WO2011138850A1 - プラズマディスプレイパネル - Google Patents
プラズマディスプレイパネル Download PDFInfo
- Publication number
- WO2011138850A1 WO2011138850A1 PCT/JP2011/002222 JP2011002222W WO2011138850A1 WO 2011138850 A1 WO2011138850 A1 WO 2011138850A1 JP 2011002222 W JP2011002222 W JP 2011002222W WO 2011138850 A1 WO2011138850 A1 WO 2011138850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- condition
- content
- atomic
- sio
- less
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/10—AC-PDPs with at least one main electrode being out of contact with the plasma
- H01J11/12—AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/57—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
- C09K11/572—Chalcogenides
- C09K11/574—Chalcogenides with zinc or cadmium
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7766—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
- C09K11/7774—Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/42—Fluorescent layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2211/00—Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
- H01J2211/20—Constructional details
- H01J2211/34—Vessels, containers or parts thereof, e.g. substrates
- H01J2211/42—Fluorescent layers
Definitions
- the present invention relates to a plasma display panel having a phosphor layer containing a phosphor excited by ultraviolet rays.
- the quality of the display image of a plasma display panel depends greatly on the afterglow characteristics of the phosphor layer. If the time from the time when the emission intensity of the phosphor layer reaches the maximum value to the time when the emission intensity becomes 1/10 of the maximum value is set as the afterglow time, the quality of the display image of the PDP improves as the afterglow time becomes shorter .
- Zn 2 SiO 4 : Mn and (Y, Gd) BO 3 : Tb are known as green phosphors contained in the phosphor layer (for example, Patent Documents 1, 2, 3, and 4). In order to shorten the afterglow time, these green phosphors are mixed with, for example, (Y, Gd) Al 3 (BO 3 ) 4 : Tb having a short afterglow time. Further, Zn 2 SiO 4: in order to reduce the decay time of Mn itself, the concentration of manganese (Mn) is a luminescent center is increased.
- the PDP includes a front plate, a back plate disposed to face the front plate, and a phosphor layer formed on the back plate.
- the phosphor layer has a green phosphor layer containing Zn 2 SiO 4 : Mn and (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce (where 0 ⁇ X ⁇ 1).
- Zn 2 SiO 4 : Mn has a content of Mn of 8 atom% or more and 10 atom% or less with respect to the total of Zn content and Mn content, and Zn content and Mn with respect to Si content And the total content of 197 atomic percent or more and 202 atomic percent or less.
- (Y 1-X, Gd X ) 3 Al 5 O 12: Ce content is, Zn 2 SiO 4: Mn content and (Y 1-X, Gd X ) 3 Al 5 O 12: Ce content And not more than 20% by weight and not more than 50% by weight.
- FIG. 1 is an exploded perspective view showing the structure of the PDP in the embodiment.
- the PDP 10 has a front substrate 11 and a rear substrate 17 disposed to face each other.
- a plurality of display electrodes 14 are formed which are paired with the scan electrode 12 and the sustain electrode 13 arranged in parallel.
- scan electrode 12 and sustain electrode 13 are arranged in the order of scan electrode 12, sustain electrode 13, sustain electrode 13, and scan electrode 12.
- a narrow bus electrode 12b is laminated on a wide transparent electrode 12a.
- a narrow bus electrode 13b is laminated on a wide transparent electrode 13a.
- the transparent electrodes 12a and 13a include conductive metal oxides such as indium tin oxide (ITO), tin oxide (SnO 2 ), and zinc oxide (ZnO).
- the bus electrodes 12b and 13b are formed to increase conductivity and contain a metal such as silver (Ag).
- a dielectric layer 15 is formed on the front substrate 11 to cover the display electrodes 14.
- the dielectric layer 15 has a thickness of about 40 ⁇ m.
- the dielectric layer 15 is made of bismuth oxide (Bi 2 O 3 ) -based low melting glass or zinc oxide (ZnO) low-melting glass.
- a protective layer 16 made of magnesium oxide (MgO) is formed on the dielectric layer 15.
- the protective layer 16 has a thickness of about 0.8 ⁇ m.
- the protective layer 16 is a thin film layer made of an alkaline earth metal oxide mainly composed of magnesium oxide (MgO).
- the protective layer 16 is formed to protect the dielectric layer 15 from ion sputtering.
- the protective layer 16 is formed in order to stabilize discharge characteristics such as a discharge start voltage.
- the data electrode 18 includes a highly conductive material mainly containing silver (Ag).
- a base dielectric layer 19 is formed so as to cover the data electrode 18.
- the underlying dielectric layer 19 is bismuth oxide (Bi 2 O 3 ) -based low melting glass or the like.
- the underlying dielectric layer 19 may be mixed with titanium oxide (TiO 2 ) particles in order to reflect visible light.
- a partition wall 22 is formed on the underlying dielectric layer 19.
- the partition wall 22 is formed in a cross-beam shape by a vertical partition wall 22a and a horizontal partition wall 22b orthogonal to the vertical partition wall 22a.
- the partition wall 22 includes a low-melting glass material. When matched to a full high-definition television having a screen size of 42 inches, for example, the height of the partition wall 22 is 0.1 mm to 0.15 mm, and the pitch of the adjacent vertical partition walls 22a is 0.15 mm.
- a phosphor layer 23 is formed on the surface of the base dielectric layer 19 and the side surfaces of the barrier ribs 22.
- the phosphor layer 23 includes a red phosphor layer 23a that emits red light, a green phosphor layer 23b that emits green light, and a blue phosphor layer 23c that emits blue light.
- the red phosphor layer 23a, the green phosphor layer 23b, and the blue phosphor layer 23c are sequentially formed through the vertical barrier ribs 22a.
- the front substrate 11 and the rear substrate 17 are disposed to face each other so that the display electrode 14 and the data electrode 18 intersect each other.
- the outer peripheral portions of the front substrate 11 and the back substrate 17 are sealed with a sealing material (not shown) such as a frit.
- a discharge space is formed between the sealed front substrate 11 and rear substrate 17.
- a discharge gas containing xenon (Xe) or the like is sealed in the discharge space at a pressure of about 6 ⁇ 10 4 Pa.
- the discharge space is partitioned into a plurality of sections by the barrier ribs 22.
- a discharge cell 24 is formed at a portion where the display electrode 14 and the data electrode 18 intersect.
- the phosphor layer 23 of each color emits light.
- the PDP 10 can display an image.
- the structure of the PDP 10 is not limited to that described above.
- the shape of the partition wall 22 may be a stripe shape.
- the manufacturing method of the PDP 10 includes a front plate forming step for forming the display electrodes 14 and the like on the front substrate 11, a back plate forming step for forming the data electrodes 18 and the like on the back substrate 17, the front substrate 11 and the back substrate 17. There is an assembly process for assembling.
- the scan electrode 12 and the sustain electrode 13 are formed on the front substrate 11.
- an ITO thin film is formed on the front substrate 11 by sputtering or the like.
- transparent electrodes 12a and 13a having a predetermined pattern are formed by a lithography method.
- a paste containing Ag, a glass frit for binding Ag, a photosensitive resin, a solvent, and the like is used as a material for the bus electrodes 12b and 13b.
- the bus electrode paste is applied onto the front substrate 11 so as to cover the transparent electrodes 12a and 13a by a screen printing method or the like.
- the solvent in the bus electrode paste is removed by a drying furnace.
- the bus electrode paste is exposed through a photomask having a predetermined pattern.
- bus electrode paste is developed to form a bus electrode pattern.
- the bus electrode pattern is fired at a predetermined temperature in a firing furnace. Thereby, the photosensitive resin in the bus electrode pattern is removed. Further, the glass frit in the bus electrode pattern is melted. The molten glass frit is vitrified again after firing.
- a relatively narrow region between the transparent electrode 12a and the transparent electrode 13a is a main gap where discharge occurs.
- a relatively wide area between the transparent electrode 12a and the transparent electrode 13a is an interpixel gap where no discharge occurs.
- a dielectric layer 15 covering the display electrode 14 is formed.
- a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the dielectric layer 15.
- a dielectric paste is applied onto the front substrate 11 by a die coating method so as to cover the scan electrodes 12 and the sustain electrodes 13 with a predetermined thickness.
- the solvent in the dielectric paste is removed by a drying furnace.
- the dielectric paste is fired at a predetermined temperature in a firing furnace. Thereby, the resin in the dielectric paste is removed. Further, the dielectric glass frit is melted. The molten glass frit is vitrified again after firing.
- a screen printing method, a spin coating method, or the like may be used.
- a film to be the dielectric layer 15 may be formed by a CVD (Chemical Vapor Deposition) method or the like.
- the display electrode 14 and the dielectric layer 15 are formed on the front substrate 11.
- the data electrode 18 is formed on the back substrate 17.
- a data electrode paste containing Ag for securing conductivity and glass frit for binding Ag, a photosensitive resin, a solvent, and the like is used as a material for the data electrode 18.
- the data electrode paste is applied on the back substrate 17 with a predetermined thickness by screen printing.
- the solvent in the data electrode paste is removed by a drying furnace.
- the data electrode paste is exposed through a photomask having a predetermined pattern.
- the data electrode paste is developed to form a data electrode pattern.
- the data electrode pattern is fired at a predetermined temperature in a firing furnace. Thereby, the photosensitive resin in the data electrode pattern is removed. Further, the glass frit in the data electrode pattern is melted. The molten glass frit is vitrified again after firing.
- a sputtering method, a vapor deposition method, or the like may be used as a sputtering method, a vapor deposition method, or the like.
- the base dielectric layer 19 is formed.
- a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the base dielectric layer 19.
- the base dielectric paste is applied by screen printing so as to cover the data electrode 18 on the back substrate 17 on which the data electrode 18 is formed with a predetermined thickness.
- the solvent in the base dielectric paste is removed by a drying furnace.
- the base dielectric paste is fired at a predetermined temperature in a firing furnace. Thereby, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten glass frit is vitrified again after firing.
- a die coating method, a spin coating method, or the like may be used.
- a film to be the base dielectric layer 19 may be formed by a CVD method or the like.
- the barrier ribs 22 are formed by photolithography.
- a partition wall paste including a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used as a material for the partition wall 22 .
- the barrier rib paste is applied on the underlying dielectric layer 19 with a predetermined thickness by a die coating method.
- the solvent in the partition wall paste is removed by a drying furnace.
- the barrier rib paste is exposed through a photomask having a predetermined pattern.
- the barrier rib paste is developed to form a barrier rib pattern.
- the partition pattern is fired at a predetermined temperature in a firing furnace. Thereby, the photosensitive resin in the partition wall pattern is removed. Further, the glass frit in the partition wall pattern is melted. The molten glass frit is vitrified again after firing.
- a sandblast method or the like may be used as a sandblast method or the like.
- the phosphor layer 23 is formed.
- a phosphor paste containing a phosphor material, a binder, a solvent, and the like is used as a material of the phosphor layer 23 .
- the phosphor paste is applied with a predetermined thickness between the adjacent barrier ribs 22 by a dispensing method. That is, the phosphor paste is applied on the underlying dielectric layer 19 between the barrier ribs 22 and on the side surfaces of the barrier ribs 22.
- the solvent in the phosphor paste is removed by a drying furnace.
- the phosphor paste is fired at a predetermined temperature in a firing furnace. Thereby, the resin in the phosphor paste is removed.
- a screen printing method, an inkjet method, or the like may be used. The phosphor material will be described in detail later.
- a sealing material is formed on the peripheral edge of the back substrate 17 by the dispensing method.
- a sealing paste containing a glass frit, a binder, a solvent, and the like is used as a material for the sealing material.
- the sealing paste is applied to the peripheral portion of the back substrate 17 by a dispensing method or the like.
- the solvent in the sealing paste is removed by a drying furnace.
- the data electrode 18, the base dielectric layer 19, the barrier rib 22, the phosphor layer 23, and the sealing material are formed on the back substrate 17.
- the front substrate 11 and the rear substrate 17 are arranged to face each other so that the display electrodes 14 and the data electrodes 18 are orthogonal to each other.
- the front substrate 11 and the rear substrate 17 are fixed with, for example, clips.
- the fixed front substrate 11 and back substrate 17 are transferred into a sealing furnace.
- An exhaust hole is formed in the back substrate 17, and an exhaust pipe is disposed in the exhaust hole.
- the exhaust pipe communicates with the discharge space through the exhaust hole.
- the exhaust pipe is connected to the exhaust device in the PDP 10 and the discharge gas introduction device.
- the sealing material for example, low melting point glass having a softening point temperature of 380 ° C. is used.
- the front substrate 11 and the back substrate 17 are heated up to a temperature exceeding the softening point temperature of the sealing material of 380 ° C., for example, about 420 ° C.
- the front substrate 11 and the back substrate 17 are held at that temperature for about 10 minutes. Thereby, the sealing material is sufficiently melted.
- the front substrate 11 and the back substrate 17 are sealed by lowering the temperature to, for example, 300 ° C. which is lower than the softening point temperature of the sealing material.
- the discharge space is evacuated until it reaches about 1 ⁇ 10 ⁇ 4 Pa.
- the discharge gas is introduced into the discharge space by the discharge gas introduction device.
- the discharge gas for example, a mixed gas of Ne and Xe is sealed at a pressure of about 6 ⁇ 10 4 Pa.
- the exhaust pipe is sealed. Then, the front substrate 11 and the rear substrate 17 are taken out from the sealing furnace.
- the PDP 10 is completed through the above steps.
- a blue phosphor material of BaMgAl 10 O 17 : Eu having a short afterglow time is used for the blue phosphor layer 23c.
- a red phosphor material containing at least one of (Y, Gd) (P, V) O 4 : Eu phosphor or Y 2 O 3 : Eu phosphor is used for the red phosphor layer 23a.
- the green phosphor layer 23b is made of a green phosphor material containing Zn 2 SiO 4 : Mn and (Y 1-x , Gd x ) 3 Al 5 O 12 : Ce (where 0 ⁇ X ⁇ 1). Used.
- Zn 2 SiO 4 Mn and (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5)
- a green phosphor material containing is used.
- a phosphor material is produced by a solid phase reaction method.
- BaMgAl 10 O 17 : Eu is produced as a blue phosphor material by the following method.
- Barium carbonate (BaCO 3 ), magnesium carbonate (MgCO 3 ), aluminum oxide (Al 2 O 3 ), and europium oxide (Eu 2 O 3 ) are mixed so as to match the phosphor composition.
- the mixture is calcined at 800 ° C. to 1200 ° C. in air.
- the mixture is further fired at 1200 ° C. to 1400 ° C. in a mixed gas atmosphere containing hydrogen and nitrogen.
- Y, Gd (P, V) O 4 : Eu is produced by the following method as a red phosphor material.
- Yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), vanadium oxide (V 2 O 5 ), phosphorus pentoxide (P 2 O 5 ), and europium oxide (EuO 2 ) match the phosphor composition. So that they are mixed.
- the mixture is fired at 600 ° C. to 800 ° C. in air.
- the mixture is further fired at 1000 ° C. to 1200 ° C. in a mixed gas atmosphere containing oxygen and nitrogen.
- the red phosphor material as Y 2 O 3: Eu, etc. may be prepared in a similar manner.
- a phosphor material in which Zn 2 SiO 4 : Mn and (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce are mixed is produced.
- the method for producing the green phosphor material will be described in detail later.
- Zn 2 SiO 4 : Mn is produced such that the Mn content is 8 atomic% or more and 10 atomic% or less with respect to the total of the Zn content and the Mn content.
- Zn 2 SiO 4 : Mn is produced so that the sum of the Zn content and the Mn content with respect to the Si content is 197 atomic% or more and 202 atomic% or less.
- (Y 1-X, Gd X ) 3 Al 5 O 12: Ce content is, Zn 2 SiO 4: Mn content and (Y 1-X, Gd X ) 3 Al 5 O 12: Ce content And 20% by weight or more and 50% by weight or less.
- a phosphor material in which Zn 2 SiO 4 : Mn and (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce are mixed may be manufactured.
- the content of (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce is equal to the content of Zn 2 SiO 4 : Mn and (Y 1-x , Gd x 3 ) (Al 1-y , Ga y ) 5 O 12 : It is prepared so as to be 30 wt% or more and 80 wt% or less with respect to the total content.
- the contents of Zn, Mn, and Si are measured by X-ray photoelectron spectroscopy in a range within 10 nm from the particle surface of Zn 2 SiO 4 : Mn.
- X-ray photoelectron spectroscopy is a method for examining the state of elements up to 10 nm near the surface of a substance.
- a scanning photoelectron spectroscopic analyzer manufactured by ULVAC-PHI
- the contents of Zn, Mn and Si are values calculated based on the atomic ratio of Zn, Si and Mn by X-ray photoelectron spectroscopy.
- the Mn content relative to the sum of the Zn content and the Mn content is represented by [Mn / (Zn + Mn) ⁇ 100 (atomic%)].
- the total of the Zn content and the Mn content relative to the Si content is represented by [(Zn + Mn) / Si ⁇ 100 (atomic%)].
- the average particle size of Zn 2 SiO 4 : Mn is preferably equal to or greater than the average particle size of (Y X , Gd 1-x ) 3 Al 5 O 12 : Ce. This is because the luminance of the PDP 10 is relatively improved.
- (Y X , Gd 1-x ) 3 Al 5 O 12 : Ce has a property of absorbing visible light.
- (Y X , Gd 1-x ) 3 Al 5 O 12 : Ce has a characteristic that the smaller the particle diameter, the harder it is to absorb visible light.
- the average particle size (D50) is 1 ⁇ m or more and 3 ⁇ m or less.
- Zn 2 SiO 4 production method of Mn
- Mn is produced using a solid phase reaction method, liquid phase method and a liquid spraying method.
- the solid phase reaction method is a method in which a phosphor material is produced by firing an oxide or carbonate raw material and a flux.
- the liquid phase method is a method in which a phosphor material is manufactured by heat-treating a precursor of the phosphor material. The precursor of the phosphor material is generated by hydrolyzing an organic metal salt or nitrate in an aqueous solution and adding an alkali or the like as necessary to precipitate.
- the liquid spraying method is a method in which a phosphor material is produced by spraying an aqueous solution containing a phosphor material raw material in a heated furnace.
- Zn 2 SiO 4 : Mn in this embodiment is not particularly affected by the manufacturing method.
- a method for producing Zn 2 SiO 4 : Mn by a solid phase reaction method is described.
- zinc oxide (ZnO), silicon dioxide (SiO 2 ), and manganese carbonate (MnCO 3 ) are used as raw materials.
- zinc oxide a material having a high purity (purity 99% or more) is directly used as a zinc source (hereinafter referred to as “Zn material”) in Zn 2 SiO 4 : Mn.
- Zn material a material having a high purity (purity 99% or more) is directly used as a zinc source (hereinafter referred to as “Zn material”) in Zn 2 SiO 4 : Mn.
- the method of obtaining zinc oxide indirectly by the baking process in a manufacture process may be used other than the method of using the above zinc oxide directly.
- high purity (purity 99% or more) zinc hydroxide, zinc carbonate, zinc nitrate, zinc halide, zinc oxalate and the like are used.
- silicon dioxide having a high purity (purity 99% or more) is used as a silicon source (hereinafter referred to as “Si material”) in Zn 2 SiO 4 : Mn.
- Si material silicon dioxide having a high purity (purity 99% or more)
- Si material silicon source
- a silicon hydroxide obtained by hydrolyzing a silicon alkoxide compound such as ethyl silicate may be used.
- the conventional method is characterized in that a phosphor with high brightness is obtained by mixing the composition ratio of the Si material out of the above materials in excess of the stoichiometric ratio.
- the manufacturing method of the present embodiment is characterized in that the composition ratio of the Zn material is mixed excessively than the stoichiometric ratio.
- Mn material manganese hydroxide, manganese nitrate, manganese halide, manganese oxalate, and the like are used as a material (hereinafter referred to as “Mn material”) as a manganese supply source in Zn 2 SiO 4 : Mn. Also good. These Mn materials are a method in which manganese oxide is obtained indirectly through a firing step in the production process. Of course, manganese oxide may be used directly.
- MnCO 3 is 0.16 mol
- ZnO is 1.86 mol
- SiO 2 is 1.00 mol
- the Mn content is 8 atomic% with respect to the total of the Zn content and the Mn content.
- the sum of the Zn content and the Mn content with respect to the Si content is 202 atomic%.
- a V-type mixer, a stirrer, or the like is used for mixing the Mn material, the Zn material, and the Si material.
- a Mn material, a Zn material, and a Si material are mixed at 40 ° C. for 1 hour. In this way, a mixed powder of the phosphor material is produced.
- a vibration mill, a jet mill, or the like may be used.
- the mixed powder of the phosphor material is fired in an air atmosphere.
- the mixed powder is brought to a maximum temperature of 1200 ° C. in about 6 hours after the start of firing.
- the mixed powder is maintained at the maximum temperature for 4 hours.
- the mixed powder is cooled over about 12 hours. In this way, a Zn 2 SiO 4 : Mn powder is produced.
- the atmosphere during firing is not limited to an air atmosphere, and may be a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen.
- the maximum temperature is preferably between 1100 ° C and 1350 ° C.
- the maximum temperature maintenance time, temperature increase time, and temperature decrease time may be changed as appropriate.
- these raw materials are mixed at 40 ° C. for 1 hour. In this way, a mixed powder of the phosphor material is produced.
- a vibration mill, a jet mill, or the like may be used.
- the mixed powder of the phosphor material is fired in the air atmosphere.
- the mixed powder is brought to a maximum temperature of 1100 ° C. in about 3 hours after the start of firing.
- the mixed powder is maintained at the maximum temperature for 4 hours.
- the mixed powder is cooled over about 3 hours.
- the atmosphere during firing is not limited to an air atmosphere, and may be a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen.
- the maximum temperature is preferably between 1000 ° C and 1200 ° C.
- the maximum temperature maintenance time, temperature increase time, and temperature decrease time may be changed as appropriate.
- the mixed powder is fired in a mixed gas atmosphere containing oxygen and nitrogen.
- the mixed powder is brought to a maximum temperature of 1300 ° C. in about 3 hours after the start of firing.
- the mixed powder is maintained at the maximum temperature for 4 hours. Thereafter, the mixed powder is cooled over about 3 hours.
- the atmosphere during firing is not limited to an air atmosphere, and may be a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen.
- the maximum temperature is preferably between 1200 ° C and 1400 ° C.
- the maximum temperature maintenance time, temperature increase time, and temperature decrease time may be changed as appropriate. In this way, a powder of (Y X , Gd 1-x ) 3 Al 5 O 12 : Ce is produced.
- Yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), aluminum oxide (Al 2 O 3 ), cerium oxide (CeO 2 ), and gallium oxide (Ga 2 O 3 ) are adapted to the phosphor composition.
- a V-type mixer, a stirrer or the like is used for mixing these raw materials.
- these raw materials are mixed at 40 ° C. for 1 hour. In this way, a mixed powder of the phosphor material is produced.
- a vibration mill, a jet mill, or the like may be used.
- the mixed powder of the phosphor material is fired in the air atmosphere.
- the mixed powder is brought to a maximum temperature of 1100 ° C. in about 3 hours after the start of firing.
- the mixed powder is maintained at the maximum temperature for 4 hours.
- the mixed powder is cooled over about 3 hours.
- the atmosphere during firing is not limited to an air atmosphere, and may be a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen.
- the maximum temperature is preferably between 1000 ° C and 1200 ° C.
- the maximum temperature maintenance time, temperature increase time, and temperature decrease time may be changed as appropriate.
- the mixed powder is fired in a mixed gas atmosphere containing oxygen and nitrogen.
- the mixed powder is brought to a maximum temperature of 1300 ° C. in about 3 hours after the start of firing.
- the mixed powder is maintained at the maximum temperature for 4 hours. Thereafter, the mixed powder is cooled over about 3 hours.
- the atmosphere during firing is not limited to an air atmosphere, and may be a nitrogen atmosphere or a mixed atmosphere of nitrogen and hydrogen.
- the maximum temperature is preferably between 1200 ° C and 1400 ° C.
- the maximum temperature maintenance time, temperature increase time, and temperature decrease time may be changed as appropriate. In this way, a powder of (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce is produced.
- Zn 2 SiO 4 : Mn and (Y X , Gd 1-x ) 3 Al 5 O 12 : Ce produced as described above are mixed at a predetermined mixing ratio.
- Zn 2 SiO 4 : Mn (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce is mixed at a predetermined mixing ratio.
- These mixed powders are mixed with a binder, a solvent, and the like to produce a phosphor paste.
- the second condition is [(Zn + Mn) / Si ⁇ 100 (atomic%)] in Zn 2 SiO 4 : Mn.
- Luminance evaluation The luminance evaluation was performed by measuring the luminance of the plasma display device when only the green phosphor layer 23b was made to emit light and only green was turned on.
- Table 1 the luminance of samples 1 to 10 is expressed as a relative value when the luminance of the comparative example is 100.
- a sample with a luminance of 90 or higher was evaluated as “good”. Samples with a brightness of less than 90 were rated “bad”. A sample having a luminance greater than 100 was evaluated as “excellent” because it was more preferable in practice.
- Samples 1, 4 to 6 and 8 to 10 are preferable because the luminance is 90 or more.
- the second condition is fixed at 200 atomic%
- the third condition is fixed at 20% by weight, and only the first condition is changed. Under these conditions, it was confirmed that the luminance decreased as the first condition increased. In addition, it was confirmed that the luminance was 91 when the first condition was 10 atomic%. Therefore, in this condition, it is considered that the luminance is smaller than 90 when the first condition is larger than 10 atomic%. Therefore, in this condition, PDP in which the first condition is larger than 10 atomic% is not preferable.
- the first condition is fixed to 8 atomic%
- the third condition is fixed to 20% by weight, and only the second condition is changed.
- the color reproducibility evaluation was evaluated by measuring the color reproduction range.
- the color reproduction range is an area of a triangle formed by the chromaticity when red, green, and blue are turned on in a single color on the xy chromaticity coordinates in the plasma display device.
- the color reproduction range of the sample is expressed as a relative value when the color reproduction range of the comparative example is 100.
- a color reproduction range of 90 or more satisfies the chromaticity standard of High Definition Television (HDTV)
- HDTV High Definition Television
- Samples with a color reproduction range of less than 90 were rated “bad”.
- a sample having a color reproduction range larger than 100 was evaluated as “excellent” because it was more preferable in practice.
- Samples 1 to 8 and 10 are preferable because the color reproduction range is 90 or more.
- Samples 2, 3 and 6 are more preferred because the color reproduction range is greater than 100.
- the color reproduction range when the first condition is 8 atomic% or more and 10 atomic% or less It was confirmed that there was almost no change compared with the comparative example.
- the second condition is 196 atomic% or more and 203 atomic% or less. It was confirmed that the reproduction range hardly changed compared with the comparative example.
- the afterglow characteristics were evaluated by measuring the afterglow time after the end of the sustain discharge in the plasma display device when only green was turned on.
- the afterglow time is the time (ms) from the time when the light emission amount reaches the maximum value to the time when the light emission amount becomes 1/10 of the maximum value, with the time when the light emission amount at the end of the sustain discharge reaches the maximum value as 0. is there.
- an afterglow time of 3 ms or less is practical for a three-dimensional (3D) television with a stereoscopic display
- a sample with an afterglow time of 3 ms or less was evaluated as “good”. Samples with an afterglow time longer than 3 ms were rated “bad”. Further, a sample having an afterglow time shorter than 2 ms was evaluated as “excellent” because it is more preferable in practical use.
- Samples 2 to 10 are preferable because the afterglow time is 3 ms or less.
- Samples 8 to 10 are more preferable because the afterglow time is shorter than 2 ms. From samples 1 to 3, it was confirmed that the afterglow time was 3 ms or less when Y 3 Al 5 O 12 : Ce was mixed and the first condition was 8 atomic% or more. From Samples 5 and 10, it was confirmed that the afterglow time greatly decreased when the first condition increased under the condition that the second condition was 200 atomic% and the third condition was 20 wt%. . Further, it was confirmed that the afterglow time was 2.9 when the first condition was 8 atomic%.
- the afterglow time becomes longer than 3 ms when the first condition is smaller than 8 atomic%. Therefore, in this condition, PDP in which the first condition is less than 8 atomic% is not preferable.
- the afterglow time is determined to be 196 atomic% to 203 atomic% in the second condition. Was confirmed to be 3 ms or less. From samples 5, 8 and 9, it is confirmed that the afterglow time greatly decreases when the third condition increases under the condition that the first condition is 8 atomic% and the second condition is 200 atomic%. It was done. Therefore, in the afterglow characteristics, the larger the mixing ratio of Y 3 Al 5 O 12 : Ce, the better.
- Samples 4 to 10 are preferable because the address voltage is +1 V or less.
- Samples 6 to 10 are more preferable because the address voltage is ⁇ 1 V or less. From Samples 5 and 10, it was confirmed that when the second condition was 200 atomic% and the third condition was 20% by weight, the address voltage decreased as the first condition increased. It was also confirmed that the first condition was 8 atomic% and the address voltage was + 1V. Therefore, in this condition, it is considered that when the first condition is smaller than 8 atomic%, the address voltage becomes larger than + 1V. Therefore, in this condition, PDP in which the first condition is less than 8 atomic% is not preferable.
- the address voltage may be larger than +1 V when the second condition is 196 atomic% or less. confirmed. Therefore, in this condition, a PDP whose second condition is 196 atomic% or less is not preferable. Further, in this condition, it was confirmed that if the second condition is 197 atomic% or more and 203 atomic% or less, the address voltage is +1 or less. From Samples 5, 8 and 9, it was confirmed that the address voltage is greatly reduced when the third condition is increased under the condition that the first condition is 8 atomic% and the second condition is 200 atomic%. It was. Therefore, in the discharge characteristics, the larger the mixing ratio of Y 3 Al 5 O 12 : Ce, the better.
- samples 4 to 6, 8 and 10 can reduce the afterglow time to 3 ms or less while suppressing the luminance to 90 or more, the color reproduction range to 90 or more, and the address voltage to +1 V at the maximum. it can. That is, a sample in which the first condition is 8 atomic percent or more and 10 atomic percent or less, the second condition is 197 atomic percent or more and 202 atomic percent or less, and the third condition is 20 weight percent or more and 50 weight percent or less. Is practically preferable. Therefore, samples 4 to 6, 8, and 10 can shorten the afterglow time without significantly reducing other performances, and thus can realize a PDP 10 suitable for stereoscopic image display.
- the red phosphor layer 23a contains at least one of (Y, Gd) (P, V) O 4 : Eu phosphor or Y 2 O 3 : Eu phosphor, and the blue phosphor layer 23c contains BaMgAl 10 O 17. If the Eu phosphor is included, all afterglow times of the red phosphor layer 23a, the green phosphor layer 23b, and the blue phosphor layer 23c are shortened. As a result, the PDP 10 having excellent image display quality in the stereoscopic image display is realized. Such a PDP 10 is useful for an image display device such as a three-dimensional image display television.
- the first condition and the second condition are the same as in Experiment 1.
- the third condition is a mixing ratio (% by weight) of Y 3 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce. That, Zn 2 SiO 4: Mn content and Y 3 (Al 0.8, Ga 0.2 ) 5 O 12: Y 3 to the total of the content of Ce (Al 0.8, Ga 0.2) 5 O 12 : Ce content.
- Experiment 2 as in Experiment 1, the brightness, chromaticity, afterglow time, and address discharge voltage were measured for the produced samples 11 to 20. In addition, as in Experiment 1, the inventors evaluated samples prepared based on the measured values. Table 2 shows the evaluation results of Samples 11 to 20. Samples 11 to 20 are evaluated according to the same criteria as in Experiment 1 in each item.
- the luminance was less than 90 even when the second condition was greater than 203 atomic%. Therefore, in this condition, PDP in which the second condition is 197 atomic% or more and 202 atomic% or less is preferable. In the samples 15, 18 and 19, the first condition is fixed at 8 atomic%, the second condition is fixed at 200 atomic%, and only the third condition is changed. Under these conditions, it was confirmed that the luminance was maintained when the third condition was 65 wt% or more. Therefore, in terms of luminance, the mixing ratio of Y 3 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce is preferably 65 wt% or more.
- Samples 11 to 20 are preferable because the color reproduction range is 90 or more.
- Samples 12 and 16 are more preferred because the color reproduction range is greater than 100.
- the color reproduction range is 196 atomic% or more and 203 atomic% or less. It was confirmed that there was almost no change.
- the color reproduction range is 196 atomic% or more and 203 atomic% or less. It was confirmed that there was almost no change compared with the comparative example.
- samples 12 to 20 are preferable because the afterglow time is 3 ms or less.
- Samples 18 to 20 are more preferable because the afterglow time is shorter than 2 ms. From Samples 11 to 13, when Y 3 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce is mixed and the first condition is 8 atomic% or more, the afterglow time is 3 ms or less. It was confirmed that From Samples 15 and 20, it was confirmed that the afterglow time greatly decreased when the first condition increased under the condition that the second condition was 200 atomic% and the third condition was 30% by weight. .
- the afterglow time is determined to be 196 atomic% to 203 atomic% in the second condition.
- the afterglow time greatly decreases when the third condition increases under the condition that the first condition is 8 atomic% and the second condition is 200 atomic%. It was done. Therefore, in the afterglow characteristics, the larger the mixing ratio of Y 3 (Al 0.8 , Ga 0.2 ) 5 O 12 : Ce, the better.
- Samples 11 and 14 to 20 are preferable because the address voltage is +1 V or less. Samples 14 to 20 are more preferable because the address voltage is ⁇ 1 V or less. From Samples 15 and 20, it was confirmed that when the second condition was 200 atomic% and the third condition was 30% by weight, the address voltage decreased as the first condition increased. From Samples 13 to 17, when the first condition is 8 atomic% and the third condition is 30% by weight, the address voltage may be larger than +1 V when the second condition is 196 atomic% or less. confirmed. Therefore, in this condition, a PDP whose second condition is 196 atomic% or less is not preferable.
- samples 14 to 16 and 18 to 20 can reduce the afterglow time to 3 ms or less while suppressing the luminance to 90 or more, the color reproduction range to 90 or more, and the address voltage to +1 V at the maximum. it can. That is, a sample in which the first condition is 8 atomic percent or more and 10 atomic percent or less, the second condition is 197 atomic percent or more and 202 atomic percent or less, and the third condition is 30 weight percent or more and 80 weight percent or less. Is practically preferable. Therefore, the samples 14 to 16 and 18 to 20 can shorten the afterglow time without significantly reducing other performances, and thus can realize the PDP 10 suitable for stereoscopic image display.
- the red phosphor layer 23a contains at least one of (Y, Gd) (P, V) O 4 : Eu phosphor or Y 2 O 3 : Eu phosphor, and the blue phosphor layer 23c contains BaMgAl 10 O 17. If the Eu phosphor is included, all afterglow times of the red phosphor layer 23a, the green phosphor layer 23b, and the blue phosphor layer 23c are shortened. As a result, the PDP 10 having excellent image display quality in the stereoscopic image display is realized. Such a PDP 10 is useful for an image display device such as a three-dimensional image display television.
- PDP 10 in the present embodiment includes a front plate, a back plate disposed to face the front plate, and a phosphor layer 23 formed on the back plate.
- the phosphor layer 23 includes a green phosphor layer 23b containing Zn 2 SiO 4 : Mn and (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce (where 0 ⁇ X ⁇ 1).
- Zn 2 SiO 4 : Mn the content of Mn is 8 atomic% or more and 10 atomic% or less with respect to the total of the Zn content and the Mn content.
- the total of the Zn content and the Mn content with respect to the Si content is 197 atomic% or more and 202 atomic% or less.
- the content of (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce is the same as the content of Zn 2 SiO 4 : Mn and (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce. It is 20 weight% or more and 50 weight% or less with respect to the sum total with content. According to this configuration, the afterglow time can be shortened without significantly reducing other performance.
- the average particle diameter of Zn 2 SiO 4 : Mn is preferably equal to or greater than the average particle diameter of (Y 1-X , Gd X ) 3 Al 5 O 12 : Ce.
- the phosphor layer 23 of the PDP 10 includes Zn 2 SiO 4 : Mn and (Y 1 ⁇ x , Gd x ) 3 (Al 1 ⁇ y , Ga y ) 5 O 12 : Ce (however, , 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5) may be included.
- the content of Mn in Zn 2 SiO 4 : Mn is 8 atomic% or more and 10 atomic% or less with respect to the total of the Zn content and the Mn content.
- Zn 2 SiO 4 : Mn the total of the Zn content and the Mn content with respect to the Si content is 197 atomic% or more and 202 atomic% or less.
- the content of (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce is the same as that of Zn 2 SiO 4 : Mn and (Y 1-x , Gd x ) 3 ( Al 1-y , Ga y ) 5 O 12 : Ce content and 30 wt% or more and 80 wt% or less. According to this configuration, the afterglow time can be shortened without significantly reducing other performance.
- the average particle size of Zn 2 SiO 4 : Mn is (Y 1-x , Gd x ) 3 (Al 1-y , Ga y ) 5 O 12 : Ce average particle size
- the above is preferable. Thereby, the brightness
- the PDP of the present invention provides a PDP that realizes high-quality moving image display quality, and is useful for a large-screen stereoscopic image display device and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Luminescent Compositions (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
Description
図1に示すように、PDP10は、前面基板11と背面基板17とを対向配置している。
PDP10の製造方法は、前面基板11上に表示電極14などを形成する前面板形成工程と、背面基板17上にデータ電極18などを形成する背面板形成工程と、前面基板11と背面基板17とを組み立てる組立工程と、がある。
前面板形成工程では、前面基板11上に、表示電極14および誘電体層15が形成される。
背面板形成工程では、背面基板17上に、データ電極18、下地誘電体層19、隔壁22、蛍光体層23および封着材(図示せず)が形成される。
組立工程では、表示電極14などが形成された前面基板11と、データ電極18などが形成された背面基板17と、が組み立てられる。
本実施の形態では、青色蛍光体層23cには、例えば、残光時間の短いBaMgAl10O17:Euの青色蛍光体材料が用いられる。赤色蛍光体層23aには、例えば、(Y,Gd)(P,V)O4:Eu蛍光体またはY2O3:Eu蛍光体の少なくとも一つを含む赤色蛍光体材料が用いられる。また、緑色蛍光体層23bには、Zn2SiO4:Mnと(Y1-x、Gdx)3Al5O12:Ce(ただし、0≦X≦1)とを含む緑色蛍光体材料が用いられる。または、Zn2SiO4:Mnと(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ce(ただし、0≦x≦1,0≦y≦0.5)とを含む緑色蛍光体材料が用いられる。
本実施の形態では、固相反応法により蛍光体材料が作製される。青色蛍光体材料としてBaMgAl10O17:Euは以下の方法で作製される。炭酸バリウム(BaCO3)、炭酸マグネシウム(MgCO3)、酸化アルミニウム(Al2O3)および酸化ユーロピウム(Eu2O3)が蛍光体組成に合うように混合される。混合物は、空気中において800℃~1200℃で焼成される。混合物は、さらに水素と窒素を含む混合ガス雰囲気において1200℃~1400℃で焼成される。
以下、Zn2SiO4:Mn、(Y1-x、Gdx)3Al5O12:Ceおよび(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceの製造方法が詳細に説明される。
Zn2SiO4:Mnは、固相反応法や液相法や液体噴霧法を用いて作製される。固相反応法は、酸化物や炭酸化物原料とフラックスが焼成されることにより蛍光体材料が作製される方法である。液相法は、蛍光体材料の前駆体が熱処理されることにより蛍光体材料が作製される方法である。蛍光体材料の前駆体は、有機金属塩や硝酸塩が水溶液中で加水分解され、必要に応じてアルカリなどが加えられて沈殿することにより生成される。液体噴霧法は、加熱された炉中に蛍光体材料の原料を含む水溶液が噴霧されて蛍光体材料が作製される方法である。
(YX、Gd1-x)3Al5O12:Ceは、固相反応法や液相法や液体噴霧法を用いて作製される。一例として固相反応法による(YX、Gd1-x)3Al5O12:Ceの製造方法が述べられる。酸化イットリウム(Y2O3)、酸化ガドリニウム(Gd2O3)、酸化アルミニウム(Al2O3)および酸化セリウム(CeO2)が蛍光体組成に合うように混合される。これらの原料の混合には、V型混合機、攪拌機などが用いられる。例えば、粉砕機能を有したボールミルが用いられた場合、これらの原料が40℃で1時間混合される。このようにして、蛍光体材料の混合粉が作製される。なお、振動ミル、ジェットミル等が用いられてもよい。
(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceは、固相反応法や液相法や液体噴霧法を用いて作製される。一例として固相反応法による(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceの製造方法が述べられる。酸化イットリウム(Y2O3)、酸化ガドリニウム(Gd2O3)、酸化アルミニウム(Al2O3)、酸化セリウム(CeO2)および酸化ガリウム(Ga2O3)が蛍光体組成に合うように混合される。これらの原料の混合には、V型混合機、攪拌機などが用いられる。例えば、粉砕機能を有したボールミルが用いられた場合、これらの原料が40℃で1時間混合される。このようにして、蛍光体材料の混合粉が作製される。なお、振動ミル、ジェットミル等が用いられてもよい。
発明者らは、上述の製造方法により作製したPDP10のサンプルを用いて、緑色蛍光体材料の特性を確認するために、以下の実験1を行った。実験1では、緑色蛍光体として、Zn2SiO4:MnとY3Al5O12:Ceが用いられた。Zn2SiO4:Mnの平均粒径(D50)は、2μmである。Y3Al5O12:Ceの平均粒径(D50)は、2μmである。実験1では、3つの条件が変更されたサンプル1~10が作製された。第1の条件は、Zn2SiO4:Mnにおける[Mn/(Zn+Mn)×100(原子%)]である。第2の条件は、Zn2SiO4:Mnにおける[(Zn+Mn)/Si×100(原子%)]である。第3の条件は、(YX、Gd1-x)3Al5O12:Ceの混合比率(重量%)である。つまり、Zn2SiO4:Mnの含有量と(Y1-X,GdX)3Al5O12:Ceの含有量との合計に対する(Y1-X,GdX)3Al5O12:Ceの含有量である。なお、実験1で用いられた(YX、Gd1-x)3Al5O12:Ceは、X=1の場合であるが、0≦X≦1の範囲であれば同様の効果が得られる。
輝度評価は、緑色蛍光体層23bのみを発光させて緑色のみを点灯させた時のプラズマディスプレイ装置の輝度を測定することにより評価された。表1では、サンプル1~10の輝度が、比較例の輝度を100とした時の相対値で表された。実験1では、90以上の輝度が実用可能な輝度であるため、輝度が90以上のサンプルが「良」と評価された。90未満の輝度であるサンプルは「悪」と評価された。また、輝度が100より大きいサンプルは、実用上より好ましいため「優」と評価された。
色再現性評価は、色再現範囲を測定することにより評価された。色再現範囲とは、プラズマディスプレイ装置において、赤色、緑色、青色をそれぞれ単色で点灯させた際の色度をxy色度座標上に描画し、その各点により形成される三角形の面積である。表1では、サンプルの色再現範囲が、比較例の色再現範囲を100とした時の相対値で表された。実験1では、90以上の色再現範囲がHigh Definition Television(HDTV)の色度規格を満足するため、色再現範囲が90以上のサンプルが「良」と評価された。90未満の色再現範囲であるサンプルは「悪」と評価された。また、色再現範囲が100より大きいサンプルは、実用上より好ましいため「優」と評価された。
残光特性は、緑色のみを点灯させた時のプラズマディスプレイ装置において、維持放電終了後の残光時間が測定することにより評価された。残光時間は、維持放電終了時の発光量が最大値となる時点を0として、発光量が最大値となる時点から発光量が最大値の1/10になる時点までの時間(ms)である。実験1では、3ms以下の残光時間が立体表示の3次元(3D)テレビ用として実用可能であるため、残光時間が3ms以下のサンプルが「良」と評価された。残光時間が3msより長いサンプルは「悪」と評価された。また、残光時間が2msより短いサンプルは、実用上より好ましいため「優」と評価された。
放電特性は、プラズマディスプレイ装置において、安定したアドレス放電が生じるために必要なアドレス電極への印加電圧(以下、アドレス電圧)を測定することにより評価された。表1では、サンプルのアドレス電圧が、比較例のアドレス電圧を基準とした差で表された。実験1では、アドレス電圧が+1V以下のサンプルが、実用可能であるため、「良」と評価された。アドレス電圧が+1Vより大きいサンプルは「悪」と評価された。また、高速なアドレス電圧の印加が必要な3次元テレビおよび超高精細テレビでは、アドレス放電による消費電力が増加する。例えば、3次元テレビでは、アドレス放電による消費電力がアドレス電圧の2乗に比例して増加してしまう。そのため、アドレス電圧が-1V以下のサンプルは、実用上より好ましいため「優」と評価された。
表1に示すように、サンプル4~6、8および10は、輝度を90以上、色再現範囲を90以上、アドレス電圧を最大で+1Vに抑えつつ、残光時間を3ms以下に減少させることができる。つまり、第1の条件が8原子%以上10原子%以下であり、第2の条件が197原子%以上202原子%以下であり、第3の条件が20重量%以上50重量%以下であるサンプルは、実用上好ましい。したがって、サンプル4~6、8および10は、他の性能を大きく低減させずに残光時間を短縮できるため、立体画像表示に適したPDP10を実現することができる。
発明者らは、上述の製造方法により作製したPDP10のサンプルを用いて、緑色蛍光体材料の特性を確認するために、以下の実験2を行った。実験2では、緑色蛍光体として、Zn2SiO4:MnとY3(Al0.8,Ga0.2)5O12:Ceが用いられた。Zn2SiO4:Mnの平均粒径(D50)は、2μmである。Y3(Al0.8,Ga0.2)5O12:Ceの平均粒径(D50)は、2μmである。実験2でも、実験1と同様に、3つの条件が変更されたサンプル11~20が作製された。第1の条件および第2の条件は、実験1と同様である。第3の条件は、Y3(Al0.8,Ga0.2)5O12:Ceの混合比率(重量%)である。つまり、Zn2SiO4:Mnの含有量とY3(Al0.8,Ga0.2)5O12:Ceの含有量との合計に対するY3(Al0.8,Ga0.2)5O12:Ceの含有量である。なお、実験2で用いられた(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceは、x=0、y=0.2の場合であるが、0≦x≦1、0≦y≦0.5の範囲であれば同様の効果が得られる。
表2に示すように、サンプル11、14~16および18~20は、輝度が90以上であるため好ましい。サンプル18は、輝度が100より大きいため、さらに好ましい。サンプル15および20は、第2の条件を200原子%に、第3の条件を20重量%に固定され、第1の条件だけを変えられている。この条件において、第1の条件は輝度に影響が小さいことが確認された。サンプル13~17は、第1の条件を8原子%に、第3の条件を30重量%に固定され、第2の条件だけを変えられている。この条件において、第2の条件が197原子%より小さくなると、輝度が90より小さくなることが確認された。また、第2の条件が203原子%より大きくなっても、輝度が90より小さくなることが確認された。そのため、この条件において、第2の条件が197原子%以上202原子%以下のPDPが好ましい。サンプル15、18および19は、第1の条件を8原子%に、第2の条件を200原子%に固定され、第3の条件だけを変えられている。この条件において、第3の条件が65wt%以上であると、輝度が維持されることが確認された。そのため、輝度において、Y3(Al0.8,Ga0.2)5O12:Ceの混合比率が65wt%以上であることが好ましい。
表2に示すように、サンプル11~20は、色再現範囲が90以上であるため、好ましい。サンプル12および16は、色再現範囲が100より大きいため、さらに好ましい。サンプル13~17より、第2の条件が200原子%であり、第3の条件が30重量%である条件において、第2の条件が196原子%以上203原子%以下であると、色再現範囲はほぼ変化しないことが確認された。サンプル13~17より、第1の条件が8原子%であり、第3の条件が30重量%である条件において、第2の条件が196原子%以上203原子%以下であると、色再現範囲が比較例と比べてほぼ変化しないことが確認された。サンプル15、18および19より、第1の条件が8原子%であり、第2の条件が200原子%である条件において、第3の条件が増加すると、色再現範囲が大きく減少することが確認された。この条件において、第3の条件が80重量%で色再現範囲が90となることが確認された。これにより、第3の条件が80重量%より大きくなると色再現範囲が90より小さくなると考えられる。そのため、この条件において、第3の条件が80重量%より大きいPDPは好ましくないことが確認された。
表2に示すように、サンプル12~20は、残光時間が3ms以下であるため、好ましい。サンプル18~20は、残光時間が2msより短いため、さらに好ましい。サンプル11~13より、Y3(Al0.8,Ga0.2)5O12:Ceが混合され、かつ、第1の条件が8原子%以上である場合に残光時間が3ms以下になることが確認された。サンプル15および20より、第2の条件が200原子%であり、第3の条件が30重量%である条件において、第1の条件が増加すると、残光時間が大きく減少することが確認された。サンプル13~17より、第1の条件が8原子%であり、第3の条件が30重量%である条件において、第2の条件が196原子%以上203原子%以下であると、残光時間が3ms以下となることが確認された。サンプル15、18および19より、第1の条件が8原子%であり、第2の条件が200原子%である条件において、第3の条件が増加すると、残光時間が大きく減少することが確認された。そのため、残光特性において、Y3(Al0.8,Ga0.2)5O12:Ceの混合比率は、大きいほど好ましい。
表2に示すように、サンプル11および14~20は、アドレス電圧が+1V以下であるため、好ましい。サンプル14~20は、アドレス電圧が-1V以下であるため、さらに好ましい。サンプル15および20より、第2の条件が200原子%であり、第3の条件が30重量%である条件において、第1の条件が増加すると、アドレス電圧が減少することが確認された。サンプル13~17より、第1の条件が8原子%であり、第3の条件が30重量%である条件において、第2の条件が196原子%以下になるとアドレス電圧が+1Vより大きくなることが確認された。そのため、この条件において、第2の条件が196原子%以下のPDPは好ましくない。また、この条件において、第2の条件が197原子%以上203原子%以下であれば、アドレス電圧が+1以下となることが確認された。サンプル15、18および19より、第1の条件が8原子%であり、第2の条件が200原子%である条件において、第3の条件が増加すると、アドレス電圧が大きく減少することが確認された。そのため、放電特性において、Y3(Al0.8,Ga0.2)5O12:Ceの混合比率は、大きいほど好ましい。
表2に示すように、サンプル14~16および18~20は、輝度を90以上、色再現範囲を90以上、アドレス電圧を最大で+1Vに抑えつつ、残光時間を3ms以下に減少させることができる。つまり、第1の条件が8原子%以上10原子%以下であり、第2の条件が197原子%以上202原子%以下であり、第3の条件が30重量%以上80重量%以下であるサンプルは、実用上好ましい。したがって、サンプル14~16および18~20は、他の性能を大きく低減させずに残光時間を短縮できるため、立体画像表示に適したPDP10を実現することができる。
本実施の形態におけるPDP10は、前面板と、前面板に対向配置された背面板と、背面板上に形成された蛍光体層23と、を備える。蛍光体層23は、Zn2SiO4:Mnと(Y1-X,GdX)3Al5O12:Ce(ただし、0≦X≦1)とを含む緑色蛍光体層23bを有する。Zn2SiO4:Mnは、Znの含有量とMnの含有量との合計に対するMnの含有量が8原子%以上10原子%以下である。また、Zn2SiO4:Mnは、Siの含有量に対するZnの含有量とMnの含有量との合計が197原子%以上202原子%以下である。(Y1-X,GdX)3Al5O12:Ceの含有量は、前記Zn2SiO4:Mnの含有量と前記(Y1-X,GdX)3Al5O12:Ceの含有量との合計に対して、20重量%以上50重量%以下である。この構成によれば、他の性能を大きく低減させずに残光時間を短縮することができる。
11 前面基板
12 走査電極
12a,13a 透明電極
12b,13b バス電極
13 維持電極
14 表示電極
15 誘電体層
16 保護層
17 背面基板
18 データ電極
19 下地誘電体層
22 隔壁
22a 縦隔壁
22b 横隔壁
23 蛍光体層
23a 赤色蛍光体層
23b 緑色蛍光体層
23c 青色蛍光体層
24 放電セル
Claims (4)
- 前面板と、前記前面板に対向配置された背面板と、前記背面板上に形成された蛍光体層と、を備え、
前記蛍光体層は、Zn2SiO4:Mnと(Y1-X,GdX)3Al5O12:Ce(ただし、0≦X≦1)とを含む緑色蛍光体層を有し、
前記Zn2SiO4:Mnは、Znの含有量とMnの含有量との合計に対するMnの含有量が8原子%以上10原子%以下であり、かつ、Siの含有量に対するZnの含有量とMnの含有量との合計が197原子%以上202原子%以下であり、
前記(Y1-X,GdX)3Al5O12:Ceの含有量は、前記Zn2SiO4:Mnの含有量と前記(Y1-X,GdX)3Al5O12:Ceの含有量との合計に対して、20重量%以上50重量%以下である、
プラズマディスプレイパネル。 - 請求項1に記載のプラズマディスプレイパネルであって、
前記Zn2SiO4:Mnの平均粒径は、前記(Y1-X,GdX)3Al5O12:Ceの平均粒径以上である、
プラズマディスプレイパネル。 - 前面板と、前記前面板に対向配置された背面板と、前記背面板上に形成された蛍光体層と、を備え、
前記蛍光体層は、Zn2SiO4:Mnと(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ce(ただし、0≦x≦1,0≦y≦0.5)とを含む緑色蛍光体層を有し、
前記Zn2SiO4:Mnは、Znの含有量とMnの含有量との合計に対するMnの含有量が8原子%以上10原子%以下であり、かつ、Siの含有量に対するZnの含有量とMnの含有量との合計が197原子%以上202原子%以下であり、
前記(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceの含有量は、前記Zn2SiO4:Mnの含有量と前記(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceの含有量との合計に対して、30重量%以上80重量%以下である、
プラズマディスプレイパネル。 - 請求項3に記載のプラズマディスプレイパネルであって、
前記Zn2SiO4:Mnの平均粒径は、前記(Y1-x,Gdx)3(Al1-y,Gay)5O12:Ceの平均粒径以上である、
プラズマディスプレイパネル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/384,794 US8319430B2 (en) | 2010-05-07 | 2011-04-15 | Plasma display panel and method of manufacturing plasma display panel |
CN201180002882XA CN102473570A (zh) | 2010-05-07 | 2011-04-15 | 等离子体显示器面板 |
JP2011550770A JP5212553B2 (ja) | 2010-05-07 | 2011-04-15 | プラズマディスプレイパネル |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-106987 | 2010-05-07 | ||
JP2010106987 | 2010-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011138850A1 true WO2011138850A1 (ja) | 2011-11-10 |
Family
ID=44903706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/002222 WO2011138850A1 (ja) | 2010-05-07 | 2011-04-15 | プラズマディスプレイパネル |
Country Status (5)
Country | Link |
---|---|
US (1) | US8319430B2 (ja) |
JP (1) | JP5212553B2 (ja) |
KR (1) | KR20120030539A (ja) |
CN (1) | CN102473570A (ja) |
WO (1) | WO2011138850A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4846884B1 (ja) * | 2010-05-18 | 2011-12-28 | パナソニック株式会社 | プラズマディスプレイパネルおよび緑色蛍光体層 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208647A (ja) * | 1997-01-29 | 1998-08-07 | Nec Kansai Ltd | プラズマディスプレイパネル |
JPH11297221A (ja) * | 1998-04-14 | 1999-10-29 | Nec Kansai Ltd | プラズマディスプレイパネル |
JP2003142005A (ja) * | 2001-10-31 | 2003-05-16 | Hitachi Ltd | プラズマディスプレイ表示装置及びそれを用いた映像表示システム |
JP2006193712A (ja) * | 2005-01-12 | 2006-07-27 | Samsung Sdi Co Ltd | プラズマディスプレイ用蛍光体,これを含むプラズマディスプレイ用蛍光体組成物およびこの組成物を含むプラズマディスプレイパネル |
WO2006126567A1 (ja) * | 2005-05-24 | 2006-11-30 | Mitsubishi Chemical Corporation | 蛍光体及びその利用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10195428A (ja) | 1997-01-16 | 1998-07-28 | Toshiba Corp | 蛍光体粒子、その製造方法およびプラズマディスプレイパネル |
JP3587661B2 (ja) | 1997-09-12 | 2004-11-10 | 富士通株式会社 | プラズマディスプレイパネル |
JP3797084B2 (ja) | 1999-12-14 | 2006-07-12 | 松下電器産業株式会社 | プラズマディスプレイ装置 |
TWI290329B (en) * | 2001-10-30 | 2007-11-21 | Hitachi Ltd | Plasma display device, luminescent device and image and information display system using the same |
KR100456982B1 (ko) * | 2002-02-28 | 2004-11-10 | 한국과학기술연구원 | Pdp용 녹색 형광체의 제조 방법 |
JP4244727B2 (ja) * | 2003-06-30 | 2009-03-25 | パナソニック株式会社 | プラズマディスプレイ装置 |
JP4415578B2 (ja) * | 2003-06-30 | 2010-02-17 | パナソニック株式会社 | プラズマディスプレイ装置 |
KR100659062B1 (ko) | 2004-10-11 | 2006-12-19 | 삼성에스디아이 주식회사 | 형광체 페이스트 조성물 및 이를 이용한 평판 디스플레이장치의 제조 방법 |
JP2006274137A (ja) | 2005-03-30 | 2006-10-12 | Konica Minolta Medical & Graphic Inc | 蛍光体 |
-
2011
- 2011-04-15 CN CN201180002882XA patent/CN102473570A/zh active Pending
- 2011-04-15 KR KR1020127001064A patent/KR20120030539A/ko not_active Application Discontinuation
- 2011-04-15 JP JP2011550770A patent/JP5212553B2/ja not_active Expired - Fee Related
- 2011-04-15 WO PCT/JP2011/002222 patent/WO2011138850A1/ja active Application Filing
- 2011-04-15 US US13/384,794 patent/US8319430B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10208647A (ja) * | 1997-01-29 | 1998-08-07 | Nec Kansai Ltd | プラズマディスプレイパネル |
JPH11297221A (ja) * | 1998-04-14 | 1999-10-29 | Nec Kansai Ltd | プラズマディスプレイパネル |
JP2003142005A (ja) * | 2001-10-31 | 2003-05-16 | Hitachi Ltd | プラズマディスプレイ表示装置及びそれを用いた映像表示システム |
JP2006193712A (ja) * | 2005-01-12 | 2006-07-27 | Samsung Sdi Co Ltd | プラズマディスプレイ用蛍光体,これを含むプラズマディスプレイ用蛍光体組成物およびこの組成物を含むプラズマディスプレイパネル |
WO2006126567A1 (ja) * | 2005-05-24 | 2006-11-30 | Mitsubishi Chemical Corporation | 蛍光体及びその利用 |
Also Published As
Publication number | Publication date |
---|---|
US8319430B2 (en) | 2012-11-27 |
KR20120030539A (ko) | 2012-03-28 |
CN102473570A (zh) | 2012-05-23 |
JP5212553B2 (ja) | 2013-06-19 |
JPWO2011138850A1 (ja) | 2013-07-22 |
US20120181918A1 (en) | 2012-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100550721B1 (ko) | 형광체, 그의 제조방법 및 플라즈마 디스플레이 장치 | |
KR20040029177A (ko) | 플라즈마 디스플레이 장치 | |
JP4042372B2 (ja) | 蛍光体の製造方法 | |
KR100535430B1 (ko) | 플라즈마 디스플레이 장치 및 형광체 및 형광체의 제조 방법 | |
US8268192B2 (en) | Blue phosphor, display device including the same, and associated methods | |
KR20040027921A (ko) | 플라즈마 표시 장치, 형광체 및 형광체의 제조 방법 | |
JP3818285B2 (ja) | プラズマディスプレイ装置 | |
JP5212553B2 (ja) | プラズマディスプレイパネル | |
KR100621125B1 (ko) | 플라즈마 디스플레이 장치 | |
JP2005100890A (ja) | プラズマディスプレイ装置 | |
JP5011082B2 (ja) | 画像表示装置 | |
JP4694088B2 (ja) | プラズマディスプレイ装置 | |
JP2006059629A (ja) | プラズマディスプレイ装置 | |
JP4672231B2 (ja) | プラズマディスプレイパネル | |
JP4556908B2 (ja) | プラズマディスプレイ装置 | |
WO2012114692A1 (ja) | プラズマディスプレイパネル | |
JP3939946B2 (ja) | プラズマディスプレイパネルの蛍光体 | |
JP4860501B2 (ja) | プラズマディスプレイパネルの緑色蛍光体 | |
JP2010177072A (ja) | プラズマディスプレイパネル | |
WO2012114691A1 (ja) | プラズマディスプレイパネル | |
JPWO2007013515A1 (ja) | ガス放電発光パネル | |
JP2004091623A (ja) | プラズマディスプレイパネル | |
JP2011238499A (ja) | プラズマディスプレイパネル | |
JP2012227083A (ja) | プラズマディスプレイパネル | |
JP2012227082A (ja) | プラズマディスプレイパネル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180002882.X Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011550770 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11777371 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127001064 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13384794 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11777371 Country of ref document: EP Kind code of ref document: A1 |