and SN deformers 113,325,308,368.
  • the content of the defoaming agent is preferably 0.01 to 10% by mass, particularly preferably 0.05 to 5% by mass, based on the aqueous dispersion of PTFE.
  • the first PTFE aqueous dispersion of the present disclosure may contain an antifoaming agent, but preferably does not. If it does not contain an antifoaming agent, it is advantageous in terms of cost. Further, if an antifoaming agent is contained, there is a risk of coloring when the PTFE aqueous dispersion is formed into a coating film.
  • the first PTFE aqueous dispersion of the present disclosure usually comprises an aqueous medium.
  • Aqueous medium means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains water, and water and a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower are used. And may be included.
  • the aqueous medium preferably contains 90% by mass or more of water, and more preferably 95% by mass or more.
  • the first PTFE aqueous dispersion of the present disclosure preferably has a stability retention time of 30 minutes or more at 60 ° C. It is more preferably 40 minutes or longer, still more preferably 50 minutes or longer, even more preferably 55 minutes or longer, particularly preferably 60 minutes or longer, and particularly preferably 65 minutes or longer.
  • the upper limit of the stability retention time is not particularly limited.
  • the stability retention time is a value measured by the following method. 100 g of PTFE aqueous dispersion is placed in a plastic cup having a diameter of 67 mm and an internal volume of 300 ml, immersed in a water tank at 60 ° C., and a stirring blade having a diameter of 50 mm (FIG.
  • the first PTFE aqueous dispersion of the present disclosure may contain other additives such as paint raw materials.
  • paint raw materials include pigments (constitution pigments, scaly pigments, etc.), pigment dispersants, thickeners, leveling agents, film-forming aids, solid lubricants, anti-settling agents, moisture absorbers, surface conditioners, etc.
  • Thixotropy-imparting agent viscosity modifier, anti-gelling agent, ultraviolet absorber, HALS (light stabilizer), matting agent, lubricant, color-coding inhibitor, anti-skin agent, anti-scratch agent, anti-rust agent , Antifungal agent, antibacterial agent, antioxidant, flame retardant, anti-dripping agent, antistatic agent, silane coupling agent, filler, carbon black, clay, talc, diamond, fluorinated diamond, tourmaline, jade, germanium, constitution Pigments, corundum, silica stone, chrysoberyl, topaz, beryl, garnet, quartz, pomegranate, zirconium oxide, zirconium carbide, barium sulfate, glass, various reinforcing materials, various bulking materials, conductive fillers, colloidal silica, gold, silver, Examples thereof include ordinary paint additives such as metal powders such as copper, platinum and stainless steel. It is more preferable that the first PTFE aqueous disper
  • the first PTFE aqueous dispersion of the present disclosure preferably contains a preservative.
  • the preservative include hydrogen peroxide, an organic bromine compound, an organic nitrogen sulfur compound, an organic iodine compound, an organic sulfur compound, and a triazine compound.
  • the organic iodine compound is used. It is preferably a compound or an organic nitrogen-sulfur compound. Specific examples of the organic iodine-based compound and the organic nitrogen-sulfur-based compound include the Dell Top series manufactured by Osaka Gas Chemical Co., Ltd.
  • the amount of the preservative added is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the PTFE aqueous dispersion.
  • the first PTFE aqueous dispersion of the present disclosure is obtained, for example, by adding a nonionic surfactant to the polymerized PTFE aqueous dispersion, or adjusting the solid content concentration of PTFE by concentration, dilution, or the like. Can be done. More specifically, the PTFE aqueous dispersion of the present disclosure can be produced by the following production method.
  • the first method for producing a PTFE aqueous dispersion of the present disclosure is a method for producing a PTFE aqueous dispersion.
  • Step A to obtain a dispersion containing PTFE by emulsion polymerization of TFE in the presence of a fluorine-containing anionic surfactant.
  • Step B in which the nonionic surfactant (1) is added to the dispersion obtained in Step A, The fluorine-containing anionic surfactant is removed from the dispersion obtained in step B, and the dispersion is further concentrated, or the dispersion obtained in step B is concentrated, and the fluorine-containing anionic surfactant is further removed.
  • step C which is a step
  • step D in which a nonionic surfactant (2) and a fluorine-free anionic surfactant are added to the dispersion obtained in step C.
  • a dispersion liquid obtained in step A it may be a dispersion liquid that has undergone step A, and is a dispersion liquid in which other treatments or the like are performed after step A. You may. The same applies to steps B to D.
  • an aqueous medium, a fluorine-containing anionic surfactant, a monomer and, if necessary, other additives are charged into the reaction apparatus, the contents of the reaction apparatus are stirred, and the reaction apparatus is subjected to a predetermined polymerization. It can be carried out by keeping the temperature at a temperature, then adding a predetermined amount of a polymerization initiator, and initiating the polymerization reaction. After the start of the polymerization reaction, a monomer, a polymerization initiator, a chain transfer agent, the above-mentioned surfactant and the like may be additionally added depending on the purpose. The surfactant may be added after the polymerization reaction has started.
  • the polymerization temperature and polymerization pressure in the emulsion polymerization are appropriately determined by the type of monomer used, the target molecular weight of PTFE, and the reaction rate.
  • the polymerization temperature is preferably 10 to 150 ° C.
  • the polymerization temperature is more preferably 30 ° C. or higher, further preferably 50 ° C. or higher. Further, 120 ° C. or lower is more preferable, and 100 ° C. or lower is further preferable.
  • the polymerization pressure is preferably 0.05 to 10 MPa.
  • the polymerization pressure is more preferably 0.3 MPa or more, further preferably 0.5 MPa or more. Further, 5.0 MPa or less is more preferable, and 3.0 MPa or less is further preferable.
  • the polymerization initiator is not particularly limited as long as it can generate radicals in the above polymerization temperature range, and known oil-soluble and / or water-soluble polymerization initiators can be used. Further, the polymerization can be started as a redox in combination with a reducing agent or the like. The concentration of the polymerization initiator is appropriately determined depending on the type of monomer, the target molecular weight of PTFE, and the reaction rate.
  • an oil-soluble radical polymerization initiator or a water-soluble radical polymerization initiator can be used as the polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide, for example, dialkyl peroxy carbonates such as diisopropyl peroxy dicarbonate and disec-butyl peroxy dicarbonate, and t-butyl peroxy.
  • Peroxyesters such as isobutyrate and t-butylperoxypivalate, dialkyl peroxides such as dit-butyl peroxide, and di ( ⁇ -hydro-dodecafluoroheptanoid) peroxides, di ( ⁇ -Hydro-tetradecafluoroheptanoid) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyl) peroxide, di (perfluorovaleryl) peroxide, di (Perfluorohexanoyl) peroxide, di (perfluoroheptanoyl) peroxide, di (perfluorooctanoyl) peroxide, di (perfluorononanoyl) peroxide, di ( ⁇ -chloro-hexafluorobutyryl) Peroxide, Di ( ⁇ -Chloro-Decafluorohexan
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfate, perboric acid, perchloric acid, perphosphoric acid, and percarbonate, potassium salts, and sodium salts. , T-butyl permalate, t-butyl hydroperoxide and the like. Reducing agents such as sulfites and sulfites may also be included, and the amount used may be 0.1 to 20 times that of the peroxide.
  • a redox initiator that combines an oxidizing agent and a reducing agent as the polymerization initiator.
  • the oxidizing agent include persulfate, organic peroxide, potassium permanganate, manganese triacetate, ammonium cerium nitrate, bromate and the like.
  • the reducing agent include sulfites, bisulfites, bromates, diimines, oxalic acid and the like.
  • persulfate include ammonium persulfate and potassium persulfate.
  • sulfites include sodium sulfite and ammonium sulfite.
  • a copper salt and an iron salt to the combination of the redox initiator.
  • the copper salt include copper (II) sulfate
  • the iron salt include iron (II) sulfate.
  • Examples of the redox initiator include potassium permanganate / oxalic acid, ammonium persulfate / persulfate / iron sulfate (II), ammonium persulfate / sulfite / iron sulfate (II), ammonium persulfate / sulfite, ammonium persulfate.
  • Iron (II) sulfate manganese triacetate / ammonium persulfate, ammonium cerium nitrate / ammonium persulfate, bromine salt / sulfite, bromine salt / bicarbonate salt, etc., and potassium permanganate / ammonium persulfate / ammonium persulfate / Ammonium persulfate / iron sulfate (II) is preferred.
  • a redox initiator either an oxidizing agent or a reducing agent may be charged in advance in the polymerization tank, and then the other may be continuously or intermittently added to initiate polymerization.
  • potassium permanganate / oxalic acid it is preferable to charge oxalic acid in the polymerization tank and continuously add potassium permanganate to the oxalic acid.
  • the amount of the polymerization initiator added is not particularly limited, but an amount (for example, several ppm to water concentration) or more that does not significantly reduce the polymerization rate is collectively, sequentially, or continuously at the initial stage of polymerization. And add it.
  • the upper limit is a range in which the reaction temperature may be raised while removing heat from the apparatus surface with the heat of the polymerization reaction, and a more preferable upper limit is a range in which the heat of the polymerization reaction can be removed from the apparatus surface.
  • a radical polymerization initiator can also be used as the polymerization initiator.
  • Peroxide is preferable as the radical polymerization initiator.
  • the radical polymerization initiator include the above-mentioned oil-soluble radical polymerization initiator and water-soluble radical polymerization initiator, and the above-mentioned water-soluble radical polymerization initiator is preferable.
  • the water-soluble radical polymerization initiator is more preferably a peroxide, and even more preferably a persulfate, an organic peroxide, or a mixture thereof.
  • the persulfate include ammonium persulfate and potassium persulfate.
  • the organic peroxide include disuccinic acid peroxide and diglutaric acid peroxide.
  • ammonium persulfate and peroxide disuccinate are used.
  • a water-soluble radical polymerization initiator is preferably used in an amount of 500 ppm or less with respect to an aqueous medium, and the amount is more preferably 400 ppm or less, further preferably 300 ppm or less, particularly preferably 200 ppm or less. Further, 5 ppm or more is preferable, 10 ppm or more is more preferable, and 20 ppm or more is further preferable.
  • the water-soluble radical polymerization initiator is preferably 0.1 ppm or more, more preferably 1.0 ppm or more, still more preferably 1.5 ppm or more, still more preferably 2.0 ppm or more, based on the aqueous medium.
  • ammonium persulfate of 2.5 ppm or more is preferable.
  • ammonium sulfate is preferably 50 ppm or less, more preferably 40 ppm or less, still more preferably 30 ppm or less.
  • disuccinic acid peroxide of preferably 10 ppm or more, more preferably 30 ppm or more, still more preferably 50 ppm or more is preferable with respect to the aqueous medium. Further, with respect to the aqueous medium, preferably 500 ppm or less, more preferably 300 ppm or less, still more preferably 200 ppm or less, disuccinic acid peroxide.
  • ammonium persulfate and peroxide disuccinate in combination, and the amount of ammonium persulfate and peroxide disuccinate when used in combination is a combination of the amounts of ammonium persulfate and peroxide disuccinate.
  • a radical polymerization initiator may be added continuously or intermittently after the polymerization is started.
  • chain transfer agent examples include esters such as dimethyl malonate, diethyl malonate, methyl acetate, ethyl acetate, butyl acetate and dimethyl succinate, as well as isopentan, methane, ethane, propane, isobutane, methanol, ethanol and isopropanol. , Acetone, various mercaptans, various halogenated hydrocarbons such as carbon tetrachloride, cyclohexane and the like.
  • At least one selected from the group consisting of alkanes and alcohols is preferable from the viewpoints of polymerization reactivity, cross-linking reactivity, availability, and the like.
  • the carbon number of the alkane is preferably 1 to 6, and more preferably 1 to 5.
  • the alcohol preferably has 1 to 5 carbon atoms, and more preferably 1 to 4 carbon atoms.
  • the chain transfer agent at least one selected from the group consisting of methane, ethane, propane, isobutane, methanol, ethanol, and isopropanol is particularly preferable.
  • the amount of the chain transfer agent is preferably 0.001 to 10000 ppm with respect to the aqueous medium.
  • the amount of the chain transfer agent is more preferably 0.01 ppm or more, further preferably 0.05 ppm or more, and particularly preferably 0.1 ppm or more with respect to the aqueous medium. Further, 1000 ppm or less is more preferable, and 500 ppm or less is further preferable with respect to the aqueous medium.
  • the chain transfer agent may be added collectively into the reaction apparatus before the start of the polymerization, may be added collectively after the start of the polymerization, or may be added in a plurality of times during the polymerization. Alternatively, it may be added continuously during the polymerization.
  • the step (A) is preferably a step of polymerizing TFE and a monomer copolymerizable with TFE.
  • the monomer copolymerizable with TFE include the above-mentioned modified monomer, and in particular, at least one monomer selected from the group consisting of PAVE, PFAE, perfluoroallyl ether, and cyclic monomer is preferable. , PAVE is more preferred.
  • examples of the perfluoro (alkyl vinyl ether) include perfluoro (methyl vinyl ether) [PMVE], perfluoro (ethyl vinyl ether) [PVE], perfluoro (propyl vinyl ether) [PPVE], and perfluoro ( Butyl vinyl ether) [PBVE] and the like are mentioned, and at least one selected from the group consisting of PMVE, PEVE and PPVE is preferable, and PPVE is more preferable.
  • the PFAE is not particularly limited, and examples thereof include (perfluorobutyl) ethylene (PFBE) and (perfluorohexyl) ethylene.
  • perfluoroallyl ether examples include, for example.
  • General formula: CF 2 CF-CF 2- ORf 12 (In the formula, Rf 12 represents a perfluoroorganic group.) Fluoromonomer represented by.
  • the Rf 12 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms or a perfluoroalkoxyalkyl group having 1 to 10 carbon atoms.
  • the cyclic monomer has the general formula (ii): (In the formula, X 2 and X 3 represent the same or different hydrogen atom or fluorine atom, Y represents -CR 1 R 2- , and R 1 and R 2 represent the same or different fluorine atom. , An alkyl group having 1 to 6 carbon atoms or a fluoroalkyl group having 1 to 6 carbon atoms.) Is preferable.
  • the vinyl heterocyclic body represented by the general formula (ii) for example, those in which X 2 and X 3 are fluorine atoms are preferable, and R 1 and R 2 are fluoroalkyl groups having 1 to 6 carbon atoms. Some are preferred.
  • X 2 and X 3 are fluorine atoms, and R 1 and R 2 are perfluoromethyl groups.
  • Perfluoro-2,2-dimethyl-1,3- Dioxol [PDD] is preferred.
  • examples of the fluorinated anion surfactant include the fluorinated anion surfactant described in the first PTFE aqueous dispersion of the present disclosure.
  • the fluorinated anion surfactant having a Log POW of 3.5 or less is used.
  • An agent, preferably a fluorine-containing anionic surfactant having a LogPOW of 3.4 or less may be used.
  • the step A is preferably a step of obtaining a dispersion of PTFE having a core-shell structure. For example, first polymerize TFE and, if necessary, a modified monomer to produce a core (PTFE or modified PTFE), then polymerize TFE and, if necessary, a modified monomer to produce a shell (PTFE or modified PTFE). Can be obtained by Further, the step A is a step of obtaining a dispersion liquid of modified polytetrafluoroethylene having a core-shell structure, and is selected from the group consisting of TFE and perfluoro (alkyl vinyl ether), (perfluoroalkyl) ethylene and cyclic monomers.
  • the step A-2 is more preferably a step of polymerizing TFE and a chain transfer agent.
  • the shell may be obtained by copolymerizing a modified monomer which is a monomer copolymerizable with TFE, or may be obtained by adding a chain transfer agent at the time of polymerization. , Both of these may be performed.
  • the shell is made by using a chain transfer agent and / or the following general formula (iii):
  • F 2 C CFO (CF 2 ) n1 X 1 (iii) (In the formula, X 1 represents a hydrogen atom or a fluorine atom, and n1 represents an integer of 1 to 6)
  • CX 4 X 5 CX 6 (CF 2 ) n2 F (iv) (In the formula, X 4 , X 5 and X 6 represent a hydrogen atom or a fluorine atom, at least one represents a fluorine atom, and n2 represents an integer of 1 to 5). It is preferably carried out by copolymerizing.
  • the chain transfer agent used in the production of the shell is not particularly limited as long as it reduces the molecular weight of PTFE constituting the shell, and is, for example, a non-peroxidized organic substance such as a water-soluble alcohol, a hydrocarbon and a fluorinated hydrocarbon. Examples thereof include compounds, water-soluble organic peroxides such as disuccinic acid peroxide [DSP], and / or persulfates such as ammonium persulfate [APS] and potassium persulfate [KPS].
  • the chain transfer agent may have at least one of a non-oxidized organic compound, a water-soluble organic peroxide and a persulfate. In the chain transfer agent, one or more non-oxidized organic compounds, water-soluble organic peroxides and persulfates can be used, respectively.
  • the chain transfer agent has good dispersibility and uniformity in the reaction system, and is a water-soluble alcohol having 1 to 4 carbon atoms, a hydrocarbon having 1 to 4 carbon atoms, and fluoride having 1 to 4 carbon atoms. It is preferably composed of at least one selected from the group consisting of hydrocarbons and the like, and at least one selected from the group consisting of methane, ethane, n-butane, isobutane, methanol, isopropanol, DSP, APS and KPS. It is more preferably composed of one, and further preferably composed of methanol and / or isobutane.
  • a fluoroolefin represented by the general formula (iv) is preferable.
  • the fluoroolefin include perfluoroolefins having 2 to 4 carbon atoms and hydrogen-containing fluoroolefins having 2 to 4 carbon atoms.
  • perfluoroolefin is preferable, and hexafluoropropylene [HFP] is particularly preferable.
  • the modifier unit derived from the modified monomer depends on the type of modified monomer used, but in terms of the stability of the dispersion liquid of PTFE, 0.001 to 0.5% by mass of the total primary particles constituting the PTFE.
  • the more preferable lower limit is 0.005% by mass
  • the more preferable upper limit is 0.2% by mass
  • the further preferable upper limit is 0.10% by mass.
  • HFP is used as the modified monomer in the shell, it is preferably 0.001 to 0.3% by mass of the total primary particles constituting PTFE, the more preferable lower limit is 0.005% by mass, and the more preferable upper limit is 0. It is 15% by mass.
  • the above-mentioned PTFE may be obtained by either using a chain transfer agent or copolymerizing a modifier, or by performing both copolymerization of a modified monomer and use of a chain transfer agent. ..
  • the PTFE uses methanol, isobutane, DSP and / or APS as the chain transfer agent when fluoro (alkyl vinyl ether) represented by the general formula (iii) is used as the modified monomer in the PTFE constituting the core, particularly PPVE.
  • fluoro (alkyl vinyl ether) represented by the general formula (iii) is used as the modified monomer in the PTFE constituting the core, particularly PPVE.
  • the step A is preferably a step of polymerizing TFE and a modified monomer to produce a core, and then polymerizing a monomer composition containing TFE in the presence of a chain transfer agent to produce a shell.
  • a modified monomer and chain transfer agent the modified monomer and chain transfer agent described for PTFE having a core-shell structure described above can be used.
  • the core-shell structure includes the above-mentioned structure, and is a core-shell structure having a modified PTFE core and a low molecular weight PTFE shell obtained by polymerizing a monomer composition containing TFE in the presence of a chain transfer agent. Is particularly preferred. As described above, a shell of low molecular weight PTFE can be obtained by polymerizing a monomer composition containing TFE in the presence of a chain transfer agent.
  • step A deionized water, a fluoroanionic surfactant (excluding PFOA or a salt thereof), and a stabilizing aid are charged into the reaction apparatus, oxygen is removed, TFE is added, and a polymerization initiator is added. It is preferable to include step 1, step 2 of adding a monomer copolymerizable with TFE, step 3 of adding a chain transfer agent, and step 4 of cooling after completion of polymerization to remove the stabilizing aid. .
  • the fluorine-containing anionic surfactant (excluding PFOA or a salt thereof) may be any of the above-mentioned fluorine-containing surfactants other than PFOA or a salt thereof, for example.
  • a fluorine-containing anionic surfactant having a Log POW of less than 3.5 is preferable, and a fluorine-containing anion surfactant having a Log POW of 3.4 or less is preferable.
  • the compound represented by the general formula (N 1 ) (excluding PFOA or a salt thereof), the compound represented by the general formula (N 2 ), and the compound represented by the general formula (N 3 ).
  • Perfluoroalkoxyfluorocarboxylic acid represented by, perfluoroalkylsulfonic acid (VI) represented by the general formula (VI), and ⁇ -H perfluorosulfonic acid represented by the general formula (VII).
  • VII perfluoroalkylalkylene sulfonic acid
  • VIII perfluoroalkylalkylene sulfonic acid
  • IX alkylalkylene carboxylic acid
  • IX alkylalkylene carboxylic acid
  • the fluorocarboxylic acid (X) to be used it is selected from the group consisting of the fluorocarboxylic acid (X) to be used, the alkoxyfluorosulfonic acid (XI) represented by the above general formula (XI), and the compound (XII) represented by the following general formula (XII). At least one is mentioned.
  • a compound represented by it is preferable number of carbon atoms of Rf m in the formula (N 1) is an integer of 3-6 .
  • m1 in the formula (N 1a ) is preferably an integer of 3 to 6.
  • n1 in the general formula (I) is preferably an integer of 3 to 6.
  • the fluorine-containing anionic surfactant a compound selected from the group consisting of a fluorine-containing carboxylic acid having 4 to 7 carbon atoms and which may have etheric oxygen and a salt thereof is particularly preferable.
  • the carbon number means the total carbon number in one molecule. Two or more kinds of the above-mentioned fluorine-containing anion surfactant may be used in combination.
  • a compound selected from the group consisting of a fluorine-containing carboxylic acid having 4 to 7 carbon atoms and having ethereal oxygen and a salt thereof is preferable.
  • a fluorine-containing carboxylic acid having ethereal oxygen is a compound having 4 to 7 carbon atoms, having ethereal oxygen in the middle of the carbon chain of the main chain, and having -COOH at the end.
  • the terminal -COOH may form a salt.
  • the number of etheric oxygens present in the middle of the main chain is 1 or more, preferably 1 to 4, and more preferably 1 or 2.
  • the number of carbon atoms is preferably 5 to 7.
  • the main chain has 6 to 7 carbon atoms, the main chain has 1 to 4 etheric oxygen, and the main chain has a linear, branched or cyclic shape. It is preferably a partially or fully fluorinated carboxylic acid or a salt thereof.
  • the "main chain” means a continuous chain having the maximum number of carbon atoms.
  • fluorine-containing surfactant F (CF 2) 7 COOM , F (CF 2) 5 COOM, H (CF 2) 6 COOM, CF 3 O (CF 2) 3 OCHFCF 2 COOM, C 3 F 7 - O-CF (CF 3 ) CF 2- O-CF (CF 3 ) COOM, CF 3 CF 2 CF 2 OCF (CF 3 ) COOM, CF 3 CF 2 OCF 2 CF 2 OCF 2 COOM, C 2 F 5- O -CF (CF 3 ) CF 2- O-CF (CF 3 ) COM, CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOM, CF 2 ClCF 2 CF 2 OCF (CF 3 ) CF 2 OCF 2 COOM , CF 2 ClCF 2 CF 2 OCF 2 CF (CF 3 ) OCF 2 COOM, CF 2 ClCF 2 CF 2 OCF 2 CF (CF 3 ) OCF 2 COOM, CF 2 ClCF (CF 3 ) OCF (CF
  • examples of the stabilizing aid include those described above, and paraffin wax is particularly preferable.
  • the paraffin wax may be liquid, semi-solid, or solid at room temperature, but saturated hydrocarbons having 12 or more carbon atoms are preferable.
  • the melting point of the paraffin wax is usually preferably 40 to 65 ° C, more preferably 50 to 65 ° C.
  • the polymerization initiator described in the step A can be used, and the amount of the polymerization initiator added is not particularly limited.
  • the above-mentioned modified monomer can be used, and for example, at least one monomer selected from the group consisting of PAVE, PFAE and cyclic monomers is preferable.
  • PAVE at least one selected from the group consisting of PMVE, PEVE and PPVE is preferable.
  • cyclic monomer a vinyl heterocyclic compound represented by the above general formula (II) is preferable.
  • the PFAE include (perfluorobutyl) ethylene (PFBE) and (perfluorohexyl) ethylene.
  • step 2 the monomer copolymerizable with TFE is preferably added before the start of polymerization or after the start of polymerization when the solid content concentration of PTFE is less than 5% by mass. As a result, a dispersion of PTFE having a modified PTFE core can be obtained.
  • the method for removing oxygen is not particularly limited, and a conventionally known method can be used.
  • the amount of the chain transfer agent added may be the amount described for the above step A.
  • p1 / p2 is preferably 0.60 or more.
  • P1 / p2 is more preferably 0.70 or more, further preferably 0.80 or more, and particularly preferably 0.90 or more.
  • the upper limit of p1 / p2 is not particularly limited, but may be, for example, 0.98.
  • the above p1 / p2 indicates the ratio of the core in the whole PTFE, and the ratio of the amount of TFE charged when the modified monomer or the chain transfer agent is charged during the polymerization to the total amount of TFE charged in the polymerization of PTFE. It shows.
  • the above p1 is the amount of TFE charged when the shell is charged, and p2 is the total amount of TFE charged.
  • the method for removing the cooling and stabilizing aid is not particularly limited, and a conventionally known method can be used.
  • an additive in addition to the surfactant and other compounds having a surfactant ability to be used as desired, an additive can be used to stabilize each compound.
  • the additive include a buffer, a pH adjuster, a stabilizing aid, a dispersion stabilizer and the like.
  • paraffin wax paraffin wax, fluorine-based oil, fluorine-based solvent, silicone oil and the like are preferable.
  • the stabilizing aid may be used alone or in combination of two or more. Paraffin wax is more preferable as the stabilizing aid.
  • the paraffin wax may be liquid, semi-solid, or solid at room temperature, but saturated hydrocarbons having 12 or more carbon atoms are preferable.
  • the melting point of the paraffin wax is usually preferably 40 to 65 ° C, more preferably 50 to 65 ° C.
  • the amount of the stabilizing aid used is preferably 0.1 to 12% by mass, more preferably 0.1 to 8% by mass, based on the mass of the aqueous medium (for example, deionized water) used. It is desirable that the stabilizing aid is sufficiently hydrophobic and completely separated from the PTFE aqueous emulsified solution after emulsion polymerization of TFE so that it does not become a contaminating component.
  • the aqueous medium is a reaction medium for polymerizing and means a liquid containing water.
  • the aqueous medium is not particularly limited as long as it contains water, and water and a fluorine-free organic solvent such as alcohol, ether, and ketone, and / or a fluorine-containing organic solvent having a boiling point of 40 ° C. or lower are used. And may be included.
  • the nonionic surfactant (1) added in the step B the nonionic surfactant represented by the above formula (i) can be used.
  • the nonionic surfactant (1) The following formula (1): R 4- O-A 2- H (1) (In the formula, R 4 is a linear or branched primary or secondary alkyl group having 8 to 18 carbon atoms having an average number of methyl groups of 2.0 or more per molecule, and A 2 is It is preferably a compound represented by a polyoxyalkylene chain having an average number of oxyethylene units of 7.0 to 12.0 and an average number of oxypropylene units of 0.0 to 2.0).
  • the above R 4 is expressed by the following general formula (1-1).
  • R 41 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms
  • R 42 represents an alkyl group having 1 to 17 carbon atoms
  • the total carbon number of R 41 and R 42 is 7 to 17 It is preferable that it is an alkyl group represented by).
  • R 41 a hydrogen atom or an alkyl group having 1 to 15 carbon atoms is more preferable, an alkyl group having a hydrogen atom or 1 to 12 carbon atoms is more preferable, and an alkyl group having a hydrogen atom or 1 to 10 carbon atoms is further preferable. preferable.
  • R 42 an alkyl group having 1 to 15 carbon atoms is more preferable, an alkyl group having 1 to 14 carbon atoms is further preferable, and an alkyl group having 1 to 13 carbon atoms is even more preferable.
  • R 4 preferably has an average methyl groups is an alkyl group having 8 to 18 carbon atoms is 2.5 or more.
  • the average number of methyl groups of R 4 is more preferably 3.0 or more, further preferably 3.5 or more, and even more preferably 4.0 or more.
  • the upper limit of the average methyl radix R 4 is preferably 12 or less, more preferably 10 or less, more preferably 8 or less.
  • R 4 is preferably a 2,6,8-trimethyl-4-nonyl group.
  • the average number of oxyethylene units is preferably 10.0 to 10.5. In this case, the average number of oxypropylene units is 0.0.
  • the removal of the fluorine-containing anionic surfactant in the step C is preferably carried out by bringing the aqueous dispersion into contact with the anion exchange resin.
  • the anion exchange resin in the step C is not particularly limited, but known ones can be used. Further, as a method of contacting with the anion exchange resin, a known method can be used.
  • the anion exchange resin for example, -N as a functional group + X - (CH 3) 3 group (. X is representing Cl or OH) strongly basic anion exchange resin having a, -N + X -
  • Known examples include a strongly basic anion exchange resin having a (CH 3 ) 3 (C 2 H 4 OH) group (X is the same as above). Specifically, those described in International Publication No. 99/62858, International Publication No. 03/020836, International Publication No. 2004/078836, International Publication No. 2013/027850, International Publication No. 2014/084399, etc. Can be mentioned.
  • the above-mentioned "mixed bed composed of a cation exchange resin and an anion exchange resin” is not particularly limited, and when both are filled in the same column, when both are filled in different columns, both are filled. This includes the case where it is dispersed in an aqueous dispersion.
  • the removal of the fluorine-containing anionic surfactant in the step C may be carried out by concentration. As described in International Publication No. 2005/042593, the concentration step may be concentrated twice or more. Therefore, in step C, the dispersion liquid obtained in step B may be concentrated twice or more. Further, the step C is preferably performed by bringing the aqueous dispersion into contact with the anion exchange resin.
  • a known method is adopted as the method of concentration in the above step C.
  • Specific examples thereof include those described in International Publication No. 2007/046482 and International Publication No. 2014/084399.
  • Examples thereof include phase separation, centrifugal sedimentation, cloud point concentration, electroconcentration, electrophoresis, filtration treatment using ultrafiltration, filtration treatment using a reverse osmosis membrane (RO membrane), nanofiltration treatment and the like.
  • the above concentration can concentrate the PTFE concentration to 50 to 70% by mass depending on the application.
  • a nonionic surfactant may be added in step C because the concentration may impair the stability of the dispersion.
  • the nonionic surfactant in step C is the same as the first PTFE aqueous dispersion of the present disclosure.
  • a dispersion stabilizer other than the nonionic surfactant may be used.
  • the total amount of the dispersion stabilizer is a concentration of 0.5 to 20% by mass with respect to the solid content mass of PTFE. If it is less than 0.5% by mass, the dispersion stability may be inferior, and if it exceeds 20% by mass, there is no dispersion effect commensurate with the abundance and it is not practical.
  • the more preferable lower limit of the dispersion stabilizer is 2% by mass, and the more preferable upper limit is 12% by mass.
  • cloud point concentration is preferable.
  • the cloud point concentration is preferably carried out, for example, by heating at a temperature 5 ° C. lower than the cloud point of the nonionic surfactant. More specifically, it is preferable that the nonionic surfactant is heated at a temperature 5 ° C. lower than the cloud point of the nonionic surfactant and then allowed to stand to separate into a supernatant phase and a concentrated phase.
  • the above concentration may be performed only once or twice or more.
  • Step D is a step of adding the nonionic surfactant (2) and the fluorine-free anionic surfactant to the dispersion obtained in Step C.
  • the order in which the nonionic surfactant (2) and the fluorine-free anionic surfactant are added is not limited, and after the nonionic surfactant (2) is added, the fluorine-free anionic surfactant is added.
  • the nonionic surfactant (2) may be added after adding the fluorine-free anionic surfactant, or the fluorine-containing anionic surfactant and the nonionic surfactant may be added at the same time. You may.
  • nonionic surfactant (2) and the fluorine-free anionic surfactant may be added a plurality of times, respectively, and the nonionic surfactant (2) and the fluorine-free anionic surfactant may be added. A plurality of additions may be alternately performed.
  • the nonionic surfactant (2) includes the following formula (2): R 5- OA 3- H (2) (Wherein, R 5 is 1 linear or branched primary or secondary alkyl group having an average methyl groups is 2.0 or more in a carbon number of 8 to 18 per molecule, A 3 is It is a polyoxyalkylene chain having an average number of oxyethylene units of 10.0 to 12.0)).
  • R 5 is the following general formula (2-1): CHR 51 R 52- (2-1) (In the formula, R 51 represents a hydrogen atom or an alkyl group having 1 to 16 carbon atoms, R 52 represents an alkyl group having 1 to 17 carbon atoms, and the total carbon number of R 51 and R 52 is 7 to 17 It is preferable that it is an alkyl group represented by). As the R 51 , a hydrogen atom or an alkyl group having 1 to 15 carbon atoms is more preferable, a hydrogen atom or an alkyl group having 1 to 12 carbon atoms is further preferable, and a hydrogen atom or an alkyl group having 1 to 10 carbon atoms is further preferable. preferable.
  • R 52 an alkyl group having 1 to 15 carbon atoms is more preferable, an alkyl group having 1 to 14 carbon atoms is further preferable, and an alkyl group having 1 to 13 carbon atoms is even more preferable.
  • the R 5 preferably has an average methyl groups is an alkyl group having 8 to 18 carbon atoms is 2.5 or more.
  • the average number of methyl groups of R 5 is more preferably 3.0 or more, further preferably 3.5 or more, and even more preferably 4.0 or more.
  • the upper limit of the average number of methyl groups of R 5 is preferably 12 or less, more preferably 10 or less, and even more preferably 8 or less.
  • R 5 represents preferably a 2,6,8-trimethyl-4-nonyl group.
  • the average number of oxyethylene units is preferably 10.1 to 11.0. In this case, the average number of oxypropylene units is 0.0.
  • the step D is a step of adding the nonionic surfactant (2) so that the concentration of the nonionic surfactant in the dispersion is 4 to 12% by mass with respect to the polytetrafluoroethylene. Is preferable. More preferably, it is added so as to be 5% by mass or more, more preferably it is added so as to be 10% by mass or less, and further preferably it is added so as to be 8% by mass or less. It is to be.
  • Examples of the fluorine-free anionic surfactant added in step D include alkylsulfonate, alkylsulfate, alkylarylsulfate and salts thereof; fatty acids (aliphatic carboxylic acids) and salts thereof; alkyl phosphates and alkylaryl phosphates. Esters or salts thereof; etc. may be mentioned, but among them, alkyl sulfonates, alkyl sulfates, aliphatic carboxylic acids or salts thereof are preferable. Among them, at least one selected from the group consisting of alkyl sulfates and salts thereof, and fatty acids and salts thereof is more preferable.
  • alkyl sulfate and a salt thereof ammonium lauryl sulfate, sodium lauryl sulfate and the like are preferable.
  • fatty acid and its salt succinic acid, decanoic acid, undecanoic acid, undecenoic acid, lauric acid, hydrododecanoic acid, or salts thereof are preferable.
  • the content of the fluorine-free anionic surfactant is preferably 50 to 5000 ppm with respect to PTFE.
  • As the lower limit of the amount of the fluorine-free anionic surfactant added 50 ppm is more preferable, 100 ppm is further preferable, and 200 ppm is further more preferable. If the amount added is too small, the viscosity adjusting effect is poor.
  • As the upper limit of the amount of the fluorine-free anionic surfactant added 4000 ppm is more preferable, 3000 ppm is further preferable, 2000 ppm is further more preferable, and 1000 ppm is particularly preferable. If the amount added is too large, the viscosity may increase, especially at a high temperature. In addition, foaming may increase.
  • the production method of the present disclosure further preferably includes a step of adding a preservative to the aqueous dispersion.
  • a preservative include those described in the aqueous dispersion of the present disclosure.
  • the production method of the present disclosure further preferably includes a step of adding a coating material.
  • the paint raw material include additives that can be added to the paint. Specifically, pigments (constitution pigments, scaly pigments, etc.), pigment dispersants, thickeners, leveling agents, film-forming aids, solid lubricants, sedimentation inhibitors, water absorbers, surface conditioners, thixotropy.
  • the above-mentioned production method may also include a step of recovering the PTFE aqueous dispersion obtained by polymerization.
  • the present disclosure also provides a PTFE aqueous dispersion obtained by the production method of the present disclosure.
  • the characteristics described in the above-mentioned first PTFE aqueous dispersion of the present disclosure can be appropriately adopted.
  • the concentration of the nonionic surfactant is preferably 4% by mass or more, more preferably 5% by mass or more with respect to PTFE. , 12% by mass or less, more preferably 10% by mass or less, further preferably 8% by mass or less, and even more preferably 7% by mass or less.
  • the cloud point of the nonionic surfactant is preferably 60 ° C. or higher, more preferably 63 ° C. or higher, still more preferably 65 ° C. or higher. It is preferably 80 ° C. or lower, more preferably 76 ° C. or lower, and even more preferably 73 ° C. or lower.
  • the PTFE aqueous dispersion obtained by the production method of the present disclosure preferably has an HLB of a nonionic surfactant of 13.00 to 15.00, more preferably 13.30 or more, and 13. It is more preferably 50 or more.
  • the content of the fluorine-containing anionic surfactant in the PTFE aqueous dispersion obtained by the production method of the present disclosure is preferably 1.0 ppm or less with respect to the aqueous dispersion.
  • the coated article illustrated below can be produced by coating the PTFE aqueous dispersion obtained by the production method of the present disclosure as it is or by adding an additive if necessary.
  • the covering article include frying pans, grill pans, pressure cookers, various other pans, rice cookers, rice cake making machines, ovens, hot plates, baking molds, kitchen utensils, gas tables, and other cooking utensils; electric pots, ice trays, etc.
  • Food and beverage containers such as; kneading rolls, rolling rolls, conveyors, hoppers and other food industry parts; office automation equipment [OA] rolls, OA belts, OA separation claws, paper making rolls, calendar rolls for film manufacturing, etc.
  • the first PTFE aqueous dispersion of the present disclosure and the PTFE aqueous dispersion obtained by the production method of the present disclosure (hereinafter, when described as "the aqueous dispersion of the present disclosure" without particular notice, the first PTFE of the present disclosure.
  • the application of the aqueous dispersion is not particularly limited, and the aqueous dispersion is applied as it is, and is applied on a substrate and dried.
  • the first PTFE aqueous dispersion of the present disclosure is preferably an aqueous coating.
  • the first PTFE aqueous dispersion of the present disclosure is particularly suitable as a water-based coating material because of its low viscosity at high temperatures.
  • the water-based paint contains PTFE, an aqueous medium and a nonionic surfactant, and may optionally contain the above-mentioned preservatives and paint raw materials.
  • the first PTFE aqueous dispersion of the present disclosure may be prepared by blending known pigments, thickeners, dispersants, defoamers, antifreeze agents, film forming aids and other compounding agents, or even other compounds.
  • the polymer compound can be combined and used as a water-based coating film.
  • the present disclosure is also a coating film obtained by applying the first aqueous dispersion of the present disclosure.
  • the coating film of the present disclosure can be produced by a conventionally known method except that the aqueous dispersion liquid of the present disclosure is used.
  • the coating film of the present disclosure can be obtained by applying the aqueous dispersion liquid of the present disclosure to a base material.
  • the material of the base material is not particularly limited, and examples thereof include simple metals such as iron, aluminum, stainless steel, and copper, and metals such as alloys thereof; non-metallic inorganic materials such as enamel, glass, and ceramics. Examples of the alloys include stainless steel and the like.
  • metal is preferable, and aluminum or stainless steel is more preferable.
  • the first PTFE aqueous dispersion of the present disclosure is particularly suitable as a water-based coating material for impregnation. Since the impregnation process requires a firing step, the temperature tends to be high environmentally, but the PTFE aqueous dispersion of the present disclosure has good permeability to the fiber substrate even in a high temperature environment and can be uniformly impregnated. ..
  • the present disclosure is also an impregnated film obtained by impregnating the aqueous dispersion of the present disclosure.
  • the impregnated film of the present disclosure can be produced by a conventionally known method except that the aqueous dispersion liquid of the present disclosure is used.
  • the impregnated membrane of the present disclosure can be obtained by impregnating the porous support with the first aqueous dispersion of PTFE of the present disclosure and then removing the aqueous medium.
  • the aqueous medium can usually be removed by drying at room temperature and / or under heating.
  • the impregnated film obtained by impregnating the first PTFE aqueous dispersion of the present disclosure is preferably dried at least under heating.
  • the "drying under heating" in the impregnation can be performed, for example, at 80 to 400 ° C.
  • the porous support is not particularly limited as long as it has a porous structure, and may be any organic or inorganic material, and is composed of, for example, glass wool, ceramic, alumina, a porous film made of PTFE, carbon, a non-woven fabric, and various polymers. Things etc. can be mentioned.
  • the first PTFE aqueous dispersion of the present disclosure is also used as an additive, a binder that suppresses the loss of the active material of the electrode, a binder, a compound such as an anti-drip agent, and prevents the flying of earth and sand, dust, and the like. It can be used for dust control treatment and the like.
  • the first PTFE aqueous dispersion of the present disclosure is also preferably used as a dust control treatment agent.
  • the dust control treatment agent is a method of fibrillating PTFE by mixing it with a dust generating substance and applying a compression-shearing action to the mixture at a temperature of 20 to 200 ° C. to suppress dust of the dust generating substance, for example. It can be used in methods such as Japanese Patent No. 2827152 and Japanese Patent No. 2538783.
  • the above-mentioned PTFE aqueous dispersion can be suitably used for, for example, the dust control agent composition described in International Publication No. 2007/004250, and is also suitable for the dust control treatment method described in International Publication No. 2007/000812. Can be used for.
  • the dust control treatment agent includes building materials, soil stabilizers, solidifying materials, fertilizers, incineration ash and harmful substances in landfills, explosion-proofing, cosmetics, sand for pet excretion represented by cat sand, etc. It is suitably used for the dust control treatment of.
  • the present inventors have diligently studied to find a composition that simultaneously satisfies the prevention of mud cracks and the prevention of coloring during firing.
  • a method of adding a high boiling point solvent such as triethanolamine or diethanolamine and a long-chain fatty acid such as caprylic acid, capric acid, or oleic acid which is liquid at room temperature and is non-volatile has been known.
  • a high boiling point solvent or long-chain fatty acid is added to an amount that prevents mud cracks, these will react during firing and change to a substance that colors the coating film, so an oxidizing agent must be added. It doesn't become.
  • Another method is to add a water-soluble high boiling point solvent such as butyl diglycol or dipropylene glycol methyl ether that dissolves the acrylic resin particles, and dissolve the acrylic resin particles during drying to prevent mud cracks and heat shrinkage at the same time.
  • a water-soluble high boiling point solvent such as butyl diglycol or dipropylene glycol methyl ether that dissolves the acrylic resin particles, and dissolve the acrylic resin particles during drying to prevent mud cracks and heat shrinkage at the same time.
  • the present inventors have studied that a high boiling point polyhydric alcohol and depolymerizable acrylic resin particles are blended in a specific ratio in a PTFE aqueous dispersion in which PTFE resin particles are dispersed with a nonionic surfactant.
  • a PTFE aqueous dispersion in which PTFE resin particles are dispersed with a nonionic surfactant.
  • the present disclosure also discloses (A) PTFE resin particles, (B) a high boiling point polyhydric alcohol containing no nitrogen atom and having a boiling point of 100 ° C. or higher and having two or more hydroxyl points, and (C) a temperature at which it decomposes and vaporizes. Contains depolymerizable acrylic resin particles within a temperature range up to the decomposition temperature of the PTFE resin, (D) a nonionic surfactant, and (E) an aqueous medium.
  • the blending amounts of the high boiling point polyhydric alcohol (B) and the depolymerizable acrylic resin particles (C) are 5 to 18 parts by mass and 5 to 25 parts by mass, respectively, with respect to 100 parts by mass of the PTFE resin (A). It also relates to a PTFE aqueous dispersion containing no oxidizing agent and an amine-based solvent (hereinafter, also referred to as a second PTFE aqueous dispersion of the present disclosure).
  • the PTFE resin particles used in the second PTFE aqueous dispersion of the present disclosure may be the same PTFE as the first PTFE aqueous dispersion of the present disclosure, and may be a homopolymer of TFE.
  • modified PTFE containing 99.0% by mass or more of TFE-based polymerization units and 1.0% by mass or less of modified monomer-based polymerization units is preferable.
  • the content of the modified monomer constituting the modified PTFE is preferably in the range of 0.00001 to 1.0% by mass with respect to PTFE.
  • the lower limit 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is even more preferable, 0.010% by mass is particularly preferable, and 0.030% by mass is even more particularly preferable. preferable.
  • the upper limit 0.90% by mass is preferable, 0.50% by mass is more preferable, 0.40% by mass is further preferable, and 0.30% by mass is further more preferable.
  • the modified PTFE contains PPVE as a modified monomer
  • the lower limit of the amount of the polymerization unit based on PPVE in the modified PTFE is preferably 0.17% by mass. Further, it is further preferable that the modified PTFE has a core-shell structure.
  • the action of the high boiling point polyhydric alcohol used in the second PTFE aqueous dispersion of the present disclosure is an action of preventing the occurrence of mud cracks when the aqueous dispersion is applied and then dried.
  • the applied aqueous dispersion composition is usually dried at room temperature to 150 ° C. At that time, water evaporates first, but if it does not evaporate at the drying temperature or if a high boiling point polyhydric alcohol whose evaporation rate is slower than water is not used in combination, the water evaporates before the degradable acrylic resin particles soften. As a result, gaps are created between the resin particles, which causes mud cracks.
  • the high boiling point polyhydric alcohol and the depolymerizable acrylic resin particles coexist depending on the drying temperature and the type of the high boiling point polyhydric alcohol (particularly the boiling point). 2)
  • the high boiling point polyhydric alcohol hardly remains, and the depolymerizable acrylic resin is melted to fix the PTFE resin particles, and (3) both of these states are in a state of being uncertain.
  • the polyhydric alcohol used in the second PTFE aqueous dispersion of the present disclosure does not contain a nitrogen atom and has a boiling point of 100 ° C. or higher having two or more hydroxyl groups (however, thermal melting of the depolymerizable acrylic resin is started). Higher than temperature (softening temperature)).
  • a polyhydric alcohol containing a nitrogen atom is not preferable because it causes coloring due to thermal decomposition during firing.
  • the reason why the boiling point is set to 100 ° C. or higher (however, it is higher than the thermal melting start temperature (softening temperature) of the depolymerizable acrylic resin) is that it must not evaporate faster than water during drying, and after drying. This is to leave it in the coating film.
  • the boiling point is equal to or higher than the drying temperature and further to 150 ° C. or higher, particularly 200 ° C. or higher.
  • the preferred number of hydroxyl groups is 2-3. Most of the hydroxyl groups having 4 or more hydroxyl groups are solid at room temperature, and it is difficult to expect the effect of preventing mud cracks.
  • the polyhydric alcohol used in the second PTFE aqueous dispersion of the present disclosure needs to be finally evaporated or decomposed and volatilized by heating at the time of firing described later. Therefore, it is preferable that the boiling point or the thermal decomposition temperature is equal to or lower than the melting temperature of the PTFE resin, preferably 340 ° C or lower.
  • Suitable polyhydric alcohols include, for example, ethylene glycol (boiling point: 198 ° C), 1,2-propanediol (188 ° C), 1,3-propanediol (214 ° C), 1,2-butanediol (190 ° C).
  • glycerin One or more such as (290 ° C.), 2-ethyl-2-hydroxymethyl-1,3-propanediol (295 ° C.), 1,2,6-hexanetriol (178 ° C./5 mmHg) and the like. .. Among them, glycerin is advantageous in terms of price and safety.
  • an organic solvent other than the polyhydric alcohol may be used in combination as long as the effect of the second PTFE aqueous dispersion of the present disclosure is not impaired.
  • organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents having 9 to 11 carbon atoms.
  • the blending amount of the polyhydric alcohol (B) is 5 to 18 parts, preferably 7 to 15 parts, and particularly preferably 7 to 12 parts with respect to 100 parts of the PTFE resin particles (solid content). If it is less than 5 parts, the effect of preventing the occurrence of mud cracks is weakened, and if it exceeds 18 parts, the coating film may become cloudy.
  • the depolymerizable acrylic resin particles used in the second PTFE aqueous dispersion of the present disclosure are the PTFE resin particles when the second PTFE aqueous dispersion of the present disclosure is applied, dried and then fired. Since it gradually decomposes while maintaining the binder effect on the resin, the occurrence of shrinkage cracks is prevented. Therefore, the depolymerizable acrylic resin particles are melted below the melting temperature of the PTFE resin and the depolymerization has started, and at least a part of them remains at the melting temperature of the PTFE resin particles and almost decomposes and volatilizes at the firing temperature. It is necessary to be.
  • the remaining polyhydric alcohol is first evaporated or decomposed and volatilized, and the depolymerizable acrylic resin particles are thermally melted.
  • the polyhydric alcohol needs to remain until the thermal melting of the depolymerizable acrylic resin particles is completed.
  • the temperature rises further the evaporation or decomposition of the residual polyhydric alcohol is completed, and the depolymerization of the hot-melted depolymerizable acrylic resin begins.
  • the depolymerization of the depolymerizable acrylic resin starts gradually from a temperature equal to or lower than the melting temperature of the PTFE resin, but is not yet completed at the temperature at which the PTFE resin particles begin to thermally melt (melting temperature), and the temperature is the melting temperature of the PTFE resin. It is completed when the firing temperature exceeds. As a result, it is possible to prevent a large amount of depolymerizable acrylic resin from remaining in the obtained PTFE resin coating film. Since this depolymerizable acrylic resin has viscosity at the time of heat melting and the depolymerization progresses gradually, rapid shrinkage does not occur even when the PTFE resin particles are melted and fused, and heat shrinkage cracks are generated. Can be suppressed.
  • the depolymerizable acrylic resin particles remain until the temperature at which the PTFE resin particles start melting (melting temperature), and decompose and volatilize at the firing (processing) temperature.
  • the melting temperature of the PTFE resin usually 240 to 345 ° C.
  • 5% or more, particularly 10% or more, at least 50%, preferably at least 20% remains, and exceeds the firing (processing) temperature (usually the melting temperature of the PTFE resin). It is preferable that only 10% or less, particularly 5% or less remains at a temperature up to 415 ° C., preferably 360 to 400 ° C.), and substantially no residue at the completion of firing.
  • the depolymerization (decomposition) temperature of the depolymerizable acrylic resin particles is about 200 ° C. or higher and lower than the firing (processing) temperature of the PTFE resin, particularly lower than the melting temperature of the PTFE resin.
  • the depolymerization (pyrolysis) temperature exceeds the melting temperature of the PTFE resin and a large amount of decomposition gas is generated, coating film defects such as pinholes are likely to occur in the obtained coating film.
  • the depolymerizable acrylic resin remaining about 25 to 50% in the temperature range of 300 to 320 ° C. and about 20 to 10% remaining in the temperature range of 330 to 345 ° C. prevents shrinkage cracks. It is suitable from the viewpoint of the balance between the action and the anti-coloring action, and any depolymerizable acrylic resin particles satisfying this condition can be used.
  • Depolymerizability is generally "Polym. Eng. Soi., Vol. 6, p273 (1966)", “Plast. Massy., Vol. 75, p48 (1971)” and “Deterioration of Polymer Materials” Corona.
  • R is an alkyl group or a hydroxyalkyl group having 1 to 5 carbon atoms
  • a methacrylate-based homopolymer or copolymer requiring a methacrylate-based monomer is preferable.
  • the methacrylate-based monomer for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, dimethylpropyl methacrylate, butyl methacrylate, and pentyl metacrate are preferably adopted.
  • a depolymerizable acrylic resin containing butyl methacrylate as a monomer is preferable because the glass transition temperature is low and the depolymerizability (decomposability) is good.
  • a monomer having a carboxyl group or a hydroxyl group may be appropriately used as a co-monomer.
  • the depolymerizable acrylic resin particles fine particles (depolymerizable acrylic resin emulsion) produced by a method such as emulsion polymerization can be used as they are, and the average particle size thereof is 0.1 to 100 ⁇ m, particularly 0.2. It is preferably about 1 ⁇ m. If the average particle size is less than 0.1 ⁇ m, mud cracks tend to occur, and if it exceeds 100 ⁇ m, painting tends to be difficult.
  • the blending amount of the depolymerizable acrylic resin particles (C) is 5 to 25 parts, preferably 7 to 20 parts, and particularly preferably 10 to 15 parts with respect to 100 parts of the PTFE resin particles (solid content). If it is less than 5 parts, it becomes difficult to form a film of the PTFE resin, and if it exceeds 25 parts, the coating film may be colored.
  • the depolymerizable acrylic resin particles are preferably mixed with other components in the form of an emulsion.
  • the nonionic surfactant used in the second PTFE aqueous dispersion of the present disclosure is the same as the nonionic surfactant described in the first PTFE aqueous dispersion of the present disclosure.
  • R 1 O- [CH 2 CH 2 O] n- [R 2 O] m R 3 (6)
  • R 1 represents a linear or branched aliphatic hydrocarbon group having at least 6 carbon atoms, preferably 8 to 18 carbon atoms
  • R 2 is 3 or 4 carbon atoms.
  • R 3 represents hydrogen, a C 1 to C 3 alkyl group, or a C 1 to C 3 hydroxyalkyl group
  • n has a value of 0 to 40
  • m is 0.
  • non-fluorinated non-ionic surfactant having a value of ⁇ 40 and the sum of n + m is at least 2.
  • specific examples include, for example, the polyoxyalkylene alkyl ether-based nonionic surfactant of the above formula (6), and a particularly preferable non-phenol type nonionic surfactant is the formula (7).
  • Inorganic material include, in addition to pigments, mica particles, pigment-coated mica particles, metal flakes, or two or more of these inorganic fillers. These are blended in an amount within a range that does not impair the effect of the second PTFE aqueous dispersion of the present disclosure.
  • pigment various conventionally known pigments can be used, and examples thereof include titanium oxide, carbon black, and red iron oxide.
  • carbon black which has conventionally been decolorized due to the influence of an oxidizing agent, is also excellent in that it can be used with confidence.
  • the inorganic filler imparts a function of improving wear resistance, and among these, mica is preferable in that it gives an aesthetic appearance.
  • the particle size of the mica particles is 10 to 100 ⁇ m, preferably 15 to 50 ⁇ m. If the particle size is less than 10 ⁇ m, the wear resistance tends to decrease and the brilliance tends to decrease, and if it exceeds 100 ⁇ m, the non-adhesiveness tends to decrease.
  • the mica particles coated with the pigment are obtained by adhering pigments such as TiO 2 and Fe 2 O 3 to the mica particles by a sintering vapor deposition method or the like.
  • metal flakes examples include flakes such as titanium, zirconium, aluminum, zinc, antimony, tin, iron, and nickel, but titanium and zirconium are preferable from the viewpoint of rust resistance.
  • size a size within the range normally used for paint can be used.
  • various known additives can be blended as long as the effects of the second PTFE aqueous dispersion of the present disclosure are not impaired.
  • antifoaming agents desiccants, thickeners, leveling agents, anti-repellent agents and the like can be mentioned.
  • the defoaming agent include toluene, xylene, non-polar solvents such as hydrocarbons having 9 to 11 carbon atoms, and silicone oil.
  • the desiccant include cobalt oxide.
  • the thickener include methyl cellulose, polyvinyl alcohol, a carboxylated vinyl polymer, and an aqueous solution of sodium lauryl sulfate.
  • the second PTFE aqueous dispersion of the present disclosure preferably has a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the second PTFE aqueous dispersion of the present disclosure has a viscosity at 55 ° C. of 50 mPa ⁇ s or less, and is particularly suitable for applications used at high temperatures such as in the field of impregnating fiber substrates. Since the impregnation process requires a firing process, the temperature tends to be high environmentally.
  • the second PTFE aqueous dispersion of the present disclosure has good permeability to the fiber substrate even in a high temperature environment and can be uniformly impregnated.
  • the lower limit of the viscosity at 55 ° C. is not particularly limited, but may be, for example, 10 mPa ⁇ s or more.
  • the second PTFE aqueous dispersion of the present disclosure preferably has a ratio [viscosity at 55 ° C./viscosity at 25 ° C.] of 4.00 or less.
  • the second PTFE aqueous dispersion of the present disclosure is particularly suitable for impregnation processing of fiber substrates. In the impregnation process, there is a firing process, so the temperature tends to be high environmentally. Since the amount of PTFE adhered to the fiber substrate during the impregnation process is easily affected by the viscosity of the aqueous dispersion, an aqueous dispersion having a low viscosity-temperature dependence is required.
  • the first PTFE aqueous dispersion of the present disclosure is excellent in that the viscosity-temperature dependence is low and the quality is stable because the above ratio is 4.00 or less.
  • the ratio [viscosity at 55 ° C./viscosity at 25 ° C.] is more preferably 3.00 or less, further preferably 2.00 or less, further preferably 1.50 or less, and particularly further preferably 1.20 or less. It is preferable, 1.10 or less is particularly preferable, and 1.00 or less is particularly particularly preferable.
  • the viscosity at 25 ° C. is a value measured using a B-type rotational viscometer under the conditions shown in Examples described later.
  • the viscosity at 55 ° C. is a value measured under the same conditions as the viscosity measurement at 25 ° C. after raising the liquid temperature to 55 ° C. and holding for 60 minutes. In the case of 80 mPa ⁇ s or more, the viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of the measurement, and the average value thereof is adopted.
  • the second PTFE aqueous dispersion of the present disclosure preferably has a viscosity-temperature transition [VTT] of more than 55 ° C, more preferably 60 ° C or higher. By exceeding 55 ° C, there is a technical significance that it is not necessary to change the processing conditions at 25 ° C and 55 ° C. VTT represents the viscosity-temperature dependence of the PTFE aqueous dispersion. The VTT was measured by raising the PTFE aqueous dispersion at 25 ° C., 35 ° C., 45 ° C., and 55 ° C. to each temperature for 60 minutes, and then using a B-type rotational viscometer to measure under the conditions shown in Examples described later. Obtained by doing.
  • VTT viscosity-temperature transition
  • the VTT point is the temperature at which the viscosity reaches the same value as when measured at 25 ° C. If the viscosity is 80 mPa ⁇ s or more, a viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of measurement, and the average value thereof is adopted.
  • the second PTFE aqueous dispersion of the present disclosure has a solid content concentration of the PTFE resin of 50 to 70% by mass.
  • the solid content concentration is preferably 55% by mass or more, more preferably 57% by mass or more. Further, 65% by mass or less is preferable, and 60% by mass or less is more preferable. Even if the solid content concentration of the PTFE resin is in the above range, the second aqueous dispersion of the present disclosure can have a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the second PTFE aqueous dispersion of the present disclosure does not substantially contain a fluorine-containing surfactant.
  • substantially free of a fluorine-containing surfactant means that the content of the fluorine-containing surfactant with respect to the aqueous PTFE aqueous dispersion is 1.0 ppm or less.
  • the second PTFE aqueous dispersion of the present disclosure has a low viscosity at high temperatures and excellent mechanical stability at high temperatures, even though it does not substantially contain a fluorine-containing surfactant. Can be done.
  • the content of the fluorine-containing surfactant is preferably 700 ppb or less, more preferably 600 ppb or less, and further preferably 500 ppb or less.
  • the content of the fluorine-containing surfactant in the second PTFE aqueous dispersion of the present disclosure can be measured by the same method as that described for the first PTFE aqueous dispersion of the present disclosure.
  • the nonionic surfactant is added to the polymerized PTFE aqueous dispersion and concentrated.
  • the amount of the fluorine-containing surfactant can be set in the above range by the above.
  • the fluorine-containing surfactant include the fluorine-containing anionic surfactant described in the first PTFE aqueous dispersion of the present disclosure.
  • the second PTFE aqueous dispersion of the present disclosure can be prepared according to the method described above. It can also be done in the usual way.
  • C if necessary, the inorganic material (F), and other additives can be added and mixed under stirring, and the mixture can be prepared by stirring and mixing at 5 to 30 ° C. for 10 to 40 minutes. Further, the solid content concentration may be adjusted by adding an aqueous medium (E) or the like.
  • the second PTFE aqueous dispersion of the present disclosure is useful as a paint, particularly a topcoat paint.
  • a paint particularly a topcoat paint.
  • various painting methods similar to the conventional ones can be adopted.
  • the dipping method, the spray method, the roll coating method, the doctor blade method, the flow coating method and the like can be mentioned.
  • the second PTFE aqueous dispersion of the present disclosure may be directly coated on the base material, but it is desirable to provide a primer layer and form it as a topcoat layer in order to improve adhesion.
  • the base material is not particularly limited, but for example, various metals, enamel, glass, and various ceramics can be used, and it is preferable to roughen the surface by a sandblasting method or the like in order to improve adhesion.
  • the coating composition applied to the substrate is then dried.
  • the second PTFE aqueous dispersion of the present disclosure is characterized in that mud cracks do not occur during this drying stage. Drying may be carried out under normal conditions and varies depending on the boiling point of the polyhydric alcohol used, but if it is carried out at room temperature to 150 ° C., preferably 80 to 150 ° C. for 5 to 20 minutes, it reaches dryness to the touch.
  • the dried coating film is fired (processed).
  • the depolymerizable acrylic resin functions as a binder until the PTFE resin particles are melted and fused. Occurrence can be prevented.
  • the firing (processing) temperature and time vary depending on the type of the PTFE resin, the melting temperature, and the like, but the firing temperature is higher than the melting temperature of the PTFE resin, usually 360 to 415 ° C. for 5 to 30 minutes. It is preferably at 360 to 380 ° C. for 10 to 30 minutes.
  • a method of applying, drying, and firing the second PTFE aqueous dispersion of the present disclosure after coating, drying, and firing the primer layer (2-coat, 2-baking method) may be used, or the primer layer is applied.
  • the second PTFE aqueous dispersion of the present disclosure may be applied, dried, and both may be fired at the same time (2-coat, 1-bake method).
  • a thick coating film having a thickness of 30 ⁇ m or more can be obtained by one coating.
  • the upper limit is not particularly limited, but if it is too thick, various decomposition residues will remain in the coating film and cause coloring, so it is preferably 100 ⁇ m or less.
  • the second PTFE aqueous dispersion of the present disclosure is most useful, for example, for painting metal cookware, especially frying pans, but the PTFE aqueous dispersion is also for coating other products that require corrosion resistance. Can be used. Other products include, for example, bearings, valves, wires, metal foil, boilers, pipes, ship bottoms, oven linings, iron bottom plates, baking molds, rice cookers, grill pots, electric pots, ice trays, snow shovels, plows, chutes, etc. Tools such as conveyors, rolls, dies, dies, saws, files, mills, knives, scissors, hoppers and other industrial containers (especially for the semiconductor industry) and molds.
  • the present disclosure also relates to a coated article having a coating film obtained by applying the second PTFE aqueous dispersion of the present disclosure.
  • the coating film can be produced by a conventionally known method, and can be obtained by applying the aqueous dispersion liquid of the present disclosure to a base material.
  • the material of the base material is not particularly limited, and examples thereof include simple metals such as iron, aluminum, stainless steel, and copper, and metals such as alloys thereof; non-metallic inorganic materials such as enamel, glass, and ceramics. Examples of the alloys include stainless steel and the like.
  • metal is preferable, and aluminum or stainless steel is more preferable.
  • the film thickness of the coating film is preferably 30 ⁇ m or more, and if it is too thick, various decomposition residues remain in the coating film and cause coloring. Therefore, the film thickness is preferably 100 ⁇ m or less.
  • the coated article may be provided with a primer layer.
  • the above-mentioned painted articles are used for metal cookware (especially frying pans), bearings, valves, electric wires, metal foil, boilers, pipes, ship bottoms, oven linings, iron bottom plates, pan-baking molds, rice cookers, grill pans, electric pots, ice making.
  • metal cookware especially frying pans
  • Examples include trays, snow shovels, plows, chutes, conveyors, rolls, molds, dies, saws, files, tools such as mills, kitchenettes, scissors, hoppers, and other industrial containers (especially for the semiconductor industry) and molds. Be done.
  • the present disclosure also includes PTFE resin particles, depolymerizable acrylic resin particles, and water, and assuming that each resin particle is replaced with a true sphere having the same volume as the primary average particle, each resin particle has a densely packed structure.
  • a PTFE aqueous dispersion (hereinafter, also referred to as the third PTFE aqueous dispersion of the present disclosure), which is substantially non-volatile and is a solvent that volatilizes or thermally decomposes at a temperature lower than the thermal decomposition temperature of the resin particles. Also related to).
  • the third PTFE aqueous dispersion of the present disclosure contains PTFE resin particles, depolymerizable acrylic resin particles, and water, and a nonionic surfactant is present in the voids between the resin particles.
  • the same nonionic surfactant as described in the first aqueous dispersion of PTFE of the present disclosure can be used, and the content thereof is 4.0% by mass with respect to PTFE.
  • the above is preferable, 5.0% by mass or more is more preferable, 5.5% by mass or more is further preferable, 12.0% by mass or less is preferable, 10.0% by mass or less is more preferable, and 8 It is more preferably 0.0% by mass or less, and particularly preferably 7.0% by mass or less. If the amount of the nonionic surfactant is too large, the viscosity may become too high, and if it is too small, the storage stability and mechanical stability may be lowered.
  • the nonionic surfactant is a solvent that is non-volatile up to a temperature of 100 ° C. and volatilizes or thermally decomposes at a temperature lower than the thermal decomposition temperature of the resin particles.
  • a nonionic surfactant having the thermal property of the characteristic (2) is present in the aqueous dispersion composition under the condition of (1), the required amount of nonionic surfactant is not required even if the water evaporates and the coating film dries. Since the ionic surfactant is interposed between the resin particles and the nonionic surfactant functions like a binder, mud cracks can be effectively suppressed. If the content of this nonionic surfactant is too small, the movement of resin particles due to the evaporation of water becomes remarkable and the occurrence of mud cracks cannot be effectively suppressed, while if it is too large, it is not due to heating. When the ionic surfactant is decomposed and volatilized, the shrinkage is too large and cracks occur. Preferred occupancy is 76-94%, even 77-93%.
  • the reason why the resin particles are assumed to be true spheres is that the resin particles are usually not true spheres even if they are in the form of particles, and they must be true spheres in order to be arranged in the close-packed structure. is there.
  • the particles arranged in the close-packed structure have a theoretical porosity of 26% regardless of the particle size (the proportion of resin particles is 74%). Therefore, the occupancy rate can be calculated by the following equation.
  • the resin particle volume is calculated from the weight and specific gravity of the resin particles.
  • the feature (2) defines the thermal properties of the nonionic surfactant.
  • the need to be "nonvolatile in the temperature range up to 100 ° C.” cannot prevent the occurrence of mud cracks if it evaporates with water. Moreover, even if it is a high boiling point solvent, it cannot be guaranteed that it will not evaporate in this temperature range. When evaporation occurs, mud cracks occur.
  • the necessity of being a "nonionic surfactant that volatilizes or thermally decomposes at a temperature lower than the thermal decomposition temperature of the resin particles” is the temperature at which the resin thermally decomposes because the purpose is to form a coating film of the resin. However, if it remains, it interferes with the formation of the resin coating film.
  • the occupancy rate of the nonionic surfactant is based on the state after the water evaporates. That is, the state in which the resin particles are arranged in the close-packed structure is not the state of the aqueous dispersion composition, but the state in which the resin particles move and are close-packed with each other after the water evaporates. Therefore, when other nonionic surfactants coexist, those other nonionic surfactants may be transpired with water by heating (during drying, etc.), but the point is that when the drying is completed, the above-mentioned It suffices if the nonionic surfactant is present in the coating film at the occupancy rate of.
  • the particle size of the resin particles is not limited. This is because the theoretical porosity in the close-packed structure is 26%, which is a constant value regardless of the type and particle size of the resin. When particles having different particle sizes are mixed, the theoretical porosity may be divided into different particles to consider the packed structure, and then the total amount of voids may be considered. The reason is that since the third PTFE aqueous dispersion of the present disclosure is a coating composition, usually two or more kinds of particles are mixed, and the ratio thereof is unspecified. In addition, since it is normal to add a thickener as needed, small particles do not enter the gaps between large particles.
  • the nonionic surfactant may occupy 75 to 95% of the voids (theoretical voids) generated between the resin particles.
  • the same PTFE resin particles as the PTFE of the first PTFE aqueous dispersion of the present disclosure (or the aqueous dispersion) can be used as they are, and the average particles thereof.
  • the diameter is preferably 0.01 to 100 ⁇ m, particularly preferably 0.1 to 5 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the film-forming property tends to be lowered, and if it exceeds 100 ⁇ m, the gun nozzle used for painting tends to be clogged.
  • the above-mentioned PTFE may be a homopolymer of TFE, but a modified PTFE containing 99.0% by mass or more of a polymerization unit based on TFE and 1.0% by mass or less of a polymerization unit based on a modified monomer is preferable.
  • the content of the modified monomer constituting the modified PTFE is preferably in the range of 0.00001 to 1.0% by mass with respect to PTFE. As the lower limit, 0.0001% by mass is more preferable, 0.001% by mass is further preferable, 0.005% by mass is even more preferable, 0.010% by mass is particularly preferable, and 0.05% by mass is even more particularly preferable.
  • 0.10% by mass is particularly preferable, and 0.15% by mass is most preferable.
  • the upper limit 0.90% by mass is preferable, 0.50% by mass is more preferable, 0.40% by mass is further preferable, and 0.30% by mass is further more preferable.
  • the lower limit of the amount of the polymerization unit based on PPVE in the modified PTFE is preferably 0.17% by mass. Further, it is further preferable that the modified PTFE has a core-shell structure.
  • an aqueous dispersion of PTFE resin particles obtained by emulsion polymerization or powdery particles obtained from this aqueous dispersion can be used, but in the case of powder, the handleability may be deteriorated due to the electrical repulsion of the particles. Therefore, it is preferable to use it in the form of an aqueous dispersion.
  • the standard specific gravity (SSG) of the above-mentioned PTFE is preferably 2.220 or less, and more preferably 2.190 or less. Further, it is preferably 2.140 or more, and more preferably 2.150 or more. If the SSG exceeds 2.220, the coating film tends to be brittle, and if it is less than 2.140, the melt viscosity tends to be too high and the particles tend to be difficult to fuse with each other.
  • the depolymerizable acrylic resin particles are gradually decomposed while maintaining the binder effect on the PTFE resin particles, so that the occurrence of shrinkage cracks is prevented. Therefore, the depolymerizable acrylic resin particles are melted below the melting temperature of the PTFE resin and the depolymerization has started, at least a part of them remains at the melting temperature of the PTFE resin particles, and most of them are decomposed and volatilized at the firing temperature. It is necessary to be.
  • the dry coating film When the dry coating film is heated, first, evaporation or decomposition volatilization of the remaining nonionic surfactant and thermal melting of the depolymerizable acrylic resin particles begin.
  • the nonionic surfactant needs to remain at least until the hot melting of the depolymerizable acrylic resin particles is completed.
  • the temperature rises further the evaporation or decomposition of the residual nonionic surfactant is completed, and the depolymerization of the hot-melted depolymerizable acrylic resin begins.
  • the depolymerization of the depolymerizable acrylic resin starts gradually from a temperature equal to or lower than the melting temperature of the PTFE resin, but is not yet completed at the temperature at which the PTFE resin particles begin to thermally melt (melting temperature), and the temperature is the melting temperature of the PTFE resin. It is completed when the firing temperature exceeds. As a result, it is possible to prevent a large amount of depolymerizable acrylic resin from remaining in the obtained PTFE resin coating film. Since this depolymerizable acrylic resin has viscosity at the time of heat melting and the depolymerization progresses gradually, rapid shrinkage does not occur even when the PTFE resin particles are melted and fused, and heat shrinkage cracks are generated. Can be suppressed.
  • the depolymerizable acrylic resin particles remain until the temperature at which the PTFE resin particles start melting (melting temperature), and decompose and volatilize at the firing (processing) temperature.
  • the melting temperature of the PTFE resin 5% or more, particularly 10% or more, at least 50%, preferably at least 20% remains, and the firing (processing) temperature (usually a temperature exceeding the melting temperature of the PTFE resin up to 415 ° C., preferably Is preferably 10% or less, particularly 5% or less remaining at 360 to 400 ° C., and substantially no remaining when firing is completed.
  • the depolymerization (decomposition) temperature of the depolymerizable acrylic resin particles is about 200 ° C. or higher and lower than the firing (processing) temperature of the PTFE resin, particularly lower than the melting temperature of the PTFE resin.
  • the depolymerization (pyrolysis) temperature exceeds the melting temperature of the PTFE resin and a large amount of decomposition gas is generated, coating film defects such as pinholes are likely to occur in the obtained coating film.
  • the depolymerizable acrylic resin remaining about 25 to 50% in the temperature range of 300 to 320 ° C. and about 20 to 10% remaining in the temperature range of 330 to 345 ° C. prevents shrinkage cracks. It is suitable from the viewpoint of the balance between the action and the anti-coloring action, and any depolymerizable acrylic resin particles satisfying this condition can be used.
  • depolymerizability is described in "Polym. Eng. Sci.”, Vol. 6, p. 273 (1966), “Plast. Massy.”, Vol. 75, p. 48 (1971), “Deterioration of Polymer Materials", Corona, Inc.
  • a methacrylate-based homopolymer or copolymer that requires a methacrylate-based monomer represented by (1 to 5 alkyl group or hydroxyalkyl group) is preferable.
  • the methacrylate-based monomer for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, dimethylpropyl methacrylate, butyl methacrylate, and pentyl metacrate are preferably adopted.
  • a depolymerizable acrylic resin containing butyl methacrylate as a monomer is preferable because the glass transition temperature is low and the depolymerizability (decomposability) is good.
  • a monomer having a carboxyl group or a hydroxyl group may be appropriately used as a co-monomer.
  • the depolymerizable acrylic resin particles fine particles (depolymerizable acrylic resin emulsion) produced by a method such as emulsion polymerization can be used as they are, and the average particle size thereof is 0.1 to 100 ⁇ m, particularly 0.2. It is preferably about 1 ⁇ m. If the average particle size is less than 0.1 ⁇ m, mud cracks tend to occur, and if it exceeds 100 ⁇ m, painting tends to be difficult.
  • the blending amount of the depolymerizable acrylic resin particles is 5 to 25 parts, preferably 7 to 20 parts, and particularly preferably 10 to 15 parts with respect to 100 parts of the PTFE resin particles (solid content). If it is less than 5 parts, it becomes difficult to form a film of the PTFE resin, and if it exceeds 25 parts, the coating film may be colored.
  • the depolymerizable acrylic resin particles are preferably mixed with other components in the form of an emulsion.
  • the elastomer is also in the form of particles, it is included in the scope of the present disclosure in the same manner as the resin particles.
  • the particle size is selected from a wide range, but for coating applications, a range of 0.1 to 10 ⁇ m is suitable, and one or more resin particles in this range are used.
  • acrylic resins such as butyl methacrylate-based urethane emulsions; polyurethane-based resins such as urethane emulsions; polyester-based resins such as polyester emulsions, and polyolefin-based resins such as polyethylene emulsions. Resin; In addition, particles such as PPS, PAI, PES, and PEEK can also be applied.
  • liquid organic compounds having a hydrophilic group are also used in combination from the viewpoint of having an affinity with water and aiming at dispersion stability of the aqueous dispersion composition. May be good.
  • a hydrophilic group-containing organic compound a high boiling point multihydric alcohol is preferable.
  • a polyhydric alcohol containing no nitrogen atom is preferable because it is less likely to cause coloring due to thermal decomposition during firing.
  • the preferred number of hydroxyl groups is 2-3. Most of the hydroxyl groups having 4 or more hydroxyl groups are solid at room temperature.
  • Suitable polyhydric alcohols include, for example, ethylene glycol (boiling point: 198 ° C), 1,2-propanediol (188 ° C), 1,3-propanediol (214 ° C), 1,2-butanediol (190 ° C).
  • an organic solvent other than the high boiling point multihydric alcohol may be used in combination as long as the effects of the present disclosure are not impaired.
  • organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, and aliphatic hydrocarbon solvents having 9 to 11 carbon atoms.
  • the blending amount of the polyhydric alcohol is 5 to 18 parts, preferably 7 to 15 parts, and particularly preferably 7 to 12 parts with respect to 100 parts of the PTFE resin particles (solid content). If it is less than 5 parts, the effect of preventing the occurrence of mud cracks is weakened, and if it exceeds 18 parts, the coating film may become cloudy.
  • Water is used as the liquid medium of the third PTFE aqueous dispersion of the present disclosure, and the solid content concentration of the aqueous dispersion is adjusted. Water may be used alone, or it may be used as an aqueous mixed solvent in combination with water and a water-soluble compound.
  • additives such as inorganic materials may be further added, if necessary.
  • Inorganic materials include, in addition to pigments, mica particles, pigment-coated mica particles, metal flakes, or two or more of these inorganic fillers. These are blended in an amount within a range that does not impair the effects of the present disclosure.
  • pigment various conventionally known pigments can be used, and examples thereof include titanium oxide, carbon black, and red iron oxide.
  • the inorganic filler imparts a function of improving wear resistance, and among these, mica is preferable in that it gives an aesthetic appearance.
  • the particle size of the mica particles is 10 to 100 ⁇ m, preferably 15 to 50 ⁇ m. If the particle size is less than 10 ⁇ m, the wear resistance tends to decrease and the brilliance tends to decrease, and if it exceeds 100 ⁇ m, the non-adhesiveness tends to decrease.
  • the mica particles coated with the pigment are obtained by adhering pigments such as TiO 2 and Fe 2 O 3 to the mica particles by a sintering vapor deposition method or the like.
  • metal flakes examples include flakes such as titanium, zirconium, aluminum, zinc, antimony, tin, iron, and nickel, but titanium and zirconium are preferable from the viewpoint of rust resistance.
  • size a size within the range normally used for paint can be used.
  • additives can be blended as long as the effects of the third aqueous dispersion of the present disclosure are not impaired.
  • antifoaming agents desiccants, thickeners, leveling agents, anti-repellent agents and the like can be mentioned.
  • defoaming agent examples include toluene, xylene, non-polar solvents such as hydrocarbons having 9 to 11 carbon atoms, and silicone oil.
  • Examples of the desiccant include cobalt oxide.
  • thickener examples include methyl cellulose, polyvinyl alcohol, and carboxylated vinyl polymer.
  • the third PTFE aqueous dispersion of the present disclosure preferably has a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the third PTFE aqueous dispersion of the present disclosure has a viscosity at 55 ° C. of 50 mPa ⁇ s or less, and is particularly suitable for applications used at high temperatures such as in the field of impregnating fiber substrates. Since the impregnation process requires a firing process, the temperature tends to be high environmentally.
  • the second PTFE aqueous dispersion of the present disclosure has good permeability to the fiber substrate even in a high temperature environment and can be uniformly impregnated. The viscosity at 55 ° C.
  • the lower limit of the viscosity at 55 ° C. is not particularly limited, but may be, for example, 10 mPa ⁇ s or more.
  • the third PTFE aqueous dispersion of the present disclosure preferably has a ratio [viscosity at 55 ° C./viscosity at 25 ° C.] of 4.00 or less.
  • the second PTFE aqueous dispersion of the present disclosure is particularly suitable for impregnation processing of fiber substrates. In the impregnation process, there is a firing process, so the temperature tends to be high environmentally. Since the amount of PTFE adhered to the fiber substrate during the impregnation process is easily affected by the viscosity of the aqueous dispersion, an aqueous dispersion having a low viscosity-temperature dependence is required.
  • the first PTFE aqueous dispersion of the present disclosure is excellent in that the viscosity-temperature dependence is low and the quality is stable because the above ratio is 4.00 or less.
  • the ratio [viscosity at 55 ° C./viscosity at 25 ° C.] is more preferably 3.00 or less, further preferably 2.00 or less, further preferably 1.50 or less, and particularly further preferably 1.20 or less. It is preferable, 1.10 or less is particularly preferable, and 1.00 or less is particularly particularly preferable.
  • the viscosity at 25 ° C. is a value measured using a B-type rotational viscometer under the conditions shown in Examples described later.
  • the viscosity at 55 ° C. is a value measured under the same conditions as the viscosity measurement at 25 ° C. after raising the liquid temperature to 55 ° C. and holding for 60 minutes. In the case of 80 mPa ⁇ s or more, the viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of the measurement, and the average value thereof is adopted.
  • the third PTFE aqueous dispersion of the present disclosure preferably has a viscosity-temperature transition [VTT] of more than 55 ° C, more preferably 60 ° C or higher. By exceeding 55 ° C, there is a technical significance that it is not necessary to change the processing conditions at 25 ° C and 55 ° C. VTT represents the viscosity-temperature dependence of the PTFE aqueous dispersion. The VTT was measured by raising the PTFE aqueous dispersion at 25 ° C., 35 ° C., 45 ° C., and 55 ° C. to each temperature for 60 minutes, and then using a B-type rotational viscometer to measure under the conditions shown in Examples described later. Obtained by doing.
  • VTT viscosity-temperature transition
  • the VTT point is the temperature at which the viscosity reaches the same value as when measured at 25 ° C. If the viscosity is 80 mPa ⁇ s or more, a viscosity increase phenomenon occurs with the measurement time in the viscosity measurement. Therefore, the viscosity is measured 5 minutes and 10 minutes after the start of measurement, and the average value thereof is adopted.
  • the third aqueous dispersion of PTFE of the present disclosure preferably has a solid content concentration of PTFE of 50 to 70% by mass.
  • the solid content concentration is more preferably 55% by mass or more, further preferably 57% by mass or more. Further, 65% by mass or less is more preferable, and 60% by mass or less is further preferable. Even if the solid content concentration of PTFE is in the above range, the third aqueous dispersion of the present disclosure can have a viscosity at 55 ° C. of 50 mPa ⁇ s or less.
  • the third PTFE aqueous dispersion of the present disclosure does not substantially contain a fluorine-containing surfactant.
  • substantially free of a fluorine-containing surfactant means that the content of the fluorine-containing surfactant with respect to the aqueous PTFE aqueous dispersion is 1.0 ppm or less.
  • the third PTFE aqueous dispersion of the present disclosure has a low viscosity at high temperatures and excellent mechanical stability at high temperatures, even though it does not substantially contain a fluorine-containing surfactant. Can be done.
  • the content of the fluorine-containing surfactant is preferably 700 ppb or less, more preferably 600 ppb or less, and further preferably 500 ppb or less.
  • the content of the fluorine-containing surfactant in the third PTFE aqueous dispersion of the present disclosure can be measured by the same method as that described for the first PTFE aqueous dispersion of the present disclosure.
  • the nonionic surfactant is added to the polymerized PTFE aqueous dispersion and concentrated.
  • the amount of the fluorine-containing surfactant can be set in the above range by the above.
  • the fluorine-containing surfactant include the fluorine-containing anionic surfactant described in the first PTFE aqueous dispersion of the present disclosure.
  • the method described in the first PTFE aqueous dispersion of the present disclosure can be adopted.
  • the third PTFE aqueous dispersion of the present disclosure is useful for coatings, such as various paints, especially topcoat paints.
  • various painting methods similar to the conventional ones can be adopted.
  • the dipping method, the spray method, the roll coating method, the doctor blade method, the flow coating method and the like can be mentioned.
  • the third PTFE aqueous dispersion of the present disclosure may be directly coated on the base material, but it is desirable to provide a primer layer and form it as a topcoat layer in order to improve adhesion.
  • the base material is not particularly limited, but for example, various metals, enamel, glass, and various ceramics can be used, and it is preferable to roughen the surface by a sandblasting method or the like in order to improve adhesion.
  • the composition applied to the substrate is then dried.
  • the third PTFE aqueous dispersion of the present disclosure is characterized in that mud cracks do not occur during this drying stage. Drying may be carried out under normal conditions, for example, at room temperature to 80 ° C., preferably 80 to 100 ° C. for 5 minutes to 1 hour to reach dryness to the touch.
  • the dried coating film is fired (processed).
  • the depolymerizable acrylic resin When the depolymerizable acrylic resin is blended, it functions as a binder until the fluororesin particles are melted and fused, so that it is possible to prevent the occurrence of cracks due to heat shrinkage at this firing stage.
  • the firing (processing) temperature and time vary depending on the type of the PTFE resin, the melting temperature, and the like, but the firing temperature is higher than the melting temperature of the PTFE resin, usually 360 to 415 ° C. for 5 to 30 minutes. It is preferably at 360 to 380 ° C. for 10 to 30 minutes.
  • the composition of the present disclosure may be applied, dried and fired after the primer layer is applied, dried and fired (2-coat 2-baking method), or the primer layer may be applied and dried before the present invention.
  • a method of applying the disclosed composition, drying it, and firing both at the same time (2-coating 1-baking method) may also be used.
  • a thick coating film having a thickness of 30 ⁇ m or more can be obtained by one coating.
  • the upper limit is not particularly limited, but if it is too thick, various decomposition residues will remain in the coating film and cause coloring, so the upper limit is 100 ⁇ m or less.
  • the third PTFE aqueous dispersion of the present disclosure is most useful, for example, for painting metal cookware, especially frying pans, but this composition is also used to paint other products that require corrosion resistance. obtain.
  • Other products include, for example, bearings, valves, wires, metal foil, boilers, pipes, ship bottoms, oven linings, iron bottom plates, baking molds, rice cookers, grill pots, electric pots, ice trays, snow shovels, plows, chutes, etc.
  • Tools such as conveyors, rolls, dies, dies, saws, files, mills, knives, scissors, hoppers and other industrial containers (especially for the semiconductor industry) and molds.
  • the present disclosure also relates to a coated article having a coating film obtained by applying the third PTFE aqueous dispersion of the present disclosure.
  • the coating film can be produced by a conventionally known method, and can be obtained by applying the aqueous dispersion liquid of the present disclosure to a base material.
  • the material of the base material is not particularly limited, and examples thereof include simple metals such as iron, aluminum, stainless steel, and copper, and metals such as alloys thereof; non-metallic inorganic materials such as enamel, glass, and ceramics. Examples of the alloys include stainless steel and the like.
  • metal is preferable, and aluminum or stainless steel is more preferable.
  • the film thickness of the coating film is preferably 30 ⁇ m or more, and if it is too thick, various decomposition residues remain in the coating film and cause coloring. Therefore, the film thickness is preferably 100 ⁇ m or less.
  • the coated article may be provided with a primer layer.
  • the above-mentioned painted articles are used for metal cookware (especially frying pans), bearings, valves, electric wires, metal foil, boilers, pipes, ship bottoms, oven linings, iron bottom plates, pan-baking molds, rice cookers, grill pans, electric pots, ice making.
  • metal cookware especially frying pans
  • Examples include trays, snow shovels, plows, chutes, conveyors, rolls, molds, dies, saws, files, tools such as mills, kitchenettes, scissors, hoppers, and other industrial containers (especially for the semiconductor industry) and molds. Be done.
  • Each numerical value of the example was measured by the following method.
  • a calibration curve was prepared by measuring the number-referenced length average primary particle diameter determined by measuring the directional diameter by a transmission electron micrograph. Using this calibration curve, the average primary particle size was determined from the measured transmittance of the projected light at 550 nm of each sample.
  • Standard specific gravity (SSG) A sample molded according to ASTM D4895-89 was used and measured by the water substitution method according to ASTM D-792.
  • the HFP content is the absorbance at 982 cm -1 / absorbance at 935 cm -1 from the infrared absorbance measured by FT-IR of the thin film disk prepared by press-molding the PTFE powder. It was calculated by multiplying the ratio of. PPVE content of the PTFE powder and a thin film disk by press forming a thin film disk from infrared absorbance measured FT-IR, multiplied by 0.14 to the ratio of the absorbance at the absorbance / 935cm -1 in 995 cm -1 I asked for it.
  • N Content of nonionic surfactant
  • VTT Viscosity temperature transition
  • the mixture is added and aged at room temperature (25 ⁇ 1 ° C.) for 1 hour, and paste extrusion is carried out on an extrusion die with a cylinder (reduction ratio 1500) having an inner diameter of 25.4 mm.
  • a cylinder reduction ratio 1500
  • the value obtained by dividing the pressure at the portion where the pressure is in equilibrium by the cylinder cross-sectional area was taken as the extrusion pressure at the reduction ratio 1500.
  • Taditol TMN-100X is a mixture of Taditol TMN-6 and Taditol TMN-10, and the composition ratio is as follows.
  • TMN-6: TMN-10 30: 70 (weight ratio) Structural formula of TMN-6 C 12 H 25 O (CH 2 CH 2 O) 8 H (average number of methyl groups per molecule 5.0), HLB 13.10, cloud point 36 ° C.
  • Synthesis example 1 After replacing the 1 L autoclave with nitrogen, 16.5 g of dehydrated tetramethylurea and 220 g of diethylene glycol dimethyl ether were charged and cooled. 38.5 g of carbonyl fluoride was charged, and then 100 g of hexafluoropropylene oxide was introduced and stirred. Then, 38.5 g of carbonyl fluoride and 100 g of hexafluoropropylene oxide were additionally charged. Then, the same amount of carbonyl fluoride and hexafluoropropylene oxide were further charged. After completion of the reaction, the reaction mixture was taken out and separated to obtain a reaction product in the lower layer.
  • DSP disuccinic acid peroxide
  • APS ammonium persulfate
  • the solid content concentration of the obtained aqueous dispersion 1-1 was 30.0% by mass, and the average primary particle size was 254 nm.
  • the obtained PTFE aqueous dispersion 1-1 was diluted with deionized water to a solid content concentration of about 13% by mass, coagulated under high-speed stirring conditions, and the coagulated wet powder was dried at 150 ° C. for 18 hours to obtain a PTFE powder.
  • Got The standard specific gravity of the obtained PTFE powder was 2.174, and the PPVE content was 0.046% by mass.
  • the extrusion pressure at the reduction ratio 1500 was 42.1 MPa.
  • an OH type anion exchange resin trade name: Amber Jet AMJ4002, manufactured by Roam & Haas
  • the obtained PTFE aqueous dispersion 1-2 has a solid content concentration of 71.5% by mass, a nonionic surfactant content of 2.7% by mass with respect to PTFE, and a fluorine-containing surfactant concentration of PTFE aqueous. It was 480 ppb with respect to the dispersion.
  • PTFE aqueous dispersion 2-1 Using the obtained PTFE aqueous dispersion 2-1, ion exchange treatment and concentration were carried out in the same manner as in Production Example 1 to obtain a PTFE aqueous dispersion 2-2.
  • the obtained PTFE aqueous dispersion 2-2 had a solid content concentration of 69.5% by mass and a nonionic surfactant content of 2.9% by mass with respect to PTFE.
  • the average primary particle size of the PTFE aqueous dispersion 3-1 was 285 nm. Further, the PTFE aqueous dispersion 3-1 is diluted with deionized water to a solid content concentration of about 10%, coagulated under high-speed stirring conditions, and the coagulated wet powder is dried at 150 ° C. for 18 hours to obtain a PTFE powder. It was. The standard specific gravity of the obtained PTFE powder was 2.241.
  • a PTFE aqueous dispersion 3-2 was obtained.
  • the obtained PTFE aqueous dispersion 3-2 had a solid content concentration of 70.9% by mass and a nonionic surfactant content of 2.9% by mass with respect to PTFE.
  • Example 1 The surfactant (a) was added to the PTFE aqueous dispersion 1-2 obtained in Production Example 1 so as to be 4.0% by mass based on PTFE, and the surfactant (b) was added to PTFE. On the other hand, 2.0% by mass and 500 ppm of ammonium lauryl sulfate was added to PTFE, and deionized water and aqueous ammonia were further added. Table 2 shows the solid content concentration (mass%) of the obtained PTFE aqueous dispersion 1-3 and the content (mass%) of each component with respect to PTFE. The pH and viscosity of this PTFE aqueous dispersion 1-3 were measured by the above methods, and a mechanical stability test was conducted.
  • Examples 2-7 A PTFE aqueous dispersion was obtained in the same manner as in Example 1 except that the compounds added to the PTFE aqueous dispersion 1-2 were changed as shown in Table 2, and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Example 1 The surfactant (a) was added to the PTFE aqueous dispersion 1-2 obtained in Production Example 1 so as to be 5.5% by mass based on PTFE, and ammonium lauryl sulfate was added at 1000 ppm based on PTFE. Further, as an antifoaming agent, an acetylene-based antifoaming agent (trade name: Surfinol 440, manufactured by Air Products Co., Ltd.) was added so as to be 0.5% by mass based on PTFE. A PTFE aqueous dispersion was obtained in the same manner as in Example 1 except for the above, and evaluated in the same manner. The results are shown in Table 3.
  • Comparative Example 3 Using the PTFE aqueous dispersion 3-2 obtained in Production Example 3, the same treatment as in Comparative Example 2 was carried out. The results are shown in Table 3.
  • Comparative Example 4 Using the PTFE aqueous dispersion 1-2 obtained in Production Example 1, the same treatment as in Comparative Example 2 was carried out. The results are shown in Table 3.
  • Examples 1 to 7 at 55 ° C. was significantly lower than that of Comparative Examples 1 to 4, and the VTT exceeded 55 ° C., so that the increase in viscosity at high temperature was suppressed.
  • the stability retention time at 60 ° C. of Examples 1 to 7 was significantly longer than that of Comparative Examples 1 to 4, so that the mechanical stability was improved.
  • the solid content concentration of the obtained aqueous dispersion 4-1 was 30.0% by mass, and the average primary particle size was 272 nm.
  • the obtained PTFE aqueous dispersion 4-1 was diluted with deionized water to a solid content concentration of about 10% by mass, coagulated under high-speed stirring conditions, and the coagulated wet powder was dried at 150 ° C. for 18 hours to obtain a PTFE powder.
  • Got The standard specific gravity of the obtained PTFE powder was 2.167, and the PPVE content was 0.28% by mass.
  • the extrusion pressure at the reduction ratio 1500 was 58.9 MPa.
  • the solid content concentration of the obtained PTFE aqueous dispersion 5-1 was 30.0% by mass, and the average primary particle size was 270 nm. From the obtained PTFE aqueous dispersion 5-1 to obtain a PTFE powder in the same manner as in Production Example 4.
  • the standard specific gravity of the obtained PTFE powder was 2.163, and the PPVE content was 0.28% by mass.
  • the extrusion pressure at the reduction ratio 1500 exceeded 100 MPa, so the measurement was interrupted.
  • an OH type anion exchange resin trade name: Amber Jet AMJ4002, manufactured by Roam & Haa
  • the obtained PTFE aqueous dispersion 4-2 has a solid content concentration of 68.3% by mass, a nonionic surfactant content of 2.7% by mass with respect to PTFE, and a fluorine-containing surfactant concentration of PTFE aqueous. It was 420 ppb with respect to the dispersion.
  • Surfactant (d) was added to the obtained aqueous PTFE aqueous dispersion 4-2 so as to be 5.0% by mass with respect to PTFE, ammonium lauryl sulfate was added at 500 ppm with respect to PTFE, and deionized water was further added. And aqueous ammonia were added to obtain a PTFE aqueous dispersion 4-3.
  • the obtained PTFE aqueous dispersion 4-3 had a solid content concentration of 62.9% by mass, and the content of the nonionic surfactant was 5.0% by mass with respect to PTFE. Evaluation was carried out in the same manner as in Example 1. However, the stability retention time was measured by diluting the solid content concentration to 60.0% by mass. The results are shown in Table 4.
  • Comparative Example 5 A PTFE aqueous dispersion 5-2 and a PTFE aqueous dispersion 5-3 were obtained in the same manner as in Example 8 except that the PTFE aqueous dispersion 4-1 was replaced with the PTFE aqueous dispersion 5-1.
  • the obtained PTFE aqueous dispersion 5-2 has a solid content concentration of 68.3% by mass, a nonionic surfactant content of 2.7% by mass with respect to PTFE, and a fluorine-containing surfactant concentration of PTFE aqueous. It was 430 ppb with respect to the dispersion.
  • the obtained PTFE aqueous dispersion 5-3 had a solid content concentration of 62.9% by mass, and the content of the nonionic surfactant was 5.0% by mass with respect to PTFE. Evaluation was carried out in the same manner as in Example 1. However, the stability retention time was measured by diluting the solid content concentration to 60.0% by mass. The results are shown in Table 4.
  • Example 8 Since the viscosity of Example 8 at 55 ° C. was significantly lower than that of Comparative Example 5 and the VTT was 55 ° C. or higher, the increase in viscosity at high temperature was suppressed. In addition, the stability retention time of Example 8 at 60 ° C. was significantly longer than that of Comparative Example 5, so that the mechanical stability was improved.
  • Example 9 The following components were mixed in the order described.
  • (Storage stability) 500 g of the aqueous dispersion composition for coating was placed in a polyethylene bottle, left in a constant temperature bath at 40 ° C. for 1 month, and evaluated by redispersibility. For the evaluation, a 150-mesh wire mesh was used, and those that passed through were marked with ⁇ , and those with residues on the wire mesh were marked with x. Then, the obtained aqueous dispersion composition for coating was applied to a non-blast aluminum plate by a spray method, and dried at 80 ° C. for 15 minutes. When the surface of the obtained dry coating film was observed with an optical microscope and the presence or absence of mud cracks was examined, no mud cracks were generated.
  • the dry coating film was fired at a temperature of 380 ° C. for 20 minutes to form a molten coating film.
  • the following coating film physical characteristics were examined for this coating film.
  • the surface of the coating film was observed with an optical microscope.
  • (Pencil hardness) Evaluation was performed at 25 ° C. according to the method described in JIS K5600.
  • the film thickness was variously changed, and the film thickness at which cracks began to occur was defined as the crack limit film thickness.
  • the coating film was visually observed.
  • Example 10 The PTFE aqueous dispersion 1-3 of Example 1 in Example 9 was replaced with the PTFE aqueous dispersion 4-3 obtained in Example 8 and mixed with the composition shown in Table 5, and the aqueous dispersion composition for coating was prepared. Got The measurement was carried out in the same manner as in Example 9. The results are shown in Table 5.
  • Comparative Example 6 The PTFE aqueous dispersion 1-3 of Example 1 in Example 9 was replaced with the PTFE aqueous dispersion 5-3 obtained in Comparative Example 5 and mixed with the composition shown in Table 5 to obtain an aqueous dispersion composition for coating. Obtained. The measurement was carried out in the same manner as in Example 9. The results are shown in Table 5.
  • Example 11 The following components were mixed in the order described.
  • Table 6 The properties of the obtained resin aqueous dispersion composition were investigated. The results are shown in Table 6.
  • Example 12 The PTFE aqueous dispersion 1-3 of Example 1 in Example 11 was replaced with the PTFE aqueous dispersion 4-3 obtained in Example 8 and mixed with the composition shown in Table 6. The properties of the obtained resin aqueous dispersion composition were investigated. The results are shown in Table 6.
  • Comparative Example 7 The PTFE aqueous dispersion 1-3 of Example 1 in Example 11 was replaced with the PTFE aqueous dispersion 5-3 obtained in Comparative Example 5 and mixed with the composition shown in Table 6. The properties of the obtained resin aqueous dispersion composition were investigated. The results are shown in Table 6.

Abstract

高温での粘度が低いPTFE水性分散液を提供する。PTFE、及び、非イオン性界面活性剤を含み、PTFEの固形分濃度が50~70質量%であり、含フッ素界面活性剤を実質的に含まず、55℃における粘度が50mPa・s以下であることを特徴とするPTFE水性分散液である。

Description

ポリテトラフルオロエチレン水性分散液
本開示は、ポリテトラフルオロエチレン水性分散液に関する。
一般にポリテトラフルオロエチレン(以下「PTFE」と記載する)は、水性媒体中で界面活性剤を用いたテトラフルオロエチレン(以下「TFE」と記載する)の乳化重合により製造される。乳化重合法によれば、PTFE粒子が水性媒体中に分散した水性分散液が得られる。この水性分散液に分散剤として非イオン性界面活性剤を添加して安定化することが知られている。
例えば、特許文献1には、平均一次粒子径が0.1~0.5μmのPTFE粒子を15~70質量%、炭素数4~7でエーテル性酸素原子を有してもよい含フッ素カルボン酸およびその塩からなる群から選ばれる含フッ素界面活性剤を、前記PTFE粒子の質量に対して0.1~20,000ppm、特定の構造を有する非イオン性界面活性剤を、前記PTFE粒子の100質量部に対して1~20質量部、特定の構造を有する化合物を、前記PTFE粒子の100質量部に対して0.01~3.0質量部、および水を含有することを特徴とするPTFE水性分散液が記載されている。
特許文献2には、テトラフルオロエチレン・コア-シェルポリマーと、一般式:
O-[CHCHO]-[RO]                      (I)
[式中、Rは、少なくとも6個の炭素原子、好ましくは8~18個の炭素原子を有する直鎖又は分岐鎖の脂肪族炭化水素基を表し、Rは、3又は4個の炭素原子を有するアルキレン単位を表し、Rは、水素、C~Cアルキル基、又はC~Cヒドロキシアルキル基を表し、nは、0~40の値を有し、mは、0~40の値を有し、n+mの合計は、少なくとも2である]に対応する少なくとも1種の非フッ素化非イオン性界面活性剤と、を含む、水性分散液であって、該コア-シェルポリマーは、該コアより大きい分子量を有する外側シェルを含有し、該分散液は、式
Y-R-Z-M
[式中、Yは、水素、Cl、又はFを表し、Rは、直鎖又は分岐鎖の全フッ素化又は部分フッ素化アルキレンを表し、アルキレン鎖は、酸素原子によって1回又は2回以上中断されてもよく、Zは、1種又は複数種の酸アニオンを表し、Mは、1種又は複数種のカウンターカチオンを表す]に対応するフッ素化乳化剤を本質的に含まず、本質的に含まずとは、該分散液の重量に対して0ppmを含む50ppm未満の量を意味する、水性分散液が記載されている。
特許文献3には、(a)分散液の全重量に対して45~70重量%のPTFE粒子であって、前記PTFE粒子は非溶融加工性である、と;(b)1~15重量%の非イオン界面活性剤をと;(c)1~10重量%の水溶性アルカリ土類金属塩、または0.1~10重量%のコロイドシリカと;を含む、フルオロポリマーの水性分散液であって、成分(b)または(c)の重量%は前記PTFE粒子の重量に対する%である、水性分散液が記載されている。
国際公開第2017/094798号 特表2017-511394号公報 特表2014-508193号公報
本開示は、高温での粘度が低く、好ましくは、更に、機械的安定性に優れるPTFE水性分散液を提供する。
本開示は、PTFE、及び、非イオン性界面活性剤を含み、PTFEの固形分濃度が50~70質量%であり、含フッ素界面活性剤を実質的に含まず、55℃における粘度が50mPa・s以下であることを特徴とするPTFE水性分散液を提供する。
含フッ素界面活性剤の含有量は、100ppb以上であり、1.0ppm以下であることが好ましい。
本開示の水性分散液は、比率[55℃における粘度/25℃における粘度]が4.00以下であることが好ましい。
非イオン性界面活性剤の含有量は、PTFEに対して4質量%以上、12質量%以下であることが好ましい。
本開示の水性分散液は、60℃における安定性保持時間が30分以上であることが好ましい。
本開示の水性分散液は、60℃における安定性保持時間が40分以上であることも好ましい。
非イオン性界面活性剤は、下記一般式(i):
-O-A-H    (i)
(式中、Rは、炭素数8~18のアルキル基であり、Aは、オキシエチレン単位またはオキシプロピレン単位からなるポリオキシアルキレン鎖である。)により表される化合物を含むことが好ましい。
は、下記一般式(i-1):
CHR3132-   (i-1)
(式中、R31は、水素原子又は炭素数1~16のアルキル基を表し、R32は、炭素数1~17のアルキル基を表し、R31とR32の合計炭素数は7~17である)で表されるアルキル基であることが好ましい。
は、平均メチル基数が2.0以上である炭素数8~18のアルキル基であることが好ましい。
式(i)において、Rが2,6,8-トリメチル-4-ノニル基であることが好ましい。
式(i)において、Aが、平均オキシエチレン単位数10.1~10.8のポリオキシエチレン鎖であることが好ましい。
非イオン性界面活性剤は、HLBが14.00以上であることが好ましい。
非イオン性界面活性剤は、Aの平均オキシエチレン単位数が異なる式(i)により表される化合物の混合物であることが好ましい。
非イオン性界面活性剤は、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数7.0~9.0のポリオキシエチレン鎖である化合物と、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物との混合物であることが好ましい。
非イオン性界面活性剤は、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数7.0~9.0のポリオキシエチレン鎖である化合物(第1成分)と、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物(第2成分)との混合物であり、第1成分を5質量%以上25質量%以下、第2成分を75質量%以上95質量%以下含むことが好ましい。
本開示はまた、PTFE水性分散液を製造する方法であって、
含フッ素アニオン界面活性剤の存在下でTFEを乳化重合してPTFEを含む分散液を得る工程A、
工程Aで得られた分散液に非イオン性界面活性剤(1)を添加する工程B、
工程Bで得られた分散液から含フッ素アニオン界面活性剤を除去し、更に、濃縮する工程、又は、工程Bで得られた分散液を濃縮し、更に、含フッ素アニオン界面活性剤を除去する工程である工程C、及び、
工程Cで得られた分散液に非イオン性界面活性剤(2)及びフッ素非含有アニオン界面活性剤を添加する工程D、
を含むことを特徴とするPTFE水性分散液の製造方法を提供する。
工程Aは、TFEと、パーフルオロ(アルキルビニルエーテル)(以下「PAVE」と記載する)、(パーフルオロアルキル)エチレン及び環状型モノマーからなる群より選択される少なくとも1種の単量体とを重合する工程であることが好ましい。
工程Aは、コアシェル構造を有する変性ポリテトラフルオロエチレンの分散液を得る工程であり、
TFEと、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン及び環状型モノマーからなる群より選択される少なくとも1種の変性モノマーを重合して前記コアを製造する工程A-1と、TFE及び前記変性モノマーに加え、ヘキサフルオロプロピレン及び連鎖移動剤からなる群より選択される少なくとも1種を重合して前記シェルを製造する工程A-2と、を含むことが好ましい。
非イオン性界面活性剤(1)は、下記式(1):
-O-A-H    (1)
(式中、Rは、1分子あたりの平均メチル基数が4.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が7.0~12.0であり、平均オキシプロピレン単位数が0.0~2.0であるポリオキシアルキレン鎖である。)により表される化合物であることが好ましい。
式(1)中、Rは、2,6,8-トリメチル-4-ノニル基であることが好ましい。
非イオン性界面活性剤(2)は、下記式(2):
-O-A-H  (2)
(式中、Rは、1分子あたりの平均メチル基数が4.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が10.0~12.0であるポリオキシアルキレン鎖である。)により表される化合物であることが好ましい。
式(2)中、Rは、2,6,8-トリメチル-4-ノニル基であることが好ましい。
工程Dは、分散液中の非イオン性界面活性剤の濃度がPTFEに対して4質量%以上、12質量%以下になるように非イオン性界面活性剤(2)を添加する工程であることが好ましい。
PTFE水性分散液は、非イオン性界面活性剤の曇点が60~80℃であることが好ましい。
PTFE水性分散液は、非イオン性界面活性剤のHLBが14.00以上であることが好ましい。
工程Cにおける含フッ素アニオン界面活性剤の除去は、水性分散液を陰イオン交換樹脂に接触させることにより行うことが好ましい。
PTFE水性分散液は、含フッ素アニオン界面活性剤の含有量が水性分散液に対して1.0ppm以下であることが好ましい。
含フッ素アニオン界面活性剤は、LogPOWが3.5以下の含フッ素アニオン界面活性剤であることが好ましい。
含フッ素アニオン界面活性剤は、LogPOWが3.4以下の含フッ素アニオン界面活性剤であることが好ましい。
フッ素非含有アニオン界面活性剤は、アルキルサルフェート及びその塩、並びに、脂肪酸及びその塩からなる群より選択される少なくとも1種であることが好ましい。
PTFE水性分散液は、フッ素非含有アニオン界面活性剤の含有量が、PTFEに対して50~5000ppmであることが好ましい。
本開示の製造方法は、更に、水性分散液に防腐剤を添加する工程を含むことが好ましい。
防腐剤は、有機ヨウ素系化合物または有機窒素硫黄系化合物であることが好ましい。
本開示の製造方法は、更に、塗料原料を加える工程を含むことが好ましい。
本開示はまた、上記製造方法により得られたPTFE水性分散液を提供する。
本開示の水性分散液は、水性塗料であることが好ましい。
本開示はまた、上記水性分散液を塗布して得られた塗膜を提供する。
本開示はまた、上記水性分散液を含浸して得られた含浸膜を提供する。
本開示はまた、(A)ポリテトラフルオロエチレン樹脂粒子と、(B)窒素原子を含まず沸点が100℃以上でかつ水酸基を2個以上有する高沸点多価アルコールと、(C)分解して気化する温度が該PTFE樹脂の分解温度までの温度範囲内にある解重合性アクリル樹脂粒子と、(D)非イオン性界面活性剤と、(E)水性媒体とを含み、
前記高沸点多価アルコール(B)および解重合性アクリル樹脂粒子(C)の配合量がポリテトラフルオロエチレン(A)100質量部に対してそれぞれ5~18質量部および5~25質量部であり、かつ酸化剤およびアミン系溶剤を含まないポリテトラフルオロエチレン水性分散液を提供する。
本開示はまた、ポリテトラフルオロエチレン樹脂粒子、解重合性アクリル樹脂粒子、及び水を含み、各樹脂粒子の一次平均粒子と同体積の真球と置き換えたと仮定した場合、それぞれの樹脂粒子を最密充填構造に配列させたときの樹脂粒子間の理論空隙率26%の75~95%を占める量の非イオン性界面活性剤が存在しており、該非イオン性界面活性剤が100℃までの温度範囲で実質的に不揮発性でありかつ樹脂粒子の熱分解温度よりも低い温度で揮散または熱分解する溶媒であることを特徴とするポリテトラフルオロエチレン水性分散液を提供する。
本開示はさらに、上記ポリテトラフルオロエチレン水性分散液を塗布して得られた塗膜を有する塗装物品を提供する。
上記塗装物品は、金属調理器具、ベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、工具、包丁、はさみ、ホッパー、工業用コンテナ、および鋳型からなる群より選択される少なくとも1種であることが好ましい。
本開示のPTFE水性分散液は、高温での粘度が低い。
機械的安定性の評価に用いた撹拌翼を示したもので、(a)は上方から見た平面図、(b)は側面図である。
本開示のPTFE水性分散液(以下「本開示の第1のPTFE水性分散液」とも記載する)は、PTFE(または、PTFE樹脂粒子)、及び、非イオン性界面活性剤を含み、PTFEの固形分濃度が50~70質量%であり、含フッ素界面活性剤を実質的に含まず、55℃における粘度が50mPa・s以下である。
本開示の第1のPTFE水性分散液は、55℃における粘度が50mPa・s以下である。本開示の第1のPTFE水性分散液は、55℃における粘度が50mPa・s以下であることによって、繊維基材への含浸加工分野等の高温で使用される用途に特に好適である。含浸加工では、焼成工程が必要となるため環境的に高温になりやすい。本開示の第1のPTFE水性分散液は、高温環境下でも繊維基材への浸透性が良く、均一に含浸することができる。55℃における粘度は、45mPa・s以下であることが好ましく、40mPa・s以下であることがより好ましく、35mPa・s以下であることが更に好ましい。また、55℃における粘度の下限は特に限定されないが、例えば、10mPa・s以上であってよい。
本開示の第1のPTFE水性分散液は、比率[55℃における粘度/25℃における粘度]が、4.00以下であることが好ましい。本開示の第1のPTFE水性分散液は、繊維基材への含浸加工用途に特に好適である。含浸加工では、焼成工程があるため環境的に高温になりやすい。含浸加工時の繊維基材へのPTFE付着量は、水性分散液の粘度に左右されやすいため、粘度-温度依存性の低い水性分散液が要求される。本開示の第1のPTFE水性分散液は、上記比率が4.00以下であることによって、粘度-温度依存性が低く、品質上安定しているという点で優れている。
上記観点から、比率[55℃における粘度/25℃における粘度]は、3.00以下がより好ましく、2.00以下が更に好ましく、1.50以下が更により好ましく、1.20以下が殊更に好ましく、1.10以下が特に好ましく、1.00以下が殊更特に好ましい。
上記25℃における粘度は、B型回転粘度計を用い、後述の実施例に示す条件で測定した値である。また、55℃の粘度は、液温を55℃に上昇させて60分間保持したのち、25℃における粘度測定と同条件で測定した値である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第1のPTFE水性分散液は、粘度温度遷移[VTT]が55℃超であることが好ましく、60℃以上であることがより好ましい。55℃超であることによって、25℃と55℃での加工条件を変更する必要がないという技術的意義がある。
VTTは、PTFE水性分散液の粘度-温度依存性を表す。VTTは、PTFE水性分散液を25℃、35℃、45℃、55℃において、各温度に上昇させて60分間保持したのち、B型回転粘度計を用い、後述の実施例に示す条件で測定することにより得られる。VTT点は、25℃で測定した時と同じ値に粘度が再度達する温度である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第1のPTFE水性分散液は、PTFEの固形分濃度が50~70質量%である。上記固形分濃度は、55質量%以上が好ましく、57質量%以上が更に好ましい。また、65質量%以下が好ましく、60質量%以下がより好ましい。PTFEの固形分濃度が上記範囲であっても、本開示の水性分散液は、55℃における粘度を50mPa・s以下にすることが可能である。
本開示の第1のPTFE水性分散液は、非イオン性界面活性剤の含有量がPTFEに対して4質量%以上であることが好ましく、5質量%以上がより好ましく、5.5質量%以上が更に好ましく、また、12質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましく、7質量%以下が殊更に好ましい。
非イオン性界面活性剤の量が多すぎると、粘度が高くなりすぎるおそれがあり、少なすぎると、貯蔵安定性や機械的安定性が低くなるおそれがある。
上記非イオン性界面活性剤は、フッ素を含有しない非イオン性界面活性剤であることが好ましい。例えば、下記一般式(i):
-O-A-H    (i)
(式中、Rは、炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、ポリオキシアルキレン鎖である。)により表される化合物が挙げられる。
の炭素数は8~16が好ましく、10~14がより好ましい。Rの炭素数が上記範囲であると水性分散液中のPTFEとの親和性が高く、55℃におけるより低い粘度及び優れた機械的安定性を達成することができる。
上記Rは、下記一般式(i-1)
CH3132-   (i-1)
(式中、R31は、水素原子又は炭素数1~16のアルキル基を表し、R32は、炭素数1~17のアルキル基を表し、R31とR32の合計炭素数は7~17である。)で表されるアルキル基であることが好ましい。上記R31としては、水素原子又は炭素数1~15のアルキル基がより好ましく、水素原子又は炭素数1~12のアルキル基が更に好ましく、水素原子又は炭素数1~10のアルキル基が更により好ましい。また、R32としては、炭素数1~15のアルキル基がより好ましく、炭素数1~14のアルキル基が更に好ましく、炭素数1~13のアルキル基が更により好ましい。
上記Rは、平均メチル基数が2.0以上である炭素数8~18のアルキル基であることが好ましい。上記Rは、平均メチル基数が2.5以上がより好ましく、3.0以上が更に好ましく、3.5以上が更により好ましく、4.0以上が特に好ましい。Rの平均メチル基数の上限は、12以下が好ましく、10以下がより好ましく、8以下が更に好ましい。
また、上記Rは、1分子あたりの平均メチル基数が4.0以上であることが好ましく、4.3以上であることがより好ましく、4.7以上であることが更に好ましく、5.0以上が最も好ましい。上記Rとして特に好ましくは、2,6,8-トリメチル-4-ノニル基である。
本明細書において平均メチル基数は、試料にメタノールを添加してソックスレー抽出を行ったのち、抽出液をH-NMRにて測定することにより求める値である。
上記非イオン性界面活性剤の市販品としては、例えば、Genapol X080(製品名、クラリアント社製)、ノイゲンTDS-80(商品名)及びノイゲンTDS-100(商品名)を例とするノイゲンTDSシリーズ(第一工業製薬社製)、レオコールTD-90(商品名)を例とするレオコールTDシリーズ(ライオン社製)、ライオノール(登録商標)TDシリーズ(ライオン社製)、T-Det A138(商品名)を例とするT-Det Aシリーズ(Harcros Chemicals社製)、タージトール(登録商標)15Sシリーズ(ダウ社製)、ディスパノールTOC(商品名、日本油脂社製)等が挙げられる。
上記非イオン性界面活性剤は、異なる2種の非イオン性界面活性剤の混合物であってよく、例えば、上記一般式(i)のAの平均オキシエチレン単位数が7.0~12.0であり、平均オキシプロピレン単位数が0.0~2.0であるポリオキシアルキレン鎖である化合物と、上記一般式(i)のAの平均オキシエチレン単位数が10.0~12.0であるポリオキシアルキレン鎖である化合物との混合物であってもよい。
また、例えば、上記一般式(i)のAの平均オキシエチレン単位数が7.0以上、10.0未満である化合物と、上記一般式(i)のAの平均オキシエチレン単位数が10.0以上12.0以下であるポリオキシアルキレン鎖である化合物との混合物であってもよい。
上記非イオン界面活性剤としては、平均オキシエチレン単位数が4.0~18.0であるポリ(オキシエチレン)2,6,8-トリメチル-4-ノニルエーテル、平均オキシエチレン単位数が6.0~12.0であるポリ(オキシエチレン)2,6,8-トリメチル-4-ノニルエーテル、またはその混合物であることがより好ましい。この種類の非イオン性界面活性剤は、例えば、TERGITOL TMN-6、TERGITOL TMN-10、及びTERGITOL TMN-100X(いずれも製品名、ダウ・ケミカル社製)としても市販されている。
上記式(i)中のAの平均オキシアルキレン単位数は、5.0~20.0であることが好ましく、8.0~15.0がより好ましく、10.0~12.0が更に好ましい。
特に、オキシエチレン単位を含むことが好ましく、平均オキシエチレン単位数が10.1以上が好ましく、10.2以上がより好ましく、10.8以下が好ましく、10.7以下がより好ましく、10.6以下が更に好ましく、10.5以下が更により好ましい。本明細書において平均オキシアルキレン単位数は、試料にメタノールを添加してソックスレー抽出を行ったのち、抽出液をH-NMRにて測定することにより求める値である。
上記式(i)中のAは、オキシエチレン単位とオキシプロピレン単位とからなるものであってもよい。例えば、平均オキシエチレン単位数5.0~20.0および平均オキシプロピレン単位数0.0~2.0からなるポリオキシアルキレン鎖であってもよい。オキシエチレン単位数は、通常提供される広いまたは狭い単峰性分布、またはブレンドすることによって得られるより広いまたは二峰性分布のいずれかを含み得る。平均オキシプロピレン単位数が0.0超の場合、ポリオキシアルキレン鎖におけるオキシエチレン単位とオキシプロピレン単位はブロック状に配列しても、ランダム状に配列してもよい。
PTFE水性分散液の粘度および機械的安定性の点からは、平均オキシエチレン単位数7.0~12.0および平均オキシプロピレン単位数0.0~2.0より構成されるポリオキシアルキレン鎖が好ましい。Aが平均プロピレン単位数を0.5~1.5有すると低起泡性が良好である点で好ましい。
上記非イオン性界面活性剤は、HLBが13.00以上であることが好ましく、13.20以上であることがより好ましく、14.00以上であることが更に好ましく、14.05以上であることが更により好ましく、14.10以上であることが特に好ましい。また、14.50以下が好ましく、14.40以下がより好ましく、14.30以下が更に好ましく、14.20以下が更により好ましく、14.15以下が特に好ましい。HLBが上記範囲であることによって、機械的安定性を維持したまま、高温での粘度を低くすることができる。
上記HLBは、Griffinの算出式[HLB=E/5(式中、Eは、分子中の酸化エチレンの重量%);HLB=(E+P)/5(式中、Eは、上記定義したもの。Pは、分子中の多価アルコールの重量%);HLB=20(1-S/N)/5(式中、Sは、エステルのケン化値。Nは、エステルを構成する脂肪酸の中和値)]を用い、算出した値を意味する。
上記HLBは、2種以上の非イオン性界面活性剤を用いた場合、それぞれの非イオン性界面活性剤のHLBとその質量割合から算出する。例えば、非イオン性界面活性剤の全含有量に対して、HLBが14.00の非イオン性界面活性剤が60質量%であり、HLBが15.00の非イオン性界面活性剤が40質量%である場合には、HLB=14.00×0.6+15.00×0.4=14.40となる。
本開示の水性分散液を得るためには、親水性の異なる2種の非イオン性界面活性剤を添加することが好ましい。親水性の違いを表す指標としては上記HLBが挙げられ、例えば、本開示の水性分散液は、HLBが13.00以上14.10未満の非イオン性界面活性剤と、HLBが14.10以上15.00以下の非イオン性界面活性剤とを含むことが好ましい。HLBの異なる非イオン性界面活性剤を添加すると消泡剤を添加せずに泡立ちを抑制することもできる。
また、例えば、本開示の水性分散液は、HLBが13.00以上13.50未満の非イオン性界面活性剤と、HLBが13.50以上15.00以下(好ましくは14.50以下、より好ましくは14.00以下)である非イオン性界面活性剤とを含むことが好ましい。
非イオン性界面活性剤の曇点は、水への界面活性剤の溶解性の尺度である。本開示の水性分散液中で使用される界面活性剤は、曇点30~90℃、好ましくは35~85℃、より好ましくは40~80℃、さらに好ましくは、45~75℃を有する。
本開示の水性分散液を得るためには、曇点の異なる2種の非イオン性界面活性剤を添加することが好ましい。例えば、本開示の水性分散液は、曇点が30℃以上60℃以下の非イオン性界面活性剤と、曇点が60℃超90℃以下の非イオン性界面活性剤とを含むことが好ましく、曇点が35~60℃の非イオン性界面活性剤と、曇点が65~80℃の非イオン性界面活性剤とを含むことがより好ましい。曇点の高い非イオン性界面活性剤を使用すると機械的安定性を向上させることができる。また、曇点の異なる非イオン性界面活性剤を添加すると消泡剤を添加せずに泡立ちを抑制することもできる。
また、例えば、本開示の水性分散液は、曇点が30℃以上60℃以下の非イオン性界面活性剤と、曇点が60℃超90℃以下の非イオン性界面活性剤とを含むことが好ましく、曇点が35~60℃の非イオン性界面活性剤と、曇点が65~80℃の非イオン性界面活性剤とを含むことがより好ましい。
上記55℃における50mPa・以下の粘度は、非イオン性界面活性剤のHLBと平均オキシアルキレン単位数を適切に調整することで達成することができる。例えば、非イオン性界面活性剤のHLBを14.05~14.35、平均オキシアルキレン単位数を10.2~10.9とすることが好ましい。
より具体的な構成としては、非イオン性界面活性剤が、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数7.0~9.0のポリオキシエチレン鎖である化合物(第1成分)と、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物(第2成分)との混合物であり、第1成分を5質量%以上25質量%以下、第2成分を75質量%以上95質量%以下含むことが好ましい。上記非イオン性界面活性剤は、第1成分を10質量%以上含むことがより好ましく、15質量%以下含むことがより好ましく、第2成分を85質量%以上含むことがより好ましく、90質量%以下含むことがより好ましい。
上記55℃における50mPa・以下の粘度は、非イオン性界面活性剤のHLBと平均オキシアルキレン単位数を適切に調整することで達成することができる。例えば、非イオン性界面活性剤のHLBを13.00~13.50、平均オキシアルキレン単位数を7.0~12.0とすることが好ましい。
より具体的な構成としては、非イオン性界面活性剤が、式(i)のAが平均オキシエチレン単位数7.0~9.5のポリオキシエチレン鎖である化合物(第1成分)と、式(i)のAが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物(第2成分)との混合物であり、第1成分を40質量%以上70質量%以下、第2成分を30質量%以上60質量%以下含むことが好ましい。上記非イオン性界面活性剤は、第1成分を45質量%以上含むことがより好ましく、65質量%以下含むことがより好ましく、第2成分を35質量%以上含むことがより好ましく、55質量%以下含むことがより好ましい。
上記PTFEは、TFEの単独重合体であってもよいし、99.0質量%以上のTFEに基づく重合単位と、1.0質量%以下の変性モノマーに基づく重合単位を含む変性PTFEであってもよい。高温での機械的安定性をより改善する観点から変性PTFEが好ましい。
上記変性PTFEは、変性モノマーに基づく重合単位(以下「変性モノマー単位」とも記載する)が0.00001~1.0質量%の範囲であることが好ましい。変性モノマー単位の下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましく、0.010質量%が殊更に好ましく、0.030質量%がより殊更に好ましい。変性モノマー単位の上限としては、0.90質量%が好ましく、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。
本明細書において、上記変性モノマー単位とは、PTFEの分子構造の一部分であって変性モノマーに由来する部分を意味する。
本明細書において、PTFEを構成する各単量体の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。
上記変性モノマーとしては、TFEとの共重合が可能なものであれば特に限定されず、例えば、ヘキサフルオロプロピレン〔HFP〕等のパーフルオロオレフィン;トリフルオロエチレン、フッ化ビニリデン〔VDF〕等の水素含有フルオロオレフィン;クロロトリフルオロエチレン等のパーハロオレフィン;パーフルオロビニルエーテル:パーフルオロアリルエーテル;(パーフルオロアルキル)エチレン、エチレン等が挙げられる。また、用いる変性モノマーは1種であってもよいし、複数種であってもよい。
上記パーフルオロビニルエーテルとしては特に限定されず、例えば、下記一般式(A):
CF=CF-ORf    (A)
(式中、Rfは、パーフルオロ有機基を表す。)で表されるパーフルオロ不飽和化合物等が挙げられる。本明細書において、上記「パーフルオロ有機基」とは、炭素原子に結合する水素原子が全てフッ素原子に置換されてなる有機基を意味する。上記パーフルオロ有機基は、エーテル酸素を有していてもよい。
上記パーフルオロビニルエーテルとしては、例えば、上記一般式(A)において、Rfが炭素数1~10のパーフルオロアルキル基であるパーフルオロ(アルキルビニルエーテル)〔PAVE〕が挙げられる。上記パーフルオロアルキル基の炭素数は、好ましくは1~5である。
上記PAVEにおけるパーフルオロアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基等が挙げられる。
上記パーフルオロビニルエーテルとしては、更に、上記一般式(A)において、Rfが炭素数4~9のパーフルオロ(アルコキシアルキル)基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000001
(式中、mは、0又は1~4の整数を表す。)で表される基であるもの、Rfが下記式:
Figure JPOXMLDOC01-appb-C000002
(式中、nは、1~4の整数を表す。)で表される基であるもの等が挙げられる。
(パーフルオロアルキル)エチレン(PFAE)としては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
パーフルオロアリルエーテルとしては、例えば、
一般式:CF=CF-CF-ORf11
(式中、Rf11は、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
上記Rf11は、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。上記パーフルオロアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFがさらに好ましい。
上記変性モノマーとしては、環状型モノマーも挙げられる。環状型モノマーとしては、下記一般式(ii):
Figure JPOXMLDOC01-appb-C000003
(式中、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Yは、-CR-を表し、R及びRは、同一若しくは異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)で表されるビニルヘテロ環状体が好ましい。上記一般式(ii)で表されるビニルヘテロ環状体としては、例えば、X及びXがフッ素原子であるものが好ましく、また、R及びRが炭素数1~6のフルオロアルキル基であるものが好ましい。
上記一般式(ii)で表されるビニルヘテロ環状体としては、X及びXがフッ素原子、R及びRがパーフルオロメチル基であるパーフルオロ-2,2-ジメチル-1,3-ジオキソール〔PDD〕が好ましい。
上記変性モノマーとしては、塗膜の透明性の観点から、PAVE、PFAE及び上記環状型モノマーからなる群より選択される少なくとも1種が好ましい。
上記変性モノマーとしては、モノマー反応性比が0.1~8である変性モノマー(3)も好ましく例示される。変性モノマー(3)を存在させることによって、粒子径が小さいPTFE粒子を得ることができ、分散安定性の高い水性分散液を得ることができる。
ここで、TFEとの共重合におけるモノマー反応性比とは、成長ラジカルがTFEに基づく繰り返し単位未満であるときに、該成長ラジカルがTFEと反応する場合の速度定数を、該成長ラジカルが変性モノマーと反応する場合の速度定数で除した値である。この値が低いほど、変性モノマーがTFEと高反応性であることを表す。モノマー反応性比は、TFEと変性モノマーとを共重合して開始直後の生成ポリマー中の組成を求め、ファインマン-ロスの式より算出できる。
上記共重合は、内容積6.0Lのステンレス製オートクレーブに3600gの脱イオン脱気水、上記水に対して1000ppmのパーフルオロオクタン酸アンモニウム、100gのパラフィンワックスを使用して、圧力0.78MPa、温度70℃で実施する。0.05g、0.1g、0.2g、0.5g、1.0gの変性モノマーをそれぞれ反応器に加え、0.072gの過硫酸アンモニウム(対水20ppm)を加えて、重合圧力0.78MPaを維持させるため、TFEを連続的に供給する。TFE仕込量が1000gに到達したとき、撹拌を停止して、反応器が大気圧になるまで脱圧を行なう。冷却後、パラフィンワックスを分離することにより、生成ポリマーを含む水性分散液が得られる。上記水性分散液を撹拌して生成ポリマーを凝析させ、150℃で乾燥させる。得られた生成ポリマー中の組成を、NMR、FT-IR、元素分析、蛍光X線分析をモノマーの種類によって適宜組み合わせることで算出する。
モノマー反応性比が0.1~8である変性モノマー(3)としては、式(3a)~(3d)で表される変性モノマーからなる群より選択される少なくとも1種であることが好ましい。
CH=CH-Rf    (3a)
(式中、Rfは炭素数が1~10のパーフルオロアルキル基である。)
CF=CF-O-Rf    (3b)
(式中、Rfは炭素数が1~2のパーフルオロアルキル基である。)
CF=CF-O-(CFCF=CF    (3c)
(式中、nは1又は2である。)
Figure JPOXMLDOC01-appb-C000004
(式中、X及びXはF、Cl又はメトキシ基であり、Yは式Y1又はY2である。)
Figure JPOXMLDOC01-appb-C000005
(式Y2中、Z及びZ’はF又は炭素数1~3のフッ素化アルキル基である。)
変性モノマー(3)の含有量は、PTFEに対して0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましく、0.010質量%が殊更に好ましく、0.030質量%がより殊更に好ましい。上限としては、0.90質量%が好ましく、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。
上記変性モノマーは、高温での粘度が低く、かつ、高温での機械的安定性に優れることから、ヘキサフルオロプロピレン、フッ化ビニリデン、フルオロ(アルキルビニルエーテル)、パーフルオロアリルエーテル、(パーフルオロアルキル)エチレン、エチレン、及び、ラジカル重合で反応可能な官能基と親水基とを有する変性モノマーからなる群より選択される少なくとも1種を含むことが好ましい。
また、上記変性モノマーは、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)及び(パーフルオロアルキル)エチレンからなる群より選択される少なくとも1種を含むことが好ましく、パーフルオロ(アルキルビニルエーテル)であることがより好ましく、パーフルオロ(プロピルビニルエーテル)(以下、PPVEとも表記する)であることが更に好ましい。
上記ヘキサフルオロプロピレン単位、パーフルオロ(アルキルビニルエーテル)単位及び(パーフルオロアルキル)エチレン単位の合計量は、PTFEに対して、0.00001~1質量%の範囲であることが好ましい。上記合計量の下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更に好ましく、0.010質量%が殊更に好ましく、0.030質量%がより殊更に好ましい。上限としては、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。
上記変性モノマーとしては、ラジカル重合で反応可能な官能基と親水基とを有する変性モノマー(以下「変性モノマー(4)」と記載する。)も好ましい。変性モノマー(4)に基づく重合単位を含むことによって、粒子径が小さいPTFE粒子を得ることができ、分散安定性の高い水性分散液を得ることができる。
PTFEを製造する重合において、上記変性モノマー(4)の量は、水性媒体の0.1ppmに相当する量を超える量であることが好ましく、5ppm以上であることがより好ましく、10ppm以上であることが更に好ましい。上記変性モノマー(4)が少なすぎると、得られるPTFEの粒子径が大きくなるおそれがある。上記変性モノマー(4)は、上記範囲であればよいが、例えば、上限を5000ppmとすることができる。また、上記製造方法では、反応中または反応後の水性分散液の安定性を向上させるために、反応途中で変性モノマー(4)を系中に追加してもよい。
上記変性モノマー(4)は水溶性が高いので、未反応の変性モノマー(4)が水性分散液中に残存したとしても、濃縮工程、あるいは凝析・洗浄工程での除去は、後述する含フッ素化合物と同様に容易である。
上記変性モノマー(4)は、重合の過程で生成ポリマー中に取り込まれるが、重合系中の変性モノマー(4)の濃度そのものが低く、ポリマーに取り込まれる量が少ないため、PTFEの耐熱性が低下したり焼成後に着色したりする問題はない。
上記変性モノマー(4)は、ラジカル重合で反応可能な官能基と親水基とを有するものである。
上記変性モノマー(4)における親水基としては、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、Rは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)が挙げられる。上記親水基としては、なかでも、-SOM及び-COOMが好ましい。上記金属原子としてはアルカリ金属が好ましく、アルカリ金属としては、Na、K等が挙げられる。
上記変性モノマー(4)における「ラジカル重合で反応可能な官能基」としては、例えば、ビニル基、アリル基等の不飽和結合を有する基が挙げられる。
上記変性モノマー(4)は、ラジカル重合で反応可能な官能基を有するので、上記重合において使用すると、重合反応初期に含フッ素モノマーと反応し、上記変性モノマー(4)に由来する親水基を有し安定性が高い粒子が形成されると推測される。このため、上記変性モノマー(4)の存在下に重合を行うと、乳化粒子数が多くなると考えられる。
上記重合は、上記変性モノマー(4)を1種存在させるものであってもよいし、2種以上存在させるものであってもよい。
上記重合において、上記変性モノマー(4)として、不飽和結合を有する化合物を使用することができる。
上記変性モノマー(4)は、一般式(4):
CX=CX-(CZ-Y   (4)
(式中、X、X及びXは、それぞれ独立して、F、Cl、H又はCFであり;Yは、親水基であり;Rは連結基であり;Z及びZは、それぞれ独立して、H、F又はCFであり、kは0又は1である)で表される化合物が好ましい。
上記親水基としては、例えば、-NH、-POM、-OPOM、-SOM、-OSOM、-COOM(各式において、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウム、Rは、H又は有機基であり、同一でも異なっていてもよい。いずれか2つがお互いに結合して、環を形成してもよい。)が挙げられる。上記親水基としては、なかでも、-SOM又は-COOMが好ましい。Rとしては、H又はC1-10の有機基が好ましく、H又はC1-4の有機基がより好ましく、H又はC1-4のアルキル基が更に好ましい。
上記金属原子としては、1価又は2価の金属原子が挙げられ、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、Na、K又はLiが好ましい。
上記Rは、連結基である。本明細書において「連結基」は、二価連結基を指す。連結基は、単結合であってもよく、少なくとも1個の炭素原子を含むことが好ましく、炭素原子の数は、2以上であってよく、4以上であってよく、8以上であってよく、10以上であってよく、20以上であってもよい。上限は限定されないが、例えば、100以下であってよく、50以下であってよい。
上記連結基は、鎖状又は分岐状、環状又は非環状構造、飽和又は不飽和、置換又は非置換であってよく、所望により硫黄、酸素、及び窒素からなる群から選択される1つ以上のヘテロ原子を含み、所望によりエステル、アミド、スルホンアミド、カルボニル、カーボネート、ウレタン、尿素及びカルバメートからなる群から選択される1つ以上の官能基を含んでよい。上記連結基は、炭素原子を含まず、酸素、硫黄又は窒素等のカテナリーヘテロ原子であってもよい。
上記Rは、例えば、酸素、硫黄、窒素等のカテナリーヘテロ原子、又は、2価の有機基であることが好ましい。
が2価の有機基である場合、炭素原子に結合する水素原子は、フッ素以外のハロゲン、例えば塩素等で置き換えられてもよく、二重結合を含んでも含まなくてもよい。また、Rは、鎖状及び分岐状のいずれでもよく、環状及び非環状のいずれでもよい。また、Rは、官能基(例えば、エステル、エーテル、ケトン、アミン、ハロゲン化物等)を含んでもよい。
はまた、非フッ素の2価の有機基であってもよいし、部分フッ素化又は過フッ素化された2価の有機基であってもよい。
としては、例えば、炭素原子にフッ素原子が結合していない炭化水素基、炭素原子に結合する水素原子の一部がフッ素原子で置換された炭化水素基、炭素原子に結合する水素原子の全てがフッ素原子で置換された炭化水素基、-(C=O)-、-(C=O)-O-、又は、-(C=O)-を含有する炭化水素基であってもよく、これらは酸素原子を含んでいてもよく、二重結合を含んでいてもよく、官能基を含んでいてもよい。
変性モノマー(4)は、下記式(4a)~(4e)で表される化合物からなる群より選択される少なくとも1種であることが好ましい。
CF=CF-(CFn1-Y   (4a)
(式中、n1は、1~10の整数を表し、Yは、-SO又は-COOMを表し、Mは、H、NH又はアルカリ金属を表す。)
CF=CF-(CFC(CF)F)n2-Y   (4b)
(式中、n2は、1~5の整数を表し、Yは、前記定義と同じ。)
CF=CF-O-(CFXn3-Y   (4c)
(式中、Xは、F又はCFを表し、n3は、1~10の整数を表し、Yは、前記定義と同じ。)
CF=CF-O-(CFCFXO)n4-CFCF-Y   (4d)
(式中、n4は、1~10の整数を表し、Y及びXは、前記定義と同じ。)
CX =CFCF-O-(CF(CF)CFO)n5-CF(CF)-Y 
  (4e)
(式中、各Xは、同一であり、F又はHを表す。n5は、0又は1~10の整数を表し、Yは、前記定義と同じ。)
上記アルカリ金属としては、Na、K等が挙げられる。
上記式(4a)において、上記n1は、5以下の整数であることが好ましく、2以下の整数であることがより好ましい。上記Yは、適度な水溶性及び界面活性を得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
上記式(4a)で表されるパーフルオロビニルアルキル化合物としては、例えば、CF=CFCFCOOM(式中、Mは上記定義と同じ。)が挙げられる。
上記式(4b)において、上記n2は、乳化能の点で、3以下の整数であることが好ましく、Yは、適度な水溶性及び界面活性が得られる点で、-COOMであることが好ましく、Mは、不純物として残留しにくく、得られる成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
上記式(4c)において、上記n3は、水溶性の点で5以下の整数であることが好ましく、上記Yは、適度な水溶性及び界面活性が得られる点で、-COOMであることが好ましく、上記Mは、分散安定性がよくなる点で、H又はNHであることが好ましい。
上記式(4d)において、上記Xは、界面活性能の点で、-CFであることが好ましく、上記n4は、水溶性の点で5以下の整数であることが好ましく、上記Yは、適度な水溶性と界面活性が得られる点で-COOMであることが好ましく、上記Mは、H又はNHであることが好ましい。
上記式(4d)で表されるパーフルオロビニルエーテル化合物としては、例えば、CF=CFOCFCF(CF)OCFCFCOOM(式中、Mは、H、NH又はアルカリ金属を表す。)が挙げられる。
上記式(4e)において、上記n5は乳化能の点で0又は1~5の整数であることが好ましく、0、1又は2であることがより好ましく、0又は1であることが更に好ましい。上記Yは、適度な水溶性と界面活性が得られる点で-COOMであることが好ましく、上記Mは、不純物として残留しにくく、得られた成形体の耐熱性が向上する点で、H又はNHであることが好ましい。
上記式(4e)で表されるパーフルオロビニルアルキル化合物としては、例えば、CH=CFCFOCF(CF)COOM、CH=CFCFOCF(CF)CFOCF(CF)COOM(式中、Mは上記定義と同じ。)が挙げられる。
上記PTFEは、コアシェル構造を有することが好ましい。コアシェル構造を有するフルオロポリマーとしては、例えば、粒子中に高分子量のPTFEのコアと、より低分子量のPTFE又は変性のPTFEシェルとを含む変性PTFEが挙げられる。このような変性PTFEとしては、例えば、特表2005-527652号公報に記載されるPTFEが挙げられる。
上記コアシェル構造としては、次の構造をとり得る。
コア:TFE単独重合体 シェル:TFE単独重合体
コア:変性PTFE   シェル:TFE単独重合体
コア:変性PTFE   シェル:変性PTFE
コア:TFE単独重合体 シェル:変性PTFE
上記の構造はそれぞれ、高分子量と低分子量の態様を取り得る。例えば、高分子量のTFE単独重合体のコアと、低分子量のTFE単独重合体のシェルの構造、高分子量の変性PTFEのコアと、低分子量のTFE単独重合体のシェルの構造、高分子量の変性PTFEのコアと、低分子量の変性PTFEのシェルの構造、高分子量のTFE単独重合体のコアと、低分子量の変性PTFEのシェルの構造、低分子量のTFE単独重合体のコアと、高分子量のTFE単独重合体のシェルの構造、低分子量の変性PTFEのコアと、高分子量のTFE単独重合体のシェルの構造、低分子量の変性PTFEのコアと、高分子量の変性PTFEのシェルの構造、低分子量のTFE単独重合体のコアと、高分子量の変性PTFEのシェルの構造を取り得る。
上記PTFEは、変性PTFEのコアと、低分子量PTFEのシェルとを有するコアシェル構造であることが特に好ましい。連鎖移動剤の存在下でTFEを含むモノマー組成物を重合することで、シェルを低分子量PTFEにすることができ、これにより、機械的安定性が大幅に向上する。
上記TFEを含むモノマー組成物は、TFEのみを含むものであってもよいし、TFEと変性モノマーとを含むものであってもよい。
コアを構成する変性PTFEの変性モノマーは、PAVE、PFAE及び上記環状型モノマーからなる群より選択される少なくとも1種であることが好ましい。PAVEとしては、PPVE、PEVE、PMVE等が挙げられるが、PPVEが好ましい。
PFAEとしては、PFBE、(パーフルオロヘキシル)エチレン等が挙げられ、PFBEが好ましい。
上記環状型モノマーとしては、上述した一般式(ii)で表されるビニルヘテロ環状体が挙げられるが、パーフルオロ-2,2-ジメチル-1,3-ジオキソール〔PDD〕が好ましい。
コアを構成する変性PTFEにおいて、変性モノマーに基づく重合単位の含有量は、PTFEに対して、0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましく、0.010質量%が殊更に好ましく、0.030質量%がより殊更に好ましい。上限としては、0.90質量%が好ましく、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。
上記シェルにおける低分子量PTFEは、連鎖移動剤の存在下でTFEを含むモノマー組成物を重合することによって得ることができる。上記連鎖移動剤としては、シェルを構成するPTFEの分子量を低減するものであれば特に限定されず、例えば、水溶性アルコール、炭化水素、フッ化炭化水素等の非過酸化有機化合物;ジコハク酸パーオキサイド〔DSP〕等の水溶性有機過酸化物;過硫酸アンモニウム〔APS〕、過硫酸カリウム〔KPS〕等の過硫酸塩等が挙げられる。上記シェルを形成する重合において、連鎖移動剤としては、上記非過酸化有機化合物、水溶性有機過酸化物及び過硫酸塩の何れかを少なくとも1種用いるものが好ましい。
上記連鎖移動剤において、非過酸化有機化合物、水溶性有機過酸化物及び過硫酸塩は、それぞれ1種又は2種以上を用いることができる。
上記連鎖移動剤としては、反応系内で分散性及び均一性が良好である点で、炭素数1~4の水溶性アルコール、炭素数1~4の炭化水素、及び、炭素数1~4のフッ化炭化水素よりなる群から選択される少なくとも1種からなるものが好ましく、メタン、エタン、n-ブタン、イソブタン、メタノール及びイソプロパノールよりなる群から選択される少なくとも1種からなるものがより好ましく、メタノール及びイソブタンからなる群より選択される少なくとも1種からなるものであることが更に好ましい。
上記重合は通常、水性媒体中で行われる。上記連鎖移動剤の量は、水性媒体に対して0.001~10000ppmが好ましい。上記連鎖移動剤の量は、水性媒体に対して0.01ppm以上がより好ましく、0.05ppm以上が更に好ましく、0.1ppm以上が特に好ましい。また、水性媒体に対して1000ppm以下がより好ましく、750ppm以下が更に好ましく、500ppm以下が特に好ましい。
上記コアシェル構造を有するPTFEにおいて、コアの比率の上限は、好ましくは99.5質量%、より好ましくは99.0質量%、更に好ましくは98.0質量%、更により好ましくは97.0質量%、特に好ましくは95.0質量%、最も好ましくは90.0質量%である。
上記コアシェル構造を有するPTFEにおいて、シェルの比率の下限は、好ましくは0.5質量%、より好ましくは1.0質量%、更に好ましくは3.0質量%、特に好ましくは5.0質量%、最も好ましくは10.0質量%である。
上記コアシェル構造を有するPTFEにおいて、上記コア又は上記シェルを2層以上の構成とすることもできる。例えば、変性PTFEのコア中心部と、TFE単独重合体のコア外層部と、低分子量PTFEのシェルとを有する3層構造を有してもよい。
上記コアシェル構造を有するPTFEは、リダクションレシオ1500における押出し圧力が80MPa以下であることが好ましく、70MPa以下であることがより好ましく、60MPa以下であることが更に好ましい。リダクションレシオ1500における上記範囲内の押出し圧力は、後述する本開示の第1のPTFE水性分散液の製造方法において、達成することができる。
本明細書において、上記「リダクションレシオ1500における押出し圧力」は、下記手順に従って測定する。
本開示の第1のPTFE水性分散液をメタノールにて凝固させ、得られた湿潤PTFE粉末を更にメタノールにてソックスレー抽出を行ない、非イオン性界面活性剤含む添加物を取り除く。取り除いた湿潤PTFE粉末を150℃で18時間乾燥してPTFE粉末を得る。
もしくは、重合上がりの、即ち非イオン性界面活性剤を加える前のPTFE水性分散液のPTFE濃度を10~15質量%になるように脱イオン水で希釈した後、機械的剪断を与えて湿潤PTFE粉末を得る。この湿潤PTFE粉末を150℃で18時間乾燥してPTFE粉末を得る。
PTFE粉末100質量部(60g)に対して押出助剤として炭化水素油(商品名:アイソパーG、エクソン化学社製)を20.5質量部(12.3g)添加し、室温(25±1℃)で1時間熟成し、内径25.4mmのシリンダー付き押出ダイ(リダクションレシオ1500)でペースト押出成形を実施する。押出後半において、圧力が平衡状態になる部分の圧力をシリンダー断面積で除した値を、リダクションレシオ1500における押出し圧力とした。
上記PTFEは、平均一次粒子径が500nm以下であることが好ましく、400nm以下であることがより好ましく、350nm以下であることが更に好ましい。平均一次粒子径の下限は特に限定されないが、例えば、100nmであってよい。分子量の観点からは、例えば高分子量PTFEの場合、150nm以上であることが好ましく、200nm以上であることがさらに好ましい。
上記平均一次粒子径は、樹脂固形分濃度を0.15質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定した数基準長さ平均一次粒子径との検量線をもとにして、上記透過率から決定した。
本開示の水性分散液は、アスペクト比が5以上のPTFE粒子の含有量がPTFE粒子の全含有量に対して1.5質量%未満であることが好ましい。
上記アスペクト比は、固形分濃度が約1質量%となるように希釈したPTFE水性分散液を走査電子顕微鏡(SEM)で観察し、無作為に抽出した200個以上の粒子について画像処理を行い、その長径と短径の比の平均より求める。
上記PTFEは、標準比重(SSG)が2.220以下であることが好ましく、2.190以下であることがより好ましい。また、2.140以上であることが好ましく、2.150以上であることがより好ましい。上記SSGは、ASTM D 4895-89に準拠して成形されたサンプルを用い、ASTM D-792に準拠した水置換法により測定する。
上記PTFEは、通常、延伸性、フィブリル化特性および非溶融二次加工性を有する。
上記非溶融二次加工性とは、ASTM D-1238及びD-2116に準拠して、結晶化融点より高い温度でメルトフローレートを測定できない性質、すなわち溶融温度領域でも容易に流動しない性質を意味する。
本開示の第1のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まない。本開示の組成物において、「含フッ素界面活性剤を実質的に含まない」とは、PTFE水性分散液に対する含フッ素界面活性剤含有量が1.0ppm以下であることを意味する。
本開示の第1のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まないにも関わらず、高温での粘度を低くし、高温での機械的安定性を優れたものとすることができる。
含フッ素界面活性剤の含有量は、検出下限の濃度以上であってよく、定量下限の濃度以上であってもよく、100ppb以上であってよい。好ましくは700ppb以下であり、より好ましくは600ppb以下であり、更に好ましくは500ppb以下である。
本開示の組成物において、含フッ素界面活性剤の含有量は、後述する実施例に記載するように、液体クロマトグラフィー質量分析法を用いて測定した値である。具体的には、下記方法で測定できる。
[含フッ素界面活性剤の含有量測定方法]
水性分散液の固形分を測定し、PTFE固形分1.5gに相当する量の水性分散液を100mLスクリュー管に秤量する。その後、水性分散液中に含まれている水と合わせ、抽出溶媒が37gの水/メタノール=10/90質量%となるように水とメタノールを加え、凝析するまでよく振とうする。液相を抜き出して4000rpmで1時間遠心分離を行い、上澄み液を抽出する。なお、このようなメタノール抽出の代わりに、水性分散液にメタノールを添加してソックスレー抽出を行う方法を用いてもよい。
上記で得られた抽出液中の含フッ素界面活性剤について、液体クロマトグラフ質量分析計を用いて測定を行う。
本開示の第1のPTFE水性分散液が含フッ素界面活性剤を用いた重合で得られたものである場合、重合上がりのPTFE水性分散液に、非イオン性界面活性剤を加え、濃縮すること等によって含フッ素界面活性剤量を上記範囲にすることができる。
上記含フッ素界面活性剤としては、含フッ素アニオン界面活性剤等が挙げられる。
上記含フッ素アニオン界面活性剤は、例えば、下記一般式(N)におけるアニオン基Yを除く部分の総炭素数が20以下のフッ素原子を含む界面活性剤であってよい。
上記含フッ素界面活性剤としてはまた、アニオン部分の分子量が800以下のフッ素を含む界面活性剤であってよい。
なお、上記「アニオン部分」は、上記含フッ素界面活性剤のカチオンを除く部分を意味する。例えば、後述する式(I)で表されるF(CFn1COOMの場合には、「F(CFn1COO」の部分である。
上記含フッ素界面活性剤としてはまた、LogPOWが3.5以下、好ましくは3.4以下の含フッ素界面活性剤が挙げられる。上記LogPOWは、1-オクタノールと水との分配係数であり、LogP[式中、Pは、含フッ素界面活性剤を含有するオクタノール/水(1:1)混合液が相分離した際のオクタノール中の含フッ素界面活性剤濃度/水中の含フッ素界面活性剤濃度比を表す]で表されるものである。
上記LogPOWは、カラム;TOSOH ODS-120Tカラム(φ4.6mm×250mm、東ソー(株)製)、溶離液;アセトニトリル/0.6質量%HClO4水=1/1(vol/vol%)、流速;1.0ml/分、サンプル量;300μL、カラム温度;40℃、検出光;UV210nmの条件で、既知のオクタノール/水分配係数を有する標準物質(ヘプタン酸、オクタン酸、ノナン酸及びデカン酸)についてHPLCを行い、各溶出時間と既知のオクタノール/水分配係数との検量線を作成し、この検量線に基づき、試料液におけるHPLCの溶出時間から算出する。
上記含フッ素界面活性剤として具体的には、米国特許出願公開第2007/0015864号明細書、米国特許出願公開第2007/0015865号明細書、米国特許出願公開第2007/0015866号明細書、米国特許出願公開第2007/0276103号明細書、米国特許出願公開第2007/0117914号明細書、米国特許出願公開第2007/142541号明細書、米国特許出願公開第2008/0015319号明細書、米国特許第3250808号明細書、米国特許第3271341号明細書、特開2003-119204号公報、国際公開第2005/042593号、国際公開第2008/060461号、国際公開第2007/046377号、国際公開第2007/119526号、国際公開第2007/046482号、国際公開第2007/046345号、米国特許出願公開第2014/0228531号、国際公開第2013/189824号、国際公開第2013/189826号に記載されたもの等が挙げられる。
上記含フッ素アニオン界面活性剤としては、下記一般式(N):
n0-Rfn0-Y   (N
(式中、Xn0は、H、Cl又は及びFである。Rfn0は、炭素数3~20で、鎖状、分枝鎖状または環状で、一部または全てのHがFにより置換されたアルキレン基であり、該アルキレン基は1つ以上のエーテル結合を含んでもよく、一部のHがClにより置換されていてもよい。Yはアニオン基である。)で表される化合物が挙げられる。
のアニオン基は、-COOM、-SOM、又は、-SOMであってよく、-COOM、又は、-SOMであってよい。
Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。
上記金属原子としては、アルカリ金属(1族)、アルカリ土類金属(2族)等が挙げられ、例えば、Na、K又はLiである。
としては、H又はC1-10の有機基であってよく、H又はC1-4の有機基であってよく、H又はC1-4のアルキル基であってよい。
Mは、H、金属原子又はNR であってよく、H、アルカリ金属(1族)、アルカリ土類金属(2族)又はNR であってよく、H、Na、K、Li又はNHであってよい。
上記Rfn0は、Hの50%以上がフッ素に置換されているものであってよい。
上記一般式(N)で表される化合物としては、
下記一般式(N):
n0-Rf-Y   (N
(式中、Xn0は、H、Cl及びFであり、Rfは3~15の炭素原子を有する直鎖又は分岐鎖のパーフルオロアルキレン基であり、Yは、上記定義したものである。)で表される化合物(より具体的には、下記一般式(N1a):
n0-(CFm1-Y   (N1a
(式中、Xn0は、H、Cl及びFであり、m1は3~15の整数であり、Yは、上記定義したものである。)で表される化合物)、下記一般式(N):
Rfn1-O-(CF(CF)CFO)m2CFXn1-Y   (N
(式中、Rfn1は、炭素数1~5のパーフルオロアルキル基であり、m2は、0~3の整数であり、Xn1は、F又はCFであり、Yは、上記定義したものである。)で表される化合物、下記一般式(N):
Rfn2(CHm3-(Rfn3-Y  (N
(式中、Rfn2は、炭素数1~13のエーテル結合を含み得る、部分または完全フッ素化されたアルキル基であり、m3は、1~3の整数であり、Rfn3は、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基であり、qは0又は1であり、Yは、上記定義したものである。)で表される化合物、下記一般式(N): 
Rfm4-O-L-Y   (N
(式中、Rfm4は、エーテル結合及び/又は塩素を含み得る直鎖状または分枝鎖状の部分または完全フッ素化された脂肪族基であり、Lは、部分または完全フッ素化された直鎖状のアルキレン基又は脂肪族炭化水素基を表し、Yは、上記定義したものである。)で表される化合物(より具体的には、下記一般式(N4a):
Rfn4-O-(CYn1n2CF-Y   (N4a
(式中、Rfn4は、炭素数1~12のエーテル結合及び/又は塩素を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Yn1及びYn2は、同一若しくは異なって、H又はFであり、pは0又は1であり、Yは、上記定義したものである。)で表される化合物、及び、下記一般式(N):
Figure JPOXMLDOC01-appb-C000006
(式中、Xn2、Xn3及びXn4は、同一若しくは異なってもよく、H、F、又は、炭素数1~6のエーテル結合を含んでよい直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基である。Rfn5は、炭素数1~3のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキレン基であり、Lは連結基であり、Yは、上記定義したものである。但し、Xn2、Xn3、Xn4及びRfn5の合計炭素数は18以下である。)で表される化合物が挙げられる。
上記一般式(N)で表される化合物としてより具体的には、下記一般式(I)で表されるパーフルオロカルボン酸(I)、下記一般式(II)で表されるω-Hパーフルオロカルボン酸(II)、下記一般式(III)で表されるパーフルオロポリエーテルカルボン酸(III)、下記一般式(IV)で表されるパーフルオロアルキルアルキレンカルボン酸(IV)、下記一般式(V)で表されるパーフルオロアルコキシフルオロカルボン酸(V)、下記一般式(VI)で表されるパーフルオロアルキルスルホン酸(VI)、下記一般式(VII)で表されるω-Hパーフルオロスルホン酸(VII)、下記一般式(VIII)で表されるパーフルオロアルキルアルキレンスルホン酸(VIII)、下記一般式(IX)で表されるアルキルアルキレンカルボン酸(IX)、下記一般式(X)で表されるフルオロカルボン酸(X)、下記一般式(XI)で表されるアルコキシフルオロスルホン酸(XI)、及び、下記一般式(XII)で表される化合物(XII)、が挙げられる。
上記パーフルオロカルボン酸(I)は、下記一般式(I)
F(CFn1COOM    (I)
(式中、n1は、3~14の整数であり、Mは、H、金属原子、NR 、置換基を有していてもよいイミダゾリウム、置換基を有していてもよいピリジニウム又は置換基を有していてもよいホスホニウムであり、Rは、H又は有機基である。)で表されるものである。
上記ω-Hパーフルオロカルボン酸(II)は、下記一般式(II)
H(CFn2COOM    (II)
(式中、n2は、4~15の整数であり、Mは、上記定義したものである。)で表されるものである。
上記パーフルオロポリエーテルカルボン酸(III)は、下記一般式(III)
Rf-O-(CF(CF)CFO)n3CF(CF)COOM    (III)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、n3は、0~3の整数であり、Mは、上記定義したものである。)で表されるものである。
上記パーフルオロポリエーテルカルボン酸(III)としては、総炭素数7以下、かつLogPOW3.5以下のパーフルオロポリエーテルカルボン酸が好ましい。上記総炭素数は、特に5~7が好ましい。また、上記LogPOWは3.4以下がより好ましい。
上記パーフルオロアルキルアルキレンカルボン酸(IV)は、下記一般式(IV)
Rf(CHn4RfCOOM        (IV)
(式中、Rfは、炭素数1~5のパーフルオロアルキル基であり、Rfは、直鎖状又は分岐状の炭素数1~3のパーフルオロアルキレン基、n4は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
上記アルコキシフルオロカルボン酸(V)は、下記一般式(V)
Rf-O-CYCF-COOM    (V)
(式中、Rfは、炭素数1~12のエーテル結合及び/又は塩素を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
上記パーフルオロアルキルスルホン酸(VI)は、下記一般式(VI)
F(CFn5SOM        (VI)
(式中、n5は、3~14の整数であり、Mは、上記定義したものである。)で表されるものである。
上記ω-Hパーフルオロスルホン酸(VII)は、下記一般式(VII)
H(CFn6SOM    (VII)
(式中、n6は、4~14の整数であり、Mは、上記定義したものである。)で表されるものである。
上記パーフルオロアルキルアルキレンスルホン酸(VIII)は、下記一般式(VIII)
Rf(CHn7SOM      (VIII)  
(式中、Rfは、炭素数1~13のパーフルオロアルキル基であり、n7は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
上記アルキルアルキレンカルボン酸(IX)は、下記一般式(IX)
Rf(CHn8COOM      (IX)  
(式中、Rfは、炭素数1~13のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、n8は、1~3の整数であり、Mは、上記定義したものである。)で表されるものである。
上記フルオロカルボン酸(X)は、下記一般式(X)
Rf-O-Rf-O-CF-COOM    (X)
(式中、Rfは、炭素数1~6のエーテル結合及び/又は塩素を含み得る直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Rfは、炭素数1~6の直鎖状または分枝鎖状の部分または完全フッ素化されたアルキル基であり、Mは、上記定義したものである。)で表されるものである。
上記アルコキシフルオロスルホン酸(XI)は、下記一般式(XI)
Rf-O-CYCF-SOM    (XI)
(式中、Rfは、炭素数1~12のエーテル結合を含み得る直鎖状または分枝鎖状であって、塩素を含んでもよい、部分または完全フッ素化されたアルキル基であり、Y及びYは、同一若しくは異なって、H又はFであり、Mは、上記定義したものである。)で表されるものである。
上記化合物(XII)は、下記一般式(XII):
Figure JPOXMLDOC01-appb-C000007
式中、X、X及びXは、同一若しくは異なってもよく、H、F及び炭素数1~6のエーテル結合を含み得る直鎖状または分岐鎖状の部分または完全フッ素化されたアルキル基であり、Rf10は、炭素数1~3のパーフルオロアルキレン基であり、Lは連結基であり、Yはアニオン基である。)で表されるものである。
は、-COOM、-SOM、又は、-SOMであってよく、-SOM、又は、COOMであってよい(式中、Mは上記定義したものである。)。
Lとしては、例えば、単結合、炭素数1~10のエーテル結合を含みうる部分又は完全フッ素化されたアルキレン基が挙げられる。
上述したように上記含フッ素アニオン界面活性剤としては、カルボン酸系界面活性剤、スルホン酸系界面活性剤等が挙げられる。
上記含フッ素アニオン界面活性剤において、一般式(N)で表される化合物を使用する場合、式(N)におけるRfの炭素数は3~6の整数であることが好ましい。また、式(N1a)におけるm1は3~6の整数であることが好ましい。また、パーフルオロカルボン酸(I)を用いる場合、一般式(I)におけるn1は3~6の整数であることが好ましい。
上記含フッ素アニオン界面活性剤としては、特に、炭素数が4~9、好ましくは4~7であり、エーテル性酸素及び/又は塩素を有してもよい含フッ素カルボン酸及びその塩からなる群から選ばれる化合物が好ましい。ここで、炭素数とは、一分子中の全炭素数を意味する。上記含フッ素アニオン界面活性剤は、2種以上を併用してもよい。
上記含フッ素アニオン界面活性剤としては、炭素数が4~9、好ましくは4~7であり、エーテル性酸素及び/又は塩素を有する含フッ素カルボン酸及びその塩からなる群から選ばれる化合物が好ましい。エーテル性酸素を有する含フッ素カルボン酸は、炭素数が4~9、好ましくは4~7で主鎖の炭素鎖の途中にエーテル性酸素を有し、末端に-COOHを有する化合物である。末端の-COOHは塩を形成していてもよい。
主鎖の途中に存在するエーテル性酸素は1個以上であり、1~4個が好ましく、1又は2個がより好ましい。
上記炭素数は5~7が好ましい。
上記含フッ素アニオン界面活性剤としては特に、主鎖の炭素数が6~7であり、主鎖のエーテル性酸素が1~4であり、主鎖が直鎖状、分岐状、又は、環状を有しており、部分または完全フッ素化されたカルボン酸又はその塩であることが好ましい。ここで、「主鎖」とは炭素原子数が最大となる一続きの鎖を意味する。
上記含フッ素界面活性剤としては、F(CFCOOM、F(CFCOOM、H(CFCOOM、CFO(CFOCHFCFCOOM、COCF(CF)CFOCF(CF)COOM、CFCFCFOCF(CF)COOM、CFCFOCFCFOCFCOOM、COCF(CF)CFOCF(CF)COOM、CFOCF(CF)CFOCF(CF)COOM、CFClCFCFOCF(CF)CFOCFCOOM、CFClCFCFOCFCF(CF)OCFCOOM、CFClCF(CF)OCF(CF)CFOCFCOOM、CFClCF(CF)OCFCF(CF)OCFCOOM、
下記式:
Figure JPOXMLDOC01-appb-C000008
等(式中、Mは上記定義したものである。)で表される化合物等が具体的に挙げられる。また、上記アニオン性含フッ素界面活性剤は、単一組成ではなく、二種以上の混合物であっても良い。
本開示の第1のPTFE水性分散液は、粘度を調整する目的で、あるいは顔料、フィラーなどの混和性改良の目的で、アニオン界面活性剤を含むことが好ましい。アニオン界面活性剤は、経済面、環境面で問題のない範囲で適宜添加することができる。
上記アニオン界面活性剤としては、フッ素を含まないフッ素非含有アニオン界面活性剤や含フッ素アニオン界面活性剤が挙げられるが、フッ素を含まないフッ素非含有アニオン界面活性剤(即ち炭化水素系アニオン界面活性剤)が好ましい。
粘度を調整する目的の場合、公知のアニオン界面活性剤であれば種類は特に限定されないが、例えば国際公開第2013/146950号や国際公開第2013/146947号に記載されているフッ素非含有アニオン界面活性剤を用いることができる。例えば、炭素数6~40、好ましくは炭素数8~20、より好ましくは炭素数9~13の飽和又は不飽和の脂肪族鎖を有するものが挙げられる。上記飽和又は不飽和の脂肪族鎖は、直鎖又は分岐鎖の何れであってもよく、環状構造を有するものであってもよい。上記炭化水素は、芳香族性であってもよいし、芳香族基を有するものであってもよい。上記炭化水素は、酸素、窒素、硫黄等のヘテロ原子を有するものであってもよい。
上記フッ素非含有アニオン界面活性剤としては、アルキルスルホネート、アルキルサルフェート、アルキルアリールサルフェート及びそれらの塩;脂肪酸(脂肪族カルボン酸)及びその塩;リン酸アルキルエステル、リン酸アルキルアリールエステル又はそれらの塩;等が挙げられるが、中でも、アルキルスルホネート、アルキルサルフェート、脂肪族カルボン酸またはそれらの塩が好ましい。
アルキルサルフェートまたはその塩としては、ラウリル硫酸アンモニウム、またはラウリル硫酸ナトリウム等が好ましい。
脂肪酸(脂肪族カルボン酸)またはその塩としては、コハク酸、デカン酸、ウンデカン酸、ウンデセン酸、ラウリン酸、ハイドロドデカン酸、またはそれらの塩が好ましい。
上記フッ素非含有アニオン界面活性剤としては、アルキルサルフェート及びその塩、並びに、脂肪酸及びその塩からなる群より選択される少なくとも1種であることが好ましい。
フッ素非含有アニオン界面活性剤の含有量は、フッ素非含有アニオン界面活性剤やその他配合剤の種類にもよるが、PTFEの固形分質量に対して10ppm~5000ppmであることが好ましい。
フッ素非含有アニオン界面活性剤の添加量の下限としては、50ppm以上がより好ましく、100ppm以上が更に好ましい。添加量が少なすぎると、粘度調整効果が乏しい。
フッ素非含有アニオン界面活性剤の添加量の上限としては、4000ppm以下がより好ましく、3000ppm以下が更に好ましい。添加量が多すぎると、粘度が上昇する、特に高温での粘度上昇が大きくなるおそれがある。また、泡立ちが多くなるおそれがある。
本開示の第1のPTFE水性分散液の粘度を調整する目的で、フッ素非含有アニオン界面活性剤以外に、例えば、メチルセルロース、アルミナゾル、ポリビニルアルコール、カルボキシル化ビニルポリマー等を配合することもできる。
上記水性分散液のpHを調整する目的で、アンモニア水などのpH調整剤を配合することもできる。
本開示の第1のPTFE水性分散液は、pHが8~13であることが好ましい。より好ましくは、9~12であり、更に好ましくは、9~11である。
上記pHは、JIS K6893に準拠し、25℃において測定した値である。
本開示の第1のPTFE水性分散液は、必要に応じ、水性分散液の特徴を損なわない範囲でその他の水溶性高分子化合物を含有するものであってもよい。
上記その他の水溶性高分子化合物としては特に限定されず、例えば、ポリエチレンオキサイド(分散安定剤)、ポリエチレングリコール(分散安定剤)、ポリビニルピロリドン(分散安定剤)、フェノール樹脂、尿素樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ポリエーテル樹脂、アクリルシリコーン樹脂、シリコーン樹脂、シリコーンポリエステル樹脂、ポリウレタン樹脂等が挙げられる。更に、イソチアゾロン系、アゾール系、プロノポール、クロロタロニル、メチルスルホニルテトラクロルピロジン、カルベンタジム、フルオロフォルベット、二酢酸ナトリウム、ジヨードメチルパラトリルスルホンなどの防腐剤を含有してもよい。
本開示の第1のPTFE水性分散液は、消泡剤を含んでもよい。消泡剤は、経済面、環境面で問題のない範囲で適宜添加することができる。
消泡剤としては、各種水性用のものが使用でき、例えば、メタノール、エタノール、ブタノール等の如き低級アルコール;アミルアルコール、ポリプロピレングリコールおよびその誘導体等の如き高級アルコール;オレイン酸、トール油、ミネラルオイル、石鹸等の如き油脂;ソルビタン脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、プルロニック型ノニオン界面活性剤等の如き界面活性剤;シロキサン、シリコーン樹脂等の如きシリコーン系界面活性剤が挙げられ、単独あるいは、併用して使用される。代表的な消泡剤の市販品としては、アデカネートB、アデカネートB1068等のB-シリーズ(旭電化工業社製);フォーマスターDL、ノプコNXZ、SNデフォーマー113,325,308,368等のSNデフォーマーシリーズ;デヒドラン1293,デヒドラン1513〔サンノプコ(株)製〕;フロノンSB-110N、SB-210、510、551、アクアレン800、805、アクアレン1488〔共栄社化学(株)製〕;サーフィノール104E、440(エアープロダクツ社製アセチレン系消泡剤);KS-607A〔信越化学社(株)製〕;FSアンチフォーム(ダウコーニング社製);BYK-020、031、073、W(ビッグケミー社製);デヒドラン981(ヘンケル白水社製);エパン-410、710、720〔第一工業製薬(株)製〕;Tego Foamexシリーズ(テゴ・ゴールドシュミット社製);フォームレックス-747、TY-10、EPシリーズ(日華化学社製)等が挙げられる。消泡剤の含有量はPTFE水性分散液に対して0.01~10質量%が好ましく、0.05~5質量%が特に好ましい。
本開示の第1のPTFE水性分散液は、消泡剤を含んでもよいが、含まないことが好ましい。消泡剤を含まない場合、コストの点で有利である。また、消泡剤を含むと、PTFE水性分散液を塗膜化した時に着色するおそれがある。
本開示の第1のPTFE水性分散液は、通常、水性媒体を含む。水性媒体は、水を含む液体を意味する。上記水性媒体は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。水性媒体は、水が90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
本開示の第1のPTFE水性分散液は、60℃における安定性保持時間が30分以上であることが好ましい。より好ましくは、40分以上であり、更に好ましくは、50分以上であり、更により好ましくは、55分以上であり、殊更に好ましくは60分以上であり、特に好ましくは65分以上である。安定性保持時間の上限は特に限定されない。
安定性保持時間は、下記の方法で測定した値である。
直径67mm、内容積300mlのプラスチックカップにPTFE水性分散液100gを入れ、60℃の水槽に漬け、直径50mmの撹拌翼(図1)を、プラスチックカップの底面から撹拌翼の中心(図1(b)の軸方向において、撹拌翼の下端から6mmの位置)までの高さが20mmとなるようにセットして、3000rpmで回転させ、PTFE水性分散液が凝集するか固化して飛び散るまでの時間を、安定性保持時間とした。
した。
本開示の第1のPTFE水性分散液は、他の添加剤、例えば、塗料原料を含むものであってもよい。塗料原料としては、例えば、顔料(体質顔料、鱗片状顔料等)、顔料分散剤、増粘剤、レベリング剤、造膜助剤、固体潤滑剤、沈降防止剤、水分吸収剤、表面調整剤、チキソトロピー性付与剤、粘度調節剤、ゲル化防止剤、紫外線吸収剤、HALS(光安定剤)、艶消し剤、可塑剤、色分かれ防止剤、皮張り防止剤、スリ傷防止剤、防錆剤、防カビ剤、抗菌剤、酸化防止剤、難燃剤、垂れ防止剤、帯電防止剤、シランカップリング剤、フィラー、カーボンブラック、クレー、タルク、ダイヤモンド、フッ素化ダイヤモンド、トルマリン、翡翠、ゲルマニウム、体質顔料、コランダム、ケイ石、クリソベリル、トパーズ、ベリル、ガーネット、石英、ざくろ石、酸化ジルコニウム、炭化ジルコニウム、硫酸バリウム、ガラス、各種強化材、各種増量材、導電性フィラー、コロイダルシリカ、金、銀、銅、白金、ステンレス等の金属粉末等の通常の塗料用添加剤があげられる。
本開示の第1のPTFE水性分散液は、コロイダルシリカを含まないことがより好ましい。
本開示の第1のPTFE水性分散液は、防腐剤を含むことも好ましい。上記防腐剤としては、例えば、過酸化水素、有機臭素系化合物、有機窒素硫黄系化合物、有機ヨウ素系化合物、有機硫黄系化合物、トリアジン系化合物等が挙げられ、防腐性能の観点から、有機ヨウ素系化合物または有機窒素硫黄系化合物であることが好ましい。有機ヨウ素系化合物及び有機窒素硫黄系化合物の具体例としては、大阪ガスケミカル社製デルトップシリーズ等が挙げられる。
上記防腐剤の添加量は、PTFE水性分散液に対して、0.01質量%以上が好ましく、0.05質量%以上がより好ましい。
本開示の第1のPTFE水性分散液は、例えば、重合上がりのPTFE水性分散液に、非イオン性界面活性剤を添加したり、濃縮、希釈等によってPTFEの固形分濃度を調整して得ることができる。
より具体的には、下記製造方法により本開示のPTFE水性分散液を製造することができる。
本開示の第1のPTFE水性分散液の製造方法は、PTFE水性分散液を製造する方法であって、
含フッ素アニオン界面活性剤の存在下でTFEを乳化重合してPTFEを含む分散液を得る工程A、
工程Aで得られた分散液に非イオン性界面活性剤(1)を添加する工程B、
工程Bで得られた分散液から含フッ素アニオン界面活性剤を除去し、更に、濃縮する工程、又は、工程Bで得られた分散液を濃縮し、更に、含フッ素アニオン界面活性剤を除去する工程である工程C、及び、工程Cで得られた分散液に非イオン性界面活性剤(2)及びフッ素非含有アニオン界面活性剤を添加する工程Dを含む。
なお、本明細書にて、「工程Aで得られた分散液」と記載する場合、工程Aを経た分散液であればよく、工程Aの後に他の処理等が実施された分散液であってもよい。工程B~Dについても同様である。
上記乳化重合は、例えば、反応装置に、水性媒体、含フッ素アニオン界面活性剤、モノマー及び必要に応じて他の添加剤を仕込み、反応装置の内容物を撹拌し、そして反応装置を所定の重合温度に保持し、次に所定量の重合開始剤を加え、重合反応を開始することにより行うことができる。重合反応開始後に、目的に応じて、モノマー、重合開始剤、連鎖移動剤及び上記界面活性剤等を追加添加してもよい。界面活性剤を重合反応が開始した後に添加してもよい。
上記乳化重合における重合温度、重合圧力は、使用するモノマーの種類、目的とするPTFEの分子量、反応速度によって適宜決定される。
例えば、重合温度が10~150℃であることが好ましい。重合温度は、30℃以上がより好ましく、50℃以上が更に好ましい。また、120℃以下がより好ましく、100℃以下が更に好ましい。
重合圧力が0.05~10MPaであることが好ましい。重合圧力は、0.3MPa以上がより好ましく、0.5MPa以上が更に好ましい。また、5.0MPa以下がより好ましく、3.0MPa以下が更に好ましい。
上記重合開始剤としては、上記重合温度範囲でラジカルを発生しうるものであれば特に限定されず、公知の油溶性及び/又は水溶性の重合開始剤を使用することができる。更に、還元剤等と組み合わせてレドックスとして重合を開始することもできる。上記重合開始剤の濃度は、モノマーの種類、目的とするPTFEの分子量、反応速度によって適宜決定される。
上記重合開始剤としては、油溶性ラジカル重合開始剤、または水溶性ラジカル重合開始剤を使用できる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルオロバレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとしてあげられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレエート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤も併せて含んでもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
例えば、30℃以下の低温で重合を実施する場合等では、重合開始剤として、酸化剤と還元剤を組み合わせるレドックス開始剤を用いるのが好ましい。酸化剤としては、過硫酸塩、有機過酸化物、過マンガン酸カリウム、三酢酸マンガン、セリウム硝酸アンモニウム、臭素酸塩等が挙げられる。還元剤としては、亜硫酸塩、重亜硫酸塩、臭素酸塩、ジイミン、シュウ酸等が挙げられる。過硫酸塩としては、過硫酸アンモニウム、過硫酸カリウムが挙げられる。亜硫酸塩としては、亜硫酸ナトリウム、亜硫酸アンモニウムが挙げられる。開始剤の分解速度を上げるため、レドックス開始剤の組み合わせには、銅塩、鉄塩を加えることも好ましい。銅塩としては、硫酸銅(II)、鉄塩としては硫酸鉄(II)が挙げられる。
上記レドックス開始剤としては、例えば、過マンガン酸カリウム/シュウ酸、過硫酸アンモニウム/重亜硫酸塩/硫酸鉄(II)、過硫酸アンモニウム/亜硫酸塩/硫酸鉄(II)、過硫酸アンモニウム/亜硫酸塩、過硫酸アンモニウム/硫酸鉄(II)、三酢酸マンガン/シュウ酸、セリウム硝酸アンモニウム/シュウ酸、臭素酸塩/亜硫酸塩、臭素酸塩/重亜硫酸塩等が挙げられ、過マンガン酸カリウム/シュウ酸、過硫酸アンモニウム/亜硫酸塩/硫酸鉄(II)が好ましい。レドックス開始剤を用いる場合は、酸化剤又は還元剤のいずれかをあらかじめ重合槽に仕込み、ついでもう一方を連続的又は断続的に加えて重合を開始させてもよい。例えば、過マンガン酸カリウム/シュウ酸を用いる場合、重合槽にシュウ酸を仕込み、そこへ過マンガン酸カリウムを連続的に添加することが好ましい。
重合開始剤の添加量は、特に限定はないが、重合速度が著しく低下しない程度の量(たとえば、数ppm対水濃度)以上を重合の初期に一括して、または逐次的に、または連続して添加すればよい。上限は、装置面から重合反応熱で除熱を行いながら、反応温度を上昇させてもよい範囲であり、より好ましい上限は、装置面から重合反応熱を除熱できる範囲である。
上記重合開始剤としては、ラジカル重合開始剤を用いることもできる。ラジカル重合開始剤としては、過酸化物が好ましい。ラジカル重合開始剤としては、上述した油溶性ラジカル重合開始剤、水溶性ラジカル重合開始剤等が挙げられるが、上記水溶性ラジカル重合開始剤が好ましい。水溶性ラジカル重合開始剤としてより好ましくは、過酸化物であり、更に好ましくは、過硫酸塩や有機過酸化物、又はこれらの混合物である。過硫酸塩として、過硫酸アンモニウム、過硫酸カリウム等が挙げられる。有機過酸化物として、ジコハク酸パーオキシド、ジグルタル酸パーオキシド等が挙げられる。更により好ましくは、過硫酸アンモニウム、ジコハク酸パーオキサイドである。
上記乳化重合は、水性媒体に対して水溶性ラジカル重合開始剤を500ppm以下の量で使用することが好ましく、上記量は、400ppm以下がより好ましく、300ppm以下が更に好ましく、200ppm以下が特に好ましく、また、5ppm以上が好ましく、10ppm以上がより好ましく、20ppm以上が更に好ましい。
例えば、上記水溶性ラジカル重合開始剤としては、水性媒体に対して、好ましくは0.1ppm以上、より好ましくは1.0ppm以上、更に好ましくは1.5ppm以上、更により好ましくは2.0ppm以上、特に好ましくは2.5ppm以上の過硫酸アンモニウムが好ましい。また、水性媒体に対して、好ましくは50ppm以下、より好ましくは40ppm以下、更に好ましくは30ppm以下の加硫酸アンモニウムが好ましい。
また、上記水溶性ラジカル重合開始剤としては、水性媒体に対して、好ましくは10ppm以上、より好ましくは30ppm以上、更に好ましくは50ppm以上のジコハク酸パーオキサイドが好ましい。また、水性媒体に対して、好ましくは500ppm以下、より好ましくは300ppm以下、更に好ましくは200ppm以下ジコハク酸パーオキサイドが好ましい。
上記乳化重合では、過硫酸アンモニウムとジコハク酸パーオキサイドを併用することが特に好ましく、併用する場合の過硫酸アンモニウム及びジコハク酸パーオキサイドの量としては、上記の過硫酸アンモニウム及びジコハク酸パーオキサイドの量を組合わせて使用できる。
上記乳化重合において、重合を開始した後に、ラジカル重合開始剤を連続的に又は断続的に加えてもよい。
上記連鎖移動剤としては、たとえばマロン酸ジメチル、マロン酸ジエチル、酢酸メチル、酢酸エチル、酢酸ブチル、コハク酸ジメチルなどのエステル類のほか、イソペンタン、メタン、エタン、プロパン、イソブタン、メタノール、エタノール、イソプロパノール、アセトン、各種メルカプタン、四塩化炭素などの各種ハロゲン化炭化水素、シクロヘキサンなどがあげられる。
これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、アルカン及びアルコールからなる群より選択される少なくとも1種が好ましい。アルカンの炭素数は、1~6が好ましく、1~5がより好ましい。またアルコールは、炭素数1~5が好ましく、1~4がより好ましい。連鎖移動剤としては、特に、メタン、エタン、プロパン、イソブタン、メタノール、エタノール、及び、イソプロパノールからなる群より選択される少なくとも1種が好ましい。
上記連鎖移動剤の量は、水性媒体に対して0.001~10000ppmが好ましい。上記連鎖移動剤の量は、水性媒体に対して0.01ppm以上がより好ましく、0.05ppm以上が更に好ましく、0.1ppm以上が特に好ましい。また、水性媒体に対して1000ppm以下がより好ましく、500ppm以下が更に好ましい。
上記連鎖移動剤は、重合開始前に一括して反応装置中に添加してもよいし、重合開始後に一括して添加してもよいし、重合中に複数回に分割して添加してもよいし、また、重合中に連続的に添加してもよい。
工程(A)は、TFEと、TFEと共重合可能なモノマーとを重合する工程であることが好ましい。
上記TFEと共重合可能なモノマーとしては、上述した変性モノマーが挙げられるが、特に、PAVE、PFAE、パーフルオロアリルエーテル及び環状型モノマーからなる群より選択される少なくとも1種の単量体が好ましく、PAVEがより好ましい。
上記PAVEとしては、上記パーフルオロ(アルキルビニルエーテル)としては、例えば、パーフルオロ(メチルビニルエーテル)〔PMVE〕、パーフルオロ(エチルビニルエーテル)〔PEVE〕、パーフルオロ(プロピルビニルエーテル)〔PPVE〕、パーフルオロ(ブチルビニルエーテル)〔PBVE〕等が挙げられ、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種が好ましく、PPVEがより好ましいい。
上記PFAEとしては特に限定されず、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
パーフルオロアリルエーテルとしては、例えば、
一般式:CF=CF-CF-ORf12
(式中、Rf12は、パーフルオロ有機基を表す。)で表されるフルオロモノマーが挙げられる。
上記Rf12は、炭素数1~10のパーフルオロアルキル基または炭素数1~10のパーフルオロアルコキシアルキル基が好ましい。上記パーフルオロアリルエーテルとしては、CF=CF-CF-O-CF、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種が好ましく、CF=CF-CF-O-C、CF=CF-CF-O-C、及び、CF=CF-CF-O-Cからなる群より選択される少なくとも1種がより好ましく、CF=CF-CF-O-CFCFCFがさらに好ましい。
上記環状型モノマーとしては、一般式(ii):
Figure JPOXMLDOC01-appb-C000009
(式中、X及びXは、同一若しくは異なって、水素原子又はフッ素原子を表し、Yは、-CR-を表し、R及びRは、同一若しくは異なって、フッ素原子、炭素数1~6のアルキル基又は炭素数1~6のフルオロアルキル基を表す。)で表されるビニルヘテロ環状体が好ましい。上記一般式(ii)で表されるビニルヘテロ環状体としては、例えば、X及びXがフッ素原子であるものが好ましく、また、R及びRが炭素数1~6のフルオロアルキル基であるものが好ましい。
上記一般式(ii)で表されるビニルヘテロ環状体としては、X及びXがフッ素原子、R及びRがパーフルオロメチル基であるパーフルオロ-2,2-ジメチル-1,3-ジオキソール〔PDD〕が好ましい。
工程Aにおいて、含フッ素アニオン界面活性剤としては、本開示の第1のPTFE水性分散液において記載した含フッ素アニオン界面活性剤が挙げられ、例えば、LogPOWが3.5以下の含フッ素アニオン界面活性剤、好ましくはLogPOWが3.4以下の含フッ素アニオン界面活性剤を用いてよい。
上記工程Aは、コアシェル構造を有するPTFEの分散液を得る工程であることが好ましい。
例えば、先ずTFE及び必要に応じて変性モノマーを重合してコア(PTFE又は変性PTFE)を製造し、次いで、TFE及び必要に応じて変性モノマーを重合してシェル(PTFE又は変性PTFE)を製造することによって得ることができる。
また、工程Aは、コアシェル構造を有する変性ポリテトラフルオロエチレンの分散液を得る工程であり、TFE及びパーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン及び環状型モノマーからなる群より選択される少なくとも1種の変性モノマーを重合して前記コアを製造する工程A-1と、TFE及び前記変性モノマーに加え、ヘキサフルオロプロピレン及び連鎖移動剤からなる群より選択される少なくとも1種を重合して前記シェルを製造する工程A-2と、を含むことが好ましい。
上記工程A-2は、TFE及び連鎖移動剤を重合する工程であることがより好ましい。
上記シェルは、TFEと共重合可能な単量体である変性モノマーを共重合させることによって得られるものであってもよいし、重合時に連鎖移動剤を添加することによるものであってもよいし、これら両者を何れも行うことによるものであってもよい。
上記シェルは、連鎖移動剤を用いることにより行うもの、及び/又は、下記一般式(iii):
C=CFO(CFn1                    (iii)
(式中、Xは、水素原子又はフッ素原子を表し、n1は、1~6の整数を表す。)で表されるフルオロ(アルキルビニルエーテル)若しくは下記一般式(iv)
CX=CX(CFn2F                (iv)
(式中、X、X及びXは、水素原子又はフッ素原子を表し、少なくとも1つはフッ素原子を表す。n2は、1~5の整数を表す。)で表されるフルオロオレフィンを共重合させることにより行うものが好ましい。
上記シェルの製造に用いる連鎖移動剤としては、シェルを構成するPTFEの分子量を低減するものであれば特に限定されず、例えば、水溶性アルコール、炭化水素及びフッ化炭化水素等の非過酸化有機化合物、ジコハク酸パーオキサイド〔DSP〕等の水溶性有機過酸化物、並びに/又は、過硫酸アンモニウム〔APS〕、過硫酸カリウム〔KPS〕等の過硫酸塩からなるもの等が挙げられる。上記連鎖移動剤は、非過酸化有機化合物、水溶性有機過酸化物及び過硫酸塩の何れかを少なくとも1種有するものであればよい。上記連鎖移動剤において、非過酸化有機化合物、水溶性有機過酸化物及び過硫酸塩は、それぞれ1種又は2種以上を用いることができる。
上記連鎖移動剤としては、反応系内で分散性及び均一性が良好である点で、炭素数1~4の水溶性アルコール、炭素数1~4の炭化水素及び炭素数1~4のフッ化炭化水素等よりなる群から選択される少なくとも1つからなるものであることが好ましく、メタン、エタン、n-ブタン、イソブタン、メタノール、イソプロパノール、DSP、APS及びKPSよりなる群から選択される少なくとも1つからなるものであることがより好ましく、メタノール及び/又はイソブタンからなるものであることが更に好ましい。
上記シェルの製造に用いる変性モノマーとしては、上記一般式(iv)で表されるフルオロオレフィンが好ましい。
上記フルオロオレフィンとしては、炭素数2~4のパーフルオロオレフィン、炭素数2~4の水素含有フルオロオレフィンが挙げられる。
上記フルオロオレフィンとしては、パーフルオロオレフィンが好ましく、なかでも、ヘキサフルオロプロピレン〔HFP〕が好ましい。
上記シェルにおいて、変性モノマーに由来する変性剤単位は、用いる変性モノマーの種類によるが、PTFEの分散液の安定性の点で、PTFEを構成する一次粒子全体の0.001~0.5質量%であることが好ましく、より好ましい下限は0.005質量%、より好ましい上限は0.2質量%、更に好ましい上限は0.10質量%である。上記シェルにおいて変性モノマーとしてHFPを用いる場合、PTFEを構成する一次粒子全体の0.001~0.3質量%であることが好ましく、より好ましい下限は0.005質量%、より好ましい上限は0.15質量%である。
上記PTFEは、連鎖移動剤の使用か又は変性剤の共重合か何れかを行ってもよく、変性モノマーの共重合と、連鎖移動剤の使用との両方を行うことによるものであってもよい。
上記PTFEは、コアを構成するPTFEにおける変性モノマーとして上記一般式(iii)で表されるフルオロ(アルキルビニルエーテル)、特にPPVEを用いる場合、連鎖移動剤としてメタノール、イソブタン、DSP及び/又はAPSを用いるか、又は、変性剤としてHFP及び/又はPPVEを共重合することによるものが好ましく、メタノール又はHFPを用いることによるものがより好ましい。
上記工程Aは、TFE及び変性モノマーを重合してコアを製造し、次いで、連鎖移動剤の存在下でTFEを含むモノマー組成物を重合してシェルを製造する工程であることが好ましい。上記変性モノマー及び連鎖移動剤としては、上述したコアシェル構造のPTFEについて記載した変性モノマー及び、又は、連鎖移動剤を使用できる。
上記コアシェル構造としては上述した構造が挙げられるが、変性PTFEのコアと、連鎖移動剤の存在下でTFEを含むモノマー組成物を重合して得られる低分子量PTFEのシェルとを有するコアシェル構造であることが特に好ましい。上述したように、連鎖移動剤の存在下でTFEを含むモノマー組成物を重合することによって低分子量PTFEのシェルを得ることができる。
上記工程Aは、反応装置に、脱イオン水、含フッ素アニオン界面活性剤(但しPFOA又はその塩を除く)、及び安定化助剤を仕込み、酸素を取り除いた後、TFEを加え、重合開始剤を加える工程1、TFEと共重合可能なモノマーを添加する工程2、連鎖移動剤を加える工程3、及び、重合終了後、冷却し、安定化助剤を除去する工程4、を含むことが好ましい。
上記工程1において、含フッ素アニオン界面活性剤(但しPFOA又はその塩を除く)は、上述した含フッ素界面活性剤のうち、PFOA又はその塩以外の含フッ素アニオン界面活性剤であればよく、例えば、LogPOWが3.5未満の含フッ素アニオン界面活性剤が好ましく、LogPOWが3.4以下の含フッ素アニオン界面活性剤が好ましい。
より具体的には、上記一般式(N)で表される化合物(但しPFOA又はその塩を除く)、上記一般式(N)で表される化合物、上記一般式(N)で表される化合物、上記一般式(N)で表される化合物、及び、上記一般式(N)で表される化合物からなる群より選択される少なくとも1種の化合物(但しPFOA又はその塩を除く)が挙げられる。
より具体的には、上記一般式(I)で表されるパーフルオロカルボン酸(I)(但しPFOA又はその塩を除く)、上記一般式(II)で表されるω-Hパーフルオロカルボン酸(II)、上記一般式(III)で表されるパーフルオロポリエーテルカルボン酸(III)、上記一般式(IV)で表されるパーフルオロアルキルアルキレンカルボン酸(IV)、上記一般式(V)で表されるパーフルオロアルコキシフルオロカルボン酸(V)、上記一般式(VI)で表されるパーフルオロアルキルスルホン酸(VI)、上記一般式(VII)で表されるω-Hパーフルオロスルホン酸(VII)、上記一般式(VIII)で表されるパーフルオロアルキルアルキレンスルホン酸(VIII)、上記一般式(IX)で表されるアルキルアルキレンカルボン酸(IX)、上記一般式(X)で表されるフルオロカルボン酸(X)、上記一般式(XI)で表されるアルコキシフルオロスルホン酸(XI)、及び、下記一般式(XII)で表される化合物(XII)からなる群より選択される少なくとも1種が挙げられる。
上記工程1における含フッ素アニオン界面活性剤において、一般式(N)で表される化合物を使用する場合、式(N)におけるRfの炭素数は3~6の整数であることが好ましい。また、式(N1a)におけるm1は3~6の整数であることが好ましい。また、パーフルオロカルボン酸(I)を用いる場合、一般式(I)におけるn1は3~6の整数であることが好ましい。
上記含フッ素アニオン界面活性剤としては、特に、炭素数が4~7であり、エーテル性酸素を有してもよい含フッ素カルボン酸及びその塩からなる群から選ばれる化合物が好ましい。ここで、炭素数とは、一分子中の全炭素数を意味する。上記含フッ素アニオン界面活性剤は、2種以上を併用してもよい。
上記含フッ素アニオン界面活性剤としては、炭素数が4~7であり、エーテル性酸素を有する含フッ素カルボン酸及びその塩からなる群から選ばれる化合物が好ましい。エーテル性酸素を有する含フッ素カルボン酸は、炭素数が4~7で主鎖の炭素鎖の途中にエーテル性酸素を有し、末端に-COOHを有する化合物である。末端の-COOHは塩を形成していてもよい。
主鎖の途中に存在するエーテル性酸素は1個以上であり、1~4個が好ましく、1又は2個がより好ましい。
上記炭素数は5~7が好ましい。
上記含フッ素アニオン界面活性剤としては特に、主鎖の炭素数が6~7であり、主鎖のエーテル性酸素が1~4であり、主鎖が直鎖状、分岐状、又は、環状を有しており、部分または完全フッ素化されたカルボン酸又はその塩であることが好ましい。ここで、「主鎖」とは炭素原子数が最大となる一続きの鎖を意味する。
上記含フッ素界面活性剤としては、F(CFCOOM、F(CFCOOM、H(CFCOOM、CFO(CFOCHFCFCOOM、C-O-CF(CF)CF-O-CF(CF)COOM、CFCFCFOCF(CF)COOM、CFCFOCFCFOCFCOOM、C-O-CF(CF)CF-O-CF(CF)COOM、CFOCF(CF)CFOCF(CF)COOM、CFClCFCFOCF(CF)CFOCFCOOM、CFClCFCFOCFCF(CF)OCFCOOM、CFClCF(CF)OCF(CF)CFOCFCOOM、CFClCF(CF)OCFCF(CF)OCFCOOM、
下記式:
Figure JPOXMLDOC01-appb-C000010
等(式中、Mは上記定義したものである。)で表される化合物等が具体的に挙げられる。また、上記アニオン性含フッ素界面活性剤は、単一組成ではなく、二種以上の混合物であっても良い。
上記工程1において、安定化助剤としては上述したものが挙げられ、特にパラフィンワックスが好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40~65℃が好ましく、50~65℃がより好ましい。
上記工程1において、重合開始剤としては工程Aにおいて記載したものを使用でき、その添加量は特に限定されない。
上記工程2において、TFEと共重合可能なモノマーとしては、上述した変性モノマーを使用でき、例えば、PAVE、PFAE及び環状型モノマーからなる群より選択される少なくとも1種の単量体が好ましい。PAVEとしては、PMVE、PEVE及びPPVEからなる群より選択される少なくとも1種が好ましい。また、環状型モノマーとしては、上記一般式(II)で表されるビニルヘテロ環状体が好ましい。
上記PFAEとしては、例えば、(パーフルオロブチル)エチレン(PFBE)、(パーフルオロヘキシル)エチレン等が挙げられる。
上記工程2において、TFEと共重合可能なモノマーは、重合開始前、又は、重合開始後、PTFEの固形分濃度が5質量%未満である時に添加することが好ましい。これにより、変性PTFEのコアを有するPTFEの分散液を得ることができる。
上記工程2において、酸素を取り除く方法は特に限定されず、従来公知の方法を用いることができる。
上記工程3において、連鎖移動剤の添加量は、上記工程Aについて記載した量を用いてよい。
上記工程3において、p1/p2が0.60以上であることが好ましい。p1/p2は0.70以上がより好ましく、0.80以上が更に好ましく、0.90以上が特に好ましい。p1/p2の上限は特に限定されないが、例えば、0.98であってよい。
上記p1/p2は、PTFE全体におけるコアの割合を示し、PTFEの重合におけるTFEの全仕込量に対して、重合途中で変性モノマー、または、連鎖移動剤を仕込んだ時のTFE仕込量の比率を示すものである。上記p1は、シェルを仕込んだ時のTFE仕込量であり、p2は、TFEの全仕込量を示す。
上記工程4において、冷却及び安定化助剤を除去する方法は特に限定されず、従来公知の方法を用いることができる。
また、上乳化記重合において、界面活性剤と、所望により用いるその他の界面活性能を有する化合物に加え、各化合物を安定化するため添加剤を使用することができる。上記添加剤としては、緩衝剤、pH調整剤、安定化助剤、分散安定剤などが挙げられる。
安定化助剤としては、パラフィンワックス、フッ素系オイル、フッ素系溶剤、シリコーンオイルなどが好ましい。安定化助剤は、1種単独で又は2種以上を組み合わせて用いてもよい。安定化助剤としては、パラフィンワックスがより好ましい。パラフィンワックスとしては、室温で液体でも、半固体でも、固体であってもよいが、炭素数12以上の飽和炭化水素が好ましい。パラフィンワックスの融点は、通常40~65℃が好ましく、50~65℃がより好ましい。
安定化助剤の使用量は、使用する水性媒体(例えば脱イオン水)の質量基準で0.1~12質量%が好ましく、0.1~8質量%がより好ましい。安定化助剤は十分に疎水的で、TFEの乳化重合後にPTFE水性乳化液と完全に分離されて、コンタミ成分とならないことが望ましい。
上記水性媒体は、重合を行わせる反応媒体であって、水を含む液体を意味する。上記水性媒体は、水を含むものであれば特に限定されず、水と、例えば、アルコール、エーテル、ケトン等のフッ素非含有有機溶媒、及び/又は、沸点が40℃以下であるフッ素含有有機溶媒とを含むものであってもよい。
工程Bで添加する非イオン性界面活性剤(1)としては、上述した式(i)で表される非イオン性界面活性剤を使用することができる。
上記非イオン性界面活性剤(1)としては、
下記式(1): 
-O-A-H    (1)
(式中、Rは、1分子あたりの平均メチル基数が2.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が7.0~12.0であり、平均オキシプロピレン単位数は0.0~2.0であるポリオキシアルキレン鎖である。)により表される化合物であることが好ましい。
上記Rは、下記一般式(1-1)
CHR4142-   (1-1)
(式中、R41は、水素原子又は炭素数1~16のアルキル基を表し、R42は、炭素数1~17のアルキル基を表し、R41とR42の合計炭素数は7~17である。)で表されるアルキル基であることが好ましい。上記R41としては、水素原子又は炭素数1~15のアルキル基がより好ましく、水素原子又は炭素数1~12のアルキル基が更に好ましく、水素原子又は炭素数1~10のアルキル基が更により好ましい。また、R42としては、炭素数1~15のアルキル基がより好ましく、炭素数1~14のアルキル基が更に好ましく、炭素数1~13のアルキル基が更により好ましい。
上記Rは、平均メチル基数が2.5以上である炭素数8~18のアルキル基であることが好ましい。上記Rは、平均メチル基数が3.0以上がより好ましく、3.5以上が更に好ましく、4.0以上が更により好ましい。Rの平均メチル基数の上限は、12以下が好ましく、10以下がより好ましく、8以下が更に好ましい。
式(1)中、Rは、2,6,8-トリメチル-4-ノニル基であることが好ましい。
が、2,6,8-トリメチル-4-ノニル基である場合、平均オキシエチレン単位数は、10.0~10.5であることが好ましい。この場合、平均オキシプロピレン単位数は0.0である。
工程Cにおける含フッ素アニオン界面活性剤の除去は、水性分散液を陰イオン交換樹脂に接触させることにより行うことが好ましい。
工程Cにおける陰イオン交換樹脂は、特に限定されるものではないが、公知のものを用いることができる。また、上記陰イオン交換樹脂と接触させる方法は、公知の方法を用いることができる。
上記陰イオン交換樹脂としては、例えば、官能基として-N(CH基(Xは、Cl又はOHを表す。)を有する強塩基性陰イオン交換樹脂、-N(CH(COH)基(Xは、上記と同じ。)を有する強塩基性陰イオン交換樹脂等、公知のものが挙げられる。具体的には、国際公開第99/62858号、国際公開第03/020836号、国際公開第2004/078836号、国際公開第2013/027850号、国際公開第2014/084399号に記載されたもの等が挙げられる。
上記陽イオン交換樹脂としては特に限定されず、例えば、官能基として-SO 基を有する強酸性陽イオン交換樹脂、官能基として-COO基を有する弱酸性陽イオン交換樹脂等、公知のものが挙げられるが、なかでも、除去効率の観点から、強酸性陽イオン交換樹脂が好ましく、H型の強酸性陽イオン交換樹脂がより好ましい。
上記「陽イオン交換樹脂と陰イオン交換樹脂とからなる混床」としては特に限定されず、両者が同一のカラムに充填されている場合、両者がそれぞれ異なるカラムに充填されている場合、両者が水性分散液に分散している場合等を含むものである。
工程Cにおける含フッ素アニオン界面活性剤の除去は、濃縮により行うものであってもよい。国際公開第2005/042593号に記載の通り、濃縮工程を2回以上濃縮するものであってもよい。
従って、工程Cは、工程Bで得られた分散液を2回以上濃縮するものであってもよい。
また、工程Cは、水性分散液を陰イオン交換樹脂に接触させることにより行うことが好ましい。
上記工程Cにおける濃縮の方法としては公知の方法が採用される。具体的には、国際公開第2007/046482号、国際公開第2014/084399号に記載されたもの等が挙げられる。
例えば相分離、遠心沈降、曇点濃縮、電気濃縮、電気泳動、限外ろ過を用いた濾過処理、逆浸透膜(RO膜)を用いた濾過処理、ナノ濾過処理等が挙げられる。上記濃縮は、用途に応じて、PTFE濃度を50~70質量%に濃縮することができる。濃縮によりディスパージョンの安定性が損なわれることがあるため、工程Cにおいて更に非イオン性界面活性剤を添加してもよい。工程Cにおける非イオン性界面活性剤は、本開示の第1のPTFE水性分散液と同じである。
また、必要に応じて非イオン性界面活性剤以外の分散安定剤を使用してもよい。上記分散安定剤の総量は、PTFEの固形分質量に対し0.5~20質量%の濃度である。0.5質量%未満であると、分散安定性に劣る場合があり、20質量%を超えると、存在量に見合った分散効果がなく実用的でない。上記分散安定剤のより好ましい下限は2質量%であり、より好ましい上限は12質量%である。
上記の濃縮操作によって、重合で含フッ素界面活性剤を使用した場合にも、水性分散液中の含フッ素界面活性剤を除去することができる。
上記濃縮としては、曇点濃縮が好ましい。曇点濃縮は、例えば、非イオン性界面活性剤の曇点よりも5℃低い温度以上の温度で加熱することで行うことが好ましい。より具体的には、非イオン性界面活性剤の曇点よりも5℃低い温度以上の温度で加熱した後静置し、上澄相と濃縮相に分離するものであることが好ましい。
上記濃縮は、1回のみ行ってもよいし、2回以上行ってもよい。
工程Dは、工程Cで得られた分散液に非イオン性界面活性剤(2)及びフッ素非含有アニオン界面活性剤を添加する工程である。
非イオン性界面活性剤(2)とフッ素非含有アニオン界面活性剤を添加する順番は限定されず、非イオン性界面活性剤(2)を添加した後、フッ素非含有アニオン界面活性剤を添加してもよいし、フッ素非含有アニオン界面活性剤を添加した後、非イオン性界面活性剤(2)を添加してもよいし、フッ素含有アニオン界面活性剤と非イオン性界面活性剤を同時に添加してもよい。
また、非イオン性界面活性剤(2)及びフッ素非含有アニオン界面活性剤の添加は各々複数回行ってもよく、非イオン性界面活性剤(2)の添加とフッ素非含有アニオン界面活性剤の添加を交互に複数開行ってもよい。
工程Dで添加する非イオン性界面活性剤(2)としては、上述した式(i)で表される非イオン性界面活性剤を使用することができる。上記非イオン性界面活性剤(2)としては、下記式(2): 
-O-A-H  (2)
(式中、Rは、1分子あたりの平均メチル基数が2.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が10.0~12.0であるポリオキシアルキレン鎖である。)により表される化合物であることが好ましい。
は、下記一般式(2-1):
CHR5152-   (2-1)
(式中、R51は、水素原子又は炭素数1~16のアルキル基を表し、R52は、炭素数1~17のアルキル基を表し、R51とR52の合計炭素数は7~17である。)で表されるアルキル基であることが好ましい。上記R51としては、水素原子又は炭素数1~15のアルキル基がより好ましく、水素原子又は炭素数1~12のアルキル基が更に好ましく、水素原子又は炭素数1~10のアルキル基が更により好ましい。また、R52としては、炭素数1~15のアルキル基がより好ましく、炭素数1~14のアルキル基が更に好ましく、炭素数1~13のアルキル基が更により好ましい。
上記Rは、平均メチル基数が2.5以上である炭素数8~18のアルキル基であることが好ましい。上記Rは、平均メチル基数が3.0以上がより好ましく、3.5以上が更に好ましく、4.0以上が更により好ましい。Rの平均メチル基数の上限は、12以下が好ましく、10以下がより好ましく、8以下が更に好ましい。
式(2)中、Rは、2,6,8-トリメチル-4-ノニル基であることが好ましい。
が、2,6,8-トリメチル-4-ノニル基である場合、平均オキシエチレン単位数は、10.1~11.0であることが好ましい。この場合、平均オキシプロピレン単位数は0.0である。
上記工程Dは、分散液中の非イオン性界面活性剤の濃度がポリテトラフルオロエチレンに対して4~12質量%になるように非イオン性界面活性剤(2)を添加する工程であることが好ましい。より好ましくは、5質量%以上になるように添加することであり、また、より好ましくは、10質量%以下になるように添加することであり、更に好ましくは8質量%以下になるように添加することである。
工程Dで添加する上記フッ素非含有アニオン界面活性剤としては、アルキルスルホネート、アルキルサルフェート、アルキルアリールサルフェート及びそれらの塩;脂肪酸(脂肪族カルボン酸)及びその塩;リン酸アルキルエステル、リン酸アルキルアリールエステル又はそれらの塩;等が挙げられるが、中でも、アルキルスルホネート、アルキルサルフェート、脂肪族カルボン酸またはそれらの塩が好ましい。
中でも、アルキルサルフェート及びその塩、並びに、脂肪酸及びその塩からなる群より選択される少なくとも1種がより好ましい。
アルキルサルフェート及びその塩としては、ラウリル硫酸アンモニウム、またはラウリル硫酸ナトリウム等が好ましい。
脂肪酸及びその塩としては、コハク酸、デカン酸、ウンデカン酸、ウンデセン酸、ラウリン酸、ハイドロドデカン酸、またはそれらの塩が好ましい。
フッ素非含有アニオン界面活性剤の含有量は、PTFEに対して50~5000ppmであることが好ましい。
フッ素非含有アニオン界面活性剤の添加量の下限としては、50ppmがより好ましく、100ppmが更に好ましく、200ppmが更により好ましい。添加量が少なすぎると、粘度調整効果が乏しい。
フッ素非含有アニオン界面活性剤の添加量の上限としては、4000ppmがより好ましく、3000ppmが更に好ましく、2000ppmが更により好ましく、1000ppmが特に好ましい。添加量が多すぎると、粘度が上昇する、特に高温での粘度上昇が大きくなるおそれがある。また、泡立ちが多くなるおそれがある。
本開示の製造方法は、更に、水性分散液に防腐剤を添加する工程を含むことも好ましい。防腐剤としては、本開示の水性分散液において記載したものが挙げられる。
本開示の製造方法は、更に、塗料原料を加える工程を含むことも好ましい。塗料原料としては、塗料に添加できる添加剤が挙げられる。具体的には、顔料(体質顔料、鱗片状顔料等)、顔料分散剤、増粘剤、レベリング剤、造膜助剤、固体潤滑剤、沈降防止剤、水分吸収剤、表面調整剤、チキソトロピー性付与剤、粘度調節剤、ゲル化防止剤、紫外線吸収剤、HALS(光安定剤)、艶消し剤、可塑剤、色分かれ防止剤、皮張り防止剤、スリ傷防止剤、防錆剤、防カビ剤、抗菌剤、酸化防止剤、難燃剤、垂れ防止剤、帯電防止剤、シランカップリング剤、フィラー、カーボンブラック、クレー、硫酸バリウム、ガラス、各種強化材、各種増量材、導電性フィラー、コロイダルシリカ、金、銀、銅、白金、ステンレス等の金属粉末等の通常の塗料用添加剤があげられる。
上記添加剤は、コロイダルシリカ以外の添加剤であってよい。
塗料原料の含有量は特に限定されず、用途に応じて適宜設定すればよい。
上記製造方法はまた、重合で得られたPTFE水性分散液を回収する工程を含んでもよい。
本開示はまた、本開示の製造方法により得られたPTFE水性分散液を提供する。本開示の製造方法により得られたPTFE水性分散液においては、上述した本開示の第1のPTFE水性分散液で記載した特徴を適宜採用できる。
また、本開示の製造方法により得られたPTFE水性分散液は、非イオン性界面活性剤の濃度がPTFEに対して4質量%以上であることが好ましく、 5質量%以上であることがより好ましく、12質量%以下であることが好ましく、10質量%以下であることがより好ましく、8質量%以下であることが更に好ましく、7質量%以下であることが更により好ましい。
本開示の製造方法により得られたPTFE水性分散液は、非イオン性界面活性剤の曇点が60℃以上が好ましく、63℃以上がより好ましく、65℃以上が更に好ましい。80℃以下であることが好ましく、76℃以下であることがより好ましく、73℃以下であることが更に好ましい。
本開示の製造方法により得られたPTFE水性分散液は、非イオン性界面活性剤のHLBが13.00~15.00であることが好ましく、13.30以上であることがより好ましく、13.50以上であることが更に好ましい。
本開示の製造方法により得られたPTFE水性分散液は、含フッ素アニオン界面活性剤の含有量が水性分散液に対して1.0ppm以下であることが好ましい。
本開示の製造方法によって得られるPTFE水性分散液をそのまま、又は、必要に応じて添加剤を添加して塗装することにより以下に例示する被覆物品を製造することができる。上記被覆物品としては、例えば、フライパン、グリル鍋、圧力鍋、その他の各種鍋、炊飯器、餅つき器、オーブン、ホットプレート、パン焼き型、包丁、ガステーブル等の調理器具;電気ポット、製氷トレー等の飲食用容器;練りロール、圧延ロール、コンベア、ホッパー等の食品工業用部品;オフィスオートメーション機器〔OA〕用ロール、OA用ベルト、OA用分離爪、製紙ロール、フィルム製造用カレンダーロール等の工業用品;発泡スチロール成形用等の金型、鋳型、合板・化粧板製造用離型板等の成形金型離型;レンジフード等の厨房用品;コンベアベルト等の冷凍食品製造装置;のこぎり、やすり、ダイス、きり等の工具;アイロン、鋏、包丁等の家庭用品;金属箔、電線;食品加工機、包装機、紡繊機械等のすべり軸受;カメラ・時計の摺動部品;パイプ、バルブ、ベアリング等の自動車部品、雪かきシャベル、すき、シュート、船底、ボイラー、工業用コンテナ(特に半導体工業用)が挙げられる。
本開示の第1のPTFE水性分散液及び本開示の製造方法により得られたPTFE水性分散液(以下、特に断りなく「本開示の水性分散液」と記載した場合、本開示の第1のPTFE水性分散液及び本開示の製造方法により得られたPTFE水性分散液の両方を包含する)の用途としては特に限定されず、水性分散液のまま適用するものとして、基材上に塗布し乾燥した後必要に応じて焼成することよりなる塗装;不織布、樹脂成形品等の多孔性支持体を含浸させ乾燥した後、好ましくは焼成することよりなる含浸;ガラス等の基材上に塗布し乾燥した後、必要に応じて水中に浸漬し、基材を剥離して薄膜を得ることよりなるキャスト製膜等が挙げられ、これら適用例としては、水性塗料、テント膜、コンベアベルト、プリント基板(CCL)、電極用結着剤、電極用撥水剤等が挙げられる。
本開示の第1のPTFE水性分散液は水性塗料であることが好ましい。本開示の第1のPTFE水性分散液は、高温での粘度が低いため、水性塗料として特に好適である。上記水性塗料は、PTFE、水性媒体及び非イオン性界面活性剤を含み、必要に応じて、上述した防腐剤や塗料原料を含んでよい。
本開示の第1のPTFE水性分散液は、公知の顔料、増粘剤、分散剤、消泡剤、凍結防止剤、成膜助剤等の配合剤を配合することにより、又は、更に他の高分子化合物を複合して、コーティング用水性塗料として用いることができる。
本開示はまた、本開示の第1の水性分散液を塗布して得られた塗膜でもある。本開示の塗膜は、本開示の水性分散液を用いること以外は従来公知の方法により製造することができる。
本開示の塗膜は、基材に本開示の水性分散液を塗布して得ることができる。上記基材の材料としては特に限定されず、例えば、鉄、アルミニウム、ステンレス、銅等の金属単体及びこれらの合金類等の金属;ホーロー、ガラス、セラミック等の非金属無機材料等が挙げられる。上記合金類としては、ステンレス等が挙げられる。上記基材の材料としては、金属が好ましく、アルミニウム又はステンレスがより好ましい。
本開示の第1のPTFE水性分散液は、特に、含浸用水性塗料として好適である。含浸加工では、焼成工程が必要となるため環境的に高温になりやすいが、本開示のPTFE水性分散液は、高温環境下でも繊維基材への浸透性が良く、均一に含浸することができる。本開示は更に、本開示の水性分散液を含浸して得られた含浸膜でもある。
本開示の含浸膜は、本開示の水性分散液を用いること以外は従来公知の方法により製造することができる。例えば、本開示の含浸膜は、本開示の第1のPTFE水性分散液を多孔性支持体に含浸させたのち、水性媒体を除去することにより得ることができる。水性媒体は、通常、常温下及び/又は加熱下で乾燥することにより除去することができる。本開示の第1のPTFE水性分散液を含浸して得られる含浸膜は、少なくとも加熱下で乾燥を行ったものが好ましい。上記含浸における「加熱下で乾燥」は、例えば、80~400℃で行うことができる。
上記多孔性支持体は、多孔構造を有するものであれば特に限定されず、有機又は無機の材料の何れでもよく、例えばグラスウール、セラミック、アルミナ、PTFE製多孔フィルム、カーボン、不織布、各種ポリマーからなるもの等が挙げられる。
本開示の第1のPTFE水性分散液はまた添加剤用途として、電極の活物質の脱落を抑える結着剤、バインダー用途、ドリップ防止剤などのコンパウンド用途、土砂や埃等の舞い立ちを防止する塵埃抑制処理用途等に用いることができる。
本開示の第1のPTFE水性分散液は、塵埃抑制処理剤として使用することも好ましい。上記塵埃抑制処理剤は、発塵性物質と混合し、該混合物に20~200℃の温度で圧縮-せん断作用を施すことによりPTFEをフィブリル化して発塵性物質の塵埃を抑制する方法、例えば特許第2827152号公報、特許第2538783号公報等の方法において、用いることができる。
上記PTFE水性分散液は、例えば、国際公開第2007/004250号に記載の塵埃抑制処理剤組成物に好適に用いることができ、国際公開第2007/000812号に記載の塵埃抑制処理方法にも好適に用いることができる。
上記塵埃抑制処理剤は、建材分野、土壌安定材分野、固化材分野、肥料分野、焼却灰及び有害物質の埋立処分分野、防爆分野、化粧品分野、猫砂に代表されるペット排泄用の砂等の塵埃抑制処理に好適に用いられる。
本発明者らは、マッドクラックの防止と焼成時の着色の防止を同時に満たす組成物を見出すべく鋭意検討した。従来マッドクラックを防止するには、トリエタノールアミンやジエタノールアミンなどの高沸点溶剤と室温で液体でありかつ不揮発性のカプリル酸やカプリン酸、オレイン酸などの長鎖脂肪酸を添加する方法が知られている。しかし、マッドクラック防止効果が奏される量まで高沸点溶剤や長鎖脂肪酸を添加すると焼成時にこれらが反応して塗膜を着色する物質に変化してしまうため、酸化剤を必ず添加しなければならない。ところが酸化剤を添加すると高沸点溶剤や長鎖脂肪酸の殆どはフッ素樹脂の融点以下で分解し着色物質は減少できるが、焼成時に生ずる収縮クラックの発生が防止できなくなる。
その他の方法として、アクリル樹脂粒子を溶解させるブチルジグリコール、ジプロピレングリコールメチルエーテルなどの水溶性高沸点溶剤を添加し、乾燥時にアクリル樹脂粒子を溶かしてマッドクラックと熱収縮を同時に防止する方法も考えられるが、この水溶性高沸点溶剤が分散剤として添加される非イオン性界面活性剤の乳化力を低下させるため、スプレー塗装時の剪断でフッ素樹脂エマルションが破壊されてしまい、塗膜が不均一になったり塗ブツが発生するという問題がある。
本発明者らは、非イオン性界面活性剤によりPTFE樹脂粒子が分散されたPTFE水性分散液に、高沸点多価アルコールと解重合性アクリル樹脂粒子を特定割合で配合することを検討し、高沸点多価アルコールのみではマッドクラックは防止できるがアクリル樹脂バインダーなしでは熱収縮によるクラックが防止できないし、また、解重合性アクリル樹脂粒子のみではマッドクラックが防止できないが、両者を特定の配合割合で併用した場合のみ目的とする効果が奏されるという知見を得、しかも酸化剤を添加しなくても、マッドクラック防止と焼成時の着色防止を同時に解決でき、しかも外観に優れた溶融塗膜を与えることができることを見出し、以下の第2及び第3のPTFE水性分散液を完成するに至った。
本開示はまた、(A)PTFE樹脂粒子と、(B)窒素原子を含まず沸点が100℃以上でかつ水酸基を2個以上有する高沸点多価アルコールと、(C)分解して気化する温度が該PTFE樹脂の分解温度までの温度範囲内にある解重合性アクリル樹脂粒子と、(D)非イオン性界面活性剤と、(E)水性媒体とを含み、
前記高沸点多価アルコール(B)および解重合性アクリル樹脂粒子(C)の配合量がPTFE樹脂(A)100質量部に対してそれぞれ5~18質量部および5~25質量部であり、かつ酸化剤およびアミン系溶剤を含まないPTFE水性分散液(以下、本開示の第2のPTFE水性分散液とも記載する)にも関する。
(A)PTFE樹脂粒子
本開示の第2のPTFE水性分散液で用いるPTFE樹脂粒子としては本開示の第1のPTFE水性分散液と同様のPTFEであってよく、TFEの単独重合体であってもよいが、99.0質量%以上のTFEに基づく重合単位と、1.0質量%以下の変性モノマーに基づく重合単位を含む変性PTFEが好ましい。上記変性PTFEを構成する変性モノマーの含有量は、PTFEに対して0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましく、0.010質量%が殊更好ましく、0.030質量%がより殊更に好ましい。上限としては、0.90質量%が好ましく、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。上記変性PTFEが変性モノマーとしてPPVEを含む場合、変性PTFEにおけるPPVEに基づく重合単位の量の下限は0.17質量%であることが好ましい。また、変性PTFEは、コアシェル構造を有することも更に好ましい。
(B)多価アルコール
本開示の第2のPTFE水性分散液で用いる高沸点多価アルコールの作用は、当該水性分散液を塗布後乾燥するときのマッドクラックの発生を防止する作用である。塗布された水性分散組成物は、通常、室温~150℃で乾燥される。その際、まず水が蒸散するが、その乾燥温度で蒸散しないかまたは蒸散速度が水よりも遅い高沸点多価アルコールを併用しなければ解分解性アクリル樹脂粒子が軟化する前に水が蒸散してしまうため、樹脂粒子間に間隙が生じてしまい、マッドクラックの原因となる。
その結果、乾燥された塗膜中は、乾燥温度や高沸点多価アルコールの種類(特に沸点)により、(1)高沸点多価アルコールと解重合性アクリル樹脂粒子が併存している状態、(2)高沸点多価アルコールが殆ど残存せず解重合性アクリル樹脂が溶融してPTFE樹脂粒子を固定している状態、(3)これら両者の状態が渾然としている状態となっている。
本開示の第2のPTFE水性分散液で使用する多価アルコールは、窒素原子を含まず水酸基を2個以上有する沸点が100℃以上のものである(ただし、解重合性アクリル樹脂の熱溶融開始温度(軟化温度)よりも高い)。窒素原子を含む多価アルコールは焼成時における熱分解により着色を惹き起こすため、好ましくない。また、沸点が100℃以上(ただし、解重合性アクリル樹脂の熱溶融開始温度(軟化温度)よりも高い)とする理由は、乾燥時に水よりも早く蒸散してはならないからであり、乾燥後に塗膜中に残存させるためである。好ましくは、沸点が乾燥温度以上、さらに150℃以上、特に200℃以上のものである。さらに、水酸基を2個以上有することが必要である。1個のものまたはゼロのものは沸点100℃以上の物質では親水性に劣るため、均一な混合が困難である。好ましい水酸基の個数は2~3個である。水酸基の数が4個以上のものは室温で固体のものが多く、マッドクラックの防止効果が期待しにくい。
また、本開示の第2のPTFE水性分散液で使用する多価アルコールは、後述する焼成時の加熱により最終的に蒸散し尽くすか分解揮散し尽くす必要がある。したがって、沸点または熱分解温度がPTFE樹脂の溶融温度以下、好ましくは340℃以下のものが好ましい。
好適な多価アルコールとしては、たとえばエチレングルコール(沸点:198℃)、1,2-プロパンジオール(188℃)、1,3-プロパンジオール(214℃)、1,2-ブタンジオール(190℃)、1,3-ブタンジオール(208℃)、1,4-ブタンジオール(229℃)、1,5-ペンタンジオール(242℃)、2-ブテン-1,4-ジオール(235℃)、グリセリン(290℃)、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール(295℃)、1,2,6-ヘキサントリオール(178℃/5mmHg)などの1種または2種以上があげられる。なかでもグリセリンが価格、安全性などで有利である。
また、必要に応じて、多価アルコール以外の有機溶媒を本開示の第2のPTFE水性分散液の効果を損なわない範囲で併用してもよい。そうした有機溶媒としては、たとえばトルエン、キシレンなどの芳香族炭化水素系溶剤、炭素数9~11の脂肪族炭化水素系溶剤などがあげられる。
多価アルコール(B)の配合量は、PTFE樹脂粒子(固形分)100部に対して5~18部、好ましくは7~15部、特に好ましくは7~12部である。5部未満の場合はマッドクラックの発生防止効果が弱くなり、18部を超えると塗膜が白濁することがある。
(C)解重合性アクリル樹脂粒子
本開示の第2のPTFE水性分散液で用いる解重合性アクリル樹脂粒子は、本開示の第2のPTFE水性分散液を塗布乾燥後焼成するとき、PTFE樹脂粒子へのバインダー効果を維持しながら徐々に分解するので、収縮クラックの発生を防止する。したがって、解重合性アクリル樹脂粒子は、PTFE樹脂の溶融温度以下で溶融しておりかつ解重合が始まっており、PTFE樹脂粒子の溶融温度で少なくとも一部は残存し、焼成温度で殆ど分解揮散していることが必要である。
乾燥塗膜を加熱すると、まず残存する多価アルコールの蒸散または分解揮散と解重合性アクリル樹脂粒子の熱溶融が始まる。多価アルコールは解重合性アクリル樹脂粒子の熱溶融が完了するまでは残存している必要がある。温度がさらに上がると残存多価アルコールの蒸散または分解が完了すると共に熱溶融している解重合性アクリル樹脂の解重合が始まる。かかる解重合性アクリル樹脂の解重合はPTFE樹脂の溶融温度以下の温度から徐々に始まるがPTFE樹脂粒子が熱溶融し始める温度(溶融温度)ではまだ完了せず、さらに温度がPTFE樹脂の溶融温度を超えた焼成温度になって完了する。そのことにより、得られるPTFE樹脂塗膜中に解重合性アクリル樹脂が多量に残存することを避けることができる。この解重合性アクリル樹脂は熱溶融時に粘性を有しており解重合も徐々に進行するため、PTFE樹脂粒子が溶融し融着する際にも急激な収縮は生じず、熱収縮クラックの発生を抑制できる。
したがって解重合性アクリル樹脂粒子は、PTFE樹脂の融点以下から解重合が始まるとしてもPTFE樹脂粒子が溶融を開始する温度(溶融温度)までは残存し、焼成(加工)温度では分解揮散するものが好ましい。たとえばPTFE樹脂の溶融温度(通常240~345℃)において5%以上、特に10%以上で少なくとも50%、好ましくは少なくとも20%は残存し、焼成(加工)温度(通常PTFE樹脂の溶融温度を超え415℃までの温度、好ましくは360~400℃)において10%以下、特に5%以下しか残存せず、焼成完了時には実質的に残存しないものが好ましい。この点から、解重合性アクリル樹脂粒子の解重合(分解)温度は、約200℃以上でPTFE樹脂の焼成(加工)温度未満、特にPTFE樹脂の溶融温度以下であることが望ましい。なお、解重合(熱分解)温度がPTFE樹脂の溶融温度を超えかつ分解ガスが多量に発生するアクリル樹脂粒子の場合、得られる塗膜にピンホールなどの塗膜欠陥が生じやすくなる。特に、樹脂の種類に関係なく、300~320℃の温度範囲で約25~50%残存し、330~345℃の温度範囲で約20~10%残存する解重合性アクリル樹脂が収縮クラックの防止作用と着色の防止作用とのバランスから好適であり、この条件を満たす解重合性アクリル樹脂粒子であれば、使用できる。
解重合性は一般には、「Polym.Eng.Soi.,Vol.6,p273(1966)」、「Plast.Massy.,Vol.75,p48(1971)」および「高分子材料の劣化」コロナ社、144頁(1958)に記載されているように、重合鎖中に分岐が多くなればなるほどC-C結合やC-H結合が弱くなり、酸化分解して解重合しやすくなる。そこで本開示の第2のPTFE水性分散液の解重合性アクリル樹脂粒子としては、メタクリレート樹脂が挙げられ、具体的には、たとえば式(5):
  CH=C(CH)COOR           (5)
(式中、Rは炭素数1~5のアルキル基またはヒドロキシアルキル基)で示されるメタクリレート系単量体を必須とするメタクリレート系単独重合体または共重合体が好ましくあげられる。メタクリレート系単量体の具体例としては、たとえばメチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ジメチルプロピルメタクリレート、ブチルメタクリレート、ペンチルメタクレートが好ましく採用される。これらのうちガラス転移温度は低くかつ解重合性(分解性)が良好な点からブチルメタクリレートを単量体とする解重合性アクリル樹脂が好ましい。
また、単独重合体でも安定なエマルションが形成できるのであれば問題ないが、エマルションを安定させる観点から、カルボキシル基またはヒドロキシル基を有する単量体などを適宜共単量体として使用してもよい。
解重合性アクリル樹脂粒子は、たとえば乳化重合などの方法で製造した微粒子(解重合性アクリル樹脂エマルション)をそのまま使用することができ、その平均粒子径としては0.1~100μm、特に0.2~1μmであることが好ましい。平均粒子径が0.1μm未満のものはマッドクラックを発生しやすい傾向があり、100μmを超えると塗装が難しくなる傾向がある。
解重合性アクリル樹脂粒子(C)の配合量は、PTFE樹脂粒子(固形分)100部に対して5~25部、好ましくは7~20部、特に好ましくは10~15部である。5部未満の場合はPTFE樹脂の造膜が困難になり、25部を超えると塗膜に着色が生ずることがある。
解重合性アクリル樹脂粒子はエマルションの形態で他の成分と混合することが好ましい。
(D)非イオン性界面活性剤
本開示の第2のPTFE水性分散液で用いる非イオン性界面活性剤としては本開示の第1のPTFE水性分散液で述べた非イオン性界面活性剤と同様のものが使用でき、その含有量としてはPTFEに対して4質量%以上であることが好ましく、5質量%以上がより好ましく、5.5質量%以上、が更に好ましく、また、12質量%以下が好ましく、10質量%以下がより好ましく、8質量%以下がさらに好ましく、7質量%以下が殊更に好ましい。
非イオン性界面活性剤の量が多すぎると、粘度が高くなりすぎるおそれがあり、少なすぎると、貯蔵安定性や機械的安定性が低くなるおそれがある。
他に使用可能な非イオン性界面活性剤として、一般式:
O-[CHCHO]-[RO]              (6)
[式中、Rは、少なくとも6個の炭素原子、好ましくは8~18個の炭素原子を有する直鎖又は分岐鎖の脂肪族炭化水素基を表し、Rは、3又は4個の炭素原子を有するアルキレン単位を表し、Rは、水素、C~Cアルキル基、又はC~Cヒドロキシアルキル基を表し、nは、0~40の値を有し、mは、0~40の値を有し、n+mの合計は、少なくとも2である]に対応する少なくとも1種の非フッ素化非イオン性界面活性剤がある。具体例としては、たとえば前記式(6)のポリオキシアルキレンアルキルエーテル系非イオン性界面活性剤があげられ、特に好ましいノンフェノール型非イオン性界面活性剤としては、式(7)
2x+1CH(C2y+1)C2zO(CO)H    (7)
(式中、xは1以上の整数、yは1以上の整数、zは0または1、ただしx+y+zは8~18の整数、nは4~20の整数)で表わされかつHLB値が9.50~16.00である非イオン性界面活性剤、および/または式(8):
  C2X+1-O-A-H      (8)
(式中、xは8~18の整数、Aはオキシエチレンユニットを5~20およびオキシプロピレンユニットを1または2個有するポリオキシアルキレン鎖)で示されるポリオキシエチレンアルキルエーテル系界面活性剤があげられる。これらのHLB値は9.50~16.00、12.00~15.00であるのがより好ましく、12.00~14.00であるのが更に好ましく、PTFE樹脂を安定的に分散させる点から好ましい。
(E)水性溶媒
コーティング用水性分散組成物の液状媒体として使用し、組成物の固形分濃度を調整する。水を単独で使用してもよいし、水と水溶性化合物と併用した水性混合溶媒としてもよい。
必要に応じて、さらに他の添加剤を配合してもよい。
(F)無機材料
無機材料としては、顔料のほか、雲母粒子、顔料で被覆された雲母粒子、金属フレークまたはこれら2種以上の無機フィラーがあげられる。これらは本開示の第2のPTFE水性分散液の効果を損なわない範囲の量で配合される。
顔料としては従来より公知の各種顔料が使用でき、たとえば酸化チタン、カーボンブラック、ベンガラなどがあげられる。本開示においては、これらのうち従来では酸化剤の影響のため脱色などが生じていたカーボンブラックも安心して使用できる点で優れている。
無機フィラーは耐摩耗性向上の機能を付与するものであり、これらのうち雲母が美観を与える点で好ましい。雲母粒子の粒径としては10~100μmであり、15~50μmであることが好ましい。粒径が10μm未満では耐摩耗性の低下および光輝性が低下する傾向があり、100μmを超えると非粘着性が低下する傾向がある。顔料で被覆された雲母粒子は、たとえばTiO・Feなどの顔料を焼結蒸着法などにより前記雲母粒子に付着させて得られる。金属フレークとしては、たとえばチタン、ジルコニウム、アルミニウム、亜鉛、アンチモン、錫、鉄、ニッケルなどのフレークがあげられるが、錆にくさの点からチタン、ジルコニウムが好ましい。そのサイズとしては通常塗料に使用されている範囲のサイズのものが使用できる。
その他、本開示の第2のPTFE水性分散液の効果を損なわないかぎり、種々の公知の添加剤を配合することができる。たとえば、消泡剤、乾燥剤、増粘剤、レべリング剤、ハジキ防止剤などがあげられる。
上記消泡剤としては、たとえばトルエン、キシレン、炭素数9~11の炭化水素系などの非極性溶剤、シリコーンオイルなどがあげられる。
上記乾燥剤としては、たとえば酸化コバルトなどがあげられる。
上記増粘剤としては、たとえばメチルセルロース、ポリビニルアルコール、カルボキシル化ビニルポリマー、ラウリル硫酸ナトリウム水溶液などがあげられる。
本開示の第2のPTFE水性分散液は、55℃における粘度が50mPa・s以下であることが好ましい。本開示の第2のPTFE水性分散液は、55℃における粘度が50mPa・s以下であることによって、繊維基材への含浸加工分野等の高温で使用される用途に特に好適である。含浸加工では、焼成工程が必要となるため環境的に高温になりやすい。本開示の第2のPTFE水性分散液は、高温環境下でも繊維基材への浸透性が良く、均一に含浸することができる。55℃における粘度は、45mPa・s以下であることがより好ましく、40mPa・s以下であることが更に好ましく、35mPa・s以下であることが更により好ましい。また、55℃における粘度の下限は特に限定されないが、例えば、10mPa・s以上であってよい。
本開示の第2のPTFE水性分散液は、比率[55℃における粘度/25℃における粘度]が、4.00以下であることが好ましい。本開示の第2のPTFE水性分散液は、繊維基材への含浸加工用途に特に好適である。含浸加工では、焼成工程があるため環境的に高温になりやすい。含浸加工時の繊維基材へのPTFE付着量は、水性分散液の粘度に左右されやすいため、粘度-温度依存性の低い水性分散液が要求される。本開示の第1のPTFE水性分散液は、上記比率が4.00以下であることによって、粘度-温度依存性が低く、品質上安定しているという点で優れている。
上記観点から、比率[55℃における粘度/25℃における粘度]は、3.00以下がより好ましく、2.00以下が更に好ましく、1.50以下が更により好ましく、1.20以下が殊更に好ましく、1.10以下が特に好ましく、1.00以下が殊更特に好ましい。
上記25℃における粘度は、B型回転粘度計を用い、後述の実施例に示す条件で測定した値である。また、55℃の粘度は、液温を55℃に上昇させて60分間保持したのち、25℃における粘度測定と同条件で測定した値である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第2のPTFE水性分散液は、粘度温度遷移[VTT]が55℃超であることが好ましく、60℃以上であることがより好ましい。55℃超であることによって、25℃と55℃での加工条件を変更する必要がないという技術的意義がある。
VTTは、PTFE水性分散液の粘度-温度依存性を表す。VTTは、PTFE水性分散液を25℃、35℃、45℃、55℃において、各温度に上昇させて60分間保持したのち、B型回転粘度計を用い、後述の実施例に示す条件で測定することにより得られる。VTT点は、25℃で測定した時と同じ値に粘度が再度達する温度である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第2のPTFE水性分散液は、PTFE樹脂の固形分濃度が50~70質量%である。上記固形分濃度は、55質量%以上が好ましく、57質量%以上がより好ましい。また、65質量%以下が好ましく、60質量%以下がより好ましい。PTFE樹脂の固形分濃度が上記範囲であっても、本開示の第2の水性分散液は、55℃における粘度を50mPa・s以下にすることが可能である。
また、本開示の第2のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まないことが好ましい。本開示の組成物において、「含フッ素界面活性剤を実質的に含まない」とは、PTFE水性分散液に対する含フッ素界面活性剤含有量が1.0ppm以下であることを意味する。
本開示の第2のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まないにも関わらず、高温での粘度を低くし、高温での機械的安定性を優れたものとすることができる。
含フッ素界面活性剤の含有量は、好ましくは700ppb以下であり、より好ましくは600ppb以下であり、更に好ましくは500ppb以下である。
本開示の第2のPTFE水性分散液における含フッ素界面活性剤の含有量は、本開示の第1のPTFE水性分散液で述べた方法と同様の方法で測定できる。
本開示の第2のPTFE水性分散液が含フッ素界面活性剤を用いた重合で得られたものである場合、重合上がりのPTFE水性分散液に、非イオン性界面活性剤を加え、濃縮すること等によって含フッ素界面活性剤量を上記範囲にすることができる。上記含フッ素界面活性剤は、本開示の第1のPTFE水性分散液で述べた含フッ素アニオン界面活性剤等が挙げられる。
本開示の第2のPTFE水性分散液の調製は、上述の方法にならって行うことができる。また、通常の方法で行なうこともできる。たとえば、非イオン性界面活性剤(D)によりPTFE樹脂粒子(A)が水性媒体(E)に分散しているPTFE樹脂水性分散液に多価アルコール(B)、解重合性アクリル樹脂粒子エマルション(C)、要すれば無機材料(F)、さらには他の添加剤を攪拌下に投入混合し、5~30℃にて10~40分間攪拌混合することによって調製できる。さらに、固形分濃度を水性媒体(E)を追加するなどして調整してもよい。
本開示の第2のPTFE水性分散液は、塗料、特に上塗り用塗料として有用である。塗装方法としては従来と同様な各種の塗装方法が採用できる。たとえばディッピング法、スプレー法、ロールコート法、ドクターブレード法、フローコート法などがあげられる。
本開示の第2のPTFE水性分散液は基材に直接塗装してもよいが、密着性を向上させるために、プライマー層を設けてその上塗り層として形成することが望ましい。基材としては特に限定されないが、たとえば各種金属、ホーロー、ガラス、各種セラミックスが採用でき、また密着性を高めるために表面をサンドブラスト法などで粗面化することが好ましい。
基材に塗布されたコーティング用組成物はついで乾燥される。本開示の第2のPTFE水性分散液はこの乾燥の段階でマッドクラックを生じない点に特徴がある。乾燥は通常の条件でよく、用いる多価アルコールの沸点によって異なるが、たとえば室温~150℃、好ましくは80~150℃にて5~20分間実施すれば、指触乾燥に達する。
乾燥した塗膜は焼成(加工)される。本開示の第2のPTFE水性分散液によれば、解重合性アクリル樹脂がPTFE樹脂粒子が溶融し融着するまでの間バインダーとして機能しているので、この焼成段階での熱収縮によるクラックの発生を防止できる。焼成(加工)温度および時間はPTFE樹脂の種類や溶融温度などによって異なるが、PTFE樹脂の溶融温度以上、通常360~415℃にて5~30分間行なう。360~380℃にて10~30分間が好ましい。
プライマー層を設ける場合は、プライマー層を塗布、乾燥、焼成した後に本開示の第2のPTFE水性分散液を塗布、乾燥、焼成する方法(2コート2ベーク法)でもよいし、プライマー層を塗布、乾燥した後に本開示の第2のPTFE水性分散液を塗布、乾燥し、両者を同時に焼成する方法(2コート1ベーク法)でもよい。
本開示の第2のPTFE水性分散液によれば、1回の塗装で溶融塗膜の膜厚が30μm以上の厚膜の塗膜が得られる。上限は特に限定されないが、余りにも厚すぎると塗膜内に各種の分解残渣が残ってしまい着色の原因となるため、100μm以下であることが好ましい。
本開示の第2のPTFE水性分散液は、たとえば金属調理器具、特にフライパンの塗装に最も有用であるが、当該PTFE水性分散液は耐腐食性を必要とするその他の製品を塗装するためにも使用され得る。他の製品とは、たとえばベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、シュート、コンベア、ロール、金型、ダイス、のこぎり、やすり、きりのような工具、包丁、はさみ、ホッパー、その他の工業用コンテナ(特に半導体工業用)および鋳型があげられる。
本開示はまた、本開示の第2のPTFE水性分散液を塗布して得られた塗膜を有する塗装物品にも関する。上記塗膜は、従来公知の方法により製造することができ、基材に本開示の水性分散液を塗布して得ることができる。上記基材の材料としては特に限定されず、例えば、鉄、アルミニウム、ステンレス、銅等の金属単体及びこれらの合金類等の金属;ホーロー、ガラス、セラミック等の非金属無機材料等が挙げられる。上記合金類としては、ステンレス等が挙げられる。上記基材の材料としては、金属が好ましく、アルミニウム又はステンレスがより好ましい。
また、上記塗膜の膜厚は、30μm以上であることが好ましく、余りにも厚すぎると塗膜内に各種の分解残渣が残ってしまい着色の原因となるため、100μm以下であることが好ましい。
上記塗装物品は、プライマー層が設けられたものであってもよい。
上記塗装物品の用途としては、金属調理器具(特にフライパン)、ベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、シュート、コンベア、ロール、金型、ダイス、のこぎり、やすり、きりのような工具、包丁、はさみ、ホッパー、その他の工業用コンテナ(特に半導体工業用)および鋳型等が挙げられる。
本開示はまた、PTFE樹脂粒子、解重合性アクリル樹脂粒子、及び水を含み、各樹脂粒子の一次平均粒子と同体積の真球と置き換えたと仮定した場合、それぞれの樹脂粒子を最密充填構造に配列させたときの樹脂粒子間の理論空隙率26%の75~95%を占める量の非イオン性界面活性剤が存在しており、該非イオン性界面活性剤が100℃までの温度範囲で実質的に不揮発性でありかつ樹脂粒子の熱分解温度よりも低い温度で揮散または熱分解する溶媒であることを特徴とするPTFE水性分散液(以下、本開示の第3のPTFE水性分散液とも記載する)にも関する。
本開示の第3のPTFE水性分散液は、PTFE樹脂粒子、解重合性アクリル樹脂粒子、及び水を含み、上記樹脂粒子間の空隙に非イオン性界面活性剤が存在する。
上記非イオン性界面活性剤としては本開示の第1のPTFE水性分散液で述べた非イオン性界面活性剤と同様のものが使用でき、その含有量としてはPTFEに対して4.0質量%以上であることが好ましく、5.0質量%以上がより好ましく、5.5質量%以上、が更に好ましく、また、12.0質量%以下が好ましく、10.0質量%以下がより好ましく、8.0質量%以下がさらに好ましく、7.0質量%以下が殊更に好ましい。
非イオン性界面活性剤の量が多すぎると、粘度が高くなりすぎるおそれがあり、少なすぎると、貯蔵安定性や機械的安定性が低くなるおそれがある。
本開示の第3のPTFE水性分散液においては、
(1)各樹脂粒子を真球と仮定した場合、それぞれの樹脂粒子を最密充填構造に配列させたときの樹脂粒子間の理論空隙率26%の75~95%を占める量(以下、「占有率」という。理論空隙率基準である)の非イオン性界面活性剤が存在していること、
(2)該非イオン性界面活性剤が100℃の温度まで不揮発性でありかつ樹脂粒子の熱分解温度よりも低い温度で揮散または熱分解する溶媒であることが必要である。
これらの特徴(1)と(2)の意味するところは、PTFE水性分散液を塗布し乾燥すると水が蒸散していくが、その乾燥塗膜において水が存在しなくなった空隙の75~95%を特徴(2)の非イオン性界面活性剤が占有するように、予めPTFE水性分散液を調製しておくことにある。
すなわち、非イオン性界面活性剤が存在しない系を考えると、塗布されたPTFE水性分散液は塗布された当初は樹脂粒子間を水が占めているが、乾燥(水の蒸散)が進むにしたがって樹脂粒子間に空隙が生じることから、マッドクラックが発生する。そこで、水が蒸散したあとでも樹脂粒子間を非イオン性界面活性剤が占有していればマッドクラックの発生が防止できる。一方、多量の非イオン性界面活性剤などの非イオン性界面活性剤が存在しているとマッドクラックは生じないが、焼成工程中の収縮が大きく造膜性が悪くなるので多すぎるのも問題がある。ただ、どの程度の割合を液状物が占めていると効果的にマッドクラックが防止できるかは、実験を繰り返してみなければ判明しない。
前記特徴(2)の熱的特性を有する非イオン性界面活性剤を(1)の条件で水性分散組成物中に存在させると、水が蒸発して塗膜が乾燥しても必要量の非イオン性界面活性剤が樹脂粒子間に介在しており、この非イオン性界面活性剤が見かけ上バインダーのように機能するのでマッドクラックを効果的に抑止できる。この非イオン性界面活性剤の含有量が少なすぎると水の蒸散に伴う樹脂粒子の移動が顕著になりマッドクラックの発生を効果的に抑制することができず、一方、多すぎると加熱により非イオン性界面活性剤を分解揮散させたときに収縮が大きすぎてクラックが発生する。好ましい占有率は、76~94%、さらには77~93%である。
なお、樹脂粒子を真球と仮定するとは、樹脂粒子は通常は粒子状であっても真球ではないからであり、また最密充填構造に配列させるためには真球でなければならないからである。ただ、最密充填構造に配列された粒子は粒子径に無関係に理論空隙率は26%である(樹脂粒子の占める割合は74%)。したがって、占有率の算出は、次式で行なうことができる。
Figure JPOXMLDOC01-appb-M000011
樹脂粒子体積は樹脂粒子の重量と比重から算出される。
前記特徴(2)は非イオン性界面活性剤の熱的特性の規定である。「100℃までの温度領域で不揮発性」である必要性は、水と共に蒸散してしまうとマッドクラックの発生が防止できない。また、例え高沸点溶剤であってもこの温度領域で蒸発しないとは保証できない。蒸発が起こるとマッドクラックが発生する。また、「樹脂粒子の熱分解温度よりも低い温度で揮散または熱分解する非イオン性界面活性剤」である必要性は、目的は樹脂の塗膜の形成であるから、樹脂が熱分解する温度でも残存していれば、樹脂の塗膜の形成を妨害するからである。
ここで注意すべきことは、非イオン性界面活性剤の占有率は水が蒸散した後の状態を基準としていることである。すなわち樹脂粒子が最密充填構造に配列する状態は水性分散組成物の状態ではなく、水が蒸散した後樹脂粒子が移動して互いに最密充填された状態である。したがって、他の非イオン性界面活性剤が並存する場合はそれらの他の非イオン性界面活性剤は加熱(乾燥時など)によって水と共に蒸散してもよいが、要は、乾燥完了時点で前記の占有率で非イオン性界面活性剤が塗膜中に存在していればよい。特定の占有率以上になると最終工程にこの非イオン性界面活性剤を揮散させる焼成工程があり、たとえばフッ素樹脂を使用する場合、有機物の分解揮散に伴う収縮が大きすぎてクラックを発生させる。
上記樹脂粒子の粒径は限定されない。これは、最密充填構造における理論空隙率が樹脂の種類や粒径に依存せず、一定の値である26%であることによる。粒径が異なる粒子を混在させる場合、その理論空隙率は別々の粒子に分けて充填構造を考え、それから空隙量の合計を考えればよい。その理由は、本開示の第3のPTFE水性分散液は、塗料組成物であるので、通常2種以上の粒子を混合するものであり、その割合は不特定である。また、必要に応じて増粘剤を入れるのは普通であることから、大粒子の隙間に小粒子が入り込むことはない。
要するに、2種以上の樹脂粒子が最密充填構造に充填された場合でも、非イオン性界面活性剤が樹脂粒子間に生ずる空隙(理論空隙)の75~95%を占めていればよい。
本開示の第3のPTFE水性分散液において、PTFE樹脂粒子は、本開示の第1のPTFE水性分散液のPTFEと同様のもの(あるいは水性分散液)をそのまま使用することができ、その平均粒子径としては0.01~100μm、特に0.1~5μmであることが好ましい。平均粒子径が0.01μm未満のものは造膜性を低下させる傾向があり、100μmを超えると塗装に用いるガンノズルに目詰まりが生ずる傾向がある。上記PTFEは、TFEの単独重合体であってもよいが、99.0質量%以上のTFEに基づく重合単位と、1.0質量%以下の変性モノマーに基づく重合単位を含む変性PTFEが好ましい。上記変性PTFEを構成する変性モノマーの含有量は、PTFEに対して0.00001~1.0質量%の範囲であることが好ましい。下限としては、0.0001質量%がより好ましく、0.001質量%が更に好ましく、0.005質量%が更により好ましく、0.010質量%が殊更好ましく、0.05質量%がより殊更に好ましく、0.10質量%が特に好ましく、0.15質量%が最も好ましい。上限としては、0.90質量%が好ましく、0.50質量%がより好ましく、0.40質量%が更に好ましく、0.30質量%が更により好ましい。上記変性PTFEが変性モノマーとしてPPVEを含む場合、変性PTFEにおけるPPVEに基づく重合単位の量の下限は0.17質量%であることが好ましい。また、変性PTFEは、コアシェル構造を有することも更に好ましい。
また、乳化重合で得られるPTFE樹脂粒子の水性分散液またはこの水性分散液から得られる粉末状の粒子を用いることができるが、粉末の場合、粒子の電気的反発によって取扱い性がわるくなることがあるので、水性分散液の形態で用いることが好ましい。
上記PTFEは、標準比重(SSG)が2.220以下であることが好ましく、2.190以下であることがより好ましい。また、2.140以上であることが好ましく、2.150以上であることがより好ましい。SSGが2.220を超えると塗膜が脆くなる傾向があり、2.140未満になると溶融粘度が高すぎて粒子同士が融着しにくくなる傾向がある。
上記解重合性アクリル樹脂粒子は、前述のとおり、水性分散組成物を塗布乾燥後焼成するとき、PTFE樹脂粒子へのバインダー効果を維持しながら徐々に分解するので、収縮クラックの発生を防止する。したがって、解重合性アクリル樹脂粒子は、PTFE樹脂の溶融温度以下で溶融しておりかつ解重合が始まっており、PTFE樹脂粒子の溶融温度で少なくとも一部は残存し、焼成温度で殆ど分解揮散していることが必要である。
乾燥塗膜を加熱すると、まず残存する非イオン性界面活性剤の蒸散または分解揮散と解重合性アクリル樹脂粒子の熱溶融が始まる。非イオン性界面活性剤は少なくとも解重合性アクリル樹脂粒子の熱溶融が完了するまでは残存している必要がある。温度がさらに上がると残存非イオン性界面活性剤の蒸散または分解が完了すると共に熱溶融している解重合性アクリル樹脂の解重合が始まる。かかる解重合性アクリル樹脂の解重合はPTFE樹脂の溶融温度以下の温度から徐々に始まるがPTFE樹脂粒子が熱溶融し始める温度(溶融温度)ではまだ完了せず、さらに温度がPTFE樹脂の溶融温度を超えた焼成温度になって完了する。そのことにより、得られるPTFE樹脂塗膜中に解重合性アクリル樹脂が多量に残存することを避けることができる。この解重合性アクリル樹脂は熱溶融時に粘性を有しており解重合も徐々に進行するため、PTFE樹脂粒子が溶融し融着する際にも急激な収縮は生じず、熱収縮クラックの発生を抑制できる。
したがって解重合性アクリル樹脂粒子は、PTFE樹脂の融点以下から解重合が始まるとしてもPTFE樹脂粒子が溶融を開始する温度(溶融温度)までは残存し、焼成(加工)温度では分解揮散するものが好ましい。たとえばPTFE樹脂の溶融温度において5%以上、特に10%以上で少なくとも50%、好ましくは少なくとも20%は残存し、焼成(加工)温度(通常PTFE樹脂の溶融温度を超え415℃までの温度、好ましくは360~400℃)において10%以下、特に5%以下しか残存せず、焼成完了時には実質的に残存しないものが好ましい。この点から、解重合性アクリル樹脂粒子の解重合(分解)温度は、約200℃以上でPTFE樹脂の焼成(加工)温度未満、特にPTFE樹脂の溶融温度以下であることが望ましい。なお、解重合(熱分解)温度がPTFE樹脂の溶融温度を超えかつ分解ガスが多量に発生するアクリル樹脂粒子の場合、得られる塗膜にピンホールなどの塗膜欠陥が生じやすくなる。
特に、樹脂の種類に関係なく、300~320℃の温度範囲で約25~50%残存し、330~345℃の温度範囲で約20~10%残存する解重合性アクリル樹脂が収縮クラックの防止作用と着色の防止作用とのバランスから好適であり、この条件を満たす解重合性アクリル樹脂粒子であれば使用できる。
解重合性は「Polym. Eng. Sci.」第6巻、273頁(1966年)、「Plast.Massy.」 第75巻、48頁(1971年)、「高分子材料の劣化」コロナ社、144頁(1958年)に記載されているように、一般に重合鎖中に分岐が多くなればなるほどC-C結合やC-H結合が弱くなり、酸化分解して解重合しやすくなる。そこで、本開示の解重合性アクリル樹脂粒子としては、メタクリレート樹脂が挙げられ、具体的には、たとえば式(9):CH=C(CH)COOR (9)(式中、Rは炭素数1~5のアルキル基またはヒドロキシアルキル基)で示されるメタクリレート系単量体を必須とするメタクリレート系単独重合体または共重合体が好ましくあげられる。メタクリレート系単量体の具体例としては、たとえばメチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ジメチルプロピルメタクリレート、ブチルメタクリレート、ペンチルメタクレートが好ましく採用される。これらのうちガラス転移温度は低くかつ解重合性(分解性)が良好な点からブチルメタクリレートを単量体とする解重合性アクリル樹脂が好ましい。
また、単独重合体でも安定なエマルションが形成できるのであれば問題ないが、エマルションを安定させる観点から、カルボキシル基かヒドロキシル基を有する単量体などを適宜共単量体として使用してもよい。
解重合性アクリル樹脂粒子は、たとえば乳化重合などの方法で製造した微粒子(解重合性アクリル樹脂エマルション)をそのまま使用することができ、その平均粒子径としては0.1~100μm、特に0.2~1μmであることが好ましい。平均粒子径が0.1μm未満のものはマッドクラックを発生しやすい傾向があり、100μmを超えると塗装が難しくなる傾向がある。
解重合性アクリル樹脂粒子の配合量は、PTFE樹脂粒子(固形分)100部に対して5~25部、好ましくは7~20部、特に好ましくは10~15部である。5部未満の場合はPTFE樹脂の造膜が困難になり、25部を超えると塗膜に着色が生ずることがある。
解重合性アクリル樹脂粒子はエマルションの形態で他の成分と混合することが好ましい。
また、エラストマーも粒子状であれば樹脂粒子と同じく本開示の範囲に包含される。
粒径は、広い範囲から選択されるが、通常コーティング用途であれば、0.1~10μmの範囲が適当であり、この範囲の樹脂粒子を1種または2種以上使用する。
また、上記PTFE樹脂粒子及び上記解重合性アクリル樹脂の他に、ブチルメタクリレート系ウレタンエマルジョンなどのアクリル系樹脂;ウレタンエマルジョンなどのポリウレタン系樹脂;ポリエステルエマルジョンなどのポリエステル系樹脂、ポリエチレンエマルジョンなどのポリオレフィン系樹脂;そのほか、PPS、PAI、PES、PEEKなどの粒子も適用できる。
本開示では、前記非イオン性界面活性剤以外に、水との親和性をとり水性分散組成物の分散安定性を図る点から親水性基を有している他の液状有機化合物も併用してもよい。かかる親水性基含有有機化合物としては、高沸点多価アルコールが好ましい。
高沸点多価アルコールとしては、窒素原子を含まない多価アルコールが、焼成時における熱分解により着色を惹き起こすことが少ないため好ましい。好ましい水酸基の個数は2~3個である。水酸基の数が4個以上のものは室温で固体のものが多い。
好適な多価アルコールとしては、たとえばエチレングルコール(沸点:198℃)、1,2-プロパンジオール(188℃)、1,3-プロパンジオール(214℃)、1,2-ブタンジオール(190℃)、1,3-ブタンジオール(208℃)、1,4-ブタンジオール(229℃)、1,5-ペンタンジオール(242℃)、2-ブテン-1,4-ジオール(235℃)、グリセリン(290℃)、2-エチル-2-ヒドロキシメチル-1,3-プロパンジオール(295℃)、1,2,6-ヘキサントリオール(178℃/5mmHg)などの1種または2種以上があげられる。
また、必要に応じて、高沸点多価アルコール以外の有機溶媒を本開示の効果を損なわない範囲で併用してもよい。そうした有機溶媒としては、たとえばトルエン、キシレンなどの芳香族炭化水素系溶剤、炭素数9~11の脂肪族炭化水素系溶剤などがあげられる。
多価アルコールの配合量は、PTFE樹脂粒子(固形分)100部に対して5~18部、好ましくは7~15部、特に好ましくは7~12部である。5部未満の場合はマッドクラックの発生防止効果が弱くなり、18部を超えると塗膜が白濁することがある。
水は本開示の第3のPTFE水性分散液の液状媒体として使用し、当該水性分散液の固形分濃度を調整する。水を単独で使用してもよいし、水と水溶性化合物と併用した水性混合溶媒としてもよい。
本開示においては、必要に応じて、さらに無機材料などの他の添加剤を配合してもよい。
無機材料としては、顔料のほか、雲母粒子、顔料で被覆された雲母粒子、金属フレークまたはこれら2種以上の無機フィラーがあげられる。これらは本開示の効果を損なわない範囲の量で配合される。
顔料としては従来より公知の各種顔料が使用でき、たとえば酸化チタン、カーボンブラック、ベンガラなどがあげられる。
無機フィラーは耐摩耗性向上の機能を付与するものであり、これらのうち雲母が美観を与える点で好ましい。雲母粒子の粒径としては10~100μmであり、15~50μmであることが好ましい。粒径が10μm未満では耐摩耗性の低下および光輝性が低下する傾向があり、100μmを超えると非粘着性が低下する傾向がある。顔料で被覆された雲母粒子は、たとえばTiO・Feなどの顔料を焼結蒸着法などにより前記雲母粒子に付着させて得られる。金属フレークとしては、たとえばチタン、ジルコニウム、アルミニウム、亜鉛、アンチモン、錫、鉄、ニッケルなどのフレークがあげられるが、錆にくさの点からチタン、ジルコニウムが好ましい。そのサイズとしては通常塗料に使用されている範囲のサイズのものが使用できる。
その他、本開示の第3の水性分散液の効果を損なわないかぎり、種々の公知の添加剤を配合することができる。たとえば、消泡剤、乾燥剤、増粘剤、レべリング剤、ハジキ防止剤などがあげられる。
上記消泡剤としては、たとえばトルエン、キシレン、炭素数9~11の炭化水素系などの非極性溶剤、シリコーンオイルなどがあげられる。
上記乾燥剤としては、たとえば酸化コバルトなどがあげられる。
上記増粘剤としては、たとえばメチルセルロース、ポリビニルアルコール、カルボキシル化ビニルポリマーなどがあげられる。
本開示の第3のPTFE水性分散液は、55℃における粘度が50mPa・s以下であることが好ましい。本開示の第3のPTFE水性分散液は、55℃における粘度が50mPa・s以下であることによって、繊維基材への含浸加工分野等の高温で使用される用途に特に好適である。含浸加工では、焼成工程が必要となるため環境的に高温になりやすい。本開示の第2のPTFE水性分散液は、高温環境下でも繊維基材への浸透性が良く、均一に含浸することができる。55℃における粘度は、45mPa・s以下であることがより好ましく、40mPa・s以下であることが更に好ましく、35mPa・s以下であることが更により好ましい。また、55℃における粘度の下限は特に限定されないが、例えば、10mPa・s以上であってよい。
本開示の第3のPTFE水性分散液は、比率[55℃における粘度/25℃における粘度]が、4.00以下であることが好ましい。本開示の第2のPTFE水性分散液は、繊維基材への含浸加工用途に特に好適である。含浸加工では、焼成工程があるため環境的に高温になりやすい。含浸加工時の繊維基材へのPTFE付着量は、水性分散液の粘度に左右されやすいため、粘度-温度依存性の低い水性分散液が要求される。本開示の第1のPTFE水性分散液は、上記比率が4.00以下であることによって、粘度-温度依存性が低く、品質上安定しているという点で優れている。
上記観点から、比率[55℃における粘度/25℃における粘度]は、3.00以下がより好ましく、2.00以下が更に好ましく、1.50以下が更により好ましく、1.20以下が殊更に好ましく、1.10以下が特に好ましく、1.00以下が殊更特に好ましい。
上記25℃における粘度は、B型回転粘度計を用い、後述の実施例に示す条件で測定した値である。また、55℃の粘度は、液温を55℃に上昇させて60分間保持したのち、25℃における粘度測定と同条件で測定した値である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第3のPTFE水性分散液は、粘度温度遷移[VTT]が55℃超であることが好ましく、60℃以上であることがより好ましい。55℃超であることによって、25℃と55℃での加工条件を変更する必要がないという技術的意義がある。
VTTは、PTFE水性分散液の粘度-温度依存性を表す。VTTは、PTFE水性分散液を25℃、35℃、45℃、55℃において、各温度に上昇させて60分間保持したのち、B型回転粘度計を用い、後述の実施例に示す条件で測定することにより得られる。VTT点は、25℃で測定した時と同じ値に粘度が再度達する温度である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用する。
本開示の第3のPTFE水性分散液は、PTFEの固形分濃度が50~70質量%であることが好ましい。上記固形分濃度は、55質量%以上がより好ましく、57質量%以上が更に好ましい。また、65質量%以下がより好ましく、60質量%以下が更に好ましい。PTFEの固形分濃度が上記範囲であっても、本開示の第3の水性分散液は、55℃における粘度を50mPa・s以下にすることが可能である。
また、本開示の第3のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まないことが好ましい。本開示の組成物において、「含フッ素界面活性剤を実質的に含まない」とは、PTFE水性分散液に対する含フッ素界面活性剤含有量が1.0ppm以下であることを意味する。
本開示の第3のPTFE水性分散液は、含フッ素界面活性剤を実質的に含まないにも関わらず、高温での粘度を低くし、高温での機械的安定性を優れたものとすることができる。
含フッ素界面活性剤の含有量は、好ましくは700ppb以下であり、より好ましくは600ppb以下であり、更に好ましくは500ppb以下である。
本開示の第3のPTFE水性分散液における含フッ素界面活性剤の含有量は、本開示の第1のPTFE水性分散液で述べた方法と同様の方法で測定できる。
本開示の第3のPTFE水性分散液が含フッ素界面活性剤を用いた重合で得られたものである場合、重合上がりのPTFE水性分散液に、非イオン性界面活性剤を加え、濃縮すること等によって含フッ素界面活性剤量を上記範囲にすることができる。上記含フッ素界面活性剤は、本開示の第1のPTFE水性分散液で述べた含フッ素アニオン界面活性剤等が挙げられる。
本開示の第3のPTFE水性分散液の調製は、本開示の第1のPTFE水性分散液で述べた方法を採用できる。
本開示の第3のPTFE水性分散液は、コーティング用、たとえば各種塗料、特に上塗り用塗料として有用である。塗装方法としては従来と同様な各種の塗装方法が採用できる。たとえばディッピング法、スプレー法、ロールコート法、ドクターブレード法、フローコート法などがあげられる。
本開示の第3のPTFE水性分散液は基材に直接塗装してもよいが、密着性を向上させるために、プライマー層を設けてその上塗り層として形成することが望ましい。基材としては特に限定されないが、たとえば各種金属、ホーロー、ガラス、各種セラミックスが採用でき、また密着性を高めるために表面をサンドブラスト法などで粗面化することが好ましい。
基材に塗布された組成物はついで乾燥される。本開示の第3のPTFE水性分散液はこの乾燥の段階でマッドクラックを生じない点に特徴がある。乾燥は通常の条件でよく、たとえば室温~80℃、好ましくは80~100℃にて5分間~1時間実施すれば、指触乾燥に達する。
焼付け型の塗料、たとえばフッ素樹脂塗料の場合、乾燥した塗膜は焼成(加工)される。解重合性アクリル樹脂を配合したときは、フッ素樹脂粒子が溶融し融着するまでの間バインダーとして機能しているので、この焼成段階での熱収縮によるクラックの発生を防止できる。焼成(加工)温度および時間はPTFE樹脂の種類や溶融温度などによって異なるが、PTFE樹脂の溶融温度以上、通常360~415℃にて5~30分間行なう。360~380℃にて10~30分間が好ましい。
プライマー層を設ける場合は、プライマー層を塗布、乾燥、焼成した後に本開示の組成物を塗布、乾燥、焼成する方法(2コート2ベーク法)でもよいし、プライマー層を塗布、乾燥した後に本開示の組成物を塗布、乾燥し、両者を同時に焼成する方法(2コート1ベーク法)でもよい。
本開示の第3のPTFE水性分散液によれば、1回の塗装で溶融塗膜の膜厚が30μm以上の厚膜の塗膜が得られる。上限は特に限定されないが、余りにも厚すぎると塗膜内に各種の分解残渣が残ってしまい着色の原因となるため、100μm以下である。
本開示の第3のPTFE水性分散液は、たとえば金属調理器具、特にフライパンの塗装に最も有用であるが、この組成物は耐腐食性を必要とするその他の製品を塗装するためにも使用され得る。他の製品とは、たとえばベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、シュート、コンベア、ロール、金型、ダイス、のこぎり、やすり、きりのような工具、包丁、はさみ、ホッパー、その他の工業用コンテナ(特に半導体工業用)および鋳型があげられる。
本開示はまた、本開示の第3のPTFE水性分散液を塗布して得られた塗膜を有する塗装物品にも関する。上記塗膜は、従来公知の方法により製造することができ、基材に本開示の水性分散液を塗布して得ることができる。上記基材の材料としては特に限定されず、例えば、鉄、アルミニウム、ステンレス、銅等の金属単体及びこれらの合金類等の金属;ホーロー、ガラス、セラミック等の非金属無機材料等が挙げられる。上記合金類としては、ステンレス等が挙げられる。上記基材の材料としては、金属が好ましく、アルミニウム又はステンレスがより好ましい。
また、上記塗膜の膜厚は、30μm以上であることが好ましく、余りにも厚すぎると塗膜内に各種の分解残渣が残ってしまい着色の原因となるため、100μm以下であることが好ましい。
上記塗装物品は、プライマー層が設けられたものであってもよい。
上記塗装物品の用途としては、金属調理器具(特にフライパン)、ベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、シュート、コンベア、ロール、金型、ダイス、のこぎり、やすり、きりのような工具、包丁、はさみ、ホッパー、その他の工業用コンテナ(特に半導体工業用)および鋳型等が挙げられる。
次に本開示を実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
(1) 平均一次粒子径
PTFE水性分散液を水で固形分濃度が0.15質量%になるまで希釈し、得られた希釈水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真により定方向径を測定して決定した数基準長さ平均一次粒子径とを測定して、検量線を作成した。この検量線を用いて、各試料の550nmの投射光の実測透過率から平均一次粒子径を決定した。
(2) 固形分濃度(P)
試料約1g(Xg)を直径5cmのアルミカップにとり、110℃、30分で乾燥し、更に300℃、30分乾燥した加熱残分(Zg)に基づき、式:P=Z/X×100(質量%)にて決定した。
(3)標準比重(SSG)
ASTM D4895-89に準拠して成形されたサンプルを用い、ASTM D-792に準拠した水置換法により測定した。
(4)変性モノマーの含有量
HFP含有量は、PTFE粉末をプレス成形することで薄膜ディスクを作成し、薄膜ディスクをFT-IR測定した赤外線吸光度から、982cm-1における吸光度/935cm-1における吸光度の比に0.3を乗じて求めた。
PPVE含有量は、PTFE粉末をプレス成形することで薄膜ディスクを作成し、薄膜ディスクをFT-IR測定した赤外線吸光度から、995cm-1における吸光度/935cm-1における吸光度の比に0.14を乗じて求めた。
(5) 含フッ素界面活性剤濃度 
水性分散液の固形分を測定し、PTFE固形分1.5gに相当する量の水性分散液を100mLスクリュー管に秤量した。その後、水性分散液中に含まれている水と合わせ、抽出溶媒が37gの水/メタノール=10/90質量%となるように水とメタノールを加え、凝析するまでよく振とうした。液相を抜き出して4000rpmで1時間遠心分離を行い、上澄み液を抽出した。
抽出液中の含フッ素界面活性剤について、液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用いて測定を行った。測定機器構成とLC-MS測定条件を表1に示す。
Figure JPOXMLDOC01-appb-T000012
含フッ素界面活性剤濃度算出に用いた検量線は以下の条件により求めた。
1ng/mL~100ng/mLの濃度既知の含フッ素界面活性剤のメタノール標準溶液を5水準調製し、液体クロマトグラフ質量分析計(Waters, LC-MS ACQUITY UPLC/TQD)を用いて測定を行った。それぞれのサンプル濃度とピークの積分値から一次近似を用い、下記関係式(3)によりa、bを求めた。
A=a×X+b  (3)
A:含フッ素界面活性剤のピーク面積
X:含フッ素界面活性剤の濃度(ng/mL)
定量下限は100ppbである。
(6)非イオン性界面活性剤の含有量(N)
試料約1g(Xg)を直径5cmのアルミカップにとり、110℃にて30分で加熱した加熱残分(Yg)、更に、得られた加熱残分(Yg)を300℃ にて30分加熱した加熱残分(Zg)より、式:N=[(Y-Z)/X]×100(質量%)から算出した量より安定剤を差し引いた量を非イオン性界面活性剤の含有量とした。安定剤は調製時に添加した量に基づき算出した。
(7)機械的安定性
直径67mm、内容積300mlのプラスチックカップにPTFE水性分散液100gを入れ、60℃の水槽に漬け、直径50mmの撹拌翼(図1)を、プラスチックカップの底面から撹拌翼の中心(図1(b)の軸方向において、撹拌翼の下端から6mmの位置)までの高さが20mmとなるようにセットして、3000rpmで回転させ、PTFE水性分散液が凝集するか固化して飛び散るまでの時間を、安定性保持時間として測定した。
(8)粘度
B型回転粘度計(東機産業社製、ローターNo.2)を用い、回転数60rpm、測定時間120秒の条件で、25℃における粘度を測定した。また、55℃の粘度は、液温を55℃に上昇させて60分間保持したのち、25℃における粘度測定と同条件で測定した。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用した。
(9)pH
ガラス電極(堀場製作所社製)を用い、JIS K6893に準拠して、25℃におけるpHを測定した。
(10)粘度温度遷移(VTT)
VTTは、PTFE水性分散液を25℃、35℃、45℃、55℃において、各温度に上昇させて60分間保持したのち、B型回転粘度計(東機産業社製、ローターNo.2)を用い、回転数60rpm、測定時間120秒の条件で、粘度を測定することにより得た。VTT点は、25℃で測定した時と同じ値に粘度が再度達する温度である。なお、80mPa・s以上の場合、粘度測定において測定時間とともに粘度上昇現象が起きるため、測定開始5分後、10分後の粘度を測定し、その平均値を採用した。
(11)1分子あたりの平均メチル基数
PTFE水性分散液に等量のメタノールを添加してソックスレー抽出を行ったのち、抽出液をH-NMRにて測定して求めた。
(12)リダクションレシオ1500における押出し圧力
PTFE粉末100質量部(60g)に対して押出助剤として炭化水素油(商品名:アイソパーG、エクソン化学社製)を20.5質量部(12.3g)添加し、室温(25±1℃)で1時間熟成し、内径25.4mmのシリンダー付き押出ダイ(リダクションレシオ1500)でペースト押出成形を実施する。押出後半において、圧力が平衡状態になる部分の圧力をシリンダー断面積で除した値を、リダクションレシオ1500における押出し圧力とした。
実施例及び比較例で用いた界面活性剤の平均的分子構造を下記に示す。
界面活性剤(a):タージトールTMN-100X
1225O(CHCHO)10H(1分子あたりの平均メチル基数5.0)、HLB14.00、曇点65℃
界面活性剤(b):タージトールTMN-10
1225O(CHCHO)11H(1分子あたりの平均メチル基数5.0)、HLB14.40、曇点76℃
なお、タージトールTMN-100XはタージトールTMN-6とタージトールTMN-10との混合物であり、組成比は下記の通りである。
TMN-6:TMN-10=30:70(重量比)
TMN-6の構造式
1225O(CHCHO)H(1分子あたりの平均メチル基数5.0)、HLB13.10、曇点36℃
界面活性剤(c): 
1327O(CHCHO)H(1分子あたりの平均メチル基数4.0)、HLB13.30、曇点60℃
界面活性剤(d): 
1327O(CHCHO)10H(1分子あたりの平均メチル基数4.0)、HLB13.80、曇点71℃
合成例1
1L オートクレーブを窒素にて置換した後、脱水したテトラメチル尿素16.5gおよびジエチレングルコールジメチルエーテル220gを仕込み、冷却した。フッ化カルボニル38.5gを仕込み、次いでヘキサフルオロプロピレンオキサイド100gを導入して撹拌した。その後、フッ化カルボニル38.5g及びヘキサフルオロプロピレンオキサイド100gを追加で仕込んだ。その後、さらにフッ化カルボニル及びヘキサフルオロプロピレンオキサイドを同量の仕込みを行った。反応終了後、反応混合液を取り出して、分液して下層の反応生成物を得た。
6Lオートクレーブにテトラグライム1000ml、CsF(75g)を入れ、オートクレーブ内を窒素で置換した。その後、オートクレーブを冷却し、上記で得られた反応生成物を2100g仕込み、ヘキサフルオロプロピレンオキサイドをオートクレーブに導入して反応を開始した。最終的に、ヘキサフルオロプロピレンオキサイドを1510g仕込んだ。その後、内容物を抜き出し、分液ロートにより上層と下層を分離した。上層は1320g、下層は3290gであった。下層を精留した。
次に、下層を精留して得られた物1000gに純水1000gを加えて加水分解を行った。その後、分液ロートで分液して有機層(下層)を回収した。回収した有機層(下層)は硫酸水を用いて洗浄した。洗浄した有機層を単蒸留して蒸留物を得た。さらに、28wt%アンモニア水溶液76gと純水600gを混合した水溶液に、500gの上記で得られた蒸留物を滴下した。滴下終了後、28wt%アンモニア水溶液を加えてpHが7になるように調整した。これを凍結乾燥することで白色固体を得た。
製造例1
内容量6Lの撹拌機付きSUS製反応器に、3540gの脱イオン水、94gのパラフィンワックス、含フッ素界面活性剤として、5.4gの合成例1で得られた白色固体を入れた。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFEでパージして反応器内の酸素を除き、内容物を攪拌した。反応器中に0.78gのパーフルオロプロピルビニルエーテル(PPVE)をTFEで圧入した。開始剤として20gの脱イオン水に溶解した250.6mgのジコハク酸パーオキサイド(DSP)、および20gの脱イオン水に溶解した10.7mgの過硫酸アンモニウム(APS)を反応器に注入し、反応器を0.90MPaGの圧力にした。開始剤の注入後に圧力の低下が起こり重合の開始が観測された。反応器にTFEを加えて圧力を0.90MPaG一定となるように保った。反応で消費したTFEが1380gに達した時点で1.0gのメタノールを反応器に注入し、引き続き反応を行った。反応で消費したTFEが1534gに達した時点でTFEの供給を止め、撹拌を停止して反応を終了した。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。パラフィンワックスを取り除いて、PTFE水性分散液1-1を得た。
得られた水性分散液1-1の固形分濃度は30.0質量%、平均一次粒子径は254nmであった。得られたPTFE水性分散液1-1を脱イオン水で固形分濃度を約13質量%に希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を150℃で18時間乾燥し、PTFE粉末を得た。得られたPTFE粉末の標準比重は、2.174、PPVE含有量は0.046質量%であった。リダクションレシオ1500における押出し圧力は42.1MPaであった。
水性分散液1-1に非イオン性界面活性剤として界面活性剤(a)を加え、非イオン性界面活性剤濃度をPTFE100質量部に対し10質量部とした分散液を調製した。引き続き、直径20mmのカラムに、OH型の陰イオン交換樹脂(商品名アンバージェットAMJ4002、ローム・アンド・ハース社製)を250ml充填し、上記分散液をSV=1で通液した。更に、通液し得られた水性分散液に界面活性剤(a)をPTFE100質量部に対し20質量部になるように加え、65℃にて3時間保持し、上澄相と濃縮相とに分離した。濃縮相を回収し、PTFE水性分散液1-2を得た。
得られたPTFE水性分散液1-2は、固形分濃度が71.5質量%、非イオン性界面活性剤の含有量がPTFEに対し2.7質量%、含フッ素界面活性剤濃度はPTFE水性分散液に対して480ppbであった。
製造例2
CFOCFCFCFOCHFCFCOOHを合成例1で得られた白色固体に変えた以外は、国際公開第2015/116754号の実施例2に準拠して重合を行ない、PTFE水性分散液2-1を得た。得られたPTFE水性分散液2-1の平均一次粒子は250nmであった。得られたPTFE水性分散液2-1を脱イオン水で固形分濃度を約10%に希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を150℃で18時間乾燥し、PTFE粉末を得た。得られたPTFE粉末の標準比重は2.205、HFP含有量は、0.010質量%であった。
得られたPTFE水性分散液2-1を用いて、製造例1と同様に、イオン交換処理および濃縮を行ない、PTFE水性分散液2-2を得た。得られたPTFE水性分散液2-2は、固形分濃度が69.5質量%、非イオン性界面活性剤の含有量がPTFEに対し2.9質量%であった。
製造例3
国際公開第2006/127317号の実施例1に準拠して重合を行ない、PTFE水性分散液3-1を得た。但し、以下の点を変更した。
含フッ素界面活性剤として、パーフルオロオクタン酸アンモニウム3.24部を合成例1で得られた白色固体2.03部に変更した。なお、重合の途中に含フッ素界面活性剤を追加仕込みしなかった。
また、APSおよびメタノールの溶液を追加するタイミングを、TFEの仕込量88.1部から62.4部に変更した。
更に、TFEの仕込みを停止するタイミングを、TFE96.9部から69.4部に変更した。
PTFE水性分散液3-1の平均一次粒子径は285nmであった。
さらに、PTFE水性分散液3-1を脱イオン水で固形分濃度を約10%に希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を150℃で18時間乾燥し、PTFE粉末を得た。得られたPTFE粉末の標準比重は2.241であった。
得られたPTFE水性分散液3-1を用いて、製造例1と同様に、イオン交換処理および濃縮を行ないPTFE水性分散液3-2を得た。得られたPTFE水性分散液3-2は、固形分濃度が70.9質量%、非イオン性界面活性剤の含有量がPTFEに対し2.9質量%であった。
実施例1
製造例1で得られたPTFE水性分散液1-2に、界面活性剤(a)をPTFEに対して4.0質量%になるように追加し、さらに、界面活性剤(b)をPTFEに対して2.0質量%、ラウリル硫酸アンモニウムをPTFEに対して500ppm添加し、さらに脱イオン水およびアンモニア水を加えた。得られたPTFE水性分散液1-3の固形分濃度(質量%)およびPTFEに対する各成分の含有量(質量%)を表2に示す。
このPTFE水性分散液1-3について、上記の方法でpHおよび粘度を測定し、機械的安定性試験を行った。結果を表2に示す。また、得られたPTFE水性分散液1-3に等量のメタノールを添加してソックスレー抽出を行ったのち、抽出液を1H-NMRにて測定したところ、平均オキシアルキレン単位数は10.4であった。
実施例2~7
PTFE水性分散液1-2に添加する化合物を表2に示す通りに変更した以外は実施例1と同様にしてPTFE水性分散液を得、同様に評価した。結果を表2に示す。
比較例1
製造例1で得られたPTFE水性分散液1-2に、界面活性剤(a)をPTFEに対して5.5質量%になるように追加し、ラウリル硫酸アンモニウムをPTFEに対して1000ppm添加し、さらに、消泡剤としてアセチレン系消泡剤(商品名サーフィノール440、エアープロダクツ社製)をPTFEに対して0.5質量%になるように追加した。それ以外は実施例1と同様にしてPTFE水性分散液を得、同様に評価した。結果を表3に示す。
比較例2
製造例2で得られたPTFE水性分散液2-2に、界面活性剤(a)をPTFEに対して6.0質量%になるように追加し、ラウリル硫酸アンモニウムをPTFEに対して1000ppm添加し、さらに脱イオン水およびアンモニア水を加えた。それ以外は実施例1と同様にしてPTFE水性分散液を得、同様に評価した。結果を表3に示す。
比較例3
製造例3で得られたPTFE水性分散液3-2を用いて、比較例2と同様な処理を行った。結果を表3に示す。
比較例4
製造例1で得られたPTFE水性分散液1-2を用いて、比較例2と同様な処理を行った。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
比較例1~4に対して実施例1~7の55℃における粘度は著しく低下し、VTTは55℃を超えたことから、高温での粘度上昇が抑制された。
また、比較例1~4に対して実施例1~7の60℃における安定性保持時間は、著しく長くなったことから、機械的安定性は改善された。
製造例4
内容量6Lの撹拌機付きSUS製反応器に、3580gの脱イオン水、160gのパラフィンワックス、含フッ素界面活性剤として、4.7gの合成例1で得られた白色固体を入れた。次いで反応器の内容物を70℃まで加熱しながら吸引すると同時にTFEでパージして反応器内の酸素を除き、内容物を攪拌した。反応器中に6.5gのPPVEをTFEで圧入した。開始剤として20gの脱イオン水に溶解した50mgのAPSを反応器に注入し、圧力を1.5MPaGとした。圧力1.5MPaG一定となるようにTFEを加えた。反応で消費したTFEが1466gに達した時点で0.5gのメタノールを反応器に注入し、引き続き反応を行った。反応で消費したTFEが1543gに達した時点でTFEの供給を止め、撹拌を停止して反応を終了した。その後に、反応器内の圧力が常圧になるまで排気し、内容物を反応器から取り出して冷却した。パラフィンワックスを取り除いて、PTFE水性分散液4-1を得た。
得られた水性分散液4-1の固形分濃度は30.0質量%、平均一次粒子径は272nmであった。得られたPTFE水性分散液4-1を脱イオン水で固形分濃度を約10質量%に希釈し、高速撹拌条件下で凝固させ、凝固した湿潤粉末を150℃で18時間乾燥し、PTFE粉末を得た。得られたPTFE粉末の標準比重は、2.167、PPVE含有量は0.28質量%であった。リダクションレシオ1500における押出し圧力は58.9MPaであった。
製造例5
反応で消費したTFEが1466gに達した時点でメタノールを反応器に注入せず、引き続き反応を行った点を除いて、製造例4と同様にして、PTFE水性分散液5-1を得た。
得られたPTFE水性分散液5-1の固形分濃度は30.0質量%、平均一次粒子径は270nmであった。得られたPTFE水性分散液5-1から、製造例4と同様にして、PTFE粉末を得た。得られたPTFE粉末の標準比重は、2.163、PPVE含有量は0.28質量%であった。リダクションレシオ1500における押出し圧力は、100MPaを超えたため測定を中断した。
実施例8
水性分散液4-1に非イオン性界面活性剤として界面活性剤(c)を加え、非イオン性界面活性剤濃度をPTFE100質量部に対し10質量部とした分散液を調製した。引き続き、直径20mmのカラムに、OH型の陰イオン交換樹脂(商品名アンバージェットAMJ4002、ローム・アンド・ハース社製)を250ml充填し、上記分散液をSV=1で通液した。更に、通液し得られた水性分散液に界面活性剤(c)をPTFE100質量部に対し16質量部になるように加え、65℃にて3時間保持し、上澄相と濃縮相とに分離した。濃縮相を回収し、PTFE水性分散液4-2を得た。
得られたPTFE水性分散液4-2は、固形分濃度が68.3質量%、非イオン性界面活性剤の含有量がPTFEに対し2.7質量%、含フッ素界面活性剤濃度はPTFE水性分散液に対して420ppbであった。
得られたPTFE水性分散液4-2に、界面活性剤(d)をPTFEに対して5.0質量%になるように追加し、ラウリル硫酸アンモニウムをPTFEに対して500ppm添加し、さらに脱イオン水およびアンモニア水を加え、PTFE水性分散液4-3を得た。
得られたPTFE水性分散液4-3は、固形分濃度62.9質量%、非イオン性界面活性剤の含有量は、PTFEに対して、5.0質量%であった。実施例1と同様に評価した。ただし、安定性保持時間については、固形分濃度を60.0質量%に希釈して測定した。結果を表4に示す。
比較例5
PTFE水性分散液4-1をPTFE水性分散液5-1に代えたことを除いて、実施例8と同様にしてPTFE水性分散液5-2、及びPTFE水性分散液5-3を得た。
得られたPTFE水性分散液5-2は、固形分濃度が68.3質量%、非イオン性界面活性剤の含有量がPTFEに対し2.7質量%、含フッ素界面活性剤濃度はPTFE水性分散液に対して430ppbであった。
得られたPTFE水性分散液5-3は、固形分濃度62.9質量%、非イオン性界面活性剤の含有量は、PTFEに対して、5.0質量%であった。実施例1と同様に評価した。ただし、安定性保持時間については、固形分濃度を60.0質量%に希釈して測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000015
比較例5に対して実施例8の55℃における粘度は著しく低下し、VTTは55℃以上となったことから、高温での粘度上昇が抑制された。
また、比較例5に対して実施例8の60℃における安定性保持時間は、著しく長くなったことから、機械的安定性は改善された。
実施例9
つぎに示す各成分を記載の順序で混合した。
(A)実施例1で得られたPTFE水性分散液1-3           80.7部
(B)グリセリン                            4.7部
(C)解重合性アクリル樹脂粒子エマルジョン(ブチルメタクリレート系樹脂。平均粒子径0.3μm、固形分濃度40%)                   11.7部
(D)非イオン性界面活性剤(ポリオキシエチレントリデシルエーテル、日本油脂(株)製のディスパノールTOC(50%水溶液)                4.7部
(その他)増粘剤(ラウリル硫酸ナトリウムの25%水溶液)        1.9部
(E)水                                0.5部
 得られたコーティング用水性分散組成物について、つぎの性質を調べた。結果を表5に示す。
(貯蔵安定性)
コーティング用水性分散組成物500gをポリエチレン製のビンに入れ、40℃の恒温槽内で1ヵ月間放置し、再分散性で評価した。評価は、150メッシュの金網を用い、全てが通過したものを○、金網上に残存物があるものを×とした。ついで、得られたコーティング用水性分散組成物をノンブラストアルミニウム板にスプレー法により塗布し、80℃にて15分間乾燥した。得られた乾燥塗膜表面を光学顕微鏡で観察し、マッドクラックの発生の有無を調べたところ、マッドクラックは発生していなかった。ついで乾燥塗膜を380℃の温度で20分間焼成して溶融塗膜を形成した。この塗膜につき、つぎの塗膜物性を調べた。
(塗膜外観)
光学顕微鏡により塗膜表面を観察した。
(鉛筆硬度)
JIS K5600の記載の方法に従って、25℃で評価した。
(クラック限界膜厚)
膜厚を種々変更し、クラックが発生し始める膜厚をクラック限界膜厚とした。
(着色)
塗膜を目視で観察した。
(アルキルフェノール含量)
液体クロマトグラフィー法で分析する(カラム:ASAHIPAC GS-310、溶離液:アセトニトリル/水=50/50容量比、流量:1.2ml/min、カラム温度:25~28℃、検出:UV(230nm))。検出されない場合を○、検出された場合を×とした。
(ガン詰まり)
岩田スプレイガンW88(ノズル径1.5mm)において9.8N(5kgf)、塗出量バルブ1回転戻し、パターンバルブ全閉のセッティングで、トリガー開閉断続的な塗装を回行ない、ガンより塗料が出なくなる回数を数えた。
(白斑)
岩田スプレイガンW88(ノズル径1.5mm)において9.8N(5kgf)、塗出量バルブ1回転戻し、パターンバルブ全閉のセッティングで、20cm×60cmの黒クラフト紙10枚にトリガー開閉断続的な塗装を行ない、目視にて、白斑が発生するショット回数を数えた。
実施例10
実施例9における実施例1のPTFE水性分散液1-3を、実施例8で得られたPTFE水分散液4-3に代え、表5に示す組成にて混合し、コーティング用水性分散組成物を得た。実施例9と同様にして測定した。結果を表5に示す。
比較例6
実施例9における実施例1のPTFE水性分散液1-3を比較例5で得られたPTFE水分散液5-3に代え、表5に示す組成にて混合し、コーティング用水性分散組成物を得た。実施例9と同様にして測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000016
比較例6に対して実施例9及び実施例10は、ガン詰まり発生までのショット回数、及び白斑発生までのショット回数が著しく増加したことから、機械的安定性は改善された。
実施例11
つぎに示す各成分を記載の順序で混合した。
(A)実施例1で得られたPTFE水性分散液1-3                 80.6部
(B)解重合性アクリル樹脂粒子エマルジョン(比重約1.1、ブチルメタクリレート系樹脂、平均粒子径0.6μm、固形分濃度40%)             14.1部
(C)非イオン性界面活性剤(比重約1.0)
   非イオン性界面活性剤(ポリオキシエチレントリデシルエーテル、日本油脂(株)製のディスパノールTOC(50%水溶液))               8.8部
(D)その他添加剤
   グリセリン                            3.5部
   炭化水素系溶剤                          1.4部
   水                                3.2部
 得られた樹脂水性分散組成物について、性質を調べた。結果を表6に示す。
実施例12
実施例11における実施例1のPTFE水性分散液1-3を、実施例8で得られたPTFE水分散液4-3に代え、表6に示す組成で混合した。得られた樹脂水性分散組成物について、性質を調べた。結果を表6に示す。
比較例7
実施例11における実施例1のPTFE水性分散液1-3を、比較例5で得られたPTFE水分散液5-3に代え、表6に示す組成で混合した。得られた樹脂水性分散組成物について、性質を調べた。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000017
比較例7に対して実施例11及び実施例12は、ガン詰まり発生までのショット回数、及び白斑発生までのショット回数が著しく増加したことから、機械的安定性は改善された。

 

Claims (42)

  1. ポリテトラフルオロエチレン、及び、非イオン性界面活性剤を含み、
    ポリテトラフルオロエチレンの固形分濃度が50~70質量%であり、
    含フッ素界面活性剤を実質的に含まず、
    55℃における粘度が50mPa・s以下である
    ことを特徴とするポリテトラフルオロエチレン水性分散液。
  2. 含フッ素界面活性剤の含有量が100ppb以上であり、1.0ppm以下である請求項1記載のポリテトラフルオロエチレン水性分散液。
  3. 比率[55℃における粘度/25℃における粘度]が4.00以下である請求項1又は2記載の水性分散液。
  4. 非イオン性界面活性剤の含有量は、ポリテトラフルオロエチレンに対して4質量%以上、12質量%以下である請求項1、2又は3記載の水性分散液。
  5. 60℃における安定性保持時間が30分以上である請求項1~4のいずれかに記載の水性分散液。
  6. 60℃における安定性保持時間が40分以上である請求項1~4のいずれかに記載の水性分散液。
  7. 非イオン性界面活性剤は、下記一般式(i):
    -O-A-H    (i)
    (式中、Rは、炭素数8~18のアルキル基であり、Aは、オキシエチレン単位またはオキシプロピレン単位からなるポリオキシアルキレン鎖である。)により表される化合物を含む請求項1~6のいずれかに記載の水性分散液。
  8. は、下記一般式(i-1):
    CHR3132-   (i-1)
    (式中、R31は、水素原子又は炭素数1~16のアルキル基を表し、R32は、炭素数1~17のアルキル基を表し、R31とR32の合計炭素数は7~17である)で表されるアルキル基である請求項7に記載の水性分散液。
  9. は、平均メチル基数が2.0以上である炭素数8~18のアルキル基である請求項7又は8記載の水性分散液。
  10. 式(i)において、Rが2,6,8-トリメチル-4-ノニル基である請求項7、8又は9記載の水性分散液。
  11. 式(i)において、Aが、平均オキシエチレン単位数10.1~10.8のポリオキシエチレン鎖である請求項10記載の水性分散液。
  12. 非イオン性界面活性剤は、HLBが14.00以上である請求項10又は11記載の水性分散液。
  13. 非イオン性界面活性剤は、Aの平均オキシエチレン単位数が異なる式(i)により表される化合物の混合物である請求項10、11又は12のいずれかに記載の水性分散液。
  14. 非イオン性界面活性剤は、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数7.0~9.0のポリオキシエチレン鎖である化合物と、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物との混合物である請求項13に記載の水性分散液。
  15. 非イオン性界面活性剤は、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数7.0~9.0のポリオキシエチレン鎖である化合物(第1成分)と、式(i)のRが2,6,8-トリメチル-4-ノニル基であり、Aが平均オキシエチレン単位数10.0~12.0のポリオキシエチレン鎖である化合物(第2成分)との混合物であり、第1成分を5質量%以上25質量%以下、第2成分を75質量%以上95質量%以下含む請求項14記載の水性分散液。
  16. ポリテトラフルオロエチレン水性分散液を製造する方法であって、
    含フッ素アニオン界面活性剤の存在下でテトラフルオロエチレンを乳化重合してポリテトラフルオロエチレンを含む分散液を得る工程A、
    工程Aで得られた分散液に非イオン性界面活性剤(1)を添加する工程B、
    工程Bで得られた分散液から含フッ素アニオン界面活性剤を除去し、更に、濃縮する工程、又は、工程Bで得られた分散液を濃縮し、更に、含フッ素アニオン界面活性剤を除去する工程である工程C、及び、
    工程Cで得られた分散液に非イオン性界面活性剤(2)及びフッ素非含有アニオン界面活性剤を添加する工程D、
    を含むことを特徴とするポリテトラフルオロエチレン水性分散液の製造方法。
  17. 工程Aは、テトラフルオロエチレンと、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン及び環状型モノマーからなる群より選択される少なくとも1種の単量体とを重合する工程である請求項16記載の製造方法。
  18. 工程Aは、コアシェル構造を有する変性ポリテトラフルオロエチレンの分散液を得る工程であり、
    テトラフルオロエチレンと、パーフルオロ(アルキルビニルエーテル)、(パーフルオロアルキル)エチレン及び環状型モノマーからなる群より選択される少なくとも1種の変性モノマーを重合して前記コアを製造する工程A-1と、テトラフルオロエチレン及び前記変性モノマーに加え、ヘキサフルオロプロピレン及び連鎖移動剤からなる群より選択される少なくとも1種を重合して前記シェルを製造する工程A-2と、を含む請求項16および17記載の製造方法。
  19. 非イオン性界面活性剤(1)は、下記式(1):
    -O-A-H    (1)
    (式中、Rは、1分子あたりの平均メチル基数が4.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が7.0~12.0であり、平均オキシプロピレン単位数が0.0~2.0であるポリオキシアルキレン鎖である。)により表される化合物である請求項16、17又は18記載の製造方法。
  20. 式(1)中、Rは、2,6,8-トリメチル-4-ノニル基である請求項19記載の製造方法。
  21. 非イオン性界面活性剤(2)は、下記式(2):
    -O-A-H  (2)
    (式中、Rは、1分子あたりの平均メチル基数が4.0以上である炭素数8~18の直鎖状若しくは分岐鎖状の1級又は2級アルキル基であり、Aは、平均オキシエチレン単位数が10.0~12.0であるポリオキシアルキレン鎖である。)により表される化合物である請求項16~20のいずれかに記載の製造方法。
  22. 式(2)中、Rは、2,6,8-トリメチル-4-ノニル基である請求項21記載の製造方法。
  23. 工程Dは、分散液中の非イオン性界面活性剤の濃度がポリテトラフルオロエチレンに対して4質量%以上、12質量%以下になるように非イオン性界面活性剤(2)を添加する工程である請求項16~22のいずれかに記載の製造方法。
  24. ポリテトラフルオロエチレン水性分散液は、非イオン性界面活性剤の曇点が60~80℃である請求項16~23のいずれかに記載の製造方法。
  25. ポリテトラフルオロエチレン水性分散液は、非イオン性界面活性剤のHLBが14.00以上である請求項16~24のいずれかに記載の製造方法。
  26. 工程Cにおける含フッ素アニオン界面活性剤の除去は、水性分散液を陰イオン交換樹脂に接触させることにより行う請求項16~25のいずれかに記載の製造方法。
  27. ポリテトラフルオロエチレン水性分散液は、含フッ素アニオン界面活性剤の含有量が水性分散液に対して1.0ppm以下である請求項16~26のいずれかに記載の製造方法。
  28. 含フッ素アニオン界面活性剤は、LogPOWが3.5以下の含フッ素アニオン界面活性剤である請求項16~27のいずれかに記載の製造方法。
  29. 含フッ素アニオン界面活性剤は、LogPOWが3.4以下の含フッ素アニオン界面活性剤である請求項16~28のいずれかに記載の製造方法。
  30. フッ素非含有アニオン界面活性剤は、アルキルサルフェート及びその塩、並びに、脂肪酸及びその塩からなる群より選択される少なくとも1種である請求項16~29のいずれかに記載の製造方法。
  31. ポリテトラフルオロエチレン水性分散液は、フッ素非含有アニオン界面活性剤の含有量が、ポリテトラフルオロエチレンに対して50~5000ppmである請求項16~30のいずれかに記載の製造方法。
  32. 更に、水性分散液に防腐剤を添加する工程を含む請求項16~31のいずれかに記載の製造方法。
  33. 防腐剤は、有機ヨウ素系化合物または有機窒素硫黄系化合物である請求項32記載の製造方法。
  34. 更に、塗料原料を加える工程を含む請求項16~33のいずれかに記載の製造方法。
  35. 請求項16~34のいずれかに記載の製造方法により得られたポリテトラフルオロエチレン水性分散液。
  36. 水性塗料である請求項1~15及び35のいずれかに記載の水性分散液。
  37. 請求項1~15、35及び36のいずれかに記載の水性分散液を塗布して得られた塗膜。
  38. 請求項1~15、35及び36のいずれかに記載の水性分散液を含浸して得られた含浸膜。
  39. (A)ポリテトラフルオロエチレン樹脂粒子と、(B)窒素原子を含まず沸点が100℃以上でかつ水酸基を2個以上有する高沸点多価アルコールと、(C)分解して気化する温度が該PTFE樹脂の分解温度までの温度範囲内にある解重合性アクリル樹脂粒子と、(D)非イオン性界面活性剤と、(E)水性媒体とを含み、
    前記高沸点多価アルコール(B)および解重合性アクリル樹脂粒子(C)の配合量がポリテトラフルオロエチレン樹脂(A)100質量部に対してそれぞれ5~18質量部および5~25質量部であり、かつ酸化剤およびアミン系溶剤を含まないポリテトラフルオロエチレン水性分散液。
  40. ポリテトラフルオロエチレン樹脂粒子、解重合性アクリル樹脂粒子、及び水を含み、各樹脂粒子の一次平均粒子と同体積の真球と置き換えたと仮定した場合、それぞれの樹脂粒子を最密充填構造に配列させたときの樹脂粒子間の理論空隙率26%の75~95%を占める量の非イオン性界面活性剤が存在しており、該非イオン性界面活性剤が100℃までの温度範囲で実質的に不揮発性でありかつ樹脂粒子の熱分解温度よりも低い温度で揮散または熱分解する溶媒であることを特徴とするポリテトラフルオロエチレン水性分散液。
  41. 請求項39又は40記載のポリテトラフルオロエチレン水性分散液を塗布して得られた塗膜を有する塗装物品。
  42. 金属調理器具、ベアリング、バルブ、電線、金属箔、ボイラー、パイプ、船底、オーブン内張り、アイロン底板、パン焼き型、炊飯器、グリル鍋、電気ポット、製氷トレー、雪かきシャベル、すき、工具、包丁、はさみ、ホッパー、工業用コンテナ、および鋳型からなる群より選択される少なくとも1種である請求項41記載の塗装物品。

     
PCT/JP2020/033806 2019-09-05 2020-09-07 ポリテトラフルオロエチレン水性分散液 WO2021045228A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20860627.7A EP4026854A4 (en) 2019-09-05 2020-09-07 AQUEOUS POLYTETRAFLUORETHYLENE DISPERSION
CN202080062052.5A CN114341209A (zh) 2019-09-05 2020-09-07 聚四氟乙烯水性分散液
JP2021544073A JP7307368B2 (ja) 2019-09-05 2020-09-07 ポリテトラフルオロエチレン水性分散液
US17/687,086 US20220275237A1 (en) 2019-09-05 2022-03-04 Polytetrafluoroethylene aqueous dispersion
JP2023104455A JP2023123689A (ja) 2019-09-05 2023-06-26 ポリテトラフルオロエチレン水性分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019162321 2019-09-05
JP2019-162321 2019-09-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/687,086 Continuation US20220275237A1 (en) 2019-09-05 2022-03-04 Polytetrafluoroethylene aqueous dispersion

Publications (1)

Publication Number Publication Date
WO2021045228A1 true WO2021045228A1 (ja) 2021-03-11

Family

ID=74852368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033806 WO2021045228A1 (ja) 2019-09-05 2020-09-07 ポリテトラフルオロエチレン水性分散液

Country Status (5)

Country Link
US (1) US20220275237A1 (ja)
EP (1) EP4026854A4 (ja)
JP (2) JP7307368B2 (ja)
CN (1) CN114341209A (ja)
WO (1) WO2021045228A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054711A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
WO2023054709A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
WO2023171777A1 (ja) * 2022-03-09 2023-09-14 ダイキン フルオロ コーティングズ (シャンハイ) カンパニー リミテッド 塗料組成物、皮膜、積層皮膜、及び、塗装物品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115584503A (zh) * 2022-10-19 2023-01-10 安徽万磁电子有限公司 降低基材腐蚀的烧结钕铁硼镍铜镍镀层退镀工艺
CN116199905A (zh) * 2022-11-11 2023-06-02 中昊晨光化工研究院有限公司 一种聚四氟乙烯浓缩分散液

Citations (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
JP2538783B2 (ja) 1987-09-24 1996-10-02 村樫石灰工業 株式会社 防塵処理剤組成物
JP2827152B2 (ja) 1994-07-11 1998-11-18 村樫石灰工業株式会社 塵埃抑制方法
WO1999062858A1 (de) 1998-06-02 1999-12-09 Dyneon Gmbh & Co. Kg Verfahren zur rückgewinnung von fluorierten alkansäuren aus abwässern
WO2003011991A1 (fr) * 2001-07-30 2003-02-13 Daikin Industries, Ltd. Composition de revetement a base de fluororesine de type dispersion aqueuse
WO2003020836A1 (en) 2001-09-05 2003-03-13 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
WO2004078836A1 (en) 2003-02-28 2004-09-16 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
JP2005527652A (ja) 2002-01-04 2005-09-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 濃縮フルオロポリマー分散液
WO2006127317A1 (en) 2005-05-20 2006-11-30 E. I. Du Pont De Nemours And Company Core/shell fluoropolymer dispersions with low fluorosurfactant content
WO2007000812A1 (ja) 2005-06-29 2007-01-04 Nippo Corporation 塵埃抑制処理方法
WO2007004250A1 (ja) 2005-06-29 2007-01-11 Du Pont-Mitsui Fluorochemicals Co., Ltd. 塵埃処理剤組成物
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
WO2007007422A1 (ja) * 2005-07-13 2007-01-18 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製造方法
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
WO2013027850A1 (ja) 2011-08-25 2013-02-28 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2013146950A1 (ja) 2012-03-30 2013-10-03 ダイキン工業株式会社 非イオン性界面活性剤組成物、及び、フルオロポリマー水性分散液
WO2013146947A1 (ja) 2012-03-27 2013-10-03 ダイキン工業株式会社 フルオロポリマー水性分散液
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
JP2014508193A (ja) 2010-12-31 2014-04-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリテトラフルオロエチレンの新規な水性分散液
WO2014084399A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
WO2015116754A1 (en) 2014-01-31 2015-08-06 3M Innovative Properties Company Tetrafluoroethylene polymer dispersions stabilized with aliphatic non-ionic surfactants
WO2017094798A1 (ja) 2015-12-01 2017-06-08 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液
WO2019031617A1 (ja) * 2017-08-10 2019-02-14 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3169085B2 (ja) * 1991-06-17 2001-05-21 大日本インキ化学工業株式会社 建築内外装用エマルジョン塗料
JP3967596B2 (ja) * 2001-01-11 2007-08-29 三洋化成工業株式会社 合成樹脂水性分散体
US7390448B2 (en) * 2005-08-05 2008-06-24 E.I. Du Pont De Nemours And Company Spinning low fluorosurfactant fluoropolymer dispersions
JP5212105B2 (ja) * 2006-07-06 2013-06-19 ダイキン工業株式会社 含フッ素ポリマー水性分散液
EP3546517B1 (en) * 2016-11-28 2023-03-08 Agc Inc. Aqueous polytetrafluoroethylene dispersion
CN110023402B (zh) * 2016-12-01 2022-05-10 3M创新有限公司 乙烯-四氟乙烯共聚物分散体和它们的涂布制品
WO2018199034A1 (ja) * 2017-04-28 2018-11-01 Agc株式会社 ポリテトラフルオロエチレン水性分散液

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271341A (en) 1961-08-07 1966-09-06 Du Pont Aqueous colloidal dispersions of polymer
US3250808A (en) 1963-10-31 1966-05-10 Du Pont Fluorocarbon ethers derived from hexafluoropropylene epoxide
JP2538783B2 (ja) 1987-09-24 1996-10-02 村樫石灰工業 株式会社 防塵処理剤組成物
JP2827152B2 (ja) 1994-07-11 1998-11-18 村樫石灰工業株式会社 塵埃抑制方法
WO1999062858A1 (de) 1998-06-02 1999-12-09 Dyneon Gmbh & Co. Kg Verfahren zur rückgewinnung von fluorierten alkansäuren aus abwässern
WO2003011991A1 (fr) * 2001-07-30 2003-02-13 Daikin Industries, Ltd. Composition de revetement a base de fluororesine de type dispersion aqueuse
WO2003020836A1 (en) 2001-09-05 2003-03-13 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
JP2003119204A (ja) 2001-10-05 2003-04-23 Daikin Ind Ltd 含フッ素重合体ラテックスの製造方法
JP2005527652A (ja) 2002-01-04 2005-09-15 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 濃縮フルオロポリマー分散液
WO2004078836A1 (en) 2003-02-28 2004-09-16 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
WO2005042593A1 (ja) 2003-10-31 2005-05-12 Daikin Industries, Ltd. 含フッ素重合体水性分散体の製造方法及び含フッ素重合体水性分散体
WO2006127317A1 (en) 2005-05-20 2006-11-30 E. I. Du Pont De Nemours And Company Core/shell fluoropolymer dispersions with low fluorosurfactant content
WO2007000812A1 (ja) 2005-06-29 2007-01-04 Nippo Corporation 塵埃抑制処理方法
WO2007004250A1 (ja) 2005-06-29 2007-01-11 Du Pont-Mitsui Fluorochemicals Co., Ltd. 塵埃処理剤組成物
WO2007007422A1 (ja) * 2005-07-13 2007-01-18 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製造方法
US20070015864A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070015865A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
US20070015866A1 (en) 2005-07-15 2007-01-18 3M Innovative Properties Company Aqueous emulsion polymerization of fluorinated monomers using a fluorinated surfactant
WO2007046345A1 (ja) 2005-10-17 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性乳化液、それから得られるポリテトラフルオロエチレンファインパウダーおよび多孔体
WO2007046482A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited ポリテトラフルオロエチレン水性分散液およびその製品
WO2007046377A1 (ja) 2005-10-20 2007-04-26 Asahi Glass Company, Limited 溶融成形可能なフッ素樹脂の製造方法
US20070117914A1 (en) 2005-11-24 2007-05-24 3M Innovative Properties Company Fluorinated surfactants for use in making a fluoropolymer
US20070142541A1 (en) 2005-12-21 2007-06-21 3M Innovative Properties Company Fluorinated surfactants for making fluoropolymers
WO2007119526A1 (ja) 2006-04-14 2007-10-25 Bridgestone Corporation インラインヒータ及びその製造方法
US20070276103A1 (en) 2006-05-25 2007-11-29 3M Innovative Properties Company Fluorinated Surfactants
US20080015319A1 (en) 2006-07-13 2008-01-17 Klaus Hintzer Explosion taming surfactants for the production of perfluoropolymers
WO2008060461A1 (en) 2006-11-09 2008-05-22 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
US20140228531A1 (en) 2008-07-08 2014-08-14 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
JP2014508193A (ja) 2010-12-31 2014-04-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリテトラフルオロエチレンの新規な水性分散液
WO2013027850A1 (ja) 2011-08-25 2013-02-28 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
WO2013146947A1 (ja) 2012-03-27 2013-10-03 ダイキン工業株式会社 フルオロポリマー水性分散液
WO2013146950A1 (ja) 2012-03-30 2013-10-03 ダイキン工業株式会社 非イオン性界面活性剤組成物、及び、フルオロポリマー水性分散液
WO2013189824A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2013189826A1 (en) 2012-06-20 2013-12-27 Solvay Specialty Polymers Italy S.P.A. Tetrafluoroethylene copolymers
WO2014084399A1 (ja) 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液及びポリテトラフルオロエチレンファインパウダー
WO2015116754A1 (en) 2014-01-31 2015-08-06 3M Innovative Properties Company Tetrafluoroethylene polymer dispersions stabilized with aliphatic non-ionic surfactants
JP2017511394A (ja) 2014-01-31 2017-04-20 スリーエム イノベイティブ プロパティズ カンパニー 脂肪族非イオン性界面活性剤で安定化させたテトラフルオロエチレンポリマー分散液
WO2017094798A1 (ja) 2015-12-01 2017-06-08 旭硝子株式会社 ポリテトラフルオロエチレン水性分散液
WO2019031617A1 (ja) * 2017-08-10 2019-02-14 ダイキン工業株式会社 精製ポリテトラフルオロエチレン水性分散液の製造方法、改質ポリテトラフルオロエチレン粉末の製造方法、ポリテトラフルオロエチレン成形体の製造方法、及び、組成物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Deterioration of Polymer Material", 1958, CORONA PUBLISHING CO., LTD., pages: 144
PLAST. MASSY., vol. 75, 1971, pages 48
POLYM. ENG. SOI., vol. 6, 1966, pages 273
See also references of EP4026854A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054711A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
WO2023054709A1 (ja) 2021-09-30 2023-04-06 ダイキン工業株式会社 ポリテトラフルオロエチレン粉末、電極用バインダー、電極合剤、電極、及び、二次電池
WO2023171777A1 (ja) * 2022-03-09 2023-09-14 ダイキン フルオロ コーティングズ (シャンハイ) カンパニー リミテッド 塗料組成物、皮膜、積層皮膜、及び、塗装物品

Also Published As

Publication number Publication date
CN114341209A (zh) 2022-04-12
US20220275237A1 (en) 2022-09-01
JPWO2021045228A1 (ja) 2021-03-11
EP4026854A1 (en) 2022-07-13
EP4026854A4 (en) 2024-01-17
JP7307368B2 (ja) 2023-07-12
JP2023123689A (ja) 2023-09-05

Similar Documents

Publication Publication Date Title
WO2021045228A1 (ja) ポリテトラフルオロエチレン水性分散液
US10093775B2 (en) Aqueous fluoropolymer dispersion
JP5287721B2 (ja) コーティング用組成物
CN100404566C (zh) 四氟乙烯聚合物水性分散液、其制造方法、四氟乙烯聚合物粉末以及四氟乙烯聚合物成型体
JP5937870B2 (ja) 非イオン性界面活性剤組成物、及び、フルオロポリマー水性分散液
EP2021421B1 (en) Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersing agents
RU2363549C2 (ru) Способ покрытия подложки дисперсией фторполимера
EP2902424B1 (en) Tetrafluoroethene polymer dispersions stabilized with aliphatic non-ionic surfactants
US20230203297A1 (en) Aqueous modified polytetrafluoroethylene dispersion
US10093820B2 (en) Method for reducing fluorinated emulsifiers from aqueous fluoropolymer dispersions using sugar-based emulsifiers
JP2014508193A (ja) ポリテトラフルオロエチレンの新規な水性分散液
JP6746608B2 (ja) ポリテトラフルオロエチレン水性分散液
JP7116048B2 (ja) ポリテトラフルオロエチレン水性分散液
US20240034901A1 (en) Coating composition, coating membrane, laminate, and coated article
JP5402789B2 (ja) フルオロポリマー水性分散液
WO2023171777A1 (ja) 塗料組成物、皮膜、積層皮膜、及び、塗装物品
WO2024024891A1 (ja) フルオロポリマー水性分散液の製造方法、フルオロポリマー水性分散液および塗料組成物
JP2024027028A (ja) ポリテトラフルオロエチレン混合水性分散液の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544073

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020860627

Country of ref document: EP

Effective date: 20220405