WO2006126567A1 - 蛍光体及びその利用 - Google Patents

蛍光体及びその利用 Download PDF

Info

Publication number
WO2006126567A1
WO2006126567A1 PCT/JP2006/310312 JP2006310312W WO2006126567A1 WO 2006126567 A1 WO2006126567 A1 WO 2006126567A1 JP 2006310312 W JP2006310312 W JP 2006310312W WO 2006126567 A1 WO2006126567 A1 WO 2006126567A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
wavelength
general formula
metal element
Prior art date
Application number
PCT/JP2006/310312
Other languages
English (en)
French (fr)
Inventor
Naoto Hirosaki
Takatoshi Seto
Naoto Kijima
Original Assignee
Mitsubishi Chemical Corporation
Independent Administrative Institution National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Independent Administrative Institution National Institute For Materials Science filed Critical Mitsubishi Chemical Corporation
Priority to KR1020077027009A priority Critical patent/KR101324004B1/ko
Priority to CN2006800170114A priority patent/CN101175835B/zh
Priority to EP06756518.4A priority patent/EP1887067B1/en
Priority to US11/915,520 priority patent/US8206611B2/en
Publication of WO2006126567A1 publication Critical patent/WO2006126567A1/ja
Priority to US13/477,421 priority patent/US8703019B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/55Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing beryllium, magnesium, alkali metals or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0823Silicon oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/77218Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77928Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/386Boron nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a luminaire, an image display device, and a phosphor mixture using a phosphor mainly composed of an inorganic compound and a property of the phosphor, that is, a property of emitting fluorescence having a long wavelength of 570 nm or longer.
  • a phosphor-containing composition, a pigment, and an ultraviolet absorber is included in the present invention.
  • Phosphors are used in fluorescent lamps, fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cathode ray tubes (CRT), white light emitting devices, and the like.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • CRT cathode ray tubes
  • white light emitting devices and the like.
  • energy for exciting the phosphor is supplied to the phosphor.
  • the phosphor is excited by an excitation source having high energy such as vacuum ultraviolet rays, ultraviolet rays, visible rays, and electron beams, and emits ultraviolet rays, visible rays, and infrared rays.
  • the brightness of the phosphor decreases as a result of being exposed to the excitation source as described above.
  • this sialon phosphor has been made of silicon nitride (Si N), aluminum nitride (A1N), carbon
  • Calcium oxide (CaCO 3) and europium oxide (Eu 2 O 3) are mixed in a predetermined molar ratio,
  • M is a base crystal of Ba, Ca, Sr, or rare earth element
  • a phosphor activated with Eu or Ce phosphors that emit red light
  • LED lighting units using these phosphors are known.
  • phosphors with Ce-activated Sr Si N and SrSi N crystals have been reported (patented)
  • Patent Document 5 describes L MN: Z (L is a divalent element such as Ca, Sr, Ba, etc., M is Si, Ge h i (2 / 3h + 4 / 3i)
  • Patent Document 6 includes LM N
  • Patent Document 7 describes a wide range of combinations related to the L—M—N: Eu, Z system, but shows the effect of improving the emission characteristics when a specific composition or crystal phase is used as a base. Nah,
  • Patent Documents 2 to 7 have a base crystal made of a nitride of a divalent element and a tetravalent element. These phosphors had sufficient red emission intensity when excited with blue visible light. Also, depending on the composition, it was chemically unstable, and there was a problem with durability.
  • Patent Document 8 Patent Document 9, and Patent Document 10 describe white light-emitting devices using a combination of a blue light-emitting diode and a blue-absorbing yellow light-emitting phosphor as conventional technologies of illumination devices.
  • phosphors that are particularly often used are those represented by the general formula (Y, Gd ) (Al, Ga) O: Cerium-activated yttrium 'aluminum' gar represented by Ce 3+
  • a white light emitting device comprising a blue light emitting diode and an yttrium 'aluminum' garnet phosphor has a feature that it emits pale blue light due to a shortage of red component, and there is a bias in color rendering.
  • Patent Document 11 and Patent Document 5 disclose a white light-emitting device in which two red phosphors are mixed and dispersed to compensate for a red component that is lacking in a yttrium-aluminum garnet phosphor with another red phosphor. Are listed. However, these light emitting devices still have problems to be improved regarding color rendering.
  • the red phosphor described in Patent Document 11 contains cadmium and has a problem of environmental pollution.
  • Red light emitting phosphors with i N: Eu as a representative example do not contain cadmium, but the luminance of the phosphor
  • Patent Document 12 describes a silicon nitride phosphor activated by at least one rare earth element essentially containing Ce, typically Ca (Si, Al) N: Ce. Siri represented
  • a nitrite phosphor is disclosed. This phosphor is a conventional Sr Si N
  • Patent Document 13 is typified by a Sr Al Si ON: Eu phosphor having an emission center of Eu 2+ ions.
  • a warm or red light emitting oxynitride phosphor is disclosed.
  • Patent Document 14 (hereinafter referred to as “JP2006-8721”) describes that a white light-emitting device having high luminous efficiency and rich in reddish components and good color rendering can be obtained.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-363554
  • Patent Document 2 US Pat. No. 6,682,663
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2003-206481
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-322474
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-321675
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2003-277746
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2004-10786
  • Patent Document 8 Japanese Patent No. 2900928
  • Patent Document 9 Japanese Patent No. 2927279
  • Patent Document 10 Japanese Patent No. 3364229
  • Patent Document 11 Japanese Patent Laid-Open No. 10-163535
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2004-244560
  • Patent Document 13 Japanese Unexamined Patent Publication No. 2005-48105
  • Patent Document 14 Japanese Unexamined Patent Application Publication No. 2006-8721
  • Patent Literature 1 H. A. Hoppe 4 people "Journal of Physics and Chemistry of Solids” 2000, 61 ⁇ , 2001-2006
  • Non-Patent Document 2 “On new rare—earth doped M—Si—Al—O—N materials” by W. H. van Krevel, TU Eindhoven 2000, ISBN 90—386—2711— 4
  • JP2006-8721 disclosed here, mineralization having the same crystal structure as a CaAlSiN crystal
  • a phosphor using a compound as a crystal matrix is an excellent phosphor having a center of emission wavelength at 653 nm and high luminous efficiency.
  • a phosphor having an arbitrary emission wavelength can be selected as well as high luminous efficiency. This is because, in the case of lighting, color rendering may be given priority depending on the usage conditions, and light flux may be given priority. For example? If the emission center of the phosphor shifts to the green side where the viewing sensitivity is high, the color rendering tends to decrease, but the luminous flux increases. Thus, if an arbitrary emission wavelength of the phosphor is obtained, the degree of freedom in designing the lighting device is increased, which is useful. In the case of a display, the color reproducibility range can be changed according to the application, increasing the degree of freedom in designing the display device.
  • JP2006-8721 discloses a method of replacing a part of Ca with Sr as means for obtaining a phosphor having a shorter emission center wavelength.
  • the present invention emits light with higher luminance than conventional nitride or oxynitride phosphors, is excellent as an orange or red phosphor, and has less reduction in luminance when exposed to an excitation source. It is another object of the present invention to provide a phosphor capable of changing the emission wavelength only by changing the type and blending ratio of raw materials.
  • Another object of the present invention is to provide a light emitting device, an illuminating device, and an image display device (display device) having high luminous efficiency and high design freedom using such a phosphor.
  • Another object of the present invention is to provide a phosphor mixture, a phosphor-containing composition, a facial material, and an ultraviolet absorber using such a phosphor.
  • the present invention has been achieved based on such knowledge, and the gist thereof is as follows.
  • the alkaline earth metal element is substituted with an element having a lower valence than that of the alkaline earth metal element and Z or a vacancy.
  • the rare earth metal element is substituted with an element having a lower valence than the rare earth metal element and Z or a vacancy.
  • the nitride or oxynitride phosphor according to 1).
  • nitride or oxynitride phosphor according to 1) or 2), which contains a monovalent or zero-valent alkaline earth metal element and a divalent rare earth element.
  • Ln ' is selected as a group force consisting of lanthanoid, Mn and Ti At least one metal element, M ′′ ′ is one or more elements selected from the group consisting of divalent metal elements other than Ln ′ element, and M 1 ′′ ′ is a trivalent metal.
  • Elemental force group power is one or more selected elements
  • ⁇ ⁇ ' is a tetravalent metal elemental power group power selected is one or more elements
  • is Li, Na ,
  • K force Group force One or more kinds of monovalent metal elements selected
  • is a number that satisfies 0 ⁇ 0.2
  • a, b, and n are 0 ⁇ a, 0 ⁇ b, a + b> 0, 0 ⁇ n, and 0.002 ⁇ (3n + 2) a / 4 ⁇ 0.9.
  • the crystal structure of the crystal phase belongs to the space group Cmc2 or P2 4)
  • the conductive inorganic substance is selected from a group force consisting of Zn, Al, Ga, In, and Sn.
  • the phosphor according to 9 comprising an oxide, an oxynitride, a nitride, or a mixture thereof containing one or more elements.
  • the excitation source is ultraviolet light or visible light having a wavelength of lOOnm or more and 570nm or less.
  • the phosphor as described in 12) above.
  • Ln ′′ is a lanthanoid excluding Eu, at least one metal element selected from the group force consisting of Mn and Ti, and M ′′ is a combination of Mg, Ca, Sr, Ba, and Zn.
  • a total of 90 mol% or more is a divalent metal element
  • M IV is a tetravalent metal element in which Si is 90 mol% or more.
  • M ′′ is a divalent metal element in which the total of Mg, Ca, Sr, Ba, and Zn occupies 90 mol% or more
  • M 1 ′′ is A 1 occupies 80 mol% or more
  • a trivalent metal element M iv is a tetravalent metal element in which Si occupies 90 mol% or more
  • y is a number satisfying 0.000 l ⁇ y ⁇ 0.1
  • X is 0 ⁇ x ⁇ 0.45
  • n is a number that satisfies 0 ⁇ n
  • n and X are numbers that satisfy 0.002 ⁇ (3n + 2) x / 4 ⁇ 0.9 It is.
  • Ln is at least one metal element selected from the group consisting of lanthanoids excluding Ce, Mn and Ti
  • M ′′ is the sum of Mg, Ca, Sr, Ba and Zn. It is a divalent metal element that occupies 90 mol% or more
  • M 1 is a trivalent metal element in which A1 occupies 80 mol% or more
  • M IV is a tetravalent metal element in which Si occupies 90 mol% or more
  • x is a number that satisfies 0 ⁇ x ⁇ 0.45
  • yi is a number that satisfies 0 ⁇ y ⁇ 0.2
  • is a number that satisfies 0 ⁇ z ⁇ 0.2
  • n is 0 ⁇ n is satisfied
  • n and X are numbers satisfying 0.002 ⁇ (3n + 2) x / 4 ⁇ 0.9.
  • Ln is at least one metal element selected from the group force consisting of lanthanoids excluding Eu, Mn and Ti, and M" is Mg, Ca, Sr, Ba, and Zn.
  • a total of 90 mol% or more is a divalent metal element
  • M 1 is a trivalent metal element where A1 is 80 mol% or more
  • M IV is a tetravalent metal whose Si is 90 mol% or more.
  • A is a group element of Li, Na, and K forces.
  • One or more metal elements selected, ⁇ is a number satisfying ⁇ ' ⁇ 1.0 and y is 0 ⁇ y ⁇ 0.2 is satisfied and w is a number satisfying 0 ⁇ w ⁇ 0.2.
  • M ′′ is a divalent metal element in which the total of Mg Ca Sr Ba and Zn occupies 90 mol% or more
  • M 1 ′′ is a trivalent occupancy in which A 1 accounts for 80 mol% or more
  • M iv is a tetravalent metal element in which Si accounts for 90 mol% or more
  • A is one or more metal elements selected from the group power of Li Na and K force
  • ⁇ ′ is 0 ⁇ 'is a number that satisfies 0.5
  • y is a number that satisfies 0 ⁇ y ⁇ 0.2.
  • M ′′ is Ca
  • M ′′ 1 is A1
  • M IV is Si. Phosphor.
  • Ln is at least one metal element selected from the group consisting of lanthanoids excluding Ce, Mn and Ti
  • M ′′ is the total of Mg Ca Sr Ba and Zn. It is a divalent metal element that occupies 90 mol% or more
  • M 1 is a trivalent metal element that A1 occupies 80 mol% or more
  • M IV is a tetravalent metal element that Si occupies 90 mol% or more.
  • A is Li Na
  • K force is a group force of one or more metal elements selected
  • is a number that satisfies 0 and ⁇ ' ⁇ 1.0
  • y is.
  • ⁇ y ⁇ 0.2 is a number that satisfies 2 and z is It is a number that satisfies ⁇ z ⁇ 0.2.
  • a phosphor containing an alkaline earth metal element, silicon, and nitrogen A phosphor characterized by solid solution of an inorganic compound having the same crystal structure as that of the phosphor (excluding a solid solution of the phosphor).
  • the first light emitter is a light emitting diode that emits light having a wavelength of 330 nm to 420 nm
  • the second light emitter includes the red phosphor according to 1) to 32), and a wavelength of 330 nm to Blue phosphor that emits fluorescence with an emission peak at a wavelength of 420 nm to 500 nm by 420 nm excitation light, and green that emits fluorescence having an emission peak at a wavelength of 500 nm to 570 nm by excitation light of a wavelength of 330 nm to 420 nm 34.
  • the light-emitting device according to 34 wherein a phosphor is used to emit white light by mixing red, green, and blue light.
  • the first light emitter is a light emitting diode that emits light having a wavelength of 20 nm to 500 nm, and the phosphor described in 1) to 32) is excited by the light from the first light emitter to emit light.
  • the light-emitting device according to 34 which emits white light by combining the emitted light and the blue light emitted by the light-emitting diode itself.
  • the first illuminant is a light emitting diode that emits light having a wavelength of 20 nm to 500 nm
  • the second illuminant includes the phosphor described in 1) to 32), and a wavelength of 420 nm to 500 nm. 500 ⁇ by excitation light! 34.
  • the light-emitting device according to 34 which emits white light by using a green phosphor that emits fluorescence having an emission peak at a wavelength of ⁇ 570 nm.
  • the first light emitter is a light emitting diode that emits light having a wavelength of 20 nm to 500 nm.
  • the second light emitter the phosphor described in 1) to 32) and the wavelength of 420 nm to 500 nm are used. 550 ⁇ by excitation light! 34.
  • the light-emitting device according to 34 which emits white light by using a yellow phosphor that emits fluorescence having an emission peak at a wavelength of ⁇ 600 nm.
  • the excitation source is a vacuum ultraviolet ray having a wavelength of 100 nm to 190 nm, an ultraviolet ray having a wavelength of 190 nm to 380 nm, or an electron beam.
  • the image display device is a fluorescent display tube (VFD), field emission display (F
  • ED plasma display panel
  • CRT cathode ray tube
  • a phosphor-containing composition comprising the phosphor according to 1) to 32) and a liquid medium.
  • a pigment comprising the phosphor according to 1) to 32).
  • FIG. 3 is a schematic configuration diagram showing an embodiment of a lighting fixture (white LED) of the present invention.
  • FIG. 4 is a schematic configuration diagram showing an embodiment of an image display device (PDP) of the present invention.
  • FIG. 5 is a diagram showing a crystal structure model of CaAlSiN.
  • FIG. 6 is a diagram showing a crystal structure model of Si N 2 O.
  • FIG. 3 is a graph showing an emission spectrum of a substance having a value of 2.0, 3.0, 4.0 under excitation at 465 nm.
  • FIG. 10 is a graph showing an emission spectrum of the phosphors obtained in Examples II-1, 5, 8, 10 and Comparative Example II-1 under excitation with a wavelength of 465 nm.
  • FIG. 11 is a view showing XRD patterns of the phosphors obtained in Examples 11-1, 1, 5, 8, 10 and Comparative Example 1.
  • FIG. 12 shows the emission spectra of the phosphors obtained in Examples III 1 to 4 and Comparative Example III 1 under excitation with a wavelength of 465 nm.
  • FIG. 13 XR of phosphor (Ca Sr Ce AlSiN) (LiSi N) obtained in Example IV-1
  • FIG. 1 A first figure.
  • the phosphor of the first aspect is a nitride or oxynitride phosphor containing a divalent alkaline earth metal element and a divalent to tetravalent rare earth metal element, i) and Z or It is characterized by being ii).
  • the alkaline earth metal element is substituted with an element having a lower valence than that of the alkaline earth metal element and Z or a vacancy.
  • the rare earth metal element is substituted with an element having a lower valence than the rare earth metal element and Z or a vacancy.
  • the phosphor of the second aspect is characterized in that it contains a crystal phase having a chemical composition represented by the following general formula [1].
  • Ln ′ is at least one metal element selected from the group force consisting of lanthanoid, Mn and Ti
  • M ′′ ′ is a group consisting of divalent metal element forces other than Ln ′ element.
  • M 1 ′ ′ is a group power consisting of trivalent metal element forces
  • one or more elements selected as 1 ⁇ ′ is a tetravalent metal element Group force as force
  • is Li, Na, and K force Group force as selected
  • is 0 ⁇ 0.2
  • a, b and n are 0 ⁇ a, 0 ⁇ b, a + b> 0, 0 ⁇ n, and 0.002 ⁇ (3n + 2) a / 4 ⁇ 0. It is a number that satisfies 9.
  • the phosphor of the third aspect is a phosphor containing an alkaline earth metal element, silicon, and nitrogen, and an inorganic compound having the same crystal structure as the phosphor (provided that the phosphor The solid solution is excluded.)) Is a solid solution.
  • the phosphor of the present invention emits light with higher luminance than conventional nitride or oxynitride phosphors, and is excellent as an orange or red phosphor.
  • the emission wavelength and emission peak width can be adjusted by changing the addition amount of Ce, the type and Z or addition amount of Ln as the second activator, and the ratio of oxygen ions. Since the visibility is increased by reducing the wavelength of the emission peak, a light-emitting device in which the luminous flux increases significantly can be obtained.
  • the phosphor of the present invention is suitably used for fluorescent lamps, FEDs, PDPs, CRTs, white light emitting devices, etc., which do not decrease in luminance even when exposed to an excitation source.
  • the durability of the light emitting efficiency is high, and the color rendering properties and the luminous flux can be arbitrarily adjusted according to the application.
  • a light-emitting device and a lighting fixture with a high degree of freedom and an image display device with a high degree of freedom in device design, in which the color reproduction range can be arbitrarily changed.
  • the phosphor of the present invention has a base color of orange to red and absorbs ultraviolet rays. Therefore, the phosphor of the present invention is also useful as an orange-red pigment and an ultraviolet absorber.
  • the phosphor of the first aspect, i.e., 1) above is a nitride or oxynitride phosphor containing a divalent alkaline earth metal element and a divalent to tetravalent rare earth metal element, and the following i) and Z Or a nitride or oxynitride phosphor characterized by being ii).
  • the alkaline earth metal element is substituted with an element having a lower valence than that of the alkaline earth metal element and Z or a vacancy.
  • the rare earth metal element is substituted with an element having a lower valence than the rare earth metal element and Z or a vacancy.
  • examples of the element having a lower valence than the alkaline earth metal element include Li, Na and K.
  • the element having a lower valence than the rare earth metal element includes an alkaline earth metal element or an alkali metal element, preferably Ca, Sr, Ba, Li, Na, K and the like.
  • This phosphor may contain a monovalent or zero-valent alkaline earth metal element and a divalent rare earth element, thereby introducing a defect at the position of the alkaline earth metal element.
  • the nitrogen ion force contained in the phosphor may be substituted with oxygen ions. This improves the chemical stability of the phosphor and improves the resistance to water and acid. Increases, and durability improves.
  • This phosphor is a phosphor containing an alkaline earth metal element, silicon, and nitrogen, and is an inorganic compound having the same crystal structure as the phosphor (except for a solid solution of the phosphor). .) May be a solid solution.
  • This phosphor is a phosphor based on Sr Si N, a phosphor based on CaAlSiN, or the like.
  • the phosphor of the present invention based on Sr Si N is composed of Sr Al Si N O: Eu, Sr Al Si N
  • This phosphor can be synthesized by a general solid phase reaction method. For example, it is manufactured by preparing a pulverized mixture by pulverizing and mixing raw material compounds constituting a phosphor element constituting a metal element source by a dry method or a wet method, and heating and reacting the obtained pulverized mixture. be able to.
  • the phosphor is made of an alloy containing at least two kinds of metal elements constituting the phosphor, preferably an alloy containing all of the metal elements constituting the phosphor, and the obtained alloy is placed in a nitrogen-containing atmosphere. It can be produced by heat treatment under pressure.
  • the phosphor is made of an alloy containing a part of the metal elements constituting the phosphor, and the obtained alloy is heat-treated in a nitrogen-containing atmosphere under pressure, and then the remainder constituting the phosphor. It can also be produced by mixing with a raw material compound to be a metal element source and heat treatment. Thus, the phosphor manufactured through the alloy becomes a phosphor having a high luminance with few impurities.
  • This phosphor may contain a crystal phase having a chemical composition represented by the following general formula [1].
  • Ln ′ is at least one metal element selected from the group force consisting of lanthanoid, Mn and Ti, and M ′′ ′ is from the group consisting of divalent metal element forces other than the Ln ′ element.
  • M 1 ′ ′ is a group power of trivalent metal element power
  • M IV is composed of a tetravalent metal element
  • is one or more monovalent metal elements selected from the group force of Li, Na, and K forces
  • is 0 ⁇ 0.
  • A, b, and n are 0 ⁇ a, 0 ⁇ b, a + b> 0, 0 ⁇ n, and 0.002 ⁇ (3n + 2) a / 4 ⁇ 0.9. It is a satisfactory number.
  • Ln at least one metal element selected from Ce, Eu, Tb, Sm, Mn, Dy, and Yb is also preferable in terms of luminance.
  • M "' preferably contains 90 mol% or more in total of one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn.
  • elements other than Mg, Ca, Sr, Ba, and Zn in M ′′ ′ include Mn, Sm, Eu, Tm, Yb, Pb, and Sn.
  • M ′′ ′ particularly preferably contains 100 mol% of Ca and Z or Sr, preferably 90 mol% or more, more preferably 80 mol% or more in total.
  • the ratio of Ca to the total of Ca and Sr in M "' is 10 mol%. It is preferable to exceed 100 mol%, that is, it is most preferable that M ′′ ′ can be Ca alone.
  • M 1 "' A1 preferably accounts for 80 mol% or more U.
  • elements other than A1 in M 1 "' include Ga, In, B, Sc, Y, Bi, Sb, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc.
  • Ga, In, B, Bi, Sc, Y, La, Ce, Gd, and Lu are preferred.
  • M ′′ 1 ′ is preferably 100 mol%, preferably containing A1 in an amount of 90 mol% or more, that is, M ′′ 1 ′ is most preferably only A1.
  • Si preferably occupies 90 mol% or more.
  • elements other than Si in M I include Ge, Sn, Ti, Zr, Hf, etc. Among these, Ge is preferable.
  • ⁇ ′ also has power only from Si.
  • the crystal structure of the crystal phase belongs to the space group Cmc2 or P2.
  • crystal phase [1] The crystal phase having the chemical composition represented by the general formula [1] (hereinafter sometimes referred to as “crystal phase [1]”) is highly purified and contains as much as possible, and most preferably the crystal phase [
  • the phosphor composed of the single phase of [1] has excellent fluorescence emission characteristics.
  • the phosphor has a crystal phase [1] and a crystal phase having a crystal structure different from that of the crystal phase [1] (hereinafter referred to as “other crystal phases”) and a Z or amorphous phase as long as the characteristics are not deteriorated. It may be a mixture with.
  • the content of the crystal phase [1] in the phosphor is preferably 20% by mass or more in order to obtain high luminance.
  • the luminance is remarkably improved when the content of the crystalline phase [1] in the phosphor is 50% by mass or more.
  • the content of the crystalline phase [1] in the phosphor can be determined from the ratio of the intensity of the strongest peak of the crystalline phase [1] and the other phases by X-ray diffraction measurement.
  • the chemical composition represented by the general formula [1] may be represented by the following general formula [10].
  • Ln is at least one metal element selected from the group force consisting of lanthanoids excluding Eu, Mn and Ti, and among these, Ce, Tb, Sm, Mn, Dy, Yb force At least one metal element selected is preferred for brightness.
  • M ′′ is a divalent metal element and contains one or more selected from the group consisting of Mg, Ca, Sr, Ba, and Zn in a total of 90 mol% or more.
  • M 1 is a trivalent metal element in which A1 occupies 80 mol% or more.
  • M IV is a tetravalent metal element in which Si is 90 mol% or more, y is a number that satisfies 0 ⁇ y ⁇ 0.2, and w is a number that satisfies 0 ⁇ w ⁇ 0.2.
  • X is a number that satisfies 0 ⁇ x ⁇ 0.45
  • n is a number that satisfies 0 ⁇ n
  • n and X are 0. 002 ⁇ (3n + 2) x / 4 ⁇ 0.9 It is a satisfactory number.
  • chemical composition represented by the general formula [10] is preferably represented by the following general formula [11] (Eu M "M m M IV N) (M IV NO) ⁇ [11]
  • M is a divalent metal element, and a group force consisting of Mg, Ca, Sr, Ba, and Zn is also selected.
  • elements other than Mg, Ca, Sr, Ba, and Zn in M ′′ include Mn, Sm, Eu, Tm, Yb, Pb, and Sn.
  • M ′′ is particularly preferably 100 mol%, more preferably 90 mol% or more, more preferably 80 mol% or more in total of Ca and Z or Sr. It is also preferable that the ratio of Ca to the total of Ca and Sr in M "is more than 10 mol%, that is, M" is most preferable that only Ca can be used.
  • M 1 is a trivalent metal element and contains A1 in an amount of 80 mol% or more.
  • elements other than A1 in M 1 " include Ga, In, B, Sc, Y, Bi, Sb, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb,! Lu, etc.
  • M ′′ 1 preferably contains 100 mol% of A1 in an amount of 90 mol% or more, that is, M ′′ 1 is most preferably only A1.
  • M IV is a tetravalent metal element and contains Si in an amount of 90 mol% or more. From the viewpoint of brightness, as the elements other than Si in M IV, Ge, Sn, Ti, Zr, include Hf, etc., Ge is preferred among this. From the viewpoint of luminance, it is most preferable that M IV can be made of only Si.
  • y is the molar ratio of the activating element Eu, and is a number satisfying 0.0001 ⁇ y ⁇ 0.1.
  • the intensity of the emission intensity of the phosphor is preferably 0. 001 ⁇ y ⁇ 0. 1 force S, more preferably 0. 003 ⁇ y ⁇ 0. 05 force S.
  • concentration quenching occurs, and when it falls below 0.0001, light emission tends to be insufficient.
  • X and n are CaAlSiN: Eu represented by EuM "M m M IV N: Eu and Si NO represented by M
  • the general formula [11] is a formula representing the theoretical substance of the present invention. From the influence of oxygen contained as impurities in the raw materials Si N and A1N, and the mixing of raw materials
  • JP2006-8721 also discloses a phosphor based on CaAlSiN containing oxygen
  • the crystal structure of the phosphor disclosed in JP2006-8721 is fully filled with Ca, and oxygen is introduced by replacing Si-N with Al-O. In terms of the composition formula, it becomes CaAl Si N O.
  • the phosphor of the present invention is considered to be a compound in which Si NO and CaAlSiN, known as the mineral name Sinoite of the crystal structure shown in Fig. 6, are solid-solved with each other as shown in a specific example.
  • Si or A1 occupies the position of Si
  • N occupies a part of the position of O
  • Ca enters the space of the skeleton formed by Si N O.
  • the composition formula for example, if the (CaAlSiN) (Si N O) cut is removed, Ca Al Si N O and
  • the crystal structure of Si N O is also summarized in Table 1. Space group where both compounds are the same Cmc2
  • CaAlSiN crystals have the same orthorhombic or monoclinic system and the same space group Cmc2 or P2.
  • Si and A1 occupy the Si position in the Si N O crystal.
  • O is a crystal in which N occupies and Ca is incorporated as an interstitial element in the space of the skeleton formed by Si—N—O, and Si and A1 are irregularly distributed. Occupies the Si position of the Si NO crystal.
  • Eu-activated material can be obtained in the crystal matrix in which N and Si N O are dissolved.
  • Table 2 shows the surface index of each peak and the measured and calculated values of 2 ⁇ .
  • the calculated values were calculated using the following formula, where the orthorhombic a-axis, b-axis, and c-axis lattice constants were a, b, and c, respectively, and the plane index was (hkl).
  • is the wavelength of Cu Cu ⁇ ray used as X-ray source 1.54056 ⁇ .
  • each peak is all represented by a series of orthorhombic plane indices, and the 2 ⁇ position of each XRD peak shifts to the higher side as the Si NO charge ratio X increases. From Table 2, it can be seen from Table 2 that each face index (hkl) of the CaAlSiN crystal changes in the three lattice constants of orthorhombic system.
  • N and O occupy the position of N in the CaAlSiN crystal, and each is in the order of A1 and Si.
  • A1 and Si occupy the same position, and Ca and vacancy occupy Ca.
  • the phosphor obtained in the present invention is CaAlSiN.
  • this is an inorganic compound crystal in which Eu 2+ ions, which are luminescent centers, are distributed.
  • M IV NO which is a generalized Si NO.
  • JP, 105 is the general formula a ((l—x—y) MO ⁇ xEuO ⁇ yCe O) -bSi N 'cAlN
  • M is an alkaline earth metal and Sr is most preferred.
  • JP '105 must contain oxygen ions of the same number as the number of ions of alkaline earth metal, as is clear from the description of the above general formula MO. This is also supported by the fact that the substance used is a substance that changes to acid. Moreover, although the crystal structure of the obtained phosphor is not clearly disclosed, it is a phosphor having Sr Al Si ON as a base crystal.
  • the inventors have found that the wavelength shifts to the short wavelength side and that a broad emission peak is obtained, and the present invention has been achieved. That is, the present invention has been achieved based on a deep understanding of the phosphor host crystal structure. Further, since the general formula [11] requires that the coefficient X force ⁇ ⁇ x ⁇ 0.45 of oxygen ions is satisfied, there is no portion overlapping with the composition range of JP'105. More Therefore, it can be said that the general formula [ll] iJP '105 is another invention in which the matrix crystal structure is different and the composition range is different.
  • crystal phase [11] The crystal phase having the chemical composition represented by the general formula [11] (hereinafter sometimes referred to as “crystal phase [11]”) is highly purified and contains as much as possible, and most preferably the crystal phase [11
  • the phosphor composed of a single phase has excellent fluorescence emission characteristics.
  • the phosphor may be a mixture with a crystalline phase other than the crystalline phase [11] and with a Z or amorphous phase as long as the properties are not deteriorated.
  • the content of the crystal phase [11] in the phosphor is desirably 20% by mass or more in order to obtain high luminance.
  • the luminance is remarkably improved when the content of the crystalline phase [11] in the phosphor is 50% by mass or more.
  • the content ratio of the crystalline phase [11] in the phosphor can be determined by X-ray diffraction measurement to determine the specific force of the strongest peak intensity of the crystalline phase [11] and other phases.
  • the chemical composition represented by the general formula [1] may be the following general formula [21].
  • the crystal structure of this crystal phase belongs to the same space group Cmc2 as CaAlSiN.
  • Ln is a lanthanide excluding Ce, that is, La Pr Nd Sm
  • Eu Gd Tb Dy Ho Er Tm Yb Lu and at least one force selected from the group consisting of Mn and Ti Among these, at least one selected from the group force consisting of Eu Tb Sm Mn Dy Yb force The point of brightness is also preferable.
  • M " is a divalent metal element, and contains at least 90 mol% of one or more selected from the group consisting of Mg Ca Sr Ba and Zn. From the viewpoint of the luminance of the phosphor. In addition, as elements other than Mg Ca Sr Ba Zn in M ", Pb Sn and the like can be mentioned. From the viewpoint of the luminance of the phosphor, M ′′ is particularly preferably 100 mol%, more preferably 90 mol% or more, and more preferably 80 mol% or more in total of Ca and Z or Sr. Also, it is preferable that the ratio of Ca to the total of Ca and Sr in M "exceeds 10 mol%, that is, M" is most preferable that only Ca is effective! /.
  • M 1 " is a trivalent metal element and contains 80 mol% or more of A1. From the viewpoint of phosphor brightness, elements other than A1 in M 1 " include Ga In B Sc Y Bi Among these forces, Ga In Sc Y is preferable. From the point of brightness of the phosphor, ⁇ " 1 is A1 9 It is preferable to contain Omol% or more, that is, 100mol%, that is, it is most preferable that M " 1 can only be A1.
  • M IV is a tetravalent metal element and contains 90 mol% or more of Si. From the viewpoint of brightness, as the elements other than Si in M IV, Ge, Sn, Zr, Hf and the like, Ge virtuous preferable among this. From the viewpoint of luminance, it is most preferable that M IV can be made of only Si.
  • y and z are parameters representing the amount of activator.
  • y is the molar ratio of the activating element Ce, and is a number satisfying 0 ⁇ y ⁇ 0.2.
  • Ce is used alone as the activator, Eu emits light at a shorter wavelength.
  • y exceeds 0.2, concentration quenching occurs, and when it falls below 0.0005, light emission tends to be insufficient. Therefore, y is preferably 0.0005 ⁇ y ⁇ 0.1.
  • z is the molar ratio of the second activation element Ln, and is a number satisfying 0 ⁇ z ⁇ 0.2. From the point of emission intensity, 0. 0001 ⁇ z ⁇ 0.01 force is preferred ⁇ , 0. 0003 ⁇ z ⁇ 0. 05 force ⁇ is more preferred! / ⁇ .
  • X is a parameter representing the presence state of oxygen atoms in the host crystal.
  • oxygen ions When oxygen ions are introduced into the crystal, the first is that the Ca positions are all filled, and oxygen is introduced by replacing Si-N with Al-O.
  • Si or A1 occupies the position of Si, and N occupies a part of the position of O, and Ca is introduced into the skeletal space formed by Si—N—O.
  • the third is when the first and second occur simultaneously.
  • X is introduced so that the principle of electrical neutrality is maintained for M “, M 1 " and M IV ions accompanying oxygen ion introduction, and X is 0 ⁇ 0.45 It is a number that satisfies From the point of brightness, X is 0 ⁇ 0.3 force, more preferably 0.002 ⁇ 0.3 force, and more preferably 0.15 ⁇ 0.3.
  • is 0 or a positive number
  • Luminance Point force in the relationship with X is 0. 004 ⁇ (3n + 2) x / 4 ⁇ 0. 6 force element, and 0.3 ⁇ (3n + 2) x / 4 ⁇ 0.6 is more preferable.
  • the general formula [21] is a formula representing a theoretical substance.
  • the oxygen and nitrogen contents in the resulting material may differ from the theoretical values, but the slight deviation in oxygen and nitrogen contents caused by this will not adversely affect the luminescence properties.
  • the content of nitrogen and the content of nitrogen may slightly deviate from the values of the above formula [21].
  • the emission peak can be shortened by adding Ln to Ce as an agent.
  • Fig. 1 shows that, as mentioned above, CeO and Al 2 O were used as oxygen sources and fired at 1900 ° C for 2 hours.
  • the X-ray diffraction pattern of the obtained substance is shown.
  • the main crystal phase of the phosphor preferably belongs to the space group Cmc2.
  • crystal phase [21] The crystal phase having the chemical composition represented by the general formula [21] (hereinafter sometimes referred to as “crystal phase [21]”) is highly purified and contains as much as possible, and most preferably the crystal phase [21
  • the phosphor composed of a single phase has excellent fluorescence emission characteristics.
  • the phosphor may be a mixture of a crystalline phase other than the crystalline phase [21] and a Z or amorphous phase as long as the characteristics do not deteriorate.
  • the content of the crystalline phase [21] in the phosphor is 20% by mass or less. It is desirable to obtain high brightness. More preferably, the crystalline phase in the phosphor [
  • the content ratio of the crystalline phase [21] in the phosphor can be determined by X-ray diffraction measurement to determine the specific force of the strongest peak intensity of the crystalline phase [21] and other phases.
  • the crystal structure of this crystal phase belongs to the same space group Cmc2 as CaAlSiN.
  • Ln is at least one metal element selected from the group force consisting of lanthanoids excluding Eu, Mn and Ti, and among these, Ce, Tb, Sm, Mn , Dy, Yb force is also selected, and at least one metal element is also preferable in terms of luminance.
  • M is a divalent metal element, and a group force consisting of Mg, Ca, Sr, Ba, and Zn is selected. Contains at least 90 mol% of 2 or more types.
  • M 1 is a trivalent metal element, is intended to include A1 80 m ol% or more.
  • M IV represents a tetravalent metal element, which includes Si or 90 mol%
  • A is Li, Na
  • K Is one or more metal elements selected from the group consisting of: ⁇ , is a number satisfying 0 ⁇ ′ ⁇ 1.0, y is a number satisfying 0 ⁇ y ⁇ 0.2, and w Is a number that satisfies 0 ⁇ w ⁇ 0.2.
  • the chemical composition represented by the general formula [30] is preferably represented by the following general formula [31].
  • M is a divalent metal element, and a group force consisting of Mg, Ca, Sr, Ba, and Zn is also selected.
  • M ′′ is particularly preferably 100 mol%, more preferably 90 mol% or more, and more preferably 80 mol% or more of Ca and Z or Sr in total. Is most preferred Yes.
  • the ratio of Ca to the total of Ca and Sr in M ′′ is preferably more than 10 mol%, and most preferably 100 mol%, that is, M ′′ is composed only of Ca.
  • M ′′ may contain an element that can be co-activated with Eu, such as Mn.
  • M 1 " is a trivalent metal element and contains 80 mol% or more of A1.
  • elements other than A1 in M 1 " include Ga, In, B, Forces including Sc, Y, Bi, Sb, etc. Among these, Ga, In, Sc, and Y are preferable.
  • ⁇ " 1 contains 100 mol% of A1 containing 9 Omol% or more, that is, it is most preferable that M" 1 can only help A1.
  • M IV is a tetravalent metal element and contains 90 mol% or more of Si. From the viewpoint of brightness, as the elements other than Si in M IV, Ge, Sn, Zr, Hf and the like, Ge virtuous preferable among this. From the viewpoint of luminance, it is most preferable that M IV can be made of only Si.
  • A is one or more monovalent metal elements selected from the group force of Li, Na, and K force. From the viewpoint of brightness, A is more preferably Li and Z or Na. It is.
  • pentavalent and hexavalent elements other than monovalent, divalent, trivalent, and tetravalent valences are expressed by the formula [31] 0. O5mol It may be introduced in the following range (less than 0.05 mol with respect to lmol in the formula [31]). In this case, it is preferable to introduce the charge compensation while maintaining the force because it is difficult to cause lattice defects that cause a decrease in luminance.
  • y is a parameter representing the amount of Eu.
  • y is the molar ratio of Eu and is a number satisfying 0 ⁇ y ⁇ 0.2.
  • concentration quenching occurs, and when it is less than 0.003, light emission tends to be insufficient. Therefore, y is preferably 0.003 ⁇ y ⁇ 0.2.
  • x ' is a parameter representing the presence state of one or more monovalent metal elements selected from the group consisting of Li, Na and K, which is A in the host crystal.
  • ⁇ ' was introduced so that the principle of electrical neutrality was maintained for M ", Mm , and MIV ions.
  • a number that satisfies 0.5. From the point of luminance, X is preferably 0.02 ⁇ ⁇ ' ⁇ 0.4 force, more preferably 0.03 ⁇ ⁇ ' ⁇ 0.35 force! / ⁇ .
  • the general formula [31] is a formula representing a theoretical substance.
  • the oxygen and nitrogen contents in the resulting material may differ from the theoretical values, but the slight deviation in oxygen and nitrogen contents caused by this will not adversely affect the luminescence properties.
  • the content of nitrogen and the content of nitrogen may slightly deviate from the values of the above formula [31].
  • the matrix crystal of this phosphor is ASi N (where A is the same as CaAlSiN).
  • Table 3 shows the values of a, b in orthorhombic Cmc2 using the following formula [2] from the measured values of 2 ⁇ when the plane index (hkl) is (400), (020), (002). , c Determine the lattice constant and use this constant
  • is the wavelength of the Cu ⁇ ⁇ ray used as the X-ray source 1.54056 ⁇ . From the analysis of the X-ray diffraction pattern, it is orthorhombic and belongs to the space group Cmc2, which is an intermediate region between CaAlSiN and LiSi N.
  • the main crystal phase in the phosphor of the general formula [31] preferably belongs to the space group Cmc2. However, depending on the synthesis conditions such as the firing temperature, some of them are monoclinic instead of orthorhombic and differ from Cmc2. However, even in this case, since the change in the light emission characteristics is slight, it can be used as a high-luminance phosphor.
  • the crystal phase having the chemical composition represented by the general formula [31] (hereinafter sometimes referred to as “crystal phase [31]”) is highly purified and contains as much as possible, and most preferably the crystal phase [31
  • the phosphor composed of a single phase has excellent fluorescence emission characteristics.
  • the phosphor may be a mixture of a crystalline phase other than the crystalline phase [31] and a Z or amorphous phase as long as the characteristics do not deteriorate.
  • the content of the crystal phase [31] in the phosphor is desirably 20% by mass or more in order to obtain high luminance. More preferably, the luminance is remarkably improved when the content of the crystalline phase [31] in the phosphor is 50 mass% or more.
  • the content ratio of the crystalline phase [31] in the phosphor can be determined by X-ray diffraction measurement, and the specific power of the strongest peak intensity of the crystalline phase [31] and other phases can be obtained.
  • the chemical composition represented by the general formula [1] may be the following general formula [41].
  • the crystal structure of this crystal phase belongs to the same space group Cmc2 as CaAlSiN.
  • Sm Eu Gd Tb Dy Ho Er Tm Yb Lu at least one selected from the group consisting of Mn and 1 Among these, at least one selected from the group force consisting of Eu Tb Sm Mn Dy Yb, etc.
  • the point power is also preferable.
  • M is the sum of Mg Ca Sr Ba, and Zn is a divalent metal element accounts for at least 90 mol%
  • M 1 is a trivalent metal element A1 account for at least 80 mol%
  • M IV is a tetravalent metal element in which Si accounts for 90mo 1% or more
  • A is one or more metal elements selected from the group power of Li Na and K force
  • ⁇ ' is 0 ⁇ ' ⁇ 1.
  • a number that satisfies 0, y is a number that satisfies 0 ⁇ y ⁇ 0.2
  • z is a number that satisfies 0 ⁇ z ⁇ 0.2.
  • M is a divalent metal element and contains at least 90 mol% of one or more selected from the group consisting of Mg Ca Sr Ba and Zn. From the viewpoint of the luminance of the phosphor.
  • M ′′ is particularly preferably 100 mol%, more preferably 90 mol% or more, and more preferably 90 mol% or more in total, of Ca and Z or Sr.
  • the ratio of Ca to the total of Ca and Sr in M "exceeds 10 mol% is 100 mol%, That is, it is most preferable that M "can only be Ca.
  • M may contain an element that can be co-activated with Ce, such as Mn.
  • M 1 " is a trivalent metal element containing 80 mol% or more of A1.
  • elements other than A1 in M 1 " include Ga, In, B, Forces including Sc, Y, Bi, Sb, etc. Among these, Ga, In, Sc, and Y are preferable.
  • ⁇ " 1 contains 100 mol% of A1 containing 9 Omol% or more, that is, it is most preferable that M" 1 can only help A1.
  • M IV is a tetravalent metal element and contains 90 mol% or more of Si. From the viewpoint of brightness, as the elements other than Si in M IV, Ge, Sn, Zr, Hf and the like, Ge virtuous preferable among this. From the viewpoint of luminance, it is most preferable that M IV can be made of only Si.
  • A is one or more monovalent metal elements selected from the group force of Li, Na, and K force. From the viewpoint of brightness, A is more preferably Li and Z or Na. It is.
  • pentavalent and hexavalent elements other than monovalent, divalent, trivalent, and tetravalent valences are expressed by the formula [41]. It may be introduced in the following range (less than 0. 5 mol with respect to 1 mol of the formula [41]). In this case, it is preferable to introduce the charge compensation while maintaining the force because it is difficult to cause lattice defects that cause a decrease in luminance.
  • y is a parameter representing the amount of Ce.
  • y is the molar ratio of Ce and is a number satisfying 0 ⁇ y ⁇ 0.2.
  • concentration quenching occurs, and when it is less than 0.003, light emission tends to be insufficient. Therefore, y is preferably 0.003 ⁇ y ⁇ 0.2.
  • x ' is a parameter representing the presence state of one or more monovalent metal elements selected from the group consisting of Li, Na and K, which is A in the host crystal.
  • ⁇ ' was introduced so that the principle of electrical neutrality was maintained for M ", Mm , and MIV ions.
  • ⁇ , ⁇ 1.0 the number satisfying X. From the point of brightness, X is preferably 0.002 ⁇ ⁇ ' ⁇ 0.4 force, more preferably 0.03 ⁇ ⁇ ' ⁇ 0.35 force! / ⁇ .
  • is the molar ratio of the second activation element Ln, and is a number satisfying 0 ⁇ z ⁇ 0.2.
  • the general formula [41] is a formula representing a theoretical substance.
  • the oxygen and nitrogen contents in the resulting material may differ from the theoretical values, but the slight deviation in oxygen and nitrogen contents caused by this will not adversely affect the luminescence properties.
  • the content of nitrogen and the content of nitrogen may slightly deviate from the values of the above formula [41].
  • the crystal structure of the crystal phase having the chemical composition represented by the general formula [41] is the same as the crystal structure of the crystal phase having the chemical composition represented by the general formula [31].
  • the main crystalline phase preferably belongs to the space group Cmc2. However, depending on the synthesis conditions such as the firing temperature, some
  • It may be monoclinic instead of orthorhombic and may have a space group different from Cmc2.
  • the change in the light emission characteristics is slight, it can be used as a high-luminance phosphor.
  • the crystal phase having the chemical composition represented by the general formula [41] (hereinafter sometimes referred to as “crystal phase [41]”) is highly purified and contains as much as possible, and most preferably the crystal phase [41
  • the phosphor composed of a single phase has excellent fluorescence emission characteristics.
  • the phosphor may be a mixture of a crystalline phase other than the crystalline phase [41] and a Z or amorphous phase as long as the characteristics are not deteriorated.
  • the content of the crystal phase [41] in the phosphor is preferably 20% by mass or more in order to obtain high luminance. More preferably, the luminance is remarkably improved when the content of the crystalline phase [41] in the phosphor is 50% by mass or more.
  • the content ratio of the crystalline phase [41] in the phosphor can be determined by X-ray diffraction measurement to determine the specific force of the strongest peak intensity of the crystalline phase [41] and other phases.
  • point powers such as dispersibility in rosin and fluidity of the powder have an average particle size of 0.1 ⁇ m or more and 20 ⁇ m or less. Further, by making the powder into single crystal particles in this range, the emission luminance is further improved.
  • the impurities contained in the phosphor be as small as possible.
  • the selection of raw material powder and the synthesis process should be performed so that the total of these elements is 500 ppm or less Control is good.
  • the conductive inorganic substance When the phosphor of the present invention is used for an excitation with an electron beam, the conductive inorganic substance is converted into a crystalline phase [1], [11], [21], [ It can be mixed with [31] or [41] to impart conductivity to the phosphor.
  • the conductive inorganic substance an oxide, an oxynitride, a nitride, or a mixture thereof containing one or more elements selected from Zn, Al, Ga, In, and Sn forces is also selected. Can be mentioned.
  • the other crystalline phase and the Z or amorphous phase may be an inorganic phosphor having a chemical composition different from the chemical composition represented by the general formula [1].
  • the phosphor of the present invention is a mixture of metal compounds, and a raw material mixture that can constitute a composition represented by the general formula [11], [21], [31] or [41] by firing. Can be produced by firing in an inert atmosphere containing nitrogen in a temperature range of 1200 ° C to 2200 ° C.
  • the main crystal of the phosphor of the general formula [11] belongs to the space group Cmc2, but the synthesis of the firing temperature etc.
  • the light emission characteristic of the luminescent center element Eu site is slight, so that it can be used as a high-luminance phosphor.
  • A1 and Si composite oxide A1 and Ca composite oxide, Si and Ca composite oxide, or Al, Si and Ca composite oxide. Is good
  • a mixture of calcium, calcium nitride, lithium nitride, silicon nitride, and aluminum nitride powder is preferably used as the starting material.
  • a mixture of palladium, calcium nitride, lithium nitride, silicon nitride, and aluminum nitride powder should be used as a starting material.
  • the mixed powder of the metal compound may be fired in a state where the volume filling rate is maintained at 40% or less.
  • the volume filling factor can be obtained from (bulk density of mixed powder) ⁇ (theoretical density of mixed powder) ⁇ 100 [%].
  • Crystals with few surface defects can be synthesized because the crystal growth of Group 3 crystals in free space reduces the contact between crystals.
  • the furnace used for firing has a high firing temperature and the firing atmosphere is an inert atmosphere containing nitrogen
  • the metal resistance heating method or the graphite resistance heating method is used as a material for the high temperature part of the furnace.
  • An electric furnace using carbon is preferable.
  • a sintering method is preferred in which mechanical pressure is not applied from the outside, such as an atmospheric pressure sintering method or a gas pressure sintering method.
  • the firing time varies depending on the firing temperature, but is usually about 1 to 10 hours.
  • a A powder frame is formed by an industrially commonly used powder mill such as an etmill. It is preferable that the powder frame is formed so that the average particle size of the powder is 20 ⁇ m or less, particularly 0.1 ⁇ m or more and 5 ⁇ m or less. Powders with an average particle size of more than 20 m have poor fluidity and dispersibility in rosin, and the intensity of light emission varies depending on the part when forming a lighting fixture or image display device in combination with a light emission source or excitation source. Becomes uneven. If the average particle size is pulverized until the average particle size is less than 0. Lm, the amount of defects on the surface of the phosphor powder increases.
  • an alloy containing at least two kinds of metal elements constituting the phosphor preferably an alloy containing all of the metal elements constituting the phosphor, is prepared, and the obtained alloy is contained in a nitrogen-containing atmosphere. It can manufacture by heat-processing under pressure.
  • an alloy containing a part of the metal elements constituting the phosphor is prepared, and the obtained alloy is heat-treated in a nitrogen-containing atmosphere under pressure, and then the remaining metal element sources constituting the phosphor are further treated. It can also be produced by mixing with a raw material compound and subjecting it to a heat treatment.
  • the phosphor manufactured through the alloy becomes a phosphor having a high luminance with few impurities.
  • the obtained phosphor is subjected to a known surface treatment, for example, calcium phosphate treatment, if necessary, and the force is dispersed in the resin.
  • the phosphor of the present invention has a red or orange color by a combination of a specific crystal matrix and an activator.
  • the phosphor of the general formula [11] has a solid solution ratio of M I ⁇ , that is, X
  • the emission wavelength and emission peak width can be adjusted by changing the value of.
  • the mode may be set to a spectrum required based on the application. Above all, CaAlSiN
  • the phosphor of the general formula [21] can be obtained by changing the emission wavelength and emission by changing the amount of Ce, the type and the amount of the second activator Ln, Z, or the amount of oxygen ions.
  • the peak width can be adjusted.
  • the mode may be set to the spectrum required based on the application.
  • the phosphors represented by the general formulas [31] and [41] as described above have a fixed amount of AM IV N, which is an additive amount of the activator Eu.
  • the emission wavelength and emission peak width can be adjusted by changing the dissolution ratio.
  • the mode can be set to the required spectrum based on the application.
  • the phosphor of the present invention has a broad excitation range from electron beam, X-ray, and ultraviolet to visible light, compared to ordinary oxide phosphors and existing nitride or oxynitride phosphors. It is characterized in that it emits orange or red light of 570 nm or more, for example, 550 to 700 nm, and the emission wavelength and emission peak width can be adjusted. Due to this light emission characteristic, the phosphor of the present invention is suitable for a light emitting device, a lighting fixture, an image display device, a pigment, and an ultraviolet absorber. In addition, the phosphor of the present invention is excellent in heat resistance because it does not deteriorate even when exposed to high temperatures, and also excellent in long-term stability in an acid atmosphere and moisture environment.
  • the excitation source may be ultraviolet light or visible light having a wavelength of 100 nm to 570 nm.
  • the phosphor of the present invention When the phosphor of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium. It can also be used as a phosphor mixture containing the phosphor of the present invention.
  • the phosphor of the present invention dispersed in a liquid medium will be referred to as “phosphor-containing composition” as appropriate.
  • liquid medium that can be used in the phosphor-containing composition of the present invention exhibits a liquid property under the desired use conditions, and preferably disperses the phosphor of the present invention and performs an undesirable reaction. Anything that does not occur can be selected according to the purpose.
  • liquid media include addition-reactive silicone resins and condensation-reactive types before curing. Examples include ricone resin, modified silicone resin, epoxy resin, polybule resin, polyethylene resin, polypropylene resin, and polyester resin. One of these liquid media may be used alone, or two or more thereof may be used in any combination and ratio.
  • the amount of the liquid medium used may be appropriately adjusted according to the application, but generally, the weight ratio of the liquid medium to the phosphor of the present invention is usually 3% by weight or more, preferably 5%. It is in the range of not less than wt% and usually not more than 30 wt%, preferably not more than 15 wt%.
  • the phosphor-containing composition of the present invention may contain other optional components depending on its use and the like.
  • Other components include diffusing agents, thickeners, extenders, interference agents and the like.
  • silica-based fine powder such as Aerosil, alumina and the like can be mentioned.
  • the light-emitting device of the present invention is configured to include at least a first light-emitting body and a second light-emitting body that emits visible light when irradiated with light from the first light-emitting body.
  • the first light emitter in the light emitting device of the present invention emits light that excites a second light emitter to be described later.
  • the emission wavelength of the first illuminant is not particularly limited as long as it overlaps the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • a light emitter having an emission wavelength from the near ultraviolet region to the blue region is used.
  • a light emitter having an emission wavelength of usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less is used.
  • an ultraviolet (or purple) illuminant that emits light with a wavelength of 330 nm to 420 nm and a blue illuminant that emits light with a wavelength of 420 nm to 500 nm are preferred.
  • a semiconductor light emitting element As the first light emitter, a semiconductor light emitting element is generally used. Specifically, a light emitting diode (hereinafter abbreviated as "LED” as appropriate) or a semiconductor laser diode. (Semiconductor laser diode, hereinafter abbreviated as “LD” where appropriate) can be used.
  • LED light emitting diode
  • LD semiconductor laser diode
  • the first light emitter is a GaN-based LED or L that uses a GaN-based compound semiconductor. D is preferred. This is because GaN-based LEDs and LDs are extremely bright at very low power by combining with the above phosphors, which have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region. It is also the power to obtain luminescence. For example, for a current load of 20 mA, GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC. In GaN-based LEDs and LDs, Al Ga N light-emitting layer, GaN light-emitting layer, or In Ga
  • a GaN-based LD with N light emitting layer is particularly preferred because its light emission intensity is very strong.
  • the multi-quantum well structure has very high emission intensity.
  • the value of X + Y is usually a value in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light-emitting characteristics.
  • the GaN-based LED has these light-emitting layer, p-layer, n-layer, electrode, and substrate as basic components, and the light-emitting layer is composed of n-type and p-type AlGaN layers, GaN layers, or In Sand with Ga N layer etc.
  • the ability to have a heterostructure that has been turned on is preferable because it has a high luminous efficiency, and a structure in which the heterostructure is a quantum well structure is more preferable because it has a higher luminous efficiency.
  • the second light emitter in the light emitting device of the present invention contains one or more of the phosphors of the present invention described above, and emits visible light by irradiation with light from the first light emitter. Emitting illuminant. Depending on the application, etc., one or two of the other phosphors (red phosphor, yellow phosphor, green phosphor, blue phosphor, etc.) described later are appropriately used to obtain a desired emission color. You may contain above.
  • an ultraviolet LED that emits light having a wavelength of 330 nm to 420 nm, and 420 ⁇ !
  • a blue phosphor that emits fluorescence with an emission peak at a wavelength of ⁇ 500nm, and 500 ⁇ !
  • a green phosphor that emits fluorescence having an emission peak at a wavelength of ⁇ 570 nm and the phosphor of the present invention described above.
  • the blue phosphor is BaMgAl 2 O: Eu
  • the green phosphor is BaMgAl 2 O: Eu, Mn.
  • A-Sialon: Eu Of these, Ca- ⁇ -sialon in which Eu is dissolved is preferable because of its high luminance. In this configuration, when blue light emitted by the LED is irradiated onto the phosphor, red and yellow light is emitted, and these and the blue light of the LED itself are mixed to produce a white or reddish light bulb-colored light emitting device. It becomes.
  • a blue LED light emitting element that emits light with a wavelength of 420 nm to 500 nm and excited by this wavelength, 500 ⁇ !
  • a green phosphor that emits fluorescence having an emission peak at a wavelength of ⁇ 570 nm or less
  • Y Al 2 O 3: Ce can be cited as a green phosphor.
  • red and green light When colored light is applied to the phosphor, red and green light is emitted, and the blue light of the LED itself is mixed to form a white light emitting device.
  • a blue LED light emitting element that emits light having a wavelength of 420 nm to 500 nm and the above-described phosphor of the present invention.
  • the emission color of the phosphor of the present invention and the blue light of the LED itself are mixed to form a white light emitting device.
  • the following can be used as other phosphors.
  • the red phosphor is composed of, for example, fractured particles having a red fracture surface, and emits light in the red region (Mg, Ca, Sr, Ba) Si N: Eu-pium-activated aluminum represented by Eu. Power
  • JP 2004-300247 A Group force consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in this publication contains at least one element selected.
  • Oxynitrides and Z or acids A phosphor containing sulfur oxides and containing an oxynitride having an alpha sialon structure in which a part or all of the Al element is substituted with a Ga element can also be used in this embodiment. . These are phosphors containing oxynitride and Z or oxysulfide.
  • red phosphors include Eu-activated oxysulfide fluorescence such as (La, Y) O S: Eu.
  • Y (V, P) 0 Eu
  • Y 2 O Eu activated oxide phosphor such as Eu
  • Eu-activated sulfide phosphor YAIO: Eu-activated aluminate phosphor such as Eu, LiY (SiO 2)
  • Eu activated nitride phosphor such as Eu
  • (Mg, Ca, Sr, Ba) AlSiN Ce activated nitride such as Ce
  • Activated silicate phosphor 3.5MgO-0. 5MgF-GeO: Mn-activated germanate such as Mn
  • Bi-activated oxide phosphors such as Bi, Bi, (Gd, Y, Lu, La) O 3: £ 11 1 and other £ 11, Bi-activated acids
  • Sulfide phosphor (Gd, Y, Lu, La) VO: Eu, Bi activated vanadate phosphor such as Eu, Bi, S
  • rY S Eu, Ce activated sulfide phosphors such as Eu and Ce, CaLa S: Ce activated sulfide phosphors such as Ce
  • Active nitride phosphor (Ca, Sr, Ba, Mg) (PO) (F, Cl, Br, OH): Eu, Mn, etc. with Eu, Mn
  • Active halophosphate phosphor ((Y, Lu, Gd, Tb) Sc Ce) (Ca, Mg) (Mg, Zn) Si G
  • Ce-activated silicate phosphors such as 1-x xy 2 1-r 2 + r z-q e O.
  • the red phosphor includes ⁇ -diketonate, ⁇ -diketone, aromatic carboxylic acid, or a red organic phosphor having a rare earth element ion complex power with a ligand such as Bronsted acid, a perylene-based phosphor.
  • Pigments eg, dibenzo ⁇ [f, f '] —4,4 ′, 7,7′—tetraphenyl ⁇ Diindeno [1,2,3-—cd: l, 2,2,3,1 lm] perylene
  • anthraquinone pigments lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments
  • isoindolinone pigments phthalocyanine pigments, triphenylmethane basic dyes, indanthrone pigments, indophenol pigments, cyanine pigments, and dioxazine pigments.
  • red phosphors those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 6 lOnm or less are preferably used as orange phosphors. It can.
  • orange phosphors are (Sr, Ba) SiO 2: Eu, (
  • the green phosphor is composed of, for example, fractured particles having a fracture surface, and emits light in the green region.
  • Silicon-oxynitride phosphor composed of fractured particles with fractured surfaces, and emits light in the green region (Ba, Ca, Sr, Mg) SiO: Eu-pium-activated activation force expressed by Eu
  • Examples thereof include silicate earth-based phosphors.
  • green phosphors include SrAlO: Eu, (Ba, Sr, Ca) AlO: Eu, etc.
  • Mn-activated silicate phosphor such as Mn, CeMgAl 2 O: Tb, Y A1 0: Tb-activated key such as Tb
  • Al, Ga) O Ce, (Y, Ga, Tb, La, Sm, Pr, Lu) (Al, Ga) O: Ce-activated aluminium such as Ce
  • Salt phosphor CaSc 2 O 3: Ce-activated oxide phosphor such as Ce, SrSi O N: Eu, (Sr, Ba, Ca)
  • Eu-activated aluminate phosphor such as 10 17 2 4, (La, Gd, Y) OS: Tb-activated Tb-activated oxysulfide fluorescence Body, LaPO: Ce, Tb activated phosphor phosphor such as Ce, Tb, ZnS: Cu, Al, ZnS: Cu, Au,
  • Sulfide phosphors such as A1, (Y, Ga, Lu, Sc, La) BO: Ce, Tb, Na Gd B O: Ce, Tb, (Ba
  • Mn-activated halosilicate phosphor such as Eu, Mn, (Sr, Ca, Ba) (Al, Ga, In) S: Eu, etc.
  • green phosphor pyridine phthalimide condensed derivatives, benzoxazinone series, quinazolinone series, coumarin series, quinophthalone series, naltalimide series and other fluorescent dyes, terbium complexes such as hexyl salicylate It is also possible to use an organic phosphor such as a terbium complex having as a ligand.
  • the blue phosphor is composed of, for example, grown particles having a substantially hexagonal shape as a regular crystal growth shape, and is represented by BaMgAl 2 O 3: Eu that emits light in the blue region.
  • Palladium-activated barium magnesium aluminate-based phosphor composed of grown particles with a regular spherical crystal growth shape, which emits light in the blue region (Ca, Sr, Ba) (PO) CI: Eu-pium-activated calcium halophosphate phosphor represented by Eu,
  • Examples thereof include an alkaline earth aluminate-based phosphor activated by mouthpium.
  • blue phosphors include Sn-activated phosphate phosphors such as Sr P O: Sn, S
  • SrGa S Ce
  • CaGa S Ce-activated thiogallate phosphor such as Ce, (Ba, Sr, Ca) MgAl
  • Eu, BaMgAl O Eu-activated aluminate phosphor such as Eu, Tb, Sm, (Ba, Sr, Ca)
  • MgAl 2 O Eu, Mn activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba, Mg) (PO)
  • Eu-activated phosphate phosphor such as Eu
  • ZnS Ag
  • ZnS sulfide phosphor
  • Ag Ag
  • Al Y SiO
  • Ce-activated silicate phosphor such as Ce
  • tungstate phosphor such as CaWO
  • Eu Mn activated borate phosphate phosphor such as Eu, Sr Si O-2SrCl: Eu activated such as Eu
  • the blue phosphor includes, for example, naphthalic acid imide-based, benzoxazole-based, styryl-based, coumarin-based, bilarizone-based, triazole-based fluorescent dyes, organic phosphors such as thulium complexes, and the like. It is also possible to use it.
  • the average particle diameter of these phosphor particles is not particularly limited, but is usually lOOnm or more, preferably 2 ⁇ m or more, particularly preferably 5 ⁇ m or more, and usually 100 ⁇ m or less, preferably 50 ⁇ m or less. Particularly preferably, it is 20 ⁇ m or less.
  • FIG. 3 shows a schematic structural diagram of a white light emitting device as a lighting device which is an example of an embodiment of the lighting fixture of the present invention.
  • the luminaire shown in FIG. 3 has a structure in which an LED 2 serving as a light-emitting light source disposed in a container 7 is covered with a resin layer 6 in which the phosphor 1 is dispersed. LED 2 is directly connected on conductive terminal 3 and is connected to conductive terminal 4 with wire bond 5.
  • the LED 2 When an electric current is passed through the conductive terminals 3 and 4, the LED 2 emits a predetermined light, and the phosphor 1 is excited by this light to emit fluorescence, and the LED light and fluorescence, or the fluorescent light are mixed, and white to It functions as an illumination device that emits spherical light.
  • the image display device of the present invention is composed of at least an excitation source and the phosphor of the present invention. Preferably, it further has a color filter as a component.
  • Image display devices include fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), and cathode ray tubes (CRT).
  • the phosphor of the present invention is a vacuum ultraviolet ray having a wavelength of 100 nm to 190 nm, a wavelength of 190 nm to 380 n. It has been confirmed that light is emitted by excitation of m ultraviolet rays, electron beams, and the like, and an image display apparatus as described above can be configured by a combination of these excitation sources and the phosphor of the present invention.
  • FIG. 4 shows a schematic configuration diagram of a PDP as an image display device which is an embodiment of the image display device of the present invention.
  • the phosphor 8, the green phosphor 9 and the blue phosphor 10 of the present invention are coated on the inner surfaces of the senoles 11, 12, 13 respectively.
  • a vacuum ultraviolet ray is generated by Xe discharge in the cells 11, 12, 13 and this excites the phosphors 8 to 10, and red, green Blue visible light is emitted, and this light is observed from the outside through the protective layer 20, the dielectric layer 19, and the glass substrate 22, and functions as an image display.
  • Reference numerals 18 and 21 denote a dielectric layer on the back side and a glass substrate, respectively.
  • the phosphor of the present invention comprising an inorganic compound crystal phase having a specific chemical composition has a red color, it can be used as a red pigment or a red fluorescent pigment.
  • a red object color is observed, but since the color is good and it does not deteriorate over a long period of time, the present invention
  • the phosphor is suitable for red inorganic pigments. For this reason, when used in paints, inks, paints, glazes, colorants added to plastic products, etc., good color development can be maintained high over a long period of time.
  • the nitride phosphor of the present invention absorbs ultraviolet rays, it is also suitable as an ultraviolet absorber. For this reason, when used as a paint, applied to the surface of a plastic product, or kneaded into a plastic product, it is possible to effectively protect a product having a high UV blocking effect from UV degradation.
  • Silicon nitride (Si) with an average particle size of 0, oxygen content of 0.93 wt% and ⁇ -type content of 92%
  • Example I 1 to: L 1 Comparative Example I 1 to 5
  • This mixed powder was placed in a boron nitride crucible and set in an electric furnace of a graphite resistance heating system.
  • the firing atmosphere is evacuated using a diffusion pump, the room temperature force is increased to 800 ° C at a rate of 500 ° C per hour, and nitrogen is introduced at a temperature of 800 ° C with a purity of 999 vol%.
  • the obtained fired body was coarsely pulverized and then manually pulverized using a crucible and mortar made of sintered silicon nitride to obtain a phosphor powder.
  • the material Ca Al Si N O was obtained.
  • composition of the obtained substance was analyzed as follows.
  • the alkaline earth metal element contained in the phosphor is substituted with an element or a vacancy having a lower valence than the alkali earth metal element.
  • the rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • the alkaline earth metal element contained in the phosphor is substituted with an element or a vacancy having a lower valence than the alkaline earth metal element, or ⁇ means that the rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • the oxygen source is Al 2 O 3 or SiO 2.
  • Example 1-1 in the case of using the general formula Si N O instead of Si N O
  • Example I—12-22 the smell of (Eu Ca AlSiN) (Si N O)
  • Example I1 0.008 / (l-x) (l-0.008 / (l-x)) 3 1-x (3n + 2) / 4 nx phosphors having different n and x were produced by the same production method as in Example I1. The test method was the same as in Example I1.
  • Example 1-9 the values of Example 1-9 and Comparative Examples 1-3 and 5 are also shown.
  • the alkaline earth metal element contained in the phosphor is substituted with an element having a lower valence or a vacancy than the alkali earth metal element.
  • the rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • FIG. 8 shows emission spectra of the phosphors obtained in Examples I-12 to 18.
  • Silicon nitride (Si) with an average particle size of 0.5 m, oxygen content of 0.93 wt% and ⁇ -type content of 92%
  • This mixed powder is placed in a boron nitride crucible and placed in a graphite resistance heating type electric furnace. I did.
  • the firing atmosphere is evacuated by a diffusion pump, the room temperature force is raised to 800 ° C at a rate of 500 ° C per hour, and at 800 ° C, nitrogen having a purity of 99.999 vol% is added.
  • the pressure was introduced to 0.5 MPa, the temperature was raised to 1800 ° C at 500 ° C per hour, and maintained at 1800 ° C for 2 hours.
  • the obtained fired body was coarsely pulverized and then manually pulverized using a crucible and a mortar made of sintered silicon nitride to obtain a phosphor powder.
  • composition of the obtained substance was analyzed as follows.
  • a sample was placed in a platinum crucible, 0.5 g of sodium carbonate and 0.2 g of boric acid were added and heated to melt, and then dissolved in 2 ml of hydrochloric acid to prepare a measurement solution with a constant volume of 100 ml. .
  • the liquid sample was analyzed by ICP emission spectroscopic analysis to determine the amount of Si, Al, Eu, Ce, and Ca in the powder sample.
  • 20 mg of the sample was put into a tin capsule, which was placed in a nickel basket, and oxygen and nitrogen in the powder sample were quantified using a LECO TC-436 type oxygen-nitrogen analyzer.
  • Fig. 11 shows the results of X-ray diffraction of the phosphors of Examples II 1, 5, 8, 10 and Comparative Example II 1. Figure 11 shows that the crystal space group Cmc2 and orthorhombic state are maintained.
  • the alkaline earth metal element contained in the phosphor is an element having a lower valence than the alkaline earth metal element or
  • the rare earth metal element contained in the phosphor is replaced with a vacancy, or an element having a valence lower than that of the rare earth metal element or a vacancy is substituted.
  • the obtained phosphors had alkaline earth metal elements contained in the phosphor replaced with elements or vacancies having a lower valence than the alkaline earth metal elements. Or a rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • the alkaline earth metal element contained in the phosphor is not substituted with an element or a vacancy having a lower valence than the alkaline earth metal element, and the phosphor Even if the rare earth metal element contained in is replaced with an element having a lower valence or a vacancy than the rare earth metal element.
  • FIG. 10 shows emission spectra when the phosphors obtained in Examples II-1, 5, 8, 10 and Comparative Example II-1 were excited with light having a wavelength of 465 nm.
  • Example II 5 in which the activator was Ce alone was compared with Comparative Example II 1 in which Eu was alone, the emission wavelength peak shifted to a short wavelength due to Eu being replaced by Ce.
  • Example II 8 to which both Ce and Eu were added, light emission in the wavelength range almost in between was observed.
  • Example 3—3, 4 from a different viewpoint, it was changed to a base crystal in which SiN 2 O was dissolved in CaAlSiN.
  • Silicon nitride (Si) with an average particle size of 0.5 m, oxygen content of 0.93 wt% and ⁇ -type content of 92%
  • the raw material powders shown in Table 9 were weighed in the amount (g) shown in Table 9 and mixed for 10 minutes with an agate pestle and mortar, and then the resulting mixture. was filled in a boron nitride crucible.
  • the powder weighing and mixing steps were all performed in a glove botton capable of maintaining a nitrogen atmosphere with a water content of 1 ppm or less and oxygen of 1 ppm or less.
  • the boron nitride crucible containing the mixed powder was set in a graphite resistance heating type electric furnace.
  • the firing atmosphere is evacuated by a diffusion pump, the temperature is raised from room temperature to 800 ° C at a rate of 500 ° C per hour, and nitrogen at a temperature of 800 ° C is introduced with a purity of 99.999 volume%.
  • the pressure was 0.5 MPa, the temperature was raised to 500 ° C / hour up to the maximum temperature of 1800 ° C, and held at this maximum temperature for 2 hours (the holding time at this maximum temperature is the firing time).
  • the obtained fired body was coarsely pulverized, and then powdered by hand using a crucible and a mortar made of sintered silicon nitride.
  • composition of the obtained substance was analyzed as follows.
  • FIG. 12 shows emission spectra when the phosphors obtained in Examples III-1 to 4 and Comparative Example III-1 were excited with light having a wavelength of 465 nm.
  • Example III-1 In order to see the effect of boron nitride addition, it was carried out in the same manner as in Example III-1 except that 2000 ppm and 4000 ppm of boron nitride were added to the raw material composition of Comparative Example III 1, and the evaluation results were It is shown in Table 10.
  • Example III-1 In order to see the influence of the firing temperature or firing atmosphere, the evaluation was performed in the same manner as in Example III-1, except that the raw material composition of Comparative Example III-1 was changed to the firing conditions shown in Table 9. It is shown in Table 10.
  • Example III From the results of 1 to 4, it can be seen that when x ′ is greater than 0, the relative luminance increases.
  • the alkaline earth metal element contained in the phosphor is substituted with an element or a vacancy having a lower valence than the alkaline earth metal element.
  • the rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • the alkaline earth metal element contained in the phosphor is substituted with an element or a vacancy having a lower valence than the alkaline earth metal element.
  • a rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower valence than the rare earth metal element.
  • Silicon nitride (Si) with an average particle size of 0.5 m, oxygen content of 0.93 wt% and ⁇ -type content of 92%
  • composition formula (Ca Sr Ce AlSiN) (LiSi N)
  • This mixed powder was placed in a boron nitride crucible and set in a graphite resistance heating type electric furnace.
  • the firing atmosphere is evacuated with a diffusion pump, and the room temperature is increased to 800 ° C at a rate of 1200 ° C per hour.
  • nitrogen with a purity of 99.999 vol% is introduced.
  • the pressure was set to 0.992 MPa, the temperature was raised at 1250 ° C. per hour up to the firing temperature shown in Table 13, and held at the firing temperature shown in Table 13 for 4 hours.
  • the obtained fired body is washed with water to remove excess Li N, and then coarsely pulverized and then manually powdered using an alumina mortar.
  • Fig. 13 shows an XRD pattern of the obtained phosphor powder.
  • FIG. 14 shows an emission spectrum of the obtained phosphor when excited with light having a wavelength of 455 nm.
  • the component force Ca Sr Ce AlSiN) (LiSi N) is Ca Sr Ce
  • the alkaline earth metal element contained in the phosphor is substituted with an element or a vacancy having a lower valence than the alkaline earth metal element.
  • the rare earth metal element contained in the phosphor is replaced with an element or a vacancy having a lower atomic value than the rare earth metal element.
  • the phosphor of the present invention emits light with higher luminance than the conventional nitride phosphor or oxynitride phosphor, and is excellent as an orange or red phosphor.
  • it is suitable for white light emitting devices, lighting fixtures, VFDs, FEDs, PDPs, CRTs, etc., since it has low durability and excellent durability when exposed to an excitation source.
  • the phosphor of the present invention can be easily adjusted in emission wavelength and emission peak width, and thus has great industrial usefulness. In the future, it will be greatly utilized in material design for various light emitting devices, lighting, and image display devices. It can be expected to contribute to industrial development.

Abstract

 高輝度の発光を示し、橙色や赤色の蛍光体として優れ、さらに励起源に曝された場合の輝度の低下が少ない蛍光体は、下記一般式[1]で表される化学組成を有する結晶相を含有する。(1-a-b)(Ln’pMII’ 1-pMIII’MIV’N3)・a(MIV’ (3n+2)/4NnO)・b(AMIV’ 2N3)…[1]Ln’はランタノイド、Mn及びTiから選ばれる金属元素、MII’はLn’元素以外の2価の金属元素、MIII’は3価の金属元素、MIV’は4価の金属元素、AはLi、Na、及びKから選ばれる金属元素である。0<p≦0.2、0≦a、0≦b、a+b>0、0≦n、0.002≦(3n+2)a/4≦0.9

Description

明 細 書
蛍光体及びその利用
発明の分野
[0001] 本発明は、無機化合物を主体とする蛍光体と、この蛍光体の有する性質、すなわち 570nm以上の長波長の蛍光を発光する特性、を利用した照明器具、画像表示装置 、蛍光体混合物、蛍光体含有組成物、顔料、及び紫外線吸収剤に関する。
発明の背景
[0002] 蛍光体は、蛍光灯、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED )、プラズマディスプレイパネル (PDP)、陰極線管 (CRT)、白色発光装置などに用 いられている。蛍光体を発光させるためには、蛍光体を励起するためのエネルギーを 蛍光体に供給する。蛍光体は真空紫外線、紫外線、可視光線、電子線などの高いェ ネルギーを有する励起源により励起されて、紫外線、可視光線、赤外線を発する。し 力しながら、蛍光体は前記のような励起源に曝される結果、輝度が低下する。
[0003] そこで、従来のケィ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、ホウ酸塩 蛍光体、硫化物蛍光体、酸硫化物蛍光体などの蛍光体に代わり、輝度低下の少な い蛍光体として、サイアロン蛍光体が提案されている。
[0004] 従来、このサイアロン蛍光体は、窒化ケィ素(Si N )、窒化アルミニウム (A1N)、炭
3 4
酸カルシウム(CaCO )、及び酸化ユーロピウム(Eu O )を所定のモル比に混合し、
3 2 3
1気圧(0. IMPa)の窒素中において 1700°Cの温度で 1時間保持するホットプレス 法で焼成することにより製造されている(例えば、特許文献 1参照)。このプロセスで得 られる Euイオンを付活した α—サイアロンは、波長 450から 500nmの青色光で励起 されて波長 550から 600nmの黄色の光を発する蛍光体となる。
[0005] しカゝしながら、紫外発光ダイオードを励起源とする白色発光装置やプラズマデイス プレイなどの用途には、黄色だけでなく橙色や赤色に発光する蛍光体も求められて いた。また、青色発光ダイオードを励起源とする白色発光装置においては、演色性 向上のため橙色や赤色に発光する蛍光体が求められていた。
[0006] 赤色に発光する蛍光体として、 Ba Si N結晶に Euを付活した無機物質 (Ba Eu Si N: a = 0. 14〜: L 16)が報告されている(非特許文献 1参照)。また、種々の組成
5 8
のアルカリ金属とケィ素の 3元窒化物、 M Si N (M = Ca、 Sr、 Ba、 Zn;b、 c、 dは種 b e d
々の値)を母体とする蛍光体が報告されている (非特許文献 2参照)。同様に、 M Si e f
N: Eu (M = Caゝ Sr、 Ba、 Zn;g = 2Z3e + 4Z3f)も、報告されている(特許文献 2 参照)。
[0007] 別のサイアロン、窒化物、又は酸窒化物蛍光体として、 MSi N、 M Si N、 M Si
3 5 2 4 7 4 6
N 、 M Si N 、 M Si O N 、 M Si Al O N 、 MSi Al ON、 M Si AION (
11 9 11 23 16 15 6 32 13 18 12 18 36 5 2 9 3 5 10 ただし、 Mは Ba、 Ca、 Sr、又は希土類元素)を母体結晶として、これに Euや Ceを付 活した蛍光体が知られており、これらの中には赤色に発光する蛍光体も報告されて いる(特許文献 3)。また、これらの蛍光体を用いた LED照明ユニットが知られている 。さらに、 Sr Si Nや SrSi N 結晶に Ceを付活した蛍光体が報告されている(特許
2 5 8 7 10
文献 4)。
[0008] 特許文献 5には、 L MN : Z (Lは Ca、 Sr、 Baなどの 2価元素、 Mは Si、 Geな h i (2/3h+4/3i)
どの 4価元素、 Zは Euなどの付活剤; h= 2, i= 5又は h= l, i= 7)蛍光体に関する 記載があり、微量の Alを添加すると残光を抑える効果があることが記載されている。 また、この蛍光体と青色 LEDとを組み合わせることによる、やや赤みを帯びた暖色系 の白色の発光装置が知られている。さらに、特許文献 6には、 LM N
j k (2/3j+4/3k): Z蛍光 体として種々の L元素、 M元素、 Z元素で構成した蛍光体が報告されている。また、 特許文献 7には、 L— M— N :Eu, Z系に関する幅広い組み合わせの記述があるが、 特定の組成物や結晶相を母体とする場合の発光特性向上の効果は示されて ヽな 、
[0009] 以上に述べた特許文献 2から 7に代表される蛍光体は、 2価元素と 4価元素の窒化 物を母体結晶とする。これらの蛍光体は、青色の可視光での励起では赤色の発光輝 度は十分ではな力つた。また、組成によっては化学的に不安定であり、耐久性に問 題があった。
[0010] 照明装置の従来技術として、青色発光ダイオードと青色吸収黄色発光蛍光体との 組み合わせによる白色発光装置が特許文献 8、特許文献 9、特許文献 10に記載され ている。これらの発光ダイオードで、特によく用いられている蛍光体は一般式 (Y, Gd ) (Al, Ga) O : Ce3+で表される、セリウムで付活したイットリウム 'アルミニウム 'ガー
3 5 12
ネット系蛍光体である。
[0011] し力しながら、青色発光ダイオードとイットリウム 'アルミニウム 'ガーネット系蛍光体と から成る白色発光装置は、赤色成分の不足から青白い発光となる特徴を有し、演色 性に偏りがみられる。
[0012] 2種の蛍光体を混合 '分散させることによりイットリウム ·アルミニウム 'ガーネット系蛍 光体で不足する赤色成分を別の赤色蛍光体で補う白色発光装置が、特許文献 11、 特許文献 5に記載されている。しかし、これらの発光装置においても、演色性に関し てまだ改善すべき問題点は残されて 、る。この特許文献 11に記載の赤色蛍光体は カドミウムを含んでおり、環境汚染の問題がある。また、特許文献 5に記載の、 Ca S
1.97 i N :Eu を代表例とする赤色発光蛍光体はカドミウムを含まないが、蛍光体の輝度
5 8 0.03
が低いため、その発光強度は不十分である。
[0013] 特許文献 12には、 Ceを必須とする少なくとも 1種である希土類元素で賦活されるシ リコンナイトライド系蛍光体であって、代表的には Ca (Si, Al) N: Ceで表されるシリ
2 5 8
コンナイトライド系蛍光体が開示されている。この蛍光体は、従来の Sr Si N
2 5 8: Ce3+で 表される蛍光体よりも、種々の色味を実現することができる旨記載されている。また、 特許文献 13には Eu2+イオンを発光中心とする Sr Al Si O N: Eu蛍光体に代表され
2 2 3 2 6
る暖色又は赤色発光酸窒化物蛍光体が開示されている。
[0014] 耐熱材料として知られる CaAlSiN結晶と同一の結晶構造を有する無機化合物を
3
母体結晶とし、光学活性な元素、なかでも Eu2+を発光中心として添加した結晶は、特 に高 、輝度の橙色や赤色の発光を有する蛍光体となることから、この蛍光体を用い ることにより、高い発光効率を有する赤み成分に富む演色性の良い白色発光装置が 得られることが特許文献 14 (以下「JP2006— 8721」という。)に記載されている。。 特許文献 1:特開 2002— 363554号公報
特許文献 2:米国特許第 6682663号公報
特許文献 3:特開 2003 - 206481号公報
特許文献 4:特開 2002— 322474号公報
特許文献 5 :特開 2003— 321675号公報 特許文献 6:特開 2003 - 277746号公報
特許文献 7:特開 2004 - 10786号公報
特許文献 8:特許第 2900928号公報
特許文献 9:特許第 2927279号公報
特許文献 10:特許第 3364229号公報
特許文献 11 :特開平 10— 163535号公報
特許文献 12:特開 2004 - 244560号公報
特許文献 13 :特開 2005— 48105号公報
特許文献 14:特開 2006— 8721号公報
特許文献 1 :H. A. Hoppe ま力 4名" Journal of Physics and Chemistry of Solids" 2000年、 61卷、 2001〜2006ページ
非特許文献 2 :「On new rare— earth doped M— Si— Al— O— N materials 」 W. H. van Krevel著、 TU Eindhoven 2000、 ISBN 90— 386— 2711— 4
[0015] JP2006— 8721〖こ開示される、 CaAlSiN結晶と同一の結晶構造を有する無機化
3
合物を結晶母体とする蛍光体は、 653nmに発光波長の中心を有し、かつ発光効率 の高 、優れた蛍光体である。
[0016] ところで一般的に蛍光体を照明用、又はディスプレイ用として使用する場合、発光 効率が高いことはもちろんであるが、任意の発光波長の蛍光体が選択できることが望 ましい。なぜなら、照明用の場合は使用条件により演色性が優先される場合もあれば 光束が優先される場合もある。例えば、?見感度の高い緑色側に蛍光体の発光中心が シフトすれば、演色性は低下する傾向となるが光束は増大する。このように蛍光体の 発光波長が任意のものが得られれば、照明装置の設計の自由度が高まり有用である 。また、ディスプレイの場合は、用途に応じて色再現性範囲を変更することができ、デ イスプレイ装置設計の自由度が高まる。
[0017] JP2006— 8721には、発光中心波長がより短波長である蛍光体を得る手段として Caの一部を Srに置き換える方法が開示されている。
発明の概要 [0018] 本発明は、従来の窒化物又は酸窒化物蛍光体より高輝度の発光を示し、橙色や赤 色の蛍光体として優れ、さらに励起源に曝された場合の輝度の低下が少なぐまた、 原料の種類や配合割合等を変更するのみで発光波長を変更することができる蛍光 体を提供することを目的とする。
本発明はまた、このような蛍光体を用いて、発光効率が高ぐ設計自由度の高い発 光装置と照明装置及び画像表示装置 (ディスプレイ装置)を提供することを目的とす る。
本発明はまた、このような蛍光体を用いた蛍光体混合物、蛍光体含有組成物、顔 料、及び紫外線吸収剤を提供することを目的とする。
[0019] 本発明者らは、上記課題を解決すベぐ各種の窒化物及び酸窒化物蛍光体を鋭 意検討した結果、特定の化学組成を有する結晶相を含有する蛍光体が、上記課題 を解決する優れた蛍光体であることを見出し、本発明に到達した。
本発明はこのような知見のもとに達成されたものであり、以下を要旨とする。
[0020] 1) 2価のアルカリ土類金属元素及び 2価〜 4価の希土類金属元素を含有する窒 化物又は酸窒化物蛍光体であって、下記 i)及び Z又は ii)であることを特徴とする窒 化物又は酸窒化物蛍光体。
i)前記アルカリ土類金属元素が、当該アルカリ土類金属元素よりも低原子価の元素 及び Z又は空孔で置換されて 、る。
ii)前記希土類金属元素が、当該希土類金属元素よりも低原子価の元素及び Z又 は空孔で置換されている。
[0021] 2) 蛍光体に含まれる窒素イオンが、酸素イオンで置換されていることを特徴とする
1)に記載の窒化物又は酸窒化物蛍光体。
[0022] 3) 1価又は 0価のアルカリ土類金属元素、及び 2価の希土類元素を含有すること を特徴とする 1)又は 2)に記載の窒化物又は酸窒化物蛍光体。
[0023] 4) 下記一般式 [1]で表される化学組成を有する結晶相を含有することを特徴とす る蛍光体。
(l -a-b)(Ln' Μ"' M^'M^N )-a(MIV' N O) -b(AMIV' N )
p 1-p 3 (3n+2)/4 n 2 3
上記一般式 [1]において、 Ln'はランタノイド、 Mn及び Tiからなる群力 選ばれる 少なくとも 1種の金属元素であり、 M"'は Ln'元素以外の 2価の金属元素力 なる群か ら選ばれる 1種又は 2種以上の元素であり、 M1"'は 3価の金属元素力 なる群力 選 ばれる 1種又は 2種以上の元素であり、 Μιν'は 4価の金属元素力 なる群力 選ばれ る 1種又は 2種以上の元素であり、 Αは Li、 Na、及び K力 なる群力 選ばれる 1種類 以上の 1価の金属元素であり、 ρは 0<ρ≤0. 2を満足する数であり、 a、 b及び nは、 0 ≤a、 0≤b、 a+b>0、 0≤n,及び 0. 002≤ (3n+ 2) a/4≤0. 9を満足する数であ る。
[0024] 5) 前記結晶相の結晶構造が空間群 Cmc2又は P2に属することを特徴とする 4)
1 1
に記載の蛍光体。
[0025] 6) 前記一般式 [1]において、 M"は、 Caと Srの合計が 80mol%以上を占めること を特徴とする 4)又は 5)に記載の蛍光体。
[0026] 7) 前記一般式 [1]において、 M"が Caであり、 M"1'が A1であり、 MI が Siであるこ とを特徴とする 4)〜6)に記載の蛍光体。
[0027] 8) 前記一般式 [1]で表される化学組成を有する結晶相と、該結晶相とは異なる結 晶構造の結晶相(以下「他の結晶相」と称す。)及び Z又はアモルファス相との混合 物であり、該混合物中の前記一般式 [ 1 ]で表される化学組成を有する結晶相の割合 が 20質量%以上であることを特徴とする 4)〜7)に記載の蛍光体。
[0028] 9) 前記他の結晶相及び Z又はアモルファス相が導電性の無機物質であることを 特徴とする 8)に記載の蛍光体。
[0029] 10) 前記導電性の無機物質が、 Zn、 Al、 Ga、 In、及び Snよりなる群力も選ばれる
1種又は 2種以上の元素を含む、酸化物、酸窒化物、窒化物、あるいはこれらの混合 物からなることを特徴とする 9)に記載の蛍光体。
[0030] 11) 前記他の結晶相及び Z又はアモルファス相力 前記一般式 [1]で表される化 学組成とは異なる化学組成の無機蛍光体であることを特徴とする 8)〜: LO)に記載の 蛍光体。
[0031] 12) 励起源を照射することにより 550nmから 700nmの範囲の波長にピークを持 つ蛍光を発光することを特徴とする 4)〜: L 1)に記載の蛍光体。
[0032] 13) 該励起源が lOOnm以上 570nm以下の波長を持つ紫外線又は可視光であ ることを特徴とする 12)に記載の蛍光体。
[0033] 14) 下記一般式 [10]で表される化学組成を有する結晶相を含有することを特徴 とする 4)〜 13)に記載の蛍光体。
(Eu Ln" M" MmMIVN ) (MIV N O) 〜[10]
y W 1-y-W 3 l-χ (3n+2)/4 n x
上記一般式 [10]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、 M"は Mg、 Ca、 Sr、 Ba、及び Znの合 計が 90mol%以上を占める 2価の金属元素であり、 M1"は A1が 80mol%以上を占める 3価の金属元素であり、 MIVは Siが 90mol%以上を占める 4価の金属元素であり、 yは 0<y≤0. 2を満足する数であり、 wは 0≤w< 0. 2を満足する数であり、 Xは 0< x≤ 0. 45を満足する数であり、 nは 0≤nを満足する数であり、 nと xは、 0. 002≤ (3n+ 2 ) x/4≤0. 9を満足する数である。
[0034] 15) 下記一般式 [11]で表される化学組成を有する結晶相を含有することを特徴 とする 14)に記載の蛍光体。
(Eu M" MmMIVN ) (MIV N O) 〜[11]
y 1-y 3 1-x (3n+2)/4 n x
上記一般式 [11]において、 M"は、 Mg、 Ca、 Sr、 Ba、及び Znの合計が 90mol% 以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占める 3価の金属 元素であり、 Mivは、 Siが 90mol%以上を占める 4価の金属元素であり、 yは、 0. 000 l≤y≤0. 1を満足する数であり、 Xは、 0< x≤0. 45を満足する数であり、 nは 0≤n を満足する数であり、 nと Xは、 0. 002≤(3n+ 2) x/4≤0. 9を満足する数である。
[0035] 16) 上記一般式 [10]又は [11]において、 M"は、 Caと Srの合計が 80mol%以上 を占めることを特徴とする 14)又は 15)に記載の蛍光体。
[0036] 17) 上記一般式 [10]又は [11]において、 Xが 0. 2≤x≤0. 4を満足し、かつ、 n と Xが、 0. 4≤(3n+ 2) x/4≤0. 8を満足することを特徴とする 14)〜16)に記載の 蛍光体。
[0037] 18) 上記一般式 [10]又は [11]において、 M"が Caであり、 M"1が A1であり、 MIV
Siであることを特徴とする 14)〜 17)に記載の蛍光体。
[0038] 19) 下記一般式 [21]で表される化学組成を有する結晶相を含有することを特徴 とする 4)〜 13)に記載の蛍光体。 (Ce Ln M" MmMIVN ) (MIV N O) 〜[21]
y z 1-y-z 3 1-χ (3n+2)/4 n x
上記一般式 [21]において、 Lnは Ceを除いたランタノイド、 Mn及び Tiからなる群か ら選ばれる少なくとも 1種の金属元素であり、 M"は Mg、 Ca、 Sr、 Ba及び Znの合計が 90mol%以上を占める 2価の金属元素であり、 M1"は A1が 80mol%以上を占める 3価 の金属元素であり、 MIVは Siが 90mol%以上を占める 4価の金属元素であり、 xは 0≤ x≤0. 45を満足する数であり、 yiま 0<y≤0. 2を満足する数であり、 ζίま 0≤z≤0. 2 を満足する数であり、 nは 0≤nを満足するものであり、 nと Xは 0. 002≤ (3n+ 2) x/ 4≤0. 9を満足する数である。
[0039] 20) 上記一般式 [21]において、 M"は、 Caと Srの合計が 80mol%以上を占めるこ とを特徴とする 19)に記載の蛍光体。
[0040] 21) 上記一般式 [21]において、 X力 0. 15≤x≤0. 3を満足し、力つ、 nと X力 0 . 3≤(3n+ 2) x/4≤0. 6を満足することを特徴とする 19)又は 20)に記載の蛍光 体。
[0041] 22) 上記一般式 [21]において、 M"が Caであり、 M"1が A1であり、 MIVが Siである ことを特徴とする 19)〜21)に記載の蛍光体。
[0042] 23) 下記一般式 [30]で表される化学組成を有する結晶相を含有することを特徴 とする 4)〜 13)に記載の蛍光体。
(Eu Ln" M" MmMIVN ) (AMIV N ) 〜[30]
y W 1-y-W 3 ト 2 3 χ'
上記一般式 [30]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、 M"は、 Mg、 Ca、 Sr、 Ba、及び Znの 合計が 90mol%以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占 める 3価の金属元素であり、 MIVは、 Siが 90mol%以上を占める 4価の金属元素であり 、 Aは Li、 Na、及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ,は 0く χ ' < 1. 0を満足する数であり、 yは 0<y≤0. 2を満足する数であり、 wは 0≤w< 0. 2 を満足する数である。
[0043] 24) 下記一般式 [31]で表される化学組成を有する結晶相を含有することを特徴 とする 23)に記載の蛍光体。
(Eu M" MmMIVN ) (AMIV N ) 〜[31]
y 1-y 3 1-x' 2 3 x' 上記一般式 [31]において、 M"は、 Mg Ca Sr Ba、及び Znの合計が 90mol% 以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占める 3価の金属 元素であり、 Mivは、 Siが 90mol%以上を占める 4価の金属元素であり、 Aは Li Na 及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ'は 0く χ'く 0. 5を満足 する数であり、 yは 0<y≤0. 2を満足する数である。
[0044] 25) 上記一般式 [30]又は [31]において、 M"は、 Caと Srの合計が 80mol%以上 を占めることを特徴とする 23)又は 24)に記載の蛍光体。
[0045] 26) 上記一般式 [30]又は [31]において、 x'が 0. 03≤x'≤0. 35を満足するこ とを特徴とする 23) 25)に記載の蛍光体。
[0046] 27) 上記一般式 [30]又は [31]において、 M"が Caであり、 M"1が A1であり、 MIVが Siであることを特徴とする 23) 26)に記載の蛍光体。
[0047] 28) 下記一般式 [41]で表される化学組成を有する結晶相を含有することを特徴 とする 4) 13)に記載の蛍光体。
(Ce Ln M" MmMIVN ) (AMIV N ) [41]
y z 1 z 3 1-x' 2 3 x'
上記一般式 [41]において、 Lnは Ceを除いたランタノイド、 Mn及び Tiからなる群か ら選ばれる少なくとも 1種の金属元素であり、 M"は、 Mg Ca Sr Ba、及び Znの合 計が 90mol%以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占め る 3価の金属元素であり、 MIVは、 Siが 90mol%以上を占める 4価の金属元素であり、 Aは Li Na、及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ,は 0く χ' < 1. 0を満足する数であり、 yは。 <y≤0. 2を満足する数であり、 zは。≤z≤0. 2を 満足する数である。
[0048] 29) 上記一般式 [41]において、 M"は、 Caと Srの合計が 80mol%以上を占めるこ とを特徴とする 28)に記載の蛍光体。
[0049] 30) 上記一般式 [41]において、 x'が 0. 03≤x'≤0. 35を満足することを特徴と する 28)又は 29)に記載の蛍光体。
[0050] 31) 上記一般式 [41]において、 M"が Caであり、 M"1が A1であり、 MIVが Siである ことを特徴とする 28) 30)に記載の蛍光体。
[0051] 32) アルカリ土類金属元素、ケィ素、及び窒素を含有する蛍光体であって、当該 蛍光体と同一の結晶構造を有する無機化合物 (但し、当該蛍光体の固溶体は除く。 )を固溶させたことを特徴とする蛍光体。
[0052] 33) 330nm〜500nmの波長の光を発生する第 1の発光体と、該第 1の発光体か らの光の照射によって可視光を発生する第 2の発光体とを有する発光装置において 、該第 2の発光体が、 1)〜32)に記載の蛍光体を含有してなることを特徴とする発光 装置。
[0053] 34) 該第 1の発光体がレーザーダイオード又は発光ダイオードであることを特徴と する 33)に記載の発光装置。
[0054] 35) 該第 1の発光体が 330nm〜420nmの波長の光を発する発光ダイオードで あり、該第 2の発光体として、 1)〜32)に記載の赤色蛍光体と、波長 330nm〜420n mの励起光により 420nm〜500nmの波長に発光ピークを持つ蛍光を発光する青色 蛍光体と、波長 330nm〜420nmの励起光により 500nm〜570nmの波長に発光ピ ークを持つ蛍光を発光する緑色蛍光体とを用いることにより、赤、緑、青色の光を混 ぜて白色光を発することを特徴とする 34)に記載の発光装置。
[0055] 36) 該第 1の発光体力 20nm〜500nmの波長の光を発する発光ダイオードで あり、該第 1の発光体からの光により 1)〜32)に記載の蛍光体が励起されて発した発 光と、当該発光ダイオード自体が発する青色光とを併せて白色光を発することを特徴 とする 34)に記載の発光装置。
[0056] 37) 該第 1の発光体力 20nm〜500nmの波長の光を発する発光ダイオードで あり、該第 2の発光体として、 1)〜32)に記載の蛍光体と、波長 420nm〜500nmの 励起光により 500ηπ!〜 570nmの波長に発光ピークを持つ蛍光を発光する緑色蛍 光体とを用いることにより、白色光を発することを特徴とする 34)に記載の発光装置。
[0057] 38) 該第 1の発光体力 20nm〜500nmの波長の光を発する発光ダイオードで あり、該第 2の発光体として、 1)〜32)に記載の蛍光体と、波長 420nm〜500nmの 励起光により 550ηπ!〜 600nmの波長に発光ピークを持つ蛍光を発光する黄色蛍 光体とを用いることにより、白色光を発することを特徴とする 34)に記載の発光装置。
[0058] 39) 33)〜38)に記載の発光装置を用いたことを特徴とする照明器具。
[0059] 40) 励起源と蛍光体とを有する画像表示装置において、該蛍光体として少なくと も 1)〜32)に記載の蛍光体を用いたことを特徴とする画像表示装置。
[0060] 41) 該励起源が、波長 100nm〜190nmの真空紫外線、波長 190nm〜380nm の紫外線、又は電子線であることを特徴とする 40)に記載の画像表示装置。
[0061] 42) 該蛍光体として、 1)〜32)に記載の蛍光体と、前記励起源により蛍光を発光 する青色蛍光体と、前記励起源により蛍光を発光する緑色蛍光体とを用いたことを特 徴とする 41)に記載の画像表示装置。
[0062] 43) 33)〜38)に記載の発光装置を用いたことを特徴とする画像表示装置。
[0063] 44) 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (F
ED)、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴と する 40)〜43)に記載の画像表示装置。
[0064] 45) 1)〜32)に記載の蛍光体を含むことを特徴とする蛍光体混合物。
[0065] 46) 1)〜32)に記載の蛍光体と、液状媒体とを含むことを特徴とする蛍光体含有 組成物。
[0066] 47) 1)〜32)に記載の蛍光体を含むことを特徴とする顔料。
[0067] 48) 1)〜32)に記載の蛍光体を含むことを特徴とする紫外線吸収剤。
図面の簡単な説明
[0068] [図 l]Eu Ca Al Si N Oにおいて x=0, 0. 11, 0. 33である物質の XR y(l-x) (l-y)(l-x) l~x 1+x 3-χ x
Dパターン(酸素源: AI O、 1900°C X 2時間焼成、 Euモル数 y=0. 008)を示す図
2 3
である。
[図 2]実施例 I 2 (x=0. 33)、実施例 I 3 (x=0. 11)及び比較例 I 2 (x=0)の 各蛍光体の 465nm励起下発光スペクトルを示す図である。
[図 3]本発明の照明器具(白色 LED)の実施の形態を示す概略構成図である。
[図 4]本発明の画像表示装置 (PDP)の実施の形態を示す概略構成図である。
[図 5]CaAlSiNの結晶構造モデルを示す図である。
3
[図 6]Si N Oの結晶構造モデルを示す図である。
2 2
[07] (Eu Ca AlSiN ) (Si N O) 【こお!/ヽて n=0、 0. 5、 1. 0、 1. 5、
0.009 0.991 3 0.89 (3n+2)/4 n 0.11
2. 0、 3. 0、 4. 0である物質の XRDパターンを示す図である。
[08] (Eu Ca AlSiN ) (Si N O) 【こお!/ヽて n=0、 0. 5、 1. 0、 1. 5、
0.009 0.991 3 0.89 (3n+2)/4 n 0.11 2. 0、 3. 0、 4. 0である物質の 465nm励起下発光スペクトルを示す図である。
[図 9] (Eu Ca CaAlSiN ) (Si NO)及び(Eu Ca
0.008/(1— x) ひ—0.008/(1— x)) 3 1-χ 1.25 x 0.008/(1— x) (1—0.008/(1— x))
AlSiN ) (Si N O)【こお!/、て x=0、 0. 11、 0. 18、 0. 33である物質の 465nm励
3 1-x 2 2 x
起下発光スペクトルを示す図である。
[図 10]実施例 II— 1、 5、 8、 10及び比較例 II— 1で得られた蛍光体の波長 465nm励 起下の発光スペクトルを示す図である。
[図 11]実施例 11— 1、 5、 8、 10及び比較例 1で得られた蛍光体の XRDパターンを示 す図である。
[図 12]実施例 III 1〜4及び比較例 III 1で得られた蛍光体の波長 465nm励起下 の発光スペクトルを示す図である。
[図 13]実施例 IV— 1で得られた蛍光体 (Ca Sr Ce AlSiN ) (LiSi N )の XR
0.2 0.7925 0.0075 3 1-x 2 3 x
Dパターンと、 Ca Sr Ce AlSiNの XRDパターンを示す図である。
0.2 0.7925 0.0075 3
[図 14]実施例 IV— 1で得られた蛍光体 (Ca Sr Ce AlSiN ) (LiSi N )と、 C
0.2 0.7925 0.0075 3 1-x 2 3 x a Sr Ce AlSiNを波長 455nmの光で励起したときの発光スペクトルを示す
0.2 0.7925 0.0075 3
図である。
詳細な説明
[0069] 第 1アスペクトの蛍光体は、 2価のアルカリ土類金属元素及び 2価〜 4価の希土類 金属元素を含有する窒化物又は酸窒化物蛍光体であって、下記 i)及び Z又は ii)で あることを特徴とするものである。
i)前記アルカリ土類金属元素が、当該アルカリ土類金属元素よりも低原子価の元素 及び Z又は空孔で置換されて 、る。
ii)前記希土類金属元素が、当該希土類金属元素よりも低原子価の元素及び Z又 は空孔で置換されている。
[0070] 第 2アスペクトの蛍光体は、下記一般式 [1]で表される化学組成を有する結晶相を 含有することを特徴とするものである。
(l -a-b)(Ln' Μ"' M^'M^N )-a(MIV' N O) -b(AMIV' N )
p 1-p 3 (3n+2)/4 n 2 3
上記一般式 [1]において、 Ln'はランタノイド、 Mn及び Tiからなる群力 選ばれる 少なくとも 1種の金属元素であり、 M"'は Ln'元素以外の 2価の金属元素力 なる群か ら選ばれる 1種又は 2種以上の元素であり、 M1"'は 3価の金属元素力 なる群力 選 ばれる 1種又は 2種以上の元素であり、 Μιν'は 4価の金属元素力 なる群力 選ばれ る 1種又は 2種以上の元素であり、 Αは Li、 Na、及び K力 なる群力 選ばれる 1種類 以上の 1価の金属元素であり、 ρは 0<ρ≤0. 2を満足する数であり、 a、 b及び nは、 0 ≤a、 0≤b、 a+b>0、 0≤n,及び 0. 002≤ (3n+ 2) a/4≤0. 9を満足する数であ る。
[0071] 第 3アスペクトの蛍光体は、アルカリ土類金属元素、ケィ素、及び窒素を含有する蛍 光体であって、当該蛍光体と同一の結晶構造を有する無機化合物 (但し、当該蛍光 体の固溶体は除く。 )を固溶させたことを特徴とするものである。
[0072] 本発明の蛍光体は、従来の窒化物又は酸窒化物蛍光体より高輝度の発光を示し、 橙色や赤色の蛍光体として優れて 、る。
この蛍光体では、 Ceの添加量、第 2の付活剤である Lnの種類及び Z又は添加量 並びに酸素イオンの割合をかえることにより、発光波長や発光ピーク幅を調節するこ とができる。そして、発光ピークの低波長化により、視感度が増大するため、光束が顕 著に増大する発光デバイスを得ることができる。
しカゝも、本発明の蛍光体は、励起源に曝された場合でも、輝度が低下することなぐ 蛍光灯、 FED、 PDP、 CRT,白色発光装置などに好適に使用される。
[0073] このような本発明の蛍光体を用いることにより、発光効率が高ぐ耐久性に優れ、か つ、用途に応じて演色性や光束を任意に調整することができる、装置の設計の自由 度の高い発光装置及び照明器具、並びに、色再現範囲を任意に変更することができ る、装置の設計の自由度の高い画像表示装置が提供される。
[0074] 本発明の蛍光体は、母体の色が橙色ないし赤色であり、紫外線を吸収することから 、橙色な ヽし赤色の顔料及び紫外線吸収剤としても有用である。
[0075] 以下に本発明をさらに詳細に説明する力 以下の説明は、本発明の実施態様の一 例 (代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされな い。また、本明細書において、「〜」はその両端の数値を含む範囲であることを意味し 、平均粒径は、重量メジアン径 (D )を意味する。
50
[0076] [蛍光体] 第 1アスペクト即ち上記 1)の蛍光体は、 2価のアルカリ土類金属元素及び 2価〜 4 価の希土類金属元素を含有する窒化物又は酸窒化物蛍光体であって、下記 i)及び Z又は ii)であることを特徴とする窒化物又は酸窒化物蛍光体である。
i)前記アルカリ土類金属元素が、当該アルカリ土類金属元素よりも低原子価の元素 及び Z又は空孔で置換されて 、る。
ii)前記希土類金属元素が、当該希土類金属元素よりも低原子価の元素及び Z又 は空孔で置換されている。
i)の場合、当該アルカリ土類金属元素より低原子価の元素としては、例えば Li、 Na 、 K等が挙げられる。
ii)の場合、当該希土類金属元素よりも低原子価の元素としては、アルカリ土類金属 元素又はアルカリ金属元素が挙げられ、好ましくは Ca、 Sr、 Ba、 Li、 Na、 K等が挙げ られる。
[0077] この蛍光体は、 1価又は 0価のアルカリ土類金属元素、及び 2価の希土類元素を含 有してもよぐこれにより、アルカリ土類金属元素の位置に欠陥が導入される。
[0078] 蛍光体に含まれる窒素イオン力 酸素イオンで置換されていてもよぐこれにより、 蛍光体の化学安定性が良好になり、水や酸に対する耐性が良好になるため、蛍光体 の輝度が高くなると共に、耐久性が向上する。
[0079] この蛍光体は、アルカリ土類金属元素、ケィ素、及び窒素を含有する蛍光体であつ て、当該蛍光体と同一の結晶構造を有する無機化合物 (但し、当該蛍光体の固溶体 は除く。)を固溶させた蛍光体であってもよい。
[0080] この蛍光体は、 Sr Si Nを母体とする蛍光体、 CaAlSiNを母体とする蛍光体等で
2 5 8 3
あってもよい。
Sr Si Nを母体とする本発明の蛍光体は、 Sr Al Si N O: Eu、 Sr Al Si N
2 5 8 2 q 5-q 8-q q 2 q 5-q 8-q
O: Ce等であってもよい。
q
[0081] この蛍光体は、一般的な固相反応法によって合成することができる。例えば、蛍光 体を構成する金属元素源となる原料化合物を、乾式法或いは湿式法により、粉砕, 混合して粉砕混合物を調製し、得られた粉砕混合物を加熱処理して反応させること により製造することができる。 また、蛍光体は、蛍光体を構成する金属元素を少なくとも 2種類以上含有する合金 、好ましくは蛍光体を構成する金属元素を全て含有する合金を作成し、得られた合 金を窒素含有雰囲気中、加圧下で加熱処理することにより、製造することができる。 また、蛍光体は、蛍光体を構成する金属元素の一部を含有する合金を作成し、得 られた合金を窒素含有雰囲気中、加圧下で加熱処理した後、更に蛍光体を構成す る残りの金属元素源となる原料化合物と混合して、加熱処理することにより、製造する こともできる。このように合金を経て製造された蛍光体は、不純物が少なぐ輝度が高 い蛍光体となる。
[0082] 以下、 CaAlSiNを母体とする蛍光体について、更に、詳細に説明する。
3
[0083] この蛍光体は、下記一般式 [1]で表される化学組成を有する結晶相を含有すること ができる。
(l -a-b)(Ln' Μ"' M^'M^N )-a(MIV' N O) -b(AMIV' N )
p 1-p 3 (3n+2)/4 n 2 3
上記一般式 [1]において、 Ln'はランタノイド、 Mn及び Tiからなる群力 選ばれる 少なくとも 1種の金属元素であり、 M"'は Ln'元素以外の 2価の金属元素力 なる群か ら選ばれる 1種又は 2種以上の元素であり、 M1"'は 3価の金属元素力 なる群力 選 ばれる 1種又は 2種以上の元素であり、 MIVは 4価の金属元素からなる群から選ばれ る 1種又は 2種以上の元素であり、 Αは Li、 Na、及び K力 なる群力 選ばれる 1種類 以上の 1価の金属元素であり、 ρは 0<ρ≤0. 2を満足する数であり、 a、 b及び nは、 0 ≤a、 0≤b、 a+b>0、 0≤n,及び 0. 002≤ (3n+ 2) a/4≤0. 9を満足する数であ る。
[0084] 上記一般式 [1]において、 Ln,としては、 Ce、 Eu、 Tb、 Sm、 Mn、 Dy, Ybから選 ばれる少なくとも 1種の金属元素が輝度の点力も好ま 、。
[0085] M"'としては、 Mg、 Ca、 Sr、 Ba、および Znよりなる群から選ばれる 1種または 2種以 上を合計で 90mol%以上含むことが好ましい。蛍光体の輝度の点から、 M"'中の Mg 、 Ca、 Sr、 Ba、 Zn以外の元素としては、 Mn、 Sm、 Eu、 Tm、 Yb、 Pb、 Sn等が挙げ られる。蛍光体の輝度の点から、 M"'は、特に、 Caおよび Zまたは Srを合計で 80mol %以上を含むことが好ましぐ 90mol%以上含むことが更に好ましぐ 100mol%であ ることが最も好ましい。また、 M"'中の Caと Srの合計に対する Caの割合が 10mol%を 超えることが好ましぐ 100mol%であること、すなわち M"'は Caのみ力もなることが最 も好ましい。
[0086] M1"'としては、 A1が 80mol%以上を占めることが好ま U、。蛍光体の輝度の点から、 M1"'中の A1以外の元素としては、 Ga、 In、 B、 Sc、 Y、 Bi、 Sb、 La、 Ce、 Pr、 Nd、 S m、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu等が挙げられる力 この中でも、 Ga、 In、 B 、 Bi、 Sc、 Y、 La、 Ce、 Gd、 Luが好ましい。蛍光体の輝度の点から、 M"1'は、 A1を 90 mol%以上含むことが好ましぐ 100mol%であること、すなわち M"1'は A1のみ力もなる ことが最も好ましい。
[0087] Μιν'としては、 Siが 90mol%以上を占めることが好ましい。蛍光体の輝度の点から、 MI 中の Si以外の元素としては、 Ge、 Sn、 Ti、 Zr、 Hf等が挙げられ、この中でも Ge が好ましい。蛍光体の輝度の点から、 Μιν'は Siのみ力もなることが最も好ましい。
[0088] 上記蛍光体は、前記結晶相の結晶構造が空間群 Cmc2又は P2に属する。
1 1
[0089] 前記一般式 [1]で表される化学組成の結晶相(以下「結晶相 [1]」と称す場合があ る。)を高純度にかつ極力多く含み、最も好ましくは結晶相 [1]の単相から構成されて いる蛍光体は、優れた蛍光発光特性を有する。しかしながら、蛍光体は、特性が低下 しない範囲で、結晶相 [1]と、結晶相 [1]とは異なる結晶構造の結晶相(以下「他の 結晶相」と称す。)及び Z又はアモルファス相との混合物であっても良い。この場合、 蛍光体中の結晶相 [1]の含有量が 20質量%以上であることが高い輝度を得るため に望まし 、。さらに好ましくは蛍光体中の結晶相 [ 1 ]の含有量 50質量%以上で輝度 が著しく向上する。なお、蛍光体中の結晶相 [1]の含有割合は X線回折測定を行い 、結晶相 [1]とそれ以外の相の最強ピークの強さの比から求めることができる。
[0090] 以下、前記一般式 [1]で表される化学組成を有する結晶相を含有する蛍光体につ いて、更に詳細に説明する。
[0091] まず、前記一般式 [1]で表される化学組成は、下記一般式 [10]で表されてもよい。
(Eu Ln" M" MmMIVN ) (MIV N O) 〜[10]
y W 1-y-W 3 l-χ (3n+2)/4 n x
上記一般式 [10]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、これらの中では、 Ce、 Tb、 Sm、 Mn、 Dy、Yb力 選ばれる少なくとも 1種の金属元素が輝度の点力 好ましい。 M"は、 2価の金属元素であり、 Mg、 Ca、 Sr、 Ba、及び Znよりなる群から選ばれる 1 種又は 2種以上を合計で 90mol%以上含むものである。
M1"は A1が 80mol%以上を占める 3価の金属元素である。
MIVは Siが 90mol%以上を占める 4価の金属元素であり、 yは 0<y≤0. 2を満足す る数であり、 wは 0≤w< 0. 2を満足する数であり、 Xは 0< x≤0. 45を満足する数で あり、 nは 0≤nを満足する数であり、 nと Xは、 0. 002≤ (3n+ 2) x/4≤0. 9を満足 する数である。
[0092] 上記一般式 [10]で表される化学組成は、好ましくは、下記一般式 [11]で表される (Eu M" MmMIVN ) (MIV N O) 〜[11]
y 1-y 3 1-x (3n+2)/4 n x
[0093] 上記一般式 [11]において、 M"は、 2価の金属元素であり、 Mg、 Ca、 Sr、 Ba、及び Znよりなる群力も選ばれる 1種又は 2種以上を合計で 90mol%以上含むものである。 蛍光体の輝度の点から、 M"中の Mg、 Ca、 Sr、 Ba、 Zn以外の元素としては、 Mn、 S m、 Eu、 Tm、 Yb、 Pb、 Sn等が挙げられる。蛍光体の輝度の点から、 M"は、特に、 C a及び Z又は Srを合計で 80mol%以上を含むことが好ましぐ 90mol%以上含むこと が更に好ましぐ 100mol%であることが最も好ましい。また、 M"中の Caと Srの合計に 対する Caの割合が 10mol%を超えることが好ましぐ 100mol%であること、すなわち M"は Caのみ力もなることが最も好ま U、。
[0094] M1"は、 3価の金属元素であり、 A1が 80mol%以上含むものである。蛍光体の輝度 の点から、 M1"中の A1以外の元素としては、 Ga、 In、 B、 Sc、 Y、 Bi、 Sb、 La、 Ce、 Pr 、 Nd、 Sm、 Gd、 Tb、 Dy、 Ho, Er, Tm、 Yb、 !Lu等力 S挙げ、られる力 この中でち、 Ga ゝ In、 Bゝ Bi、 Scゝ Yゝ La, Ceゝ Gdゝ: Lu力 子ましい。 光体の輝度の点力ら、 M"1は、 A1を 90mol%以上含むことが好ましぐ 100mol%であること、すなわち M"1は A1のみ 力らなることが最も好ましい。
[0095] MIVは、 4価の金属元素であり、 Siが 90mol%以上含むものである。輝度の点から、 MIV中の Si以外の元素としては、 Ge、 Sn、 Ti、 Zr、 Hf等が挙げられ、この中でも Ge が好ましい。輝度の点から、 MIVは Siのみ力もなることが最も好ましい。
[0096] 蛍光体の輝度の顕著な低下をきたさない限りにお!/、て、 2価、 3価、 4価以外の価数 である 1価、 5価、 6価の元素を [11]式上 0. 05mol以下([11]式の lmolに対して 0. 05mol以下)の範囲で導入しても良い。この場合、電荷補償を維持して導入すること 力 輝度低下の原因となる格子欠損をおこしにくいので、好ましい。
[0097] 次に、一般式 [10]、 [11]の各パラメーターについて説明する。
yは、付活元素 Euのモル比であり、 0. 0001≤y≤0. 1を満足する数である。蛍光 体の発光強度の^;力ら、 0. 001≤y≤0. 1力 S好ましく、 0. 003≤y≤0. 05力 Sより好 ましい。 yが 0. 1を超えると濃度消光をおこし、 0. 0001を下回ると発光が不十分とな る傾向がある。
[0098] Xと nは、 CaAlSiN: Euを代表とする EuM"MmMIVN: Euと Si N Oを代表とする M
3 3 2 2
IV N Oの和に対する MIV N Oの mol割合であり、 0<x≤0. 45を満足し、 0.
(3n+2)/4 n (3n+2)/4 n
002≤ (3n+ 2) x/4≤0. 9を満足する数である。蛍光体の輝度の点から、
0. 01≤x≤0. 45力つ 0. 02≤ (3n+ 2) x/4≤0. 9力 S好ましく、
0. 04≤x≤0. 4力つ 0. 08≤ (3n+ 2) x/4≤0. 8力 Sより好ましく、
0. 1≤χ≤0. 4力つ 0. 16≤ (3n+ 2) x/4≤0. 8力 S更に好ましく、
0. 2≤x≤0. 4力つ 0. 4≤ (3n+ 2) x/4≤0. 8力 ^最ち好まし!/ヽ。
[0099] なお、前記一般式 [11]は、本発明の理論上の物質を表す式である。実際に使用さ れる原料の Si Nや A1Nに不純物として入っている酸素の影響や、原料の混合から
3 4
焼成までの操作中に原料の Ca N等が僅かに酸化されるなどの原因による酸素の混
3 2
入により一般式 [11]の理論式と異なることが想定される力 以下にお!、てはこの理 論式を用いて述べることとする。
[0100] 次に一般式 [10]、 [11]の蛍光体の結晶構造について述べる。
[0101] JP2006— 8721においても酸素を含有する CaAlSiNを母体とする蛍光体が開示
3
されている。
そこで、 JP2006— 8721に係る蛍光体と本発明の蛍光体との相違を以下に説明す る。
JP2006— 8721に開示された蛍光体の結晶構造は図 5に示すとおり Caの位置は すべて満たされており、酸素は Si— Nを Al—Oで置き換えることにより導入される。組 成式で示せば CaAl Si N Oとなる。
1+x 1-x 3-x x [0102] これに対して、本発明の蛍光体は、具体的な例で示すと図 6に示す結晶構造の鉱 物名 Sinoiteとして知られている Si N Oと CaAlSiNが互いに固溶した化合物と考え
2 2 3
ることができ、 Siの位置を Si又は A1が占め、かつ Oの位置の一部を Nが占め、かつ Si N Oで形成される骨格の空間のところどころに Caが入る構造と推定される。組成 式では例えば(CaAlSiN ) (Si N O)のカツコをはずせば Ca Al Si N Oと
3 1-x 2 2 x 1-x 1-x 1+x 3-χ x なる。この点力 SJP2006— 8721の蛍光体において、組成式 CaAl Si N Oの xを
1+x 1-x 3-x x 変更しても波長が変化しなかったのに対し、本発明の組成 Ca Al Si N Oにお
1-χ 1-χ 1+χ 3-χ χ
V、ては χに応じて波長が変化する原因と考えられる。
本発明者らは、 CaAlSiN結晶の結晶構造解析により、本結晶が Cmc2又は P2
3 1 1 なる空間群に属し、下記表 1に示す原子座標位置を占めることを明らかにし、リートべ ルト解析により原子座標を決定した。すなわち、 CaAlSiN結晶自体は斜方晶系で、
3
格子定数は、 a = 9. 8007 (4) A、 b = 5. 6497 (2) A、 c = 5. 0627 (2) Aである。ま た Si N Oの結晶構造についても表 1にまとめた。両ィ匕合物が同一の空間群 Cmc2
2 2 1 又は P2に属することがわ力る。
1
[0103] [表 1]
CaAISiN3の結晶構造データ
CaAISiN3
Figure imgf000022_0001
SiN20
Figure imgf000022_0002
[0104] CaAlSiN結晶は、同じ斜方晶系又は単斜晶系で同じ空間群 Cmc2又は P2を持
3 1 1 つ Si N O結晶と照らし合わせると、 Si N O結晶の Siの位置を Si及び A1が占め、 N
2 2 2 2
及び Oの位置を Nが占め、 Si— N— Oで形成される骨格の空間に Caが侵入型元素 として取り込まれた結晶であり、 Siと A1は不規則的に分布 (デイスオーダー)した状態 で Si N O結晶の Si位置を占める。
2 2
[0105] Si N O構成元素を CaAlSiN: Euの構成元素に添カ卩して焼成したところ、 CaAlSi
2 2 3
Nと Si N Oが固溶ィ匕した結晶母体に Euが付活された物質が得られることがわかり、
3 2 2
かつ、これが良好な発光特性をもつ蛍光体であることがわ力つた。その発光特性に ついては、前述のとおりである。すなわち、 Eu Ca Al Si N Oの組成と y(l-x) (l-y)(l-x) 1-x 1+x 3-x x なるよう原料を混合し高温焼成して無機化合物結晶を得た。 X線回折パターンの解 祈から、斜方晶系又は単斜晶系で空間群 Cmc2又は P2を持ち、 CaAlSiNと Si N Oの中間領域の格子定数を持つ結晶が得られていることがわ力つた。図 1に、 Al O
2 3 を酸素源として 1900°Cで 2時間焼成して得られた、それぞれ x= 0, 0. 11 , 0. 33の 物質の X線回折パターンを示す。また、表 2に、決定された各ピークの面指数と 2 Θの 実測値と計算値を示す。計算値は、斜方晶系の a軸、 b軸、 c軸の格子定数をそれぞ れ a, b, cとし、面指数を (hkl)として、次式力 求めた。
2 Θ = 2sin_1[0. 5 λ (hVa2+k2/b2+l2/c2)0-5]
なお、 λは X線源として用いた Cuの Κ α線の波長 1. 54056Αである。
[表 2]
面指数 Si2N20仕込み割合 xの蛍光体における 2 Θ
x=0 x=0.1 1 x=0.33 h k I
実測値 計算値 実測値 計算値 実測値 計算値
1 1 0 18.12 18.10 18.20 18.15 18.30 18.25
2 0 0 18.1 2 18.1 1 18.33 18.30 18.78 28.75
1 1 1 25.31 25.29 25.40 25.37 25.61 25.58
0 2 0 25.31 31.62 31.65 31.62 31.62 31.59
3 1 0 31.65 31.64 31.92 31.88 32.51 32.48
0 0 2 35.46 35.45 35.62 35.59 36.03 35.99
0 2 1 35.46 36.37 36.44 36.41 36.51 36.47
3 1 1 36.40 36.39 36.66 36.64 37.30 37.26
2 2 0 36.40 36.68 36.66 36.78 36.51 36.98
4 0 0 36.69 36.70 37.1 2 37.08 38.05 38.02
1 1 2 36.69 40.08 37.1 2 40.23 40.86 40.64
2 0 2 40.09 40.09 40.31 40.30 40.92 40.88
2 2 1 40.95 40.92 41.05 41.04 41.35 41.32
0 2 2 40.95 48.23 48.36 48.34 48.66 48.63
3 1 2 48.25 48.24 48.54 48.52 49.29 49.26
1 3 0 48.25 49.19 48.54 49.21 48.66 49.20
4 2 0 49.21 49.21 49.54 49.51 50.28 50.24
5 1 0 49.21 49.22 49.72 49.69 50.88 50.85
2 2 2 51.93 51.93 52.13 52.1 1 52.62 52.56
4 0 2 51.93 51.95 52.36 52.34 53.39 53.35
1 3 1 52.61 52.61 52.36 52.66 52.75 52.72
4 2 1 52.61 52.63 52.97 52.94 53.72 53.71
5 1 1 52.61 52,64 53.14 53.1 1 54.31 54.29
3 3 0 52.61 56.33 56.51 56.49 56.85 56.82
6 0 0 56.35 56.36 57.00 56.97 58.52 58.50
1 1 3 57.75 57.77 58.01 57.99 58.52 58.66
3 3 1 59.42 59.46 59.66 59.64 60.06 60.03
1 3 2 62.09 62.08 62.20 62.1 9 62.48 62.45
4 2 2 62.09 62.10 62.48 62.45 63.34 63.34
5 1 2 62.09 62.11 62.48 62.60 63.92 63.87
0 2 3 64.25 64.25 64.48 64.45 65.05 65.02
3 1 3 64.25 64.26 64.63 64.60 65.58 65.54
0 4 0 64.25 66.04 66.07 66.05 65.99 65.96
6 2 0 66.06 66.07 66.67 66.64 68.04 68.02
2 2 3 67.36 67.36 67.64 67.62 68.36 68.33
3 3 2 68.34 68.34 68.59 68.57 69.1 6 69.1 2
0 4 1 68.91 68.91 68.59 68.94 68.96 68.92
2 4 0 68.91 69.1 1 69.22 69.18 69.1 6 69.25
[0107] 図 1において、各ピークが全て一連の斜方晶系の面指数で表され、 Si N Oの仕込 み割合 Xの増大に伴い、各 XRDピークの 2 Θ位置が高い側にシフトしていく力 これ は、表 2より、 CaAlSiN結晶の各面指数 (hkl)が斜方晶系の三つの格子定数の変
3
化に対応して各 (hkl)の面間隔が変化する力 であることがわかる。各 (hkl)の 2 Θの シフトが、格子定数のシフトからの計算値にほぼ一致している。
[0108] 更に、本発明者らは、リートベルト解析により、結晶中の原子座標を明らかにした。 CaAlSiN結晶の Nの位置を Nと Oが占め、お互いデイスオーダーである A1と Siの位
3
置をやはり A1と Siが占め、 Caの位置を Caとべ一カンシーが占める構造である。
表 2にみられる解析から、 Xの値を 0, 0. 11, 0. 33と増大させると、 a軸の格子定数 力 ^9. 7873, 9, 6899, 9. 4588、 b軸の格子定数力 5. 6545, 5. 6537, 5. 6604 、 c軸の格子定数力 ^5. 0600, 5. 0413, 4. 9864とそれぞれ変ィ匕していくこと力 ^わ力 る。
[0109] このように、本発明で得られた蛍光体は CaAlSiN
3: Euと Si N Oが固溶化した結晶
2 2
中に発光中心である Eu2+イオンが分布している無機化合物結晶であると結論できる。
[0110] 以上、具体的な化合物が存在する CaAlSiNと Si N Oの場合にっ 、て詳述したが
3 2 2
、 Si N Oを一般ィ匕した MIV N Oについても同様の結果が得られることは実施例
2 2 (3n+2)/4 n
の中で例示する。
[0111] ここで、一般式 [11]の蛍光体と特許文献 13 (特開 2005— 48105号公報)との違 いについて説明する。
JP,105はー般式a ( (l—x—y) MO·xEuO·yCe O ) -bSi N 'cAlNの組成式を
2 3 3 4
有する蛍光体では温色系、赤色系の発光が得られることを開示している。ここで、 M はアルカリ土類金属で Srが最も好ましいとしている。 JP' 105は上記一般式 MOの表 記より明瞭なようにアルカリ土類金属のイオン数と同数の酸素のイオンが含まれてい ることが必須であり、明細書中に焼成によりアルカリ土類金属酸ィ匕物に変化する物質 を原料とする旨、記載していることからも裏付けられる。また、得られた蛍光体の結晶 構造は明確に開示されていないが、 Sr Al Si O Nを母体結晶とする蛍光体である
2 2 3 2 6
可能性を示唆している。
翻って一般式 [11]においては、 JP2006— 8721で開示した CaAlSiNを母体結
3 晶とし、これに発光中心元素イオンを導入することによって高輝度で深い赤色発光の 蛍光体の研究を進め、 CaAlSiNと同じ結晶構造を有する酸窒化物結晶中では発光
3
波長が短波長側にシフトし、ブロードな発光ピークとなることを見出し、本発明に到達 したものである。即ち、蛍光体母体結晶構造の深い理解に基づき本発明に到達した ものである。また、前記一般式 [11]は、酸素イオンの係数 X力^ < x≤0. 45を満足す ることを要件としていることから JP' 105の組成範囲とは重なる部分がない。以上のこ とから、一般式 [l l] iJP' 105とは母体の結晶構造が異なり、組成範囲も異なる別の 発明といえる。
[0112] 前記一般式 [11]で表される化学組成の結晶相(以下「結晶相 [11]」と称す場合が ある。)を高純度にかつ極力多く含み、最も好ましくは結晶相 [11]の単相から構成さ れている蛍光体は、優れた蛍光発光特性を有する。しカゝしながら、蛍光体は、特性が 低下しな 、範囲で、結晶相 [11]以外の他の結晶相及び Z又はアモルファス相との 混合物であっても良い。この場合、蛍光体中の結晶相 [11]の含有量が 20質量%以 上であることが高い輝度を得るために望ましい。さらに好ましくは蛍光体中の結晶相 [ 11]の含有量 50質量%以上で輝度が著しく向上する。なお、蛍光体中の結晶相 [11 ]の含有割合は X線回折測定を行 、、結晶相 [11]とそれ以外の相の最強ピークの強 さの比力 求めることができる。
[0113] 前記一般式 [1]で表される化学組成は、下記一般式 [21]であってもよい。好ましく は、この結晶相の結晶構造は、 CaAlSiNと同じ空間群 Cmc2に属する。
3 1
(Ce Ln M" MmMIVN ) (MIV N O) [21]
y z 1 z 3 1-x (3n+2)/4 n x
[0114] 一般式 [21]において、 Lnとしては、 Ceを除くランタンイド、即ち、 La Pr Nd Sm
Eu Gd Tb Dy Ho Er Tm Yb Luと Mn及び Tiからなる群から選ばれる少 なくとも 1種が挙げられる力 これらのうち、 Eu Tb Sm Mn Dy Yb力らなる群力 ら選ばれる少なくとも 1種が輝度の点力も好ましい。
[0115] M"は、 2価の金属元素であり、 Mg Ca Sr Ba、及び Znよりなる群から選ばれる 1 種又は 2種以上を合計で 90mol%以上含むものである。蛍光体の輝度の点から、 M" 中の Mg Ca Sr Ba Zn以外の元素としては、 Pb Sn等が挙げられる。蛍光体の 輝度の点から、 M"は、特に、 Ca及び Z又は Srを合計で 80mol%以上を含むことが 好ましぐ 90mol%以上含むことが更に好ましぐ 100mol%であることが最も好ましい 。また、 M"中の Caと Srの合計に対する Caの割合が 10mol%を超えることが好ましぐ 100mol%であること、すなわち M"は Caのみ力もなることが最も好まし!/、。
[0116] M1"は、 3価の金属元素であり、 A1を 80mol%以上含むものである。蛍光体の輝度 の点から、 M1"中の A1以外の元素としては、 Ga In B Sc Y Bi Sb等が挙げられ る力 この中でも、 Ga In Sc Yが好ましい。蛍光体の輝度の点から、 Μ"1は、 A1を 9 Omol%以上含むことが好ましぐ 100mol%であること、すなわち M"1は A1のみ力もな ることが最も好ましい。
[0117] MIVは、 4価の金属元素であり、 Siを 90mol%以上含むものである。輝度の点から、 MIV中の Si以外の元素としては、 Ge、 Sn、 Zr、 Hf等が挙げられ、この中でも Geが好 ましい。輝度の点から、 MIVは Siのみ力もなることが最も好ましい。
[0118] 蛍光体の輝度の顕著な低下をきたさない限りにおいて、 2価、 3価、 4価以外の価数 である 1価、 5価、 6価の元素を、前記一般式 [21]上 0. O5mol以下([21]式の lmol に対して 0. 05mol以下)の範囲で導入しても良い。この場合、電荷補償を維持して導 入することが、輝度低下の原因となる格子欠損をおこしにくいので、好ましい。
[0119] 次に前記一般式 [21]の各パラメーターについて説明する。
y及び zは付活剤の量を表すパラメーターである。 yは付活元素 Ceのモル比であり、 0<y≤0. 2を満足する数である。付活剤が Eu単独の場合に比較して Ce単独の場 合は発光波長が短波側に移動する。 yが 0. 2を超えると濃度消光をおこし、 0. 0005 を下回ると発光が不十分となる傾向がある。従って、 yは好ましくは 0. 0005<y≤0. 1である。
[0120] zは第 2付活元素 Lnのモル比であり、 0≤z≤0. 2を満足する数である。発光強度の 点から、 0. 0001≤z≤0. 01力好まし <、 0. 0003≤z≤0. 05力 ^より好まし!/ヽ。
[0121] Xは母体結晶の酸素原子の存在状態を表すパラメーターである。酸素イオンが結 晶中に導入される場合の第 1は Caの位置はすべて満たされており、酸素は Si— Nを Al—Oで置き換えることにより導入される。第 2は Siの位置を Si又は A1が占め、かつ Oの位置の一部を Nが占め、かつ Si— N— Oで形成される骨格の空間のところどころ に Caが入ることにより導入される。第 3は第 1と第 2が同時に起こる場合である。このよ うな観点から酸素イオン導入に伴う M"、 M1"及び MIVイオンに対し電気的中性の原則 が保たれるよう Xを導入したものであり、 Xは 0≤χ≤0. 45を満足する数である。輝度 の点力ら、 Xは 0≤χ≤0. 3力 子ましく、 0. 002≤χ≤0. 3力より好ましく、 0. 15≤χ≤ 0. 3が更に好ましい。
[0122] ηは 0又は正の数であり、 η=0は SiOを表し、 n= 2は Si N O (Sinoite)を表す。 n
2 2 2
は、 Xとの関係において、 0. 002≤ (3n+ 2) x/4≤0. 9を満足する数である。輝度 の点力ら、 nは Xとの関係において、 0. 004≤ (3n+ 2) x/4≤0. 6力 子ましく、 0. 3 ≤(3n+ 2) x/4≤0. 6が更に好ましい。
[0123] なお、前記一般式 [21]は、理論上の物質を表す式である。原料の Si Nや A1N中
3 4 に不純物として入って!/、る酸素の影響や、原料の混合から焼成までの操作中に原料 の Ca N等がわずかに酸化される原因となる試料外酸素の混入の影響等により、実
3 2
際に得られる物質中の酸素と窒素の含有量が理論値と異なることがあるが、このこと による酸素と窒素の含有量の多少のずれは発光特性に悪影響を与えるものでない ので、実際の酸素の含有率や窒素の含有率が上記 [21]式の値と多少ずれていても よい。
[0124] 次に一般式 [21]の蛍光体の結晶構造につ 、て述べる。
[0125] 一般式 M M M Nと MIV N Oの固溶系において付活剤を Ceとすると、発光
3 (3n+2)/4 n
ピークの短波長化と輝度が顕著に増大する。また、 M"MmMIVN単独の場合に付活
3
剤として Ceに Lnをカ卩えることによつても発光ピークの短波長化が可能である。
[0126] 上記一般式 [21]において、 M"=Ca、 Mm=Al、 MIV=Siを選択し、 x=0. 18、 y( 1 -x) =0. 032、 z (l -x) =0となるよう各原料を添加し、高温焼成すると、 X線回折 パターンの解析から、斜方晶系(又は単斜晶系)で空間群 Cmc2 (又は P2 )を持ち、
CaAlSiNと Si N Oの中間領域の格子定数を持つ結晶が得られていることがわかつ
3 2 2
た。図 1は、前述の通り、 CeO及び Al Oを酸素源として 1900°Cで、 2時間焼成して
2 2 3
得られた物質の X線回折パターンを示す。
[0127] この蛍光体の主結晶相は好ましくは空間群 Cmc2に属する。ただし、焼成温度等 の合成条件により、一部が斜方晶でなく単斜晶になり、 Cmc2と異なる空間群になる 場合がありうるが、この場合においても、発光特性の変化は僅かであるため、高輝度 蛍光体として使用することができる。
[0128] 前記一般式 [21]で表される化学組成の結晶相(以下「結晶相 [21]」と称す場合が ある。)を高純度にかつ極力多く含み、最も好ましくは結晶相 [21]の単相から構成さ れている蛍光体は、優れた蛍光発光特性を有する。しカゝしながら、蛍光体は、特性が 低下しない範囲で、結晶相 [21]以外の他の結晶相及び Z又はアモルファス相との 混合物であっても良い。この場合、蛍光体中の結晶相 [21]の含有量が 20質量%以 上であることが高い輝度を得るために望ましい。さらに好ましくは蛍光体中の結晶相 [
21]の含有量 50質量%以上で輝度が著しく向上する。なお、蛍光体中の結晶相 [21 ]の含有割合は X線回折測定を行 、、結晶相 [21]とそれ以外の相の最強ピークの強 さの比力 求めることができる。
[0129] 次に、前記一般式 [1]で表される化学組成は、下記一般式 [30]であってもよい。
好ましくは、この結晶相の結晶構造は、 CaAlSiNと同じ空間群 Cmc2に属する。
3 1
(Eu Ln" M" MmMIVN ) (AMIV N ) 〜[30]
y W 1-y-W 3 ト 2 3 χ'
[0130] 上記一般式 [30]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、これらの中では、 Ce、 Tb、 Sm、 Mn、 Dy、 Yb力も選ばれる少なくとも 1種の金属元素が輝度の点力も好ましい。 M"は 2価 の金属元素であり、 Mg、 Ca、 Sr、 Ba、及び Znよりなる群力 選ばれる 1種又は 2種 以上を合計で 90mol%以上含むものである。 M1"は 3価の金属元素であり、 A1を 80m ol%以上含むものである。 MIVは 4価の金属元素であり、 Siを 90mol%以上含むもの であり、 Aは Li、 Na、及び Kからなる群から選ばれる 1種以上の金属元素である。 χ, は 0<χ' < 1. 0を満足する数であり、 yは 0<y≤0. 2を満足する数であり、 wは 0≤w < 0. 2を満足する数である。
[0131] 上記一般式 [30]で表される化学組成は、好ましくは、下記一般式 [31]で表される
(Eu M" MmMIVN ) (AMIV N ) 〜[31]
y 1-y 3 1-x' 2 3 x'
[0132] 上記一般式 [31]において、 M"は、 Mg、 Ca、 Sr、 Ba、及び Znの合計が 90mol% 以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占める 3価の金属 元素であり、 Mivは、 Siが 90mol%以上を占める 4価の金属元素であり、 Aは Li、 Na、 及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ'は 0く χ'く 0. 5を満足 する数であり、 yは 0<y≤0. 2を満足する数である。
[0133] 一般式 [31]において、 M"は、 2価の金属元素であり、 Mg、 Ca、 Sr、 Ba、及び Znよ りなる群力も選ばれる 1種又は 2種以上を合計で 90mol%以上含むものである。蛍光 体の輝度の点から、 M"は、特に、 Ca及び Z又は Srを合計で 80mol%以上含むこと が好ましぐ 90mol%以上含むことが更に好ましぐ 100mol%であることが最も好まし い。また、 M"中の Caと Srの合計に対する Caの割合が 10mol%を超えることが好まし く、 100mol%であること、すなわち M"は Caのみからなることが最も好ましい。 M"中に は、 Mnのような、 Euとともに共付活できる元素が含まれていてもよい。
[0134] M1"は、 3価の金属元素であり、 A1を 80mol%以上含むものである。蛍光体の輝度 の点から、 M1"中の A1以外の元素としては、 Ga、 In、 B、 Sc、 Y、 Bi、 Sb等が挙げられ る力 この中でも、 Ga、 In、 Sc、 Yが好ましい。蛍光体の輝度の点から、 Μ"1は、 A1を 9 Omol%以上含むことが好ましぐ 100mol%であること、すなわち M"1は A1のみ力もな ることが最も好ましい。
[0135] MIVは、 4価の金属元素であり、 Siを 90mol%以上含むものである。輝度の点から、 MIV中の Si以外の元素としては、 Ge、 Sn、 Zr、 Hf等が挙げられ、この中でも Geが好 ましい。輝度の点から、 MIVは Siのみ力もなることが最も好ましい。
[0136] Aは、 Li、 Na及び K力 なる群力 選ばれる 1種以上の 1価の金属元素であり、輝 度の点から、 Aは Li及び Z又は Naが好ましぐより好ましくは Liである。
[0137] 蛍光体の輝度の顕著な低下をきたさない限りにおいて、 1価、 2価、 3価、 4価以外 の価数である 5価、 6価の元素を [31]式上 0. O5mol以下([31]式の lmolに対して 0 . O5mol以下)の範囲で導入しても良い。この場合、電荷補償を維持して導入すること 力 輝度低下の原因となる格子欠損をおこしにくいので、好ましい。
[0138] 次に前記一般式 [31]の各パラメーターについて説明する。
yは Euの量を表すパラメーターである。 yは Euのモル比であり、 0<y≤0. 2を満足 する数である。 yが 0. 2を超えると濃度消光をおこし、 0. 003を下回ると発光が不十 分となる傾向がある。従って、 yは好ましくは 0. 003≤y≤0. 2である。
[0139] x'は母体結晶中の Aである Li、 Na及び Kからなる群から選ばれる 1種以上の 1価の 金属元素の存在状態を表すパラメーターである。 Li、 Na、 Kのいずれか 1以上のィォ ン導入に伴い、 M"、 Mm、及び MIVイオンに対し電気的中性の原則が保たれるよう χ' を導入した。 Xは 0< χ, < 0. 5を満足する数である。輝度の点から、 Xは 0. 002≤χ ' ≤0. 4力好ましく、 0. 03≤χ'≤0. 35力より好まし!/ヽ。
[0140] なお、前記一般式 [31]は、理論上の物質を表す式である。原料の Si Nや A1N中
3 4 に不純物として入って!/、る酸素の影響や、原料の混合から焼成までの操作中に原料 の Ca N等がわずかに酸化される原因となる試料外酸素の混入の影響等により、実
3 2
際に得られる物質中の酸素と窒素の含有量が理論値と異なることがあるが、このこと による酸素と窒素の含有量の多少のずれは発光特性に悪影響を与えるものでない ので、実際の酸素の含有率や窒素の含有率が上記 [31]式の値と多少ずれていても よい。
[0141] 次に一般式 [31]の蛍光体の結晶構造について述べる。
[0142] この蛍光体の母体結晶は CaAlSiNと同じ結晶構造を有する ASi N (ここで、 Aは
3 2 3
Li、 Na、及び K力もなる群力も選ばれる 1種以上の金属元素である。)と CaAlSiNが
3 互いに固溶した化合物と考えることができる。組成式で示せば、例えば、(CaAlSiN
3
) (ASi N ) となり、括弧をはずすと Ca A Al Si Nとなる。ここで、具体例
Ι 2 3 Ι Ι Ι 3
として CaAlSiNと ASi Nの固溶系について説明したが、一般式で示せば MUMU'M1
3 2 3
VNと AMIV Nの固溶系で、 M" A M™ MIV Nとなる。
3 2 3 Ι Ι Ι 3
本発明者らは、この系において付活剤を Euとすると、 Euの添カ卩量や、 AMIV Nの
2 3 固溶割合により発光特性を変化させることができることを見出した。
[0143] 上記一般式 [31]において、 M"=Ca、 Mm=Al、 MIV=Si、 A=Liを選択し、 y(l— x,) =0. 008と固定し、 x' = 0、 x' = 0. 18、 x' = 0. 33、となるよう各原料を添カロし、 高温焼成したものについて測定した X線回折のピーク位置と、空間群を Cmc2と仮
1 定して原子座標より計算したピーク位置は表 3に示すように良い一致を示す。
[0144] [表 3]
面指数 LiSi2N3仕込み割合 x'の蛍光体における 2 Θ
x' =0 x' =0.18 X' =0.33 h k I
実測値 計算値 実測値 計算値 実測値 計算値
4 0 0 36.59 - 37.05 - 37.50 -
0 2 0 31 .49 - 31.52 - 31.66 -
0 0 2 35.31 - 35.55 - 35.89 -
3 1 0 33.05 31.54 31.84 31.84 32.13 32.16
0 2 1 36.23 36.22 36.32 36.31 36.53 36.51
3 1 1 36.23 36.26 36.61 36.59 36.95 36.96
2 0 2 39.93 39.93 40.25 40.26 40.70 40.67
2 2 1 40.80 40.76 41.01 40.94 41.27 41.23
0 2 2 48.09 48.03 48.52 48.24 48.65 48.60
3 1 2 48.09 48.06 49.45 48.46 49.03 48.95
5 1 0 49.06 49.06 49.73 49.63 50.28 50.22
4 0 2 51.78 51.76 52.31 52.29 52.94 52.88
5 1 1 52.50 52.47 53.07 53.05 53.73 53.67
3 3 0 56.19 56.10 56.47 56.33 56.80 56.70
6 0 0 56.1 9 56.1 8 57.00 56.92 57.69 57.66
[0145] 表 3は、面指数 (hkl)が(400)、(020)、(002)の場合の 2 Θ実測値から、下記 [2] 式を用いて Cmc2の斜方晶における a, b, c格子定数を決定し、この定数を使用して
1
他の面指数の 2 Θ値を計算したものである。小さな誤差内で 2 Θの実験値と計算値が 一致する。
2 Θ = 2sin 1 [0. 5 X (hVa2+kVb2+lVc2)0-5] 〜[2]
[0146] なお、 λは X線源として用いた Cuの Κ α線の波長 1. 54056 Αである。 X線回折パ ターンの解析から、斜方晶系で空間群 Cmc2に属し、 CaAlSiNと LiSi Nの中間領
1 3 2 3
域の格子定数を持つ結晶が得られていることがわ力つた。
[0147] 一般式 [31]の蛍光体における主結晶相は好ましくは空間群 Cmc2に属する。た だし、焼成温度等の合成条件により、一部が斜方晶でなく単斜晶になり、 Cmc2と異 なる空間群になる場合がありうるが、この場合においても、発光特性の変化は僅かで あるため、高輝度蛍光体として使用することができる。
[0148] 前記一般式 [31]で表される化学組成の結晶相(以下「結晶相 [31]」と称す場合が ある。)を高純度にかつ極力多く含み、最も好ましくは結晶相 [31]の単相から構成さ れている蛍光体は、優れた蛍光発光特性を有する。しカゝしながら、蛍光体は、特性が 低下しない範囲で、結晶相 [31]以外の他の結晶相及び Z又はアモルファス相との 混合物であっても良い。この場合、蛍光体中の結晶相 [31]の含有量が 20質量%以 上であることが高い輝度を得るために望ましい。さらに好ましくは蛍光体中の結晶相 [ 31]の含有量 50質量%以上で輝度が著しく向上する。なお、蛍光体中の結晶相 [31 ]の含有割合は X線回折測定を行!、、結晶相 [31]とそれ以外の相の最強ピークの強 さの比力 求めることができる。
[0149] 前記一般式 [1]で表される化学組成は、下記一般式 [41]であってもよい。好ましく は、この結晶相の結晶構造は、 CaAlSiNと同じ空間群 Cmc2に属する。
3 1
(Ce Ln M" MmMIVN ) (AMIV N ) [41]
y z 1 z 3 1-x' 2 3 x'
[0150] 上記一般式 [41]において、 Lnとしては、 Ceを除くランタンイド、即ち、 La Pr Nd
Sm Eu Gd Tb Dy Ho Er Tm Yb Luと Mn及び 1からなる群から選ばれ る少なくとも 1種が挙げられる力 これらのうち、 Eu Tb Sm Mn Dy Ybなどから なる群力も選ばれる少なくとも 1種が輝度の点力も好ましい。
[0151] M"は、 Mg Ca Sr Ba、及び Znの合計が 90mol%以上を占める 2価の金属元素 であり、 M1"は、 A1が 80mol%以上を占める 3価の金属元素であり、 MIVは、 Siが 90mo 1%以上を占める 4価の金属元素であり、 Aは Li Na、及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ'は 0<χ' < 1. 0を満足する数であり、 yは 0<y≤0. 2 を満足する数であり、 zは 0≤z≤0. 2を満足する数である。
[0152] M"は、 2価の金属元素であり、 Mg Ca Sr Ba、及び Znよりなる群から選ばれる 1 種又は 2種以上を合計で 90mol%以上含むものである。蛍光体の輝度の点から、 M" は、特に、 Ca及び Z又は Srを合計で 80mol%以上含むことが好ましぐ 90mol%以 上含むことが更に好ましぐ 100mol%であることが最も好ましい。また、 M"中の Caと S rの合計に対する Caの割合が 10mol%を超えることが好ましぐ 100mol%であること、 すなわち M"は Caのみ力もなることが最も好ましい。 M"中には、 Mnのような、 Ceとと もに共付活できる元素が含まれて 、てもよ 、。
[0153] M1"は、 3価の金属元素であり、 A1を 80mol%以上含むものである。蛍光体の輝度 の点から、 M1"中の A1以外の元素としては、 Ga、 In、 B、 Sc、 Y、 Bi、 Sb等が挙げられ る力 この中でも、 Ga、 In、 Sc、 Yが好ましい。蛍光体の輝度の点から、 Μ"1は、 A1を 9 Omol%以上含むことが好ましぐ 100mol%であること、すなわち M"1は A1のみ力もな ることが最も好ましい。
[0154] MIVは、 4価の金属元素であり、 Siを 90mol%以上含むものである。輝度の点から、 MIV中の Si以外の元素としては、 Ge、 Sn、 Zr、 Hf等が挙げられ、この中でも Geが好 ましい。輝度の点から、 MIVは Siのみ力もなることが最も好ましい。
[0155] Aは、 Li、 Na及び K力 なる群力 選ばれる 1種以上の 1価の金属元素であり、輝 度の点から、 Aは Li及び Z又は Naが好ましぐより好ましくは Liである。
[0156] 蛍光体の輝度の顕著な低下をきたさない限りにおいて、 1価、 2価、 3価、 4価以外 の価数である 5価、 6価の元素を [41]式上 0. O5mol以下([41]式の lmolに対して 0 . O5mol以下)の範囲で導入しても良い。この場合、電荷補償を維持して導入すること 力 輝度低下の原因となる格子欠損をおこしにくいので、好ましい。
[0157] 次に前記一般式 [41]の各パラメーターについて説明する。
yは Ceの量を表すパラメーターである。 yは Ceのモル比であり、 0<y≤0. 2を満足 する数である。 yが 0. 2を超えると濃度消光をおこし、 0. 003を下回ると発光が不十 分となる傾向がある。従って、 yは好ましくは 0. 003≤y≤0. 2である。
[0158] x'は母体結晶中の Aである Li、 Na及び Kからなる群から選ばれる 1種以上の 1価の 金属元素の存在状態を表すパラメーターである。 Li、 Na、 Kのいずれか 1以上のィォ ン導入に伴い、 M"、 Mm、及び MIVイオンに対し電気的中性の原則が保たれるよう χ' を導入した。 Xは 0< χ, < 1. 0を満足する数である。輝度の点から、 Xは 0. 002≤χ ' ≤0. 4力好ましく、 0. 03≤χ'≤0. 35力より好まし!/ヽ。
[0159] ζは第 2付活元素 Lnのモル比であり、 0≤z≤0. 2を満足する数である。
[0160] なお、前記一般式 [41]は、理論上の物質を表す式である。原料の Si Nや A1N中
3 4 に不純物として入って!/、る酸素の影響や、原料の混合から焼成までの操作中に原料 の Ca N等がわずかに酸化される原因となる試料外酸素の混入の影響等により、実
3 2
際に得られる物質中の酸素と窒素の含有量が理論値と異なることがあるが、このこと による酸素と窒素の含有量の多少のずれは発光特性に悪影響を与えるものでない ので、実際の酸素の含有率や窒素の含有率が上記 [41]式の値と多少ずれていても よい。
[0161] 前記一般式 [41]で表される化学組成を有する結晶相の結晶構造は、前述した一 般式 [31]で表される化学組成を有する結晶相の結晶構造と同様である。主結晶相 は好ましくは空間群 Cmc2に属する。ただし、焼成温度等の合成条件により、一部が
1
斜方晶でなく単斜晶になり、 Cmc2と異なる空間群になる場合がありうるが、この場合
1
においても、発光特性の変化は僅かであるため、高輝度蛍光体として使用することが できる。
[0162] 前記一般式 [41]で表される化学組成の結晶相(以下「結晶相 [41]」と称す場合が ある。)を高純度にかつ極力多く含み、最も好ましくは結晶相 [41]の単相から構成さ れている蛍光体は、優れた蛍光発光特性を有する。しカゝしながら、蛍光体は、特性が 低下しない範囲で、結晶相 [41]以外の他の結晶相及び Z又はアモルファス相との 混合物であっても良い。この場合、蛍光体中の結晶相 [41]の含有量が 20質量%以 上であることが高い輝度を得るために望ましい。さらに好ましくは蛍光体中の結晶相 [ 41]の含有量 50質量%以上で輝度が著しく向上する。なお、蛍光体中の結晶相 [41 ]の含有割合は X線回折測定を行 、、結晶相 [41]とそれ以外の相の最強ピークの強 さの比力 求めることができる。
[0163] [蛍光体の粒径]
本発明の蛍光体を粉体として用いる場合は、榭脂への分散性や粉体の流動性など の点力も平均粒径 0. 1 μ m以上 20 μ m以下であることが好ましい。また、粉体をこの 範囲の単結晶粒子とすることにより、より発光輝度が向上する。
[0164] [蛍光体中の不純物]
発光輝度が高!ヽ蛍光体を得るには、蛍光体中に含まれる不純物は極力少な ヽ方 が好ましい。特に、 Fe、 Co、 Ni不純物元素が多く含まれると発光が阻害されるので、 これらの元素の合計が 500ppm以下となるように、原料粉末の選定及び合成工程の 制御を行うとよい。
[0165] [蛍光体の電子線励起]
本発明の蛍光体を電子線で励起する用途に使用する場合は、導電性の無機物質 を、他の結晶相及び Z又はアモルファス相として結晶相 [1]、 [11]、 [21]、 [31]又 は [41]に混合して蛍光体に導電性を付与することができる。ここで、導電性の無機 物質としては、 Zn、 Al、 Ga、 In、及び Sn力も選ばれる 1種又は 2種以上の元素を含 む、酸化物、酸窒化物、窒化物、あるいはこれらの混合物を挙げることができる。
[0166] 前記他の結晶相及び Z又はアモルファス相は、前記一般式 [1]で表される化学組 成とは異なる化学組成の無機蛍光体であってもよい。
[0167] [蛍光体の製造方法]
本発明の蛍光体は、金属化合物の混合物であって、焼成することにより、前記一般 式 [11]、 [21]、 [31]又は [41]で表される組成物を構成しうる原料混合物を、窒素 を含有する不活性雰囲気中において 1200°C以上 2200°C以下の温度範囲で焼成 すること〖こより、製造されることができる。
[0168] 一般式 [11]の蛍光体の主結晶は空間群 Cmc2に属するが、焼成温度等の合成
1
条件により、一部斜方晶でなく単斜晶になり、 Cmc2
1と異なる空間群となる結晶が混 入する場合がありうる力 この場合においても、発光中心元素 Euサイトの発光特性の 変化は僅かであるため高輝度蛍光体として使用することができる。
[0169] 特に、上記方法により、一般式 [11]の蛍光体を製造する場合、窒化ユーロピウム 及び Z又は酸ィヒユーロピウムと、窒化カルシウムと、窒化ケィ素と、窒化アルミニウム の他に、 Si N Oの酸素源としてアルミナ、シリカ、炭酸カルシウム、酸化カルシウム、
2 2
又は、 A1と Siの複合酸化物、 A1と Caの複合酸化物、 Siと Caの複合酸化物、或いは、 Al、 Si及び Caの複合酸化物等の金属化合物の混合粉末を出発原料とするのがよい
[0170] 特に、上記方法により、 Lnが Euである一般式 [21]の蛍光体を製造する場合、酸 化セリウムと、窒化ユーロピウム及び Z又は酸ィ匕ユーロピウムと、窒化カルシウムと、 窒化ケィ素と、窒化アルミニウムの他に、酸素源としてアルミナ、シリカ、炭酸カルシゥ ム、酸化カルシウム、又は、 A1と Siの複合酸化物、 A1と Caの複合酸化物、 Siと Caの 複合酸化物、或いは、 Al、 Si及び Caの複合酸化物等の金属化合物の混合粉末を 出発原料とするのがよい。
[0171] 特に、上記方法により、 M"が Caで、 M1"が A1で、 MIVが Siで、 Aが Liである一般式 [ 31]の蛍光体:(Eu Ca AlSiN ) (LiSi N ) を合成する場合は、窒化ユーロピウ
1 3 Ι 2 3
ム、窒化カルシウム、窒化リチウム、窒化ケィ素、窒化アルミニウム粉末の混合物を出 発原料とするのがよい。
[0172] 特に、上記方法により、 ζ = 0、 Μ"が Caで、 M™が A1で、 MIVが Siで、 Aが Liである一 般式 [41]の蛍光体:(Ce Ca AlSiN ) (LiSi N ) を合成する場合は、窒化セ
1 3 Ι 2 3
リウム、窒化カルシウム、窒化リチウム、窒化ケィ素、窒化アルミニウム粉末の混合物 を出発原料とするのがよい。
[0173] 原料混合物の焼成に当っては、上記の金属化合物の混合粉末を、 40%以下の体 積充填率に保持した状態で焼成してもよい。なお、体積充填率は、(混合粉末の嵩 密度) Ζ (混合粉末の理論密度) Χ 100[%]により求めることが出来る。体積充填率 を 40%以下の状態に保持したまま焼成すると、原料粉末の周りに自由な空間がある 状態で焼成される。この結果、反応生成物である CaAlSiN
3属結晶が自由な空間に 結晶成長することにより結晶同士の接触が少なくなるため、表面欠陥が少ない結晶を 合成することが出来る。
[0174] 原料混合物の焼成に当って、原料ィ匕合物を保持する容器としては種々の耐熱性材 料が使用しうるが、金属窒化物などの金属化合物に対する反応性や材質劣化の悪 影響が低いことから、学術雑誌 Journal of the American Ceramic Society 2002 年 85卷 5号 1229ページな!/、し 1234ページに示されるように、窒化ホウ素焼結体が適し ている。
[0175] 焼成に用いる炉は、焼成温度が高温であり、また焼成雰囲気が窒素を含有する不 活性雰囲気であることから、金属抵抗加熱方式又は黒鉛抵抗加熱方式で、炉の高 温部の材料として炭素を用いた電気炉が好適である。焼成の手法は、常圧焼結法や ガス圧焼結法などの外部から機械的な加圧を施さな 、焼結手法が好ま 、。
[0176] なお、焼成時間は焼成温度によっても異なるが、通常 1〜10時間程度である。
[0177] 焼成により得られた粉体凝集体が固く固着して 、る場合は、例えばボールミル、ジ エツトミル等の工業的に通常用いられる粉碎機により粉枠する。粉枠は、粉体の平均 粒径が 20 μ m以下、特に平均粒径 0. 1 μ m以上 5 μ m以下となるように行うことが好 ましい。平均粒径が 20 mを超える粉体では、流動性と榭脂への分散性が悪くなり、 発光光源又は励起源と組み合わせて照明器具や画像表示装置を形成する際に、部 位により発光強度が不均一になる。平均粒径が 0.: L m未満になるまで粉砕すると、 蛍光体粉体表面の欠陥量が多くなるため、蛍光体の組成によっては発光強度が低 下する力もしれない。
[0178] また、蛍光体を構成する金属元素を少なくとも 2種類以上含有する合金、好ましくは 蛍光体を構成する金属元素を全て含有する合金を作成し、得られた合金を窒素含 有雰囲気中、加圧下で加熱処理することにより、製造することができる。また、蛍光体 を構成する金属元素の一部を含有する合金を作成し、得られた合金を窒素含有雰 囲気中、加圧下で加熱処理した後、更に蛍光体を構成する残りの金属元素源となる 原料化合物と混合して、加熱処理することにより、製造することもできる。このように合 金を経て製造された蛍光体は、不純物が少なぐ輝度が高い蛍光体となる。
[0179] 得られた蛍光体は必要に応じて公知の表面処理、例えば燐酸カルシウム処理を行 つて力も榭脂中に分散することが好ま U、。
[0180] [他の蛍光体との組み合わせ]
本発明の蛍光体は特定の結晶母体と付活元素の組み合わせにより赤色又は橙色 力 赤色まで発色させることができる力 黄色、緑色、青色などの他の色との混合が 必要な場合は、必要に応じてこれらの色を発色する無機蛍光体を混合することがで きる。
[0181] 前述の如ぐ一般式 [11]の蛍光体は、 MI Οの固溶ィ匕の割合、すなわち X
Figure imgf000038_0001
の値を変えることにより、発光波長や発光ピーク幅を調節することができる。その態様 は、用途に基づいて必要とされるスペクトルに設定すればよい。なかでも、 CaAlSiN
3 相に Euを 0. 0001≤(Euの原子数) Z{ (Euの原子数) + (Caの原子数) }≤0. 1と なる組成で添カ卩したものは、 200nm〜600nmの範囲の波長の光で励起されたとき 5 50ηπ!〜 700nmの範囲の波長にピークを持つ発光を示し、高輝度赤色の蛍光とし て優れた発光特性を示すため、このような CaAlSiN N Oを様々な
3: Eu相〖こ Si
(3n+2)/4 n 割合で固溶化することにより、発光特性に優れ、かつ発光波長や発光ピーク幅の調 節が可能な蛍光体が提供される。
[0182] 前述の如ぐ一般式 [21]の蛍光体は、 Ceの添加量、第 2の付活剤 Lnの種類及び Z又は添加量並びに酸素イオンの割合をかえることにより、発光波長や発光ピーク 幅を調節することができる。その態様は、用途に基づいて必要とされるスペクトルに設 定すればよい。
[0183] 前述の如ぐ一般式 [31]、 [41]の蛍光体は、付活剤 Euの添力卩量ゃ AMIV Nの固
2 3 溶割合を変えることにより、発光波長や発光ピーク幅を調節することができる。その態 様は、用途に基づ 、て必要とされるスペクトルに設定すればょ 、。
[0184] [蛍光体の用途]
本発明の蛍光体は、通常の酸化物蛍光体や既存の窒化物又は酸窒化物蛍光体と 比べて、電子線や X線、及び紫外線から可視光の幅広い励起範囲を持つこと、 550 nmとりわけ 570nm以上、例えば 550〜700nmの橙色や赤色に発光し、かつ、発光 波長や発光ピーク幅が調節可能であることが特徴である。この発光特性により、本発 明の蛍光体は、発光装置、照明器具、画像表示装置、顔料、紫外線吸収剤に好適 である。これに加えて、本発明の蛍光体は、高温にさらしても劣化しないことから耐熱 性に優れており、酸ィヒ雰囲気及び水分環境下での長期間の安定性にも優れている
[0185] 励起源は、 100nm〜570nmの波長を持つ紫外線又は可視光であってもよい。
[0186] [蛍光体の使用方法]
本発明の蛍光体を発光装置等の用途に使用する場合には、これを液体媒体中に 分散させた形態で用いることが好ましい。また、本発明の蛍光体を含有する蛍光体混 合物として用いることもできる。本発明の蛍光体を液体媒体中に分散させたものを、 適宜「蛍光体含有組成物」と呼ぶものとする。
[0187] 本発明の蛍光体含有組成物に使用可能な液体媒体としては、所望の使用条件下 において液状の性質を示し、本発明の蛍光体を好適に分散させると共に、好ましくな い反応等を生じないものであれば、任意のものを目的等に応じて選択することが可能 である。液体媒体の例としては、硬化前の付加反応型シリコーン榭脂、縮合反応型シ リコーン榭脂、変性シリコーン榭脂、エポキシ榭脂、ポリビュル系榭脂、ポリエチレン 系榭脂、ポリプロピレン系榭脂、ポリエステル系榭脂等が挙げられる。これらの液体媒 体は一種を単独で使用してもよく、二種以上を任意の組み合わせ及び比率で併用し てもよい。
[0188] 液状媒体の使用量は、用途等に応じて適宜調整すればよいが、一般的には、本発 明の蛍光体に対する液状媒体の重量比で、通常 3重量%以上、好ましくは 5重量% 以上、また、通常 30重量%以下、好ましくは 15重量%以下の範囲である。
[0189] また、本発明の蛍光体含有組成物は、本発明の蛍光体及び液状媒体に加え、そ の用途等に応じて、その他の任意の成分を含有していてもよい。その他の成分として は、拡散剤、増粘剤、増量剤、干渉剤等が挙げられる。具体的には、ァエロジル等の シリカ系微粉、アルミナ等が挙げられる。
[0190] [発光装置]
次に、本発明の発光装置について説明する。本発明の発光装置は、第 1の発光体 と、第 1の発光体からの光の照射によって可視光を発する第 2の発光体とを、少なくと も備えて構成される。
[0191] 本発明の発光装置における第 1の発光体は、後述する第 2の発光体を励起する光 を発光するものである。第 1の発光体の発光波長は、後述する第 2の発光体の吸収 波長と重複するものであれば、特に制限されず、幅広い発光波長領域の発光体を使 用することができる。通常は、近紫外領域から青色領域までの発光波長を有する発 光体が使用される。具体的数値としては、通常 300nm以上、好ましくは 330nm以上 、また、通常 500nm以下の発光波長を有する発光体が使用される。中でも 330nm 〜420nmの波長の光を発する紫外(又は紫)発光体や 420nm〜500nmの波長の 光を発する青色発光体が好ま Uヽ。
[0192] この第 1の発光体としては、一般的には半導体発光素子が用いられ、具体的には 発光ダイオード (light emitting diode。以下適宜「LED」と略称する。)や半導体レー ザ一ダイオード(semiconductor laser diode。以下適宜「LD」と略称する。)等が使 用できる。
[0193] 中でも、第 1の発光体としては、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み合わせること によって、非常に低電力で非常に明るい発光が得られる力もである。例えば、 20mA の電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度を有 する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層、又は In Ga
X Y X Υ
Ν発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中で In G
X
a N発光層を有するものが発光強度が非常に強いので、特に好ましぐ GaN系 LD
Y
においては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度が非常に
X Y
強いので、特に好ましい。
[0194] なお、上記において X+Yの値は通常 0. 8〜1. 2の範囲の値である。 GaN系 LED にお!/、て、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好まし 、ものである。
[0195] GaN系 LEDはこれら発光層、 p層、 n層、電極、及び基板を基本構成要素としたも のであり、発光層を n型と p型の Al Ga N層、 GaN層、又は In Ga N層などでサンド
X Y X Y
イッチにしたへテロ構造を有しているもの力 発光効率が高く好ましぐさらにへテロ 構造を量子井戸構造にしたものが、発光効率がさらに高ぐより好ましい。
[0196] 本発明の発光装置における第 2の発光体は、上述した本発明の蛍光体を 1種又は 2種以上含有するものであり、第 1の発光体からの光の照射によって可視光を発する 発光体である。その用途等に応じて、所望の発光色を得るために、適宜、後述するそ の他の蛍光体 (赤色蛍光体、黄色蛍光体、緑色蛍光体、青色蛍光体等)を 1種又は 2 種以上含有してもよい。
[0197] 本発明の発光装置の一例として、 330nm〜420nmの波長の光を発する紫外 LE Dと、この波長で励起され 420ηπ!〜 500nmの波長に発光ピークを持つ蛍光を発光 する青色蛍光体と、 500ηπ!〜 570nmの波長に発光ピークを持つ蛍光を発光する緑 色蛍光体と、上述した本発明の蛍光体との組み合わせがある。この場合の青色蛍光 体としては BaMgAl O : Euを、緑色蛍光体としては BaMgAl O : Eu、 Mnを挙げ
10 17 10 17
ることができる。この構成では、 LEDが発する紫外線が蛍光体に照射されると、赤、 緑、青の 3色の光が発せられ、これらの混合により白色の発光装置となる。 [0198] 別の手法として、 420nm〜500nmの波長の光を発する青色 LEDと、この波長で 励起されて 550ηπ!〜 600nmの波長に発光ピークを持つ蛍光を発光する黄色蛍光 体と、上述した本発明の蛍光体との組み合わせがある。この場合の黄色蛍光体として は、前記特許文献 9に記載の (Y, Gd) (Al, Ga) O : Ceや前記特許文献 1に記載
3 5 12
の a—サイアロン: Euを挙げることができる。なかでも Euを固溶させた Ca— α—サイ ァロンは発光輝度が高いので好ましい。この構成では、 LEDが発する青色光が蛍光 体に照射されると、赤、黄の 2色の光が発せられ、これらと LED自身の青色光が混合 されて白色又は赤みがかった電球色の発光装置となる。
[0199] 別の手法として、 420nm〜500nmの波長の光を発する青色 LED発光素子とこの 波長で励起されて 500ηπ!〜 570nm以下の波長に発光ピークを持つ蛍光を発する 緑色蛍光体と、上述した本発明の蛍光体との組み合わせがある。この場合の緑色蛍 光体としては、 Y Al O : Ceを挙げることができる。この構成では、 LEDが発する青
3 5 12
色光が蛍光体に照射されると、赤、緑の 2色の光が発せられ、これらと LED自身の青 色光が混合されて白色の発光装置となる。
[0200] さらに、別の手法として、 420nm〜500nmの波長の光を発する青色 LED発光素 子と上述した本発明の蛍光体との組み合わせがある。この構成では、 LEDが発する 青色光が蛍光体に照射されると、本発明の蛍光体の発光色と LED自身の青色光が 混合されて白色の発光装置となる。
[0201] [その他の蛍光体]
本発明の発光装置においては、その他の蛍光体として以下のものを使用することが できる。
[0202] 赤色蛍光体としては、例えば、赤色破断面を有する破断粒子から構成され、赤色 領域の発光を行なう (Mg,Ca,Sr,Ba) Si N: Euで表わされるユウ口ピウム付活アル力
2 5 8
リ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状としてほぼ球形状を有 する成長粒子から構成され、赤色領域の発光を行なう (Y,La,Gd,Lu) O S : Euで表
2 2 わされるユウ口ピウム付活希土類ォキシカルコゲナイド系蛍光体等が挙げられる。
[0203] さら【こ、特開 2004— 300247号公報【こ記載された、 Ti、 Zr、 Hf、 Nb、 Ta、 W、及 び Moよりなる群力 選ばれる少なくも 1種の元素を含有する酸窒化物及び Z又は酸 硫ィ匕物を含有する蛍光体であって、 Al元素の一部又は全てが Ga元素で置換された アルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において 用いることができる。なお、これらは酸窒化物及び Z又は酸硫化物を含有する蛍光 体である。
[0204] また、そのほか、赤色蛍光体としては、 (La,Y) O S: Eu等の Eu付活酸硫化物蛍光
2 2
体、 Y(V,P)0 : Eu、 Y O : Eu等の Eu付活酸化物蛍光体、(Ba,Sr,Ca,Mg) SiO : E
4 2 3 2 4 u,Mn、 (Ba,Mg) SiO : Eu,Mn等の Eu,Mn付活珪酸塩蛍光体、(Ca,Sr)S :Eu等の
2 4
Eu付活硫化物蛍光体、 YAIO : Eu等の Eu付活アルミン酸塩蛍光体、 LiY (SiO )
3 9 4 6
O : Euゝ Ca Y (SiO ) Ο :Eu、(Sr,Ba,Ca) SiO : Euゝ Sr BaSiO : Eu等の Eu付活
2 2 8 4 6 2 3 5 2 5
珪酸塩蛍光体、(Y,Gd) Al O : Ce、(Tb,Gd) A1 0 : Ce等の Ce付活アルミン酸塩
3 5 12 3 5 12
蛍光体、(Ca,Sr,Ba) Si N : Euゝ (Mg, Ca,Sr,Ba)SiN: Euゝ (Mg, Ca,Sr,Ba)AlSi
2 5 8 2
N : Eu等の Eu付活窒化物蛍光体、(Mg, Ca,Sr,Ba)AlSiN: Ce等の Ce付活窒化
3 3
物蛍光体、 (Sr,Ca,Ba,Mg) (PO ) C1: Eu,Mn等の Eu, Mn付活ハロリン酸塩蛍光
10 4 6 2
体、(Ba Mg)Si O : Eu,Mnゝ (Ba,Sr,Ca,Mg) (Zn,Mg)Si O : Eu,Mn等の Eu, Mn
3 2 8 3 2 8
付活珪酸塩蛍光体、 3. 5MgO-0. 5MgF -GeO : Mn等の Mn付活ゲルマン酸塩
2 2
蛍光体、 Eu付活 αサイアロン等の Eu付活酸窒化物蛍光体、(Gd,Y,Lu,La) O : Eu
2 3
,Bi等の Eu, Bi付活酸化物蛍光体、(Gd,Y,Lu,La) O 3 : £11 1等の£11, Bi付活酸
2 2
硫化物蛍光体、 (Gd,Y,Lu,La)VO : Eu,Bi等の Eu, Bi付活バナジン酸塩蛍光体、 S
4
rY S : Eu,Ce等の Eu, Ce付活硫化物蛍光体、 CaLa S : Ce等の Ce付活硫化物蛍
2 4 2 4
光体、(Ba,Sr,Ca)MgP O : Eu,Mnゝ(Sr,Ca,Ba,Mg,Zn) P O : Eu,Mn等の Eu,
2 7 2 2 7
Mn付活リン酸塩蛍光体、(Y,Lu) WO : Eu,Mo等の Eu, Mo付活タングステン酸塩
2 6
蛍光体、(Ba,Sr,Ca) Si N : Eu,Ce (但し、 x、 y、 zは、 1以上の整数)等の Eu, Ce付 χ y z
活窒化物蛍光体、 (Ca,Sr,Ba,Mg) (PO ) (F,Cl,Br,OH) :Eu,Mn等の Eu, Mn付
10 4 6
活ハロリン酸塩蛍光体、 ((Y,Lu,Gd,Tb) Sc Ce ) (Ca,Mg) (Mg,Zn) Si G
1 -x x y 2 1 -r 2+r z-q e O 等の Ce付活珪酸塩蛍光体等を用いることも可能である。
q 12+ δ
[0205] 赤色蛍光体としては、 β ジケトネート、 βージケトン、芳香族カルボン酸、又は、 ブレンステッド酸等のァ-オンを配位子とする希土類元素イオン錯体力 なる赤色有 機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f,f' ]—4,4' ,7,7'—テトラフヱ-ル} ジインデノ [1,2,3— cd: l,,2,,3,一 lm]ペリレン)、アントラキノン系顔料、レーキ系顔 料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔料、イソ インドリノン系顔料、フタロシアニン系顔料、トリフエ-ルメタン系塩基性染料、インダン スロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジン系顔料を用い ることち可會である。
[0206] また、赤色蛍光体のうち、ピーク波長が 580nm以上、好ましくは 590nm以上、また 、 620nm以下、好ましくは 6 lOnm以下の範囲内にあるものは、橙色蛍光体として好 適に用いることができる。このような橙色蛍光体の例としては、(Sr, Ba) SiO : Eu、 (
3 5
Sr, Mg) (P04) : Sn2+、 SrCaAlSiN :Eu等が挙げられる。
3 2 3
[0207] 緑色蛍光体としては、例えば、破断面を有する破断粒子から構成され、緑色領域の 発光を行なう (Mg,Ca,Sr,Ba)Si O N: Euで表わされるユウ口ピウム付活アルカリ土
2 2 2
類シリコンォキシナイトライド系蛍光体、破断面を有する破断粒子から構成され、緑色 領域の発光を行なう (Ba,Ca,Sr, Mg) SiO: Euで表わされるユウ口ピウム付活アル力
2 4
リ土類シリケート系蛍光体等が挙げられる。
[0208] また、そのほか、緑色蛍光体としては、 Sr Al O : Eu、 (Ba,Sr,Ca)Al O: Eu等の
4 14 25 2 4
Eu付活アルミン酸塩蛍光体、 (Sr,Ba)Al Si O: Eu、 (Ba,Mg) SiO: Eu、 (Ba,Sr,C
2 2 8 2 4
a,Mg) SiO: Eu、 (Ba,Sr,Ca) (Mg,Zn)Si O : Eu等の Eu付活珪酸塩蛍光体、 Y Si
2 4 2 2 7 2
O: Ce,Tb等の Ce, Tb付活珪酸塩蛍光体、 Sr P O— Sr B O: Eu等の Eu付活硼
5 2 2 7 2 2 5
酸リン酸塩蛍光体、 Sr Si O - 2SrCl: Eu等の Eu付活ハロ珪酸塩蛍光体、 Zn SiO
2 3 8 2 2
: Mn等の Mn付活珪酸塩蛍光体、 CeMgAl O : Tb、Y A1 0 : Tb等の Tb付活ァ
4 11 19 3 5 12
ルミン酸塩蛍光体、 Ca Y (SiO ) O :Tb、 La Ga SiO : Tb等の Tb付活珪酸塩蛍光
2 8 4 6 2 3 5 14
体、(Sr,Ba,Ca)Ga S: Eu,Tb,Sm等の Eu, Tb, Sm付活チォガレート蛍光体、 Y (
2 4 3
Al,Ga) O : Ce、 (Y,Ga,Tb,La,Sm,Pr,Lu) (Al,Ga) O : Ce等の Ce付活アルミン
5 12 3 5 12
酸塩蛍光体、 Ca Sc Si O : Ce、Ca (Sc,Mg,Na,Li) Si O : Ce等の Ce付活珪酸
3 2 3 12 3 2 3 12
塩蛍光体、 CaSc O : Ce等の Ce付活酸化物蛍光体、 SrSi O N :Eu、 (Sr,Ba,Ca)
2 4 2 2 2
Si O N: Eu、 Eu付活 j8サイアロン、 Eu付活 αサイアロン等の Eu付活酸窒化物蛍
2 2 2
光体、 BaMgAl O : Eu,Mn等の Eu, Mn付活アルミン酸塩蛍光体、 SrAl O: Eu
10 17 2 4 等の Eu付活アルミン酸塩蛍光体、(La,Gd,Y) O S :Tb等の Tb付活酸硫ィ匕物蛍光 体、 LaPO : Ce,Tb等の Ce, Tb付活リン酸塩蛍光体、 ZnS : Cu,Al、 ZnS : Cu,Au,
4
A1等の硫化物蛍光体、(Y,Ga,Lu,Sc,La)BO : Ce,Tb、 Na Gd B O : Ce,Tb、 (Ba
3 2 2 2 7
,Sr) (Ca,Mg,Zn)B O : K,Ce,Tb等の Ce, Tb付活硼酸塩蛍光体、 Ca Mg(SiO )
2 2 6 8 4 4
CI: Eu,Mn等の Eu, Mn付活ハロ珪酸塩蛍光体、(Sr,Ca,Ba)(Al,Ga,In) S : Eu等
2 2 4 の Eu付活チオアルミネート蛍光体やチォガレート蛍光体、(Ca,Sr) (Mg,Zn)(SiO )
8 4 4
CI: Eu,Mn等の Eu, Mn付活ノヽ口珪酸塩蛍光体等を用いることも可能である。
2
[0209] また、緑色蛍光体としては、ピリジン フタルイミド縮合誘導体、ベンゾォキサジノン 系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テ ルビゥム錯体、例えばへキシルサリチレートを配位子として有するテルビウム錯体等 の有機蛍光体を用いることも可能である。
[0210] 青色蛍光体としては、例えば、規則的な結晶成長形状としてほぼ六角形状を有す る成長粒子から構成され、青色領域の発光を行なう BaMgAl O : Euで表わされる
10 17
ユウ口ピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形 状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう (Ca, Sr,Ba) (PO ) CI :Euで表わされるユウ口ピウム付活ハロリン酸カルシウム系蛍光体、
5 4 3
規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子力 構成され、青 色領域の発光を行なう (Ca,Sr,Ba) B O Cl:Euで表わされるユウ口ピウム付活アル力
2 5 9
リ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領域 の発光を行なう (Sr,Ca,Ba)A1 0 :Eu又は (Sr,Ca,Ba) Al O : Euで表わされるユウ
2 4 4 14 25
口ピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
[0211] また、そのほか、青色蛍光体としては、 Sr P O: Sn等の Sn付活リン酸塩蛍光体、 S
2 2 7
r Al O : Eu, BaMgAl O : Eu、 BaAl O : Eu等の Eu付活アルミン酸塩蛍光体
4 14 25 10 17 8 13
、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレート蛍光体、(Ba,Sr,Ca)MgAl
2 4 2 4 10
O : Eu, BaMgAl O : Eu,Tb,Sm等の Eu付活アルミン酸塩蛍光体、(Ba,Sr,Ca)
17 10 17
MgAl O : Eu,Mn等の Eu, Mn付活アルミン酸塩蛍光体、(Sr,Ca,Ba,Mg) (PO )
10 17 10 4
CI: Euゝ (Ba,Sr,Ca) (PO ) (( 1 1:,011) : £11,¾111,31)等の£11付活ハロリン酸塩
6 2 5 4 3
蛍光体、 BaAl Si O: Eu、(Sr,Ba) MgSi O: Eu等の Eu付活珪酸塩蛍光体、 Sr P
2 2 8 3 2 8 2
O : Eu等の Eu付活リン酸塩蛍光体、 ZnS :Ag、 ZnS: Ag,Al等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、 CaWO等のタングステン酸塩蛍光体、(Ba,
2 5 4
Sr,Ca)BPO : Eu,Mn、 (Sr,Ca) (PO ) ·ηΒ O : Euゝ 2SrO -0. 84P O ·0. 16B
5 10 4 6 2 3 2 5 2
O : Eu等の Eu, Mn付活硼酸リン酸塩蛍光体、 Sr Si O - 2SrCl: Eu等の Eu付活
3 2 3 8 2
ハロ珪酸塩蛍光体等を用いることも可能である。
[0212] また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ビラリゾン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。
[0213] なお、上記その他の蛍光体は 1種類を単独で用いてもよぐ 2種類以上を任意の組 み合わせ及び比率で併用しても良 、。
これらの蛍光体粒子の平均粒径は特に限定されないが、通常 lOOnm以上、好まし くは 2 μ m以上、特に好ましくは 5 μ m以上、また、通常 100 μ m以下、好ましくは 50 μ m以下、特に好ましくは 20 μ m以下である。
[0214] 図 3に、本発明の照明器具の実施の形態の一例である照明装置としての白色発光 装置の概略構造図を示す。
1は蛍光体であり、例えば、本発明の蛍光体と青色蛍光体と緑色蛍光体の混合物、 本発明の蛍光体と緑色蛍光体の混合物、或いは本発明の蛍光体と黄色蛍光体との 混合物である。図 3の照明器具は、この蛍光体 1を分散させた榭脂層 6で、容器 7内 に配置された発光光源としての LED2を被覆した構造とされて 、る。 LED2は導電性 端子 3上に直接接続され、また、導電性端子 4とワイヤーボンド 5で接続されている。 導電性端子 3, 4に電流を流すと、 LED2は所定の光を発し、この光で蛍光体 1が 励起されて蛍光を発し、 LEDの光と蛍光、或いは蛍光同士が混合されて白色〜電 球色の光を発する照明装置として機能する。
[0215] [画像表示装置]
本発明の画像表示装置は少なくも励起源と本発明の蛍光体で構成される。好ましく は、さらにカラーフィルターを構成要素として有していることが好ましい。画像表示装 置としては、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)、ブラズ マディスプレイパネル(PDP)、陰極線管(CRT)などがある。
[0216] 本発明の蛍光体は、波長 100nm〜190nmの真空紫外線、波長 190nm〜380n mの紫外線、電子線などの励起で発光することが確認されており、これらの励起源と 本発明の蛍光体との組み合わせで、上記のような画像表示装置を構成することがで きる。
[0217] 図 4に、本発明の画像表示装置の実施の形態である画像表示装置としての PDPの 概略構成図を示す。この PDPでは、本発明の蛍光体 8と緑色蛍光体 9及び青色蛍光 体 10力それぞれのセノレ 11、 12、 13の内面に塗布されている。電極 14、 15、 16と電 極 17との間に通電すると、セル 11、 12、 13中で Xe放電により真空紫外線が発生し、 これにより各蛍光体 8〜10が励起されて、赤、緑、青の可視光を発し、この光が保護 層 20、誘電体層 19、ガラス基板 22を介して外側から観察され、画像表示として機能 する。 18, 21はそれぞれ背面側の誘電体層、ガラス基板である。
[0218] [顔料]
特定の化学組成を有する無機化合物結晶相よりなる本発明の蛍光体は、赤色の物 体色を持つことから赤色顔料又は赤色蛍光顔料として使用することができる。すなわ ち、本発明の蛍光体に太陽光や蛍光灯などの照明を照射すると赤色の物体色が観 察されるが、その発色がよいこと、そして長期間に渡り劣化しないことから、本発明の 蛍光体は赤色無機顔料に好適である。このため、塗料、インキ、絵の具、釉薬、ブラ スチック製品に添加する着色剤などに用いると長期間に亘つて良好な発色を高く維 持することができる。
[0219] [紫外線吸収剤]
本発明の窒化物蛍光体は、紫外線を吸収するため紫外線吸収剤としても好適であ る。このため、塗料として用いたり、プラスチック製品の表面に塗布したり内部に練り 込んだりすると、紫外線の遮断効果が高ぐ製品を紫外線劣化から効果的に保護す ることがでさる。
実施例
[0220] 以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を 超えない限り、以下の実施例により何ら限定されるものではない。
[0221] [結晶相 [11]を含む蛍光体の実施例と比較例]
以下の実施例及び比較例では、原料粉末として次のものを用いた。 平均粒径 0. 、酸素含有量 0. 93重量%、 α型含有量 92%の窒化ケィ素(Si
3
N )粉末
4
比表面積 3. 3m2Zg、酸素含有量 0. 79重量%の窒化アルミニウム (A1N)粉末 窒化カルシウム (Ca N )粉末
3 2
アルミナ (AI O )粉末
2 3
金属ユーロピウムをアンモニア中で窒化して合成した窒化ユーロピウム(EuN)粉末 二酸ィ匕ケィ素 (SiO )粉末
2
酸化ユーロピウム (Eu O )粉末
2 3
[0222] 実施例 I 1〜: L 1、比較例 I 1〜5
表 4に示す理論組成式の化合物を得るベぐ表 4に示す原料粉末をそれぞれ表 4 に示す重量 (g)だけ秤量し、メノウ乳棒と乳鉢で 10分間混合後、得られた混合物を 窒化ホウ素製のるつぼに充填した (体積充填率 38%)。なお、粉末の秤量、混合の 各工程は全て、水分 lppm以下、酸素 lppm以下の窒素雰囲気を保持することがで きるグローブボックス中で操作を行った。
[0223] この混合粉末を窒化ホウ素製のるつぼに入れて黒鉛抵抗加熱方式の電気炉にセ ットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温力も 80 0°Cまで毎時 500°Cの速度で昇温し、 800°Cにおいて純度力 999体積%の窒素 を導入して圧力を 0. 5MPaとし、毎時 500°Cで表 4に示す焼成温度まで毎時 500°C で昇温し、表 4に示す焼成温度で 2時間保持して行った。焼成後、得られた焼成体を 粗粉砕の後、窒化ケィ素焼結体製のるつぼと乳鉢を用いて手で粉砕して蛍光体粉 末を得た。
[0224] 焼成によって得られる物質の理論ィヒ学式は表 4に示す通りであり、それぞれの仕込 み原料に対して、前記一般式 [11]における X値と y値がそれぞれに変化した Eu
y(l-x)
Ca Al Si N Oなる物質が得られた。
(l-y)(l-x) 1-x 1+x 3-x x
[0225] なお、得られた物質の組成分析は以下のようにして行った。
まず、試料 50mgを白金るつぼに入れて、炭酸ナトリウム 0. 5gとホウ酸 0. 2gを添加 して加熱融解した後に、塩酸 2mlに溶カゝして 100mlの定容として測定用溶液を作製 した。この液体試料を ICP発光分光分析することにより、粉体試料中の、 Si、 Al、 Eu 、 Ca量を定量した。また、試料 20mgをスズカプセルに投入し、これをニッケルバスケ ットに入れたものを、 LECO社製 TC— 436型酸素窒素分析計を用いて、粉体試料 中の酸素と窒素を定量した。
[表 4]
Figure imgf000050_0001
[0227] 各蛍光体の XRDパターンにおける各ピークの指数付けの結果は、前掲の表 2に示 す通りである。表 2より、格子定数のシフトがおこるとして面指数から求められる 2 Θの 計算値と実測値とがほぼ一致すること;結晶の空間群 Cmc2、斜方晶の状態が維持
1
されて!/、ること; CaAlSiN構造の固溶体が形成されて!/、ること;がわかる。
3
[0228] 上記実施例で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属元素が、当 該ァルカリ土類金属元素よりも低原子価の元素又は空孔で置換されて 、る、或いは
、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低原子価の元素 又は空孔で置換されて 、るものである。
また、比較例で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属元素が、当 該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されて 、な 、、或 ヽ は、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低原子価の元 素又は空孔で置換されて ヽな 、ものである。
なお、 x=0 (比較例 I— 2)、x=0. 11 (実施例1— 3)、 =0. 33 (実施例 1— 2)の蛍 光体の 465nm励起下発光スペクトルは図 2に示す通りである。
[0229] 各蛍光体に波長 465nmの光を発するランプで励起したときの発光スペクトルを蛍 光分光光度計で測定し、発光ピーク波長と、比較例 3の蛍光体の発光輝度を 100と したときの相対輝度を求め、結果を表 5に示した。
[0230] また、実施例 I 6, 9及び比較例 I 3の蛍光体については、波長 465nmでの励起 強度 (発光スペクトルのピーク値)に対する緑色光の波長 535nmでの励起強度 (発 光スペクトルのピーク値)の比を求め、結果を表 5に併記した。
[0231] [表 5]
〔〕0232
Figure imgf000052_0001
Figure imgf000052_0002
また、付活元素源が EuN、 Eu Oいずれの場合でも、また、酸素源が Al O、 SiOい
2 3 2 3 2 ずれの場合でも、 Si N Oを固溶させたものの方が赤色光のピーク波長が顕著にシフ
2 2
トし、また相対輝度が高くなつていることがわかる。
[0233] また、 2000°Cでの焼成体である実施例 1— 6, 9及び比較例 1— 3について、励起ス ベクトルを比較したところ、青色 LEDの波長 465nmでの励起強度に対する緑色光の 波長 535nmでの励起強度の比は、 Si N Oを 33% (x=0. 33)固溶させた方が非固
2 2
溶系に比べて低くなつており、青色 LEDZ緑色蛍光体 Z赤色蛍光体からなる白色 光デバイスにおいて、本固溶系が緑色蛍光体からの緑色光を励起しにくい、すなわ ち、損失させにく 、蛍光体となって 、ることが確認された。
[0234] 実施例 I 12〜22
次に、 Si N Oの代わりに一般式 Si N Oを用いた場合についての実施例 1—1
2 2 (3n+2)/4 n
2〜22を示す。
実施例 I— 12〜22では、(Eu Ca AlSiN ) (Si N O)におい
0.008/(l-x) (l-0.008/(l-x)) 3 1-x (3n+2)/4 n x て n及び xが異なる蛍光体を、実施例 I 1と同様の製造方法により、製造した。試験 方法も実施例 I 1と同様に行った。
得られた各蛍光体を波長 465nmの光を発するランプで励起したときの発光スぺタト ルを蛍光分光光度計で測定した。発光ピーク波長と、比較例 I 3の蛍光体の発光輝 度を 100としたときの相対輝度を求め、結果を表 6に示した。
なお、表 6には実施例 1— 9と比較例 1— 3、 5の値も併記した。
[0235] 上記実施例で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属元素が、当 該ァルカリ土類金属元素よりも低原子価の元素又は空孔で置換されて 、る、或いは
、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低原子価の元素 又は空孔で置換されて 、るものである。
[0236] [表 6]
Figure imgf000054_0002
Figure imgf000054_0001
す。
これらの結果より、 n=0、 0. 5、 1、 1. 5、 2、 3及び 4の組成力 得られた蛍光体は 同一の結晶構造を有することがわかる。
図 8に、実施例 I— 12〜 18で得られた蛍光体の発光スペクトルを示す。
これらの実施例ではすべて x=0. l l、y=0. 008と一定の値である。
図 8から、 nが増加するにつれピーク波長が短波長側に移動し、半値幅が増大して いることがわ力る。
図 9に n= 2及び 1の場合に Xをそれぞれ 0. 11、 0. 18、 0. 33と変化させた蛍光体 を波長 465nmの光で励起したときの発光スペクトルを示す(実施例 I 9、 14及び 19 〜22)。参考のため x=0 (比較例 1— 3及び 5)の場合も図 9中に示した。 Xの増加に 伴いピーク波長が短波長側に移動し、半値幅が増大していることがわかる。 nについ ては n= 1より n= 2の効果が大き!/、ことがわ力る。
[0238] [結晶相 [21]を含む蛍光体の実施例と比較例]
以下の実施例及び比較例では、原料粉末として次のものを用いた。
平均粒径 0. 5 m、酸素含有量 0. 93重量%、 α型含有量 92%の窒化ケィ素(Si
3
N )粉末
4
比表面積 3. 3m2Zg、酸素含有量 0. 79重量%の窒化アルミニウム (A1N)粉末 窒化カルシウム (Ca N )粉末
3 2
アルミナ (AI O )粉末
2 3
金属ユーロピウムをアンモニア中で窒化して合成した窒化ユーロピウム(EuN)粉末 酸化セリウム (CeO )粉末
2
[0239] 実施例 II 1〜10、比較例 II 1〜3
表 7に示す理論組成式の物質を得るベぐ表 7に示す原料粉末をそれぞれ表 7〖こ 示す仕込み重量 (g)だけ秤量し、メノウ乳棒と乳鉢で 10分間混合後、得られた混合 物を、内径 20mm、内側高さ 20mmの窒化ホウ素製のるつぼに充填した。なお、粉 末の秤量、混合の各工程は全て、水分 lppm以下、酸素 lppm以下の窒素雰囲気を 保持することができるグローブボックス中で操作を行った。
[0240] この混合粉末を窒化ホウ素製のるつぼに入れて黒鉛抵抗加熱方式の電気炉にセ ットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温力も 80 0°Cまで毎時 500°Cの速度で昇温し、 800°Cにおいて、純度が 99. 999体積%の窒 素を導入して圧力を 0. 5MPaとし、毎時 500°Cで 1800°Cまで昇温し、 1800°Cで 2 時間保持して行った。焼成後、得られた焼成体を粗粉砕の後、窒化ケィ素焼結体製 のるつぼと乳鉢を用いて手で粉砕して蛍光体粉末を得た。
[0241] 焼成によって得られる物質の理論組成式は表 7に示す通りであり、それぞれの仕込 み原料に対して、前記一般式 [21]において、 n= 2であり、 x、 y(l—x)、z (l—xMfi が表 8に示す如くそれぞれに変化した物質が得られた。
[0242] なお、得られた物質の組成分析は以下のようにして行った。
まず、試料 50mgを白金るつぼに入れて、炭酸ナトリウム 0. 5gとホウ酸 0. 2gを添加 して加熱融解した後に、塩酸 2mlに溶カゝして 100mlの定容として測定用溶液を作製 した。この液体試料を ICP発光分光分析することにより、粉体試料中の、 Si、 Al、 Eu 、 Ce、 Ca量を定量した。また、試料 20mgをスズカプセルに投入し、これをニッケル バスケットに入れたものを、 LECO社製 TC— 436型酸素窒素分析計を用いて、粉体 試料中の酸素と窒素を定量した。
[0243] [表 7]
t N !S IV 2660 eo 800Ό π3 0 20986SO tlZLLQO 9S660i 6336100 0 ε- Π
C N !S IV fr6660 9000Ό n3 0 S06S0 SZ.9Ci90 SIS 乙' 0 SS OOO 0 z- Π c N !S IV 6660 BO 100Ό ng 0 C68S0 HLGOCO 98C200 0 L- I O Q 687 N ll'L !S 68Ό IV 680 e〇 5Ο0Ό n3 8000
SO 8880"Ό 899S刚 SfrOSO'O OL- -n c N !S IV E0 90Ο0Ό n3 SOO.O 30 0 906SO S 9S 90 3S6Z.0. SS OO'O 86 LOO 6- Π e N !S IV 90Ο0Ό n3 ZOO 0 506S0 S .9C^90 9乙 690 SS OO—O £656^00 8- I
N !S IV 166Ό l Ο0Ό
GO n3 800Ό 0 6890 90S 90 陳 Ό 98C200'0 LGLGiOV L- Π t; N !S IV 66Ό e〇 9000.0 "3 800.0 0 S06SO s 9ε:9'ο 618S0Z.O SS OO'O 9- Π
C N !S IV 366Ό eo 800Ό 30 0 6CC6SO SO乙 60 Ό 0 9- I
810 0 1<SZ N en !S Ζ8Ό IV WLO eo 9Ζ0Ό 30 8L0Z60 5^66280 3S9fr69 0 GLLIQO'O - Π
0 VSl N ειι !S Z 0 IV ZLLO eo 8W0 90 10i6S0'0 6690Ζ1?Ό ί.06090 16C6SQ 0 LSL'O ε- Π
810 0 Z9Z N ειι !S Z20 IV SLO B0 O a0 6ャ ε Ό et ISO f8Z699O 0 289101Ό z- Π no 0 N ei't !S TOO IV 88ίΌ eo 0Ό 30 U0160O εセ 89 Ό S880Z8O 0 6S6180O l- Π εが iv 隱 Vis zNCe0 Nn3 3090
(3: 軎軍 Ϋί ^Sf^
[0244] 図 11に、実施例 II 1, 5, 8, 10及び比較例 II 1の蛍光体の X線回折の結果を示 す。図 11より、結晶の空間群 Cmc2、斜方晶の状態が維持されていることがわかる。
1
[0245] 上記実施例 II 1〜4、 6、 9、 10で得られた蛍光体は、蛍光体に含まれるアルカリ 土類金属元素が、当該アルカリ土類金属元素よりも低原子価の元素又は空孔で置 換されている、或いは、蛍光体に含まれる希土類金属元素が、当該希土類金属元素 よりも低原子価の元素又は空孔で置換されているものである。
上記実施例 Π— 5、 7及び 8得られた蛍光体は、蛍光体に含まれるアルカリ土類金 属元素が、当該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されて いない、或いは、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも 低原子価の元素又は空孔で置換されて ヽな 、ものである。
また、比較例で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属元素が、当 該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されておらず、蛍光 体に含まれる希土類金属元素が、当該希土類金属元素よりも低原子価の元素又は 空孔で置換されても 、な 、ものである。
[0246] また、得られた蛍光体に波長 465nmの光を発するランプで励起したときの発光ス ベクトルを蛍光分光光度計で測定した。発光ピーク波長と、比較例 II 1の蛍光体の 発光輝度を 100としたときの相対輝度を求め、結果を表 8に示した。なお、図 10に実 施例 II— 1、 5、 8、 10及び比較例 II— 1で得られた蛍光体を波長 465nmの光で励起 したときの発光スペクトルを示す。
[0247] また、波長 465nmでの励起強度 (発光スペクトルのピーク値)に対する緑色光の波 長 535nmでの励起強度 (発光スペクトルのピーク値)の比を求め、結果を表 8に併記 した。
[0248] [表 8] 励起 465nmでの 465nmでの 一般式 [21]における) (, y(1 -x), X)値 発光スペクトル
実施例又は 励起強度に の特性
比較例 対する綠色光 y(1-x) z(1 -x) 発光波長 535nmでの
(Si2N20固溶割合) (Ceモル数) (Euモル数)相対輝度 、nmj 励起強度の割合 実施例 Π - 1 0,18 0.032 0 216 582 81 実施例 Π -2 0.18 0.04 0 208 587 80 実施例 Π - 3 0.18 0.048 0 200 587 80 実施例 Π -4 0.18 0.026 0 173 576 61 実施例 Π -5 0 0.008 0 191 614 67 実施例 Π -6 0 0,008 0.0006 167 627 76 実施例 Π - 7 0 0.008 0.001 156 634 87 実施例 Π - 8 0 0.02 0.0006 170 626 80 実施例 Π -9 0 0.005 0.0006 161 631 80 実施例 Π - 10 0.11 0.008 0.005 147 640 79 比較例 Π - 1 0 0 0.001 100 637 100 比較例 Π - 2 0 0 0.0006 85 635 79 比較例 Π - 3 0 0 0.008 82 649 132
[0249] 以上の結果力 次のことが分かる。
付活剤が Ce単独である実施例 II 5と Eu単独である比較例 II 1とを比較すると、 Euが Ceに換わったことにより発光波長ピークが短波長にシフトした。また、 Ceと Eu 両者を添加した実施例 II 8ではほぼ両者の中間の波長範囲の発光が見られる。更 に視点を変え、実施例 Π— 3、 4より、 CaAlSiNに Si N Oを固溶させた母体結晶に
3 2 2
付活剤として Ceを添加すると赤色光のピーク波長が 576nmから 587nmの橙色光へ と顕著にシフトし、また相対輝度も高くなつていることがわかる。一方、実施例 II— 10 に示すように、この系にさらに Euを添加すると、波長変化の程度は小さくなる。
[0250] 本発明になる蛍光体で励起スペクトルを比較したところ、青色 LEDの波長 465nm での励起強度に対する緑色光の波長 535nmでの励起強度の比は、輝度が低すぎ る比較例 II— 2と II 3を除いて、 Ce含有系の方(実施例 11 1〜10)が Ce非含有、 E u単独系(比較例 II 1)に比べて低くなつており、青色 LEDZ緑色蛍光体 Z赤色蛍 光体からなる白色光デバイスにおいて、本系が緑色蛍光体からの緑色光を励起しづ らい、即ち、損失させにくい蛍光体となっていることがわかる。 [0251] [結晶相 [31]を含む蛍光体の実施例と比較例]
以下の実施例及び比較例では、原料粉末として次のものを用いた。
平均粒径 0. 5 m、酸素含有量 0. 93重量%、 α型含有量 92%の窒化ケィ素(Si
3
N )粉末
4
比表面積 3. 3m2Zg、酸素含有量 0. 79重量%の窒化アルミニウム (A1N)粉末 窒化カルシウム (Ca N )粉末
3 2
窒化リチウム (Li N)粉末
3
金属ユーロピウムをアンモニア中で窒化して合成した窒化ユーロピウム(EuN)粉末 [0252] 実施例 III 1〜4、比較例 III 1
表 9に示す理論組成式の物質を得るべく、表 9に示す原料粉末をそれぞれ表 9〖こ 示す仕込み重量 (g)だけ秤量し、メノウ乳棒と乳鉢で 10分間混合後、得られた混合 物を、窒化ホウ素製のるつぼに充填した。なお、粉末の秤量、混合の各工程は全て、 水分 lppm以下、酸素 lppm以下の窒素雰囲気を保持することができるグローブボッ タス中で操作を行った。
[0253] この混合粉末を入れた窒化ホウ素製るつぼを黒鉛抵抗加熱方式の電気炉にセット した。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温から 800 °Cまで毎時 500°Cの速度で昇温し、 800°Cにおいて、純度が 99. 999体積%の窒素 を導入して圧力を 0. 5MPaとし、毎時 500°Cで最高温度 1800°Cまで昇温し、この最 高温度で 2時間保持 (この最高温度での保持時間を焼成時間とする。 )して行った。 焼成後、得られた焼成体を粗粉砕の後、窒化ケィ素焼結体製のるつぼと乳鉢を用い て手で粉枠した。
[0254] 焼成によって得られる物質の理論組成式は表 9に示す通りであり、それぞれの仕込 み原料に対して、前記一般式 [31]において、 x'、y(l— χ' )値が表 10に示す如くそ れぞれに変化した物質が得られた。
[0255] なお、得られた物質の組成分析は以下のようにして行った。
まず、試料 50mgを白金るつぼに入れて、炭酸ナトリウム 0. 5gとホウ酸 0. 2gを添加 して加熱融解した後に、塩酸 2mlに溶カゝして 100mlの定容として測定用溶液を作製 した。この液体試料を ICP発光分光分析することにより、粉体試料中の、 Si、 Al、 Eu 、 Ce、 Ca量を定量した。また、試料 20mgをスズカプセルに投入し、これをニッケル バスケットに入れたものを、 LECO社製 TC— 436型酸素窒素分析計を用いて、粉体 試料中の酸素と窒素を定量した。
[0256] 得られた蛍光体に波長 465nmの光を発するランプで励起したときの発光スぺタト ルを蛍光分光光度計で測定した。発光ピーク波長と、比較例 III 1の蛍光体の発光 輝度を 100としたときの相対輝度と相対発光積分強度を求め、結果を表 10に示した 。なお、図 12に実施例 III— 1〜4及び比較例 III— 1で得られた蛍光体を波長 465nm の光で励起したときの発光スペクトルを示す。
[0257] また、波長 465nmでの励起強度 (発光スペクトルのピーク値)に対する緑色光の波 長 535nmでの励起強度 (発光スペクトルのピーク値)の比を求め、結果を表 10に併 曰じした。
[0258] 比較例 III 2, 3
窒化ホウ素の添加効果を見るために、比較例 III 1の原料組成に外割りで窒化ホ ゥ素を 2000ppm及び 4000ppm添カ卩したこと以外は実施例 III— 1と同様に実施し、 評価結果を表 10に示した。
[0259] 比較例 III 4, 5
焼成温度又は焼成雰囲気の影響を見るために、比較例 III - 1の原料組成にぉ 、て 、表 9に示す焼成条件としたこと以外は実施例 III— 1と同様に実施し、評価結果を表 10に示した。
[0260] [表 9]
Figure imgf000062_0001
[0261] [表 10]
Figure imgf000063_0001
[0262] 実施例 III— 1〜4の結果から、 x'が 0より大きいと、相対輝度が増大することがわか る。
比較例 III 2, 3のように、窒化ホウ素の使用法として、容器への使用の上に更に焼 成前に原料中への混入を実施しても発光特性の向上は見られなカゝつた。
比較例 III 4, 5の結果から、焼成温度や焼成雰囲気中の水素の有無は、得られる 蛍光体の発光特性に大きな差を与えないことが分力る。
[0263] なお、前述の表 3に示すように、実施例 III 1, 3及び比較例 III 1の蛍光体の X線 回折の結果、測定結果と計算強度がよく一致していることから、これらの結晶の空間 群 Cmc2、斜方晶の状態が維持されていることがわかる。
1
[0264] 上記実施例 III 1〜4で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属元 素が、当該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されている 、或いは、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低原子 価の元素又は空孔で置換されて 、るものである。
また、比較例 III— 1〜5で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属 元素が、当該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されてい ない、或いは、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低 原子価の元素又は空孔で置換されて 、な 、ものである。
[0265] [結晶相 [1]を含む蛍光体の実施例と比較例]
以下の実施例及び比較例では、原料粉末として次のものを用いた。
平均粒径 0. 5 m、酸素含有量 0. 93重量%、 α型含有量 92%の窒化ケィ素(Si
3
N )粉末
4
窒化リチウム (U N)粉末
(Ca Sr Ce )AlSi合金を 190MPaの窒素雰囲気下、 1900°Cにおいて焼
0.2 0.7925 I
成することによって窒化して合成した (Ca Sr Ce )AlSiN蛍光体
5 3
[0266] 実施例 IV— 1
以下に示す理論組成式の化合物を得るベぐ表 11に示す原料粉末をそれぞれ表 11に示す重量 (g)だけ秤量し、メノウ乳棒と乳鉢で 10分間混合後、得られた混合物 を窒化ホウ素製のるつぼに充填した (体積充填率 38%)。なお、粉末の秤量、混合の 各工程は全て、水分 lppm以下、酸素 lppm以下の窒素雰囲気を保持することがで きるグローブボックス中で操作を行った。
理論組成式: (Ca Sr Ce AlSiN ) (LiSi N )
0.2 0.7925 0.0075 3 0.61 2 3 0.39
[0267] [表 11]
Figure imgf000064_0001
[0268] この混合粉末を窒化ホウ素製のるつぼに入れて黒鉛抵抗加熱方式の電気炉にセ ットした。焼成の操作は、まず、拡散ポンプにより焼成雰囲気を真空とし、室温力も 80 0°Cまで毎時 1200°Cの速度で昇温し、 800°Cにおいて、純度が 99. 999体積%の 窒素を導入して圧力を 0. 992MPaとし、表 13に示す焼成温度まで、毎時 1250°Cで 昇温し、表 13に示す焼成温度で 4時間保持して行った。焼成後、得られた焼成体は 余分な Li Nを水洗で取り除き、次いで、粗粉砕の後、アルミナ乳鉢を用いて手で粉
3
砕して蛍光体粉末を得た。 [0269] 得られた蛍光体粉末の XRDパターンを図 13に示す。
比較のために、 Ca Sr Ce AlSiNの XRDパターンも図 13に示す。格子定
0.2 0.7925 0.0075 3
数のシフトが起こるとして 2 Θの計算値と実測値とがほぼ一致すること;結晶の空間群 Cmc2、斜方晶の状態が維持されていること; (Ca Sr Ce AlSiN ) (LiSi N
1 0.2 0.7925 0.0075 3 1-x 2
)に関する CaAlSiN構造の固溶体が形成されていること;がわかる。また、図 13の X
3 3
RDパターンの比較から (Ca Sr Ce AlSiN ) (LiSi N )のピーク全てが Ca
0.2 0.7925 0.0075 3 1-χ 2 3 x 0.2
Sr Ce AlSiNのそれら全てに対して高角側にシフトしていることがわかる
0.7925 0.0075 3
[0270] 得られた蛍光体を波長 455nmの光で励起したときの発光スペクトルを図 14に示す 。図 14力ら分力、るように、(Ca Sr Ce AlSiN ) (LiSi N )は、 Ca Sr Ce
0.2 0.7925 0.0075 3 1-x 2 3 x 0.2 0.7925
AlSiNが示す発光強度よりも高!ヽ発光強度が得られた。
0.0075 3
[0271] また、上記実施例 IV— 1で得られた蛍光体は、蛍光体に含まれるアルカリ土類金属 元素が、当該アルカリ土類金属元素よりも低原子価の元素又は空孔で置換されてい る、或いは、蛍光体に含まれる希土類金属元素が、当該希土類金属元素よりも低原 子価の元素又は空孔で置換されて ヽるものである。
[0272] 本発明の蛍光体は、従来の窒化物蛍光体又は酸窒化物蛍光体より高輝度の発光 を示し、橙色や赤色の蛍光体として優れる。さらに励起源に曝された場合の輝度の 低下が少なく耐久性に優れるため、白色発光装置、照明器具、 VFD、 FED, PDP、 CRTなどに好適に使用される。また、本発明の蛍光体は、容易に発光波長や発光ピ 一ク幅を調整できるため産業上の有用性は大きぐ今後、各種発光装置、照明、画 像表示装置における材料設計において大いに活用され、産業の発展に寄与すること が期待できる。
[0273] 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 5月 24日付で出願された日本特許出願 (特願 2005— 1 51183)、 2005年 5月 25日付で出願された日本特許出願(特願 2005— 152637) 、 2005年 8月 10日付で出願された日本特許出願(特願 2005— 231870)及び 200 6年 2月 2日付で出願された日本特許出願 (特願 2006— 25994)に基づいており、 その全体が引用により援用される。

Claims

請求の範囲
[1] 2価のアルカリ土類金属元素及び 2価〜 4価の希土類金属元素を含有する窒化物 又は酸窒化物蛍光体であって、下記 i)及び Z又は ii)であることを特徴とする窒化物 又は酸窒化物蛍光体。
i)前記アルカリ土類金属元素が、当該アルカリ土類金属元素よりも低原子価の元素 及び Z又は空孔で置換されて 、る。
ii)前記希土類金属元素が、当該希土類金属元素よりも低原子価の元素及び Z又 は空孔で置換されている。
[2] 蛍光体に含まれる窒素イオンが、酸素イオンで置換されていることを特徴とする請 求項 1に記載の窒化物又は酸窒化物蛍光体。
[3] 1価又は 0価のアルカリ土類金属元素、及び 2価の希土類元素を含有することを特 徴とする請求項 1に記載の窒化物又は酸窒化物蛍光体。
[4] 下記一般式 [1]で表される化学組成を有する結晶相を含有することを特徴とする蛍 光体。
(l -a-b)(Ln' Μ"' M'^M^'N )-a(MIV' N O) -b(AMIV' N )
p 1-p 3 (3n+2)/4 n 2 3
上記一般式 [1]において、 Ln'はランタノイド、 Mn及び Tiからなる群力 選ばれる 少なくとも 1種の金属元素であり、 M"'は Ln'元素以外の 2価の金属元素力 なる群か ら選ばれる 1種又は 2種以上の元素であり、 M1"'は 3価の金属元素力 なる群力 選 ばれる 1種又は 2種以上の元素であり、 Μιν'は 4価の金属元素力 なる群力 選ばれ る 1種又は 2種以上の元素であり、 Αは Li、 Na、及び K力 なる群力 選ばれる 1種類 以上の 1価の金属元素であり、 ρは 0<ρ≤0. 2を満足する数であり、 a、 b及び nは、 0 ≤a、 0≤b、 a+b>0、 0≤n,及び 0. 002≤ (3n+ 2) a/4≤0. 9を満足する数であ る。
[5] 前記結晶相の結晶構造が空間群 Cmc2又は P2に属することを特徴とする請求項
1 1
4に記載の蛍光体。
[6] 前記一般式 [1]において、 M"'は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 4に記載の蛍光体。
[7] 前記一般式 [1]において、 M"'が Caであり、 M1"'が A1であり、 MIV'が Siであることを 特徴とする請求項 4に記載の蛍光体。
[8] 前記一般式 [1]で表される化学組成を有する結晶相と、該結晶相とは異なる結晶 構造の結晶相(以下「他の結晶相」と称す。)及び Z又はアモルファス相との混合物 であり、該混合物中の前記一般式 [ 1 ]で表される化学組成を有する結晶相の割合が
20質量%以上であることを特徴とする請求項 4に記載の蛍光体。
[9] 前記他の結晶相及び Z又はアモルファス相が導電性の無機物質であることを特徴 とする請求項 8に記載の蛍光体。
[10] 前記導電性の無機物質が、 Zn、 Al、 Ga、 In、及び Snよりなる群力も選ばれる 1種 又は 2種以上の元素を含む、酸化物、酸窒化物、窒化物、あるいはこれらの混合物 力 なることを特徴とする請求項 9に記載の蛍光体。
[11] 前記他の結晶相及び Z又はアモルファス相力 前記一般式 [1]で表される化学組 成とは異なる化学組成の無機蛍光体であることを特徴とする請求項 8に記載の蛍光 体。
[12] 励起源を照射することにより 550nmから 700nmの範囲の波長にピークを持つ蛍光 を発光することを特徴とする請求項 4に記載の蛍光体。
[13] 該励起源が lOOnm以上 570nm以下の波長を持つ紫外線又は可視光であること を特徴とする請求項 12に記載の蛍光体。
[14] 前記一般式 [1]は下記一般式 [10]で表されることを特徴とする請求項 4に記載の 蛍光体。
(Eu Ln" M" MmMIVN ) (MIV N O) 〜[10]
y W 1-y-W 3 l-χ (3n+2)/4 n x
上記一般式 [10]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、 M"は Mg、 Ca、 Sr、 Ba、及び Znの合 計が 90mol%以上を占める 2価の金属元素であり、 M1"は A1が 80mol%以上を占める 3価の金属元素であり、 MIVは Siが 90mol%以上を占める 4価の金属元素であり、 yは 0<y≤0. 2を満足する数であり、 wは 0≤w< 0. 2を満足する数であり、 Xは 0<x≤ 0. 45を満足する数であり、 nは 0≤nを満足する数であり、 nと xは、 0. 002≤ (3n+ 2 ) x/4≤0. 9を満足する数である。
[15] 前記一般式 [10]は下記一般式 [11]で表されることを特徴とする請求項 14に記載 の蛍光体。
(Eu M" MmMIVN ) (MIV N O) [11]
y 1-y 3 1-x (3n+2)/4 n x
上記一般式 [11]において、 M"は、 Mg Ca Sr Ba、及び Znの合計が 90mol% 以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占める 3価の金属 元素であり、 Mivは、 Siが 90mol%以上を占める 4価の金属元素であり、 yは、 0. 000 l≤y≤0. 1を満足する数であり、 Xは、 0< x≤0. 45を満足する数であり、 nは 0≤n を満足する数であり、 nと Xは、 0. 002≤(3n+ 2) x/4≤0. 9を満足する数である。
[16] 上記一般式 [10]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 14に記載の蛍光体。
[17] 上記一般式 [11]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 15に記載の蛍光体。
[18] 上記一般式 [10]にお!/、て、 X力^). 2≤x≤0. 4を満足し、かつ、 ηと x力 0. 4≤ (3 n+ 2) x/4≤0. 8を満足することを特徴とする請求項 14に記載の蛍光体。
[19] 上記一般式 [11]にお!/、て、 X力^). 2≤x≤0. 4を満足し、かつ、 ηと X力 0. 4≤ (3 η+ 2) χ/4≤ 0. 8を満足することを特徴とする請求項 15に記載の蛍光体。
[20] 上記一般式 [10]において、 Μ"が Caであり、 M1"が A1であり、 MIVが Siであることを 特徴とする請求項 14に記載の蛍光体。
[21] 上記一般式 [11]において、 M"が Caであり、 M1"が A1であり、 MIVが Siであることを 特徴とする請求項 15に記載の蛍光体。
[22] 前記一般式 [1]は下記一般式 [21]で表されることを特徴とする請求項 4に記載の 蛍光体。
(Ce Ln M" MmMIVN ) (MIV N O) [21]
y z 1 z 3 1-x (3n+2)/4 n x
上記一般式 [21]において、 Lnは Ceを除いたランタノイド、 Mn及び Tiからなる群か ら選ばれる少なくとも 1種の金属元素であり、 M"は Mg Ca Sr Ba及び Znの合計が 90mol%以上を占める 2価の金属元素であり、 M1"は A1が 80mol%以上を占める 3価 の金属元素であり、 MIVは Siが 90mol%以上を占める 4価の金属元素であり、 xは 0≤ x≤0. 45を満足する数であり、 yiま 0< y≤0. 2を満足する数であり、 ζίま 0≤z≤0. 2 を満足する数であり、 nは 0≤nを満足するものであり、 nと Xは 0. 002≤ (3n+ 2) x/ 4≤0. 9を満足する数である。
[23] 上記一般式 [21]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 22に記載の蛍光体。
[24] 上記一般式 [21]にお!/、て、 X力^). 15≤x≤0. 3を満足し、かつ、 nと x力 0. 3≤ (
3n+ 2) x/4≤0. 6を満足することを特徴とする請求項 22に記載の蛍光体。
[25] 上記一般式 [21]において、 M"が Caであり、 M"1が A1であり、 MIVが Siであることを 特徴とする請求項 22に記載の蛍光体。
[26] 前記一般式 [1]は下記一般式 [30]で表されることを特徴とする請求項 4に記載の 蛍光体。
(Eu Ln" M" MmMIVN ) (AMIV N ) 〜[30]
y W 1-y-W 3 ト 2 3 χ'
上記一般式 [30]において、 Ln"は Euを除いたランタノイド、 Mn及び Tiからなる群 力 選ばれる少なくとも 1種の金属元素であり、 M"は、 Mg、 Ca、 Sr、 Ba、及び Znの 合計が 90mol%以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占 める 3価の金属元素であり、 MIVは、 Siが 90mol%以上を占める 4価の金属元素であり 、 Aは Li、 Na、及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ,は 0く χ ' < 1. 0を満足する数であり、 yは 0<y≤0. 2を満足する数であり、 wは 0≤w< 0. 2 を満足する数である。
[27] 前記一般式 [30]は下記一般式 [31]で表されることを特徴とする請求項 26に記載 の蛍光体。
(Eu M" MmMIVN ) (AMIV N ) 〜[31]
y 1-y 3 1-x' 2 3 x'
上記一般式 [31]において、 M"は、 Mg、 Ca、 Sr、 Ba、及び Znの合計が 90mol% 以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占める 3価の金属 元素であり、 Mivは、 Siが 90mol%以上を占める 4価の金属元素であり、 Aは Li、 Na、 及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ'は 0く χ'く 0. 5を満足 する数であり、 yは 0<y≤0. 2を満足する数である。
[28] 上記一般式 [30]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 26に記載の蛍光体。
[29] 上記一般式 [31]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 27に記載の蛍光体。
[30] 上記一般式 [30]において、 x'が 0. 03≤χ'≤0. 35を満足することを特徴とする 請求項 26に記載の蛍光体。
[31] 上記一般式 [31]において、 χ'が 0. 03≤χ'≤0. 35を満足することを特徴とする 請求項 27に記載の蛍光体。
[32] 上記一般式 [30]において、 Μ"が Caであり、 M"1が A1であり、 MIVが Siであることを 特徴とする請求項 26に記載の蛍光体。
[33] 上記一般式 [31]において、 M"が Caであり、 M"1が A1であり、 MIVが Siであることを 特徴とする請求項 27に記載の蛍光体。
[34] 前記一般式 [ 1 ]は下記一般式 [41 ]で表されることを特徴とする請求項 4に記載の 蛍光体。
(Ce Ln M" MmMIVN ) (AMIV N ) [41]
y z 1 z 3 1-x' 2 3 x'
上記一般式 [41]において、 Lnは Ceを除いたランタノイド、 Mn及び Tiからなる群か ら選ばれる少なくとも 1種の金属元素であり、 M"は、 Mg Ca Sr Ba、及び Znの合 計が 90mol%以上を占める 2価の金属元素であり、 M1"は、 A1が 80mol%以上を占め る 3価の金属元素であり、 MIVは、 Siが 90mol%以上を占める 4価の金属元素であり、 Aは Li Na、及び K力 なる群力 選ばれる 1種以上の金属元素であり、 χ,は 0く χ' < 1. 0を満足する数であり、 yは。 <y≤0. 2を満足する数であり、 zは。≤z≤0. 2を 満足する数である。
[35] 上記一般式 [41]において、 M"は、 Caと Srの合計が 80mol%以上を占めることを特 徴とする請求項 34に記載の蛍光体。
[36] 上記一般式 [41]において、 x'が 0. 03≤χ'≤0. 35を満足することを特徴とする 請求項 34に記載の蛍光体。
[37] 上記一般式 [41]において、 Μ"が Caであり、 M"1が A1であり、 MIVが Siであることを 特徴とする請求項 34に記載の蛍光体。
[38] アルカリ土類金属元素、ケィ素、及び窒素を含有する蛍光体であって、当該蛍光体 と同一の結晶構造を有する無機化合物 (但し、当該蛍光体の固溶体は除く。)を固溶 させたことを特徴とする蛍光体。
[39] 330nm〜500nmの波長の光を発生する第 1の発光体と、該第 1の発光体からの 光の照射によって可視光を発生する第 2の発光体とを有する発光装置において、該 第 2の発光体が、請求項 1に記載の蛍光体を含有してなることを特徴とする発光装置
[40] 330nm〜500nmの波長の光を発生する第 1の発光体と、該第 1の発光体からの 光の照射によって可視光を発生する第 2の発光体とを有する発光装置において、該 第 2の発光体が、請求項 4に記載の蛍光体を含有してなることを特徴とする発光装置
[41] 330nm〜500nmの波長の光を発生する第 1の発光体と、該第 1の発光体からの 光の照射によって可視光を発生する第 2の発光体とを有する発光装置において、該 第 2の発光体が、請求項 38に記載の蛍光体を含有してなることを特徴とする発光装 置。
[42] 該第 1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする 請求項 39に記載の発光装置。
[43] 該第 1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする 請求項 40に記載の発光装置。
[44] 該第 1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする 請求項 41に記載の発光装置。
[45] 該第 1の発光体が 330nm〜420nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 1に記載の赤色蛍光体と、波長 330ηπ!〜 420nmの励 起光により 420ηπ!〜 500nmの波長に発光ピークを持つ蛍光を発光する青色蛍光 体と、波長 330nm〜420nmの励起光により 500nm〜570nmの波長に発光ピーク を持つ蛍光を発光する緑色蛍光体とを用いることにより、赤、緑、青色の光を混ぜて 白色光を発することを特徴とする請求項 42に記載の発光装置。
[46] 該第 1の発光体が 330nm〜420nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 4に記載の赤色蛍光体と、波長 330ηπ!〜 420nmの励 起光により 420ηπ!〜 500nmの波長に発光ピークを持つ蛍光を発光する青色蛍光 体と、波長 330nm〜420nmの励起光により 500nm〜570nmの波長に発光ピーク を持つ蛍光を発光する緑色蛍光体とを用いることにより、赤、緑、青色の光を混ぜて 白色光を発することを特徴とする請求項 43に記載の発光装置。
[47] 該第 1の発光体が 330nm〜420nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 38に記載の赤色蛍光体と、波長 330ηπ!〜 420nmの励 起光により 420ηπ!〜 500nmの波長に発光ピークを持つ蛍光を発光する青色蛍光 体と、波長 330nm〜420nmの励起光により 500nm〜570nmの波長に発光ピーク を持つ蛍光を発光する緑色蛍光体とを用いることにより、赤、緑、青色の光を混ぜて 白色光を発することを特徴とする請求項 44に記載の発光装置。
[48] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 1の発光体力 の光により請求項 1に記載の蛍光体が励起されて発した発光と、当 該発光ダイオード自体が発する青色光とを併せて白色光を発することを特徴とする 請求項 42に記載の発光装置。
[49] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 1の発光体力 の光により請求項 4に記載の蛍光体が励起されて発した発光と、当 該発光ダイオード自体が発する青色光とを併せて白色光を発することを特徴とする 請求項 43に記載の発光装置。
[50] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 1の発光体力 の光により請求項 38に記載の蛍光体が励起されて発した発光と、 当該発光ダイオード自体が発する青色光とを併せて白色光を発することを特徴とす る請求項 44に記載の発光装置。
[51] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 1に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 500nm〜570nmの波長に発光ピークを持つ蛍光を発光する緑色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 42に記載の発光装置。
[52] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 4に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 500nm〜570nmの波長に発光ピークを持つ蛍光を発光する緑色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 43に記載の発光装置。
[53] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 38に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 500nm〜570nmの波長に発光ピークを持つ蛍光を発光する緑色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 44に記載の発光装置。
[54] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 1に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 550nm〜600nmの波長に発光ピークを持つ蛍光を発光する黄色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 42に記載の発光装置。
[55] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 4に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 550nm〜600nmの波長に発光ピークを持つ蛍光を発光する黄色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 43に記載の発光装置。
[56] 該第 1の発光体が 420nm〜500nmの波長の光を発する発光ダイオードであり、該 第 2の発光体として、請求項 38に記載の蛍光体と、波長 420ηπ!〜 500nmの励起光 により 550nm〜600nmの波長に発光ピークを持つ蛍光を発光する黄色蛍光体とを 用いることにより、白色光を発することを特徴とする請求項 44に記載の発光装置。
[57] 請求項 39に記載の発光装置を用いたことを特徴とする照明器具。
[58] 請求項 40に記載の発光装置を用いたことを特徴とする照明器具。
[59] 請求項 41に記載の発光装置を用いたことを特徴とする照明器具。
[60] 励起源と蛍光体とを有する画像表示装置において、該蛍光体として少なくとも請求 項 1に記載の蛍光体を用いたことを特徴とする画像表示装置。
[61] 励起源と蛍光体とを有する画像表示装置において、該蛍光体として少なくとも請求 項 4に記載の蛍光体を用いたことを特徴とする画像表示装置。
[62] 励起源と蛍光体とを有する画像表示装置において、該蛍光体として少なくとも請求 項 38に記載の蛍光体を用いたことを特徴とする画像表示装置。
[63] 該励起源が、波長 100nm〜190nmの真空紫外線、波長 190nm〜380nmの紫 外線、又は電子線であることを特徴とする請求項 60に記載の画像表示装置。
[64] 該励起源が、波長 100nm〜190nmの真空紫外線、波長 190nm〜380nmの紫 外線、又は電子線であることを特徴とする請求項 61に記載の画像表示装置。
[65] 該励起源が、波長 100nm〜190nmの真空紫外線、波長 190nm〜380nmの紫 外線、又は電子線であることを特徴とする請求項 62に記載の画像表示装置。
[66] 該蛍光体として、請求項 1に記載の蛍光体と、前記励起源により青色の蛍光を発光 する青色蛍光体と、前記励起源により緑色の蛍光を発光する緑色蛍光体とを用いた ことを特徴とする請求項 63に記載の画像表示装置。
[67] 該蛍光体として、請求項 4に記載の蛍光体と、前記励起源により青色の蛍光を発光 する青色蛍光体と、前記励起源により緑色の蛍光を発光する緑色蛍光体とを用いた ことを特徴とする請求項 64に記載の画像表示装置。
[68] 該蛍光体として、請求項 38に記載の蛍光体と、前記励起源により青色の蛍光を発 光する青色蛍光体と、前記励起源により緑色の蛍光を発光する緑色蛍光体とを用い たことを特徴とする請求項 65に記載の画像表示装置。
[69] 請求項 39に記載の発光装置を備えた画像表示装置。
[70] 請求項 40に記載の発光装置を備えた画像表示装置。
[71] 請求項 41に記載の発光装置を備えた画像表示装置。
[72] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)
、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 60に記載の画像表示装置。
[73] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)
、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 61に記載の画像表示装置。
[74] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)
、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 62に記載の画像表示装置。
[75] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)
、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 69に記載の画像表示装置。
[76] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED) 、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 70に記載の画像表示装置。
[77] 画像表示装置が、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)
、プラズマディスプレイパネル (PDP)、又は陰極線管(CRT)であることを特徴とする 請求項 71に記載の画像表示装置。
[78] 請求項 1に記載の蛍光体を含むことを特徴とする蛍光体混合物。
[79] 請求項 4に記載の蛍光体を含むことを特徴とする蛍光体混合物。
[80] 請求項 38に記載の蛍光体を含むことを特徴とする蛍光体混合物。
[81] 請求項 1に記載の蛍光体と、液状媒体とを含むことを特徴とする蛍光体含有組成物
[82] 請求項 4に記載の蛍光体と、液状媒体とを含むことを特徴とする蛍光体含有組成物
[83] 請求項 38に記載の蛍光体と、液状媒体とを含むことを特徴とする蛍光体含有組成 物。
[84] 請求項 1に記載の蛍光体を含むことを特徴とする顔料。
[85] 請求項 4に記載の蛍光体を含むことを特徴とする顔料。
[86] 請求項 38に記載の蛍光体を含むことを特徴とする顔料。
[87] 請求項 1に記載の蛍光体を含むことを特徴とする紫外線吸収剤。
[88] 請求項 4に記載の蛍光体を含むことを特徴とする紫外線吸収剤。
[89] 請求項 38に記載の蛍光体を含むことを特徴とする紫外線吸収剤。
PCT/JP2006/310312 2005-05-24 2006-05-24 蛍光体及びその利用 WO2006126567A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020077027009A KR101324004B1 (ko) 2005-05-24 2006-05-24 형광체 및 그 이용
CN2006800170114A CN101175835B (zh) 2005-05-24 2006-05-24 荧光体及其应用
EP06756518.4A EP1887067B1 (en) 2005-05-24 2006-05-24 Phosphor and use thereof
US11/915,520 US8206611B2 (en) 2005-05-24 2006-05-24 Phosphor and use thereof
US13/477,421 US8703019B2 (en) 2005-05-24 2012-05-22 Phosphor and use thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005151183 2005-05-24
JP2005-151183 2005-05-24
JP2005-152637 2005-05-25
JP2005152637 2005-05-25
JP2005-231870 2005-08-10
JP2005231870 2005-08-10
JP2006-025994 2006-02-02
JP2006025994 2006-02-02

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US11/915,520 A-371-Of-International US8206611B2 (en) 2005-05-24 2006-05-24 Phosphor and use thereof
US13/477,421 Division US8703019B2 (en) 2005-05-24 2012-05-22 Phosphor and use thereof
US13/477,421 Continuation US8703019B2 (en) 2005-05-24 2012-05-22 Phosphor and use thereof

Publications (1)

Publication Number Publication Date
WO2006126567A1 true WO2006126567A1 (ja) 2006-11-30

Family

ID=37451991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310312 WO2006126567A1 (ja) 2005-05-24 2006-05-24 蛍光体及びその利用

Country Status (7)

Country Link
US (2) US8206611B2 (ja)
EP (1) EP1887067B1 (ja)
JP (1) JP5481641B2 (ja)
KR (1) KR101324004B1 (ja)
CN (1) CN101175835B (ja)
TW (1) TWI475093B (ja)
WO (1) WO2006126567A1 (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
WO2008078559A1 (ja) * 2006-12-27 2008-07-03 Stanley Electric Co., Ltd. 蛍光体及びそれを用いた発光装置
JP2008181771A (ja) * 2007-01-25 2008-08-07 National Institute For Materials Science 色変換器、これを用いた植物育成装置及び植物育成方法
JP2008189811A (ja) * 2007-02-05 2008-08-21 Osaka Univ 窒化物又は酸窒化物を母体とする蛍光体、及びその製造方法、並びにそれを使用した蛍光体含有組成物、発光装置、照明装置、及び画像表示装置
WO2008125604A1 (de) * 2007-04-17 2008-10-23 Osram Gesellschaft mit beschränkter Haftung Rot emittierender leuchtstoff und lichtquelle mit derartigem leuchtstoff
EP2003183A1 (en) * 2006-03-10 2008-12-17 Kabushiki Kaisha Toshiba Phosphor and light-emitting device
JP2009059608A (ja) * 2007-08-31 2009-03-19 Hitachi Ltd プラズマディスプレイ装置
EP2058382A1 (en) * 2007-10-15 2009-05-13 Leuchtstoffwerk Breitungen GmbH Method of manufacturing a rare-earth doped alkaline-earth silicon nitride phosphor, rare-earth doped alkaline-earth silicon nitride phosphor obtainable by such a method and radiation-emitting device comprising such a rare-earth doped alkaline-earth silicon nitirde phosphor
WO2009050171A3 (en) * 2007-10-15 2009-06-04 Leuchtstoffwerk Breitungen Rare-earth doped alkaline-earth silicon nitride phosphor, method for producing and radiation converting device comprising such a phosphor
JP2009146641A (ja) * 2007-12-12 2009-07-02 Hitachi Ltd 画像表示装置
EP2225347A1 (en) * 2007-12-19 2010-09-08 Philips Intellectual Property & Standards GmbH Red emitting sia1on-based material
JP2010538102A (ja) * 2007-09-04 2010-12-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複合材料SiAlONをベースにしたセラミック材料を有する発光装置
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
JP2011500880A (ja) * 2007-10-15 2011-01-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多相SiAlONに基づくセラミック材料を有する発光装置
WO2011002087A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 発光装置
WO2011138850A1 (ja) * 2010-05-07 2011-11-10 パナソニック株式会社 プラズマディスプレイパネル
JP2012000109A (ja) * 2011-05-26 2012-01-05 National Institute For Materials Science 色変換器
WO2012014702A1 (ja) * 2010-07-26 2012-02-02 シャープ株式会社 発光装置
WO2012014701A1 (ja) * 2010-07-26 2012-02-02 シャープ株式会社 発光装置
JP2013136758A (ja) * 2007-01-12 2013-07-11 National Institute For Materials Science 蛍光体、その製造方法および発光器具
US8674392B2 (en) 2010-02-26 2014-03-18 Sharp Kabushiki Kaisha Light-emitting device
US8829778B2 (en) 2009-08-26 2014-09-09 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
JP2015111724A (ja) * 2007-12-21 2015-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH レーザー光源
JPWO2016021705A1 (ja) * 2014-08-07 2017-07-13 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
WO2021200287A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 蛍光体粉末、複合体、発光装置および蛍光体粉末の製造方法

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101142519B1 (ko) * 2005-03-31 2012-05-08 서울반도체 주식회사 적색 형광체 및 녹색 형광체를 갖는 백색 발광다이오드를채택한 백라이트 패널
KR20140063899A (ko) 2005-04-01 2014-05-27 미쓰비시 가가꾸 가부시키가이샤 무기 기능재 원료용 합금 분말 및 형광체
US8206611B2 (en) * 2005-05-24 2012-06-26 Mitsubishi Chemical Corporation Phosphor and use thereof
US8088302B2 (en) * 2005-05-24 2012-01-03 Seoul Semiconductor Co., Ltd. Green phosphor of thiogallate, red phosphor of alkaline earth sulfide and white light emitting device thereof
KR100724591B1 (ko) * 2005-09-30 2007-06-04 서울반도체 주식회사 발광 소자 및 이를 포함한 led 백라이트
US8323529B2 (en) * 2006-03-16 2012-12-04 Seoul Semiconductor Co., Ltd. Fluorescent material and light emitting diode using the same
KR101258229B1 (ko) * 2006-06-30 2013-04-25 서울반도체 주식회사 발광 소자
DE102008029191A1 (de) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Beleuchtungseinrichtung zur Hinterleuchtung eines Displays sowie ein Display mit einer solchen Beleuchtungseinrichtung
US20090283721A1 (en) * 2008-05-19 2009-11-19 Intematix Corporation Nitride-based red phosphors
US8274215B2 (en) 2008-12-15 2012-09-25 Intematix Corporation Nitride-based, red-emitting phosphors
TW201005972A (en) * 2008-07-17 2010-02-01 Nexpower Technology Corp Thin film solar cell having photo-luminescent medium coated therein and manufacturing method thereof
DE102008038249A1 (de) * 2008-08-18 2010-02-25 Osram Gesellschaft mit beschränkter Haftung alpha-Sialon-Leuchtstoff
JP5540322B2 (ja) * 2009-03-26 2014-07-02 独立行政法人物質・材料研究機構 蛍光体、その製造方法、発光器具および画像表示装置
US20110127905A1 (en) * 2009-12-02 2011-06-02 General Electric Company Alkaline earth borate phosphors
CN101760194B (zh) * 2009-12-30 2014-03-19 李�瑞 一种白光led用红色荧光粉及其制备方法
US20120267999A1 (en) * 2010-02-26 2012-10-25 Mitsubishi Chemical Corporation Halophosphate phosphor and white light-emitting device
KR101484068B1 (ko) 2010-05-14 2015-01-19 라이트스케이프 머티어리얼스, 인코포레이티드 옥시카본나이트라이드 형광체들 및 이를 이용한 발광 소자들
JP5643424B2 (ja) * 2010-05-14 2014-12-17 ライトスケープ マテリアルズ インコーポレイテッド 炭窒化物系蛍光体およびこれを使用する発光素子
JP2012060097A (ja) 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
KR101521513B1 (ko) 2010-09-10 2015-05-19 라이트스케이프 머티어리얼스, 인코포레이티드 실리콘 카바이도나이트라이드계 형광체 및 이를 사용한 발광장치
CN101982520B (zh) * 2010-09-17 2013-02-13 东北师范大学 紫光led转换白光用稀土三基色红色发光材料及制备方法
WO2012067130A1 (ja) 2010-11-16 2012-05-24 電気化学工業株式会社 蛍光体、発光装置及びその用途
CN103608938B (zh) * 2011-06-03 2017-03-08 西铁城电子株式会社 半导体发光装置、展示物照射用照明装置、肉照射用照明装置、蔬菜照射用照明装置、鲜鱼照射用照明装置、一般用照明装置和半导体发光系统
CN102391861B (zh) * 2011-09-29 2014-08-27 北京宇极科技发展有限公司 一种氮化合物发光材料及其制法以及由其制成的照明光源
KR101856534B1 (ko) * 2011-12-07 2018-05-14 삼성전자주식회사 산질화물계 형광체 및 이를 포함하는 발광장치
US9017574B2 (en) 2011-12-19 2015-04-28 Lightscape Materials, Inc. Carbidonitride phosphors and LED lighting devices using the same
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
WO2013102222A1 (en) 2011-12-30 2013-07-04 Intematix Corporation Nitride phosphors with interstitial cations for charge balance
US8506104B1 (en) 2012-03-28 2013-08-13 General Electric Company Phosphors for LED lamps
KR101362185B1 (ko) * 2012-06-22 2014-02-12 순천대학교 산학협력단 형광체 및 이를 포함하는 발광장치
KR101662924B1 (ko) * 2012-06-27 2016-10-05 코쿠리츠켄큐카이하츠호징 붓시쯔 자이료 켄큐키코 형광체, 그 제조 방법, 발광 장치 및 화상 표시 장치
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
US8815121B2 (en) 2012-08-31 2014-08-26 Lightscape Materials, Inc. Halogenated oxycarbidonitride phosphor and devices using same
JP2014197527A (ja) * 2013-03-04 2014-10-16 信越化学工業株式会社 車両用方向指示器
JP6040500B2 (ja) 2013-04-25 2016-12-07 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光装置および画像表示装置
CN104212448A (zh) * 2013-05-30 2014-12-17 晶元光电股份有限公司 萤光材料及其制备方法
JP6266923B2 (ja) * 2013-08-26 2018-01-24 シチズン電子株式会社 Led発光装置
JP6211862B2 (ja) * 2013-09-18 2017-10-11 エスアイアイ・セミコンダクタ株式会社 光半導体装置およびその製造方法
JP2016535800A (ja) 2013-10-08 2016-11-17 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 蛍光体、蛍光体の製造方法及び蛍光体の使用
CN104673287A (zh) * 2013-12-03 2015-06-03 辽宁法库陶瓷工程技术研究中心 一种长波长高亮度氮化物红色荧光粉及其制备方法
KR102214065B1 (ko) * 2014-02-20 2021-02-09 엘지전자 주식회사 산 질화물 형광체, 그 제조 방법 및 이를 이용한 발광 소자 패키지
US9200199B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic red phosphor and lighting devices comprising same
US9200198B1 (en) 2014-08-28 2015-12-01 Lightscape Materials, Inc. Inorganic phosphor and light emitting devices comprising same
US9315725B2 (en) 2014-08-28 2016-04-19 Lightscape Materials, Inc. Method of making EU2+ activated inorganic red phosphor
TW201625774A (zh) * 2014-11-12 2016-07-16 三菱化學股份有限公司 螢光體、發光裝置、照明裝置及影像顯示裝置
CN107003610B (zh) * 2014-12-10 2020-05-19 互应化学工业株式会社 阻焊剂组合物和经覆盖的印刷线路板
CN105985772B (zh) * 2015-02-11 2019-08-30 大连利德照明研发中心有限公司 固体光源用荧光材料、其制造方法及包含该荧光材料的组合物
DE102015110258A1 (de) 2015-06-25 2016-12-29 Osram Gmbh Leuchtstoff, Verfahren zum Herstellen eines Leuchtstoffs und Verwendung eines Leuchtstoffs
EP3249703B1 (en) * 2016-05-26 2021-08-04 Nichia Corporation Light emitting device
WO2018008283A1 (ja) 2016-07-04 2018-01-11 パナソニックIpマネジメント株式会社 ファイバー光源、内視鏡および内視鏡システム
EP3480281A4 (en) 2016-07-04 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. FLUORESCENT SUBSTANCE AND LIGHT EMITTING DEVICE
JP6264706B1 (ja) 2016-07-04 2018-01-24 パナソニックIpマネジメント株式会社 プロジェクター装置
JP7248379B2 (ja) * 2017-07-24 2023-03-29 日亜化学工業株式会社 発光装置及びその製造方法
KR102487738B1 (ko) * 2018-02-12 2023-01-27 그리렘 어드밴스드 머티리얼스 캄파니 리미티드 근적외선 발광 재료 및 상기 재료로 제조되는 발광 장치
CN110642642B (zh) * 2019-09-25 2021-07-06 中国计量大学 一种复合荧光薄膜及其制备方法和激光显示的应用
US20220315837A1 (en) * 2021-03-30 2022-10-06 Nichia Corporation Nitride phosphor and method for producing same
JP7436874B2 (ja) 2021-03-30 2024-02-22 日亜化学工業株式会社 窒化物蛍光体及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277663A (ja) * 2003-03-18 2004-10-07 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2005036038A (ja) * 2003-07-16 2005-02-10 Ube Ind Ltd サイアロン系蛍光体およびその製造方法
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638667C2 (de) 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JPH10163535A (ja) 1996-11-27 1998-06-19 Kasei Optonix Co Ltd 白色発光素子
JP2900928B2 (ja) 1997-10-20 1999-06-02 日亜化学工業株式会社 発光ダイオード
EP1104799A1 (en) 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP2002076434A (ja) 2000-08-28 2002-03-15 Toyoda Gosei Co Ltd 発光装置
DE10105800B4 (de) 2001-02-07 2017-08-31 Osram Gmbh Hocheffizienter Leuchtstoff und dessen Verwendung
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
US6632379B2 (en) 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
DE10147040A1 (de) 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
CA2447288C (en) 2002-03-22 2011-10-04 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
JP4868685B2 (ja) 2002-06-07 2012-02-01 日亜化学工業株式会社 蛍光体
JP4214768B2 (ja) * 2002-11-29 2009-01-28 日亜化学工業株式会社 窒化物蛍光体及びそれを用いた発光装置
JP4009828B2 (ja) 2002-03-22 2007-11-21 日亜化学工業株式会社 窒化物蛍光体及びその製造方法
JP2003321675A (ja) 2002-04-26 2003-11-14 Nichia Chem Ind Ltd 窒化物蛍光体及びその製造方法
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US7074346B2 (en) * 2003-02-06 2006-07-11 Ube Industries, Ltd. Sialon-based oxynitride phosphor, process for its production, and use thereof
JP4244653B2 (ja) 2003-02-17 2009-03-25 日亜化学工業株式会社 シリコンナイトライド系蛍光体及びそれを用いた発光装置
TWI359187B (en) 2003-11-19 2012-03-01 Panasonic Corp Method for preparing nitridosilicate-based compoun
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4362625B2 (ja) 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 蛍光体の製造方法
JP3931239B2 (ja) 2004-02-18 2007-06-13 独立行政法人物質・材料研究機構 発光素子及び照明器具
JP4511849B2 (ja) 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、光源、並びにled
JP5016187B2 (ja) 2004-07-14 2012-09-05 Dowaエレクトロニクス株式会社 窒化物蛍光体、窒化物蛍光体の製造方法、並びに上記窒化物蛍光体を用いた光源及びled
TWI262609B (en) 2004-02-27 2006-09-21 Dowa Mining Co Phosphor and manufacturing method thereof, and light source, LED using said phosphor
JP3921545B2 (ja) 2004-03-12 2007-05-30 独立行政法人物質・材料研究機構 蛍光体とその製造方法
KR100841677B1 (ko) 2004-03-22 2008-06-26 가부시키가이샤후지쿠라 발광 디바이스 및 조명 장치
JP2005302920A (ja) 2004-04-09 2005-10-27 Shoei Chem Ind Co 発光装置
KR100865624B1 (ko) 2004-04-27 2008-10-27 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을이용한 발광 장치
US20060017041A1 (en) * 2004-06-25 2006-01-26 Sarnoff Corporation Nitride phosphors and devices
JP4414821B2 (ja) 2004-06-25 2010-02-10 Dowaエレクトロニクス株式会社 蛍光体並びに光源およびled
JP4568867B2 (ja) 2004-06-29 2010-10-27 独立行政法人物質・材料研究機構 複合窒化物蛍光体の製造方法
JP4565141B2 (ja) 2004-06-30 2010-10-20 独立行政法人物質・材料研究機構 蛍光体と発光器具
JP4511885B2 (ja) 2004-07-09 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体及びled並びに光源
JP4422653B2 (ja) 2004-07-28 2010-02-24 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、並びに光源
US7453195B2 (en) 2004-08-02 2008-11-18 Lumination Llc White lamps with enhanced color contrast
US20060181192A1 (en) 2004-08-02 2006-08-17 Gelcore White LEDs with tailorable color temperature
US7138756B2 (en) 2004-08-02 2006-11-21 Dowa Mining Co., Ltd. Phosphor for electron beam excitation and color display device using the same
JP4524470B2 (ja) 2004-08-20 2010-08-18 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、並びに当該蛍光体を用いた光源
JP4543250B2 (ja) 2004-08-27 2010-09-15 Dowaエレクトロニクス株式会社 蛍光体混合物および発光装置
US7476338B2 (en) 2004-08-27 2009-01-13 Dowa Electronics Materials Co., Ltd. Phosphor and manufacturing method for the same, and light source
JP4729278B2 (ja) 2004-08-30 2011-07-20 Dowaエレクトロニクス株式会社 蛍光体及び発光装置
JP4356563B2 (ja) 2004-08-31 2009-11-04 昭栄化学工業株式会社 酸窒化物蛍光体、酸窒化物蛍光体の製造方法及び白色発光素子
JP4543251B2 (ja) 2004-08-31 2010-09-15 Dowaエレクトロニクス株式会社 蛍光体及び光源
JP4543253B2 (ja) 2004-10-28 2010-09-15 Dowaエレクトロニクス株式会社 蛍光体混合物および発光装置
WO2006077740A1 (ja) 2004-12-28 2006-07-27 Nichia Corporation 窒化物蛍光体及びその製造方法並びに窒化物蛍光体を用いた発光装置
EP1845146B1 (en) 2005-01-31 2015-03-04 Ube Industries, Ltd. Red emitting nitride phosphor and process for producing the same
JP4892193B2 (ja) 2005-03-01 2012-03-07 Dowaホールディングス株式会社 蛍光体混合物および発光装置
WO2006095285A1 (en) 2005-03-09 2006-09-14 Philips Intellectual Property & Standards Gmbh Illumination system comprising a radiation source and a fluorescent material
JP5066786B2 (ja) 2005-04-27 2012-11-07 日亜化学工業株式会社 窒化物蛍光体及びそれを用いた発光装置
JP4631528B2 (ja) 2005-04-28 2011-02-16 トヨタ自動車株式会社 サスペンション装置
US8206611B2 (en) * 2005-05-24 2012-06-26 Mitsubishi Chemical Corporation Phosphor and use thereof
US7262439B2 (en) * 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277663A (ja) * 2003-03-18 2004-10-07 National Institute For Materials Science サイアロン蛍光体とその製造方法
JP2005036038A (ja) * 2003-07-16 2005-02-10 Ube Ind Ltd サイアロン系蛍光体およびその製造方法
JP2005048105A (ja) * 2003-07-30 2005-02-24 Matsushita Electric Ind Co Ltd 蛍光体組成物およびそれを用いた発光装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887067A4 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7859182B2 (en) 2005-08-31 2010-12-28 Lumination Llc Warm white LED-based lamp incoporating divalent EU-activated silicate yellow emitting phosphor
US7262439B2 (en) 2005-11-22 2007-08-28 Lumination Llc Charge compensated nitride phosphors for use in lighting applications
US8450923B2 (en) 2006-03-10 2013-05-28 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
EP2003183A1 (en) * 2006-03-10 2008-12-17 Kabushiki Kaisha Toshiba Phosphor and light-emitting device
US8491817B2 (en) 2006-03-10 2013-07-23 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8482192B2 (en) 2006-03-10 2013-07-09 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
US8475680B2 (en) 2006-03-10 2013-07-02 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
EP2518129A3 (en) * 2006-03-10 2013-04-03 Kabushiki Kaisha Toshiba Luminescent material and light-emitting device
EP2003183A4 (en) * 2006-03-10 2010-12-01 Toshiba Kk PHOSPHOR AND LUMINESCENT DEVICE
WO2008078559A1 (ja) * 2006-12-27 2008-07-03 Stanley Electric Co., Ltd. 蛍光体及びそれを用いた発光装置
JP2013136758A (ja) * 2007-01-12 2013-07-11 National Institute For Materials Science 蛍光体、その製造方法および発光器具
JP2008181771A (ja) * 2007-01-25 2008-08-07 National Institute For Materials Science 色変換器、これを用いた植物育成装置及び植物育成方法
JP2008189811A (ja) * 2007-02-05 2008-08-21 Osaka Univ 窒化物又は酸窒化物を母体とする蛍光体、及びその製造方法、並びにそれを使用した蛍光体含有組成物、発光装置、照明装置、及び画像表示装置
US8460579B2 (en) 2007-04-17 2013-06-11 Osram Gesellschaft mit beschränkter Haftung Red-emitting luminophore and light source comprising such a luminophore
JP2010525092A (ja) * 2007-04-17 2010-07-22 オスラム ゲゼルシャフト ミット ベシュレンクテル ハフツング 赤色に放射する蛍光体及びこの種の蛍光体を有する光源
WO2008125604A1 (de) * 2007-04-17 2008-10-23 Osram Gesellschaft mit beschränkter Haftung Rot emittierender leuchtstoff und lichtquelle mit derartigem leuchtstoff
KR101553591B1 (ko) * 2007-04-17 2015-09-17 오스람 게엠베하 적색­방사 형광체 및 이러한 형광체를 포함하는 광원
JP2009059608A (ja) * 2007-08-31 2009-03-19 Hitachi Ltd プラズマディスプレイ装置
JP2010538102A (ja) * 2007-09-04 2010-12-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複合材料SiAlONをベースにしたセラミック材料を有する発光装置
EP2058382A1 (en) * 2007-10-15 2009-05-13 Leuchtstoffwerk Breitungen GmbH Method of manufacturing a rare-earth doped alkaline-earth silicon nitride phosphor, rare-earth doped alkaline-earth silicon nitride phosphor obtainable by such a method and radiation-emitting device comprising such a rare-earth doped alkaline-earth silicon nitirde phosphor
US8551360B2 (en) 2007-10-15 2013-10-08 Leuchtstoffwerk Breitungen Gmbh Rare-earth doped alkaline-earth silicon nitride phosphor, method for producing and radiation converting device comprising such a phosphor
RU2470980C2 (ru) * 2007-10-15 2012-12-27 Лейхтштоффверк Брайтунген Гмбх Легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор
JP2011500880A (ja) * 2007-10-15 2011-01-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 多相SiAlONに基づくセラミック材料を有する発光装置
US8680547B2 (en) 2007-10-15 2014-03-25 Koninklijke Philips Electronics N.V. Light emitting device comprising a multiphase ceramic material
WO2009050171A3 (en) * 2007-10-15 2009-06-04 Leuchtstoffwerk Breitungen Rare-earth doped alkaline-earth silicon nitride phosphor, method for producing and radiation converting device comprising such a phosphor
JP2009146641A (ja) * 2007-12-12 2009-07-02 Hitachi Ltd 画像表示装置
EP2225347A1 (en) * 2007-12-19 2010-09-08 Philips Intellectual Property & Standards GmbH Red emitting sia1on-based material
US9559496B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
JP2015111724A (ja) * 2007-12-21 2015-06-18 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH レーザー光源
US9559497B2 (en) 2007-12-21 2017-01-31 Osram Opto Semiconductors Gmbh Laser light source
US9531158B2 (en) 2007-12-21 2016-12-27 Osram Opto Semiconductors Gmbh Laser light source
US8928005B2 (en) 2009-07-02 2015-01-06 Sharp Kabushiki Kaisha Light-emitting device
WO2011002087A1 (ja) * 2009-07-02 2011-01-06 シャープ株式会社 発光装置
JP5450625B2 (ja) * 2009-07-02 2014-03-26 シャープ株式会社 発光装置
US8829778B2 (en) 2009-08-26 2014-09-09 Mitsubishi Chemical Corporation White light-emitting semiconductor devices
US8674392B2 (en) 2010-02-26 2014-03-18 Sharp Kabushiki Kaisha Light-emitting device
JP5212553B2 (ja) * 2010-05-07 2013-06-19 パナソニック株式会社 プラズマディスプレイパネル
WO2011138850A1 (ja) * 2010-05-07 2011-11-10 パナソニック株式会社 プラズマディスプレイパネル
US8319430B2 (en) 2010-05-07 2012-11-27 Panasonic Corporation Plasma display panel and method of manufacturing plasma display panel
WO2012014701A1 (ja) * 2010-07-26 2012-02-02 シャープ株式会社 発光装置
JP5777032B2 (ja) * 2010-07-26 2015-09-09 シャープ株式会社 発光装置
JP5783512B2 (ja) * 2010-07-26 2015-09-24 シャープ株式会社 発光装置
US8901591B2 (en) 2010-07-26 2014-12-02 Sharp Kabushiki Kaisha Light-emitting device
WO2012014702A1 (ja) * 2010-07-26 2012-02-02 シャープ株式会社 発光装置
JPWO2012014702A1 (ja) * 2010-07-26 2013-09-12 シャープ株式会社 発光装置
JP2012000109A (ja) * 2011-05-26 2012-01-05 National Institute For Materials Science 色変換器
JPWO2016021705A1 (ja) * 2014-08-07 2017-07-13 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
WO2021200287A1 (ja) * 2020-03-30 2021-10-07 デンカ株式会社 蛍光体粉末、複合体、発光装置および蛍光体粉末の製造方法

Also Published As

Publication number Publication date
US8206611B2 (en) 2012-06-26
US20090066230A1 (en) 2009-03-12
KR20080009728A (ko) 2008-01-29
EP1887067B1 (en) 2014-04-16
CN101175835A (zh) 2008-05-07
EP1887067A1 (en) 2008-02-13
EP1887067A4 (en) 2010-06-30
KR101324004B1 (ko) 2013-10-31
US20120262648A1 (en) 2012-10-18
TW200712176A (en) 2007-04-01
CN101175835B (zh) 2012-10-10
JP2012046766A (ja) 2012-03-08
TWI475093B (zh) 2015-03-01
JP5481641B2 (ja) 2014-04-23
US8703019B2 (en) 2014-04-22

Similar Documents

Publication Publication Date Title
JP5481641B2 (ja) 蛍光体及びその利用
JP5046223B2 (ja) 蛍光体及びその利用
KR101147560B1 (ko) 형광체와 발광기구
KR101168177B1 (ko) 형광체와 그 제조방법 및 발광기구
KR101173450B1 (ko) 형광체의 제조방법
JP2010196049A (ja) 蛍光体及びその製造方法、蛍光体含有組成物、並びに、該蛍光体を用いた発光装置、画像表示装置及び照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680017011.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077027009

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006756518

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915520

Country of ref document: US