WO2006064666A1 - パワーモジュールとその製造方法および空気調和機 - Google Patents

パワーモジュールとその製造方法および空気調和機 Download PDF

Info

Publication number
WO2006064666A1
WO2006064666A1 PCT/JP2005/022061 JP2005022061W WO2006064666A1 WO 2006064666 A1 WO2006064666 A1 WO 2006064666A1 JP 2005022061 W JP2005022061 W JP 2005022061W WO 2006064666 A1 WO2006064666 A1 WO 2006064666A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
power
power module
resin substrate
semiconductor
Prior art date
Application number
PCT/JP2005/022061
Other languages
English (en)
French (fr)
Inventor
Junichi Teraki
Mitsuhiro Tanaka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2005315026A priority Critical patent/AU2005315026B8/en
Priority to EP05811238A priority patent/EP1830406A4/en
Priority to US11/791,844 priority patent/US7612448B2/en
Publication of WO2006064666A1 publication Critical patent/WO2006064666A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/162Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits the devices being mounted on two or more different substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/021Components thermally connected to metal substrates or heat-sinks by insert mounting
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/183Components mounted in and supported by recessed areas of the printed circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/064Fluid cooling, e.g. by integral pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a power module that performs power conversion and a manufacturing method thereof.
  • the present invention also relates to an air conditioner equipped with a power module.
  • a power module is mainly composed of a power semiconductor mounting board on which a chip with relatively large heat generation such as a power semiconductor is mounted, and a non-power semiconductor mounting board on which an IC chip with relatively small heat generation such as a microcomputer is mounted.
  • a cooling unit for example, a heat radiating fin for mainly cooling the power semiconductor (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-111619
  • the subject of this invention is providing the power module which can hold down manufacturing cost low.
  • a power module according to a first invention includes a power semiconductor, a non-power semiconductor, a single resin substrate, and a cooling means.
  • the “power semiconductor” here is, for example, a die Ode and power transistors.
  • the “non-power semiconductor” here is, for example, a microcomputer, a ROM (Read Only Memory), or the like.
  • the term “resin substrate” as used herein refers to, for example, a substrate manufactured using only resin, a substrate manufactured using fiber reinforced plastic, or a substrate manufactured using a resin in which powder is dispersed. It is a substrate on which a circuit pattern is formed at least on one side or inside.
  • a double-sided resin substrate with circuit patterns formed on both sides and a plurality of circuits in the thickness direction are laminated alternately with insulating layers (resin layers).
  • a laminated resin substrate is particularly preferred.
  • the power semiconductor and the non-power semiconductor constitute a power supply circuit for performing power conversion. Both a power semiconductor and a non-power semiconductor are mounted on the resin substrate.
  • the cooling means is provided for cooling the power semiconductor.
  • the heat generated from the power semiconductor is usually increased by supplying air to the heat radiating fins at a temperature of several tens of degrees Celsius or higher. It is discharged outside the module system.
  • the power module requires a substrate having high thermal conductivity such as an aluminum substrate or a ceramic substrate as a substrate on which the power semiconductor is mounted in order to ensure sufficient heat dissipation. Speak.
  • the cooling means of the power module according to the present invention uses, for example, a cooling medium having a temperature lower than usual (whether it is a gas or a liquid!), Etc., it has low thermal conductivity as a power semiconductor mounting substrate. Even if this resin substrate is used, the heat generated from the power semiconductor can be exhausted sufficiently. Of course, the temperature of the cooling medium at this time needs to be appropriately changed depending on the amount of heat generated by the power semiconductor force and the thickness of the resin substrate. Under such a premise, in this power module, it is possible to mount a power semiconductor and a non-power semiconductor on a single resin substrate. Therefore, in this power module, it is not necessary to use an expensive aluminum substrate or ceramic substrate as a substrate for mounting the power semiconductor. As a result, it is possible to reduce the raw material cost, labor cost, equipment cost, etc. of the base material in the production of this power module. For this reason, this power module can be manufactured at a low manufacturing cost.
  • the power module according to the second invention is the power module according to the first invention
  • the cooling means is a cooling fluid passage.
  • a cooling fluid is passed through the cooling fluid passage.
  • the “cooling fluid” is a fluid for cooling the power semiconductor, such as air, other gases, water, or other liquids (for example, a refrigerant sealed in a refrigerant circuit of a refrigeration apparatus). is there.
  • the cooling fluid passage is arranged on the opposite side of the power semiconductor and non-power semiconductor mounting surface of the resin substrate. Note that even if there is a step on the “mounting surface” here, it does not matter.
  • this power module heat generated from the power semiconductor is discharged out of the power module by the cooling fluid flowing in the cooling fluid passage. Therefore, in this power module, if the cooling fluid is maintained at an appropriate temperature, the heat generated from the power semiconductor can be sufficiently discharged even if a low thermal conductive resin substrate is used as the power semiconductor mounting board. can do.
  • this power module is mounted on an air conditioner, it is economical because the refrigerant flowing in the refrigerant circuit can be used as the cooling fluid.
  • a power module according to a third aspect of the present invention is the power module according to the second aspect of the present invention, wherein the cooling fluid passage is provided inside the resin substrate.
  • the cooling fluid passage is provided inside the resin substrate. For this reason, in this power module, the distance between the cooling fluid passage and the power semiconductor can be shortened. Therefore, in this power module, the heat generated from the power semiconductor can be more efficiently discharged out of the power module.
  • a power module according to a fourth aspect of the present invention is the power module according to the second or third aspect of the present invention, further comprising temperature detecting means and temperature control means.
  • the temperature detecting means detects the temperature of the power semiconductor or the vicinity thereof.
  • the temperature control means controls the temperature of the cooling fluid so that the temperature detected by the temperature detection means becomes a predetermined temperature.
  • the temperature detecting means detects the temperature of the power semiconductor or the vicinity thereof.
  • the temperature control means controls the temperature of the cooling fluid so that the temperature detected by the temperature detection means becomes a predetermined temperature. Therefore, this power module can maintain the temperature of the cooling fluid appropriately.
  • a power module according to a fifth invention is a power module according to any one of the second invention power and the fourth invention.
  • the shortest distance between the power semiconductor and the cooling fluid passage is shorter than the shortest distance between the non-power semiconductor and the cooling fluid passage.
  • the shortest distance between the power semiconductor and the cooling fluid passage is shorter than the shortest distance between the non-power semiconductor and the cooling fluid passage. For this reason, in this power module, the heat generated from the power semiconductor can be efficiently discharged out of the power module than the heat generated from the non-power semiconductor.
  • a power module according to a sixth invention is the power module according to any one of the first invention power and the fifth invention, wherein a portion of the resin substrate on which the power semiconductor is mounted has a thickness of a non-power semiconductor. Thinner than the part to be mounted.
  • the thickness of the portion of the resin substrate where the power semiconductor is mounted is the thickness of the portion of the resin substrate where the power semiconductor is mounted
  • a power module according to a seventh aspect of the present invention is the power module according to the fifth aspect of the present invention or the sixth aspect of the present invention, wherein the resin substrate is composed of a plurality of stacked unit bodies stacked in the thickness direction. Yes. Further, the thickness of the portion where the power semiconductor is mounted and the thickness of the portion where the non-power semiconductor is mounted are adjusted by the shape of each of the stacked unit bodies.
  • the resin substrate is composed of a plurality of laminated unit bodies laminated in the thickness direction.
  • the thickness of the portion where the power semiconductor is mounted and the thickness of the portion where the non-power semiconductor is mounted are adjusted according to the shape of each stacked unit body. Therefore, in this power module, a resin substrate having a complicated shape can be manufactured without performing complicated machining.
  • a power module according to an eighth invention is a power module according to any one of the first to seventh inventions, further comprising a heat diffusion portion.
  • the heat diffusion part is for diffusing at least heat generated from the power semiconductor.
  • the “thermal diffusion part” here is an example.
  • heat spreaders, thermal vias, thermal conductive fillers, thermal conductive sheets, and the like are examples.
  • the power module further includes a heat diffusion unit. For this reason, in the power module, the heat generated from the power semiconductor can be exhausted to the outside of the power module system more efficiently.
  • a power module according to a ninth aspect of the present invention is the power module according to the eighth aspect of the present invention, further comprising an electrical insulating layer.
  • the electrical insulating layer is disposed between the heat diffusion portion and the cooling fluid passage.
  • the “electrical insulating layer” may be an electric insulating sheet or an adhesive! /, And may be a part of the resin layer of the multilayer resin substrate. ,.
  • the electrical insulating layer is disposed between the heat diffusion portion and the cooling fluid passage. For this reason, in this power module, discharge can be effectively prevented.
  • a power module according to a tenth aspect of the present invention is the power module according to the eighth aspect or the ninth aspect of the present invention, wherein the heat diffusing section includes a heat spreader.
  • the heat spreader is disposed between the first semiconductor and the mounting surface of the resin substrate.
  • the heat spreader force is disposed between the power semiconductor and the mounting surface of the resin substrate. For this reason, in this power module, the heat generated from the power semiconductor can be efficiently processed.
  • a power module according to an eleventh invention is a power module according to any of the eighth invention and the tenth invention, wherein the thermal diffusion portion includes a thermal via.
  • the thermal via is preferably provided in a direction orthogonal to the plate surface of the resin substrate.
  • the thermal via is provided inside the resin substrate along the direction intersecting the plate surface of the resin substrate. For this reason, in this power module, the thermal conductivity inside the resin substrate can be increased. Therefore, in this power module, heat that also generates power semiconductor power can be discharged out of the power module system more efficiently.
  • a power module according to a twelfth aspect of the present invention is a power module according to any one of the eighth to eleventh aspects of the invention. It is a soot module, and the heat diffusing part includes a heat conductive filler.
  • the thermally conductive filler is dispersed and blended in the resin portion of the resin substrate.
  • the “thermal conductive filler” is, for example, ceramic powder having insulating properties.
  • the heat conductive filler is dispersed and blended in the resin portion of the resin substrate. For this reason, in this power module, the thermal conductivity inside the resin substrate can be increased. Therefore, in this power module, the heat generated from the power semiconductor can be more efficiently discharged out of the power module.
  • a power module according to a thirteenth aspect of the present invention is the power module according to any of the fourth to eighth aspects of the present invention, wherein the heat diffusion portion includes a heat conductive sheet.
  • the thermally conductive sheet is embedded in the resin part of the resin substrate.
  • the “thermally conductive sheet” here is, for example, an insulating ceramic plate or the like.
  • the heat conductive sheet is embedded in the resin portion of the resin substrate. For this reason, in this power module, the thermal conductivity inside the resin substrate can be increased. Therefore, in this power module, heat that also generates power semiconductor power can be discharged more efficiently outside the power module.
  • a power module includes a power semiconductor, a non-power semiconductor, a single mounting board, and a cooling means.
  • the “power semiconductor” referred to here is, for example, a diode and a power transistor.
  • the “non-power semiconductor” referred to here is, for example, a microcomputer, a ROM (Read Only Memory), or the like.
  • the term “resin substrate” as used herein refers to, for example, a substrate manufactured using only resin, a substrate manufactured using fiber-reinforced plastic, and a substrate manufactured using a resin in which powders are dispersed. It is a substrate on which a circuit pattern is formed on at least one side or inside.
  • insulating layers resin layers
  • a fat substrate is particularly preferred.
  • the power semiconductor and the non-power semiconductor constitute a power supply circuit for performing power conversion. Both a power semiconductor and a non-power semiconductor are mounted on the mounting substrate.
  • the thermal conductivity in the plate thickness direction of this mounting board is lOWZ (m'K) or less.
  • the cooling means is provided to cool the power semiconductor.
  • the heat generated from the power semiconductor is usually increased by supplying air to the heat radiating fins at a temperature of several tens of degrees Celsius or higher. It is discharged outside the module system.
  • the power module requires a substrate having high thermal conductivity such as an aluminum substrate or a ceramic substrate as a substrate on which the power semiconductor is mounted in order to ensure sufficient heat dissipation. Speak.
  • the cooling means for the power module uses, for example, a cooling medium having a temperature lower than usual (which may be gas or liquid!), Etc., the thermal conductivity as a power semiconductor mounting substrate
  • a cooling medium having a temperature lower than usual which may be gas or liquid!
  • Etc. the thermal conductivity as a power semiconductor mounting substrate
  • the temperature of the cooling medium at this time needs to be changed depending on the amount of heat generated from the power semiconductor and the thickness of the mounting board.
  • this power module makes it possible to mount a power semiconductor and a non-power semiconductor on a single low thermal conductivity mounting board.
  • the air conditioner according to the fifteenth aspect of the present invention includes a refrigerant circuit and a power module.
  • the power module includes a power semiconductor, a non-power semiconductor, a single resin substrate, and a refrigerant passage.
  • the power semiconductor and the non-power semiconductor constitute a power circuit for performing power conversion.
  • the refrigerant passage is a passage for allowing the refrigerant flowing through the refrigerant circuit to pass through, and is disposed on the opposite side of the mounting surface of the power semiconductor and the non-power semiconductor of the resin substrate.
  • air conditioners employ a type of power module that discharges the heat generated by the power semiconductor power through heat-dissipating fins.
  • the temperature is generally higher by several tens of degrees Celsius than the temperature!
  • ⁇ -Semiconductor power The generated heat is exhausted outside the power module system.
  • the power module requires a substrate having high thermal conductivity such as an aluminum substrate or a ceramic substrate as a substrate on which the power semiconductor is mounted in order to ensure sufficient heat dissipation. Being sung.
  • the refrigerant temperature is sufficiently low in the refrigerant circuit of the air conditioner, and if such a refrigerant can flow through the refrigerant passage of the power module, a low thermal conductive resin substrate as a power semiconductor mounting substrate Even if it is adopted, the heat generated from the power semiconductor can be sufficiently discharged by the power module.
  • the temperature of the cooling medium at this time depends on the amount of heat generated from the power semiconductor and the thickness of the resin substrate. Based on this assumption, the power module of this air conditioner combines a power semiconductor and a non-power semiconductor.
  • this air conditioner can be mounted on a single resin substrate. Therefore, in the power module of this air conditioner, it is not necessary to employ an expensive aluminum substrate or ceramic substrate as a substrate for mounting the power semiconductor. As a result, it is possible to reduce the raw material cost, labor cost, equipment cost, etc. of the base material in the production of this power module. For this reason, this power module can be manufactured at a low manufacturing cost. In turn, the manufacturing cost of the air conditioner can be reduced.
  • a power module manufacturing method includes a power semiconductor and a non-power semiconductor constituting a power circuit for performing power conversion, a single resin substrate on which both the power semiconductor and the non-power semiconductor are mounted, And a cooling means for cooling the power semiconductor, comprising a power semiconductor fixing step, a wire connecting step, a non-power semiconductor connecting step, and a cooling means fixing step.
  • the power semiconductor fixing process the power semiconductor is fixed at a specified position on the resin substrate.
  • the wire connection step the power semiconductor and the circuit provided on the resin substrate are wire-connected.
  • the non-parallel semiconductor connection step the non-power semiconductor and the circuit are connected. In this non-power semiconductor connection process, it is preferable to adopt a reflow method.
  • the resin substrate is fixed to the cooling means.
  • the power semiconductor fixing process, the wire connecting process, the non-power semiconductor connecting process, and the cooling means fixing process may be appropriately replaced.
  • the power semiconductor is fixed at a prescribed position on the resin substrate in the power semiconductor fixing step.
  • the wire connection step the power semiconductor and the circuit provided on the resin substrate are wire-connected.
  • the non-power semiconductor connection step the non-power semiconductor and the circuit are connected.
  • the cooling means fixing step the resin substrate is fixed to the cooling means. For this reason, in this power module manufacturing method, the power semiconductor and the non-power semiconductor are mounted on a single resin substrate. Therefore, if this power module manufacturing method is used, it will be possible to reduce the raw material costs, labor costs, equipment costs, etc. of the base material.
  • the power module according to the first invention can be manufactured at a low manufacturing cost.
  • the cooling fluid can be maintained at an appropriate temperature, the heat generated from the power semiconductor can be sufficiently obtained even if a low thermal conductive resin substrate is used as the power semiconductor mounting board. Power module power can also be discharged.
  • the distance between the cooling fluid passage and the power semiconductor can be shortened. Therefore, in this power module, the heat generated from the power semiconductor can be more efficiently discharged out of the power module.
  • the temperature of the cooling fluid can be appropriately maintained.
  • heat generated from the power semiconductor can be efficiently discharged out of the power module than heat generated from the non-power semiconductor.
  • heat generated from the power semiconductor can be efficiently discharged out of the system of the power module rather than heat generated from the non-power semiconductor.
  • non-power semiconductors are arranged differently from power semiconductors, so that they are less susceptible to the heat generated by power semiconductors.
  • a resin substrate having a complicated shape can be manufactured without performing complicated machining.
  • the heat generated from the power semiconductor can be discharged more efficiently outside the power module.
  • discharge can be effectively prevented.
  • heat generated from the power semiconductor can be efficiently processed.
  • the thermal conductivity inside the resin substrate can be improved. Therefore, in this power module, heat that also generates power semiconductor power can be discharged more efficiently than the power module.
  • the thermal conductivity inside the resin substrate can be increased. Therefore, in this power module, heat that also generates power semiconductor power can be discharged more efficiently than the power module.
  • the thermal conductivity inside the resin substrate can be increased. Therefore, in this power module, heat that also generates power semiconductor power can be discharged more efficiently than the power module.
  • the power module according to the fourteenth invention can be manufactured at a low manufacturing cost.
  • the air conditioner according to the fifteenth aspect of the present invention can be manufactured at a low manufacturing cost.
  • FIG. 1 is an external perspective view of an air conditioner according to the present embodiment.
  • FIG. 2 is a refrigerant circuit diagram of the air conditioner according to the present embodiment.
  • FIG. 3 (a) A longitudinal sectional view of a power module mounted on an air conditioner according to the present embodiment, and (b) a top perspective view of a cooling jacket portion of the power module according to the present embodiment.
  • FIG. 4 is a table showing the relationship between the thickness of the mounting board and the heat dissipation characteristics according to the present embodiment.
  • FIG. 5 is a flowchart showing manufacturing steps of the power module according to the present embodiment.
  • FIG. 6 Partial longitudinal sectional view of the power module mounted on the air conditioner according to the modified example (A)
  • FIG. 7 is a partial longitudinal sectional view of a power module mounted on an air conditioner according to modification (B).
  • FIG. 8 Partial longitudinal sectional view of a power module mounted on an air conditioner according to modification (F)
  • FIG. 9 is a partial longitudinal sectional view of a power module mounted on an air conditioner according to modification (F).
  • FIG. 10 is a partial longitudinal sectional view of a power module mounted on an air conditioner according to modification (F).
  • FIG. 11 Modification (G) Partial vertical cross-sectional view of a power module mounted on such an air conditioner.
  • FIG. 1 is an external perspective view of the air conditioner 1 according to the present embodiment.
  • the air conditioner 1 includes a wall-mounted indoor unit 2 that is attached to an indoor wall surface, and an outdoor unit 3 that is installed outdoors.
  • Indoor unit 2 stores indoor heat exchangers ⁇
  • outdoor unit 3 stores outdoor heat exchangers ⁇
  • each heat exchanger is connected by a refrigerant pipe 4 to connect the refrigerant circuit.
  • This refrigerant circuit mainly includes an indoor heat exchanger 20, an accumulator 31, a compressor 32, a four-way switching valve 33, an outdoor heat exchanger 30, and an electric expansion valve.
  • the indoor heat exchange provided in the indoor unit 2 exchanges heat with the air in contact therewith. Further, the indoor unit 2 is provided with a cross flow fan 21 for sucking indoor air and passing the air through the indoor heat exchanger 20 to discharge the air into the room.
  • the cross flow fan 21 is formed in a cylindrical shape, and is provided with blades on the circumferential surface in the direction of the rotation axis, and generates an air flow in a direction intersecting with the rotation axis.
  • the cross flow fan 21 is rotationally driven by an indoor fan motor 22 provided in the indoor unit 2.
  • the outdoor unit 3 is connected to the compressor 32, the four-way switching valve 33 connected to the discharge side of the compressor 32, the accumulator 31 connected to the suction side of the compressor 32, and the four-way switching valve 33.
  • An outdoor heat exchanger 30 and an electric expansion valve 34 connected to the outdoor heat exchanger 30 are provided.
  • the electric expansion valve 34 is connected to the pipe 41 via the filter 35 and the liquid closing valve 36, and is connected to one end of the indoor heat exchanger 20 via the pipe 41.
  • the four-way selector valve 33 is connected to a pipe 42 via a gas shut-off valve 37 and is connected to the other end of the indoor heat exchange via this pipe 42.
  • the pipes 41 and 42 correspond to the refrigerant pipe 4 in FIG.
  • the outdoor unit 3 is provided with a propeller fan 38 for discharging the air after heat exchange in the outdoor heat exchanger 30 to the outside.
  • the propeller fan 38 is rotationally driven by a fan motor 39.
  • the refrigerant circuit is also connected to a cooling jacket 58 (see FIG. 3) provided in a power module 5 (described later) that performs power conversion, such as a compressor 32, a fan motor 39, and an electric expansion valve 34.
  • FIG. 3 (a) shows a longitudinal sectional view of the power module 5 according to the present embodiment.
  • the power module 5 according to the present embodiment mainly includes a casing 50, a first electronic component 53a, a second electronic component 53b, a mounting board 51, and a cooling jacket 58.
  • the casing 50 is erected from the side edge of the mounting board 51 on the mounting surface side of the electronic components 53a and 53b.
  • the side wall 50a and the lid 50b provided so as to cover the upper part of the electronic components 53a and 53b.
  • the first electronic component 53a is a so-called power semiconductor (including a bare chip) that generates a large amount of heat when energized.
  • the power semiconductor includes, for example, a diode and a power transistor.
  • the second electronic component 53b is a so-called non-power semiconductor or other electronic component (surface mounted component such as a capacitor or a resistor).
  • the non-power semiconductor means, for example, a microcomputer, a ROM, or the like (including a bare chip).
  • the mounting board 51 mainly includes an area where the first electronic component 53a is mounted (hereinafter referred to as a first mounting area) and an area where the second electronic component 53b is mounted (hereinafter referred to as a second mounting area).
  • the first mounting area is formed from 5 la of a 1-ply sheet-like glass fiber reinforced epoxy resin (hereinafter referred to as a glass epoxy sheet), and its thickness is about 100 ⁇ m.
  • the thickness, the amount of heat generated from the first electronic component 53a 40W, the heating area as a 4 cm 2 is a value calculated in consideration of the fact that keeping the first electronic component 53a below 100 ° C (Fig. 4).
  • the first electronic component 53a is mounted on a one-ply glass epoxy sheet 51a via a heat spreader 54 and a conductor, and further sealed with a sealant such as silicone gel 56.
  • the second mounting area is formed of a laminated resin substrate cover in which conductor patterns 52 and glass epoxy sheets 51a are alternately laminated.
  • the second electronic component 53b is mounted on the laminated resin substrate, and the second electronic component 53b is connected to the conductor pattern 52 disposed between the glass epoxy sheets 51a and is three-dimensional.
  • a control circuit having a complicated shape is formed.
  • the first electronic component 53a is also connected to the conductor pattern 52 through the wire 55, and a part of the power supply circuit is formed.
  • the lead 57 is used for connection to an external circuit.
  • the thickness of the first mounting area of the mounting board 51 is increased by (i) preparing a uniform plate-shaped laminated mounting board and then machining it. There is a thinning method (the circuit pattern needs to be formed in consideration of machining), and there is! (Ii) A glass fiber fabric is formed one by one so that the mounting board has a pre-designed shape. After impregnating the n-stage glass fiber fabric with the epoxy resin stock solution, heat them 'compress, etc.
  • circuit pattern holding glass epoxy sheet this glass fiber reinforced epoxy resin is referred to as a circuit pattern holding glass epoxy sheet
  • n + 1 stage impregnated with an epoxy resin stock solution A method may be considered in which the glass fiber fabric of the eye is sandwiched between circuit pattern holding glass epoxy sheets and heated and compressed again.
  • the cooling jacket 58 is a rectangular parallelepiped metal box, and is provided on the opposite side of the mounting surface of the electronic components 53a and 53b of the mounting substrate 51 so as to contact the surface opposite to the mounting surface of the mounting substrate 51. It is. Inside the cooling jacket 58, a plurality of hairpin-shaped passages (hereinafter referred to as refrigerant passages) 59 are formed in a portion corresponding to the first mounting area (see FIG. 3 (b)). ). As shown in FIG. 2, the refrigerant passage 59 is connected to the refrigerant circuit so as to sandwich the electric expansion valve 34.
  • liquid refrigerant also flows into the refrigerant passage 59, and heat generated mainly from the first electronic component 53a is discharged from the power module 5 by the liquid refrigerant. .
  • the temperature of the liquid refrigerant flowing into the refrigerant passage is about 30 to 60 ° C.
  • step S1 the first electronic component 53a and the heat spreader 54 are bonded.
  • step S2 the bonded product of the first electronic component 53a and the heat spreader 54 obtained in step S1 is bonded to the first mounting area of the mounting substrate 51. At this time, the bonding product is bonded so that the heat spreader 54 is in close contact with the mounting substrate 51.
  • step S3 the first electronic component 53a and the conductor pattern 52 of the mounting substrate 51 are bonded via a wire.
  • step S4 the second electronic component 53b is heated to a predetermined temperature in a state where the second electronic component 53b is placed at a prescribed position of the conductor pattern 52, and the second electronic component 53b is soldered to the conductor pattern 52 by the reflow method.
  • step S5 the lead component 53c (included in the second electronic component 53b) is soldered to the conductor pattern 52 by the flow method.
  • both the first electronic component 53a and the second electronic component 53b are mounted on the same mounting substrate 51 made of glass fiber reinforced epoxy resin. For this reason, the power module 5 can be manufactured at a lower cost than the conventional power module in which the mounting board for the first electronic component 53a and the mounting board for the second electronic component 53b are separately manufactured. it can.
  • the first electronic component 53a in which the thickness of the first mounting area of the mounting substrate 51 is sufficiently thin is effectively cooled by the refrigerant of approximately 50 ° C. Therefore, the power module 5 can be manufactured at a lower cost than a conventional power module that employs an aluminum substrate, a ceramic substrate, or the like for mounting the first electronic component 53a. Further, in this power module 5, since the mounting substrate 51 is made of glass fiber reinforced epoxy resin, the workability is superior to the conventional power module as described above. Further, in this power module 5, since the mounting substrate 51 is made of a glass fiber reinforced epoxy resin, the mounting reliability of the first electronic component 53a is superior to the conventional power module as described above.
  • the shortest distance between the first electronic component 53a and the refrigerant passage 59 is shorter than the shortest distance between the second electronic component 53b and the refrigerant passage 59. For this reason, in this power module 5, heat that generates more power semiconductor power than heat generated from the second electronic component 53 b can be efficiently discharged out of the system of the power module 5.
  • the cooling jacket 58 is provided on the opposite side of the mounting surface of the electronic components 53a and 53b of the mounting substrate 51 so as to contact the surface opposite to the mounting surface of the mounting substrate 51.
  • a refrigerant passage 59 was formed inside the cooling jacket 58.
  • the coolant passage 59A is located inside the mounting board 51A. Even if it is formed, it does not work. In this way, the distance between the first electronic component 53a and the refrigerant passage 59A can be further shortened.
  • the thickness of the first mounting area of the mounting board 51 is thinner than the thickness of the second mounting area, but the thickness of the first mounting area is the thickness of the second mounting area. May be the same.
  • the heat generated from the first electronic component 53a may not be sufficiently exhausted from the power module 5, so as shown in FIG.
  • a heat spreader may be inserted between the first electronic component 53a and the mounting substrate 51A.
  • the temperature of the refrigerant flowing into the refrigerant passage 59 is almost determined by the flow of the refrigeration cycle.
  • a temperature sensor is provided around the first electronic component 53a, and an expansion valve is provided near the entrance and exit of the refrigerant passage 59 to control the evaporation temperature of the refrigerant so that the temperature around the first electronic component 53a is kept constant. May be. In this way, the first electronic component can be protected more reliably.
  • the outlet of the coolant passage 59 may be connected to the suction pipe of the compressor 32.
  • the thickness of the first mounting area of the mounting board 51 was about 100 m. Depending on the temperature flowing into the refrigerant passage 59, the thickness may be larger. No (see Figure 4). On the other hand, the thickness of the first mounting area of the mounting board 51 can be reduced to 100 / zm or less, but in this case, it is necessary to pay attention to the dielectric breakdown strength.
  • epoxy resin is used as a raw material for the mounting substrate 51.
  • epoxy resin containing an insulating ceramic particle or the like may be used. In this way, the thermal conductivity of the mounting board can be improved. In addition, heat generated from the first electronic component 53a can be exhausted out of the power module 5 more efficiently.
  • a force in which a laminated resin substrate is adopted as the mounting substrate 51 instead, only on both sides as shown in FIG. 8, FIG. 9, and FIG. Double-sided resin substrates 51C, 51D, 51E provided with a conductor pattern may be adopted.
  • a thermal via 54C is provided in the resin part of the double-sided resin boards 51C, 51D, 51E in order to diffuse the heat generated from the first electronic component 53a in the direction of the refrigerant passage 59. It is preferable to disperse the heat conductive filler 54D in the resin part or to insert the heat conductive sheet 54E in the resin part.
  • an electrical insulating layer 57C, 57D, 57E is provided between the double-sided resin boards 51C, 51D, 51E and the cooling jacket 58 in order to ensure insulation of the double-sided resin boards 51C, 51D, 51E. Is preferred. However, when the heat conductive filler 54D and the heat conductive sheet 54E are made of ceramic or the like and have electrical insulation, the electrical insulation layers 57C, 57D, and 57E can be omitted.
  • the cooling jacket 58 having a flat contact surface with the mounting substrate 51 is adopted, but instead of this, cooling with a step as shown in FIG. Jacket 58F may be employed.
  • the cooling jacket 58F comes into contact only with the surface opposite to the mounting surface such as the first electronic component 53a, and both surfaces can be mounted on the other portions. Therefore, in such a power module 5F, unnecessary cooling (or heating) can be prevented, and at the same time, further compactness can be achieved. In this way, it is possible to cope with the case where the lead wire comes out on the surface opposite to the mounting surface.
  • an electrical insulating layer 57F may be provided between the cooling jacket 58F and the mounting substrate 51F.
  • step Sl the step Force that each process is performed in the order of S2 ⁇ step S3 ⁇ step S4 ⁇ step S5.
  • This order may be changed.
  • each process may be performed in the order of step Sl ⁇ step S4 ⁇ step S2 ⁇ step S3 ⁇ step S5! /, And in the order of step Sl ⁇ step S2 ⁇ step S4 ⁇ step S3 ⁇ step S5 Each process may be performed! /, And each process may be performed in the order of step S5 ⁇ step Sl ⁇ step S2 ⁇ step S3 ⁇ step S4.
  • epoxy resin was used as a raw material for the mounting substrate 51, but other resins (for example, phenol resin, bismaleimide resin, polyimide resin, etc.) May be adopted.
  • the power module according to the present invention can be manufactured at a lower manufacturing cost than the conventional power module, it has the characteristics described above and contributes to the low cost of the power module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明の課題は、製造コストを低く抑えることができるパワーモジュールを提供することにある。パワーモジュール(5,5A,5B,5C,5D,5E,5F)は、パワー半導体(53a)、非パワー半導体(53b)、1枚の樹脂基板(51,51A,51B,51C,51D,51E,51F)、および冷却手段(59,59A)を備える。パワー半導体および非パワー半導体は、電力変換を行うための電源回路を構成する。樹脂基板には、パワー半導体と非パワー半導体との両者が実装される。冷却手段は、パワー半導体を冷却させるために設けられる。

Description

明 細 書
パワーモジュールとその製造方法および空気調和機
技術分野
[0001] 本発明は、電力変換を行うパワーモジュールとその製造方法に関する。また、本発 明は、パワーモジュールを搭載する空気調和機にも関する。
背景技術
[0002] 一般に、パワーモジュールは、主に、パワー半導体等の比較的発熱の大きなチップ を実装したパワー半導体実装基板と、マイクロコンピュータ等の比較的発熱の小さな I Cチップを実装した非パワー半導体実装基板と、主にパワー半導体を冷却するため の冷却部 (例えば、放熱フィン等)とから構成されている(例えば、特許文献 1参照)。 特許文献 1:特開 2004 - 111619号公報
発明の開示
発明が解決しょうとする課題
[0003] ところで、通常、パワー半導体実装基板としては、パワー半導体から生じる多量の 熱を系外に放出する必要があるため、高い熱伝導性を有するアルミニウム製のもの やセラミック製のもの等が採用される。一方、非パワー半導体実装基板としては、パヮ 一半導体のように発熱量の大き 、半導体を実装しな 、ので、ガラス繊維強化ェポキ シ榭脂のような榭脂製のもの等が採用される。通常、アルミニウム製やセラミック製な どの実装基板は榭脂製の実装基板よりも高価であり、これがパワーモジュールのコス ト増を招いている大きな原因となっている。また、このような二種類の実装基板にパヮ 一半導体と非パワー半導体とを分けて実装することはパワーモジュール製造時の人 件費や設備費の増加を招 、て 、る。
本発明の課題は、製造コストを低く抑えることができるパワーモジュールを提供する ことにある。
課題を解決するための手段
[0004] 第 1発明に係るパワーモジュールは、パワー半導体、非パワー半導体、 1枚の榭脂 基板、および冷却手段を備える。なお、ここにいう「パワー半導体」とは、例えば、ダイ オードおよびパワートランジスタ等である。また、ここにいう「非パワー半導体」とは、例 えば、マイコンや ROM (Read Only Memory)等である。また、ここにいう「榭脂基板」と は、例えば、榭脂のみで製造された基板、繊維強化プラスチックで製造された基板、 その他粉体等が分散された榭脂から製造された基板などであって少なくとも片面ある いは内部に回路パターンが形成されている基板である。ちなみに、このような榭脂基 板の中でも、両面に回路パターンが形成されている両面榭脂基板や、板厚方向に複 数の回路が絶縁層 (榭脂層)と交互に積層されている積層榭脂基板などが特に好ま しい。パワー半導体および非パワー半導体は、電力変換を行うための電源回路を構 成する。榭脂基板には、パワー半導体と非パワー半導体との両者が実装される。冷 却手段は、パワー半導体を冷却させるために設けられる。
パワー半導体力 生じる熱を放熱フィンにより排出するタイプのパワーモジュールで は、通常、気温あるいはそれよりも数十 °C高い温度の風が放熱フィンに供給されるこ とによりパワー半導体から生じる熱がパワーモジュールの系外に排出されている。こ のような放熱方法を採用する場合、パワーモジュールでは、十分な放熱性を確保す るため、パワー半導体が実装される基板としてアルミニウム基板やセラミック基板など の高熱伝導性を有する基板が必要とされて ヽる。
しかし、本発明に係るパワーモジュールの冷却手段において例えば通常よりも低温 の冷却媒体 (気体であっても液体であってもよ!、)等を利用すれば、パワー半導体の 実装基板として低熱伝導性の榭脂基板を採用してもパワー半導体から生じる熱を十 分にパワーモジュール力 排出することができる。もちろん、このときの冷却媒体の温 度は、パワー半導体力 生じる熱の量ゃ榭脂基板の厚みによって適宜変更される必 要はある。このような前提において、このパワーモジュールでは、パワー半導体と非パ ヮー半導体とを 1枚の榭脂基板に実装することが可能となる。したがって、このパワー モジュールでは、パワー半導体を実装する基板として高コストなアルミニウム基板や セラミック基板などを採用する必要がない。この結果、このパワーモジュールの製造 において、基材の原料コスト、人件費、および設備費などを削減することができる。こ のため、このパワーモジュールは、低い製造コストで製造されることができる。
第 2発明に係るパワーモジュールは、第 1発明に係るパワーモジュールであって、 冷却手段は、冷却流体通路である。この冷却流体通路には、冷却流体が通過させら れる。なお、ここにいう「冷却流体」とは、パワー半導体を冷却させるための流体であ つて、例えば、空気その他ガス類や水その他液体類 (例えば冷凍装置の冷媒回路に 封入される冷媒など)である。そして、この冷却流体通路は、榭脂基板のパワー半導 体および非パワー半導体の実装面の反対側に配置される。なお、ここにいう「実装面 」には、段差があっても力まわない。
このパワーモジュールでは、パワー半導体から生じる熱が、冷却流体通路に流れる 冷却流体によりパワーモジュールの系外に排出される。したがって、このパワーモジ ユールでは、冷却流体が適切な温度に維持されれば、パワー半導体の実装基板とし て低熱伝導性の榭脂基板が採用されてもパワー半導体から生じる熱を十分にパワー モジュール力も排出することができる。また、このパワーモジュールが空気調和機に 搭載される場合には、冷却流体として冷媒回路を流れる冷媒を利用することができ、 経済的である。
[0006] 第 3発明に係るパワーモジュールは、第 2発明に係るパワーモジュールであって、 冷却流体通路は、榭脂基板の内部に設けられている。
このパワーモジュールでは、冷却流体通路が、榭脂基板の内部に設けられている。 このため、このパワーモジュールでは、冷却流体通路とパワー半導体との距離を短く することができる。したがって、このパワーモジュールでは、さらに効率よくパワー半導 体から生じる熱をパワーモジュールの系外に排出することができる。
[0007] 第 4発明に係るパワーモジュールは、第 2発明または第 3発明に係るパワーモジュ ールであって、温度検知手段および温度制御手段をさらに備える。温度検知手段は 、パワー半導体またはその近傍の温度を検知する。温度制御手段は、温度検知手段 において検知される温度が所定の温度になるように冷却流体の温度を制御する。 このパワーモジュールでは、温度検知手段が、パワー半導体またはその近傍の温 度を検知する。そして、温度制御手段が、温度検知手段において検知される温度が 所定の温度になるように冷却流体の温度を制御する。このため、このパワーモジユー ルでは、冷却流体の温度を適切に維持することができる。
[0008] 第 5発明に係るパワーモジュールは、第 2発明力 第 4発明のいずれかに係るパヮ 一モジュールであって、パワー半導体と冷却流体通路との間の最短距離は、非パヮ 一半導体と冷却流体通路との間の最短距離よりも短い。
このパワーモジュールでは、パワー半導体と冷却流体通路との間の最短距離が、 非パワー半導体と冷却流体通路との間の最短距離よりも短い。このため、このパワー モジュールでは、非パワー半導体から生じる熱よりもパワー半導体から生じる熱を効 率的にパワーモジュールの系外に排出することができる。
[0009] 第 6発明に係るパワーモジュールは、第 1発明力 第 5発明のいずれかに係るパヮ 一モジュールであって、榭脂基板のうちパワー半導体を実装する部分の厚みは、非 パワー半導体を実装する部分の厚みよりも薄い。
このパワーモジュールでは、榭脂基板のうちパワー半導体を実装する部分の厚み
1S 非パワー半導体を実装する部分の厚みよりも薄い。このため、このパワーモジュ ールでは、非パワー半導体に比べパワー半導体の方が冷却流体通路に近くなる。し たがって、このパワーモジュールでは、非パワー半導体から生じる熱よりもパワー半 導体から生じる熱を効率的にパワーモジュールの系外に排出することができる。また 、非パワー半導体は、パワー半導体と段違いで配置されることとなるため、パワー半 導体力も生じる熱の影響を受けにくくなる。
[0010] 第 7発明に係るパワーモジュールは、第 5発明または第 6発明に係るパワーモジュ ールであって、榭脂基板は、板厚方向に積層される複数の積層単位体から構成され ている。また、パワー半導体を実装する部分の厚みおよび非パワー半導体を実装す る部分の厚みは、積層単位体それぞれの形状により調節される。
このパワーモジュールでは、榭脂基板が、板厚方向に積層される複数の積層単位 体から構成されている。また、パワー半導体を実装する部分の厚みおよび非パワー 半導体を実装する部分の厚みが、積層単位体それぞれの形状により調節される。こ のため、このパワーモジュールでは、複雑な機械加工を行うことなく複雑な形状の榭 脂基板を製造することができる。
[0011] 第 8発明に係るパワーモジュールは、第 1発明から第 7発明のいずれかに係るパヮ 一モジュールであって、熱拡散部をさらに備える。熱拡散部は、少なくともパワー半導 体から生じる熱を拡散させるためのものである。なお、ここにいう「熱拡散部」とは、例 えば、ヒートスプレッダや、サーマルビア、熱伝導性フイラ一、熱伝導性シート等であ る。
このパワーモジュールでは、熱拡散部がさらに備えられる。このため、パワーモジュ ールでは、さらに効率よくパワー半導体から生じる熱をパワーモジュールの系外に排 出することができる。
[0012] 第 9発明に係るパワーモジュールは、第 8発明に係るパワーモジュールであって、 電気絶縁層をさらに備える。電気絶縁層は、熱拡散部と冷却流体通路との間に配置 される。なお、ここにいう「電気絶縁層」は、電気絶縁シートであってもよいし接着剤な どであってもよ!/、し多層榭脂基板の榭脂層の一部であってもよ 、。
このパワーモジュールでは、電気絶縁層が、熱拡散部と冷却流体通路との間に配 置される。このため、このパワーモジュールでは、放電を有効に防止することができる
[0013] 第 10発明に係るパワーモジュールは、第 8発明または第 9発明に係るパワーモジュ ールであって、熱拡散部には、ヒートスプレッダが含まれる。ヒートスプレッダは、パヮ 一半導体と榭脂基板の実装面との間に配置される。
このパワーモジュールでは、ヒートスプレッダ力 パワー半導体と榭脂基板の実装面 との間に配置される。このため、このパワーモジュールでは、パワー半導体から生じる 熱を効率よく処理することができる。
[0014] 第 11発明に係るパワーモジュールは、第 8発明力も第 10発明のいずれかに係るパ ヮーモジュールであって、熱拡散部には、サーマルビアが含まれる。サーマルビアは
、榭脂基板の板面に交差する方向に沿って榭脂基板の内部に設けられる。また、こ のサーマルビアは、樹脂基板の板面に直交する方向に設けられるのが好ましい。 このパワーモジュールでは、サーマルビアが、榭脂基板の板面に交差する方向に 沿って榭脂基板の内部に設けられる。このため、このパワーモジュールでは、榭脂基 板内部の熱伝導性を高めることができる。したがって、このパワーモジュールでは、さ らに効率よくパワー半導体力も生じる熱をパワーモジュールの系外に排出することが できる。
[0015] 第 12発明に係るパワーモジュールは、第 8発明から第 11発明のいずれかに係るパ ヮーモジュールであって、熱拡散部には、熱伝導性フイラ一が含まれる。熱伝導性フ イラ一は、榭脂基板の榭脂部に分散配合される。なお、ここにいう「熱伝導性フイラ一 」とは、例えば、絶縁性を有するセラミック粉体などである。
このパワーモジュールでは、熱伝導性フイラ一が、榭脂基板の榭脂部に分散配合さ れる。このため、このパワーモジュールでは、榭脂基板内部の熱伝導性を高めること ができる。したがって、このパワーモジュールでは、さらに効率よくパワー半導体から 生じる熱をパワーモジュールの系外に排出することができる。
[0016] 第 13発明に係るパワーモジュールは、第 4発明から第 8発明のいずれかに係るパ ヮーモジュールであって、熱拡散部には、熱伝導性シートが含まれる。熱伝導性シー トは、榭脂基板の榭脂部に埋設される。なお、ここにいう「熱伝導性シート」とは、例え ば、絶縁性を有するセラミックプレートなどである。
このパワーモジュールでは、熱伝導性シートが、榭脂基板の榭脂部に埋設される。 このため、このパワーモジュールでは、榭脂基板内部の熱伝導性を高めることができ る。したがって、このパワーモジュールでは、さらに効率よくパワー半導体力も生じる 熱をパワーモジュールの系外に排出することができる。
[0017] 第 14発明に係るパワーモジュールは、パワー半導体、非パワー半導体、 1枚の実 装基板、および冷却手段を備える。なお、ここにいう「パワー半導体」とは、例えば、ダ ィオードおよびパワートランジスタ等である。また、ここにいう「非パワー半導体」とは、 例えば、マイコンや ROM (Read Only Memory)等である。また、ここにいう「榭脂基板 」とは、例えば、榭脂のみで製造された基板、繊維強化プラスチックで製造された基 板、その他粉体等が分散された榭脂から製造された基板などであって少なくとも片面 あるいは内部に回路パターンが形成されている基板である。ちなみに、このような榭 脂基板の中でも、両面に回路パターンが形成されている両面榭脂基板や、板厚方向 に複数の回路が絶縁層 (榭脂層)と交互に積層されている積層榭脂基板などが特に 好ましい。パワー半導体および非パワー半導体は、電力変換を行うための電源回路 を構成する。実装基板には、パワー半導体と非パワー半導体との両者が実装される。 なお、この実装基板の板厚方向の熱伝導率は、 lOWZ (m'K)以下である。冷却手 段は、パワー半導体を冷却させるために設けられる。 パワー半導体力 生じる熱を放熱フィンにより排出するタイプのパワーモジュールで は、通常、気温あるいはそれよりも数十 °C高い温度の風が放熱フィンに供給されるこ とによりパワー半導体から生じる熱がパワーモジュールの系外に排出されている。こ のような放熱方法を採用する場合、パワーモジュールでは、十分な放熱性を確保す るため、パワー半導体が実装される基板としてアルミニウム基板やセラミック基板など の高熱伝導性を有する基板が必要とされて ヽる。
しかし、本発明に係るパワーモジュールの冷却手段において例えば通常よりも低温 の冷却媒体 (気体であっても液体であってもよ!、)等を利用すれば、パワー半導体の 実装基板として熱伝導率が 10WZ (m-K)以下の低熱伝導性の実装基板を採用し てもパワー半導体力 生じる熱を十分にパワーモジュール力 排出することができる 。もちろん、このときの冷却媒体の温度は、パワー半導体から生じる熱の量や実装基 板の厚みによって変更される必要はある。この前提において、このパワーモジュール では、パワー半導体と非パワー半導体とを 1枚の低熱伝導率の実装基板に実装する ことが可能となる。通常、熱伝導率が lOWZ (m'K)以下の低熱伝導性の実装基板 は、榭脂ゃ繊維強化プラスチック等カゝら製造されており、アルミニウム基板やセラミツ ク基板などに比べて安価なものが豊富に存在する。したがって、このパワーモジユー ルの製造において、基材の原料コスト、人件費、および設備費などを削減することが できる。このため、このパワーモジュールは、低い製造コストで製造されることができる 第 15発明に係る空気調和機は、冷媒回路およびパワーモジュールを備える。パヮ 一モジュールは、パワー半導体、非パワー半導体、 1枚の榭脂基板、および冷媒通 路を有する。パワー半導体および非パワー半導体は、電力変換を行うための電源回 路を構成する。榭脂基板には、パワー半導体と非パワー半導体との両者が実装され る。冷媒通路は、冷媒回路に流れる冷媒を通過させるための通路であって、榭脂基 板のパワー半導体および非パワー半導体の実装面の反対側に配置される。
通常、空気調和機にはパワー半導体力 生じる熱を放熱フィンにより排出するタイ プのパワーモジュールが採用されており、そのようなパワーモジュールでは、一般に、 気温あるいはそれよりも数十 °C高!、温度の風が放熱フィンに供給されることによりパ ヮー半導体力 生じる熱がパワーモジュールの系外に排出されて 、る。このような放 熱方法を採用する場合、パワーモジュールでは、十分な放熱性を確保するため、パ ヮー半導体が実装される基板としてアルミニウム基板やセラミック基板などの高熱伝 導性を有する基板が必要とされて ヽる。
しかし、空気調和機の冷媒回路では冷媒温度が十分に低温となる箇所があり、この ような冷媒をパワーモジュールの冷媒通路に流すことができれば、パワー半導体の 実装基板として低熱伝導性の榭脂基板を採用してもパワー半導体から生じる熱をパ ヮーモジュール力も十分に排出することができる。もちろん、このときの冷却媒体の温 度は、パワー半導体から生じる熱の量ゃ榭脂基板の厚みに依存する。この前提にお いて、この空気調和機のパワーモジュールでは、パワー半導体と非パワー半導体とを
1枚の榭脂基板に実装することが可能となる。したがって、この空気調和機のパワー モジュールでは、パワー半導体を実装する基板として高コストなアルミニウム基板や セラミック基板などを採用する必要がない。この結果、このパワーモジュールの製造 において、基材の原料コスト、人件費、および設備費などを削減することができる。こ のため、このパワーモジュールは、低い製造コストで製造されることができる。引いて は、空気調和機の製造コストも低減することができる。
第 16発明に係るパワーモジュールの製造方法は、電力変換を行うための電源回路 を構成するパワー半導体および非パワー半導体と、パワー半導体と非パワー半導体 との両者を実装する 1枚の榭脂基板と、パワー半導体を冷却させるための冷却手段と を有するパワーモジュールの製造方法であって、パワー半導体固定工程、ワイヤ接 続工程、非パワー半導体接続工程、および冷却手段固定工程を備える。パワー半導 体固定工程では、パワー半導体が榭脂基板の規定の位置に固定される。ワイヤ接続 工程では、パワー半導体と榭脂基板に設けられる回路とがワイヤ接続される。非パヮ 一半導体接続工程では、非パワー半導体と回路とが接続される。なお、この非パワー 半導体接続工程ではリフロー方式が採用されるのが好ましい。冷却手段固定工程で は、榭脂基板が冷却手段に固定される。なお、パワー半導体固定工程、ワイヤ接続 工程、非パワー半導体接続工程、および冷却手段固定工程は適宜入れ換えられて ちょい。 このパワーモジュールの製造方法では、パワー半導体固定工程で、パワー半導体 が榭脂基板の規定の位置に固定される。また、ワイヤ接続工程で、パワー半導体と 榭脂基板に設けられる回路とがワイヤ接続される。また、非パワー半導体接続工程で 、非パワー半導体と回路とが接続される。また、冷却手段固定工程で、榭脂基板が冷 却手段に固定される。このため、このパワーモジュールの製造方法では、パワー半導 体と非パワー半導体とが 1枚の榭脂基板に実装される。したがって、このパワーモジ ユールの製造方法を利用すれば、基材の原料コスト、人件費、および設備費などを 肖 IJ減することがでさる。
発明の効果
[0020] 第 1発明に係るパワーモジュールは、低 、製造コストで製造されることができる。
第 2発明に係るパワーモジュールでは、冷却流体を適切な温度に維持することがで きれば、パワー半導体の実装基板として低熱伝導性の榭脂基板を採用してもパワー 半導体から生じる熱を十分にパワーモジュール力も排出することができる。
第 3発明に係るパワーモジュールでは、冷却流体通路とパワー半導体との距離を 短くすることができる。したがって、このパワーモジュールでは、さらに効率よくパワー 半導体から生じる熱をパワーモジュールの系外に排出することができる。
第 4発明に係るパワーモジュールでは、冷却流体の温度を適切に維持することがで きる。
第 5発明に係るパワーモジュールでは、非パワー半導体から生じる熱よりもパワー 半導体から生じる熱を効率的にパワーモジュールの系外に排出することができる。
[0021] 第 6発明に係るパワーモジュールでは、非パワー半導体から生じる熱よりもパワー 半導体から生じる熱を効率的にパワーモジュールの系外に排出することができる。ま た、非パワー半導体は、パワー半導体と段違いで配置されることとなるため、パワー 半導体力も生じる熱の影響を受けにくくなる。
第 7発明に係るパワーモジュールでは、複雑な機械加工を行うことなく複雑な形状 の榭脂基板を製造することができる。
第 8発明に係るパワーモジュールでは、さらに効率よくパワー半導体から生じる熱を パワーモジュールの系外に排出することができる。 第 9発明に係るパワーモジュールでは、放電を有効に防止することができる。
第 10発明に係るパワーモジュールでは、パワー半導体から生じる熱を効率よく処理 することができる。
[0022] 第 11発明に係るパワーモジュールでは、榭脂基板内部の熱伝導性を高めることが できる。したがって、このパワーモジュールでは、さらに効率よくパワー半導体力も生 じる熱をパワーモジュールの系外に排出することができる。
第 12発明に係るパワーモジュールでは、榭脂基板内部の熱伝導性を高めることが できる。したがって、このパワーモジュールでは、さらに効率よくパワー半導体力も生 じる熱をパワーモジュールの系外に排出することができる。
第 13発明に係るパワーモジュールでは、榭脂基板内部の熱伝導性を高めることが できる。したがって、このパワーモジュールでは、さらに効率よくパワー半導体力も生 じる熱をパワーモジュールの系外に排出することができる。
第 14発明に係るパワーモジュールは、低い製造コストで製造されることができる。
[0023] 第 15発明に係る空気調和機は、低い製造コストで製造されることができる。
第 16発明に係るパワーモジュールの製造方法では、パワー半導体と非パワー半導 体とが 1枚の榭脂基板に実装される。したがって、このパワーモジュールの製造方法 を利用すれば、基材の原料コスト、人件費、および設備費などを削減することができ る。
図面の簡単な説明
[0024] [図 1]本実施の形態に係る空気調和機の外観斜視図。
[図 2]本実施の形態に係る空気調和機の冷媒回路図。
[図 3] (a)本実施の形態に係る空気調和機に搭載されるパワーモジュールの縦断面 図、(b)本実施の形態に係るパワーモジュールの冷却ジャケット部の上面透視図。
[図 4]本実施の形態に係る実装基板の厚みと放熱特性との関係を示す表。
[図 5]本実施の形態に係るパワーモジュールの製造工程を表すフローチャート。
[図 6]変形例 (A)に係る空気調和機に搭載されるパワーモジュールの部分縦断面図
[図 7]変形例 (B)に係る空気調和機に搭載されるパワーモジュールの部分縦断面図 [図 8]変形例 (F)に係る空気調和機に搭載されるパワーモジュールの部分縦断面図
[図 9]変形例 (F)に係る空気調和機に搭載されるパワーモジュールの部分縦断面図
[図 10]変形例 (F)に係る空気調和機に搭載されるパワーモジュールの部分縦断面図
[図 11]変形例 (G)〖こ係る空気調和機に搭載されるパワーモジュールの部分縦断面 図。
符号の説明
[0025] 1 空気調和機
5, 5A, 5B, 5C, 5D, 5E, 5F ノ ヮ一モジュール
51, 51A, 51B, 51C, 51D, 51E, 51F 実装基板 (榭脂基板)
53a 第 1電子部品 (パワー半導体)
53b 第 2電子部品 (非パワー半導体)
54, 54C ヒートスプレッダ (熱拡散部)
54B サーマルビア (熱拡散部)
54D 熱伝導性フイラ一 (熱拡散部)
54E 熱伝導性シート (熱拡散部)
57C, 57D, 57E、 57F 電気絶縁層
59, 59A, 59F 冷媒通路 (冷却手段)
発明を実施するための最良の形態
[0026] <空気調和機の全体構成 >
図 1には、本実施の形態に係る空気調和機 1の外観斜視図を示す。
この空気調和機 1は、室内の壁面に取り付けられる壁掛け型の室内機 2と、室外に 設置される室外機 3とを備える。
室内機 2内には室内熱交^^が収納され、室外機 3内には室外熱交^^が収納さ れており、各熱交換器が冷媒配管 4により接続されることにより冷媒回路を構成して いる。
<空気調和機の冷媒回路の構成概略 >
空気調和機 1の冷媒回路の構成を図 2に示す。この冷媒回路は、主として室内熱 交換器 20、アキュムレータ 31、圧縮機 32、四路切換弁 33、室外熱交換器 30、およ び電動膨張弁 34で構成される。
[0027] 室内機 2に設けられている室内熱交 は、接触する空気との間で熱交換を行 う。また、室内機 2には、室内空気を吸い込んで室内熱交換器 20に通し熱交換が行 われた後の空気を室内に排出するためのクロスフローファン 21が設けられている。ク ロスフローファン 21は、円筒形状に構成され、周面には回転軸方向に羽根が設けら れているものであり、回転軸と交わる方向に空気流を生成する。このクロスフローファ ン 21は、室内機 2内に設けられる室内ファンモータ 22によって回転駆動される。 室外機 3には、圧縮機 32と、圧縮機 32の吐出側に接続される四路切換弁 33と、圧 縮機 32の吸入側に接続されるアキュムレータ 31と、四路切換弁 33に接続された室 外熱交 30と、室外熱交 30に接続された電動膨張弁 34とが設けられている 。電動膨張弁 34は、フィルタ 35および液閉鎖弁 36を介して配管 41に接続されてお り、この配管 41を介して室内熱交 20の一端と接続される。また、四路切換弁 33 は、ガス閉鎖弁 37を介して配管 42に接続されており、この配管 42を介して室内熱交 の他端と接続されている。この配管 41, 42は、図 1の冷媒配管 4に相当する 。また、室外機 3には、室外熱交換器 30での熱交換後の空気を外部に排出するため のプロペラファン 38が設けられている。このプロペラファン 38は、ファンモータ 39によ つて回転駆動される。なお、この冷媒回路には、圧縮機 32、ファンモータ 39、および 電動膨張弁 34等の電力変換を行うパワーモジュール 5 (後述)に設けられる冷却ジャ ケット 58 (図 3参照)も接続される。
[0028] <パワーモジュールの構成 >
図 3 (a)には、本実施の形態に係るパワーモジュール 5の縦断面図を示す。 本実施の形態に係るパワーモジュール 5は、主に、ケーシング 50、第 1電子部品 53 a、第 2電子部品 53b、実装基板 51、および冷却ジャケット 58から構成される。
ケーシング 50は、実装基板 51の側縁から電子部品 53a, 53bの実装面側に立設さ れる側壁 50aと、側壁 50aの上端力も電子部品 53a, 53bの上部を覆うように設けら れる蓋 50bとから構成される。
第 1電子部品 53aは、通電時に多量の熱を発生する、いわゆるパワー半導体である (ベアチップ等を含む)。本実施の形態において、パワー半導体とは、例えば、ダイォ ードおよびパワートランジスタ等を 、う。
第 2電子部品 53bは、いわゆる非パワー半導体やその他の電子部品(コンデンサや 抵抗などの表面実装部品)である。本実施の形態において、非パワー半導体とは、 例えば、マイコンや ROM等をいう(ベアチップ等を含む)。
実装基板 51は、主に、第 1電子部品 53aが実装されるエリア(以下、第 1実装エリア という)と、第 2電子部品 53bが実装されるエリア (以下、第 2実装エリアという)とから成 る。第 1実装エリアは、 1プライのシート状のガラス繊維強化エポキシ榭脂(以下、ガラ スエポキシシートという) 5 laから形成されており、その厚みは約 100 μ m前後である 。ちなみに、この厚みは、第 1電子部品 53aからの発熱量を 40W、発熱面積を 4cm2 として、第 1電子部品 53aを 100°C以下に保つことを考慮して算出された値である(図 4参照)。この第 1実装エリアでは、第 1電子部品 53aが、ヒートスプレッダ 54および導 電体を介して 1プライのガラスエポキシシート 51aに実装され、さらにシリコーンゲル 5 6などの封止剤により封止されている。一方、第 2実装エリアは、導電体パターン 52と ガラスエポキシシート 51aとが交互に積層された積層型榭脂基板カゝら形成されている 。この第 2実装エリアでは第 2電子部品 53bが積層型榭脂基板に実装されており、第 2電子部品 53bは、ガラスエポキシシート 51aの間に配置されている導電体パターン 52と接続され 3次元形状の複雑な制御回路を形成している。なお、この導電体バタ ーン 52には第 1電子部品 53aもワイヤー 55を介して接続されており、電源回路の一 部が形成されている。リード 57は、外部回路への接続に用いられる。ちなみに、本実 施の形態に係る実装基板 51を形成するためには、(i)均一な板状の積層型実装基 板を調製した後に機械加工によって実装基板 51の第 1実装エリアの厚みを薄くする 方法(回路パターンは機械加工を考慮して形成する必要がある)、ある!/、は (ii)実装 基板が予め設計した形状になるようにガラス繊維織物 1枚 1枚を形作っておき、 n段 目のガラス繊維織物にエポキシ榭脂原液を含浸した後にそれらを加熱 '圧縮などし、 さらにその後にその両面あるいは片面に回路パターンを形成し (以下、このガラス繊 維強化エポキシ榭脂を回路パターン保持ガラスエポキシシートという)、さらにその後 に、エポキシ榭脂原液を含浸した (n+ 1)段目のガラス繊維織物を回路パターン保 持ガラスエポキシシートに挟み込み再度加熱 ·圧縮する方法などが考えられる。なお
、後者の場合、設計形状に沿った金型が必要になる。
[0030] 冷却ジャケット 58は、直方体の金属の箱体であって、実装基板 51の電子部品 53a , 53bの実装面の反対側に、実装基板 51の実装面と反対の面に接するように設けら れている。そして、この冷却ジャケット 58の内部には、第 1実装エリアに対応する部分 に複数本のヘアピン形状の通路 (以下、冷媒通路と 、う) 59が形成されて 、る(図 3 ( b)参照)。この冷媒通路 59は、図 2に示されるように、電動膨張弁 34を挟み込むよう に冷媒回路に接続されている。このため、この冷媒通路 59には冷媒回路力も液冷媒 が流入するようになっており、主に第 1電子部品 53aから生じる熱がその液冷媒により パワーモジュール 5から排出されるようになっている。なお、通常、冷媒通路に流入す る液冷媒の温度は、 30〜60°C程度である。
[0031] <パワーモジュールの製造方法 >
ここでは、図 5を用いて本発明の実施の形態に係るパワーモジュール 5の製造方法 について説明する。
図 5において、ステップ S1では、第 1電子部品 53aとヒートスプレッダ 54とがボンデ イングされる。ステップ S2では、ステップ S1で得られた第 1電子部品 53aとヒートスプ レッダ 54とのボンディング品が実装基板 51の第 1実装エリアへボンディングされる。 なお、このとき、上記ボンディング品は、ヒートスプレッダ 54が実装基板 51に密接する ようにボンディングされる。ステップ S3では、第 1電子部品 53aと実装基板 51の導電 体パターン 52とがワイヤーを介してボンディングされる。ステップ S4では、第 2電子部 品 53bが導電体パターン 52の規定の位置に置かれた状態で所定温度に加熱され、 第 2電子部品 53bが導電体パターン 52にリフロー方式によりハンダ付けされる。なお 、この導電体パターン 52上には、あら力じめリフロー可能な材質 (クリームハンダ等) が印刷あるいは塗布されている。ステップ S5では、リード部品 53c (第 2電子部品 53b に含まれる)が導電体パターン 52にフロー方式によりハンダ付けされる。 [0032] <パワーモジュールの特徴 >
(1)
本実施の形態に係るパワーモジュール 5では、第 1電子部品 53aと第 2電子部品 53 bとの両方が、ガラス繊維強化エポキシ榭脂から成る同一の実装基板 51に実装され ている。このため、このパワーモジュール 5は、第 1電子部品 53a用の実装基板と第 2 電子部品 53b用の実装基板とを分けて製造していた従来のパワーモジュールよりも 低コストで製造されることができる。
(2)
本実施の形態に係るパワーモジュール 5では、実装基板 51の第 1実装エリアの厚 みが十分に薄ぐ第 1電子部品 53aが、ほぼ 50°Cの冷媒により有効に冷却される。こ のため、このパワーモジュール 5は、第 1電子部品 53a実装用としてアルミニウム基板 やセラミック基板などを採用していた従来のパワーモジュールよりも低コストで製造さ れることができる。また、このパワーモジュール 5では、実装基板 51がガラス繊維強化 エポキシ榭脂から成るので、上記のような従来のパワーモジュールよりも加工性に優 れる。また、このパワーモジュール 5では、実装基板 51がガラス繊維強化エポキシ榭 脂から成るので、上記のような従来のパワーモジュールよりも第 1電子部品 53aの実 装信頼性に優れる。
[0033] (3)
本実施の形態に係るパワーモジュール 5では、第 1電子部品 53aと冷媒通路 59との 最短距離が、第 2電子部品 53bと冷媒通路 59との最短距離よりも短い。このため、こ のパワーモジュール 5では、第 2電子部品 53bから生じる熱よりもパワー半導体力も生 じる熱を効率的にパワーモジュール 5の系外に排出することができる。
[0034] <変形例>
(A)
先の実施の形態に係るパワーモジュール 5では、冷却ジャケット 58が、実装基板 51 の電子部品 53a, 53bの実装面の反対側に、実装基板 51の実装面と反対の面に接 するように設けられており、さらにその冷却ジャケット 58の内部に冷媒通路 59が形成 されていた。しかし、図 6に示されるように、冷媒通路 59Aが実装基板 51 Aの内部に 形成されても力まわない。このようにすれば、第 1電子部品 53aと冷媒通路 59Aとの 距離をさらに短くすることができる。
(B)
先の実施の形態に係るパワーモジュール 5では、実装基板 51の第 1実装エリアの 厚みが第 2実装エリアの厚みよりも薄力つたが、第 1実装エリアの厚みが第 2実装エリ ァの厚みと同じであってもかまわない。この場合、図 4の表に示されるとおり、第 1電子 部品 53aから生じる熱がパワーモジュール 5から十分に排出されない懸念があるため 、図 7に示されるように、第 1電子部品 53aの周囲の実装基板 51B内部にサーマルビ ァ 54Bを設けるのが好ましい。さらには、冷却ジャケット 58と実装基板 51Bとの間に 接触伝熱層 57Bを設けてもカゝまわない。また、さらに、第 1電子部品 53aと実装基板 5 1Aとの間にヒートスプレッダを挿入してもかまわない。
(C)
先の実施の形態に係るパワーモジュール 5では、冷凍サイクルの流れにより冷媒通 路 59に流入する冷媒の温度がほぼ決まっていた。しかし、第 1電子部品 53aの周辺 に温度センサを設け、さらに冷媒通路 59の出入口付近に膨張弁を設けて、第 1電子 部品 53aの周辺温度を一定に保つように、冷媒の蒸発温度を制御してもよい。このよ うにすれば、より確実に第 1電子部品を保護することができる。なお、かかる場合、冷 媒通路 59の出口を圧縮機 32の吸入配管に接続するようにしてもよい。
(D)
先の実施の形態に係るパワーモジュール 5では、実装基板 51の第 1実装エリアの 厚みが 100 m前後とされていた力 冷媒通路 59に流入する温度によってはそれ以 上の厚みであってもかまわない(図 4参照)。また、これとは逆に実装基板 51の第 1実 装エリアの厚みを 100 /z m以下としても力まわないが、この場合は、絶縁破壊強度に 留意する必要がある。
(E)
先の実施の形態に係るパワーモジュール 5では、実装基板 51の原料としてェポキ シ榭脂が採用されたが、絶縁性を有するセラミック粒子などを配合したエポキシ榭脂 が採用されても力まわない。このようすれば、実装基板の熱伝導率を向上することが でき、さらに効率よく第 1電子部品 53aから生じる熱をパワーモジュール 5の系外に排 出することができる。
[0036] (F)
先の実施の形態に係るパワーモジュール 5では、実装基板 51として積層型榭脂基 板が採用された力 これに代えて、図 8、図 9、および図 10に示されるような、両面に のみ導電体パターンが設けられている両面榭脂基板 51C, 51D, 51Eが採用されて もよい。このようなパワーモジュール 5C, 5D, 5Eでは、第 1電子部品 53aから生じる 熱を冷媒通路 59方向へ拡散させるために両面榭脂基板 51C, 51D, 51Eの榭脂部 にサーマルビア 54Cを設けたり、榭脂部に熱伝導性フイラ一 54Dを分散させたり、榭 脂部に熱伝導性シート 54Eを挿入したりするのが好ましい。また、第 1電子部品 53a 力 生じる熱を実装面に沿って拡散させるヒートスプレッダ 54を設ければ更に効果的 である。また、かかる場合、両面榭脂基板 51C, 51D, 51Eの絶縁性を確保するため に両面榭脂基板 51C, 51D, 51Eと冷却ジャケット 58との間に電気絶縁層 57C, 57 D, 57Eを設けるのが好ましい。ただし、熱伝導性フイラ一 54Dや熱伝導性シート 54 Eがセラミック等であって電気絶縁性を有する場合、この電気絶縁層 57C, 57D, 57 Eは省くことができる。
[0037] (G)
先の実施の形態に係るパワーモジュール 5では、実装基板 51との接触面がフラット な形状の冷却ジャケット 58が採用されたが、これに代えて、図 11に示されるような段 差付きの冷却ジャケット 58Fが採用されてもよい。このようにすれば、第 1電子部品 53 aなどの実装面の反対側の面にのみ冷却ジャケット 58Fが接触し、他の部分では両 面実装を行うことが可能となる。したがって、このようなパワーモジュール 5Fでは、不 必要な冷却 (あるいは加熱)を防ぐことができると同時に更なるコンパクトィ匕が可能とな る。また、このようにすれば、実装面と反対側の面にリード線が出てしまうような場合で も対応可能となる。また、冷却ジャケット 58Fと実装基板 51Fとの間に電気絶縁層 57 Fを設けてもよい。
[0038] (H)
先の実施の形態に係るパワーモジュール 5の製造方法では、ステップ Sl→ステップ S2→ステップ S3→ステップ S4→ステップ S5の順序で各処理が行われた力 この順 序は入れ替えられてもよい。例えば、ステップ Sl→ステップ S4→ステップ S2→ テツ プ S3→ステップ S5の順序で各処理が行われてもよ!/、し、ステップ Sl→ステップ S2 →ステップ S4→ステップ S3→ステップ S5の順序で各処理が行われてもよ!/、し、ステ ップ S5→ステップ Sl→ステップ S2→ステップ S3→ステップ S4の順序で各処理が行 われてもよい。
(I)
先の実施の形態に係るパワーモジュール 5では、実装基板 51の原料としてェポキ シ榭脂が採用されたが、これ以外の榭脂 (例えば、フエノール榭脂、ビスマレイミド榭 脂、ポリイミド榭脂など)が採用されてもかまわない。
産業上の利用可能性
本発明に係るパワーモジュールは、従来のパワーモジュールよりも低い製造コスト で製造されることができると 、う特徴を有し、パワーモジュールの低コストィ匕に貢献す ることがでさる。

Claims

請求の範囲
[1] 電力変換を行うための電源回路を構成するパワー半導体 (53a)および非パワー半 導体 (53b)と、
前記パワー半導体と前記非パワー半導体との両者を実装する 1枚の榭脂基板 (51
, 51A, 51B, 51C, 51D, 51E, 51F)と、
前記パワー半導体を冷却させるための冷却手段(59, 59A)と、
を備える、パワーモジュール(5, 5A, 5B, 5C, 5D, 5E, 5F)。
[2] 前記冷却手段は、前記榭脂基板の前記パワー半導体および前記非パワー半導体 の実装面の反対側に配置される、前記パワー半導体を冷却させるための流体である 冷却流体を通過させるための冷却流体通路である、
請求項 1記載のパワーモジュール。
[3] 前記冷却流体通路は、前記榭脂基板の内部に設けられている、
請求項 2に記載のパワーモジュール。
[4] 前記パワー半導体またはその近傍の温度を検知する温度検知手段と、
前記温度検知手段において検知される温度が前記所定の温度になるように前記冷 却流体の温度を制御する温度制御手段と、
をさらに備える、請求項 2または 3に記載のパワーモジュール。
[5] 前記パワー半導体と前記冷却流体通路との間の最短距離は、前記非パワー半導 体と前記冷却流体通路との間の最短距離よりも短い、
請求項 2から 4のいずれかに記載のパワーモジュール。
[6] 前記榭脂基板のうち前記パワー半導体を実装する部分の厚みは、前記非パワー半 導体を実装する部分の厚みよりも薄い、
請求項 1から 5のいずれかに記載のパワーモジュール。
[7] 前記榭脂基板は、板厚方向に積層される複数の積層単位体から構成されており、 前記パワー半導体を実装する部分の厚みおよび前記非パワー半導体を実装する 部分の厚みは、前記積層単位体それぞれの形状により調節される、
請求項 5または 6に記載のパワーモジュール。
[8] 少なくとも前記パワー半導体から生じる熱を拡散させるための熱拡散部(54, 54B , 54C、 54D、 54E)をさらに備える、
請求項 1から 7のいずれかに記載のパワーモジュール。
[9] 前記熱拡散部と前記冷却流体通路との間に配置される電気絶縁層(57C, 57D,
57E、 57F)をさらに備える、
請求項 8に記載のパワーモジュール。
[10] 前記熱拡散部には、前記パワー半導体と前記榭脂基板の実装面との間に配置さ れるヒートスプレッダが含まれる、
請求項 8または 9に記載のパワーモジュール。
[11] 前記熱拡散部には、前記榭脂基板の板面に交差する方向に沿って前記榭脂基板 の内部に設けられるサーマルビアが含まれる、
請求項 8から 10のいずれかに記載のパワーモジュール。
[12] 前記熱拡散部には、前記榭脂基板の榭脂部に分散配合される熱伝導性フイラ一が 含まれる、
請求項 8から 11のいずれかに記載のパワーモジュール。
[13] 前記熱拡散部には、前記榭脂基板の榭脂部に埋設される熱伝導性シートが含まれ る、
請求項 4から 8のいずれかに記載のパワーモジュール。
[14] 電力変換を行うための電源回路を構成するパワー半導体 (53a)および非パワー半 導体 (53b)と、
前記パワー半導体と前記非パワー半導体との両者を実装する、板厚方向の熱伝導 率が 10WZ (m.K)以下である 1枚の実装基板(51, 51A, 51B, 51C, 51D, 51E , 51F)と、
前記パワー半導体を冷却させるための冷却手段(59, 59A)と、
を備える、パワーモジュール(5, 5A, 5B, 5C, 5D, 5E, 5F)。
[15] 冷媒回路と、
電力変換を行うための電源回路を構成するパワー半導体 (53a)および非パワー半 導体 (53b)と、前記パワー半導体と前記非パワー半導体との両者を実装する 1枚の 榭脂基板(51, 51A, 51B, 51C, 51D, 51E, 51F)と、前記榭脂基板の前記パヮ 一半導体および前記非パワー半導体の実装面の反対側に配置される、前記冷媒回 路に流れる冷媒を通過させるための冷媒通路(59, 59A)とを有するパワーモジユー ル(5, 5A, 5B, 5C, 5D, 5E, 5F)と、
を備える、空気調和機(1)。
電力変換を行うための電源回路を構成するパワー半導体 (53a)および非パワー半 導体 (53b)と、前記パワー半導体と前記非パワー半導体との両者を実装する 1枚の 榭脂基板(51, 51A, 51B, 51C, 51D, 51E, 51F)と、前記パワー半導体を冷却さ せるための冷却手段(59, 59A)とを有するパワーモジュール(5, 5A, 5B, 5C, 5D , 5E, 5F)の製造方法であって、
前記パワー半導体を前記榭脂基板の規定の位置に固定するパワー半導体固定ェ 程と、
前記パワー半導体と前記榭脂基板に設けられる回路とをワイヤ接続するワイヤ接続 工程と、
前記非パワー半導体と前記回路とを接続する非パワー半導体接続工程と、 前記榭脂基板を前記冷却手段に固定する冷却手段固定工程と、
を備える、パワーモジュールの製造方法。
PCT/JP2005/022061 2004-12-13 2005-12-01 パワーモジュールとその製造方法および空気調和機 WO2006064666A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2005315026A AU2005315026B8 (en) 2004-12-13 2005-12-01 Power module, method of producing same, and air conditioner
EP05811238A EP1830406A4 (en) 2004-12-13 2005-12-01 POWER MODULE, PROCESS FOR PRODUCING THE SAME, AND AIR CONDITIONER
US11/791,844 US7612448B2 (en) 2004-12-13 2005-12-01 Power module having a cooling device and semiconductor devices mounted on a resin substrate, method of producing same, and air conditioner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004359665 2004-12-13
JP2004-359665 2004-12-13
JP2005-109720 2005-04-06
JP2005109720A JP2006196853A (ja) 2004-12-13 2005-04-06 ヒートポンプ装置

Publications (1)

Publication Number Publication Date
WO2006064666A1 true WO2006064666A1 (ja) 2006-06-22

Family

ID=36587724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022061 WO2006064666A1 (ja) 2004-12-13 2005-12-01 パワーモジュールとその製造方法および空気調和機

Country Status (6)

Country Link
US (1) US7612448B2 (ja)
EP (1) EP1830406A4 (ja)
JP (1) JP2006196853A (ja)
KR (1) KR100869993B1 (ja)
AU (1) AU2005315026B8 (ja)
WO (1) WO2006064666A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051390A (ja) * 2006-08-24 2008-03-06 Fuiisa Kk 熱交換器
KR101022906B1 (ko) 2009-07-20 2011-03-16 삼성전기주식회사 전력반도체 모듈 및 그 제조방법
JP2019504496A (ja) * 2016-05-24 2019-02-14 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. パワーモジュール及びパワーモジュールの製造方法
JP2022009385A (ja) * 2017-09-27 2022-01-14 ジョンソン コントロールズ テクノロジー カンパニー 筐体を通気するためのシステム及び方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992302B2 (ja) * 2005-07-05 2012-08-08 富士電機株式会社 パワー半導体モジュール
JP4635963B2 (ja) * 2006-06-02 2011-02-23 株式会社デンソー 電気回路装置
JP2009085526A (ja) * 2007-10-01 2009-04-23 Daikin Ind Ltd 空気調和装置
US7738249B2 (en) * 2007-10-25 2010-06-15 Endicott Interconnect Technologies, Inc. Circuitized substrate with internal cooling structure and electrical assembly utilizing same
KR20090103600A (ko) * 2008-03-28 2009-10-01 페어차일드코리아반도체 주식회사 전력 소자용 기판 및 이를 포함하는 전력 소자 패키지
EP2114113B1 (de) * 2008-04-29 2014-05-28 Agie Charmilles SA Leiterplatteneinheit und Verfahren zu deren Herstellung
DE102008042302A1 (de) * 2008-09-24 2010-04-01 Robert Bosch Gmbh Verfahren und Vorrichtung zum Kühlen von Wärme erzeugenden elektronischen Bauelementen mit einem Kältemittel
US9163883B2 (en) 2009-03-06 2015-10-20 Kevlin Thermal Technologies, Inc. Flexible thermal ground plane and manufacturing the same
JP2010245174A (ja) * 2009-04-02 2010-10-28 Denso Corp 電子制御ユニット及びその製造方法
EP2259310B1 (en) * 2009-06-05 2020-04-08 Siemens Gamesa Renewable Energy A/S Integrated heat exchanger
KR101064461B1 (ko) * 2009-07-15 2011-09-15 엘에스산전 주식회사 파워 모듈 및 그 조립방법
CN102576705B (zh) 2009-09-28 2015-10-21 Abb技术有限公司 电路装置及其制造方法
JP2011091152A (ja) * 2009-10-21 2011-05-06 Daikin Industries Ltd パワーモジュール
JP5617244B2 (ja) * 2010-01-06 2014-11-05 ダイキン工業株式会社 パワーモジュール、電力変換装置、及び冷凍装置
DE102010002138A1 (de) * 2010-02-19 2011-08-25 Robert Bosch GmbH, 70469 Substratanordnung für ein elektronisches Steuergerät einer Kraftfahrzeugkomponente
CN103119374B (zh) * 2010-09-30 2016-01-20 大金工业株式会社 冷却器及包括该冷却器的制冷装置
CN103237722B (zh) * 2010-12-27 2017-02-08 川崎重工业株式会社 跨乘式电动车辆
KR101331681B1 (ko) * 2011-09-14 2013-11-20 삼성전기주식회사 전력 모듈 패키지
EP2574157A1 (de) 2011-09-23 2013-03-27 AEG Power Solutions B.V. Leistungselektronikbaugruppe und Anordnung umfassend wenigstens eine solche Leistungselektronikbaugruppe
KR101204564B1 (ko) * 2011-09-30 2012-11-23 삼성전기주식회사 전력 모듈 패키지 및 그 제조 방법
US20130087903A1 (en) * 2011-10-06 2013-04-11 Schlumberger Technology Corporation Electronics Packaging For High Temperature Downhole Applications
WO2013132644A1 (ja) 2012-03-09 2013-09-12 三菱電機株式会社 半導体モジュール
US9148985B2 (en) * 2013-03-15 2015-09-29 Eaton Corporation Power pole inverter
JPWO2015107997A1 (ja) * 2014-01-14 2017-03-23 住友ベークライト株式会社 モジュール基板
JP6098760B2 (ja) * 2014-05-20 2017-03-22 富士電機株式会社 半導体モジュール用冷却器及びその製造方法
EP3194113B1 (en) 2014-09-17 2022-06-08 The Regents Of The University Of Colorado, A Body Corporate, A Colorado Non-Profit Micropillar-enabled thermal ground plane
US11598594B2 (en) 2014-09-17 2023-03-07 The Regents Of The University Of Colorado Micropillar-enabled thermal ground plane
US11988453B2 (en) 2014-09-17 2024-05-21 Kelvin Thermal Technologies, Inc. Thermal management planes
JP2015173299A (ja) * 2015-07-06 2015-10-01 三菱電機株式会社 半導体モジュール
JP6618549B2 (ja) 2015-12-03 2019-12-11 三菱電機株式会社 半導体装置
CN116936500A (zh) 2016-11-08 2023-10-24 开尔文热技术股份有限公司 用于在热接地平面中散布高热通量的方法和设备
FR3062518B1 (fr) * 2017-01-31 2019-04-19 Supergrid Institute Module electronique de puissance comportant un support dielectrique
US11486601B2 (en) * 2018-12-25 2022-11-01 Gd Midea Air-Conditioning Equipment Co., Ltd. Wall-mounted air conditioner indoor unit and air conditioner
CN110335850B (zh) * 2019-04-15 2021-02-02 中国科学院半导体研究所 一种光电芯片的封装结构
US11758697B2 (en) * 2019-09-26 2023-09-12 Ohio State Innovation Foundation Low inductance power module with vertical power loop structure and insulated baseplates
JP6930617B2 (ja) * 2020-02-10 2021-09-01 ダイキン工業株式会社 電装品、および電装品の製造方法
US11930621B2 (en) 2020-06-19 2024-03-12 Kelvin Thermal Technologies, Inc. Folding thermal ground plane

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345899A (ja) * 1986-08-13 1988-02-26 日本発条株式会社 吸熱可能な基板
JPH113966A (ja) * 1997-06-11 1999-01-06 Akita Denshi Kk 混成集積回路装置およびその製造方法
JP2000252406A (ja) * 1999-02-26 2000-09-14 Kyocera Corp 電子回路装置
JP2001036004A (ja) * 1999-07-21 2001-02-09 Matsushita Electric Ind Co Ltd 電子部品用基板
JP2002093974A (ja) * 2000-09-13 2002-03-29 Nissan Motor Co Ltd パワーモジュールの冷却装置
JP2002134687A (ja) * 2000-10-26 2002-05-10 Sanyo Electric Co Ltd 混成集積回路装置の製造方法
JP2003018861A (ja) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd インバータの冷却制御装置
JP2004028403A (ja) * 2002-06-24 2004-01-29 Denso Corp 発熱体冷却器

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308558A (ja) 1989-05-24 1990-12-21 Hitachi Ltd 半導体冷却装置
JP2543452Y2 (ja) 1990-12-21 1997-08-06 富士通テン株式会社 半導体装置
US5296735A (en) * 1991-01-21 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Power semiconductor module with multiple shielding layers
JPH05218296A (ja) 1991-11-29 1993-08-27 Nec Corp ハイブリッドic
JP2756050B2 (ja) * 1992-03-03 1998-05-25 キヤノン株式会社 光起電力装置
US5640216A (en) * 1994-04-13 1997-06-17 Hitachi, Ltd. Liquid crystal display device having video signal driving circuit mounted on one side and housing
JP3399122B2 (ja) 1994-11-16 2003-04-21 株式会社デンソー 回路装置
JPH0992762A (ja) 1995-09-21 1997-04-04 Fanuc Ltd パワーモジュール
JP3516789B2 (ja) 1995-11-15 2004-04-05 三菱電機株式会社 半導体パワーモジュール
WO1999021228A1 (fr) * 1997-10-20 1999-04-29 Hitachi, Ltd. Module a semiconducteur et convertisseur de puissance comprenant ce module
US6201701B1 (en) * 1998-03-11 2001-03-13 Kimball International, Inc. Integrated substrate with enhanced thermal characteristics
JP3587734B2 (ja) * 1999-06-30 2004-11-10 株式会社日立製作所 熱式空気流量センサ
JP2001244376A (ja) * 2000-02-28 2001-09-07 Hitachi Ltd 半導体装置
JP4573467B2 (ja) 2001-05-25 2010-11-04 三菱電機株式会社 パワー半導体装置
JP2002368168A (ja) * 2001-06-13 2002-12-20 Hitachi Ltd 半導体装置用複合部材、それを用いた絶縁型半導体装置、又は非絶縁型半導体装置
US6606251B1 (en) * 2002-02-07 2003-08-12 Cooligy Inc. Power conditioning module
JP3673776B2 (ja) * 2002-07-03 2005-07-20 株式会社日立製作所 半導体モジュール及び電力変換装置
JP3994381B2 (ja) 2002-09-18 2007-10-17 株式会社安川電機 パワーモジュール
JP2004336929A (ja) 2003-05-09 2004-11-25 Yaskawa Electric Corp 電力変換装置
JP2005158770A (ja) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd 積層基板とその製造方法及び前記積層基板を用いたモジュールの製造方法とその製造装置
JP4192786B2 (ja) * 2004-01-06 2008-12-10 株式会社日立製作所 導電性接着シート及びその製造方法並びに電力変換装置
JP2006179856A (ja) * 2004-11-25 2006-07-06 Fuji Electric Holdings Co Ltd 絶縁基板および半導体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6345899A (ja) * 1986-08-13 1988-02-26 日本発条株式会社 吸熱可能な基板
JPH113966A (ja) * 1997-06-11 1999-01-06 Akita Denshi Kk 混成集積回路装置およびその製造方法
JP2000252406A (ja) * 1999-02-26 2000-09-14 Kyocera Corp 電子回路装置
JP2001036004A (ja) * 1999-07-21 2001-02-09 Matsushita Electric Ind Co Ltd 電子部品用基板
JP2002093974A (ja) * 2000-09-13 2002-03-29 Nissan Motor Co Ltd パワーモジュールの冷却装置
JP2002134687A (ja) * 2000-10-26 2002-05-10 Sanyo Electric Co Ltd 混成集積回路装置の製造方法
JP2003018861A (ja) * 2001-06-27 2003-01-17 Nissan Motor Co Ltd インバータの冷却制御装置
JP2004028403A (ja) * 2002-06-24 2004-01-29 Denso Corp 発熱体冷却器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1830406A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051390A (ja) * 2006-08-24 2008-03-06 Fuiisa Kk 熱交換器
KR101022906B1 (ko) 2009-07-20 2011-03-16 삼성전기주식회사 전력반도체 모듈 및 그 제조방법
JP2019504496A (ja) * 2016-05-24 2019-02-14 ミツビシ・エレクトリック・アールアンドディー・センター・ヨーロッパ・ビーヴィMitsubishi Electric R&D Centre Europe B.V. パワーモジュール及びパワーモジュールの製造方法
US11152340B2 (en) 2016-05-24 2021-10-19 Mitsubishi Electric Corporation Power module having a multilayered structure with liquid cooled busbar and method for manufacturing same
JP2022009385A (ja) * 2017-09-27 2022-01-14 ジョンソン コントロールズ テクノロジー カンパニー 筐体を通気するためのシステム及び方法
US11549604B2 (en) 2017-09-27 2023-01-10 Johnson Controls Tyco IP Holdings LLP Systems and methods for venting enclosure

Also Published As

Publication number Publication date
EP1830406A4 (en) 2011-04-06
EP1830406A1 (en) 2007-09-05
KR20070074657A (ko) 2007-07-12
KR100869993B1 (ko) 2008-11-24
AU2005315026A1 (en) 2006-06-22
US7612448B2 (en) 2009-11-03
AU2005315026B8 (en) 2010-03-18
JP2006196853A (ja) 2006-07-27
AU2005315026B2 (en) 2010-02-11
US20080111151A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006064666A1 (ja) パワーモジュールとその製造方法および空気調和機
US7626124B2 (en) Wiring board
JP4698621B2 (ja) 電力変換回路を内蔵したモータおよびそれを搭載した機器
JP2008121966A (ja) 空気調和機の室外機
TW200915971A (en) Circuit module
WO2012077246A1 (ja) 電力変換回路内蔵モーター、この電力変換回路内蔵モーターを搭載した流体ポンプ、この流体ポンプを搭載した空気調和機、給湯器、電力変換回路内蔵モーターを搭載した機器
JP2008227150A (ja) 電子機器
JP2008061375A (ja) 電力変換装置
JP6933233B2 (ja) 冷凍装置の室外ユニット
JP4687093B2 (ja) 空気調和機
TW200938069A (en) Reticulated heat dissipation with coolant
CN100557798C (zh) 功率模块及其制造方法和空调机
JPWO2018109919A1 (ja) プリント配線基板、空気調和機およびプリント配線基板の製造方法
JP4428372B2 (ja) パワーモジュールおよび空気調和機
WO2016147345A1 (ja) 電源モジュールおよびそれを用いたエアコンディショナ室外機
JP2014093304A (ja) 電力変換装置
JP2008300600A (ja) フィルムコンデンサ
JP6471417B2 (ja) 冷却ジャケット
JP2011050247A (ja) 電力変換回路を内蔵したモータおよびそれを搭載した機器
KR101172679B1 (ko) 공기조화기의 실외기
JP2008057851A (ja) 冷凍装置
JP2013073949A (ja) 電力変換装置及びそれを備えた冷凍装置
CN220524321U (zh) 电控部件以及空调器
KR20060005254A (ko) 공기조화기의 실외기
WO2023157130A1 (ja) 電装品モジュール

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11791844

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077012557

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042419.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005811238

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005315026

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2005315026

Country of ref document: AU

Date of ref document: 20051201

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005315026

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005811238

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11791844

Country of ref document: US