JP4575140B2 - 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム - Google Patents

水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム Download PDF

Info

Publication number
JP4575140B2
JP4575140B2 JP2004374354A JP2004374354A JP4575140B2 JP 4575140 B2 JP4575140 B2 JP 4575140B2 JP 2004374354 A JP2004374354 A JP 2004374354A JP 2004374354 A JP2004374354 A JP 2004374354A JP 4575140 B2 JP4575140 B2 JP 4575140B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage tank
filling
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004374354A
Other languages
English (en)
Other versions
JP2006177535A (ja
Inventor
勝義 藤田
大五郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2004374354A priority Critical patent/JP4575140B2/ja
Priority to PCT/JP2005/023606 priority patent/WO2006075501A1/ja
Publication of JP2006177535A publication Critical patent/JP2006177535A/ja
Application granted granted Critical
Publication of JP4575140B2 publication Critical patent/JP4575140B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/45Hydrogen technologies in production processes

Description

本発明は、水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システムに関する。
近年、地球温暖化を抑制する意識が高まり、特に車両から排出される二酸化炭素の低減を目的として燃料電池電気自動車や水素エンジン自動車等の水素を燃料とした水素自動車の開発が盛んである。水素自動車としては、水素供給源として水素が充填された水素貯蔵タンクを搭載するものが一般的である。
水素の貯蔵、輸送の方法として、ある温度、圧力の条件のもとで水素を吸蔵して水素化物になり、必要時に別の温度、圧力の条件のもとで水素を放出する「水素吸蔵合金」といわれる金属の利用が着目されている。そして、水素吸蔵合金を使用した水素貯蔵タンクでは、同じ容積で水素貯蔵量を増大させることができるため、注目されている。
水素貯蔵タンクへの水素の充填は、水素ステーションと呼ばれるガソリンスタンドやLPガススタンドに対応する設備で行われる。従って、水素貯蔵タンク内の水素の残量が燃料電池や水素エンジンへの供給に支障を来す程、少なくなる前に水素を充填する必要があり、そのためには水素貯蔵タンク内の水素量を求める必要がある。水素量を求める方法には、水素貯蔵タンク内の圧力及び温度と水素吸蔵量との関係を予め実験で求めて数式化し、水素貯蔵タンク内の圧力及び温度を測定するとともにその数式を使用して水素量を演算するのが一般的である。
しかし、水素吸蔵合金は、水素の吸蔵−放出を何回も繰り返したり、あるいは被毒されたりすること等により劣化する。従って、水素吸蔵合金の劣化(水素吸蔵量の低下)を考慮せずに水素量を演算すると、誤差が大きくなる。
従来、水素吸蔵合金が劣化すると、水素を吸蔵させる際に特有の流量変化が生じるのを利用して、水素貯蔵タンク(水素貯蔵器)への供給水素流量を測定し、その値から水素吸蔵合金の劣化を判断する装置が開示されている(特許文献1参照)。
また、水素吸蔵合金の劣化検知手段として、少なくとも1回前の水素充填時に、温度検知手段により検知された水素吸蔵合金の温度を記憶しておき、水素充填時の温度が前記記憶した水素吸蔵合金の温度より高いときに水素吸蔵合金の劣化と判断するものが提案されている(特許文献2参照。)。
特開2001−266915号公報(明細書の段落[0008]、[0021]、図3) 特開2002−228098公報号(明細書の段落[0010]、[0046])
ところが、特許文献1の装置は、アルコールやガソリン等を改質器で改質して生成された水素を充填する水素貯蔵タンクに収容された水素吸蔵合金の劣化を検知するものであり、劣化の主原因が改質ガスに含まれるCO、CO、O等の不純物が水素吸蔵合金に付着するものであり、一般の劣化にそのまま適用し難い。また、水素を吸蔵させる際に特有の流量変化を比較するための基準データは、水素充填開始時の水素貯蔵タンク内の圧力によって異なる。従って、水素充填開始時の水素貯蔵タンク内の圧力が任意の状態から充填する場合に対応するためには、基準データのマップの作製に手間がかかるとともにマップが複雑になる。
また、特許文献2に記載の劣化検知手段は、水素吸蔵合金の温度の検出精度が劣化判断の検出に大きな影響を与える。水素吸蔵合金の温度は場所によって異なり、温度測定箇所は点(ポイント)のため、精度を高くするには多数箇所で測定する必要があり、構造が複雑になる。
本発明は、前記の問題に鑑みてなされたものであって、その目的は、水素貯蔵タンクに収容された水素吸蔵材の劣化を従来技術より簡単な構成で、しかも精度良く検出することができる水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素吸蔵材劣化検知方法を提供することにある。また、他の目的は前記水素吸蔵材劣化検知装置を備えた水素貯蔵供給システムを提供することにある。
前記の目的を達成するため、請求項1に記載の発明は、水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクの水素吸蔵材劣化検知装置である。そして、前記水素貯蔵タンク内の圧力を検出する圧力検出手段と、前記水素貯蔵タンク内の温度を検出するタンク内温度検出手段と、前記熱交換器を流れる熱媒体の前記熱交換器の入口及び出口における温度を検出する温度検出手段とを備えている。また、前記温度検出手段で検出された前記入口及び出口における前記熱媒体の温度と、前記熱媒体の流量とに基づいて前記水素貯蔵タンクへの水素充填時において冷却に使用された熱量を演算する冷却熱量演算手段と、前記水素貯蔵タンク内に収容された水素吸蔵材のPCT曲線に基づいて水素充填開始時の前記水素吸蔵材に吸蔵されている水素量を求める充填開始時水素吸蔵量演算手段とを備えている。また、前記水素貯蔵タンク内の温度における前記PCT曲線に基づいて水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに、前記水素貯蔵タンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量と、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力に水素が充填されるまでに要した冷却熱量とに基づいて劣化の有無を判断する劣化判断手段とを備えている。ここで、「水素吸蔵材のPCT曲線」とは、水素吸蔵材の圧力、吸蔵水素量及び温度の関係を示す曲線を意味する。
この発明では、水素貯蔵タンクへの水素充填時に、水素吸蔵材の冷却に使用された熱量(冷却熱量)を冷却熱量演算手段により演算する。冷却熱量は、水素貯蔵タンクに内蔵された熱交換器を流れる熱媒体の前記熱交換器の入口及び出口における温度と、熱媒体の流量とに基づいて演算される。そして、劣化判断手段は、水素貯蔵タンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量と、前記冷却熱量とに基づいて水素吸蔵材の劣化の有無を判断する。劣化判断手段は、水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに劣化判断を行う。従って、水素貯蔵タンクに収容された水素吸蔵材の劣化を従来技術より簡単な構成で、しかも精度良く検出することができる。
請求項2に記載の発明は、請求項1に記載の発明において、前記所定圧力は、前記水素貯蔵タンクに水素が100%に相当する量充填された時点の圧力である。従って、この発明では、水素吸蔵材の劣化の判断に使用する冷却熱量を演算する際の所定圧力を、水素が100%より少ない量水素吸蔵材に吸蔵された時点の圧力とした場合に比較して、精度が高くなる。
請求項3に記載の発明は、請求項1に記載の発明において、前記劣化判断手段は、前記水素貯蔵タンク内の圧力が前記水素吸蔵材のプラトー領域より低圧であるときに水素充填が開始された際に、前記劣化の有無を判断する。水素吸蔵材のPCT曲線から、水素充填開始時の水素吸蔵量を求めるとき、プラトー領域に比較してプラトー領域より低圧領域の方が精度が高くなるため、この発明では、水素吸蔵材の劣化判断の精度が高くなる。
請求項4に記載の発明は、水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクの水素吸蔵材劣化検知方法である。そして、前記水素吸蔵材のPCT曲線に基づいて水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力に水素が充填されるまでに要した冷却熱量と、前記水素貯蔵タンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量から前記冷却熱量を必要とした水素充填量に対応して求められた水素吸蔵材の非劣化状態での必要冷却熱量とに基づいて劣化の有無を判断する。この発明の水素吸蔵材劣化検知方法では、水素吸蔵材の劣化を従来技術より簡単な構成で、精度良く検出することができる。
請求項5に記載の発明は、水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクと、前記熱交換器に前記水素吸蔵材を加熱あるいは冷却する熱媒体を供給する熱媒体供給手段と、請求項1〜請求項3のいずれか一項に記載の水素貯蔵タンクの水素吸蔵材劣化検知装置とを備えている。この発明の水素貯蔵供給システムは、水素吸蔵材の劣化を精度良く検出することができる。
本発明によれば、水素貯蔵タンクに収容された水素吸蔵材の劣化を従来技術より簡単な構成で、しかも精度良く検出することができる。
(第1の実施形態)
以下、本発明を燃料電池の水素源として使用するとともに、燃料電池の冷却用の熱媒体を水素貯蔵タンクの水素吸蔵材の加熱、冷却用の熱媒体として共通に使用する構成の燃料電池システムに具体化した一実施形態を図1〜図4にしたがって説明する。図1は、燃料電池システムの概略構成図である。
燃料電池システムは、燃料電池11、水素貯蔵タンク12、コンプレッサ13及びラジエータ14を備えている。水素貯蔵タンク12、燃料電池11及びラジエータ14は熱媒流路15を介して連結されている。
燃料電池11は、例えば固体高分子型の燃料電池からなり、水素貯蔵タンク12から供給される水素と、コンプレッサ13から供給される空気中の酸素とを反応させて直流の電気エネルギー(直流電力)を発生する。定常運転時に燃料電池11を冷却可能にするため、前記熱媒流路15の一部が熱交換部15aとして燃料電池11内に配置されている。
水素貯蔵タンク12は、タンク本体16と、水素吸蔵材としての水素吸蔵合金MHを内部に収容した水素吸蔵用ユニット17と、タンク本体16内で水素吸蔵用ユニット17を支持する支持体18とを備えている。また、水素貯蔵タンク12内には、水素吸蔵合金MHとの間で熱交換を行う熱交換器19が設けられている。熱交換器19は水素吸蔵用ユニット17の一部を構成し、水素吸蔵合金MHとの間の熱交換の効率を高めるための多数のフィン20を備えている。また、熱交換器19の流路は熱媒流路15の一部を構成している。この実施形態では熱媒体としてLLC(ロングライフクーラント)が使用されている。水素吸蔵合金MHとしては公知のものを使用できる。
水素貯蔵タンク12は、燃料電池11の水素供給ポート(図示せず)に管路21を介して連結され、燃料電池11に水素を供給する。水素貯蔵タンク12は、タンク本体16内に水素吸蔵合金MHのプラトー領域の圧力より高い圧力、例えば、約35MPaの高圧で水素を貯蔵し、図示しないバルブで圧力を減圧して燃料電池11に一定の圧力(例えば、0.3MPa程度)で供給する。水素貯蔵タンク12は、水素充填口22aを備えた管路22に連結され、管路22から水素貯蔵タンク12に水素ガスの充填が可能になっている。水素貯蔵タンク12にはタンク本体16内の圧力を検出する圧力検出手段としての圧力センサ23aと、タンク本体16内の温度を検出するタンク内温度検出手段としての温度センサ23bとが設けられている。
コンプレッサ13は、燃料電池11の酸素供給ポート(図示せず)に管路24を介して連結され、燃料電池11に圧縮空気を供給する。コンプレッサ13は図示しないエアクリーナでゴミ等が除去された空気を圧縮して管路24に吐出するようになっている。
ラジエータ14は、モータ25により回転されるファン25aを備え、ラジエータ14からの放熱が効率よく行われるようになっている。
熱媒流路15には、ラジエータ14の入口側にポンプ26が設けられている。ポンプ26は、熱媒流路15内の熱媒体をラジエータ14の入口に側へ送るように設けられている。熱媒流路15は、熱交換部15aの入口及びラジエータ14の出口の中間に設けられた分岐部で分岐されて、ラジエータ14の入口に連結される部分15bを有し、分岐部には電磁三方弁27が設けられている。熱交換部15aの出口側は部分15bに連結されている。電磁三方弁27は、熱媒体が燃料電池11の熱交換部15aの入口側に供給される状態と、熱交換部15aに供給されずに部分15bを流れる状態とに切り換え可能に構成されている。
水素貯蔵タンク12の熱交換器19の入口19a側は、部分15bに電磁三方弁28を介して連結されている。また、熱交換器19の出口19b側は、部分15bの前記電磁三方弁28が設けられた部分より下流側に連結されている。電磁三方弁28は、部分15bを流れる熱媒体を熱交換器19の入口19a側へのみ通過可能な第1の状態と、部分15bを流れる熱媒体を熱交換器19の入口19a側ではなく部分15bの下流側へのみ通過可能な第2の状態とに切換可能に構成されている。
熱交換器19の入口19aには熱媒体の温度を検出する温度センサT1が、熱交換器19の出口19bには熱媒体の温度を検出する温度センサT2がそれぞれ設けられている。両温度センサT1,T2が、熱媒体の熱交換器19の入口19a及び出口19bにおける温度を検出する温度検出手段を構成する。また、入口19aと電磁三方弁28との間には熱媒体の流量を測定する流量計29が設けられている。
水素貯蔵タンク12に収容された制御装置30は、冷却熱量演算手段、充填開始時水素吸蔵量演算手段及び劣化判断手段としてのマイクロコンピュータ31を内蔵する。マイクロコンピュータ31はメモリ(ROMおよびRAM)32を備える。圧力センサ23a、温度センサ23b、温度センサT1,T2、流量計29及び燃料電池11の温度を検出する温度センサ(図示せず)は、制御装置30の入力側(入力インタフェイス)にそれぞれ電気的に接続されている。コンプレッサ13、モータ25、ポンプ26、電磁三方弁27,28は、制御装置30の出力側(出力インタフェイス)にそれぞれ電気的に接続されている。コンプレッサ13、モータ25、ポンプ26、電磁三方弁27,28は、制御装置30からの指令によって運転あるいは切換え制御されるようになっている。ポンプ26は制御装置30からの指令信号に基づいて駆動、停止及び流量変更が可能になっている。
メモリ32には、図3に示すような水素吸蔵合金のPCT曲線がマップとして記憶されている。また、メモリ32には、水素貯蔵タンク12に、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量Q0が記憶されている。この実施形態では基準冷却熱量Q0として、前記所定圧力が、水素貯蔵タンク12に100%に相当する量、水素が充填された時点の圧力に設定されている。また、基準冷却熱量Q0は、図4(a)に示すように、冷却熱量と充填時間の関係とを示すマップとして記憶されている。
マイクロコンピュータ31は、温度センサT1,T2で検出された熱交換器19の入口19aにおける熱媒体の温度Tin(℃)と、出口19bにおける熱媒体の温度Tout(℃)と、熱媒体の流量Q(L/min)とに基づいて水素貯蔵タンク12への水素充填時において冷却に使用された冷却熱量W(kW)を次式(1)により演算する。このときマイクロコンピュータ31は冷却熱量演算手段として機能する。
W=(Tout−Tin)・C・ρ・Q/1000/60・・・(1)
但し、Cは熱媒体の比熱(kJ/(kg・℃))、ρは熱媒体の比重(kg/m)である。また、(1)式中「/60」は、流量計の出力値が「分」単位なのを「1秒単位」のサンプリング処理に対応させるためのものである。
マイクロコンピュータ31は、水素充填開始時に水素吸蔵合金MHに吸蔵されている水素量を、水素貯蔵タンク12内の圧力と、水素貯蔵タンク12内の温度とから水素吸蔵合金のPCT曲線を用いて演算する。このときマイクロコンピュータ31は、水素貯蔵タンク12内に収容された水素充填開始時の水素吸蔵合金MHに吸蔵されている水素量を求める充填開始時水素吸蔵量演算手段として機能する。
マイクロコンピュータ31は、水素充填開始時の水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域の状態又はプラトー領域より低圧であるときに、基準冷却熱量Q0と、水素吸蔵開始時から前記所定圧力に水素が充填されるまでに要した冷却熱量Wとに基づいて水素吸蔵合金MHの劣化の有無を判断する。このときマイクロコンピュータ31は、水素吸蔵合金MHの劣化の有無を判断する劣化判断手段として機能する。
この実施形態では、燃料電池11及びラジエータ14の熱交換部15aが、水素貯蔵タンク12に内蔵された水素吸蔵合金MHを加熱あるいは冷却する熱媒体を供給する熱媒体供給手段を構成する。そして、水素貯蔵タンク12と、ラジエータ14と、燃料電池11の熱交換部15aと、前記のように構成された水素吸蔵材劣化検知装置とによって水素貯蔵供給システムが構成されている。
次に前記のように構成された装置の作用を説明する。
燃料電池11は、環境温度が燃料電池11の発電が可能な予め設定された温度(設定温度)以上の場合に通常運転が行われる。制御装置30は環境温度を計測する温度センサ(図示せず)の検出信号に基づいて、環境温度が前記設定温度以上であれば始動時から通常運転を行い、環境温度が設定温度未満の場合には暖機を行った後、通常運転に移行する。
通常運転時には、水素貯蔵タンク12から水素が燃料電池11のアノード電極側に供給される。また、コンプレッサ13が駆動されて、空気が所定の圧力に加圧されて燃料電池11のカソード電極側に供給される。
また、固体高分子型燃料電池は、80℃程度で効率よく発電が行われるが、水素と酸素との化学反応は発熱反応のため、発電を継続すると、反応熱のため燃料電池11の温度が80℃程度の適正温度より上昇する。この温度上昇を防止するため、熱媒流路15内をラジエータ14で冷却された熱媒体が循環される。また、水素吸蔵合金MHからの水素の放出は吸熱反応のため、反応を円滑に進めるためには水素吸蔵合金MHを加熱する必要があり、燃料電池11の冷却後の温まった熱媒体が水素吸蔵合金MHの加熱に使用される。
制御装置30は、燃料電池11の運転時には、電磁三方弁27を熱媒体が熱交換部15aの入口に供給される状態に保持するとともに、水素貯蔵タンク12内の圧力を検出する圧力センサ23aの検出信号に基づいて、電磁三方弁28を切換制御する。制御装置30は、水素貯蔵タンク12内の圧力が予め設定された第1の設定圧力以下になると熱媒体が水素貯蔵タンク12を加熱する状態、即ち熱媒体が熱交換器19を流れる状態に電磁三方弁28を切り換える指令信号を出力する。また、水素貯蔵タンク12内の圧力が予め設定された第2の設定圧力以上になると、熱媒体が熱交換器19を流れない状態、即ち水素貯蔵タンク12内を流れない状態に電磁三方弁28を切り換える指令信号を出力する。制御装置30は、熱媒体による加熱を予め設定された所定時間継続しても第1の設定圧力に達しない状態になった時点で水素の充填が必要と判断する。そして、報知手段(例えばランプ等の表示部)を駆動させる。
水素貯蔵タンク12に水素ガスを充填(貯蔵)する際(水素充填時)、制御装置30は、熱媒体が燃料電池11の熱交換部15aに供給されずに部分15bを流れる状態に切り換える指令信号を電磁三方弁27へ出力し、電磁三方弁28には熱媒体を水素貯蔵タンク12の熱交換器19へ供給する状態に切り換える指令信号を出力する。従って、ラジエータ14で冷却された熱媒体は燃料電池11の熱交換部15aを経ずに水素貯蔵タンク12の熱交換器19に供給される状態となる。
そして、例えば、図示しない水素ステーションのディスペンサのカップラが水素充填口22aに連結されて、水素ステーションの水素カードルと水素貯蔵タンク12の圧力差により、水素貯蔵タンク12に水素ガスが充填される。
水素カードルから水素貯蔵タンク12内に供給された水素ガスは、水素吸蔵合金MHと反応して水素化物となって水素吸蔵合金MHに吸蔵される。水素の吸蔵反応は発熱反応であるので、水素の吸蔵反応で発生した熱を除去しないと吸蔵反応が円滑に進行しない。そこで、水素を充填する際は、熱媒流路15を流れる熱媒体が、燃料電池11を流れず、部分15b、熱交換器19を通って水素貯蔵タンク12とラジエータ14との間で循環する状態となるように、電磁三方弁27,28が切り換えられる。
マイクロコンピュータ31は、水素充填開始時の水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域の状態又はプラトー領域より低圧であるときに劣化判断を行う。次に図2のフローチャートに基づいて水素吸蔵合金MHの劣化判断の作用(手順)を説明する。
制御装置30は、水素充填時に電磁三方弁27に熱媒体が燃料電池11の熱交換部15aに供給されずに部分15bを流れる状態に切り換える指令信号を出力し、電磁三方弁28に熱媒体を水素貯蔵タンク12の熱交換器19へ供給する状態に切り換える指令信号を出力する。その後、マイクロコンピュータ31は、水素吸蔵合金MHの劣化判断処理を図2のフローチャートに示すような手順で実行する。
マイクロコンピュータ31は、先ずステップS1で圧力センサ23a及び温度センサ23bの検出信号を入力する。次にステップS2で水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域の状態又はプラトー領域より低圧であるか否かの判断を行う。そして、ステップS2で水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域の状態又はプラトー領域より低圧でなければ劣化判断処理を終了し、プラトー領域の状態又はプラトー領域より低圧であればステップS3に進み、劣化判断処理を継続する。
マイクロコンピュータ31は、ステップS3で水素充填開始時の水素吸蔵合金MHに吸蔵されている水素量を水素貯蔵タンク12内の圧力及び温度と、PCT曲線とに基づいて100%充填時(満充填時)に対する割合(%)として演算する。次にマイクロコンピュータ31はステップS4に進み、1秒毎に温度センサT1,T2及び流量計29の出力信号を入力して(1)式により冷却熱量Wを演算し、その値をメモリ32に記憶する。次にマイクロコンピュータ31はステップS5に進み、圧力センサ23aの出力信号から水素貯蔵タンク12内の圧力が所定圧力(100%充填時の圧力:例えば、35MPa)に達したか否かを判断する。そして、所定圧力に達していなければステップS4に戻りステップS4を実行する。冷却熱量Wと充填開始からの経過時間との関係は、例えば、図4(b)に示すようになる。ステップS5で所定圧力に達したか否かは、予め設定された時間経過しても所定圧力に保持されているか否かで行い、予め設定された時間経過しても所定圧力に保持されているときに所定圧力に達したと判断する。
一方、ステップS5で所定圧力に達していれば、充填終了と判断してステップS6に進む。マイクロコンピュータ31は、ステップS6でそれまでにメモリ32に記憶した冷却熱量Wの値を積算して、水素充填時において冷却に使用された合計冷却熱量Waを演算する。そして、ステップS7に進み、前記基準冷却熱量Q0と充填開始時の水素吸蔵合金MHの水素吸蔵量とから水素吸蔵合金MHが劣化していない状態での、水素充填時において冷却に必要な冷却熱量Qsを求める。具体的には、充填開始時の水素吸蔵合金MHの水素吸蔵量の割合(%)を100%から差し引いた値を基準冷却熱量Q0に掛けて冷却熱量Qsを演算する。例えば、ステップS3において水素充填開始時の水素吸蔵合金MHに吸蔵されている水素量が30%であれば、冷却熱量Qsは、100%から30%を差し引いた値の70%を基準冷却熱量Q0に掛けた値(Qs=0.7×Q0)として演算される。
次にステップS8において、マイクロコンピュータ31は前記冷却熱量Qsと合計冷却熱量Waとを比較し、合計冷却熱量Waが冷却熱量Qs未満であれば、ステップS9に進んで水素吸蔵合金MHが劣化していると判断した後、劣化判断処理を終了する。また、合計冷却熱量Waが冷却熱量Qs未満でなければ、ステップS10に進んで水素吸蔵合金MHが劣化していないと判断した後、劣化判断処理を終了する。
従って、マイクロコンピュータ31が水素貯蔵タンク12内の残存水素量を、水素貯蔵タンク12内の圧力及び温度と、PCT曲線とに基づいて演算する場合、水素吸蔵合金MHの劣化の有無を考慮して演算することにより、残存水素量を精度良く演算することができる。例えば、ステップS6,7で演算した合計冷却熱量Wa及び冷却熱量Qsの差(Qs−Wa)を求め、その値から水素吸蔵合金MHの劣化により水素吸蔵合金MHに吸蔵されなくなった水素量を推定する。そして、その水素量の分、残存水素量を少なく演算する。
この実施形態では以下の効果を有する。
(1)マイクロコンピュータ31は、水素充填開始時の水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域の状態又はプラトー領域より低圧であるときに、水素吸蔵合金MHの劣化の有無を判断する。劣化の有無判断は、非劣化状態の水素吸蔵合金MHに水素貯蔵タンク12が空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量Q0と、水素吸蔵合金MHの冷却に使用された冷却熱量(合計冷却熱量Wa)とに基づいて行われる。従って、水素貯蔵タンク12に収容された水素吸蔵合金MHの劣化を従来技術より簡単な構成で、しかも精度良く検出することができる。
(2)水素吸蔵合金MHの劣化判断に使用する基準冷却熱量Q0が、水素貯蔵タンク12に水素が100%に相当する量充填されるまでの値が用いられているため、水素がそれより少ない量充填されるまでの値を用いたときに比較して、劣化判断の精度が高くなる。
(3)水素貯蔵タンク12への水素充填時に、水素吸蔵合金MHが発する熱量を、熱交換器19に流れる熱媒体に与えられる熱量、即ち水素吸蔵合金MHの冷却に使われた熱量を基に所定時間毎に演算するとともにその値を積算して合計冷却熱量Waを求めている。従って、水素吸蔵合金MHの温度を直接測定して水素吸蔵合金MHの合計発熱量を演算するより精度が高くなる。
実施形態は前記に限定されるものではなく、例えば次のように構成してもよい。
○ 前記実施形態では水素充填時に熱交換器19で水素吸蔵合金MH側から持ち出す熱量が全て水素吸蔵合金MHの冷却に使用されるとして、水素吸蔵合金MHの劣化判断を行ったが、正確にはタンク本体16内において水素吸蔵合金MHに吸蔵されずに存在する水素ガスの冷却にも使用される。なぜならば、水素貯蔵タンク12内に水素ガスが充填される際、断熱圧縮によりタンク本体16内の水素ガスの温度が上昇するため、その温度上昇を抑制するために使用される。従って、より精度良く水素吸蔵合金MHの劣化判断を行うには、前記基準冷却熱量Q0及び合計冷却熱量Waを水素吸蔵合金MHの冷却に使用された熱量のみに補正する必要がある。この場合、前記基準冷却熱量Q0及び合計冷却熱量Waから、水素吸蔵合金MHに吸蔵されずにタンク本体16内に充填された水素ガスの冷却に使用された熱量を差し引く必要がある。劣化水素吸蔵合金MHと非劣化水素吸蔵合金MHで、充填開始時及び充填終了時の圧力及び温度がそれぞれ同じであれば、前記熱量は同じになる。従って、非劣化水素吸蔵合金MHに関して前記熱量を予め計算しておき、前記フローチャートのステップS6での合計冷却熱量Waの演算及びステップS7での基準冷却熱量Q0の演算の際に前記熱量を差し引けばよい。
○ 劣化判断手段、即ちマイクロコンピュータ31は、水素貯蔵タンク12内の圧力が水素吸蔵合金MHのプラトー領域より低圧であるときに水素充填が開始された際にのみ、水素吸蔵合金MHの劣化の有無を判断するようにしてもよい。水素吸蔵合金MHのPCT曲線から、水素充填開始時に水素吸蔵合金MHに吸蔵されている水素量を求めるとき、プラトー領域では一定温度における水素量の変化に対する水素貯蔵タンク12内の圧力変化が小さく、水素量を正確に求めるのが難しい場合がある。しかし、PCT曲線のプラトー領域より低圧の領域では、一定温度における水素量の変化に対する水素貯蔵タンク12内の圧力変化が、プラトー領域での変化に比較して大きいため、水素充填開始時の前記水素量を精度良く求めることができ、水素吸蔵合金MHの劣化判断の精度が高くなる。
○ 水素吸蔵合金MHの劣化の有無判断を行う条件を満たしているとき、水素貯蔵タンク12内の圧力及び温度の値に拘わらず直ちに、前記実施形態におけるステップS4以降の処理を実行するのではなく、水素の充填開始後、水素貯蔵タンク12内の圧力及び温度が予め設定された値に達した後、ステップS4以降の処理を行うようにしてもよい。但し、水素充填開始時に水素貯蔵タンク12内の圧力及び温度の値が前記予め設定された値より大きな場合は、直ちにステップS4以降の処理を行うようにする。この場合、前記予め設定された値に対応した基準冷却熱量Q0をメモリ32に記憶しておくことにより、基準冷却熱量Q0を水素充填開始時の水素貯蔵タンク12内の圧力及び温度に対応していちいち演算しなくて済む。
○ 水素吸蔵合金MHの劣化判断の際に冷却熱量Wを演算する場合、温度センサT1,T2及び流量計29の出力信号を入力(サンプリング)する間隔は1秒に限らない。1秒より長い間隔(例えば、数秒間隔)でサンプリングしたり、1秒より短い間隔でサンプリングしてもよい。その場合、(1)式の「/60」の部分を変更して、冷却熱量Wの演算に使用する。
○ 水素貯蔵タンク12は、水素の満充填時の圧力が水素吸蔵合金MHのプラトー領域の圧力より高い圧力となるように水素が充填される場合、その圧力は前記の圧力(35MPa)に限らず、例えば、35MPaより高くても、35MPaより低くてもよい。
○ 水素貯蔵タンク12は、水素の満充填時の圧力が水素吸蔵合金MHのプラトー領域の圧力より高い圧力、例えば、約35MPaの高圧で水素を貯蔵する構成に限らず、プラトー領域の圧力で水素を貯蔵するようにしてもよい。この場合、水素貯蔵タンク12の耐圧性を低くできる。
○ 燃料電池システムは、水素貯蔵タンク12の加熱や冷却に使用する熱媒体を、燃料電池11を冷却する熱媒体と共通にする構成において、電磁三方弁27を省略するとともに、熱媒体が常に燃料電池11内の熱交換部15aを経て水素貯蔵タンク12の熱交換器19に供給された後、ラジエータ14に戻る構成としてもよい。この場合、燃料電池11の熱交換部15aを通った熱媒体のみが水素貯蔵タンク12の熱交換器19に供給されるが、水素充填時には燃料電池11が運転されていない状態で行われるため、水素吸蔵合金MHの冷却には支障はない。この場合、電磁三方弁27を省略できるため、熱媒体の循環系の構成が簡単になる。
○ 燃料電池11は固体高分子型の燃料電池に限らず、リン酸型燃料電池やアルカリ型燃料電池等、燃料電池を冷却するのに熱媒体を使用する燃料電池であればよい。
○ 燃料電池システムは、燃料電池11と1つの水素貯蔵タンク12とが連結された構成に限らず、燃料電池11に複数の水素貯蔵タンク12から水素を供給するシステムとしてもよい。
○ 燃料電池システムは車両用に限らない。例えば、車両以外の移動体用の燃料電池システムに適用したり、家庭用のコジェネレーションシステムに適用したりしてもよい。この場合も、水素吸蔵合金MHの劣化を考慮して水素貯蔵タンク12内の残存水素量を精度良く検出することが可能になり、水素貯蔵タンク12への水素充填時期が遅れることによる不都合を抑制できる。
○ 水素貯蔵タンク12の水素吸蔵合金MHの加熱あるいは冷却に使用する熱媒体は、燃料電池11の冷却用の熱媒体と共用とする構成に限らず、燃料電池11及び水素貯蔵タンク12で独立した熱媒体の循環系を設けてもよい。
○ 水素貯蔵供給システムは、燃料電池11への水素供給手段として使用される構成に限らず、他の水素を使用する装置への水素供給手段として使用される構成としてもよい。その場合、水素貯蔵タンク12に内蔵された水素吸蔵合金MHを加熱あるいは冷却する熱媒体を供給する熱媒体供給手段は別に設けられる。
○ 熱媒体はLLCに限らず、例えば、単なる水であってもよい。
○ 水素貯蔵タンク12は燃料電池システムに限らず、水素エンジンを搭載した水素エンジン車の水素源として使用してもよい。
○ 水素貯蔵タンク12は水素吸蔵合金以外の水素吸蔵材、例えば、活性炭素繊維(activated carbon fiber)や単層カーボンナノチューブを収容した構成としてもよい。
以下の技術的思想(発明)は前記実施形態から把握できる。
(1)請求項1に記載の発明において、前記水素充填開始後の所定状態とは、前記水素貯蔵タンク内の圧力及び温度が予め設定された値に達した状態である。
(2)請求項1〜請求項3及び前記技術的思想(1)のいずれか一項に記載の発明において、前記水素貯蔵タンクは水素を燃料とする水素燃料自動車の水素源として使用される。
燃料電池システムの構成図。 水素吸蔵合金劣化判断の手順を示すフローチャート。 水素吸蔵合金のPCT曲線を示す図。 (a)は100%水素充填時の充填時間と冷却熱量との関係を示す図、(b)は水素充填時の充填時間と冷却熱量との関係を示す図。
符号の説明
MH…水素吸蔵材としての水素吸蔵合金、T1,T2…温度検出手段としての温度センサ、12…水素貯蔵タンク、19…熱交換器、19a…入口、19b…出口、23a…圧力検出手段としての圧力センサ、23b…タンク内温度検出手段としての温度センサ、31…冷却熱量演算手段、充填開始時水素吸蔵量演算手段及び劣化判断手段としてのマイクロコンピュータ。

Claims (5)

  1. 水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクの水素吸蔵材劣化検知装置であって、
    前記水素貯蔵タンク内の圧力を検出する圧力検出手段と、
    前記水素貯蔵タンク内の温度を検出するタンク内温度検出手段と、
    前記熱交換器を流れる熱媒体の前記熱交換器の入口及び出口における温度を検出する温度検出手段と、
    前記温度検出手段で検出された前記入口及び出口における前記熱媒体の温度と、前記熱媒体の流量とに基づいて前記水素貯蔵タンクへの水素充填時において冷却に使用された熱量を演算する冷却熱量演算手段と、
    前記水素貯蔵タンク内に収容された水素吸蔵材のPCT曲線に基づいて水素充填開始時の前記水素吸蔵材に吸蔵されている水素量を求める充填開始時水素吸蔵量演算手段と、
    前記水素貯蔵タンク内の温度における前記PCT曲線に基づいて水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに、前記水素貯蔵タンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量と、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力に水素が充填されるまでに要した冷却熱量とに基づいて劣化の有無を判断する劣化判断手段と
    を備えた水素貯蔵タンクの水素吸蔵材劣化検知装置。
  2. 前記所定圧力は、前記水素貯蔵タンクに100%に相当する量、水素が充填された時点の圧力である請求項1に記載の水素貯蔵タンクの水素吸蔵材劣化検知装置。
  3. 前記劣化判断手段は、前記水素貯蔵タンク内の圧力が前記水素吸蔵材のプラトー領域より低圧であるときに水素の充填が開始された際に、前記劣化の有無を判断する請求項1に記載の水素貯蔵タンクの水素吸蔵材劣化検知装置。
  4. 水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクの水素吸蔵材劣化検知方法であって、前記水素吸蔵材のPCT曲線に基づいて水素充填開始時の前記水素貯蔵タンク内の圧力が水素吸蔵材のプラトー領域の状態又はプラトー領域より低圧であるときに、前記水素充填開始時又は前記水素充填開始後の所定状態から前記所定圧力に水素が充填されるまでに要した冷却熱量と、前記水素貯蔵タンクに、空の状態から予め設定された所定圧力まで水素を充填する際に必要な基準冷却熱量から前記冷却熱量を必要とした水素充填量に対応して求められた水素吸蔵材の非劣化状態での必要冷却熱量とに基づいて劣化の有無を判断する水素貯蔵タンクの水素吸蔵材劣化検知方法。
  5. 水素吸蔵材を収容するとともに熱交換器を内蔵した水素貯蔵タンクと、前記熱交換器に前記水素吸蔵材を加熱あるいは冷却する熱媒体を供給する熱媒体供給手段と、請求項1〜請求項3のいずれか一項に記載の水素貯蔵タンクの水素吸蔵材劣化検知装置とを備えた水素貯蔵供給システム。
JP2004374354A 2004-12-24 2004-12-24 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム Expired - Fee Related JP4575140B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004374354A JP4575140B2 (ja) 2004-12-24 2004-12-24 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム
PCT/JP2005/023606 WO2006075501A1 (ja) 2004-12-24 2005-12-22 水素貯蔵タンクにおける水素吸蔵材の劣化検知装置及び劣化検知方法並びに水素貯蔵供給システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374354A JP4575140B2 (ja) 2004-12-24 2004-12-24 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム

Publications (2)

Publication Number Publication Date
JP2006177535A JP2006177535A (ja) 2006-07-06
JP4575140B2 true JP4575140B2 (ja) 2010-11-04

Family

ID=36677531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374354A Expired - Fee Related JP4575140B2 (ja) 2004-12-24 2004-12-24 水素貯蔵タンクの水素吸蔵材劣化検知装置及び水素貯蔵タンクの水素吸蔵材劣化検知方法並びに水素貯蔵供給システム

Country Status (2)

Country Link
JP (1) JP4575140B2 (ja)
WO (1) WO2006075501A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1838887B1 (en) 2004-12-07 2012-04-18 The University of Queensland Magnesium alloys for hydrogen storage
JP2008039108A (ja) * 2006-08-08 2008-02-21 Toyota Motor Corp 水素貯蔵装置
JP2008045650A (ja) * 2006-08-14 2008-02-28 Toyota Motor Corp 水素貯蔵装置
JP2008298217A (ja) * 2007-06-01 2008-12-11 Toyota Motor Corp 水素貯蔵システム
JP5489573B2 (ja) * 2009-07-30 2014-05-14 トヨタ自動車株式会社 ガス充填システム及びガス充填装置
MY165875A (en) 2010-02-24 2018-05-18 Hydrexia Pty Ltd Hydrogen release system
FR2992400B1 (fr) * 2012-06-20 2014-08-08 Centre Nat Rech Scient Systeme de stockage reversible d'hydrogene dans un materiau sous forme d'hydrure metallique comportant une pluralite de caloducs en contact thermique avec le materiau
CN103852275A (zh) * 2012-11-29 2014-06-11 浙江海得新能源有限公司 一种气水换热器换热效率测试平台以及测试方法
CN104155425B (zh) * 2014-08-27 2016-03-02 辽宁永动力能源材料有限公司 一种高精度pct测试仪及测试储氢合金材料pct的方法
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage
CN105784769B (zh) * 2016-04-29 2019-03-26 广东省特种设备检测研究院 车载储氢系统火灾模拟试验装置及试验安全距离确定方法
CN105911244B (zh) * 2016-06-22 2018-11-13 珠海格力节能环保制冷技术研究中心有限公司 一种储氢合金的性能曲线的测试方法、装置及系统
JP6731070B2 (ja) * 2016-12-14 2020-07-29 株式会社東芝 水素エネルギーシステム、水素エネルギーシステムの制御方法、及びプログラム
JP7195519B2 (ja) * 2018-04-02 2022-12-26 清水建設株式会社 水素貯蔵率推定システム及び水素貯蔵率推定方法
JP7211205B2 (ja) * 2019-03-28 2023-01-24 株式会社豊田中央研究所 水素吸蔵合金の劣化検出装置およびその劣化検出方法と、水素吸蔵放出システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198346A (ja) * 1989-01-27 1990-08-06 Suzuki Motor Co Ltd 水素吸蔵タンク内の吸蔵水素量を測定する方法
JPH0785883A (ja) * 1993-09-10 1995-03-31 Toyota Motor Corp 異常検出装置および異常時制御装置
JPH10245663A (ja) * 1997-03-04 1998-09-14 Toyota Motor Corp 水素吸蔵合金の製造方法
JP2001266915A (ja) * 2000-03-17 2001-09-28 Honda Motor Co Ltd 燃料電池運転システムにおける水素貯蔵合金再生装置
JP2002228098A (ja) * 2001-01-29 2002-08-14 Honda Motor Co Ltd 水素吸蔵合金への水素充填装置及びこれを利用した水素吸蔵合金の劣化検知装置
JP2004281243A (ja) * 2003-03-17 2004-10-07 Toyota Motor Corp 燃料電池システムおよび水素貯蔵方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198346A (ja) * 1989-01-27 1990-08-06 Suzuki Motor Co Ltd 水素吸蔵タンク内の吸蔵水素量を測定する方法
JPH0785883A (ja) * 1993-09-10 1995-03-31 Toyota Motor Corp 異常検出装置および異常時制御装置
JPH10245663A (ja) * 1997-03-04 1998-09-14 Toyota Motor Corp 水素吸蔵合金の製造方法
JP2001266915A (ja) * 2000-03-17 2001-09-28 Honda Motor Co Ltd 燃料電池運転システムにおける水素貯蔵合金再生装置
JP2002228098A (ja) * 2001-01-29 2002-08-14 Honda Motor Co Ltd 水素吸蔵合金への水素充填装置及びこれを利用した水素吸蔵合金の劣化検知装置
JP2004281243A (ja) * 2003-03-17 2004-10-07 Toyota Motor Corp 燃料電池システムおよび水素貯蔵方法

Also Published As

Publication number Publication date
JP2006177535A (ja) 2006-07-06
WO2006075501A1 (ja) 2006-07-20

Similar Documents

Publication Publication Date Title
WO2006075501A1 (ja) 水素貯蔵タンクにおける水素吸蔵材の劣化検知装置及び劣化検知方法並びに水素貯蔵供給システム
US8757223B2 (en) Hydrogen filling apparatus and hydrogen filling method
US8534327B2 (en) Gas charging apparatus and gas charging method
US20090297896A1 (en) Method of using hydrogen storage tank and hydrogen storage tank
US20080044704A1 (en) Fuel Cell System
WO2010146448A1 (en) Hydrogen filling system and hydrogen filling method
US7651807B2 (en) Fuel cell system
EP2065961B1 (en) Fuel cell system
US20090117420A1 (en) Method for judging system condition in fuel cell system
JP5424096B2 (ja) 燃料電池システム及びその制御方法
US20080238355A1 (en) Fuel cell system and operation method therefor
JP2006086117A (ja) 燃料電池システム
JP2008198534A (ja) 燃料電池システム
US8263283B2 (en) Fuel cell system and control method thereof
JP2014192047A (ja) 燃料電池車両の制御方法
JP2008039108A (ja) 水素貯蔵装置
US20110159385A1 (en) Hydrogen generator and fuel cell system including the same
JP7351607B2 (ja) 燃料電池システムおよび燃料ガス品質の判定方法
JP2002333100A (ja) 水素吸蔵タンクの水素残量検知装置及び水素供給方法
KR101910126B1 (ko) 연료전지 시스템
JP2009009791A (ja) 燃料電池システム及びその制御方法
JP2010176952A (ja) 燃料電池システム
JP4956110B2 (ja) 燃料電池システム
JP5394191B2 (ja) 燃料電池システム
JP4575766B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees