WO2016147345A1 - 電源モジュールおよびそれを用いたエアコンディショナ室外機 - Google Patents

電源モジュールおよびそれを用いたエアコンディショナ室外機 Download PDF

Info

Publication number
WO2016147345A1
WO2016147345A1 PCT/JP2015/058079 JP2015058079W WO2016147345A1 WO 2016147345 A1 WO2016147345 A1 WO 2016147345A1 JP 2015058079 W JP2015058079 W JP 2015058079W WO 2016147345 A1 WO2016147345 A1 WO 2016147345A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply module
substrate
outdoor unit
heat
Prior art date
Application number
PCT/JP2015/058079
Other languages
English (en)
French (fr)
Inventor
政巳 上原
孝則 石川
Original Assignee
株式会社テーケィアール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テーケィアール filed Critical 株式会社テーケィアール
Priority to JP2017505947A priority Critical patent/JP6458131B2/ja
Priority to PCT/JP2015/058079 priority patent/WO2016147345A1/ja
Publication of WO2016147345A1 publication Critical patent/WO2016147345A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/22Arrangement or mounting thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/05Capacitor coupled rectifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a power supply module used for an air conditioner outdoor unit, and more particularly to a heat dissipation structure of the power supply module.
  • a partition plate that partitions a heat exchanger chamber in which a heat exchanger and a fan are arranged and a machine room in which a compressor is arranged is provided, and a power supply module is arranged above the partition plate.
  • a power semiconductor is arranged on the heat exchanger chamber side, a large heat sink is attached, and the power semiconductor is cooled by blowing air from a fan (see Patent Document 1).
  • Patent Document 2 states that “There is a means for electrical connection on one side and from the other side. A power device with a structure that transfers heat while being insulated with a thermally conductive insulating material is mounted on the printed circuit board from the electrically connected surface, and the surface that transfers heat while being further insulated is in direct contact with the radiator By doing so, it is possible to provide a power conversion device that is very small and excellent in heat dissipation characteristics ”(see abstract).
  • the thickness of the power supply module increases and the weight of the power supply module increases.
  • the power supply device described in Patent Document 2 since the printed circuit board and the power device can be connected at a short distance, the thickness can be somewhat reduced. However, since the radiator is still used, further reduction in thickness and weight is difficult. It is.
  • the present invention aims to solve these problems and provide a power supply module that is small, thin, and lightweight at low cost without adding extra parts (such as a wire harness).
  • an example of a power supply module is a power supply module including a substrate, an electrical component disposed on the substrate, and a power semiconductor, and the substrate includes the electrical module.
  • the power semiconductor is disposed on a second surface side of the substrate, and a heat radiating metal plate is attached to the power semiconductor on a side opposite to the substrate via a heat conductive insulating material, and the heat dissipation A metal cover is closely attached to the metal plate.
  • the power semiconductor, the thermally conductive insulating material, and the heat dissipating metal plate are integrated to form a power semiconductor module.
  • a case for housing the electrical component and the first surface side of the substrate is provided, and the case and the metal cover form a sealed structure.
  • the case may be made of resin.
  • the case may be made of metal, and the metal case and the metal cover are preferably in close contact with each other at an end portion.
  • the heat dissipating metal plate and the metal cover are made of aluminum or copper.
  • the power supply module of the present invention it is preferable that heat transfer grease is applied between the heat dissipating metal plate and the metal cover.
  • the power supply module of this invention WHEREIN: It is preferable that the metal cover is attached to the said heat radiating metal plate so that attachment or detachment is possible.
  • the substrate, the electrical component, and the power semiconductor constitute an inverter circuit, and the power semiconductor is preferably a diode bridge and a switching element.
  • the outdoor unit chassis in which a heat exchanger room in which a heat exchanger and a fan are arranged and a machine room in which a compressor is arranged are provided, and the heat exchanger room
  • An air conditioner outdoor unit in which the machine room is separated by a partition plate, wherein the power supply module is placed above the partition plate so that the first surface side of the substrate is below, and the metal
  • the made-up cover and the outdoor unit chassis are arranged so as to have a space.
  • the outdoor of the air conditioner provided with the heat exchanger room in which the heat exchanger and the fan are arranged and the machine room in which the compressor is arranged in the outdoor unit chassis.
  • the power supply module is disposed between the heat exchanger chamber and the machine chamber in a vertical direction and with a metal cover positioned on the heat exchanger chamber side. .
  • the power semiconductor is bonded to the heat radiating metal plate insulated with the heat conductive insulating material, and the first surface side of the substrate Since it is mounted on the second surface side opposite to the above, it is possible to provide a small, thin and lightweight power supply module at low cost without adding extra parts (wire harness or the like).
  • FIG. 1 It is a disassembled perspective view of the power supply module of Example 1 of this invention. It is sectional drawing of the power supply module of Example 1 of this invention. It is sectional drawing which shows the heat flow of a power semiconductor module. It is a figure which shows the whole structure of the air conditioner outdoor unit of Example 2 of this invention. It is a figure which shows the temperature data of the air conditioner outdoor unit of this invention and the conventional air conditioner outdoor unit. It is sectional drawing of the power supply module of Example 3 of this invention. It is a schematic circuit diagram of the inverter apparatus of Example 4 of this invention. It is a figure which shows the subject of the conventional power supply module. It is a figure which shows the effect of the power supply module of this invention.
  • FIG. 5 It is a figure which shows the whole structure of the air conditioner outdoor unit of Example 5 of this invention. It is a figure which shows the power supply module used for the air conditioner outdoor unit of Example 5.
  • FIG. It is a figure which shows the whole structure of the air conditioner outdoor unit using the conventional power supply module. It is sectional drawing of the conventional power supply module.
  • FIG. 12 shows an overall structure of an example of a conventional air conditioner outdoor unit.
  • the outdoor unit chassis 42 there are provided a heat exchanger chamber 50 in which a heat exchanger (not shown) and a fan 44 are disposed, and a machine chamber 51 in which a compressor 46 is disposed.
  • a partition plate 43 is provided between the two chambers. It is delimited. Above the partition plate 43, the power supply module 10 is disposed from the machine room 51 to the heat exchanger room 50.
  • FIG. 13 shows a cross-sectional view of an example of a conventional power supply module.
  • a power semiconductor 14 is disposed at one end on the first surface side (component surface side, lower side in the figure) of the substrate (printed circuit board) 20 on which electric components such as electrolytic capacitors 23 and 24 are disposed.
  • a large heat sink 35 is attached for heat dissipation.
  • an electrolytic capacitor 23 for power supply and an electrolytic capacitor 24 for compressor are arranged so as to avoid heat of the power semiconductor 14 and are connected by a wire harness 38.
  • wiring for the compressor, wiring for the reactor, and wiring for AC input are attached via the ferrite core 27.
  • the substrate 20 On the second surface side (solder surface side, upper side in the figure) on the side opposite to the first surface side of the substrate 20, provided with a circuit pattern, and connected to terminals of the electrical components such as soldering.
  • the silicon coating material 22 is applied.
  • the substrate 20 to which components such as the power semiconductor 14 are attached is placed in a resin case 32 and sealed with a resin cover 37.
  • the heat resistant cover 36 protects the wiring from the heat of the large heat sink 35.
  • the power supply module 10 is arranged across the machine room 51 so that the large heat sink 35 attached to the power semiconductor 14 is located on the heat exchanger room 50 side. And by the ventilation from the fan 44, the heat from the power semiconductor 14 is radiated from the large heat sink 35, and the power semiconductor 14 and the like are cooled.
  • the thickness of the power supply module 10 increases and the weight also increases. Since the location of the large heat sink 35 is limited to the vicinity of the fan 44, the layout of the substrate pattern is restricted, and an extra wire harness 38 and the like are required. In addition, it is necessary to keep electrical components (electrolytic capacitors 23, 24, etc.) that are vulnerable to heat away from the large heat sink 35, and it is necessary to dispose them using a wire harness 38. Further, as shown in FIG. 8, in the inverter device, at least a switching element and a diode bridge are required as the power semiconductor 14, but the arrangement of components on the substrate 20 is restricted because the large heat sink 35 is commonly attached to both. A dead space is formed in the substrate arrangement, and the substrate 20 is enlarged.
  • the present invention solves these problems and provides a small, thin and lightweight power supply module at low cost without adding extra parts (such as the wire harness 38).
  • FIG. 1 is an exploded perspective view of the power supply module of this embodiment.
  • the power supply module 10 includes a substrate 20 on which components such as electrolytic capacitors 23 and 24 are mounted, and a second surface side (solder surface side) on which a circuit pattern of the substrate 20 is provided and a terminal of an electrical component is connected by soldering or the like
  • the power semiconductor module 12 is attached to the lower side of the figure, the metal cover 30 is attached to the power semiconductor module 12 with screws 31, and the resin case 32 accommodates the substrate 20.
  • two modules of a power semiconductor module 1 and a power semiconductor module 2 are provided as the power semiconductor module 12.
  • FIG. 2 shows a cross-sectional view of the power supply module 10 of the present embodiment.
  • electrical components such as an electrolytic capacitor 23 for power supply and an electrolytic capacitor 24 for compressor are disposed.
  • wiring for the compressor, wiring for the reactor, and wiring for AC input to which the AC input connector 28 is attached via the ferrite core 27 are attached.
  • the power semiconductor module 12 is attached to the second surface side (solder surface side, upper side in the figure) of the substrate 20 opposite to the first surface side via a spacer 26.
  • the power semiconductor module 12 is a module in which a power semiconductor 14, a high heat conductive insulating material 16, and a heat radiating metal plate 18 made of aluminum are integrated by bonding or the like.
  • DB Diode Bridge
  • IGBT Insulated-Gate Bipolar Transistors
  • FRD Fest Recovery Diode
  • IPM Intelligent Power Module
  • the high thermal conductive insulating material 16 for example, a resin composed of an inorganic filler and a resin composition described in Patent Document 3 (Japanese Patent No.
  • the heat dissipating metal plate 18 a metal such as aluminum or copper having good thermal conductivity can be used.
  • FIG. 3 shows the heat flow of the power semiconductor module 12.
  • the heat generated in the power semiconductor 14 is transmitted to the heat radiating metal plate 18 through the high heat conductive insulating material 16 and is radiated from the heat radiating metal plate 18.
  • a silicon coating material 22 is applied to the solder surface side of the substrate 20.
  • the substrate 20 to which components such as a power semiconductor are attached is placed in a resin case 32.
  • a metal cover 30 is attached to the heat radiating metal plate 18 of the power semiconductor module 12 with screws 31 or the like, and heat is radiated from the metal cover 30.
  • the substrate 20 and the like are sealed with a resin case 32 and a metal cover 30.
  • the metal cover 30 is attached to the heat-dissipating metal plate 18 of the power semiconductor module 12 with screws 31. However, the metal cover 30 may be attached in close contact and can be detachably attached such as fitting. The coating operation of the coating material 22 is facilitated and the power semiconductor module 12 can be soldered.
  • the substrate 20 to which components such as the electrolytic capacitors 23 and 24 are attached is placed in a resin case 32. However, when it is not necessary to be sealed when used in a clean atmosphere, The resin case 32 may not be provided.
  • the power semiconductor module 12 which integrated the power semiconductor 14, the high heat conductive insulating material 16, and the heat radiating metal plate 18 was used, it is not an integrated module but the power semiconductor 14, the high heat conductive insulating material 16, and the heat dissipation.
  • the metal plates 18 may be attached sequentially.
  • the power supply module can be thinned.
  • the arrangement of components is restricted by a large heat sink.
  • a plurality of power semiconductor modules 12 can be freely laid out as shown in FIG.
  • the power supply module can be reduced in size.
  • a large heat sink, a wire harness, and the like are not required, and the substrate can be reduced in size, so that the power module can be reduced in weight.
  • the layout of the components becomes free, the components can be arranged along the circuit, and the configuration of the board is simplified.
  • the power supply module of the first embodiment is used for an outdoor unit of an air conditioner.
  • FIG. 4 the whole structure of the air conditioner outdoor unit of Example 2 is shown.
  • the outdoor unit chassis 42 is provided with a heat exchanger chamber 50 in which a heat exchanger (not shown) and a fan 44 are disposed, and a machine chamber 51 in which a compressor 46 is disposed.
  • the space is divided by a partition plate 43.
  • the power supply module 10 according to the first embodiment is disposed from the machine room 51 to the heat exchanger room 50, and the wiring from the power supply module 10 is electrically connected to the reactor 40, the compressor 46, and the like by a connector. Is done.
  • the metal cover 30 constituting the power supply module 10 extends to the heat exchanger chamber 50, and a space is provided between the metal cover 30 and the outdoor unit chassis 42.
  • the wind sent by the fan 44 flows through the space between the metal cover 30 and the outdoor unit chassis 42, whereby the power supply module 10, particularly the power semiconductor 14, can be cooled well.
  • FIG. 5 shows a graph of temperature measurement data of the conventional air conditioner outdoor unit shown in FIG. 12 and the air conditioner outdoor unit of Example 2 shown in FIG.
  • an IPM is a semiconductor module in which a switching element and its drive circuit are combined into one package, and rotates a compressor.
  • DB 101 is a diode bridge used in the AC input unit (see the schematic circuit diagram of FIG. 7).
  • IPM corresponds to the power semiconductor module 1
  • DB 101 corresponds to an element on the IPM side in the power semiconductor module 2.
  • the graph represents the time change of the temperature of the semiconductor module from the power ON, which is measured by attaching a thermocouple thermometer to the IPM and DB 101.
  • IPM has a cooling effect similar to that of the conventional product
  • DB 101 has a cooling effect higher than that of the conventional product.
  • the power supply module of the air conditioner outdoor unit can be reduced in weight, size, and thickness, so that the layout of the power supply module is facilitated, and the air conditioner outdoor unit is reduced in weight and size. Can be planned.
  • Embodiment 3 of the present invention is an improvement of the case of the power supply module of Embodiment 1.
  • FIG. 6 shows a cross-sectional view of the power supply module of the third embodiment.
  • the substrate 20 to which components such as the power semiconductor 14 are attached is placed in a resin case 32.
  • the substrate 20 is housed in a metal case 33.
  • the metal case 33 and the metal cover 30 are in close contact with each other at the ends.
  • a material for the metal case 33 a material having good thermal conductivity such as aluminum is preferable in terms of heat dissipation, but stainless steel or iron may be used when strength is required.
  • the substrate 20 to which components such as the power semiconductor 14 are attached is housed in the metal case 33, and the metal case 33 and the metal cover 30 are brought into close contact with each other.
  • the heat dissipation can be further improved.
  • Embodiment 4 of the present invention uses the power supply module of the present invention for an inverter device of an air conditioner outdoor unit.
  • FIG. 7 shows a schematic circuit diagram of an example of the inverter device.
  • the AC input is applied to the diode bridge 62 via the line filter 61 and converted to direct current.
  • the converted direct current is converted into a smooth direct current by a smoothing circuit including the reactor 40, the IGBT 63 as switching means, the backflow prevention diode 64, and the electrolytic capacitor 23.
  • the smoothed direct current is applied to the IPM 65 and converted into alternating current for driving the compressor 46 by a switching element in the IPM. Switching of the switching elements in the IGBT 63 and the IPM 65 is controlled by the control microcomputer 66.
  • the switching of the switching element is controlled by the control signal from the control microcomputer 66, and the rotational frequency of the compressor 46 is adjusted by changing the AC frequency.
  • the inverter device shown in the schematic circuit diagram of FIG. 7 is constituted by the power supply module of the present invention. Electrical components such as the line filter 61 and the electrolytic capacitor 23 are arranged on the component surface side of the substrate, and a diode bridge 62 and an IPM 65 are attached to the solder surface side of the substrate as power semiconductor modules.
  • the IPM 65 corresponds to the power semiconductor module 1
  • the diode bridge 62 corresponds to an element on the IPM side in the power semiconductor module 2.
  • the inverter device of the air conditioner outdoor unit can be reduced in weight, size, and thickness, and the air conditioner outdoor unit can be reduced in weight and size.
  • FIG. 10 shows an overall structure of an air conditioner outdoor unit according to a fifth embodiment of the present invention
  • FIG. 11 shows a power supply module part taken out.
  • a heat exchanger chamber 50 in which a heat exchanger (not shown) and a fan 44 are arranged, and a machine room 51 in which a compressor 46 is arranged are provided.
  • the power supply module 10 is arranged in the vertical direction without providing a partition plate.
  • the electrolytic capacitor 23 for the power source and the electrolytic capacitor for the compressor are provided on the first surface side (component surface side, right side in the figure) on which the electrical components of the substrate (printed circuit board) 20 are arranged. 24, electrical components such as the reactor 40 are arranged. In addition, wiring for compressor and wiring for AC input to which an AC input connector 28 is attached via a ferrite core are attached.
  • the power semiconductor module 12 is attached to the second surface side (solder surface side, left side in the figure) of the substrate 20 via a spacer 26.
  • the power semiconductor module 12 is configured by integrating a power semiconductor 14, a high thermal conductive insulating material 16, and a heat radiating metal plate 18 made of aluminum or the like.
  • a metal cover 30 is attached to the heat radiating metal plate 18 of the power semiconductor module 12 with screws 31 or the like, and heat from the power semiconductor 14 is radiated from the metal cover 30.
  • a resin case 32 is attached to the opposite side of the metal cover 30, and the substrate 20 is sealed with the metal cover 30 and the resin case 32.
  • the power supply module 10 is arranged in the vertical direction of the air conditioner outdoor unit so that the metal cover 30 comes to the heat exchanger room 50 side, that is, the fan 44 side.
  • the wind from the fan 44 passes through the surface of the metal cover 30.
  • the partition plate 43 becomes unnecessary. Moreover, since the metal cover 30 connected to the power semiconductor module 12 is disposed on the fan 44 side, the wind from the fan 44 passes through the metal cover 30 and the cooling effect is improved. Further, by arranging the metal cover 30 over the upper and lower sides of the outdoor unit chassis 42, the strength of the outdoor unit can be maintained even when stress is applied from the upper part of the outdoor unit chassis 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 余分な部品(ワイヤーハーネス等)を追加することなく、安価に小型・薄型で、軽量な電源モジュールを提供する。 基板と、当該基板上に配置される電気部品と、パワー半導体を備える電源モジュールであって、前記基板は、前記電気部品が配置される第1の面側と、当該第1の面側とは反対側であって、回路パターンが設けられ前記電気部品の端子と接続が行われる第2の面側とを備え、前記パワー半導体は、前記基板の第2の面側に配置され、前記パワー半導体には、前記基板とは反対側に、熱伝導性絶縁材を介して放熱性金属板が取り付けられ、前記放熱性金属板には、金属製のカバーが密着して取り付けられている。

Description

電源モジュールおよびそれを用いたエアコンディショナ室外機
 本発明は、エアコンディショナ室外機などに用いられる電源モジュール、特に電源モジュールの放熱構造に関する。
 従来、エアコンディショナの室外機においては、熱交換器とファンを配置した熱交換器室と、コンプレッサを配置した機械室とを区画する仕切り板を設け、仕切り板の上方に電源モジュールを配置する。そして、電源モジュールでは、熱交換器室側にパワー半導体を配置し、大型のヒートシンクを取り付けて、ファンからの送風により、パワー半導体等を冷却していた(特許文献1参照)。
 また、エアコンディショナに限らず、電源装置では小型化、高効率化が求められており、例えば特許文献2には、「一方の面で電気的に接続する手段をもち、もう一方の面から熱伝導性絶縁材料でもって絶縁しながら熱を伝達する構造をもったパワーデバイスを、電気的に接続する面からプリント基板に実装し、さらに絶縁しながら熱を伝達する面を放熱器に直接接触させることにより、非常に小型で、放熱特性に優れるパワー変換装置を提供できる。」と記載されている(要約参照)。
特開2005-127691号公報 特開2002-325468号公報 特許第3312723号公報
 例えば特許文献1に記載のエアコンディショナ室外機の電源モジュールでは、パワー半導体に大型のヒートシンクを取り付けるため、電源モジュールの厚さが厚くなるとともに、電源モジュールの重さが重くなる。また、特許文献2に記載の電源装置では、プリント基板とパワーデバイスとを短距離で接続できるため幾分薄型化はできるが、依然として放熱器を用いているため、さらなる薄型化・軽量化は困難である。
 本発明は、これらの課題を解決し、余分な部品(ワイヤーハーネス等)を追加することなく、安価に小型・薄型で、軽量な電源モジュールを提供することを目的とする。
 上記課題を解決するために、本発明の電源モジュールの一例を挙げるならば、基板と、当該基板上に配置される電気部品と、パワー半導体を備える電源モジュールであって、前記基板は、前記電気部品が配置される第1の面側と、当該第1の面側とは反対側であって、回路パターンが設けられ前記電気部品の端子と接続が行われる第2の面側とを備え、前記パワー半導体は、前記基板の第2の面側に配置され、前記パワー半導体には、前記基板とは反対側に、熱伝導性絶縁材を介して放熱性金属板が取り付けられ、前記放熱性金属板には、金属製のカバーが密着して取り付けられているものである。
 本発明の電源モジュールにおいて、前記パワー半導体と、前記熱伝導性絶縁材と、前記放熱性金属板とが一体化されてパワー半導体モジュールを形成していることが好ましい。
  また、本発明の電源モジュールにおいて、前記電気部品および前記基板の第1の面側を収容するケースを備え、前記ケースと前記金属製のカバーとで、密閉構造を形成していることが好ましい。
  また、本発明の電源モジュールにおいて、前記ケースは、樹脂製で良い。
  また、本発明の電源モジュールにおいて、前記ケースは、金属製でも良く、前記金属製のケースと前記金属製のカバーとは端部において密着していることが好ましい。
  また、本発明の電源モジュールにおいて、前記放熱性金属板および前記金属製のカバーは、アルミまたは銅製であることが好ましい。
  また、本発明の電源モジュールにおいて、前記放熱性金属板と前記金属製のカバーとの間には、伝熱グリースが塗布されていることが好ましい。
  また、本発明の電源モジュールにおいて、前記放熱性金属板には、金属製のカバーが着脱可能に取り付けられていることが好ましい。
  また、本発明の電源モジュールにおいて、前記基板と電気部品とパワー半導体とでインバータ回路を構成するものであり、前記パワー半導体は、ダイオードブリッジとスイッチング素子であることが好ましい。
 本発明のエアコンディショナ室外機の一例を挙げるならば、室外機シャーシ内に、熱交換器およびファンを配置した熱交換器室とコンプレッサを配置した機械室とを設け、前記熱交換器室と前記機械室とを仕切り板で区切ったエアコンディショナ室外機であって、前記仕切り板の上方に、上記の電源モジュールを、前記基板の第1の面側が下方となるように、かつ、前記金属製のカバーと前記室外機シャーシとが空間を有するように配置したものである。
 本発明のエアコンディショナ室外機の他の一例を挙げるならば、室外機シャーシ内に、熱交換器およびファンを配置した熱交換器室とコンプレッサを配置した機械室とを設けたエアコンディショナ室外機であって、前記熱交換器室と前記機械室の間に、上記の電源モジュールを、上下方向に、かつ、金属製のカバーが熱交換器室側に位置するように配置したものである。
 本発明によれば、電気部品を配置した第1の面側のヒートシンクを使用せず、パワー半導体を熱伝導性の絶縁材で絶縁した放熱性金属板に接着し、基板の第1の面側とは反対側の第2の面側に実装するので、余分な部品(ワイヤーハーネス等)を追加することなく、安価に小型・薄型で、軽量な電源モジュールを提供することができる。
本発明の実施例1の電源モジュールの分解斜視図である。 本発明の実施例1の電源モジュールの断面図である。 パワー半導体モジュールの熱の流れを示す断面図である。 本発明の実施例2のエアコンディショナ室外機の全体構造を示す図である。 本発明のエアコンディショナ室外機と従来のエアコンディショナ室外機の温度データを示す図である。 本発明の実施例3の電源モジュールの断面図である。 本発明の実施例4のインバータ装置の概略回路図である。 従来の電源モジュールの課題を示す図である。 本発明の電源モジュールの効果を示す図である。 本発明の実施例5のエアコンディショナ室外機の全体構造を示す図である。 実施例5のエアコンディショナ室外機に用いる電源モジュールを示す図である。 従来の電源モジュールを用いたエアコンディショナ室外機の全体構造を示す図である。 従来の電源モジュールの断面図である。
 本発明の実施の形態の説明に先立って、従来のエアコンディショナ室外機の電源モジュールを説明する。
  図12に、従来のエアコンディショナ室外機の一例の全体構造を示す。室外機シャーシ42内には、熱交換器(図示せず)およびファン44を配置した熱交換器室50とコンプレッサ46を配置した機械室51とが設けられ、両室の間は仕切り板43で区切られている。仕切り板43の上方には、機械室51から熱交換器室50にかけて電源モジュール10が配置されている。
 図13に、従来の電源モジュールの一例の断面図を示す。基板(プリント基板)20の電解コンデンサ23,24等の電気部品を配置した第1の面側(部品面側、図の下側)には、一端にパワー半導体14が配置され、パワー半導体14には放熱用に大型ヒートシンク35が取り付けられている。部品面側の他端には、パワー半導体14の熱を避けるように、電源用の電解コンデンサ23,コンプレッサ用の電解コンデンサ24が配置され、ワイヤーハーネス38で接続されている。また、コンプレッサ用の配線、リアクタ用の配線、フェライトコア27を介してAC入力用の配線が取り付けられている。基板20の第1の面側とは反対側であって、回路パターンが設けられ、電気部品の端子と半田付け等の接続が行われる第2の面側(半田面側、図の上側)には、シリコンのコーティング材22が塗布されている。パワー半導体14等の部品が取り付けられた基板20は樹脂製のケース32に入れられ、樹脂製のカバー37で密閉されている。図において、耐熱カバー36は、大型ヒートシンク35の熱から配線を保護するものである。
 図12に示すように、電源モジュール10は、パワー半導体14に取り付けた大型ヒートシンク35が熱交換器室50側に位置するように、機械室51にまたがって、配置される。そして、ファン44からの送風によって、パワー半導体14からの熱は大型ヒートシンク35から放熱され、パワー半導体14などが冷却される。
 図12,図13に示される従来の電源モジュールにおいては、大型ヒートシンク35を用いてパワー半導体14を冷却するため、電源モジュール10の厚さが厚くなり、また、重量も増加する。大型ヒートシンク35の配置場所がファン44近傍に限定されているため、基板パターンのレイアウトが制約を受け、余分なワイヤーハーネス38等が必要となる。また、熱に弱い電気部品(電解コンデンサ23,24等)を大型ヒートシンク35から遠ざける必要があり、ワイヤーハーネス38を使って離れた場所に配置することが必要となる。さらに、図8に示すように、インバータ装置では、パワー半導体14として少なくともスイッチング素子とダイオードブリッジが必要であるが、大型ヒートシンク35を両者に共通して取り付けるために基板20上の部品配置が制約され、基板配置にデッドスペースができ、基板20が大型化する。
 本発明は、これらの課題を解決し、余分な部品(ワイヤーハーネス38等)を追加することなく、安価に小型・薄型で、軽量な電源モジュールを提供する。
 以下に、図面に基づいて本発明の実施の形態を説明する。なお、実施の形態を説明するための各図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。
 図1に、本実施例の電源モジュールの分解斜視図を示す。電源モジュール10は、電解コンデンサ23,24等の部品を取り付けた基板20と、基板20の回路パターンが設けられ電気部品の端子と半田付け等の接続が行われる第2の面側(半田面側、図の下側)に取り付けられるパワー半導体モジュール12と、パワー半導体モジュール12にネジ31で取り付けられる金属製のカバー30と、基板20を収納する樹脂製のケース32とで構成されている。図の例では、パワー半導体モジュール12として、パワー半導体モジュール1とパワー半導体モジュール2の2つのモジュールが設けられている。
 図2に、本実施例の電源モジュール10の断面図を示す。基板20の電気部品を配置した第1の面側(部品面側、図の下側)には、電源用の電解コンデンサ23,コンプレッサ用の電解コンデンサ24などの電気部品が配置されている。また、コンプレッサ用の配線、リアクタ用の配線、フェライトコア27を介してAC入力コネクタ28を取り付けたAC入力用の配線が取り付けられている。
 基板20の、第1の面側とは反対の第2の面側(半田面側、図の上側)には、スペーサ26を介してパワー半導体モジュール12が取り付けられている。パワー半導体モジュール12は、パワー半導体14と高熱伝導絶縁材16とアルミ製等の放熱性金属板18とを接着等で一体化したモジュールである。パワー半導体14としては、DB(Diode Bridge)、IGBT(Insulated―Gate Bipolar Transistors)、FRD(Fast Recovery Diode)、IPM(Intelligent Power Module)、その他パワー素子が用いられる。高熱伝導絶縁材16としては、例えば特許文献3(特許第3312723号公報)に記載された、無機質フィラーと樹脂組成物からなる樹脂を用いることができる。放熱性金属板18としては、熱伝導性の良いアルミ,銅等の金属を用いることができる。基板20にアイレット25を取り付け、パワー半導体14の足(端子)を半田付けすることにより、パワー半導体モジュール12を強度を保って確実に固定することができる。
 図3に、パワー半導体モジュール12の熱の流れを示す。パワー半導体14で発生した熱は、高熱伝導絶縁材16を介して放熱性金属板18に伝達され、放熱性金属板18から放熱される。
 図2において、基板20の半田面側には、シリコンのコーティング材22が塗布されている。パワー半導体等の部品が取り付けられた基板20は、樹脂製のケース32に入れられる。パワー半導体モジュール12の放熱性金属板18には、金属製のカバー30がネジ31止めなどにより取り付けられ、熱は金属製のカバー30から放熱される。金属製のカバー30の材料としては、熱伝導性の良いアルミ,銅等が好ましい。放熱性金属板18と金属製のカバー30との間に伝熱グリースを塗布することにより、放熱性をさらに改善することができる。基板20などは、樹脂製のケース32と金属製のカバー30とで密封されている。
 なお、図において、金属製のカバー30はパワー半導体モジュール12の放熱性金属板18にネジ31止めで取り付けられているが、密着して取り付けられれば良く、嵌合などの着脱可能に取り付けることにより、コーティング材22のコーティング作業が容易になるとともに、パワー半導体モジュール12の半田付けが可能となる。また、図においては、電解コンデンサ23,24等の部品が取り付けられた基板20は、樹脂製のケース32に入れられているが、クリーンな雰囲気中で使用する場合など密封の必要がなければ、樹脂製のケース32を設けなくても良い。また、パワー半導体14と高熱伝導絶縁材16と放熱性金属板18とを一体化したパワー半導体モジュール12を用いたが、一体化したモジュールではなく、パワー半導体14と高熱伝導絶縁材16と放熱性金属板18を順次取り付けてもよい。
 本実施例によれば、パワー半導体の冷却に大型ヒートシンクを用いないので、電源モジュールを薄型化することができる。また、従来、大型ヒートシンクにより部品配置に制約があったが、本実施例によれば、図9に示すように複数のパワー半導体モジュール12を自由にレイアウトすることができ、デッドスペースを減らすことができるので、電源モジュールを小型化することができる。また、大型ヒートシンクやワイヤーハーネス等が不要となり、また基板を小型化することができるので、電源モジュールの軽量化を図ることができる。さらに、部品のレイアウトが自由になるので、回路に沿った部品配置ができ、基板の構成が簡素になる。
 本発明の実施例2は、実施例1の電源モジュールをエアコンディショナの室外機に用いたものである。
  図4に、実施例2のエアコンディショナ室外機の全体構造を示す。図12と同様に、室外機シャーシ42内には、熱交換器(図示せず)およびファン44を配置した熱交換器室50とコンプレッサ46を配置した機械室51とが設けられ、両室の間は仕切り板43で区切られている。仕切り板43の上方には、機械室51から熱交換器室50にかけて実施例1の電源モジュール10が配置され、電源モジュール10からの配線がコネクタにより、リアクタ40やコンプレッサ46などに電気的に接続される。
 電源モジュール10を構成する金属製のカバー30は、熱交換器室50まで延びており、また、金属製のカバー30と室外機シャーシ42との間に空間を設ける。ファン44により送られる風が、金属製のカバー30と室外機シャーシ42との間の空間を流れることにより、電源モジュール10、特にパワー半導体14を良好に冷却することができる。
 図5に、図12に示される従来品のエアコンディショナ室外機と図4に示される実施例2のエアコンディショナ室外機の温度測定データのグラフを示す。図において、IPMは、スイッチング素子とその駆動回路とが一つのパッケージとなった半導体モジュールで、コンプレッサを回転させるものである。また、DB101は、AC入力部に使用しているダイオードブリッジである(図7の概略回路図を参照)。図1の分解図でいうと、IPMはパワー半導体モジュール1に対応し、DB101はパワー半導体モジュール2の内、IPM側の素子に対応する。グラフは、IPMおよびDB101に熱電対の温度計を取り付けて測定した、電源ONからの半導体モジュールの温度の時間変化を表したものである。グラフに示されるように、本実施例では、IPMについては従来品と同様の冷却効果があり、DB101では従来品以上の冷却効果がある。
 本実施例によれば、エアコンディショナ室外機の電源モジュールを軽量・小型・薄型化することができるので、電源モジュールのレイアウトが容易になり、また、エアコンディショナ室外機の軽量・小型化を図ることができる。
 本発明の実施例3は、実施例1の電源モジュールにおいてケースを改良したものである。図6に実施例3の電源モジュールの断面図を示す。
 実施例1では、パワー半導体14等の部品が取り付けられた基板20は、樹脂製のケース32に入れられているが、本実施例では、基板20は金属製のケース33に収納されている。そして、金属製のケース33と金属製のカバー30とは端部で密着している。金属製のケース33の材料としては、放熱性の点ではアルミ等の熱伝導性の良いものが好ましいが、強度が要求される場合はステンレスや鉄などでも良い。
 本実施例によれば、パワー半導体14等の部品が取り付けられた基板20を、金属製のケース33に収納し、金属製のケース33と金属製のカバー30とを密着させたので、電源モジュールの放熱性をさらに改善することができる。
 本発明の実施例4は、エアコンディショナ室外機のインバータ装置に本発明の電源モジュールを用いたものである。図7に、インバータ装置の一例の概略回路図を示す。
 図において、AC入力はラインフィルタ61を介してダイオードブリッジ62に加えられ、直流に変換される。変換された直流は、リアクタ40,スイッチング手段であるIGBT63,逆流防止ダイオード64,電解コンデンサ23から構成される平滑回路で滑らかな直流とされる。平滑化された直流はIPM65に加えられ、IPM内のスイッチング素子でコンプレッサ46駆動用の交流に変換される。IGBT63およびIPM65内のスイッチング素子のスイッチングは制御マイコン66によって制御される。制御マイコン66からの制御信号によりスイッチング素子のスイッチングを制御し、交流の周波数を変化させることにより、コンプレッサ46の回転数を調整する。
 本実施例では、図7の概略回路図で示されるインバータ装置を本発明の電源モジュールで構成する。基板の部品面側にラインフィルタ61や電解コンデンサ23等の電気部品を配置し、基板の半田面側に、パワー半導体モジュールとしてダイオードブリッジ62やIPM65を取り付ける。図1の分解図でいうと、IPM65はパワー半導体モジュール1に対応し、ダイオードブリッジ62はパワー半導体モジュール2の内、IPM側の素子に対応する。
 本実施例によれば、エアコンディショナ室外機のインバータ装置を軽量・小型・薄型化することができ、エアコンディショナ室外機の軽量・小型化を図ることができる。
 図10に、本発明の実施例5のエアコンディショナ室外機の全体構造を示し、図11に、電源モジュール部分を取り出して示す。図10において、室外機シャーシ42内には、熱交換器(図示せず)およびファン44を配置した熱交換器室50とコンプレッサ46を配置した機械室51とが設けられている。熱交換器室50と機械室51の間には、仕切り板を設けることなく、電源モジュール10が上下方向に配置されている。
 図11に示す電源モジュール10において、基板(プリント基板)20の電気部品を配置した第1の面側(部品面側、図の右側)には、電源用の電解コンデンサ23,コンプレッサ用の電解コンデンサ24,リアクタ40などの電気部品が配置されている。また、コンプレッサ用の配線、フェライトコアを介してAC入力コネクタ28を取り付けたAC入力用の配線が取り付けられている。基板20の第2の面側(半田面側、図の左側)には、スペーサ26を介してパワー半導体モジュール12が取り付けられている。パワー半導体モジュール12は、パワー半導体14と高熱伝導絶縁材16とアルミ製等の放熱性金属板18とを一体化して構成されている。パワー半導体モジュール12の放熱性金属板18には、金属製のカバー30がネジ31止めなどにより取り付けられ、パワー半導体14からの熱は金属製のカバー30から放熱される。金属製のカバー30の反対側には樹脂製のケース32が取り付けられ、基板20は金属製のカバー30と樹脂製のケース32とで密封されている。
 図10に示すように、電源モジュール10は、エアコンディショナ室外機の上下方向で、かつ、金属製のカバー30が熱交換器室50側、すなわちファン44側に来るように配置される。そして、ファン44からの風が金属製のカバー30の表面を通る。
 本実施例によれば、従来の仕切り板43を設けた位置に電源モジュール10を設けるので、仕切り板43が不要となる。また、パワー半導体モジュール12に接続した金属製のカバー30をファン44側に配置したので、ファン44からの風が金属製のカバー30を通過し、冷却効果が向上する。さらに、金属製のカバー30を室外機シャーシ42の上下に渡って配置することにより、室外機シャーシ42の上部から応力が加わっても、室外機の強度を保つことができる。
10 電源モジュール
12 パワー半導体モジュール
14 パワー半導体
16 高熱伝導絶縁材
18 放熱性金属板
20 基板(プリント基板)
22 コーティング材(シリコン)
23 電解コンデンサ(電源用)
24 電解コンデンサ(コンプレッサ用)
25 アイレット
26 スペーサ
27 フェライトコア
28 AC入力コネクタ
30 金属製のカバー
31 ネジ
32 樹脂製のケース
33 金属製のケース
35 大型ヒートシンク
36 耐熱カバー
37 樹脂製のカバー
38 ワイヤーハーネス
40 リアクタ
42 室外機シャーシ
43 仕切り板
44 ファン
46 コンプレッサ
50 熱交換器室
51 機械室
61 ラインフィルタ
62 ダイオードブリッジ
63 IGBT
64 逆流防止ダイオード
65 IPM
66 制御マイコン

Claims (11)

  1.  基板と、当該基板上に配置される電気部品と、パワー半導体を備える電源モジュールであって、
     前記基板は、前記電気部品が配置される第1の面側と、当該第1の面側とは反対側であって、回路パターンが設けられ前記電気部品の端子と接続が行われる第2の面側とを備え、
     前記パワー半導体は、前記基板の第2の面側に配置され、
     前記パワー半導体には、前記基板とは反対側に、熱伝導性絶縁材を介して放熱性金属板が取り付けられ、
     前記放熱性金属板には、金属製のカバーが密着して取り付けられている電源モジュール。
  2.  請求項1に記載の電源モジュールにおいて、
     前記パワー半導体と、前記熱伝導性絶縁材と、前記放熱性金属板とが一体化されてパワー半導体モジュールを形成していることを特徴とする電源モジュール。
  3.  請求項1または請求項2に記載の電源モジュールにおいて、
     前記電気部品および前記基板の第1の面側を収容するケースを備え、
     前記ケースと前記金属製のカバーとで、密閉構造を形成していることを特徴とする電源モジュール。
  4.  請求項3に記載の電源モジュールにおいて、
     前記ケースは、樹脂製であることを特徴とする電源モジュール。
  5.  請求項3に記載の電源モジュールにおいて、
     前記ケースは、金属製であり、
     前記金属製のケースと前記金属製のカバーとは端部において密着していることを特徴とする電源モジュール。
  6.  請求項1乃至請求項5の何れか一つに記載の電源モジュールにおいて、
     前記放熱性金属板および前記金属製のカバーは、アルミまたは銅製であることを特徴とする電源モジュール。
  7.  請求項1乃至請求項6の何れか一つに記載の電源モジュールにおいて、
     前記放熱性金属板と前記金属製のカバーとの間には、伝熱グリースが塗布されていることを特徴とする電源モジュール。
  8.  請求項1乃至請求項7の何れか一つに記載の電源モジュールにおいて、
     前記放熱性金属板には、金属製のカバーが着脱可能に取り付けられていることを特徴とする電源モジュール。
  9.  請求項1乃至請求項8の何れか一つに記載の電源モジュールにおいて、
     前記基板と電気部品とパワー半導体とでインバータ装置を構成するものであり、
     前記パワー半導体は、ダイオードブリッジとスイッチング素子であることを特徴とする電源モジュール。
  10.  室外機シャーシ内に、熱交換器およびファンを配置した熱交換器室とコンプレッサを配置した機械室とを設け、前記熱交換器室と前記機械室とを仕切り板で区切ったエアコンディショナ室外機であって、
     前記仕切り板の上方に、請求項1乃至9の何れか一つに記載の電源モジュールを、前記基板の第1の面側が下方となるように、かつ、前記金属製のカバーと前記室外機シャーシとが空間を有するように配置したエアコンディショナ室外機。
  11.  室外機シャーシ内に、熱交換器およびファンを配置した熱交換器室とコンプレッサを配置した機械室とを設けたエアコンディショナ室外機であって、
     前記熱交換器室と前記機械室の間に、請求項1乃至9の何れか一つに記載の電源モジュールを、上下方向で、かつ、金属製のカバーが熱交換器室側に位置するように配置したエアコンディショナ室外機。
PCT/JP2015/058079 2015-03-18 2015-03-18 電源モジュールおよびそれを用いたエアコンディショナ室外機 WO2016147345A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017505947A JP6458131B2 (ja) 2015-03-18 2015-03-18 エアコンディショナ室外機
PCT/JP2015/058079 WO2016147345A1 (ja) 2015-03-18 2015-03-18 電源モジュールおよびそれを用いたエアコンディショナ室外機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/058079 WO2016147345A1 (ja) 2015-03-18 2015-03-18 電源モジュールおよびそれを用いたエアコンディショナ室外機

Publications (1)

Publication Number Publication Date
WO2016147345A1 true WO2016147345A1 (ja) 2016-09-22

Family

ID=56919776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058079 WO2016147345A1 (ja) 2015-03-18 2015-03-18 電源モジュールおよびそれを用いたエアコンディショナ室外機

Country Status (2)

Country Link
JP (1) JP6458131B2 (ja)
WO (1) WO2016147345A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148613A (ja) * 2017-03-01 2018-09-20 日本電産株式会社 電源装置及び冷蔵庫
CN110601552A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及电器设备
WO2023157129A1 (ja) * 2022-02-16 2023-08-24 三菱電機株式会社 室外機
WO2023188106A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 ヒートポンプ室外機

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697686A (ja) * 1992-08-21 1994-04-08 Matsushita Electric Ind Co Ltd 混成集積回路装置
JP2000014169A (ja) * 1998-06-26 2000-01-14 Hitachi Ltd インバータ装置
JP2003153552A (ja) * 2001-11-07 2003-05-23 Matsushita Electric Ind Co Ltd インバータ回路の配設構造と配設方法及び圧縮機
JP2006156465A (ja) * 2004-11-25 2006-06-15 Nec Corp 放熱部材および該放熱部材を有する屋外用通信機器
JP2007163012A (ja) * 2005-12-13 2007-06-28 Toshiba Kyaria Kk 冷凍サイクル装置の室外機
JP2010002160A (ja) * 2008-06-23 2010-01-07 Daikin Ind Ltd 冷凍装置
WO2012060123A1 (ja) * 2010-11-02 2012-05-10 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
JP2012200071A (ja) * 2011-03-22 2012-10-18 Yaskawa Electric Corp モータ制御装置
WO2013121999A1 (ja) * 2012-02-14 2013-08-22 東芝キヤリア株式会社 電子部品の冷却装置及びその冷却装置を備えた冷凍サイクル装置の熱源機

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697686A (ja) * 1992-08-21 1994-04-08 Matsushita Electric Ind Co Ltd 混成集積回路装置
JP2000014169A (ja) * 1998-06-26 2000-01-14 Hitachi Ltd インバータ装置
JP2003153552A (ja) * 2001-11-07 2003-05-23 Matsushita Electric Ind Co Ltd インバータ回路の配設構造と配設方法及び圧縮機
JP2006156465A (ja) * 2004-11-25 2006-06-15 Nec Corp 放熱部材および該放熱部材を有する屋外用通信機器
JP2007163012A (ja) * 2005-12-13 2007-06-28 Toshiba Kyaria Kk 冷凍サイクル装置の室外機
JP2010002160A (ja) * 2008-06-23 2010-01-07 Daikin Ind Ltd 冷凍装置
WO2012060123A1 (ja) * 2010-11-02 2012-05-10 三菱電機株式会社 電動式パワーステアリング用パワーモジュールおよびこれを用いた電動式パワーステアリング駆動制御装置
JP2012200071A (ja) * 2011-03-22 2012-10-18 Yaskawa Electric Corp モータ制御装置
WO2013121999A1 (ja) * 2012-02-14 2013-08-22 東芝キヤリア株式会社 電子部品の冷却装置及びその冷却装置を備えた冷凍サイクル装置の熱源機

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018148613A (ja) * 2017-03-01 2018-09-20 日本電産株式会社 電源装置及び冷蔵庫
CN110601552A (zh) * 2018-06-13 2019-12-20 重庆美的制冷设备有限公司 高集成智能功率模块及电器设备
WO2023157129A1 (ja) * 2022-02-16 2023-08-24 三菱電機株式会社 室外機
WO2023188106A1 (ja) * 2022-03-30 2023-10-05 三菱電機株式会社 ヒートポンプ室外機

Also Published As

Publication number Publication date
JP6458131B2 (ja) 2019-01-23
JPWO2016147345A1 (ja) 2018-01-18

Similar Documents

Publication Publication Date Title
JP4404726B2 (ja) 車載用電力変換装置
US7848104B2 (en) Power module
WO2016031462A1 (ja) パワー半導体モジュール
JP2008061374A (ja) 電力変換装置
US8908374B2 (en) Electronic device and power converter provided with electronic device
US9412680B2 (en) Semiconductor module and electrically-driven vehicle
JP6458131B2 (ja) エアコンディショナ室外機
JP6615326B2 (ja) モータ駆動装置および空気調和機
WO2022215357A1 (ja) 半導体装置
JP2019134669A (ja) インバータ
JP2008061375A (ja) 電力変換装置
JP2013115410A (ja) 電力変換装置、およびそれを備えた空気調和装置
JP4093479B2 (ja) 電源装置
WO2016084579A1 (ja) 電子機器
JPWO2013084416A1 (ja) 電力変換装置
JP2005136211A (ja) 冷却装置
JP6872976B2 (ja) 電力半導体装置、及び電力変換装置
JP2012119401A (ja) 放熱構造を有する電装品モジュール
JP2009253034A (ja) 半導体素子冷却装置
TWI692294B (zh) 變頻器
US20200236811A1 (en) Thermally conductive insert element for electronic unit
JP6471417B2 (ja) 冷却ジャケット
JP2013153065A (ja) 発熱素子の放熱構造及びそれを備えた空気調和機
JP2016101071A (ja) 半導体装置
WO2022215352A1 (ja) パワーモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885441

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885441

Country of ref document: EP

Kind code of ref document: A1