WO2006060851A1 - Magnesium alloys for hydrogen storage - Google Patents

Magnesium alloys for hydrogen storage Download PDF

Info

Publication number
WO2006060851A1
WO2006060851A1 PCT/AU2005/001825 AU2005001825W WO2006060851A1 WO 2006060851 A1 WO2006060851 A1 WO 2006060851A1 AU 2005001825 W AU2005001825 W AU 2005001825W WO 2006060851 A1 WO2006060851 A1 WO 2006060851A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
nickel
alloy
refining element
melt
Prior art date
Application number
PCT/AU2005/001825
Other languages
English (en)
French (fr)
Inventor
Arne Kristian Dahle
Kazuhiro Nogita
Original Assignee
The University Of Queensland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004907006A external-priority patent/AU2004907006A0/en
Priority to ES05813455T priority Critical patent/ES2387989T3/es
Priority to JP2007543658A priority patent/JP5300265B2/ja
Priority to EP05813455A priority patent/EP1838887B1/en
Priority to PL05813455T priority patent/PL1838887T3/pl
Priority to US11/720,493 priority patent/US9234264B2/en
Application filed by The University Of Queensland filed Critical The University Of Queensland
Priority to CN2005800418420A priority patent/CN101120111B/zh
Priority to AU2005313837A priority patent/AU2005313837B2/en
Priority to CA2588807A priority patent/CA2588807C/en
Priority to BRPI0518400-2A priority patent/BRPI0518400B1/pt
Priority to DK05813455.2T priority patent/DK1838887T3/da
Priority to KR1020077015479A priority patent/KR101311469B1/ko
Priority to AT05813455T priority patent/ATE554193T1/de
Publication of WO2006060851A1 publication Critical patent/WO2006060851A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0042Intermetallic compounds; Metal alloys; Treatment thereof only containing magnesium and nickel; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • This invention relates to hydrogen storage materials and particularly relates to a cast alloy which can be used as a hydrogen storage material.
  • Hydrogen energy is attracting a great deal of interest and is expected to eventually be a replacement for petroleum based fuels.
  • the main obstacle being the development of a viable hydrogen storage system. While hydrogen can be stored as a compressed gas or a liquid, the former occupies a large volume and the latter is energy intensive to produce, reducing any environmental benefits.
  • both gaseous and liquid hydrogen are potentially dangerous should the pressure storage vessels be ruptured.
  • a safer, more compact method of hydrogen storage is to store it within solid materials.
  • metals and inter-metallic compounds can absorb large quantities of hydrogen in a safe, solid form.
  • the stored hydrogen can be released when required by simply heating the alloy.
  • Storage of hydrogen as a solid hydride can provide a greater weight percentage storage than compressed gas.
  • a desirable hydrogen storage material must have a high storage capacity relative to the weight of the material, a suitable desorption temperature, good kinetics, good reversibility and be of a relatively low cost.
  • Pure magnesium has sufficient theoretical hydrogen carrying capacity at 7.6 wt %. However the resulting hydride is too stable and the temperature must be increased to 278°C for the hydrogen to be released. This desorption temperature makes such materials economically unattractive. A lower desorption temperature is desirable to not only reduce the amount of energy required to release the hydrogen but to enable the efficient utilisation of exhaust heat from vehicles to release the hydrogen.
  • the compound Mg 2 Ni has a reduced hydrogen storage capacity of 3.6 wt % but, importantly, the temperature required for hydrogen release is decreased to less than that of pure magnesium.
  • the mechanism of hydrogen storage is believed to involve the formation of (solid) hydride particles, i.e. MgH 2 and Mg 2 NiH 4 in the microstructure.
  • the invention may provide a method of producing a hydrogen storage material including the steps of forming a magnesium-nickel melt having additions of at least one refining element, the refining element being able to promote a refined eutectic structure with increased twinning in the magnesium-nickel intermetallic phase and solidifying the magnesium-nickel melt to a hydrogen storage material with said refined eutectic structure.
  • the magnesium-nickel melt is formed by the steps of adding nickel to the magnesium melt to produce a hypoeutectic magnesium-nickel alloy within the range of greater than zero and up to 50 wt % Ni homogenising the magnesium-nickel melt, and adding the refining element or elements to the melt under a protective atmosphere at addition rates of greater than zero and up to 2 wt% and preferably greater than zero and less than 500 ppm.
  • the refining element preferably has an atomic radius within the range of about 1-1.65 times that of magnesium. It is understood that refining elements with atomic radii within this range will provide the refined eutectic structure discussed above.
  • the preferred refining elements are selected from the group comprising Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb, Cs and rare earth elements such as Eu. Zirconium is added to grain refine the magnesium crystals and when used requires at least one more of the elements from the list.
  • the invention may provide a method of producing a hydrogen storage material comprising the steps of forming a magnesium nickel melt having additions of at least one refining element having an atomic radius within the range of 1-1.65 times that of magnesium, the refining element being provided in the melt at addition rates greater than zero and up to 2 wt% and preferably less than 500 ppm, and solidifying the magnesium nickel melt.
  • the solidifying step in both aspects is preferably a casting step where the metal is cast by a suitable procedure such as pouring into preheated metallic moulds coding the casting.
  • the solidifying step may be other controlled solidifying processes.
  • the alloy is then subject to activation and use as a hydrogen storage material.
  • the alloy is preferably used in the cast condition.
  • a hydrogen storage alloy comprising or consisting essentially of greater than zero and up to 50 wt % Ni; greater than zero and up to 2 wt % of a refining element, the refining element having an atomic radius of about 1-1.65 times that of magnesium; and the balance magnesium and incidental impurities.
  • the preferred refining additions are selected from the group of Zr, Na, K, Ba, Ca, Sr, La, Y, Yb, Rb, Cs and rare earth elements with addition rates greater than zero and up to 2 wt% and preferably greater than zero and less than 500 ppm.
  • the more preferred addition elements are sodium and zirconium.
  • the material is produced by a casting solidification process, it is a more commercially viable process for large scale mass production of hydrogen storage components.
  • Fig 1 is a pressure composition temperature graph of an unmodified magnesium alloy with 14% Ni,
  • Fig 2 is a graph summarising activation time at 350 0 C and 2 MPa for Examples 1-6,
  • Fig 3 is a graph of PCT absorption data at 350 0 C and 2 MPa for Examples 1-6,
  • Fig 4 is a graph of PCT absorption data at 300 0 C and 2 MPa for Examples 1-6,
  • Fig 5 is a graph of PCT absorption data at 250 0 C and 2 MPa for Examples 1-6,
  • Fig 6 is a graph summarising PCT absorption capacity at 350°C and 2 MPa
  • Fig 7 is a graph illustrating the relationship between absorption and desorption for unmodified Mg 14 Ni alloy
  • Fig 8 is a graph of the desorption data at 0.2 MPa for Examples 1-6.
  • Fig 9(a)-9(h) are SEM micrographs of the as cast alloys of Examples 1-6.
  • the hydrogen storage material is produced according to the invention by forming a magnesium-nickel by adding nickel to molten magnesium.
  • the nickel addition may be up to 50 wt % nickel but the preferred addition rate provides an alloy melt of 10-20 wt % nickel.
  • the melt is then mixed to provide a homogenised mix.
  • magnesium-nickel alloy trace elements of crystallography modifying material are added.
  • the elements added are those that refine the magnesium phase and promote a refined eutectic structure with increased twinning in the magnesium-nickel intermetallic phase.
  • the range of elements satisfying the above two criteria have atomic radii around that of magnesium and up to 1.65 times that of magnesium and include Zr, K, Na, Ba, Ca, Sr, La, Y, Yb, Rb, Cs and rare earth metal elements.
  • the preferred elements used are sodium and/or zirconium.
  • the melt is again stirred to homogenise the mix and held under a protective atmosphere during the homogenising step.
  • the protective atmosphere is any atmosphere which prevents the magnesium from combusting. Typical atmospheres include SF 6 and HFC- 134a.
  • the metal is then cast by a suitable casting procedure such as by pouring into preheated metallic moulds.
  • the hydrogen absorption of metal hydride alloys is characterised using equilibrium pressure composition temperature (PCT) data. This data is obtained by keeping an alloy sample at constant temperature while precisely measuring the quantity of hydrogen sorbed and the pressure at which sorption occurs.
  • the quantity of hydrogen sorbed is expressed in terms of alloy composition, either as an atomic ratio of hydrogen atoms to the number of atoms in the base metal alloy or as the capacity of hydrogen in the material on a weight percent basis.
  • PCT pressure-composition-isotherm
  • the activation time (At) of the alloy can be determined.
  • the "Activation time” indicates how quickly an alloy becomes “ready” for use as a hydrogen absorption alloy. Shorter activation times save energy and are indicative of fundamental material differences in the kinetic performance of the alloys. Note that activation is generally required only once in the life-cycle of a hydrogen storage alloy. Once the alloy has been activated, the hydrogen absorption time is significantly reduced as evidenced by the last cycles of the run.
  • the magnesium nickel alloy of Example 1 was modified by the addition of a refining element.
  • Table 1 shows the refining element and the addition rate of that element.
  • activation time can be reduced to about 40% of that of the unmodified alloy (from ⁇ hours to 3.8hours). This is of practical significance but more importantly it is indicative of the superior kinetic performance of the modified alloy.
  • Figure 6 is a summary of the maximum hydrogen absorption capacity taken from the results shown in Figure 5. It can be seen that at 350 0 C the maximum hydrogen storage capacity is similar (around 7 wt%) for all samples cast.
  • the modified alloys are superior and the maximum hydrogen capacity can be increased more than 1 wt% relative to the unmodified alloy (from 5.3 wt% to 6.5 wt%).
  • desorption temperature usually, at a fixed pressure, absorption temperature is lower than desorption temperature. The exact temperatures will vary depending on the pressure.
  • Figure 7 shows the relationship between adsorption and desorption for the unmodified Mg 14Ni alloy at 0.2 MPa.
  • the adsorption start temperature 1 is usually higher than the adsorption end temperature 2.
  • the desorption start temperature 3 can be seen to be higher than the desorption end temperature 4.
  • the desorption end temperature (plateau region of Figure 8) at 0.2 MPa decreases approximately 20 0 C with modification.
  • the desorption temperature for the Mg Ni alloy can be reduced by trace element additions.
  • the addition of the modifying elements increases the amount of internal interfacial areas within the material, the amount of stacking faults and the density of dislocations/twins in the solidified magnesium-nickel alloy. It is believed that the refining element should have an atomic radii in the range mentioned above in order to achieve the metallurgical effects in the as cast metal.
  • the increase in dislocations caused by the additions is illustrated in the SEM micrographs Figures 9(a)-9(h).
  • Figure 9(a) is the SEM for Mg 14 Ni unmodified; Fig 9(b) is the SEM for the same alloy with Zr addition; Figure 9(c) is the SEM for low sodium addition; Fig 9(d) is the SEM for high sodium addition; Figure 9(e) is the SEM for calcium addition; and Fig 9(f) is the SEM for Eu addition.
  • Fig 9(g) is the Mg 14 Ni unmodified alloy of higher magnification; Fig 9(h) is the low sodium addition at the higher magnification of Fig 9(g).
  • Figure 9 shows SEM secondary electron images of hypo-eutectic Mg-14wt%Ni alloys of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
PCT/AU2005/001825 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage WO2006060851A1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
AT05813455T ATE554193T1 (de) 2004-12-07 2005-12-02 Magnesiumlegierungen für die wasserstoffspeicherung
AU2005313837A AU2005313837B2 (en) 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage
EP05813455A EP1838887B1 (en) 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage
PL05813455T PL1838887T3 (pl) 2004-12-07 2005-12-02 Stopy magnezu do magazynowania wodoru
US11/720,493 US9234264B2 (en) 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage
ES05813455T ES2387989T3 (es) 2004-12-07 2005-12-02 Aleaciones de magnesio para el almacenamiento de hidrógeno
CN2005800418420A CN101120111B (zh) 2004-12-07 2005-12-02 用于储氢的镁合金
JP2007543658A JP5300265B2 (ja) 2004-12-07 2005-12-02 水素吸蔵のためのマグネシウム合金
CA2588807A CA2588807C (en) 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage
BRPI0518400-2A BRPI0518400B1 (pt) 2004-12-07 2005-12-02 Método de produção de um material de armazenamento de hidrogênio, liga hipoeutética de magnésio-níquel e material de armazenamento de hidrogênio formado a partir de uma liga de magnésio-níquel fundida
DK05813455.2T DK1838887T3 (da) 2004-12-07 2005-12-02 Magnesiumlegeringer til hydrogenlagring
KR1020077015479A KR101311469B1 (ko) 2004-12-07 2005-12-02 수소 저장을 위한 마그네슘 합금

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2004907006 2004-12-07
AU2004907006A AU2004907006A0 (en) 2004-12-07 Magnesium alloys for hydrogen storage

Publications (1)

Publication Number Publication Date
WO2006060851A1 true WO2006060851A1 (en) 2006-06-15

Family

ID=36577594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2005/001825 WO2006060851A1 (en) 2004-12-07 2005-12-02 Magnesium alloys for hydrogen storage

Country Status (16)

Country Link
US (1) US9234264B2 (zh)
EP (1) EP1838887B1 (zh)
JP (1) JP5300265B2 (zh)
KR (1) KR101311469B1 (zh)
CN (1) CN101120111B (zh)
AT (1) ATE554193T1 (zh)
AU (1) AU2005313837B2 (zh)
BR (1) BRPI0518400B1 (zh)
CA (1) CA2588807C (zh)
DK (1) DK1838887T3 (zh)
ES (1) ES2387989T3 (zh)
MY (1) MY151876A (zh)
PL (1) PL1838887T3 (zh)
TW (1) TWI393786B (zh)
WO (1) WO2006060851A1 (zh)
ZA (1) ZA200704897B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
EP3325190A4 (en) * 2015-07-23 2019-08-14 Hydrexia Pty Ltd MG-BASED ALLOY FOR HYDROGEN STORAGE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103820688B (zh) * 2014-03-04 2015-09-23 南京信息工程大学 一种稀土镁电极材料及制备方法
US9878279B2 (en) 2016-02-22 2018-01-30 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude System for purifying hydrogen from a metal hydride storage system
CN113789462B (zh) * 2021-08-24 2023-04-07 上海交通大学 一种储氢镁合金及其制备方法
CN113695536B (zh) * 2021-08-24 2022-05-27 上海交通大学 一种储氢镁合金的制备方法
CN115287490B (zh) * 2022-08-01 2023-04-07 南京工程学院 一种镁基水解制氢复合材料及其制备方法
CN116103552A (zh) * 2022-09-07 2023-05-12 中南大学 一种挤压型Mg-Ni-Gd系镁基储氢功能材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034918A1 (en) * 1994-06-14 1995-12-21 Ovonic Battery Company, Inc. ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS
WO2002002835A1 (en) 2000-07-05 2002-01-10 Energy Conversion Devices, Inc. High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
JP2003193166A (ja) * 2001-12-27 2003-07-09 Toyota Motor Corp Mg系水素吸蔵合金及びその製造方法
US6689193B1 (en) * 1999-06-24 2004-02-10 Honda Giken Kogyo Kabushiki Kaisha Hydrogen storage alloy powder and method for producing the same
EP1511099A1 (en) * 2003-08-26 2005-03-02 HERA, Hydrogen Storage Systems, Inc. Ca, Mg and Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
WO2005100624A1 (en) * 2004-04-15 2005-10-27 Johnson Matthey Public Limited Company Hydrogen storage composition

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4016836A (en) * 1975-09-08 1977-04-12 Billings Energy Research Corporation Hydride fuel system
US4358432A (en) * 1976-07-26 1982-11-09 Matsushita Electric Industrial Co., Ltd. Material for hydrogen absorption and desorption
FR2407170A1 (fr) * 1977-10-27 1979-05-25 Raffinage Cie Francaise Procede combine de stockage et de production d'hydrogene et applications de ce procede
CA1177624A (en) 1980-04-03 1984-11-13 Hee M. Lee Hydrogen storage
DE3125276C2 (de) * 1981-06-25 1983-06-16 Mannesmann AG, 4000 Düsseldorf Metall-Hydridspeicher
US4402187A (en) * 1982-05-12 1983-09-06 Mpd Technology Corporation Hydrogen compressor
DE3337754C2 (de) 1983-10-18 1986-05-28 Daimler-Benz Ag, 7000 Stuttgart Wasserstoffspeicher
JPS60262830A (ja) 1984-06-11 1985-12-26 Toyota Central Res & Dev Lab Inc 水素貯蔵シ−ト
KR920010422B1 (ko) 1987-05-15 1992-11-27 마쯔시다덴기산교 가부시기가이샤 수소흡수저장전극 및 그 제조법
US5006328A (en) * 1987-11-17 1991-04-09 Kuochih Hong Method for preparing materials for hydrogen storage and for hydride electrode applications
DE3741625A1 (de) * 1987-12-04 1989-06-15 Hydrid Wasserstofftech Druckbehaelter fuer die speicherung von wasserstoff
US5494538A (en) * 1994-01-14 1996-02-27 Magnic International, Inc. Magnesium alloy for hydrogen production
US5501917A (en) * 1994-01-28 1996-03-26 Hong; Kuochih Hydrogen storage material and nickel hydride batteries using same
US5733680A (en) * 1994-01-28 1998-03-31 Hong; Kuochih Method for making hydride electrodes and hydride batteries suitable for various temperatures
US5695530A (en) * 1994-03-14 1997-12-09 Hong; Kuochih Method for making high charging efficiency and fast oxygen recombination rechargeable hydride batteries
US5766799A (en) * 1994-03-14 1998-06-16 Hong; Kuochih Method to reduce the internal pressure of a sealed rechargeable hydride battery
US5554456A (en) 1994-06-14 1996-09-10 Ovonic Battery Company, Inc. Electrochemical hydrogen storage alloys and batteries containing heterogeneous powder particles
JPH0869796A (ja) 1994-08-22 1996-03-12 Hon Kuochii 水素保存材料、水素化物電極、水素保存装置、及びニッケル−水素化物電池
CA2206252A1 (en) 1994-12-22 1996-06-27 Lu Ming Magnesium mechanical alloys for thermal hydrogen storage
US6103024A (en) 1994-12-22 2000-08-15 Energy Conversion Devices, Inc. Magnesium mechanical alloys for thermal hydrogen storage
US5840440A (en) 1995-11-20 1998-11-24 Ovonic Battery Company, Inc. Hydrogen storage materials having a high density of non-conventional useable hydrogen storing sites
US5906792A (en) * 1996-01-19 1999-05-25 Hydro-Quebec And Mcgill University Nanocrystalline composite for hydrogen storage
EP0931612B1 (en) * 1996-09-26 2003-11-19 Toyota Jidosha Kabushiki Kaisha Method of producing titanium-based hydrogen absorbing alloy powder
JP3626298B2 (ja) * 1996-10-03 2005-03-02 トヨタ自動車株式会社 水素吸蔵合金およびその製造方法
DE19758384C2 (de) * 1997-12-23 2002-08-01 Geesthacht Gkss Forschung Verfahren zur Herstellung nanokristalliner Metallhydride
CN1078909C (zh) * 1997-12-26 2002-02-06 丰田自动车株式会社 吸氢合金、吸氢合金的制造方法
US6099811A (en) * 1998-02-13 2000-08-08 Energy Conversion Devices, Inc. Self-heating metal-hydride hydrogen storage system
JPH11310844A (ja) * 1998-04-30 1999-11-09 Toyota Motor Corp 水素吸蔵合金および水素吸蔵合金電極
JP3528599B2 (ja) * 1998-05-21 2004-05-17 トヨタ自動車株式会社 水素吸蔵合金
US6471935B2 (en) * 1998-08-06 2002-10-29 University Of Hawaii Hydrogen storage materials and method of making by dry homogenation
JP2988479B1 (ja) 1998-09-11 1999-12-13 松下電器産業株式会社 アルカリ蓄電池と水素吸蔵合金電極及びその製造法
JP2955662B1 (ja) * 1998-09-29 1999-10-04 工業技術院長 三元系水素吸蔵合金およびその製造方法
DE69937584T2 (de) 1998-12-28 2008-09-18 Neomax Co., Ltd. Verfahren und Apparat zum Einführen von Seltenerde-Legierungspuder
JP3247933B2 (ja) 1999-02-05 2002-01-21 東芝電池株式会社 水素吸蔵合金、水素吸蔵合金の製造方法およびアルカリ二次電池
US6591616B2 (en) 1999-11-06 2003-07-15 Energy Conversion Devices, Inc. Hydrogen infrastructure, a combined bulk hydrogen storage/single stage metal hydride hydrogen compressor therefor and alloys for use therein
US6305442B1 (en) 1999-11-06 2001-10-23 Energy Conversion Devices, Inc. Hydrogen-based ecosystem
US6627148B1 (en) 1999-11-06 2003-09-30 Energy Conversion Devices, Inc. Safe, ecomomical transport of hydrogen in pelletized form
US6328821B1 (en) 1999-11-22 2001-12-11 Energy Conversion Devices, Inc. Modified magnesium based hydrogen storage alloys
US6478844B1 (en) * 1999-12-13 2002-11-12 Energy Conversion Devices, Inc. Method for making hydrogen storage alloy
SE0001835D0 (sv) * 2000-05-17 2000-05-17 Hoeganaes Ab Method for improving the properties of alloy powders for NiMH batteries
US6726783B1 (en) 2000-05-18 2004-04-27 Energy Conversion Devices, Inc. High storage capacity alloys having excellent kinetics and a long cycle life
US6656246B2 (en) * 2000-05-31 2003-12-02 Honda Giken Kogyo Kabushiki Kaisha Process for producing hydrogen absorbing alloy powder, hydrogen absorbing alloy powder, and hydrogen-storing tank for mounting in vehicle
US6500583B1 (en) 2000-07-17 2002-12-31 Energy Conversion Devices, Inc. Electrochemical hydrogen storage alloys for nickel metal hydride batteries, fuel cells and methods of manufacturing same
US6508866B1 (en) * 2000-07-19 2003-01-21 Ergenics, Inc. Passive purification in metal hydride storage apparatus
WO2002043170A2 (en) 2000-11-27 2002-05-30 Koninklijke Philips Electronics N.V. Metal hydride battery material with high storage capacity
JP4846090B2 (ja) * 2000-12-14 2011-12-28 日本重化学工業株式会社 Mg系高吸蔵量水素吸蔵合金
JP4705251B2 (ja) * 2001-01-26 2011-06-22 本田技研工業株式会社 Mhタンク
JP4828714B2 (ja) 2001-04-03 2011-11-30 株式会社三徳 水素吸蔵合金、その製造方法及びニッケル水素二次電池用負極
TW499777B (en) * 2001-04-16 2002-08-21 Asia Pacific Fuel Cell Tech Supply device for use with hydrogen source
JP3677220B2 (ja) * 2001-04-26 2005-07-27 日本重化学工業株式会社 マグネシウム系水素吸蔵合金
JP4181416B2 (ja) * 2001-04-27 2008-11-12 株式会社三徳 Cr−Ti−V系水素吸蔵合金の製造法
JP3867539B2 (ja) * 2001-10-02 2007-01-10 トヨタ自動車株式会社 水素透過膜およびその製造方法
JP2003147472A (ja) * 2001-11-02 2003-05-21 Toyota Central Res & Dev Lab Inc マグネシウム系水素吸蔵合金
JP2003147471A (ja) * 2001-11-02 2003-05-21 Toyota Central Res & Dev Lab Inc マグネシウム系水素吸蔵合金
JP4183959B2 (ja) * 2002-03-22 2008-11-19 株式会社日本製鋼所 水素吸蔵合金の製造方法
US6709497B2 (en) * 2002-05-09 2004-03-23 Texaco Ovonic Hydrogen Systems Llc Honeycomb hydrogen storage structure
CA2389939A1 (en) * 2002-06-25 2003-12-25 Alicja Zaluska New type of catalytic materials based on active metal-hydrogen-electronegative element complexes for reactions involving hydrogen transfer
JP4147462B2 (ja) * 2002-08-07 2008-09-10 トヨタ自動車株式会社 多層構造水素吸蔵体
US6918430B2 (en) * 2002-08-14 2005-07-19 Texaco Ovonic Hydrogen Systems Llc Onboard hydrogen storage unit with heat transfer system for use in a hydrogen powered vehicle
GB0219112D0 (en) * 2002-08-16 2002-09-25 Johnson Matthey Plc Reactive milling process
CN100361329C (zh) * 2002-10-21 2008-01-09 皇家飞利浦电子股份有限公司 高存储容量储氢材料
EP1558520B1 (en) * 2002-11-01 2011-01-26 Savannah River Nuclear Solutions, LLC Complex hydrides for hydrogen storage
CN1243841C (zh) 2002-11-26 2006-03-01 有研稀土新材料股份有限公司 贮氢合金及其快冷厚带制备工艺
CN1266296C (zh) 2002-12-06 2006-07-26 中国科学院金属研究所 一种镁基纳米/非晶复合储氢材料及其制备
JP3685460B2 (ja) * 2002-12-27 2005-08-17 三井金属鉱業株式会社 水素吸蔵合金
WO2004065292A2 (en) * 2003-01-20 2004-08-05 Vellore Institute Of Technology A system for production of hydrogen with metal hydride and a method
JP4678130B2 (ja) * 2003-01-20 2011-04-27 株式会社Gsユアサ 密閉型ニッケル水素蓄電池とその製造法
US7175826B2 (en) * 2003-12-29 2007-02-13 General Electric Company Compositions and methods for hydrogen storage and recovery
US7115247B2 (en) * 2003-09-30 2006-10-03 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
CN1272460C (zh) 2003-10-10 2006-08-30 桂林电子工业学院 RE-Mg-Ni三元或三元以上体系储氢合金及其非晶合金的制备方法
CA2542286A1 (en) 2003-10-10 2005-04-21 Japan Science And Technology Agency Light element complex hydride film and method for synthesis thereof
US7128997B2 (en) * 2003-10-30 2006-10-31 Hewlett-Packard Development Company, L.P. Method and system for dispensing pelletized fuel for use with a fuel cell
US20050126663A1 (en) 2003-12-11 2005-06-16 Fetcenko Michael A. Catalyzed hydrogen desorption in Mg-based hydrogen storage material and methods for production thereof
US7211541B2 (en) * 2003-12-11 2007-05-01 Ovonic Hydrogen Systems Llc Mg—Ni hydrogen storage composite having high storage capacity and excellent room temperature kinetics
US7344676B2 (en) * 2003-12-19 2008-03-18 Ovonic Hydrogen Systems Llc Hydrogen storage materials having excellent kinetics, capacity, and cycle stability
CN1272461C (zh) 2003-12-21 2006-08-30 浙江大学 一种非晶态储氢复合材料及其制造方法
WO2005080617A1 (ja) 2004-02-20 2005-09-01 Japan Metals And Chemicals Co., Ltd. Mg-REM-Ni系水素吸蔵合金の製造方法
JP2005268386A (ja) * 2004-03-17 2005-09-29 Mitsubishi Electric Corp リング型焼結磁石およびその製造方法
JPWO2005098071A1 (ja) 2004-04-08 2008-02-28 株式会社 東北テクノアーチ 水素処理により合金の結晶粒を微細化する方法
CN1268779C (zh) 2004-04-19 2006-08-09 广州有色金属研究院 一种纳米晶稀土贮氢合金的制备方法及装置
EP1749599B1 (en) 2004-04-30 2015-09-09 Hitachi Metals, Ltd. Methods for producing raw material alloy for rare earth magnet, powder and sintered magnet
CN1256456C (zh) 2004-05-12 2006-05-17 浙江大学 一种低温可逆储氢镁基复合材料
US20060027272A1 (en) * 2004-08-04 2006-02-09 Tomlinson Jeremy J Gas shut-off valve assembly
US20060057019A1 (en) 2004-09-16 2006-03-16 Kwo Young Hydrogen storage alloys having reduced PCT hysteresis
DE112005002271B4 (de) 2004-09-23 2012-03-15 General Motors Corp. Verfahren zum Speichern von Wasserstoff in Wasserstoffspeichersystemen
CN1754972A (zh) 2004-09-29 2006-04-05 内蒙古稀奥科镍氢动力电池有限公司 一种MH-Ni电池用高容量稀土-镁基多相贮氢合金及其制备方法
CN100352957C (zh) 2004-11-02 2007-12-05 内蒙古稀奥科镍氢动力电池有限公司 一种MH-Ni电池用稀土-镁基复合贮氢合金的制备方法
DK1838887T3 (da) 2004-12-07 2012-07-09 Hydrexia Pty Ltd Magnesiumlegeringer til hydrogenlagring
DE102004061286B4 (de) 2004-12-14 2021-09-16 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Wasserstoff speicherndes Kompositmaterial sowie eine Vorrichtung zur reversiblen Speicherung von Wasserstoff
CA2529433C (en) * 2004-12-17 2009-12-01 University Of New Brunswick Hydrogen storage materials
JP4575140B2 (ja) 2004-12-24 2010-11-04 株式会社豊田自動織機 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム
KR100837291B1 (ko) 2005-01-07 2008-06-11 히다치 막셀 가부시키가이샤 수소발생재료, 수소의 제조장치 및 연료전지
DE102005003623A1 (de) 2005-01-26 2006-07-27 Studiengesellschaft Kohle Mbh Verfahren zur reversiblen Speicherung von Wasserstoff
WO2006085542A1 (ja) 2005-02-08 2006-08-17 Mitsui Mining & Smelting Co., Ltd. 低Co水素吸蔵合金
JP2006228536A (ja) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd アルカリ蓄電池用水素吸蔵合金及びアルカリ蓄電池
WO2006095339A1 (en) 2005-03-07 2006-09-14 C. En. Limited Process for accumulating hydrogen
WO2006114728A1 (en) 2005-04-25 2006-11-02 Koninklijke Philips Electronics N.V. Hydrogen storage material and method for preparation of such a material
JP5119578B2 (ja) 2005-07-04 2013-01-16 株式会社Gsユアサ ニッケル水素電池およびその製造方法
ES2265282B1 (es) 2005-07-06 2008-02-01 Consejo Superior Investigaciones Cientificas Hidruro de magnesio nanoparticulado, procedimiento de preparacion y utilizacion.
US7951326B2 (en) 2005-08-11 2011-05-31 Gs Yuasa International Ltd. Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy
US8021606B2 (en) 2005-08-11 2011-09-20 Gs Yuasa International Ltd. Hydrogen storage alloy, its production method, hydrogen storage alloy electrode, and secondary battery
CN100537415C (zh) 2005-08-12 2009-09-09 比亚迪股份有限公司 金属氢化合物水解制氢催化剂及其制备方法以及使用该催化剂的制氢方法
WO2007021055A1 (en) 2005-08-17 2007-02-22 Daum Energy Co., Ltd. Hydrogen storage alloy and apparatus for storing hydrogen using the same
CN100351413C (zh) 2005-12-01 2007-11-28 广州有色金属研究院 一种高容量稀土镁基贮氢合金制备方法
US8628609B2 (en) 2008-03-03 2014-01-14 Fredy Ornath Hydrogen storage tank
EP2539624A4 (en) 2010-02-24 2017-05-10 Hydrexia Pty Ltd Hydrogen release system
WO2011103625A1 (en) 2010-02-25 2011-09-01 Sebel Furniture Ltd Furniture fastener interconnection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995034918A1 (en) * 1994-06-14 1995-12-21 Ovonic Battery Company, Inc. ELECTROCHEMICAL HYDROGEN STORAGE ALLOYS AND BATTERIES FABRICATED FROM Mg CONTAINING BASE ALLOYS
US6689193B1 (en) * 1999-06-24 2004-02-10 Honda Giken Kogyo Kabushiki Kaisha Hydrogen storage alloy powder and method for producing the same
WO2002002835A1 (en) 2000-07-05 2002-01-10 Energy Conversion Devices, Inc. High storage capacity, fast kinetics, long cycle-life, hydrogen storage alloys
JP2003193166A (ja) * 2001-12-27 2003-07-09 Toyota Motor Corp Mg系水素吸蔵合金及びその製造方法
EP1511099A1 (en) * 2003-08-26 2005-03-02 HERA, Hydrogen Storage Systems, Inc. Ca, Mg and Ni containing alloys, method for preparing the same and use thereof for gas phase hydrogen storage
WO2005100624A1 (en) * 2004-04-15 2005-10-27 Johnson Matthey Public Limited Company Hydrogen storage composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200377, Derwent World Patents Index; AN 2003-918501, XP008113499 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US10215338B2 (en) 2010-02-24 2019-02-26 Hydrexia Pty Ltd. Hydrogen release system
EP3325190A4 (en) * 2015-07-23 2019-08-14 Hydrexia Pty Ltd MG-BASED ALLOY FOR HYDROGEN STORAGE
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Also Published As

Publication number Publication date
DK1838887T3 (da) 2012-07-09
ZA200704897B (en) 2008-09-25
JP2008523240A (ja) 2008-07-03
MY151876A (en) 2014-07-14
PL1838887T3 (pl) 2012-11-30
AU2005313837A1 (en) 2006-06-15
US9234264B2 (en) 2016-01-12
EP1838887B1 (en) 2012-04-18
TWI393786B (zh) 2013-04-21
AU2005313837B2 (en) 2011-02-17
JP5300265B2 (ja) 2013-09-25
CA2588807A1 (en) 2006-06-15
KR101311469B1 (ko) 2013-09-24
ES2387989T3 (es) 2012-10-05
BRPI0518400A2 (pt) 2008-11-18
CN101120111B (zh) 2012-02-22
BRPI0518400B1 (pt) 2018-01-16
TW200630493A (en) 2006-09-01
EP1838887A4 (en) 2009-09-02
CA2588807C (en) 2015-10-06
US20090123325A1 (en) 2009-05-14
CN101120111A (zh) 2008-02-06
EP1838887A1 (en) 2007-10-03
KR20070086955A (ko) 2007-08-27
ATE554193T1 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
AU2005313837B2 (en) Magnesium alloys for hydrogen storage
Douglass The formation and dissociation of magnesium alloy hydrides and their use for fuel storage in the hydrogen car
Cao et al. Advanced high-pressure metal hydride fabricated via Ti–Cr–Mn alloys for hybrid tank
Dornheim et al. Hydrogen storage in magnesium-based hydrides and hydride composites
JP3677220B2 (ja) マグネシウム系水素吸蔵合金
WO2017011882A1 (en) Mg-x alloy
Zhang et al. Effect of Y partially substituting La on the phase structure and hydrogen storage property of La–Mg–Ni alloys
CN113215467B (zh) 加氢站用固态储氢材料及其制备方法与应用
Tan et al. Strategies to enhance hydrogen storage performances in bulk Mg-based hydrides
GB1593764A (en) Nickel mischmetal calcium alloys for hydrogen storage
Zhang et al. Precursor H-induced pyrolysis towards hydrogen storage properties enhancement of Mg–Y–Zn alloys with diverse Y level
Wei et al. Investigation on the gaseous hydrogen storage properties of as-cast Mg95-xAl5Yx (x= 0–5) alloys
US4259110A (en) Process for storing of hydrogen and the use thereof, particularly in engines
Srivastava et al. On the synthesis and characterization of some new AB5 type MmNi4. 3Al0. 3Mn0. 4, LaNi5-xSix (x= 0.1, 0.3, 0.5) and Mg− x wt% CFMmNi5− y wt% Si hydrogen storage materials
EP1753886B1 (en) Hydrogen storage composition
US20080199395A1 (en) Reversible Hydrogen Storage Composition, Method of Making and Uses of Said Composition
US5656105A (en) Calcium-aluminum system hydrogen absorbing alloy
CA1177624A (en) Hydrogen storage
CA1098887A (en) Nickel-mischmetal-calcium alloys for hydrogen storage
EP0127161A1 (en) Hydrogen storage metal material
JPS5841334B2 (ja) 4元系水素吸蔵用合金
EP4129534A1 (en) Ab5-type based hydrogen storage alloys, methods of preparation and uses thereof
Manjin Kim et al. The Independent Effects of Cooling Rate and Na Addition on Hydrogen Storage Properties in Hypo-eutectic Mg Alloys
JP5229875B2 (ja) 水素貯蔵合金
CN117026034A (zh) 一种快速吸放氢的镁镍钛储氢合金及其制备方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005313837

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2588807

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4013/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 11720493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007543658

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580041842.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005313837

Country of ref document: AU

Date of ref document: 20051202

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005313837

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077015479

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005813455

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005813455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0518400

Country of ref document: BR