US20070015865A1 - Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant - Google Patents

Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant Download PDF

Info

Publication number
US20070015865A1
US20070015865A1 US11457500 US45750006A US2007015865A1 US 20070015865 A1 US20070015865 A1 US 20070015865A1 US 11457500 US11457500 US 11457500 US 45750006 A US45750006 A US 45750006A US 2007015865 A1 US2007015865 A1 US 2007015865A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
cf
polymerization
fluorinated
aqueous
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11457500
Inventor
Klaus Hintzer
Michael Jurgens
Harald Kaspar
Kai Lochhaas
Andreas Maurer
Tilman Zipplies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine

Abstract

The invention relates to an aqueous emulsion polymerization of fluorinated monomers using perfluoropolyethers of the following formula (I) or (II). In particular, the perfluoropolyether surfactants correspond to formula (I) or (II)
CF3—(OCF2)m—O—CF2—X  (I) wherein m has a value of 1 to 6 and X represents a carboxylic acid group or salt thereof,
CF3—O—(CF2)3—(OCF(CF3)—CF2)z—O-L-Y  (II)
wherein z has a value of 0, 1, 2 or 3, L represents a divalent linking group selected from —CF(CF3)—, —CF2— and —CF2CF2— and Y represents a carboxylic acid group or salt thereof. The invention further relates to an aqueous dispersion of a fluoropolymer having the aforementioned perfluoropolyether surfactant(s).

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • [0001]
    This application claims priority to Great Britain Patent Application No. GBO514387.0, filed on Jul. 15, 2005, herein incorporated by reference in its entirety.
  • [0002]
    The present invention relates to the aqueous emulsion polymerization of fluorinated monomers to produce fluoropolymers.
  • BACKGROUND OF THE INVENTION
  • [0003]
    Fluoropolymers, i.e. polymers having a fluorinated backbone, have been long known and have been used in a variety of applications because of several desirable properties such as heat resistance, chemical resistance, weatherability, UV-stability etc. The various fluoropolymers are for example described in “Modern Fluoropolymers”, edited by John Scheirs, Wiley Science 1997. Commonly known or commercially employed fluoropolymers include polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) (FEP polymers), perfluoroalkoxy copolymers (PFA), ethylene-tetrafluoroethylene (ETFE) copolymers, terpolymers of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride (THV) and polyvinylidene fluoride polymers (PVDF). Commercially employed fluoropolymers also include fluoroelastomers and thermoplastic fluoropolymers.
  • [0004]
    Several methods are known to produce fluoropolymers. Such methods include suspension polymerization as disclosed in e.g. U.S. Pat. No. 3,855,191, U.S. Pat. No. 4,439,385 and EP 649863; aqueous: emulsion polymerization as disclosed in e.g. U.S. Pat. No. 3,635,926 and U.S. Pat. No. 4,262,101; solution polymerization as disclosed in U.S. Pat. No. 3,642,742, U.S. Pat. No. 4,588,796 and U.S. Pat. No. 5,663,255; polymerization using supercritical CO2 as disclosed in JP 46011031 and EP 964009 and polymerization in the gas phase as disclosed in U.S. Pat. No. 4,861,845.
  • [0005]
    Currently, the most commonly employed polymerization methods include suspension polymerization and especially aqueous emulsion polymerization. The aqueous emulsion polymerization normally involves the polymerization in the presence of a fluorinated surfactant, which is generally used for the stabilization of the polymer particles formed. The suspension polymerization generally does not involve the use of surfactant but results in substantially larger polymer particles than in case of the aqueous emulsion polymerization. Thus, the polymer particles in case of suspension polymerization will quickly settle out whereas in case of dispersions obtained in emulsion polymerization generally good stability over a long period of time is obtained.
  • [0006]
    An aqueous emulsion polymerization wherein no surfactant is used has been described in U.S. Pat. No. 5,453,477, WO 96/24622 and WO 97/17381 to generally produce homo- and copolymers of chlorotrifluoroethylene (CTFE). For example, WO 97/17381 discloses an aqueous emulsion polymerization in the absence of a surfactant wherein a radical initiator system of a reducing agent and oxidizing agent is used to initiate the polymerization and whereby the initiator system is added in one or more further charges during the polymerization. So-called emulsifier free polymerization has further been disclosed in WO 02/88206 and WO 02/88203. In the latter PCT application, the use of dimethyl ether or methyl tertiary butyl ether is taught to minimize formation of low molecular weight fractions that may be extractable from the fluoropolymer. WO 02/88207 teaches an emulsifier free polymerization using certain chain transfer agents to minimize formation of water soluble fluorinated compounds. An emulsifier free polymerization is further disclosed in RU 2158274 for making an elastomeric copolymer of hexafluoropropylene and vinylidene fluoride.
  • [0007]
    Notwithstanding the fact that emulsifier free polymerizations are known, the aqueous emulsion polymerization process in the presence of fluorinated surfactants is still a desirable process to produce fluoropolymers because it can yield stable fluoropolymer particle dispersions in high yield and in a more environmental friendly way than for example polymerizations conducted in an organic solvent. Frequently, the emulsion polymerization process is carried out using a perfluoroalkanoic acid or salt thereof as a surfactant. These surfactants are typically used as they provide a wide variety of desirable properties such as high speed of polymerization, good copolymerization properties of fluorinated olefins with comonomers, small particle sizes of the resulting dispersion can be achieved, good polymerization yields i.e. a high amount of solids can be produced, good dispersion stability, etc. However, environmental concerns have been raised against these surfactants and moreover these surfactants are generally expensive.
  • [0008]
    Alternative surfactants to the perfluoroalkanoic acids or salts thereof have also been proposed in the art for conducting the emulsion polymerization of fluorinated monomers.
  • [0009]
    For example, surfactants of the general formula Rf—C2H4—SO3M, wherein Rf represents a perfluorinated aliphatic group and wherein M represents a cation, have been disclosed in U.S. Pat. No. 5,789,508, U.S. Pat. No. 4,025,709, U.S. Pat. No. 5,688,884 and U.S. Pat. No. 4,380,618.
  • [0010]
    U.S. Pat. No. 5,763,552 discloses partially fluorinated surfactants of the general formula Rf—(CH2)m—R′f—COOM wherein Rf represents a perfluoroalkyl group or a perfluoroalkoxy group of 3 to 8 carbon atoms, R′f represents a perfluoroalkylene of 1 to 4 carbon atoms and m is 1-3.
  • [0011]
    U.S. Pat. No. 4,621,116 discloses perfluoroalkoxy benzene sulphonic acids and salts thereof in the aqueous emulsion polymerization of fluorinated monomers.
  • [0012]
    U.S. Pat. No. 3,271,341 teaches perfluoropolyethers of the general formula:
    F—(CF2)m—O—[CFX—CF2—O]n—CFX—COOA
    wherein m is 1 to 5, X is F or CF3, A is a monovalent cation and n is 0 to 10. The perfluoropolyethers are taught as emulsifiers in the emulsion polymerization of ethylenically unsaturated monomers.
  • [0013]
    U.S. Publication No. 2005/0090613 discloses fluorinated polyethers of the formula:
    F—(CF2)m—O—[CFX—CF2—O]n—CFX—COOA
    wherein m is 3 to 10, X is F or a perfluoroalkyl group, n is 0, 1 or 2 and A is the counter ion of the carboxylic anion. These polyethers are taught as emulsifiers in the emulsion polymerization of fluorinated olefins.
  • [0014]
    The use of perfluoropolyethers having neutral end groups in an aqueous emulsion polymerization is disclosed in U.S. Pat. No. 4,864,006, U.S. Pat. No. 4,789,717 and EP 625526. For example U.S. Pat. No. 4,864,006 and EP 625526 disclose the use of microemulsion prepared from perfluoropolyethers having neutral end groups in an aqueous emulsion polymerization of fluorinated monomers. In a particular embodiment, a certain perfluoropolyether having carboxylic end groups is taught to emulsify the neutral perfluoropolyether.
  • [0015]
    EP 1,334,996 discloses certain perfluoropolyethers having carboxylic acid groups or salts thereof at both end groups, i.e. the perfluoropolyethers are bifunctional. The perfluoropolyethers are taught for use in aqueous dispersions of fluoropolymers and in the preparation of such dispersion by aqueous emulsion polymerization.
  • [0016]
    WO 00/71590 teaches the use of a combination of perfluoropolyether surfactants having a carboxylic acid group or salt thereof with a fluoroalkyl carboxylic acid or sulphonic acid or salt thereof. It is taught that the perfluoropolyether surfactants on their own are not very powerful surfactants.
  • SUMMARY OF THE INVENTION
  • [0017]
    It would now be desirable to find an alternative emulsion polymerization process in which the use of perfluoroalkanoic acids and salts thereof as a fluorinated surfactant can be avoided. In particular, it would be desirable to find an alternative surfactant or dispersant, in particular one that is more environmentally friendly, for example has a low toxicity and/or shows no or only little bioaccumulation. It would also be desirable that the alternative surfactant has good chemical and thermal stability enabling polymerization over a wide range of conditions of for example temperature and/or pressure. Desirably, the alternative surfactant or dispersant allows for a high polymerization rate, good dispersion stability, good yields, good copolymerization properties and/or the possibility of obtaining a wide variety of particle sizes including small particle sizes. The properties of the resulting fluoropolymer should generally not be negatively influenced and preferably would be improved. Desirably, the resulting dispersions have good or excellent properties in coating applications and/or impregnation of substrates, including for example good film forming properties. It would further be desirable that the polymerization can be carried out in a convenient and cost effective way, preferably using equipment commonly used in the aqueous emulsion polymerization of fluorinated monomers. Additionally, it may be desirable to recover the alternative surfactant or dispersant from waste water streams and/or to remove or recover the surfactant from the dispersion subsequent to the polymerization. Desirably, such recovery can proceed in an easy, convenient and cost effective way.
  • [0018]
    It has been found that perfluoropolyethers of the following formula (I) or (II) are effective in the aqueous emulsion polymerization, even when used without the addition of other surfactants such as perfluoroalkanoic acids and salts thereof. In particular, the perfluoropolyether surfactants correspond to formula (I) or (II)
    CF3—(OCF2)m—O—CF2—X  (I)
    wherein m has a value of 1 to 6 and X represents a carboxylic acid group or salt thereof;
    CF3—O—(CF2)3—(OCF(CF3)—CF2)z—O-L-Y  (II)
    wherein z has a value of 0, 1, 2 or 3, L represents a divalent linking group selected from —CF(CF3)—, —CF2— and —CF2CF2— and Y represents a carboxylic acid group or salt thereof. Examples of carboxylic acid salts include sodium, potassium and ammonium (NH4) salts.
  • [0019]
    Thus, in one aspect, the invention relates to a method for making a fluoropolymer comprising an aqueous emulsion polymerization of one or more fluorinated monomers wherein said aqueous emulsion polymerization is carried out in the presence of a perfluoropolyether as an emulsifier, said perfluoropolyether being selected from the group consisting of perfluoropolyethers according to above formula (I), perfluoropolyethers according to above formula (II) and mixtures of perfluoropolyethers according to formula (I) and/or (II).
  • [0020]
    In a further aspect, the invention relates to an aqueous dispersion of a fluoropolymer comprising a perfluoropolyether as an emulsifier, said perfluoropolyether being selected from the group consisting of perfluoropolyethers according to above formula (I), perfluoropolyethers according to above formula (II) and mixtures of perfluoropolyethers according to formula (I) and/or (II).
  • [0021]
    Since the aqueous emulsion polymerization can be carried out without the need for using a perfluoroalkanoic acid, dispersions can be readily obtained that are free of such perfluoroalkanoic acids or salts thereof. Thus, in a further aspect, the present invention relates to an aqueous dispersion of a fluoropolymer comprising a perfluoropolyether selected from the group consisting of perfluoropolyethers according to above formula (I), perfluoropolyethers according to above formula (II) and mixtures of perfluoropolyethers according to formula (I) and/or (II) as an emulsifier and wherein the aqueous dispersion is free of perfluorinated alkanoic acids or salts thereof.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0022]
    The resulting dispersions can be used in a variety of applications including coating and impregnation of substrates. Generally, a non-ionic surfactant should be added to the dispersion for such applications. Accordingly, the invention in a further aspect relates to aqueous dispersions of a fluoropolymer comprising a perfluoropolyether selected from the group consisting of perfluoropolyethers according to above formula (I), perfluoropolyethers according to above formula (II) and mixtures of perfluoropolyethers according to formula (I) and/or (II) as an emulsifier and additionally comprising a non-ionic surfactant, typically in an amount of 1 to 12% by weight based on the weight of fluoropolymer solids.
  • [0023]
    The aqueous emulsion polymerization of fluorinated monomers, including gaseous fluorinated monomers, can be conducted using one or more perfluoropolyethers according to formula (I) and/or (II) as emulsifier. In one particular embodiment, the polymerization may be carried out using a perfluoropolyether or mixture of perfluoropolyethers according to formula (I). In another embodiment, a perfluoropolyether or mixture of perfluoropolyethers according to formula (II) is used. In yet another embodiment, a mixture of one or more perfluoropolyethers according to formula (I) and one or more perfluoropolyethers according to formula (II) is used.
  • [0024]
    Perfluoropolyethers of formula (I) are commercially available from Anles Ltd., St. Petersburg, Russia. These compounds may be prepared for example as described by Ershov and Popova in Fluorine Notes 4(11), 2002. Also, these perfluoropolyethers typically form as byproducts in the manufacturing of hexafluoropropylene oxide by direct oxidation of hexafluoropropylene.
  • [0025]
    Perfluoropolyethers according to formula (II) can be derived from reactants that are also used in the manufacturing of fluorinated vinyl ethers as described in U.S. Pat. No. 6,255,536. Accordingly, these perfluoropolyethers can be obtained in an economically attractive way as they can be derived from other starting products that may be used and needed in the manufacturing of fluoromonomers and fluoropolymers.
  • [0026]
    In accordance with the present invention, the perfluoropolyether is used in the aqueous emulsion polymerization of one or more fluorinated monomers, in particular gaseous fluorinated monomers. By gaseous fluorinated monomers is meant monomers that are present as a gas under the polymerization conditions. In a particular embodiment, the polymerization of the fluorinated monomers is started in the presence of the perfluoropolyether, i.e. the polymerization is initiated in the presence of the perfluoropolyether. The amount of perfluoropolyether surfactant used may vary depending on desired properties such as amount of solids, particle size etc. Generally the amount of perfluoropolyether surfactant will be between 0.01% by weight based on the weight of water in the polymerization and 5% by weight, for example between 0.05% by weight and 2% by weight. A practical range is between 0.05% by weight and 1% by weight. While the polymerization is generally initiated in the presence of the perfluoropolyether surfactant, it is not excluded to add further perfluoropolyether surfactant during the polymerization although such will generally not be necessary. Nevertheless, it may be desirable to add certain monomer to the polymerization in the form of an aqueous emulsion. For example, fluorinated monomers and in particular perfluorinated co-monomers that are liquid under the polymerization conditions may be advantageously added in the form of an aqueous emulsion. Such emulsion of such co-monomers is preferably prepared using the perfluoropolyether as an emulsifier.
  • [0027]
    The aqueous emulsion polymerization may be carried out at a temperatures between 10 to 100° C., preferably 30° C. to 80° C. and the pressure is typically between 2 and 30 bar, in particular 5 to 20 bar. The reaction temperature may be varied during the polymerization to influence the molecular weight distribution, i.e., to obtain a broad molecular weight distribution or to obtain a bimodal or multimodal molecular weight distribution.
  • [0028]
    The aqueous emulsion polymerization is typically initiated by an initiator including any of the initiators known for initiating a free radical polymerization of fluorinated monomers. Suitable initiators include peroxides and azo compounds and redox based initiators. Specific examples of peroxide initiators include, hydrogen peroxide, sodium or barium peroxide, diacylperoxides such as diacetylperoxide, disuccinyl peroxide, dipropionylperoxide, dibutyrylperoxide, dibenzoylperoxide, benzoylacetylperoxide, diglutaric acid peroxide and dilaurylperoxide, and further per-acids and salts thereof such as e.g. ammonium, sodium or potassium salts. Examples of per-acids include peracetic acid. Esters of the peracid can be used as well and examples thereof include tert.-butylperoxyacetate and tert.-butylperoxypivalate. Examples of inorganic include for example ammonium-alkali- or earth alkali salts of persulfates, permanganic or manganic acid or manganic acids. A persulfate initiator, e.g. ammonium persulfate (APS), can be used on its own or may be used in combination with a reducing agent. Suitable reducing agents include bisulfites such as for example ammonium bisulfite or sodium metabisulfite, thiosulfates such as for example ammonium, potassium or sodium thiosulfate, hydrazines, azodicarboxylates and azodicarboxyldiamide (ADA). Further reducing agents that may be used include sodium formaldehyde sulfoxylate (Rongalit®) or fluoroalkyl sulfinates as disclosed in U.S. Pat. No. 5,285,002. The reducing agent typically reduces the half-life time of the persulfate initiator. Additionally, a metal salt catalyst such as for example copper, iron or silver salts may be added. The amount of initiator may be between 0.01% by weight (based on the fluoropolymer solids to be produced) and 1% by weight. In one embodiment, the amount of initiator is between 0.05 and 0.5% by weight. In another embodiment, the amount may be between 0.05 and 0.3% by weight.
  • [0029]
    The aqueous emulsion polymerization system may further comprise other materials, such as buffers and, if desired, complex-formers or chain-transfer agents. Examples of chain transfer agents that can be used include dimethyl ether, methyl t-butyl ether, alkanes having 1 to 5 carbon atoms such as ethane, propane and n-pentane, halogenated hydrocarbons such as CCl4, CHCl3 and CH2Cl2 and hydrofluorocarbon compounds such as CH2F—CF3 (R134a).
  • [0030]
    Examples of fluorinated monomers that may be polymerized using the perfluoropolyether surfactant as an emulsifier include partially or fully fluorinated gaseous monomers including fluorinated olefins such as tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, vinyl fluoride, vinylidene fluoride, partially or fully fluorinated allyl ethers and partially or fully fluorinated vinyl ethers. The polymerization may further involve non-fluorinated monomers such as ethylene and propylene.
  • [0031]
    Further examples of fluorinated monomers that may be used in the aqueous emulsion polymerization according to the invention include those corresponding to the formula:
    CF2═CF—O—Rf  (III)
    wherein Rf represents a perfluorinated aliphatic group that may contain one or more oxygen atoms. Preferably, the perfluorovinyl ethers correspond to the general formula:
    CF2═CFO(RfO)n(R′fO)mR″f  (IV)
    wherein Rf and R′f are different linear or branched perfluoroalkylene groups of 2-6 carbon atoms, m and n are independently 0-10, and R″f is a perfluoroalkyl group of 1-6 carbon atoms. Examples of perfluorovinyl ethers according to the above formulas include perfluoro-2-propoxypropylvinyl ether (PPVE-2), perfluoro-3-methoxy-n-propylvinyl ether, perfluoro-2-methoxy-ethylvinyl ether, perfluoromethylvinyl ether (PMVE), perfluoro-n-propylvinyl ether (PPVE-1) and
    CF3—(CF2)2—O—CF(CF3)—CF2—O—CF(CF3)—CF2—O—CF═CF2.
  • [0032]
    Still further, the polymerization may involve comonomers that have a functional group such as for example a group capable of participating in a peroxide cure reaction. Such functional groups include halogens such as Br or I as well as nitrile groups. Specific examples of such comonomers that may be listed here include
  • [0033]
    (a) bromo- or iodo-(per)fluoroalkyl-(per)fluorovinylethers having the formula:
    Z—Rf—O—CX═CX2
    wherein each X may be the same or different and represents H or F, Z is Br or I, Rf is a (per)fluoroalkylene C1-C12, optionally containing chlorine and/or ether oxygen atoms; for example: BrCF2—O—CF═CF2, BrCF2CF2—O—CF═CF2, BrCF2CF2CF2—O—CF═CF2, CF3CFBrCF2—O—CF═CF2, and the like; and
  • [0034]
    (b) bromo- or iodo containing fluoroolefins such as those having the formula:
    Z′—(Rf′)r—CX═CX2,
    wherein each X independently represents H or F, Z′ is Br or I, Rf′ is a perfluoroalkylene C1-C12, optionally containing chlorine atoms and r is 0 or 1; for instance: bromotrifluoroethylene, 4-bromo-perfluorobutene-1, and the like; or bromofluoroolefins such as 1-bromo-2,2-difluoroethylene and 4-bromo-3,3,4,4-tetrafluorobutene-1.
    Examples of nitrile containing monomers that may be used include those that correspond to one of the following formulas:
    CF2═CF—CF2—O—Rf—CN
    CF2═CFO(CF2)LCN
    CF2═CFO [CF2CF(CF3)O]g(CF2)vOCF(CF3)CN
    CF2═CF [OCF2CF(CF3)]kO(CF2)uCN
    wherein L represents an integer of 2 to 12; g represents an integer of 0 to 4; k represents 1 or 2; v represents an integer of 0 to 6; u represents an integer of 1 to 6, Rf is a perfluoroalkylene or a bivalent perfluoroether group. Specific examples of nitrile containing liquid fluorinated monomers include perfluoro(8-cyano-5-methyl-3,6-dioxa-1-octene), CF2═CFO(CF2)5CN, and CF2═CFO(CF2)3OCF(CF3)CN.
  • [0035]
    In accordance with a particular embodiment, a fluorinated liquid may be added to the polymerization system. By the term ‘liquid’ is meant that the compound should be liquid at the conditions of temperature and pressure employed in the polymerization process. Typically the fluorinated liquid has a boiling point of at least 50° C., preferably at least 80° C. at atmospheric pressure. Fluorinated liquids include in particular highly fluorinated hydrocarbons as well as liquid fluorinated monomers. The term ‘highly fluorinated’ in connection with the present invention is used to indicate compounds in which most and preferably all hydrogen atoms have been replaced with fluorine atoms as well as compounds wherein the majority of hydrogen atoms have been replaced with fluorine atoms and where most or all of the remainder of the hydrogen atoms has been replaced with bromine, chlorine or iodine. Typically, a highly fluorinated compound in connection with this invention will have only few, e.g., 1 or 2 hydrogen atoms replaced by a halogen other than fluorine and/or have only one or two hydrogen atoms remaining. When not all hydrogen atoms are replaced by fluorine or another halogen, i.e., the compound is not perfluorinated, the hydrogen atoms should generally be in a position on the compound such that substantially no chain transfer thereto occurs, i.e., such that the compound acts as an inert in the polymerization, i.e., the compound does not participate in the free radical polymerization. Compounds in which all hydrogens have been replaced by fluorine and/or other halogen atoms are herein referred to as ‘perfluorinated’.
  • [0036]
    Liquid and fluorinated hydrocarbon compounds that can be used as fluorinated liquid, typically comprise between 3 and 25 carbon atoms, preferably between 5 and 20 carbon atoms and may contain up to 2 heteroatoms selected from oxygen, sulfur or nitrogen. Preferably the highly fluorinated hydrocarbon compound is a perfluorinated hydrocarbon compound. Suitable perfluorinated hydrocarbons include perfluorinated saturated linear, branched and/or cyclic aliphatic compounds such as a perfluorinated linear, branched or cyclic alkane; a perfluorinated aromatic compound such as perfluorinated benzene, or perfluorinated tetradecahydro phenanthene. It can also be a perfluorinated alkyl amine such as a perfluorinated trialkyl amine. It can further be a perfluorinated cyclic aliphatic, such as decalin; and preferably a heterocyclic aliphatic compound containing oxygen or sulfur in the ring, such as perfluoro-2-butyl tetrahydrofuran.
  • [0037]
    Specific examples of perfluorinated hydrocarbons include perfluoro-2-butyltetrahydrofuran, perfluorodecalin, perfluoromethyldecalin, perfluoromethylcyclohexane, perfluoro(1,3-dimethylcyclohexane), perfluorodimethyldecahydronaphthalene, perfluorofluorene, perfluoro(tetradecahydrophenanthrene), perfluorotetracosane, perfluorokerosenes, octafluoronaphthalene, oligomers of poly(chlorotrifluoroethylene), perfluoro(trialkylamine) such as perfluoro(tripropylamine), perfluoro(tributylamine), or perfluoro(tripentylamine), and octafluorotoluene, hexafluorobenzene, and commercial fluorinated solvents, such as Fluorinert FC-75, FC-72, FC-84, FC-77, FC-40, FC-43, FC-70, FC 5312 or FZ 348 all produced by 3M Company. A suitable inert liquid and highly fluorinated hydrocarbon compound is
    C3F7—O—CF(CF3)—CF2—O—CHF—CF3.
    The fluorinated liquid may also comprise liquid fluorinated monomer alone or in combination with above described liquid fluorinated compounds. Examples of liquid fluorinated monomers include monomers that are liquid under the polymerization conditions and that are selected from (per)fluorinated vinyl ethers, (per)fluorinated allyl ethers and (per)fluorinated alkyl vinyl monomers.
  • [0038]
    When a fluorinated liquid is used, it will generally be preferred to emulsify the fluorinated liquid. Preferably, the fluorinated liquid is emulsified using the perfluoropolyether surfactant. Also, when a fluorinated liquid is used in the polymerization, it will be advantageous that at least a portion thereof or all is provided at the start of the polymerization such that the polymerization is initiated in the presence of the emulsified fluorinated liquid. The use of the fluorinated liquid may improve such properties as the rate of polymerization, incorporation of co-monomers and may reduce the particle size and/or improve the amount of solids that can be obtained at the end of the polymerization.
  • [0039]
    The aqueous emulsion polymerization may be used to produce a variety of fluoropolymers including perfluoropolymers, which have a fully fluorinated backbone, as well as partially fluorinated fluoropolymers. Also the aqueous emulsion polymerization may result in melt-processible fluoropolymers as well as those that are not melt-processible such as for example polytetrafluoroethylene and so-called modified polytetrafluoroethylene. The polymerization process can further yield fluoropolymers that can be cured to make fluoroelastomers as well as fluorothermoplasts. Fluorothermoplasts are generally fluoropolymers that have a distinct and well noticeable melting point, typically in the range of 60 to 340° C. or between 100 and 320° C. They thus have a substantial crystalline phase. Fluoropolymers that are used for making fluoroelastomers typically are amorphous and/or have a neglectable amount of crystallinity such that no or hardly any melting point is discernable for these fluoropolymers.
  • [0040]
    The aqueous emulsion polymerization results in a dispersion of the fluoropolymer in water. Generally the amount of solids of the fluoropolymer in the dispersion directly resulting from the polymerization will vary between 3% by weight and about 40% by weight depending on the polymerization conditions. A typical range is between 5 and 30% by weight. The particle size (volume average particle size) of the fluoropolymer is typically between 50 nm and 350 nm with a typical particle size being between 100 nm and about 300 nm. The amount of perfluoropolyether according to formula (I) and/or (II) in the resulting dispersion is typically between 0.001 and 5% by weight based on the amount of fluoropolymer solids in the dispersion. A typical amount may be from 0.01 to 2% by weight or from 0.02 to 1% by weight.
  • [0041]
    The fluoropolymer may be isolated from the dispersion by coagulation if a polymer in solid form is desired. Also, depending on the requirements of the application in which the fluoropolymer is to be used, the fluoropolymer may be post-fluorinated so as to convert any thermally unstable end groups into stable CF3 end groups. The fluoropolymer may be post-fluorinated as described in for example EP 222945. Generally, the fluoropolymer will be post fluorinated such that the amount of end groups in the fluoropolymer other than CF3 is less than 80 per million carbon atoms.
  • [0042]
    For coating applications, an aqueous dispersion of the fluoropolymer is desired and hence the fluoropolymer will not need to be separated or coagulated from the dispersion. To obtain a fluoropolymer dispersion suitable for use in coating applications such as for example in the impregnation of fabrics or in the coating of metal substrates to make for example cookware, it will generally be desired to add further stabilizing surfactants and/or to further increase the fluoropolymer solids. For example, non-ionic stabilizing surfactants may be added to the fluoropolymer dispersion. Typically these will be added thereto in an amount of 1 to 12% by weight based on fluoropolymer solids. Examples of non-ionic surfactants that may be added include
    R1—O—[CH2CH2O]n—[R2O]m—R3  (V)
    wherein R1 represents an aromatic or aliphatic hydrocarbon group having at least 8 carbon atoms, R2 represents an alkylene having 3 carbon atoms, R3 represents hydrogen or a C1-C3 alkyl group, n has a value of 0 to 40, m has a value of 0 to 40 and the sum of n+m being at least 2. It will be understood that in the above formula (V), the units indexed by n and m may appear as blocks or they may be present in an alternating or random configuration. Examples of non-ionic surfactants according to formula (V) above include alkylphenol oxy ethylates such as ethoxylated p-isooctylphenol commercially available under the brand name TRITON™ such as for example TRITON™ X 100 wherein the number of ethoxy units is about 10 or TRITON™ X 114 wherein the number of ethoxy units is about 7 to 8. Still further examples include those in which R1n the above formula (V) represents an alkyl group of 4 to 20 carbon atoms, m is 0 and R3 is hydrogen. An example thereof includes isotridecanol ethoxylated with about 8 ethoxy groups and which is commercially available as GENAPOL®X080 from Clariant GmbH. Non-ionic surfactants according to formula (V) in which the hydrophilic part comprises a block-copolymer of ethoxy groups and propoxy groups may be used as well. Such non-ionic surfactants are commercially available from Clariant GmbH under the trade designation GENAPOL® PF 40 and GENAPOL® PF 80.
  • [0043]
    The amount of fluoropolymer solids in the dispersion may be upconcentrated as needed or desired to an amount between 30 and 70% by weight. Any of the known upconcentration techniques may be used including ultrafiltration and thermal upconcentration.
  • [0044]
    The obtained fluoropolymer may be conveniently used in most applications optionally after the addition of non-ionic surfactant and/or upconcentration and without removing the perfluoropolyether surfactant. Nevertheless, for reasons of for example costs, it may be desirable to remove the perfluoropolyether from the dispersion. It has been found that the perfluoropolyether surfactant can be readily removed from the aqueous dispersion using an anion exchange resin. Accordingly, a non-ionic surfactant, e.g. as disclosed above is added to the fluoropolymer dispersion, generally in an amount of 1 to 12% by weight and the fluoropolymer dispersion is then contacted with an anion exchange resin. Such a method is disclosed in detail in WO 00/35971. The anion exchange process is preferably carried out in essentially basic conditions. Accordingly, the ion exchange resin will preferably be in the OH— form although anions like fluoride or sulfate may be used as well. The specific basicity of the ion exchange resin is not very critical. Strongly basic resins are preferred because of their higher efficiency. The process may be carried out by feeding the fluoropolymer dispersion through a column that contains the ion exchange resin or alternatively, the fluoropolymer dispersion may be stirred with the ion exchange resin and the fluoropolymer dispersion may thereafter be isolated by filtration. The perfluoropolyether surfactant may subsequently be recovered from the anion exchange resin by eluting the loaded resin. A suitable mixture for eluting the anion exchange resin is a mixture of ammonium chloride, methanol and water.
  • EXAMPLES
  • [0000]
    Test Methods:
  • [0045]
    The latex particle size determination was conducted by means of dynamic light scattering with a Malvern Zetazizer 1000 HSA in accordance to ISO/DIS 13321. Prior to the measurements, the polymer latexes as yielded from the polymerisations were diluted with 0.001 mol/L KCl-solution, the measurement temperature was 25° C. in all cases. The reported average is the Z-average particle diameter.
  • [0000]
    SSG
  • [0046]
    Polymer Density was measured according to ASTM4894 Method D792.
  • [0000]
    The Polymerization
  • [0047]
    The polymerization experiments were performed in a 40 L autoclave equipped with an impeller agitator and a baffle. The autoclave was evacuated and than charged with 33 l of deionized water and set to 35° C. Agitation was started at 160 rpm and in three following cycles, the vessel was evacuated and subsequently charged with nitrogen to assure that all oxygen had been removed. Another cleaning cycle pas performed using TFE. After pressurizing to 0.2 MPA the TFE was released to combustion and the reactor was evacuated again. Then 140 mmol fluorinated emulsifier as specified in table 1 and the following materials were added: 24 mg of Cupper sulfate penta hydrate, 0.6 mg of sulphuric acid and 8 g of a 25% by weight of aqueous ammonia solution and 5.6 g of PPVE-2 mixed with a small amount of water. Finally the reactor was pressurized with TFE to 0.2 MPA and 50 g of HFP were added. The reactor was than set to 1.5 MPa using TFE and 200 ml of an aqueous initiator solution containing 187 mg of sodium sulfite and 429 mg of ammonium peroxodisulfate was pumped into the vessel The beginning of the polymerization is indicated by a pressure drop. During polymerization the pressure was maintained at 1.5 MPa by feeding TFE into the gas phase. After 3.64 kg of TFE had been added, the monomer valve was closed. The characteristics of the obtained polymer dispersion are summarized in table 1.
  • [0048]
    1000 ml of this polymer dispersion was coagulated by adding 20 ml hydrochloric acid under agitation. When coagulation was performed 100 ml of benzene were added and stirred again. After dewatering, the latex was washed several times with deionized water. The polymer was dried overnight at 100° C. in a vacuum oven.
    Comparative
    Example Example 1
    Formula C7F15COONH4 CF3OC3F6OCF(CF3)COONH4
    Polymerization 81 66
    Time (min.)
    Average Particle 103 109
    Size
    (nm)
    SSG 2.148 2.154
    g/cm3
    Solids content (% 9.9 9.8
    by weight)

Claims (13)

  1. 1. Method for making a fluoropolymer comprising an aqueous emulsion polymerization of one or more fluorinated monomers wherein said aqueous emulsion polymerization is carried out in the presence of a perfluoropolyether as an emulsifier, said perfluoropolyether being selected from the group consisting of perfluoropolyethers according to formula (I):

    CF3—(OCF2)m—O—CF2—X  (I)
    wherein m has a value of 1 to 6 and X represents a carboxylic acid group or salt thereof, perfluoropolyethers according to formula (II):

    CF3—O—(CF2)3—(OCF(CF3)—CF2)z—O-L-Y  (II)
    wherein z has a value of 0, 1, 2 or 3, L represents a divalent linking group selected from —CF(CF3)—, —CF2— and —CF2CF2— and Y represents a carboxylic acid group or salt thereof, and
    mixtures of perfluoropolyethers according to formula (I), (II), or combination thereof.
  2. 2. Method according to claim 1 wherein said one or more fluorinated monomers comprise one or more gaseous fluorinated monomers.
  3. 3. Method according to claim 1 wherein said one or more fluorinated monomers comprise perfluorinated monomers.
  4. 4. Method according to claim 1 wherein said aqueous emulsion polymerization is carried out in the presence of a fluorinated liquid and wherein said fluorinated liquid is emulsified using said perfluoropolyether as an emulsifier.
  5. 5. Method according to claim 1 wherein said aqueous emulsion polymerization is carried out using said perfluoropolyether as the only emulsifier.
  6. 6. Method according to claim 1 wherein the amount of said perfluoropolyether is between 0.01 and 5% by weight based on the amount of water in the emulsion polymerization.
  7. 7. A dispersion comprising an aqueous dispersion of a fluoropolymer and a perfluoropolyether as an emulsifier, said perfluoropolyether being selected from the group consisting of perfluoropolyethers according to formula (I):

    CF3—(OCF2)m—O—CF2—X  (I)
    wherein m has a value of 1 to 6 and X represents a carboxylic acid group or salt thereof,
    perfluoropolyethers according to formula (II):

    CF3—O—(CF2)3—(OCF(CF3)—CF2)z—O-L-Y  (II)
    wherein z has a value of 0, 1, 2 or 3, L represents a divalent linking group selected from —CF(CF3)—, —CF2— and —CF2CF2— and Y represents a carboxylic acid group or salt thereof, and
    mixtures of perfluoropolyethers according to formula (I), (II), or combination thereof.
  8. 8. A dispersion according to claim 7 wherein said dispersion is free of perfluoroalkanoic acids or salts thereof.
  9. 9. A dispersion according to claim 7 wherein the amount of said perfluoropolyether is between 0.001 and 5% by weight based on the fluoropolymer solids.
  10. 10. A dispersion according to claim 7 wherein the amount of fluoropolymer solids is between 10 and 30% by weight.
  11. 11. A dispersion according to claim 7 wherein the amount of solids is more than 30 and up to 70% by weight.
  12. 12. A dispersion according to claim 7 wherein the dispersion further comprises a non-ionic surfactant.
  13. 13. A method comprising coating or impregnating a substrate using an aqueous dispersion as defined in claim 7.
US11457500 2005-07-15 2006-07-14 Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant Abandoned US20070015865A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB0514387A GB0514387D0 (en) 2005-07-15 2005-07-15 Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant
GBGB0514387.0 2005-07-15

Publications (1)

Publication Number Publication Date
US20070015865A1 true true US20070015865A1 (en) 2007-01-18

Family

ID=34897174

Family Applications (1)

Application Number Title Priority Date Filing Date
US11457500 Abandoned US20070015865A1 (en) 2005-07-15 2006-07-14 Aqueous emulsion polymerization of fluorinated monomers using a perfluoropolyether surfactant

Country Status (8)

Country Link
US (1) US20070015865A1 (en)
EP (1) EP1904538B1 (en)
JP (1) JP5021642B2 (en)
CN (1) CN101218264B (en)
DE (1) DE602006013641D1 (en)
GB (1) GB0514387D0 (en)
RU (1) RU2428434C2 (en)
WO (1) WO2007011631A1 (en)

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070267464A1 (en) * 2006-05-19 2007-11-22 3M Innovative Properties Company Cyclic hydrofluoroether compounds and processes for their preparation and use
US20080114122A1 (en) * 2006-11-09 2008-05-15 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using Polymerization Agent Comprising High Molecular Weight Fluoropolyether Acid or Salt and Fluoropolyether Acid or Salt Surfactant
US20080139683A1 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US20090272944A1 (en) * 2006-04-11 2009-11-05 Solvay Solexis S.P.A. Fluoropolymer Dispersion Purification
US20090281241A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts
EP2143738A1 (en) 2008-07-08 2010-01-13 Solvay Solexis S.p.A. Method for manufacturing fluoropolymers
US20100113691A1 (en) * 2008-11-06 2010-05-06 E. I. Du Pont De Nemours And Company Fluoro olefin polymerization
US20100160490A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer
US20100160510A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer Produced In Situ
US20100160465A1 (en) * 2008-12-23 2010-06-24 E.I. Du Pont De Nemours And Company Fluorinated Ionomer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer Produced In Situ
US20100160531A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Particles Having a Nucleus of Fluorinated Ionomer
WO2010075495A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US20100168300A1 (en) * 2007-05-23 2010-07-01 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
US20100179262A1 (en) * 2007-06-06 2010-07-15 Dams Rudolf J Fluorinated ether compositions and methods of using the same
WO2010104142A1 (en) 2009-03-12 2010-09-16 ダイキン工業株式会社 Method for producing aqueous dispersion of fluorine-containing seed polymer particles, aqueous coating composition, and coated article
WO2010113950A1 (en) 2009-03-30 2010-10-07 ダイキン工業株式会社 Polytetrafluoroethylene and method for producing same
US20100305262A1 (en) * 2007-10-12 2010-12-02 Klaus Hintzer Process for manufacturing clean fluoropolymers
US20110009569A1 (en) * 2008-02-29 2011-01-13 Grootaert Werner M A Perfluoroelastomers with low carbonyl endgroup ratios
US7897682B2 (en) 2006-11-09 2011-03-01 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and hydrocarbon surfactant
WO2011024856A1 (en) 2009-08-28 2011-03-03 ダイキン工業株式会社 Method for producing fluorine-containing polymer
WO2011024857A1 (en) 2009-08-28 2011-03-03 ダイキン工業株式会社 Method for producing fluorine-containing polymer
WO2011055824A1 (en) 2009-11-09 2011-05-12 旭硝子株式会社 Aqueous polytetrafluoroethylene emulsion and process for production thereof, aqueous polytetrafluoroethylene dispersion obtained using the emulsion, polytetrafluoroethylene fine powder, and stretch-expanded body
US20110124782A1 (en) * 2008-07-18 2011-05-26 Dams Rudolf J Fluorinated ether compounds and methods of using the same
US20110152387A1 (en) * 2008-12-23 2011-06-23 E. I. Du Pont De Nemours And Company Fluorinated Ionomer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer
US20110160415A1 (en) * 2008-07-08 2011-06-30 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
US20110232530A1 (en) * 2008-11-25 2011-09-29 Dams Rudolf J Fluorinated ether urethanes and methods of using the same
WO2012064858A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
WO2012064841A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluoromonomer using hydrocarbon surfactant
WO2012160135A1 (en) 2011-05-26 2012-11-29 Solvay Specialty Polymers Italy S.P.A. Hydro-fluorocompounds
EP2557109A1 (en) 2011-08-11 2013-02-13 3M Innovative Properties Company Method of bonding a fluoroelastomer compound to a metal substrate using low molecular weight functional hydrocarbons as bonding promoter
US8563670B2 (en) 2010-11-09 2013-10-22 E I Du Pont De Nemours And Company Nucleation in aqueous polymerization of fluoromonomer
US8629089B2 (en) 2008-12-18 2014-01-14 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
WO2014071129A1 (en) 2012-11-05 2014-05-08 3M Innovative Properties Company Peroxide-curable fluoropolymer composition including solvent and method of using the same
WO2014084400A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Production method for polytetrafluoroethylene aqueous dispersion
WO2014084397A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Production method for polytetrafluoroethylene aqueous dispersion
WO2014084399A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
WO2014088820A1 (en) 2012-12-04 2014-06-12 3M Innovative Properties Company Highly fluorinated polymers
WO2014088804A1 (en) 2012-12-04 2014-06-12 3M Innovative Properties Company Partially fluorinated polymers
WO2014100593A1 (en) 2012-12-20 2014-06-26 3M Innovative Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
US8809580B2 (en) 2009-10-23 2014-08-19 3M Innovative Properties Company Methods of preparing fluorinated carboxylic acids and their salts
US8835551B2 (en) 2007-09-14 2014-09-16 3M Innovative Properties Company Ultra low viscosity iodine containing amorphous fluoropolymers
WO2015080289A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body
WO2015080292A1 (en) 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 Polymer electrolyte film
WO2015080291A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Biaxially-oriented porous film
WO2015080290A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
WO2015081055A1 (en) 2013-11-26 2015-06-04 E. I. Du Pont De Nemours And Company Employing polyalkylene oxides for nucleation in aqueous polymerization of fluoromonomer
WO2015160926A1 (en) * 2014-04-18 2015-10-22 3M Innovative Properties Company Recovery of branched fluorinated emulsifiers
WO2015173194A1 (en) 2014-05-12 2015-11-19 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomers
WO2016130914A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups
WO2016130911A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups and methods of making and using the same
WO2016130894A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene copolymers having sulfonyl groups
WO2017102820A1 (en) 2015-12-14 2017-06-22 Solvay Specialty Polymers Italy S.P.A. Method of manufacturing fluoroelastomers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754795B2 (en) * 2006-05-25 2010-07-13 3M Innovative Properties Company Coating composition
KR101258616B1 (en) 2008-08-15 2013-04-26 중호우 천광 리서치 인스티튜트 오브 케미컬 인더스트리 컴퍼니 리미티드 A peroxidic fluoropolyether and its use in emulsion polymerization of fluorin-containing monomer
GB0814955D0 (en) 2008-08-18 2008-09-24 3M Innovative Properties Co Azide-containing fluoropolymers and their preparation
GB0823120D0 (en) 2008-12-19 2009-01-28 3M Innovative Properties Co Method of making fluorinated alkoxy carboxylic acids and precursors thereof
US8329813B2 (en) * 2009-05-08 2012-12-11 E I Du Pont De Nemours And Company Thermal reduction of fluoroether carboxylic acids or salts from fluoropolymer dispersions
EP2830870B1 (en) 2012-03-26 2017-05-10 Solvay Specialty Polymers Italy S.p.A. Fluoropolymer pipe

Citations (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391182B1 (en) *
US2713593A (en) * 1953-12-21 1955-07-19 Minnesota Mining & Mfg Fluorocarbon acids and derivatives
US3037953A (en) * 1961-04-26 1962-06-05 Du Pont Concentration of aqueous colloidal dispersions of polytetrafluoroethylene
US3142665A (en) * 1960-07-26 1964-07-28 Du Pont Novel tetrafluoroethylene resins and their preparation
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
US3260691A (en) * 1963-05-20 1966-07-12 Monsanto Co Coating compositions prepared from condensation products of aromatic primary diamines and aromatic tricarboxylic compounds
US3315201A (en) * 1965-03-31 1967-04-18 Bailey Meter Co Strain transducer
US3391099A (en) * 1966-04-25 1968-07-02 Du Pont Polymerization process
US3451908A (en) * 1966-07-19 1969-06-24 Montedison Spa Method for preparing polyoxyperfluoromethylenic compounds
US3489595A (en) * 1966-12-22 1970-01-13 Du Pont Coating compositions containing perfluorohalocarbon polymer,phosphoric acid and aluminum oxide,boron oxide or aluminum phosphate
US3556100A (en) * 1968-08-02 1971-01-19 Ampoules Inc Ampoule applicator
US3635926A (en) * 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
US3721696A (en) * 1970-11-27 1973-03-20 Montedison Spa Polyoxyperfluoromethylene compounds and process of their preparation
US3790403A (en) * 1972-01-13 1974-02-05 Du Pont Glass fabric coated with crack-free fluorocarbon resin coating and process for preparing
US3882153A (en) * 1969-09-12 1975-05-06 Kureha Chemical Ind Co Ltd Method for recovering fluorinated carboxylic acid
US4016345A (en) * 1972-12-22 1977-04-05 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene in aqueous dispersion
US4025709A (en) * 1974-09-24 1977-05-24 Produits Chimiques Ugine Kuhlmann Process for the polymerization of vinylidene fluoride
US4252859A (en) * 1978-10-31 1981-02-24 E. I. Du Pont De Nemours And Company Fluoropolymer blend coating compositions containing copolymers of perfluorinated polyvinyl ether
US4262101A (en) * 1976-08-31 1981-04-14 Hoechst Aktiengesellschaft Copolymers of tetrafluoroethylene and process for their manufacture
US4282162A (en) * 1979-02-02 1981-08-04 Hoechst Aktiengesellschaft Recovery of fluorinated emulsifying acids from basic anion exchangers
US4380618A (en) * 1981-08-21 1983-04-19 E. I. Du Pont De Nemours And Company Batch polymerization process
US4381384A (en) * 1981-08-17 1983-04-26 E. I. Du Pont De Nemours And Company Continuous polymerization process
US4391940A (en) * 1979-12-12 1983-07-05 Hoechst Aktiengesellschaft Fluoropolymers with shell-modified particles, and processes for their preparation
US4425448A (en) * 1982-05-20 1984-01-10 E. I. Du Pont De Nemours & Co. Polytetrafluoroethylene resin with degradation retarder
US4439385A (en) * 1981-09-09 1984-03-27 Hoechst Aktiengesellschaft Continuous process for the agglomeration of PTFE powders in a liquid medium
US4588796A (en) * 1984-04-23 1986-05-13 E. I. Du Pont De Nemours And Company Fluoroolefin polymerization process using fluoroxy compound solution as initiator
US4832879A (en) * 1980-03-04 1989-05-23 Basf Aktiengesellchaft Substituted 3-fluoroalkoxybenzoyl halides and their preparation
US4987254A (en) * 1988-08-06 1991-01-22 Hoechst Aktiengesellschaft Fluorinated carboxylic acid fluorides
US5182342A (en) * 1992-02-28 1993-01-26 E. I. Du Pont De Nemours And Company Hydrofluorocarbon solvents for fluoromonomer polymerization
US5198491A (en) * 1986-07-21 1993-03-30 Daikin Industries Ltd. Cooking utensils surface coated with tetrafluoroethlene base polymer
US5219910A (en) * 1991-07-20 1993-06-15 Hoechst Aktiengesellschaft Concentrated aqueous dispersions of tetrafluoroethylene polymers, and process for their preparation
US5223343A (en) * 1990-12-12 1993-06-29 E. I. Du Pont De Nemours And Company Non-stick coating system with high and low melt viscosity PTFE for concentration gradient
US5229480A (en) * 1992-09-03 1993-07-20 E. I. Du Pont De Nemours And Company Vinyl fluoride polymerization
US5230961A (en) * 1990-12-12 1993-07-27 E. I. Du Pont De Nemours And Company Non-stick coating system with PTFE-FEP for concentration gradient
US5285002A (en) * 1993-03-23 1994-02-08 Minnesota Mining And Manufacturing Company Fluorine-containing polymers and preparation and use thereof
US5312935A (en) * 1992-04-22 1994-05-17 Hoechst Aktiengesellschaft Purification of fluorinated carboxylic acids
US5498680A (en) * 1993-05-18 1996-03-12 Ausimont S.P.A. Polymerization process in aqueous emulsion of fuluorinated olefinic monomers
US5530078A (en) * 1993-10-20 1996-06-25 Hoechst Aktiengesellschaft Preparation of a modified polytetrafluoroethylene and use thereof
US5532310A (en) * 1995-04-28 1996-07-02 Minnesota Mining And Manufacturing Company Surfactants to create fluoropolymer dispersions in fluorinated liquids
US5591877A (en) * 1993-06-02 1997-01-07 Hoechst Ag Process for the recovery of fluorinated carboxylic acids
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
US5710345A (en) * 1994-05-19 1998-01-20 Ausimont, S.P.A Floorinated polymers and copolymers containing cyclic structures
US5721053A (en) * 1992-12-23 1998-02-24 E. I. Du Pont De Nemours And Company Post-formable non-stick roller coated smooth substrates
US5763552A (en) * 1996-07-26 1998-06-09 E. I. Du Pont De Nemours And Company Hydrogen-containing flourosurfacant and its use in polymerization
US5895799A (en) * 1995-01-18 1999-04-20 W. L. Gore & Associates, Inc. Microemulsion polymerization process for the production of small polytetrafluoroethylene polymer particles
US6013795A (en) * 1996-11-04 2000-01-11 3M Innovative Properties Company Alpha-branched fluoroalkylcarbonyl fluorides and their derivatives
US6025307A (en) * 1997-03-21 2000-02-15 Ausimont S.P.A. Fluorinated greases
US6218464B1 (en) * 1997-07-11 2001-04-17 Rohm And Haas Company Preparation of fluorinated polymers
US6245923B1 (en) * 1996-08-05 2001-06-12 Dyneon Gmbh Recovery of highly fluorinated carboxylic acids from the gaseous phase
US6255536B1 (en) * 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing vinyl ethers
US6255384B1 (en) * 1995-11-06 2001-07-03 Alliedsignal, Inc. Method of manufacturing fluoropolymers
US6267865B1 (en) * 1997-05-02 2001-07-31 3M Innovative Properties Company Electrochemical fluorination using interrupted current
US6395848B1 (en) * 1999-05-20 2002-05-28 E. I. Du Pont De Nemours And Company Polymerization of fluoromonomers
US6410626B1 (en) * 1997-04-30 2002-06-25 Daikin Industries, Ltd. Aqueous dispersion composition and coated articles
US6512063B2 (en) * 2000-10-04 2003-01-28 Dupont Dow Elastomers L.L.C. Process for producing fluoroelastomers
US6518442B1 (en) * 1998-06-02 2003-02-11 Dyneon Gmbh & Co., Kg Process for the recovery of fluorinated alkandic acids from wastewater
US6576703B2 (en) * 2000-02-22 2003-06-10 Ausimont S.P.A. Process for the preparation of aqueous dispersions of fluoropolymers
US20030125421A1 (en) * 2001-08-03 2003-07-03 Hermann Bladel Aqueous dispersions of fluoropolymers
US6593416B2 (en) * 2000-02-01 2003-07-15 3M Innovative Properties Company Fluoropolymers
US6677414B2 (en) * 1999-12-30 2004-01-13 3M Innovative Properties Company Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
US20040010156A1 (en) * 2000-08-11 2004-01-15 Masahiro Kondo Method of separating anionic fluorochemical surfactant
US6693152B2 (en) * 2001-05-02 2004-02-17 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
US6703520B2 (en) * 2001-04-24 2004-03-09 3M Innovative Properties Company Process of preparing halogenated esters
US6706193B1 (en) * 1999-07-17 2004-03-16 3M Innovative Properties Company Method for recovering fluorinated emulsifiers from aqueous phases
US6710123B1 (en) * 1999-11-12 2004-03-23 Atofina Chemicals, Inc. Fluoropolymers containing organo-silanes and methods of making the same
US6737489B2 (en) * 2001-05-21 2004-05-18 3M Innovative Properties Company Polymers containing perfluorovinyl ethers and applications for such polymers
US6750304B2 (en) * 2001-05-02 2004-06-15 3M Innovative Properties Company Aqueous emulsion polymerization in the presence of ethers as chain transfer agents to produce fluoropolymers
US20040116742A1 (en) * 2002-12-17 2004-06-17 3M Innovative Properties Company Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
US6761964B2 (en) * 2001-04-02 2004-07-13 E. I. Du Pont De Nemours And Company Fluoropolymer non-stick coatings
US20040143052A1 (en) * 2003-01-22 2004-07-22 3M Innovative Properties Company Aqueous fluoropolymer dispersion comprising a melt processible fluoropolymer and having a reduced amount of fluorinated surfactant
US6846570B2 (en) * 2000-08-17 2005-01-25 Whitford Corporation Multiple coat non-stick coating system and articles coated with same
US6861466B2 (en) * 2003-02-28 2005-03-01 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
US6869997B2 (en) * 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
US20050070633A1 (en) * 2002-05-22 2005-03-31 3M Innovative Properties Company Process for reducing the amount of fluorinated surfactant in aqueous fluoropolymer dispersions
US6878772B2 (en) * 2002-02-12 2005-04-12 Solvay Solexis S.P.A. Fluoropolymer aqueous dispersions
US20050090613A1 (en) * 2003-10-22 2005-04-28 Daikin Industries, Ltd. Process for preparing fluorine-containing polymer latex
US20050090601A1 (en) * 2003-10-24 2005-04-28 3M Innovative Properties Company Aqueous dispersions of polytetrafluoroethylene particles
US20050107506A1 (en) * 2003-10-21 2005-05-19 Solvay Solexis S.P.A. Process for preparing fluoropolymer dispersions
US20050113519A1 (en) * 2002-04-05 2005-05-26 3M Innovative Properties Company Dispersions containing bicomponent fluoropolymer particles and use thereof
US20050154104A1 (en) * 2003-12-04 2005-07-14 Solvay Solexis S.P.A. TFE copolymers
US20060003168A1 (en) * 2004-07-05 2006-01-05 3M Innovative Properties Company Primer coating of PTFE for metal substrates
US20060041051A1 (en) * 2002-11-29 2006-02-23 Yasukazu Nakatani Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles
US7026036B2 (en) * 2000-08-17 2006-04-11 Whitford Corporation Single coat non-stick coating system and articles coated with same
US7041728B2 (en) * 2003-11-17 2006-05-09 3M Innovative Properties Company Aqueous dispersions of polytetrafluoroethylene having a low amount of fluorinated surfactant
US7045571B2 (en) * 2001-05-21 2006-05-16 3M Innovative Properties Company Emulsion polymerization of fluorinated monomers
US7064170B2 (en) * 2002-10-31 2006-06-20 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization to produce copolymers of a fluorinated olefin and hydrocarbon olefin
US20070015864A1 (en) * 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion
US20070082993A1 (en) * 2005-06-10 2007-04-12 Ramin Amin-Sanayei Aqueous process for making a stable fluoropolymer dispersion
US20070117915A1 (en) * 2004-07-28 2007-05-24 Asahi Glass Company, Limited Fluoropolymer latex, process for its production, and fluoropolymer
US20070135558A1 (en) * 2003-10-31 2007-06-14 Nobuhiko Tsuda Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
US20070149733A1 (en) * 2003-12-25 2007-06-28 Masao Otsuka Process for preparing fluoropolymer
US20070155891A1 (en) * 2003-12-09 2007-07-05 Daikin Industries, Ltd. Water base dispersion of fluorinated polymer and process for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146003B2 (en) * 1980-10-21 1986-10-11 Enu Oo Kee Kk
JPH0513961B2 (en) * 1985-03-28 1993-02-23 Daikin Ind Ltd
JPS6325003B2 (en) 1985-10-12 1988-05-24 Daikin Kogyo Co Ltd
US4864006A (en) 1986-06-26 1989-09-05 Ausimont S.P.A. Process for the polymerization in aqueous dispersion of fluorinated monomers
US5475165A (en) * 1995-01-18 1995-12-12 E. I. Du Pont De Nemours And Company Trifluoromethylation process
US6429258B1 (en) 1999-05-20 2002-08-06 E. I. Du Pont De Nemours & Company Polymerization of fluoromonomers
JP3900883B2 (en) * 2001-10-05 2007-04-04 ダイキン工業株式会社 The method of producing a fluoropolymer latex

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6391182B1 (en) *
US2713593A (en) * 1953-12-21 1955-07-19 Minnesota Mining & Mfg Fluorocarbon acids and derivatives
US3142665A (en) * 1960-07-26 1964-07-28 Du Pont Novel tetrafluoroethylene resins and their preparation
US3179614A (en) * 1961-03-13 1965-04-20 Du Pont Polyamide-acids, compositions thereof, and process for their preparation
US3037953A (en) * 1961-04-26 1962-06-05 Du Pont Concentration of aqueous colloidal dispersions of polytetrafluoroethylene
US3260691A (en) * 1963-05-20 1966-07-12 Monsanto Co Coating compositions prepared from condensation products of aromatic primary diamines and aromatic tricarboxylic compounds
US3315201A (en) * 1965-03-31 1967-04-18 Bailey Meter Co Strain transducer
US3391099A (en) * 1966-04-25 1968-07-02 Du Pont Polymerization process
US3451908A (en) * 1966-07-19 1969-06-24 Montedison Spa Method for preparing polyoxyperfluoromethylenic compounds
US3489595A (en) * 1966-12-22 1970-01-13 Du Pont Coating compositions containing perfluorohalocarbon polymer,phosphoric acid and aluminum oxide,boron oxide or aluminum phosphate
US3556100A (en) * 1968-08-02 1971-01-19 Ampoules Inc Ampoule applicator
US3642742A (en) * 1969-04-22 1972-02-15 Du Pont Tough stable tetrafluoroethylene-fluoroalkyl perfluorovinyl ether copolymers
US3882153A (en) * 1969-09-12 1975-05-06 Kureha Chemical Ind Co Ltd Method for recovering fluorinated carboxylic acid
US3635926A (en) * 1969-10-27 1972-01-18 Du Pont Aqueous process for making improved tetrafluoroethylene / fluoroalkyl perfluorovinyl ether copolymers
US3721696A (en) * 1970-11-27 1973-03-20 Montedison Spa Polyoxyperfluoromethylene compounds and process of their preparation
US3790403A (en) * 1972-01-13 1974-02-05 Du Pont Glass fabric coated with crack-free fluorocarbon resin coating and process for preparing
US4016345A (en) * 1972-12-22 1977-04-05 E. I. Du Pont De Nemours And Company Process for polymerizing tetrafluoroethylene in aqueous dispersion
US4025709A (en) * 1974-09-24 1977-05-24 Produits Chimiques Ugine Kuhlmann Process for the polymerization of vinylidene fluoride
US4262101A (en) * 1976-08-31 1981-04-14 Hoechst Aktiengesellschaft Copolymers of tetrafluoroethylene and process for their manufacture
US4252859A (en) * 1978-10-31 1981-02-24 E. I. Du Pont De Nemours And Company Fluoropolymer blend coating compositions containing copolymers of perfluorinated polyvinyl ether
US4282162A (en) * 1979-02-02 1981-08-04 Hoechst Aktiengesellschaft Recovery of fluorinated emulsifying acids from basic anion exchangers
US4391940A (en) * 1979-12-12 1983-07-05 Hoechst Aktiengesellschaft Fluoropolymers with shell-modified particles, and processes for their preparation
US4832879A (en) * 1980-03-04 1989-05-23 Basf Aktiengesellchaft Substituted 3-fluoroalkoxybenzoyl halides and their preparation
US4381384A (en) * 1981-08-17 1983-04-26 E. I. Du Pont De Nemours And Company Continuous polymerization process
US4380618A (en) * 1981-08-21 1983-04-19 E. I. Du Pont De Nemours And Company Batch polymerization process
US4439385A (en) * 1981-09-09 1984-03-27 Hoechst Aktiengesellschaft Continuous process for the agglomeration of PTFE powders in a liquid medium
US4425448A (en) * 1982-05-20 1984-01-10 E. I. Du Pont De Nemours & Co. Polytetrafluoroethylene resin with degradation retarder
US4588796A (en) * 1984-04-23 1986-05-13 E. I. Du Pont De Nemours And Company Fluoroolefin polymerization process using fluoroxy compound solution as initiator
US5198491A (en) * 1986-07-21 1993-03-30 Daikin Industries Ltd. Cooking utensils surface coated with tetrafluoroethlene base polymer
US4987254A (en) * 1988-08-06 1991-01-22 Hoechst Aktiengesellschaft Fluorinated carboxylic acid fluorides
US5230961A (en) * 1990-12-12 1993-07-27 E. I. Du Pont De Nemours And Company Non-stick coating system with PTFE-FEP for concentration gradient
US5223343A (en) * 1990-12-12 1993-06-29 E. I. Du Pont De Nemours And Company Non-stick coating system with high and low melt viscosity PTFE for concentration gradient
US5219910A (en) * 1991-07-20 1993-06-15 Hoechst Aktiengesellschaft Concentrated aqueous dispersions of tetrafluoroethylene polymers, and process for their preparation
US5182342A (en) * 1992-02-28 1993-01-26 E. I. Du Pont De Nemours And Company Hydrofluorocarbon solvents for fluoromonomer polymerization
US5312935A (en) * 1992-04-22 1994-05-17 Hoechst Aktiengesellschaft Purification of fluorinated carboxylic acids
US5229480A (en) * 1992-09-03 1993-07-20 E. I. Du Pont De Nemours And Company Vinyl fluoride polymerization
US5721053A (en) * 1992-12-23 1998-02-24 E. I. Du Pont De Nemours And Company Post-formable non-stick roller coated smooth substrates
US5285002A (en) * 1993-03-23 1994-02-08 Minnesota Mining And Manufacturing Company Fluorine-containing polymers and preparation and use thereof
US5498680A (en) * 1993-05-18 1996-03-12 Ausimont S.P.A. Polymerization process in aqueous emulsion of fuluorinated olefinic monomers
US5591877A (en) * 1993-06-02 1997-01-07 Hoechst Ag Process for the recovery of fluorinated carboxylic acids
US5608022A (en) * 1993-10-12 1997-03-04 Asahi Kasei Kogyo Kabushiki Kaisha Perfluorocarbon copolymer containing functional groups and a method for producing it
US5530078A (en) * 1993-10-20 1996-06-25 Hoechst Aktiengesellschaft Preparation of a modified polytetrafluoroethylene and use thereof
US5710345A (en) * 1994-05-19 1998-01-20 Ausimont, S.P.A Floorinated polymers and copolymers containing cyclic structures
US5895799A (en) * 1995-01-18 1999-04-20 W. L. Gore & Associates, Inc. Microemulsion polymerization process for the production of small polytetrafluoroethylene polymer particles
US5532310A (en) * 1995-04-28 1996-07-02 Minnesota Mining And Manufacturing Company Surfactants to create fluoropolymer dispersions in fluorinated liquids
US6365684B1 (en) * 1995-11-06 2002-04-02 Alliedsignal Inc. Method of manufacturing fluoropolymers
US6255384B1 (en) * 1995-11-06 2001-07-03 Alliedsignal, Inc. Method of manufacturing fluoropolymers
US5763552A (en) * 1996-07-26 1998-06-09 E. I. Du Pont De Nemours And Company Hydrogen-containing flourosurfacant and its use in polymerization
US6245923B1 (en) * 1996-08-05 2001-06-12 Dyneon Gmbh Recovery of highly fluorinated carboxylic acids from the gaseous phase
US6013795A (en) * 1996-11-04 2000-01-11 3M Innovative Properties Company Alpha-branched fluoroalkylcarbonyl fluorides and their derivatives
US6025307A (en) * 1997-03-21 2000-02-15 Ausimont S.P.A. Fluorinated greases
US6410626B1 (en) * 1997-04-30 2002-06-25 Daikin Industries, Ltd. Aqueous dispersion composition and coated articles
US6391182B2 (en) * 1997-05-02 2002-05-21 3M Innovative Properties Company Electrochemical fluorination using interrupted current
US6267865B1 (en) * 1997-05-02 2001-07-31 3M Innovative Properties Company Electrochemical fluorination using interrupted current
US6218464B1 (en) * 1997-07-11 2001-04-17 Rohm And Haas Company Preparation of fluorinated polymers
US6518442B1 (en) * 1998-06-02 2003-02-11 Dyneon Gmbh & Co., Kg Process for the recovery of fluorinated alkandic acids from wastewater
US6395848B1 (en) * 1999-05-20 2002-05-28 E. I. Du Pont De Nemours And Company Polymerization of fluoromonomers
US6706193B1 (en) * 1999-07-17 2004-03-16 3M Innovative Properties Company Method for recovering fluorinated emulsifiers from aqueous phases
US6710123B1 (en) * 1999-11-12 2004-03-23 Atofina Chemicals, Inc. Fluoropolymers containing organo-silanes and methods of making the same
US6255536B1 (en) * 1999-12-22 2001-07-03 Dyneon Llc Fluorine containing vinyl ethers
US6677414B2 (en) * 1999-12-30 2004-01-13 3M Innovative Properties Company Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
US6593416B2 (en) * 2000-02-01 2003-07-15 3M Innovative Properties Company Fluoropolymers
US6576703B2 (en) * 2000-02-22 2003-06-10 Ausimont S.P.A. Process for the preparation of aqueous dispersions of fluoropolymers
US20040010156A1 (en) * 2000-08-11 2004-01-15 Masahiro Kondo Method of separating anionic fluorochemical surfactant
US6846570B2 (en) * 2000-08-17 2005-01-25 Whitford Corporation Multiple coat non-stick coating system and articles coated with same
US7026036B2 (en) * 2000-08-17 2006-04-11 Whitford Corporation Single coat non-stick coating system and articles coated with same
US6512063B2 (en) * 2000-10-04 2003-01-28 Dupont Dow Elastomers L.L.C. Process for producing fluoroelastomers
US6761964B2 (en) * 2001-04-02 2004-07-13 E. I. Du Pont De Nemours And Company Fluoropolymer non-stick coatings
US6703520B2 (en) * 2001-04-24 2004-03-09 3M Innovative Properties Company Process of preparing halogenated esters
US6861490B2 (en) * 2001-05-02 2005-03-01 3M Innovative Properties Company Aqueous emulsion polymerization in the presence of ethers as chain transfer agents to produce fluoropolymers
US6750304B2 (en) * 2001-05-02 2004-06-15 3M Innovative Properties Company Aqueous emulsion polymerization in the presence of ethers as chain transfer agents to produce fluoropolymers
US6693152B2 (en) * 2001-05-02 2004-02-17 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
US7074862B2 (en) * 2001-05-02 2006-07-11 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
US7045571B2 (en) * 2001-05-21 2006-05-16 3M Innovative Properties Company Emulsion polymerization of fluorinated monomers
US20060160947A1 (en) * 2001-05-21 2006-07-20 3M Innovative Properties Company Emulsion Polymerization of Fluorinated Monomers
US6737489B2 (en) * 2001-05-21 2004-05-18 3M Innovative Properties Company Polymers containing perfluorovinyl ethers and applications for such polymers
US20030125421A1 (en) * 2001-08-03 2003-07-03 Hermann Bladel Aqueous dispersions of fluoropolymers
US6878772B2 (en) * 2002-02-12 2005-04-12 Solvay Solexis S.P.A. Fluoropolymer aqueous dispersions
US20050113519A1 (en) * 2002-04-05 2005-05-26 3M Innovative Properties Company Dispersions containing bicomponent fluoropolymer particles and use thereof
US20050070633A1 (en) * 2002-05-22 2005-03-31 3M Innovative Properties Company Process for reducing the amount of fluorinated surfactant in aqueous fluoropolymer dispersions
US7064170B2 (en) * 2002-10-31 2006-06-20 3M Innovative Properties Company Emulsifier free aqueous emulsion polymerization to produce copolymers of a fluorinated olefin and hydrocarbon olefin
US20060041051A1 (en) * 2002-11-29 2006-02-23 Yasukazu Nakatani Method for purification of aqueous fluoropolymer emulsions, purified emulsions, and fluorine-containing finished articles
US20040116742A1 (en) * 2002-12-17 2004-06-17 3M Innovative Properties Company Selective reaction of hexafluoropropylene oxide with perfluoroacyl fluorides
US20050043471A1 (en) * 2003-01-22 2005-02-24 3M Innovative Properties Company Aqueous fluoropolymer dispersion comprising a melt processible fluoropolymer and having a reduced amount of fluorinated surfactant
US20040143052A1 (en) * 2003-01-22 2004-07-22 3M Innovative Properties Company Aqueous fluoropolymer dispersion comprising a melt processible fluoropolymer and having a reduced amount of fluorinated surfactant
US6861466B2 (en) * 2003-02-28 2005-03-01 3M Innovative Properties Company Fluoropolymer dispersion containing no or little low molecular weight fluorinated surfactant
US6869997B2 (en) * 2003-05-06 2005-03-22 Arkema, Inc. Polymerization of fluoromonomers using a 3-allyloxy-2-hydroxy-1-propanesulfonic acid salt as surfactant
US20050107506A1 (en) * 2003-10-21 2005-05-19 Solvay Solexis S.P.A. Process for preparing fluoropolymer dispersions
US20050090613A1 (en) * 2003-10-22 2005-04-28 Daikin Industries, Ltd. Process for preparing fluorine-containing polymer latex
US20050090601A1 (en) * 2003-10-24 2005-04-28 3M Innovative Properties Company Aqueous dispersions of polytetrafluoroethylene particles
US20070135558A1 (en) * 2003-10-31 2007-06-14 Nobuhiko Tsuda Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
US7041728B2 (en) * 2003-11-17 2006-05-09 3M Innovative Properties Company Aqueous dispersions of polytetrafluoroethylene having a low amount of fluorinated surfactant
US20050154104A1 (en) * 2003-12-04 2005-07-14 Solvay Solexis S.P.A. TFE copolymers
US20070155891A1 (en) * 2003-12-09 2007-07-05 Daikin Industries, Ltd. Water base dispersion of fluorinated polymer and process for producing the same
US20070149733A1 (en) * 2003-12-25 2007-06-28 Masao Otsuka Process for preparing fluoropolymer
US20060003168A1 (en) * 2004-07-05 2006-01-05 3M Innovative Properties Company Primer coating of PTFE for metal substrates
US20070117915A1 (en) * 2004-07-28 2007-05-24 Asahi Glass Company, Limited Fluoropolymer latex, process for its production, and fluoropolymer
US20070082993A1 (en) * 2005-06-10 2007-04-12 Ramin Amin-Sanayei Aqueous process for making a stable fluoropolymer dispersion
US20070025902A1 (en) * 2005-07-15 2007-02-01 3M Innovative Properties Company Recovery of fluorinated carboxylic acid from adsorbent particles
US20070015864A1 (en) * 2005-07-15 2007-01-18 3M Innovative Properties Company Method of making fluoropolymer dispersion

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090272944A1 (en) * 2006-04-11 2009-11-05 Solvay Solexis S.P.A. Fluoropolymer Dispersion Purification
US8859645B2 (en) 2006-04-11 2014-10-14 Solvay Solexis S.P.A. Fluoropolymer dispersion purification
US20070267464A1 (en) * 2006-05-19 2007-11-22 3M Innovative Properties Company Cyclic hydrofluoroether compounds and processes for their preparation and use
US8791254B2 (en) 2006-05-19 2014-07-29 3M Innovative Properties Company Cyclic hydrofluoroether compounds and processes for their preparation and use
US7977438B2 (en) 2006-11-09 2011-07-12 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and siloxane surfactant
US20080269408A1 (en) * 2006-11-09 2008-10-30 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using Polymerization Agent Comprising Fluoropolyether Acid or Salt and Short Chain Fluorosurfactant
US20080114122A1 (en) * 2006-11-09 2008-05-15 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using Polymerization Agent Comprising High Molecular Weight Fluoropolyether Acid or Salt and Fluoropolyether Acid or Salt Surfactant
US7705074B2 (en) 2006-11-09 2010-04-27 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
US8519072B2 (en) 2006-11-09 2013-08-27 E I Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising fluoropolyether acid or salt and short chain fluorosurfactant
US7897682B2 (en) 2006-11-09 2011-03-01 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomers using polymerization agent comprising fluoropolyether acid or salt and hydrocarbon surfactant
US7932333B2 (en) 2006-11-09 2011-04-26 E.I. Du Pont De Nemours And Company Aqueous polymerization of fluorinated monomer using polymerization agent comprising high molecular weight fluoropolyether acid or salt and fluoropolyether acid or salt surfactant
US20080139683A1 (en) * 2006-12-06 2008-06-12 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US8193397B2 (en) * 2006-12-06 2012-06-05 3M Innovative Properties Company Hydrofluoroether compounds and processes for their preparation and use
US20100168300A1 (en) * 2007-05-23 2010-07-01 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
US8338517B2 (en) 2007-05-23 2012-12-25 3M Innovative Properties Company Aqueous compositions of fluorinated surfactants and methods of using the same
US8476385B2 (en) 2007-06-06 2013-07-02 3M Innovative Properties Company Fluorinated ether compositions and methods of using the same
US20100179262A1 (en) * 2007-06-06 2010-07-15 Dams Rudolf J Fluorinated ether compositions and methods of using the same
US8835551B2 (en) 2007-09-14 2014-09-16 3M Innovative Properties Company Ultra low viscosity iodine containing amorphous fluoropolymers
US20100305262A1 (en) * 2007-10-12 2010-12-02 Klaus Hintzer Process for manufacturing clean fluoropolymers
US9416251B2 (en) 2007-10-12 2016-08-16 3M Innovative Properties Company Article prepared from clean fluoropolymers
US8541499B2 (en) 2007-10-12 2013-09-24 3M Innovative Properties Company Process for manufacturing clean fluoropolymers
US8604137B2 (en) 2008-02-29 2013-12-10 3M Innovative Properties Company Perfluoroelastomers with low carbonyl endgroup ratios
US20110009569A1 (en) * 2008-02-29 2011-01-13 Grootaert Werner M A Perfluoroelastomers with low carbonyl endgroup ratios
US20090281241A1 (en) * 2008-05-09 2009-11-12 E. I. Du Pont De Nemours And Company Aqueous Polymerization of Fluorinated Monomer Using a Mixture of Fluoropolyether Acids or Salts
US9732212B2 (en) 2008-05-09 2017-08-15 The Chemours Company Fc, Llc Aqueous polymerization of fluorinated monomer using a mixture of fluoropolyether acids or salts
US8703889B2 (en) 2008-07-08 2014-04-22 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
US20110160415A1 (en) * 2008-07-08 2011-06-30 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
US9776983B2 (en) 2008-07-08 2017-10-03 Solvay Solexis S.P.A. Method for manufacturing fluoropolymers
EP2143738A1 (en) 2008-07-08 2010-01-13 Solvay Solexis S.p.A. Method for manufacturing fluoropolymers
US20110124782A1 (en) * 2008-07-18 2011-05-26 Dams Rudolf J Fluorinated ether compounds and methods of using the same
US8633288B2 (en) 2008-07-18 2014-01-21 3M Innovative Properties Company Fluorinated ether compounds and methods of using the same
US20100113691A1 (en) * 2008-11-06 2010-05-06 E. I. Du Pont De Nemours And Company Fluoro olefin polymerization
WO2010054172A1 (en) * 2008-11-06 2010-05-14 E. I. Du Pont De Nemours And Company Fluoro olefin polymerization
US20110232530A1 (en) * 2008-11-25 2011-09-29 Dams Rudolf J Fluorinated ether urethanes and methods of using the same
US8629089B2 (en) 2008-12-18 2014-01-14 3M Innovative Properties Company Method of contacting hydrocarbon-bearing formations with fluorinated ether compositions
US8835547B2 (en) 2008-12-23 2014-09-16 E I Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
US20100160531A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Particles Having a Nucleus of Fluorinated Ionomer
EP3091039A1 (en) 2008-12-23 2016-11-09 The Chemours Company FC, LLC Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US20110152387A1 (en) * 2008-12-23 2011-06-23 E. I. Du Pont De Nemours And Company Fluorinated Ionomer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer
WO2010075495A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8153738B2 (en) 2008-12-23 2012-04-10 E I Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US20100160465A1 (en) * 2008-12-23 2010-06-24 E.I. Du Pont De Nemours And Company Fluorinated Ionomer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer Produced In Situ
WO2010075494A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluoropolymer particles having a nucleus of fluorinated ionomer
US8436054B2 (en) 2008-12-23 2013-05-07 E I Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer produced in situ
US8436053B2 (en) 2008-12-23 2013-05-07 E.I. Du Pont De Nemours And Company Fluorinated ionomer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US20100160490A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer
US20100160510A1 (en) * 2008-12-23 2010-06-24 E. I. Du Pont De Nemours And Company Fluoropolymer Produced by Aqueous Polymerization Using Dispersed Particulate of Fluorinated Ionomer Produced In Situ
WO2010075359A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer
US8058376B2 (en) 2008-12-23 2011-11-15 E. I. Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated lonomer produced in situ
WO2010075496A1 (en) 2008-12-23 2010-07-01 E. I. Du Pont De Nemours And Company Fluoropolymer produced by aqueous polymerization using dispersed particulate of fluorinated ionomer produced in situ
WO2010104142A1 (en) 2009-03-12 2010-09-16 ダイキン工業株式会社 Method for producing aqueous dispersion of fluorine-containing seed polymer particles, aqueous coating composition, and coated article
WO2010113950A1 (en) 2009-03-30 2010-10-07 ダイキン工業株式会社 Polytetrafluoroethylene and method for producing same
WO2011024856A1 (en) 2009-08-28 2011-03-03 ダイキン工業株式会社 Method for producing fluorine-containing polymer
WO2011024857A1 (en) 2009-08-28 2011-03-03 ダイキン工業株式会社 Method for producing fluorine-containing polymer
US8809580B2 (en) 2009-10-23 2014-08-19 3M Innovative Properties Company Methods of preparing fluorinated carboxylic acids and their salts
WO2011055824A1 (en) 2009-11-09 2011-05-12 旭硝子株式会社 Aqueous polytetrafluoroethylene emulsion and process for production thereof, aqueous polytetrafluoroethylene dispersion obtained using the emulsion, polytetrafluoroethylene fine powder, and stretch-expanded body
US9376520B2 (en) 2009-11-09 2016-06-28 Asahi Glass Company, Limited Polytetrafluoroethylene aqueous emulsion and process for its production, polytetrafluoroethylene aqueous dispersion obtainable by using such an aqueous emulsion, polytetrafluoroethylene fine powder, and stretched porous material
US9371405B2 (en) 2010-11-09 2016-06-21 The Chemours Company Fc, Llc Nucleation in aqueous polymerization of fluoromonomer
US9074025B2 (en) 2010-11-09 2015-07-07 The Chemours Company Fc, Llc Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
WO2012064841A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Aqueous polymerization of fluoromonomer using hydrocarbon surfactant
US9255164B2 (en) 2010-11-09 2016-02-09 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant
US9518170B2 (en) 2010-11-09 2016-12-13 The Chemours Company Fc, Llc Aqueous polymerization of perfluoromonomer using hydrocarbon surfactant
US8563670B2 (en) 2010-11-09 2013-10-22 E I Du Pont De Nemours And Company Nucleation in aqueous polymerization of fluoromonomer
WO2012064858A1 (en) 2010-11-09 2012-05-18 E. I. Du Pont De Nemours And Company Reducing the telogenic behavior of hydrocarbon-containing surfactants in aqueous dispersion fluoromonomer polymerization
WO2012160135A1 (en) 2011-05-26 2012-11-29 Solvay Specialty Polymers Italy S.P.A. Hydro-fluorocompounds
EP2557109A1 (en) 2011-08-11 2013-02-13 3M Innovative Properties Company Method of bonding a fluoroelastomer compound to a metal substrate using low molecular weight functional hydrocarbons as bonding promoter
WO2013022729A1 (en) 2011-08-11 2013-02-14 3M Innovative Properties Company Method of bonding a fluoroelastomer compound to a metal substrate using low molecular weight functional hydrocarbons as bonding promoter
US9567450B2 (en) 2011-08-11 2017-02-14 3M Innovative Properties Company Method of bonding a fluoroelastomer compound to a metal substrate using low molecular weight functional hydrocardons as bonding promoter
WO2014071129A1 (en) 2012-11-05 2014-05-08 3M Innovative Properties Company Peroxide-curable fluoropolymer composition including solvent and method of using the same
WO2014084399A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
WO2014084397A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Production method for polytetrafluoroethylene aqueous dispersion
WO2014084400A1 (en) 2012-11-30 2014-06-05 ダイキン工業株式会社 Production method for polytetrafluoroethylene aqueous dispersion
US9938403B2 (en) 2012-12-04 2018-04-10 3M Innovative Properties Company Highly fluorinated polymers
WO2014088820A1 (en) 2012-12-04 2014-06-12 3M Innovative Properties Company Highly fluorinated polymers
US9260553B2 (en) 2012-12-04 2016-02-16 3M Innovative Properties Company Highly fluorinated polymers
US9714307B2 (en) 2012-12-04 2017-07-25 3M Innovative Properties Company Partially fluorinated polymers
WO2014088804A1 (en) 2012-12-04 2014-06-12 3M Innovative Properties Company Partially fluorinated polymers
US9790347B2 (en) 2012-12-20 2017-10-17 3M Innovation Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
US9815969B2 (en) 2012-12-20 2017-11-14 3M Innovative Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
WO2014100593A1 (en) 2012-12-20 2014-06-26 3M Innovative Properties Company Composite particles including a fluoropolymer, methods of making, and articles including the same
US9676929B2 (en) 2013-11-26 2017-06-13 The Chemours Company Fc, Llc Employing polyalkylene oxides for nucleation in aqueous polymerization of fluoromonomer
WO2015081055A1 (en) 2013-11-26 2015-06-04 E. I. Du Pont De Nemours And Company Employing polyalkylene oxides for nucleation in aqueous polymerization of fluoromonomer
WO2015080289A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Modified polytetrafluoroethylene fine powder and uniaxially oriented porous body
WO2015080292A1 (en) 2013-11-29 2015-06-04 旭化成イーマテリアルズ株式会社 Polymer electrolyte film
WO2015080290A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Porous body, polymer electrolyte membrane, filter material for filter, and filter unit
WO2015080291A1 (en) 2013-11-29 2015-06-04 ダイキン工業株式会社 Biaxially-oriented porous film
CN106232231A (en) * 2014-04-18 2016-12-14 3M创新有限公司 Recovery of branched fluorinated emulsifiers
WO2015160926A1 (en) * 2014-04-18 2015-10-22 3M Innovative Properties Company Recovery of branched fluorinated emulsifiers
US9694333B2 (en) 2014-04-18 2017-07-04 3M Innovative Properties Company Recovery of branched fluorinated emulsifiers
WO2015173194A1 (en) 2014-05-12 2015-11-19 Solvay Specialty Polymers Italy S.P.A. Fluoroelastomers
WO2016130911A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups and methods of making and using the same
WO2016130894A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene copolymers having sulfonyl groups
WO2016130914A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene/hexafluoropropylene copolymers including perfluoroalkoxyalkyl pendant groups
WO2016130904A1 (en) 2015-02-12 2016-08-18 3M Innovative Properties Company Tetrafluoroethylene and perfluorinated allyl ether copolymers
WO2017102820A1 (en) 2015-12-14 2017-06-22 Solvay Specialty Polymers Italy S.P.A. Method of manufacturing fluoroelastomers

Also Published As

Publication number Publication date Type
RU2428434C2 (en) 2011-09-10 grant
CN101218264A (en) 2008-07-09 application
EP1904538A1 (en) 2008-04-02 application
JP2009501808A (en) 2009-01-22 application
RU2008100105A (en) 2009-08-20 application
GB0514387D0 (en) 2005-08-17 grant
WO2007011631A1 (en) 2007-01-25 application
JP5021642B2 (en) 2012-09-12 grant
CN101218264B (en) 2010-09-29 grant
DE602006013641D1 (en) 2010-05-27 grant
EP1904538B1 (en) 2010-04-14 grant

Similar Documents

Publication Publication Date Title
US7342066B2 (en) Aqueous dispersions of polytetrafluoroethylene particles
US20050090613A1 (en) Process for preparing fluorine-containing polymer latex
US7074862B2 (en) Emulsifier free aqueous emulsion polymerization process for making fluoropolymers
US20070135558A1 (en) Process for producing aqueous fluoropolymer dispersion and aqueous fluoropolymer dispersion
US6677414B2 (en) Aqueous emulsion polymerization process for the manufacturing of fluoropolymers
US20040024134A1 (en) Ultraclean fluoroelastomer suitable for use in the manufacturing of electronic components
US7041728B2 (en) Aqueous dispersions of polytetrafluoroethylene having a low amount of fluorinated surfactant
US20070060699A1 (en) Aqueous tetrafluoroethylene polymer dispersion,process for producing the same, tetrafluoroethylene polymer powder,and molded tetrafluoroethylene polymer
JP2003119204A (en) Method for manufacturing fluorine-containing polymer latex
US7064170B2 (en) Emulsifier free aqueous emulsion polymerization to produce copolymers of a fluorinated olefin and hydrocarbon olefin
US7122608B1 (en) VDF polymerization process
WO2008001894A1 (en) Method for producing fluorine-containing polymer
US4341685A (en) Process for preparing organic dispersion of acid type fluorinated polymer
US20070276103A1 (en) Fluorinated Surfactants
JP2002308914A (en) Method for producing fluorine-containing polymer latex
US20080015304A1 (en) Aqueous emulsion polymerization process for producing fluoropolymers
JP2004359870A (en) Surfactant and fluorine-containing polymer manufacturing method, and fluorine-containing polymer aqueous dispersion
EP0617058A1 (en) (Co)polymerization process in aqueous emulsion of fluorinated olefinic monomers
JP2004358397A (en) Surfactant, production method of fluorine-containing polymer, and fluorine-containing polymer aqueous dispersion
US20040072977A1 (en) Aqueous emulsion polymerization process for producing fluoropolymers
US20070142513A1 (en) Surfactant, method of producing a fluoropolymer, fluoropolymer aqueous dispersion
US20070142541A1 (en) Fluorinated surfactants for making fluoropolymers
JP2005029704A (en) Fluorine-containing copolymer and method for producing granulated substance thereof
JP2002317003A (en) Method for producing florine-containing polymer latex
US20070004848A1 (en) Aqueous emulsion polymerization of fluorinated monomers in the presence of a partially fluorinated oligomer as an emulsifier

Legal Events

Date Code Title Description
AS Assignment

Owner name: 3M INNOVATIVE PROPERTIES COMPANY, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HINTZER, KLAUS;JURGENS, MICHAEL;KASPAR, HARALD;AND OTHERS;REEL/FRAME:018270/0531;SIGNING DATES FROM 20060825 TO 20060907