WO2005062318A1 - 電子部品 - Google Patents

電子部品 Download PDF

Info

Publication number
WO2005062318A1
WO2005062318A1 PCT/JP2004/012766 JP2004012766W WO2005062318A1 WO 2005062318 A1 WO2005062318 A1 WO 2005062318A1 JP 2004012766 W JP2004012766 W JP 2004012766W WO 2005062318 A1 WO2005062318 A1 WO 2005062318A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
terminal
exterior material
component according
drawn out
Prior art date
Application number
PCT/JP2004/012766
Other languages
English (en)
French (fr)
Inventor
Akio Hidaka
Yuichi Murano
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003420648A external-priority patent/JP4379107B2/ja
Priority claimed from JP2004126627A external-priority patent/JP4415744B2/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005062318A1 publication Critical patent/WO2005062318A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors

Definitions

  • the present invention relates to an electronic component suitably used for an electronic device such as a modem, a power supply circuit, a power supply for liquid crystal, a DC-DC converter, a power line communication device, and the like.
  • an electronic device such as a modem, a power supply circuit, a power supply for liquid crystal, a DC-DC converter, a power line communication device, and the like.
  • capacitors are often used to remove noise or cut DC components.
  • modems and the like often consist of two lines, one for data input and one for data output, and it is necessary to mount two electronic components on each line.
  • the present invention is an electronic component having a plurality of devices, a pair of terminal portions provided in each of the plurality of devices, and an exterior material covering a part of the devices and the terminal portions, and is drawn out of the exterior material.
  • a non-conductive shielding portion is provided between adjacent terminal portions.
  • FIG. 1 is a side view of a multilayer capacitor according to an embodiment of the present invention.
  • FIG. 2 is a connection configuration diagram of the multilayer capacitor according to the embodiment of the present invention.
  • FIG. 3 is a perspective view in which the multilayer capacitor according to the embodiment of the present invention is arranged.
  • FIG. 4A is a perspective view of an electronic component according to the embodiment of the present invention.
  • FIG. 4B is a front view of the electronic component according to the embodiment of the present invention.
  • FIG. 4C is a side view of the electronic component according to the embodiment of the present invention.
  • FIGS. 5, 6, and 7 are perspective views of the electronic component according to the embodiment of the present invention.
  • FIG 8 and 9 are front views of the electronic component according to the embodiment of the present invention.
  • FIG. 10A is an experimental graph showing the distance between adjacent electrodes and electrical breakdown in the embodiment of the present invention.
  • FIG. 10B is an experimental graph of a leakage current between the shielding portion and the terminal according to the embodiment of the present invention.
  • Figure 11A is a mounting diagram of a conventional electronic component.
  • FIG. 11B is a mounting diagram of the electronic component according to the embodiment of the present invention.
  • FIGS. 12 and 13 are perspective views of the multilayer capacitor according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • Figure 1 shows the multilayer capacitor 1.
  • a multilayer capacitor is an example of an element, and the concept of the present invention can be applied to various other types of elements such as a capacitor, a resistor, an inductor, and a filter that are not a multilayer capacitor.
  • the lead terminals 5 and 6 are connected to the two multilayer capacitors 1 respectively, and the two multilayer capacitors 1 and a part of the lead terminals 5 and 6 are partially covered by the exterior material 8. Molded.
  • the mounting portions 5a and 6a which are part of the lead terminals 5 and 6 and are drawn out are used for mounting on a mounting board or the like.
  • the adjacent portions of the lead terminals 5 drawn out of the exterior material Alternatively, by specifying the distance of the inter-terminal distance extension portion 9 which is an adjacent portion of the lead terminals 6 to be 0.5 mm or more, it is possible to prevent a leak current from occurring in the inter-terminal distance extension portion 9
  • the electronic component 7 can be mounted on a two-line line at a time as a four-terminal electronic component, and the size can be reduced. Also, the mounting process is shortened, the mounting cost is reduced, and the mounting area is also reduced. In addition, it can avoid adverse effects on electronic equipment.
  • the multilayer capacitor 1 will be described with reference to FIG.
  • the dielectric substrate 2 composed of a dielectric, for example, a dielectric material such as titanium oxide or barium titanate, or alumina is used. Using such a material, a dielectric substrate having a required shape and size can be formed.
  • a dielectric material such as titanium oxide or barium titanate, or alumina is used. Using such a material, a dielectric substrate having a required shape and size can be formed.
  • the internal electrode 3 is an electrode embedded inside the dielectric substrate 2.
  • a metal material containing at least one of Ni, Ag, Pd, Cu, and Au can be used.
  • Ni alone or Ni alloy is advantageous in terms of cost.
  • the surface of the internal electrode 3 may be subjected to metal plating.
  • the thickness of the internal electrodes 3 is preferably 1 to 5 m, and the interval between adjacent internal electrodes 3 is preferably 15 ⁇ m or more.
  • the internal electrode 3 is electrically connected to the terminal portion 4, and the internal electrode 3 connected only to one terminal portion 4 and the internal electrode 3 connected only to the other terminal portion 4 are opposed to each other. A main capacitance is generated between the internal electrodes 3 that are turned on.
  • terminal portions 4 connected to the internal electrodes 3 are often provided at both ends of the dielectric substrate 2, but may be provided at positions other than both ends.
  • terminal portions 4 may be formed above and below the dielectric substrate 2 and connected to the lead terminals 5 and 6.
  • Terminal part 4 has Cu, Zn, Ni,
  • the terminal portion 4 may be a terminal portion formed by bonding a metal cap to the dielectric substrate 2. Further, it is preferable that the outermost portion (outermost portion) of the terminal portion 4 is made of a conductive material having a melting point of 200 ° C. or more. With this configuration, even if the electronic component 7 is heated to a high temperature during the reflow soldering process, the terminal portion 4 does not suffer thermal damage, and a stable reflow characteristic can be obtained. Can be.
  • a plurality of dielectric sheets each having the internal electrode 3 applied and formed on one surface are prepared, and these dielectric sheets are laminated so that the electrodes do not directly contact each other. Terminal portions 4 are formed at both ends of the manufactured laminate.
  • the plurality of multilayer capacitors 1 may have different capacitance values. For example, when mounting on a paired line of an output line and an input line such as a modem or a power line communication module, if the required capacitance value of each line is different, it is more appropriate to use different capacitance values.
  • FIG. 3 illustrates the case where the number of the multilayer capacitors 1 is two, but three or more may be used.
  • a multilayer capacitor and a normal capacitor may be mixed, or a capacitor and an inductor may be mixed.
  • the lead terminals 5 and 6 are connected to the end of the multilayer capacitor 1. It is connected to the slave unit 4 and is drawn out. Therefore, even after being molded on the exterior material 8, a lead terminal that can be electrically connected to the exterior of the exterior material 8 can be drawn out. By mounting the electronic components on the mounting board via the lead terminals 5 and 6, it becomes possible to electrically connect the devices, including the multilayer capacitor 1 molded inside, to external circuits, etc. .
  • a metal material selected from at least one of Fe, Cu and Ni is suitable, and the use of these materials depends on electrical characteristics and workability. It is advantageous in terms of. Also, alloys composed of these metals may be used. Further, the surfaces of the lead terminals 5 and 6 may be subjected to a single-layer or multi-layer plating process using the above metal or alloy.
  • the lead terminals 5 and 6 have a joint portion connected to the terminal portion 4, an extending portion extending outward of the exterior material 8, and mounting portions 5 a and 6 which are bent in the middle and mounted on the mounting board. has a. Further, as shown in FIG. 4C, the mounting portions 5a and 6a may be bent in a direction approaching each other, or may be bent in a direction away from each other to form a so-called “gull wing lead”. .
  • the joining portion for joining the terminal portion 4 and the lead terminals 5, 6 is preferably the melting point is composed of 2 0 0 D C or more bonding material. As a result, it is possible to prevent the characteristics from deteriorating without being affected by thermal effects such as reflow in mounting the electronic component 7.
  • terminal portions 4 When the terminal portions 4 are provided not at both ends but at the top and bottom of the dielectric substrate 2, they may be connected alternately up and down in accordance with this, and then pulled out of the exterior material 8. .
  • the distance between the lead terminals 5 and 6 can be increased, and the balance after mounting is improved.
  • FIG. 3 shows the lead terminals of two multilayer capacitors 1 Although an example in which 5 and 6 are connected is shown, three or more multilayer capacitors 1 may be integrally molded, or an element other than the multilayer capacitor may be used.
  • the parasitic capacitance generated between the lead terminals 5 and 6 be within 0.1 to 5.0 OpF. If the parasitic capacitance is larger than 5. OpF, there is a problem that the capacitance variation becomes very large when the electronic component 7 is manufactured, while if it is smaller than 0.1 pF, the production becomes difficult. Also, if necessary, the lead terminal can be trimmed to adjust the area, and the parasitic capacitance can be adjusted ex post facto.
  • the lead terminals 5 and 6 have substantially the same shape as each other, the number of parts can be reduced, and productivity is improved. In addition, since the lead terminals 5 and 6 can be pulled out from almost the same height position of the exterior material 8 and can be drawn out to almost the same length, an electronic component with good symmetry can be manufactured. .
  • the exterior material 8 integrally molds the two multilayer capacitors 1.
  • the exterior capacitor 8 molds the multilayer capacitor 1 and a part of the lead terminals 5 and 6 to complete the final electronic component 7.
  • the external shape of the electronic component 7 shown in FIGS. 4A to 4C is a substantially rectangular parallelepiped, impact resistance can be improved by chamfering each side or corner.
  • the extraction of the lead terminals 5 and 6 makes it possible to mount the electronic component 7 on the substrate.
  • an epoxy resin having excellent electric insulation properties such as a cresol nopolak type epoxy resin, a biphenyl type epoxy resin, and a dicyclopentene type epoxy resin can be used.
  • the minimum value of the distance between the surface of the exterior material 8 and the surface of the multilayer capacitor 1, that is, the thinnest portion of the external material 8 is set to 0.1 mm or more, it is possible to improve the withstand voltage of the outer casing. it can.
  • the thickness of the exterior material 8 at the portion from which the lead terminals 5 and 6 are drawn out thicker than at other portions, the base of the lead portion of the lead terminals 5 and 6 can be strengthened. This prevents the lead terminals 5 and 6 from bending, etc. Etc. can be easily prevented.
  • the lead terminals 5 and 6 are connected to the multilayer capacitor 1 to produce an element body.
  • the two manufactured element bodies are arranged side by side and molded using a molding machine or the like, and the multilayer capacitor 1 and a part of the lead terminals 5 and 6 are covered with the exterior material 8.
  • the electronic components 7 are completed by bending the portions of the lead terminals 5 and 6 drawn out of the exterior material 8 as shown in FIG. 4C.
  • an extension In a state in which a plurality of lead terminals 5 or lead terminals 6 are drawn out of the exterior material 8, a portion sandwiched between adjacent lead terminals 5 or between lead terminals 6 is an inter-terminal distance extension portion (hereinafter referred to as an extension).
  • Part) 9 4A to 4C show an example in which two multilayer capacitors 1 are arranged in parallel, and the extended portion 9 corresponds to a portion sandwiched between two lead terminals 6 in FIG. 4B.
  • the electronic component 7 molded with the exterior material 8 there are two portions, an extension portion 9 formed by the lead terminals 5 and an extension portion 9 formed by the lead terminals 6. Extension 9 is present.
  • the adjacent distance of the extension portion 9 be 0.5 mm or more and 5 mm or less.
  • the adjacent distance By setting the adjacent distance to 0.5 mm or more, there is no occurrence of leakage current or reduction in insulation resistance between the drawn lead terminals, no short circuit between the mounted lines, and There is no adverse effect on electronic equipment.
  • it if it is larger than 5 mm, it is not preferable because the element interval becomes too wide and the miniaturization of electronic components is hindered.
  • the shielding portion 10 is provided in the extension portion 9 between the lead terminals, and prevents the occurrence of a leak current or the like between the lead terminals.
  • the shielding portion 10 may be a protrusion integrally formed with the exterior material 8, and may be formed of a non-conductive insulating material separately.
  • the formed member may be formed by bonding, fitting, or the like. Forming integrally with the exterior material 8 is preferable because the number of steps can be reduced.
  • an adhesive resin may be filled in a bonding portion between the separate member and the exterior material 8. Further, a coating made of silicon rubber or the like may be formed on the exposed surface of the shielding portion 10.
  • FIG. 6 which is a perspective view of the bottom surface of the electronic component 7
  • a shielding portion 10 is provided on the extension portion 9 over the entire portion where the lead terminals 5 and 6 are drawn out of the exterior material 8. Preferably, it is formed.
  • adjacent terminal portions are manufactured as shown in FIG. 6, it is possible to prevent the occurrence of a leak current or the like in all portions where the lead terminals 5 or the lead terminals 6 are adjacent to each other.
  • the thickness of the shielding portion 10 (that is, the protruding height) is larger than the thickness of the lead terminals 5 and 6 drawn out of the exterior material 8. Since the thickness of the shielding portion 10 is greater than the thickness of the lead terminals 5 and 6, leakage current between the lead terminals 5 or between adjacent lead terminals 6 or a decrease in insulation resistance is ensured. There is a merit that can be prevented. It is preferable that the thickness of the shielding portion 10 is 0.2 mm or more larger than the thickness of the lead terminal. As will be described in the experimental results later, the leak current can be reliably prevented by having an extra thickness of 0.2 mm or more.
  • FIG. 6 shows a case where the mounting portions 5a and 6a of the lead terminals 5 and 6 are formed on the bottom surface of the electronic component 7, and the thickness of the shielding portion 10 is larger than the thickness of the lead terminals 5 and 6.
  • An example is shown below.
  • the electronic component 7 having the shielding portion 10 on the bottom surface can be mounted.
  • FIG. 7 illustrates the above configuration using lead terminals 6.
  • Lead terminal 6 Is bent toward the outside of the electronic component, so that the two lead terminals 6 extend outwardly adjacent to each other.
  • the shielding portion 10 is formed so as to have a thickness enough to shield up to the tip of the lead terminal 6.
  • the shielding portion 10 may be formed integrally with the exterior material 8, or the shielding portion 10 having a predetermined thickness may be formed later by bonding, fitting, or bonding to the exterior material 8.
  • the shielding portion 10 made of an electrically insulating material between the lead terminals 5 or between the lead terminals 6 over the entire area where the lead terminals 5 and 6 are adjacent to each other, the leakage current between the lead terminals can be reduced. It is possible to prevent generation and reduction of insulation resistance.
  • FIG. 8 shows a configuration in which the lead terminal 6 is taken as an example, and the shape of the lead terminal 6 at the portion pulled out from the exterior material 8 has a portion with a wider distance between adjacent portions than the vicinity of the portion near the lead-out portion from the exterior material 8.
  • An electronic component 7 is shown. Comparing the adjacent distance 1 1 in the vicinity of the lead-out section with the adjacent distance 1 2 in the mounting section, as is clear from FIG. 7, the adjacent distance 1 2 in the mounting section is larger. That is, over the majority of the lead terminals 6 drawn out of the exterior material 8, the distance between adjacent terminals is sufficiently large. With this configuration, the distance between the adjacent lead terminals 5 and 6 can be made sufficiently larger than the distance between the multilayer capacitors 1 which are the elements molded inside the exterior material 8.
  • a bent portion 13 is provided on the lead terminals 5 and 6 as shown in FIG.
  • This bend 1 3 May be formed by bending lead terminals 5 and 6 three-dimensionally, or may be a two-dimensional bent portion formed by cutting out a part of lead terminals 5 and 6. .
  • the lead terminals 5 and 6 may be drawn out of the exterior material 8 into the shape shown in FIG. 9 to increase the distance between adjacent ones.
  • the expansion portion 9 becomes a structure that expands one after another.
  • the expanded portions 9 are provided with The shielding portions 10 shown in FIGS. 5 to 7 can be formed together. As a result, it is possible to further prevent the occurrence of leak current.
  • the shielding portion 10 may conform to the shape of the extension portion 9 and may have a fixed shape such as a rectangular parallelepiped regardless of the shape.
  • Fig. 1 OA is a graph showing the experimental results of the relationship between the distance between adjacent lead terminals and the electrical breakdown value.
  • the horizontal axis represents the distance between adjacent lead terminals, and the vertical axis represents the value of the applied voltage at which a leak current that causes electronic component destruction occurs.
  • the withstand voltage against leakage current must be 1 kV AC or more, and it can be seen that this can be ensured from 0.5 mm or more. If it is less than 0.5 mm, a leak current is generated at less than 1 kV AC, indicating that a sufficient withstand voltage is not satisfied.
  • the configuration in which the distance between the adjacent lead terminals 5 or between the lead terminals 6 is 0.5 mm or more allows leakage current between the lead terminals and insulation resistance. Is reliably prevented from decreasing.
  • FIG. 10B shows the measurement results when there is no shielding part 10 and when there is a shielding part 10 with a different protrusion amount when the distance between the adjacent parts is 0.2 mm.
  • the difference between the protrusion amount and the voltage value at which the leak current occurs is compared.
  • A When there is no shielding part 10,
  • B When the protruding amount of the shielding part 10 is 0.1 mm larger than the thickness of the lead terminal, and
  • C When the protruding amount of the shielding part 10 is outside the lead terminal.
  • D The case where the amount of protrusion of the shielding part 10 is 0.3 mm larger than the thickness of the lead terminal outside is shown.
  • the amount of projection of the shielding portion 10 is 0.2 mm or more, the effect becomes remarkable. Since the shielding part 10 can secure the leakage withstand voltage, the distance between the lead terminals and the distance between the multilayer capacitors 1 molded on the exterior material 8 can be narrowed, and a very small electronic component 7 can be configured. It is possible to do. Further, if the shield portion 10 is at least 0.2 mm thicker than the thickness of the lead terminals protruding outside, a remarkable shielding effect between the lead terminals can be obtained.
  • FIG. 11B shows a state in which one electronic component in which two elements are integrated is mounted on the mounting board 15 according to the embodiment of the present invention.
  • Fig. As a comparative example, a state where two molded electronic components are mounted for each element on a mounting board 14 is illustrated.
  • Electronic components such as modems and power line communication modules are molded with multilayer capacitors and capacitors for the purpose of noise reduction, etc. on each of the two- line output data and input data lines.
  • the conventional electronic component 70 in which a single element is molded requires two processing steps for mounting, and is further molded for each electronic component.
  • the dimensions are large, and the required mounting area is large.
  • the mounting area is increased and the lines are drawn. Turning is required.
  • the mounting area can be reduced if the electronic component 7 has two elements molded. Furthermore, since the space between the adjacent lead terminals 5 or 6 is also narrowed, the space between the line 18 and the line 19 can be narrowed, and the mounting area can be further reduced in size. In addition, since the routing of the line is not required, there is also an advantage that the radiation of the line generated by the routing and the adverse effect on other mounted components can be avoided. In addition, it can be mounted on the track in a single processing procedure during mounting, reducing mounting costs.
  • the above-described embodiment exemplifies an electronic component having a multilayer capacitor 1 in which a pair of terminal portions 4 are formed on a single base 2 as an element, as shown in FIGS.
  • an electronic component having a multilayer capacitor 1 in which a plurality of pairs of terminal portions 4 are formed on one base 2 will be described.
  • a plurality of pairs of terminal portions 4 on the end face of a base made of ceramics such as alumina, it is possible to use a single element but to realize an electric element such as a capacitor or a multilayer capacitor 1.
  • An element including a plurality of elements can be formed.
  • the multilayer capacitor 1 is used as an element, the internal electrodes 3 inside the base are separated for each pair of terminal portions 4 and connected to the terminal portion 4 for each separated internal electrode 3.
  • a plurality of parallel multilayer capacitors 1 can be formed by a single element body.
  • other electric elements such as a single-plate capacitor, a resistor, and an inductor may be stored in a single base in a form in which a plurality of elements are arranged in parallel.
  • the element By using an element such as the multilayer capacitor 1 made of a single element body, the element can be easily manufactured. That is, there is an advantageous effect that the manufacture of the electronic component 7 is facilitated, and the miniaturization can be further promoted.
  • FIGS. 12 and 13 illustrate the case where the element 1 has two pairs of terminal parts 4, the element 1 may have three or more pairs of terminal parts.
  • the number of terminals can be determined appropriately according to the specifications and the like.
  • the element 1 shown in FIGS. 12 and 13 may be singly enclosed in the exterior material 8 or a plurality of them may be enclosed.
  • the lead terminals 5 and 6 of the multilayer capacitor 1 in which a plurality of pairs of terminal portions 4 are formed on one base will be described.
  • the lead terminals 5 and 6 are connected to the terminals 4 of the multilayer capacitor 1 and It is in a form that can be withdrawn.
  • the two multilayer capacitors 1 are molded into one.
  • lead terminals 5 and 6 are connected to each multilayer capacitor 1 individually.
  • a multilayer capacitor 1 composed of a single substrate
  • a single substrate is used.
  • a total of four lead terminals 5, 6 can be drawn from 1.
  • the lead terminals must have a sufficient distance of (1) an adjacent distance of 0.5 mm or more.
  • a shielding portion 10 is provided; and (3) a bent portion 13 is provided to allow a sufficient distance between adjacent members. Thereby, the leakage current withstand voltage between the lead terminals is sufficiently ensured.
  • the present invention provides an electronic component in which a plurality of elements are molded with one exterior material for the purpose of miniaturizing the electronic component and reducing the mounting area. It can be seen that the decrease in the withstand voltage due to the decrease in the distance can be efficiently and reliably prevented. As a result, the miniaturization of electronic components, the reduction of mounting area, the reduction of mounting processing, and the reduction of mounting costs by molding multiple elements with one exterior material impede the durability of electronic components. It can be realized without. Also, since these are realized by a very simple configuration, there is no increase in the cost of electronic components.
  • a multilayer capacitor is described as an example of an element.
  • applicable elements are not limited to this, and ordinary non-stacked capacitors, resistors, inductances, filters, and the like can be used. The same applies to various elements.
  • the terminal even if a part of the lead terminal connected to the multilayer capacitor is a terminal drawn out of the exterior material, part of the terminal connected in advance to the element is The terminal may be a terminal that is drawn out to the outside.
  • the present invention is capable of mounting a plurality of electronic components at once by a configuration in which a plurality of elements, in particular, a multilayer capacitor is molded with one exterior material and terminals are exposed to the outside, so that the number of mounting steps can be reduced, and The mounting cost can be reduced.
  • the mounting area can be reduced as compared with a case where individual electronic components are mounted, and the size of the electronic device can be reduced.
  • the line spacing on the mounting board can be reduced, so that the mounting board can be prevented from becoming large due to extra routing of the lines, and performance degradation such as line radiation can be eliminated.
  • by being molded with external materials durability against changes in the surrounding environment is increased, impact resistance is improved, and the life of electronic devices can be extended.
  • insulation between terminals can be further ensured by providing a projection on the exterior material or forming a shielding part such as connecting a member from the outside at the interval between adjacent terminals drawn out of the exterior material.
  • a shielding part such as connecting a member from the outside at the interval between adjacent terminals drawn out of the exterior material.
  • the element to be molded is a capacitor that requires a high withstand voltage, a large current may be shorted due to the occurrence of leakage current, which may cause a failure of the electronic device. This can be avoided.
  • the present invention relates to an electronic component having a plurality of elements, a pair of terminal portions provided on each of the plurality of elements, and an exterior material covering a part of the elements and the terminal portions, wherein the electronic component includes an exterior member.
  • a configuration in which a shielding portion made of a non-conductive insulating material is provided between adjacent exposed terminal portions allows a plurality of electronic components to be mounted at one time, thereby reducing mounting procedures and mounting costs. It can also be applied to applications where it is necessary to reduce the leakage and prevent the occurrence of leakage current between terminals.

Abstract

複数の素子と、複数の素子のそれぞれに設けられた一対の端子部と、素子と端子部の一部を覆う外装材を有する電子部品であって、外装材の外部に引き出された端子部の隣接間に非導電の遮蔽部が設けられた構成とする。遮蔽部を有することにより、電子機器の小型化、高密度実装と、機器への悪影響を排除した性能向上および耐久性向上を同時に実現する電子部品を供給することが出来る。

Description

明細書
電子部品 技術分野
本発明は、 モデム、 電源回路、 液晶用電源、 D C— D Cコンバーター、 電力線 通信機器などの電子機器などに好適に用いられる電子部品に関するものである。 背景技術
モデムや電源回路などの電子機器においては、 多数の電子部品が搭載される。 例えば、 ノイズ除去や直流成分のカツトなどのためにコンデンサが用いられるこ とも多い。
電子機器への小型化、 低コスト化の要求に伴い, 機器に用いる電子部品につい ても大幅な小型化、 低コスト化が求められている。 更に、 自動実装による実装コ ストの削減、 実装面積の削減のために、 面実装電子部品が求められることが多い。 一方、 小型化と合わせて高性能化や特性ばらつきの低減、 さらには耐久性の向 上など相反する仕様が要求されることも多くなつている。 さらには、 L S Iなど の多ピン化や信号線路のビット数の増加に伴い、 非常に線路間隔の狭い場所にお いて複数の電子部品を実装する高密度実装の必要が生じている。
特に、 モデムなどはデ一夕入力とデータ出力の 2線路がセットであることが多 く、 線路上に必ず 2つの電子部品を実装する必要がある。
しかしながら、 小型化と高性能化というのは、 相互に相反する目的であるため、 一方の目的を実現しょうとすると他方の目的が実現できないという問題があった。 例えば、 性能や特性ばらつきの低減、 あるいは耐久性の向上に対応するために、 電子部品を樹脂などによる外装材でモールドすることが提案されている。 しかし、 複数の電子部品を実装する場合には、 各電子部品がモールドされているために大 型化する問題があった。 また、 個々の電子部品が大きくなるため線路間隔の狭い 基板には実装することができないので、 信号線路の線路間隔を広く取るための線 路の引き回しなどが必要になる、 など理由により基板の大型化や、 線路輻射の問 題あるいは引き回しによる信号遅延による性能劣化などの問題があった。
逆に、 小型化や高密度実装を実現するためにモールドされていないベアの電子 部品を近接させて実装した場合には、 電子部品間での電界結合の発生などによる 短絡や信号のクロストークなどの問題が生じていた。 また、 これに伴う電子機器 の故障などの問題も生じていた
これらの問題を解決するために複数の素子をモールドし、 かつ、 小型化を実現 しょうとすると素子間隔が狭くなり、 結果として外装材の外部に引き出される端 子の隣接間が非常に狭くなるという問題を生じる。 このため、 端子間での絶縁抵 抗が低下してリーク電流が発生し、 電子部品の破壊や、 これに伴う電子機器の故 障などの問題が生じる。
また、 容量素子であるコンデンサなどでは隣接するコンデンサ同士で電界結合 を発生してしまい、 クロストークなどが容易に発生し、 ノイズの原因ともなって いた。 入力、 出力がペアの線路であることが多い電子機器の実装基板では、 これ らは非常にシビアな問題となっていた。
更に、 複数の素子を一つの外装材でモールドした場合には、 素子間で外装材の 充填不良が起きやすく、 素子間の耐圧が劣化するという問題があった。 また、 ヒ ―トサイクル試験などに対する耐久性についても、 素子間隔が近い場合には問題 があった。 このような性能低下の問題を回避するために素子間隔を大きくした場 合には、 電子機器の小型化を阻害するという問題があった。 発明の開示
本発明は、 複数の素子と、 複数の素子のそれぞれに設けられた一対の端子部と 素子及び端子部の一部を覆う外装材とを有する電子部品であって、 外装材の外部 に引き出された端子部の隣接間に非導電の遮蔽部が設けられる。 遮蔽部を設ける ことにより、 電子機器の小型化および高密度実装と、 性能向上および耐久性向上 とを同時に実現する電子部品を供給することが出来る。 図面の簡単な説明
図 1は本発明の実施の形態における積層型コンデンサの側面図。
図 2は本発明の実施の形態における積層型コンデンサの接続構成図。
図 3は本発明の実施の形態における積層型コンデンサを配置した斜視図。
図 4 Aは本発明の実施の形態における電子部品の斜視図。
図 4 Bは本発明の実施の形態における電子部品の正面図。
図 4 Cは本発明の実施の形態における電子部品の側面図
図 5、 図 6、 図 7は本発明の実施の形態における電子部品の斜視図。
図 8、 図 9は本発明の実施の形態における電子部品の正面図。
図 1 0 Aは本発明の実施の形態における隣接間距離と電気的破壊実験グラフ。 図 1 0 Bは本発明の実施の形態における遮蔽部と端子間リーク電流実験グラフ。 図 1 1 Aは従来の電子部品の実装図。
図 1 1 Bは本発明の実施の形態における電子部品の実装図である。
図 1 2、 図 1 3は本発明の実施の形態における積層型コンデンサの斜視図。 発明を実施するための最良の形態
(実施の形態)
以下、 本発明の一実施の形態に係わる電子部品を、 図面を用いて説明する。 図 1に、 積層型コンデンサ 1を示す。 なお、 積層型コンデンサは素子の一例で あり、 本発明の概念は、 これ以外に積層型でないコンデンサ、 抵抗、 インダク夕、 フィルタなど、 様々な種類の素子に適用できる。
図 1〜図 4 Aから明らかな通り、 二つの積層型コンデンサ 1にそれぞれリ一ド 端子 5、 6が接続され、 二つの積層型コンデンサ 1とリード端子 5、 6の一部が 外装材 8によりモールドされる。 リード端子 5、 6の一部で、 外部に引き出され た実装部 5 a、 6 aが実装基板などへの実装に用いられる。
ここで、 外装材の外部に引き出されたリード端子 5同士の隣接する部分、 もし くはリ一ド端子 6同士の隣接する部分である端子間距離拡張部 9の距離を 0 . 5 mm以上に規定することで、 端子間距離拡張部 9にリーク電流が生じないように 出来る
これにより電子部品 7は、 4端子の電子部品として 2ラインの線路に一度に実 装することが可能となり、 小型化が可能となる。 また、 実装工程が短縮化され、 実装コストが削減され、 実装面積も削減される。 更に、 電子機器への悪影響を回 避できるものである。
以下、 各部の詳細について説明する。
まず、 図 1を用いて積層型コンデンサ 1について説明する。
誘電体で構成された誘電体基体 2には、 例えば酸化チタンやチタン酸バリウム などの誘電体材料、 あるいはアルミナなどが用いられる。 このような材料を用い て、 必要な形状、 大きさの誘電体基体を形成できる。
内部電極 3は、 誘電体基体 2の内部に埋設された電極である。 内部電極 3の構 成材料としては、 N i、 A g、 P d、 C u、 A uなどを少なくとも一つを含む金 属材料を用いることが出来る。 特に、 N i単体あるいは N i合金を用いることで コスト面において有利となる。 また、 上記の金属または合金を用いて、 内部電極 3の表面に金属のメツキ処理を施してもよい。 また、 内部電極 3の厚みは 1〜 5 mにすることが好ましく、 隣接する内部電極 3同士の間隔は 1 5 ^ m以上とす ることが好ましい。
内部電極 3は端子部 4と電気的に接続されており、 一方の端子部 4のみに接続 する内部電極 3と、 他方の端子部 4のみに接続する内部電極 3が対向しており、 この対向する内部電極 3間において主な容量が発生する。
内部電極 3と接続する端子部 4は、 誘電体基体 2の両端に設けられることが多 いが、 両端以外の位置に設けてもよい。 例えば、 誘電体基体 2の上下に端子部 4 を形成し、 リード端子 5、 6と接続してもよい。 端子部 4は、 C u、 Z n、 N i、
A g、 A uなどを少なくとも一つを含む材料で構成され、 端子部 4の表面は単層 もしくは多層のめっき処理が施されていてもよい。 また、 端子部 4は金属キヤップを誘電体基体 2に接合して作製した端子部でも よい。 更に、 端子部 4の最外部 (最表部) は融点が 2 0 0 °C以上の導電性材料で 構成されることが好ましい。 このように構成することによって、 リフロー半田付 け工程などで電子部品 7に高温がかけられたとしても、 端子部 4が熱的なダメ一 ジを受けることは無く、 安定したリフロー特性を得ることができる。
次に、 積層型コンデンサ 1の具体的な製造方法の一例を説明する。
一方の面に内部電極 3を塗布形成した誘電体シートを複数用意して、 これらの 誘電体シ一トを電極同士が直接接触しないように積層する。 作製した積層体の両 端に端子部 4を形成する。
このとき、 積層コンデンサ 1の大きさは、 その長さを L l、 高さを L 2、 幅を L 3としたときに、
3 . 0 mm¾ L 1≤ 5 . 5 mm
0 . 5 mm L 2≤ . 5 mm
1 . 5 mm≤ L 3≤ 3 . 5 mm
となるように作製した。 なお、 これよりも大きいサイズで形成してもよい。
L 1〜L 3を上記下限値より小さくすると、 内部電極 3の形成面積が不十分と なり、 また内部電極 3の枚数を減らさなければならない。 従って、 大きな容量値 を得ることが困難となり、 幅広い容量を有する電子部品を得ることが困難となる。 なお、 複数の積層型コンデンサ 1はそれぞれ容量値が異なってもよい。 例えば、 モデムや電灯線通信モジュールなどの出力線路と入力線路のペア線路に実装する に際し、 それぞれの線路で要求される容量値が異なる場合には、 異なる容量値で あるほうが適している。 また、 図 3は、 積層型コンデンサ 1が二つの場合を例示 しているが、 三つ以上であっても構わない。 またモールドされる素子としては、 積層型コンデンサと通常のコンデンサが混在しても良く、 あるいはコンデンサと インダク夕が混在してもよい。
次にリード端子 5、 6について説明する。
リード端子 5、 6は図 2、 図 3からも明らかな通り、 積層型コンデンサ 1の端 子部 4に接続されて、 外部へ引出された形態となっている。 従って、 外装材 8に モールドされた後であつても、 この外装材 8の外部に電気接続可能なリ一ド端子 を引き出すことができる。 リード端子 5、 6を介して、 電子部品を実装基板へ実 装することにより、 内部にモールドされた積層型コンデンサ 1をはじめとする素 子と外部の回路などとの電気的接続が可能となる。
リ一ド端子 5、 6の主な構成材料としては、 F e、 C u、 N iの少なくとも一 つから選ばれる金属材料が適しており、 これらの材料の使用は電気的特性や加工 性の面で有利である。 また、 これらの金属からなる合金であっても良い。 さらに、 リード端子 5、 6の表面に、 上記金属または合金を用いて、 単層もしくは多層の めっき処理を施してもよい。
リード端子 5、 6は、 端子部 4と接続される接合部と、 外装材 8の外方に向か つて伸びる延伸部と、 途中で折り曲げられて実装基板に実装される実装部 5 a、 6 aを有する。 また、 図 4 Cに示されるように実装部 5 a、 6 aを互いに近接す る方向に折り曲げてもよいし、 互いに離反する方向に折り曲げていわゆるガルゥ イング型 (Gul l Wing lead) としてもよい。 また、 端子部 4とリード端子 5、 6 を接合する接合部は融点が 2 0 0 DC以上の接合材で構成することが望ましい。 そ れにより、 電子部品 7の実装におけるリフローなどの熱的影響を受けることなく、 特性劣化の発生を防止することができる。
また、 端子部 4が誘電体基体 2の両端ではなく上下に設けられている場合には、 これに合わせて上下に互い違いに接続して、 その上で、 外装材 8の外に引き出し ても良い。
また、 リード端子 5、 6を、 外装材 8の互いに対向する面からそれぞれ引き出 すことで、 リード端子 5とリード端子 6の間隔を広げることができ、 実装後のバ ランスがよくなる。
また、 図 3にあるように、 本実施の形態では二つの積層型コンデンサ 1を一体 にモールドするために、 それぞれの積層型コンデンサ 1に対して個別にリード端 子 5、 6を接続する。 図 3には 2つの積層型コンデンサ 1にそれぞれリード端子 5、 6が接続されている例を示すが、 3つ以上の積層型コンデンサ 1を一体にモ ールドしても良いし、 積層型コンデンサ以外の素子を用いてもよい。
リード端子 5、 6間で発生する寄生容量は 0 . l p F〜5 . O p Fに収めるこ とが好ましい。 寄生容量が 5 . O p Fより大きいと、 電子部品 7を作製した際に 容量ばらつきが非常に大きくなり、 一方、 0 . 1 p Fより小さくすると製造が困 難になるという問題がある。 また、 必要に応じてリード端子をトリミングして面 積を調整して、 その寄生容量を事後的に調整することも出来る。
また、 リード端子 5、 6は互いに略同一形状とすることで、 部品点数を削減す ることができ、 生産性が向上する。 加えて、 リード端子 5、 6を外装材 8のほぼ 同じ高さ位置から引き出すことができ、 かつ、 ほぼ同じ長さに引き出すことがで きるので、 対称性の良い電子部品を製造することができる。
次に外装材 8について説明する。
外装材 8は図 4 A〜図 4 Cに表されるとおり、 二つの積層型コンデンサ 1を一 体にモールドしている。 外装材 8により積層型コンデンサ 1とリード端子 5、 6 の一部がモールドされて最終的な電子部品 7が完成する。 図 4 A〜図 4 Cに示す 電子部品 7の外形は、 略直方体であるが、 各辺や角部に面取りをつけることで耐 衝撃性を向上させることが出来る。 また、 リ一ド端子 5、 6の引出により、 電子 部品 7の基板への実装が可能となる。
外装材 8としては、 クレゾ一ルノポラック型エポキシ樹脂、 ビフェニール型ェ ポキシ樹脂、 ジシクロペン夕ジェン型エポキシ樹脂などの電気絶縁特性に優れた エポキシ樹脂を用いることが出来る。
また外装材 8の表面と積層型コンデンサ 1の表面の間隔の最小値、 すなわち外 装材 8の肉厚がもっとも薄い部分を 0 . 1 mm以上とすることで、 外皮耐圧を向 上させることができる。
また、 リード端子 5、 6が引き出される部分の外装材 8の厚さを、 他の部分よ りも厚くすることで、 リード端子 5、 6の引出部の根元を強化することができる。 これによりリード端子 5、 6の折れ曲がりなどを防止し、 外部からの水分の混入 などを防止しやすくなる。
ここで、 電子部品 7の製造方法の一例を説明する。
まず、 積層型コンデンサ 1にリード端子 5、 6を接続して素子体を作製する。 作製した素子体を二つ並べた構成で、 モールド成形機等を用いて成型し、 積層型 コンデンサ 1とリード端子 5、 6の一部を外装材 8によって被覆する。 次に、 リ ―ド端子 5、 6の外装材 8より引き出された部分を図 4 Cのように折り曲げるこ とにより電子部品 7が完成する。
次に、 端子間距離拡張部 9について説明する。
複数のリード端子 5あるいはリード端子 6が外装材 8の外部に引き出された形 態において、 隣接するリード端子 5同士、 或いはリード端子 6同士により挟まれ た部分を端子間距離拡張部 (以下、 拡張部) 9と称する。 図 4 A〜図 4 Cは 2つ の積層型コンデンサ 1を並列させた例を示しており、 拡張部 9は図 4 Bで二つの リード端子 6によって挟まれた部分に相当する。 本実施の形態において、 外装材 8でモールドされた電子部品 7においては、 リ一ド端子 5同士により構成される 拡張部 9と、 リード端子 6同士に構成される拡張部 9の、 2箇所の拡張部 9が存 在する。
ここで、 拡張部 9の隣接距離を 0 . 5 mm以上 5 mm以下とすることが好まし い。 隣接距離を 0 . 5 mm以上とすることで、 引き出されたリード端子間におい て、 リーク電流の発生や絶縁抵抗の低下などが生じず、 実装された線路間での短 絡が発生せず、 電子機器への悪影響が発生しない。 一方、 5 mmより大きい場合 には、 素子間隔が広くなりすぎて電子部品の小型化が阻害されるので好ましくは ないが、 仕様によっては 5 mm以上の素子間隔としてもよい場合がある。
次に、 図 5、 図 6を用いて、 リード端子間の拡張部 9に遮蔽部が設けられた形 態について説明する。
遮蔽部 1 0はリード端子間の拡張部 9に設けられ、 リード端子間でリーク電流 などの発生を防止するものである。 遮蔽部 1 0は図 5、 図 6に表されるように、 外装材 8と一体で形成された突出部であっても良く、 別途非導電性の絶縁材で形 成された部材を接着、 嵌合などにより形成されたものであっても良い。 外装材 8 と一体で形成することにより、 工数の削減が出来て好ましい。 また、 遮蔽部 1 0 を外装材 8とは別部材で形成する場合には、 その別部材と外装材 8との接着部に 接着樹脂を充填しても良い。 また、 遮蔽部 1 0の露出面にシリコンゴムなどによ る被膜を形成してもよい。
また、 電子部品 7の底面の斜視図である図 6に示すように、 リ一ド端子 5、 6 が外装材 8の外部に引き出されている部分全体にわたって、 拡張部 9に遮蔽部 1 0を形成することが好ましい。 図 6のように隣接端子部を作製した場合にはリ一 ド端子 5同士、 あるいはリード端子 6同士が隣接する全ての部分で、 リーク電流 などの発生を防止することができる。
ここで、 遮蔽部 1 0の厚み (すなわち突出高さ) は外装材 8外部に引き出され たリード端子 5、 6の厚みよりも厚いことが好ましい。 リ一ド端子 5、 6の厚み よりも、 遮蔽部 1 0の厚みが厚いことで、 リード端子 5同士、 あるいはリード端 子 6同士の隣接間におけるリーク電流の発生、 あるいは絶縁抵抗の低下を確実に 防止できるメリットがある。 この遮蔽部 1 0の厚みがリード端子の厚みよりも、 0 . 2 mm以上厚くなるように構成することが好ましい。 後の実験結果で説明す るが、 0 . 2 mm以上の余分な厚みを有することで、 確実にリーク電流を防止す ることができるからである。
図 6は、 リ一ド端子 5、 6の実装部 5 a、 6 aを電子部品 7の底面に形成する 場合であって、 遮蔽部 1 0の厚みをリード端子 5、 6の厚みよりも厚くした例を 示す。 この場合には、 実装基板の実装ランドにこの厚みの差分を解消するような 高さを設けることにより、 遮蔽部 1 0を底面に有する電子部品 7の実装が可能と なる。
また、 リード端子 5、 6が電子部品 7の底面ではなく、 外側に向けて折り曲げ られることにより、 実装部 5 a、 6 aが電子部品の底面以外の箇所に存在する場 合には、 遮蔽部 1 0をこのリード端子の突出量よりも突出させることが好適であ る。 図 7は、 上記の構成についてリード端子 6を用いて例示する。 リード端子 6 が電子部品の外側に向けて折り曲げられているため、 二つのリード端子 6間が外 側に向かって隣接した状態で延出する。 このような構成の場合には、 リード端子 6の先端部まで遮蔽できるだけの厚みを有するように遮蔽部 1 0を形成する。 遮 蔽部 1 0は外装材 8と一体で形成してもよいし、 所定の厚みをもった遮蔽部 1 0 を後から外装材 8に接着や嵌合、 貼りあわせで形成してもよい。
このように、 リード端子 5間、 あるいはリード端子 6間に電気絶縁材料からな る遮蔽部 1 0を、 リード端子 5、 6が隣接する領域全体にわたって設けることに より、 リード端子間のリーク電流の発生や絶縁抵抗の低下を防止することができ る。
なお、 図 7の場合には、 電子部品 7の底面側にリード端子 5、 6を形成してい ないため、 遮蔽部 1 0を底面に設ける必要がない。 そのため、 電子部品の実装時 に、 リード端子と接続される線路との間に間隙が生じるのを防ぐための、 実装ラ ンドの盛り上げや半田盛などは不要である。
次に、 リード端子 5間、 あるいはリード端子 6間の端子間距離拡張部 (以下、 拡張部) 9を広げることで、 リーク電流や絶縁抵抗低下を防止する形態について 説明する。
図 8は、 リード端子 6を例として、 外装材 8から引き出す部分のリード端子 6 の形状が、 外装材 8からの引き出し部近傍の隣接間距離よりも、 広い隣接間距離 の部分を有する構成の電子部品 7を示す。 引き出し部近傍の隣接距離 1 1と実装 部隣接距離 1 2を比較すると、 図 7からも明らかな通り、 実装部隣接距離 1 2の 方がその距離が大きい。 すなわち、 外装材 8の外部に引き出されたリード端子 6 の大部分に渡って、 その端子間の隣接間距離が十分にとられている。 このように 構成することにより、 外装材 8内部にモールドされている素子である積層型コン デンサ 1同士の間隔よりも、 リード端子 5、 6間の隣接間距離を十分に大きくと ることができるため、 電子部品 7の大きさを大型化することなく、 リード端子 5、 6の端子間距離を広くできるという効果を有する。 上記の構成を実現するため、 図 8に示すように、 リ一ド端子 5、 6上に屈曲部 1 3を設ける。 この屈曲部 1 3 は 3次元的にリード端子 5、 6を折り曲げ加工して成形してもよいし、 リード端 子 5、 6の一部を切り取ることにより形成される 2次元的な屈曲部であつてもよ い。
また、 リード端子 5、 6を、 図 9に示される形状に外装材 8から引き出して、 その隣接間距離を広げてもよい。 リード端子 5、 6を外装材 8から引き出された 位置から実装面の方向に向けて拡がる形状に形成することにより、 拡張部 9が次 第に広がる構成となる。 これにより、 リード端子 5、 6の大部分の位置において、 十分な隣接間距離を確保することができ、 リ一ク電流の発生や絶縁抵抗の低下を 防止することができるものである。
なお、 リード端子 5、 6に屈曲部 1 3を設けて隣接間距離を拡張する構成、 ま たは、 次第に広がる構成とすることによる隣接間距離の拡張に加えて、 その拡張 部 9に、 図 5〜図 7などで示された遮蔽部 1 0をあわせて形成することも出来る。 これにより、 更なるリーク電流の発生防止などを実現できる。 この塲合には、 遮 蔽部 1 0はその拡張部 9の形状にあわせても良く、 その形状に関係なく直方体な どの一定形状を有していても良い。
次に、 実験結果に基づいて、 本発明の実施の形態の電子部品 7のメリットにつ いて説明する。
図 1 O Aには、 リード端子間の隣接間距離と電気的破壊値との関係を実験した 実験結果がグラフとして表されている。 横軸にリード端子同士の隣接間距離が表 され、 縦軸に電子部品破壊の原因となるリーク電流が発生する付与電圧の値が表 されている。
通常の電子部品ではリーク電流に対する耐圧は 1 k V A C以上が必要であり、 これを確保できるのは 0 . 5 mm以上からであることが分かる。 0 . 5 mm未満 では、 1 k VA C未満でリーク電流が発生してしまい、 十分な耐圧を満たしてい ないことが分かる。
以上より、 リード端子 5間、 あるいはリード端子 6間の隣接間距離を 0 . 5 m m以上有する構成にすることで、 リード端子間でのリーク電流の発生や絶縁抵抗 の低下を確実に防止することができるものである。
次に、 図 10 Bには、 隣接間距離が 0. 2 mmの場合において、 遮蔽部 10が ない場合と、 突出量の異なる遮蔽部 10を有する場合の測定結果を示す。 その突 出量の違いとリーク電流の発生する電圧値を比較したものである。 (A) 遮蔽部 10の無い場合、 (B) 遮蔽部 10の突出量がリード端子の外部に出た厚みより も 0. 1mm大きい場合、 (C) 遮蔽部 10の突出量がリード端子の外部に出た 厚みよりも 0. 2mm大きい場合、 (D) 遮蔽部 10の突出量がリード端子の外 部に出た厚みよりも 0. 3 mm大きい場合を、 それぞれ示す。
図 10Bから明らかな通り、 (A) 遮蔽部 10が無い場合ではリーク電流の発 生する耐圧は 1 k V A Cよりかなり小さく、 リード端子間の耐圧が十分でないこ とが分かる。 これに対して遮蔽部 10が設けられた場合には、 その突出量がリー ド端子の外部に出ている厚みよりも 0. 1mm大きい場合では約 1 k VACであ り、 リード端子の外部に出ている厚みよりも 0. 2 mm以上大きい場合では 1 k VACを十分に超えており、 0. 3mmくらいからリーク電圧変化がなだらかに なる。 実験結果から、 突出量が 0. 2 mm以上あれば十分であることが分かる。 実験結果は、 遮蔽部 10を設けることにより、 リ一ド端子間が非常に狭い場合 であっても、 そのリード端子間の耐圧を確保出来ることを明示する。 特にその遮 蔽部 10の突出量が 0. 2 mm以上であればその効果が顕著になる。 遮蔽部 10 によりリ一ク耐圧を確保できることで、 リード端子間と外装材 8にモールドされ る複数の積層型コンデンサ 1同士の間隔を狭くすることができて、 非常に小型の 電子部品 7を構成することが可能となる。 また、 遮蔽部 10が外部に出ているリ ード端子の厚みよりも 0. 2 mm以上であれば、 リード端子間の顕著な遮蔽効果 が得られる。
つぎに、 図 11A、 図 11 Bを用いて、 電子部品 7および実装面積の小型化が 実現されることを説明する。
図 11 Bは、 本発明の実施の形態に示す、 実装基板 15上に、 二つの素子を一 体としてモ一ルドした電子部品を一つ実装した状態を表す。 一方、 図 11Aは比 較例として、 実装基板 1 4上に、 一つの素子毎にモ一ルドした電子部品を二つ実 装した状態を例示する。 モデムや電灯線通信モジュールのように、 出力デ一夕と 入力データの 2線式のラインのそれぞれにノィズカットなどの目的で積層型コン デンサゃコンデンサをモールドした電子部品が実装される。
図 1 1 Aから明らかな通り、 従来の単一の素子をモールドした電子部品 7 0で は、 実装するための処理手順が 2回必要であり、 更に、 電子部品毎にモールドさ れているため寸法が大きく、 必要とする実装面積が大きくなる。 また、 二つの電 子部品 7 0のそれぞれのリード端子の隣り合う間隔にあわせて、 線路 1 6と 1 7 の間隔も広く取る必要があり、 当然ながら実装面積の大型化、 ならびに線路の引 き回しが必要となる。
これに対して、 図 1 1 Bから明らかな通り、 2つの素子をモ一ルドした電子部 品 7であれば実装面積が小型化される。 更に、 リード端子 5または 6の隣り合う 間隔も狭くなるために、'線路 1 8と線路 1 9の間隔も狭くすることができ、 実装 面積の小型化が更に促進される。 また、 線路の引き回しも不要となるため、 線路 引き回しにより発生する線路輻射や、 他の実装部品への悪影響を回避できるメリ ッ卜もある。 加えて、 実装時には一回の処理手順で線路上に実装することが可能 であり、 実装コストを低減できる。
' このとき、 リード端子間は、 (1 ) その隣接間距離が 0 . 5 mm以上の十分な 距離を有している、 (2 ) 遮蔽部 1 0が設けられている、 (3 ) 隣接間距離を十 分にとるための屈曲部 1 3が設けられている、 などの構成の少なくとも一の構成 を有していることにより、 リ一ド端子間のリーク電流耐圧は十分に確保されてい る。 これにより、 素子破壊や電子機器の故障などが生じない。
一つの電子部品 7に 3個以上の素子をモールドした場合であっても同様の効果 を有する。
以上の実施の形態は、 図 1〜図 3に示すように、 一つの基体 2に一対の端子部 4を形成した積層型コンデンサ 1を素子とする電子部品について例示したもので ある。 次に、 図 1 2、 図 1 3を用いて、 一つの基体 2に複数の対となる端子部 4が形 成された積層型コンデンサ 1を素子とする電子部品について説明する。
例えば、 アルミナなどのセラミックなどにより形成された基体の端面に、 対と なる端子部 4を複数の組で設けることで、 単一の素子でありながら、 コンデンサ や積層型コンデンサ 1などの電気素子を複数含む素子を形成することができる。 積層型コンデンサ 1を素子とする場合であれば、 基体内部の内部電極 3を、 対 となる端子部 4ごとに分離させておいて、 分離した内部電極 3ごとに端子部 4と 接続させる。 それにより、 複数の並列の積層型コンデンサ 1を、 単一素子体で形 成することができる。 あるいは単板コンデンサや抵抗、 インダクタなどの他の電 気素子であつても、 一つの基体の中に複数の素子が並列する形態で格納してもよ い。 それにより、 複数の素子のそれぞれを、 対となる端子部 4に接続させること で、 単一素子体でありながら、 複数の電気素子が存在しているのと同等の機能を 発揮させることが出来る。
このような単一素子体からなる積層型コンデンサ 1などの素子を用いることで、 素子の製造が容易となる。 すなわち、 電子部品 7の製造が容易となり、 小型化を 更に促進することが出来るという有利な効果がある。
なお、 図 1 2、 図 1 3は、 素子 1が二対の端子部 4を有する場合を例示するが、 素子 1が三対以上の端子部を有しても良い。 端子の数は、 適宜、 仕様などにあわ せて決めることが出来る。
また、 図 1 2、 図 1 3に示す素子 1を外装材 8の中に単数封入してもよいし、 複数封入しても良い。
次に、 一つの基体に複数の対となる端子部 4が形成された積層型コンデンサ 1 のリード端子 5、 6について説明する。 一つの基体に一対の端子部を形成した 積層型コンデンサの場合には、 図 2、 図 3に示すように、 リード端子 5、 6は積 層型コンデンサ 1の端子部 4に接続されて、 外部への引出が可能な形態となって いる。 また、 図 3に示すように、 二つの積層型コンデンサ 1を一つにモールド するために、 それぞれの積層型コンデンサ 1に対して個別にリード端子 5、 6を 接続する。 一方、 図 1 3に単一の基体からからなる積層コンデンサ 1を用いて例 示するように、 一つの基体に二対の端子部 4を形成した積層型コンデンサの場合 には、 単一の基体 1から合計 4つのリード端子 5, 6を引き出すことも出来る。 一つの基体に二対の端子部を形成した積層型コンデンサの場合においても、 リ ード端子間は、 (1 ) その隣接間距離が 0 . 5 mm以上の十分な距離を有してい る、 (2 ) 遮蔽部 1 0が設けられている、 (3 ) 隣接間距離を十分にとるための 屈曲部 1 3が設けられている、 などの構成の少なくとも一の構成を有しているこ とにより、 リード端子間のリ一ク電流耐圧は十分に確保される。
以上より、 本発明は、 電子部品の小型化、 実装面積の小型化を進める目的で、 複数の素子を一つの外装材でモールドした電子部品を提供する場合に、 リ一ド端 子の隣接間距離が小さくなることによる耐圧の低下を、 効率的且つ確実に防止す ることができることがわかる。 これにより、 複数の素子を一つの外装材でモール ドすることでの電子部品の小型化、 実装面積の小型化、 実装処理の短縮と実装コ ストの低減を、 電子部品の耐久性能を阻害することなく実現できるものである。 また、 これらは非常に簡単な構成により実現されるため、 電子部品のコスト増加 なども生じない。
なお、 一つの外装材 8内部に、 インダク夕やコンデンサなどを混在してモール ドすることで、 複合部品を形成する場合にも本発明の思想が適用できる。 また、 以上に説明した構成とその効果は、 高い耐圧が要求される高耐圧電子部品におい て、 特に有用なものである。
なお、 本実施の形態では、 積層型コンデンサを素子の例として説明しているが、 適用できる素子はこれに限られるものではなく、 積層型ではない通常のコンデン サ、 抵抗、 インダクタンス、 フィル夕など種々の素子であっても同様である。 また、 端子としては、 積層型コンデンサに接続されたリード端子の一部が外装 材の外部に引き出された形態の端子であっても、 素子に予め接続されている端子 の一部が外装材の外部に引き出された形態の端子であってもよい。 本発明の実施の形態における電子部品の有利な効果は以下の通りである。
本発明は、 複数の素子、 特に積層型コンデンサを一つの外装材にてモールドし て端子を外部に出した構成により、 複数の電子部品を一度に実装することができ、 実装手順の削減、 ならびに実装コス卜の低減を実現できる。
また、 一つの外装材に複数の素子が封じられていることで、 個別の電子部品を 実装する場合よりも実装面積を低減させ、 電子機器の小型化を実現できる。 また、 実装基板上での線路間隔を狭くすることができ、 線路の余分な引き回しによる実 装基板の大型化を回避し、 線路輻射などの性能劣化も排除することが可能となる。 更に、 狭い間隔で個別に複数の素子を実装する場合に生じる素子間の電界結合 や耐圧不備による性能劣化や、 耐久性の劣化も解消することができる。 また、 外 装材でモールドされていることにより、 周囲環境の変化に対する耐久性も高まり、 耐衝撃性なども向上して電子機器の長寿命化を実現することができる。
また、 外装材の外部に引き出された端子の隣接間隔を一定以上に規定したこと で、 隣接する端子間での電圧リークや絶縁劣化の発生を防止し、 機器への実装に 際して要求される耐圧を実現することができる。
更に、 外装材の外部に引き出された端子の隣接間隔において、 外装材に凸部を 設け、 あるいは外部から部材を接続するなどした遮蔽部を形成することにより、 端子間の絶縁を更に確実なものとして、 電圧リークや絶縁抵抗の発生を防止する。 これにより機器への実装に際して要求される耐圧を実現することができる。
またモ一ルドされる素子が、 高耐圧を要求されるコンデンサである場合には、 リーク電流の発生により大きな電流がショー卜することが起こり、 電子機器の故 障を発生させる恐れがあるが、 これを回避することができるものである。
以上の効果により、 電子機器の小型化、 高寿命化を実現することが可能となる。 産業上の利用可能性
本発明は、 複数の素子と、 複数の素子のそれぞれに設けられた一対の端子部と 素子と端子部の一部を覆う外装材を有する電子部品であって、 外装材の外部に引 き出された端子部の隣接間に非導電性の絶縁材からなる遮蔽部が設けられた構成 により、 複数の電子部品を一度に実装することができ、 実装手順の削減、 ならび に実装コス卜の低減、 及び端子間でのリーク電流の発生を防止することが必要な 用途にも適用できる。

Claims

請求の範囲
1 . 複数の素子と、 前記複数の素子のそれぞれに設けられた一対の端子部と、 前 記素子と前記端子部の一部を覆う外装材を有する電子部品であって、 前記外装材 の外部に引き出された端子部の隣接間に非導電の遮蔽部が設けられたことを特徴 とする電子部品。
2 . 前記遮蔽部が、 前記外装材の一部であって前記端子部の隣接間において形成 された外装材の突出部であることを特徴とする請求項 1に記載の電子部品。
3 . 前記遮蔽部が、 前記端子部の隣接間において前記外装材上に設けられた電気 絶縁部材であることを特徴とする請求項 1に記載の電子部品。
4 . 前記突出部が、 前記外装材の外部に引き出された端子部の突出量よりも突出 していることを特徴とする請求項 2に記載の電子部品。
5 . 前記突出部が、 前記外装材の外部に引き出された端子部の厚みよりも大きな 突出厚みを有することを特徴とする請求項 2に記載の電子部品。
6 . 前記突出部の突出厚みが、 前記外装材の外部に引き出された端子部の厚みよ りも 0 . 2 mm以上厚いことを特徴とする請求項 2に記載の電子部品。
7 . 前記電気絶縁部材が、 前記外装材の外部に引き出された端子部の突出量より も大きな厚みを有していることを特徴とする請求項 3に記載の電子部品。
8 . 前記電気絶縁部材が、 前記外装材の外部に引き出された端子部の厚みよりも 大きな厚みを有していることを特徴とする請求項 3に記載の電子部品。
9 . 前記電気絶縁部材が、 前記外装材の外部に引き出された端子部の厚みよりも 0 . 2 mm以上厚いことを特徴とする請求項 3に記載の電子部品。
1 0 . 複数の素子と、 前記複数の素子のそれぞれに設けられた一対の端子部と、 前記素子と前記端子部の一部を覆う外装材を有する電子部品であって、 前記外装 材の外部に引き出された端子部の端子間距離を拡張する端子間距離拡張部を有す ることを特徴とする電子部品。
1 1 . 前記端子間距離拡張部が、 引き出された端子部の中において存在する外装 材からの引き出し位置における端子部の隣接間距離よりも広い隣接間距離を有す る位置をもつ部位であることを特徴とする請求項 1 0に記載の電子部品。
1 2 . 前記端子間距離拡張部が、 前記外装材の外部に引き出された端子部に設け られた屈曲部であることを特徵とする請求項 1 0に記載の電子部品。
1 3 . 前記外装材の外部に引き出された端子部の端子間距離が、 0 . 5 mm以上 5 mm以下であることを特徴とする請求項 1 0に記載の電子部品。
1 4. 前記素子が、 内部電極が埋設された誘電体基体と、 前記誘電体基体に設け られた一対の端子部を有する複数の積層型コンデンサであることを特徴とする請 求項 1に記載の電子部品。
1 5 . 内部電極が埋設された誘電体基体と、 前記誘電体基体に設けられた一対の 端子部を有する複数の積層型コンデンサと、 前記一対の端 ·子部に接続される一 一対のリ一ド端子と、 前記複数の積層型コンデンサと前記リ一ド端子の一部を覆 う外装材を有する電子部品であって、 前記外装材の外部に引き出されたリード端 子の隣接間に非導電の遮蔽部が設けられたことを特徴とする電子部品。
1 6 . 前記遮蔽部が、 前記外装材の一部であって前記リード端子の隣接問におい て形成された外装材の突出部であることを特徴とする請求項 1 5に記載の電子部 品。
1 7 . 前記遮蔽部が、 前記端子部の隣接問において前記外装材に接続して設けら れた電気絶縁部材であることを特徴とする請求項 1 5に記載の電子部品。
1 8 . 前記突出部が、 前記外装材の外部に引き出されたリード端子の突出量より も突出していることを特徴とする請求項 1 6に記載の電子部品。
1 9 . 前記突出部が、 前記外装材の外部に引き出されたリ一ド端子の厚みよりも 大きな突出厚みを有することを特徴とする請求項 1 6に記載の電子部品。
2 0 . 前記突出部の突出厚みが、 前記外装材の外部に引き出されたリード端子の 厚みよりも 0 . 2 mm以上厚いことを特徴とする請求項 1 6に記載の電子部品。
2 1 . 前記電気絶縁部材が、 前記外装材の外部に引き出されたリード端子の突出 量よりも大きな厚みを有していることを特徴とする請求項 1 7に記載の電子部品。
2 2 . 前記電気絶縁部材が、 前記外装材の外部に引き出されたリード端子の厚み よりも大きな厚みを有していることを特徴とする請求項 1 7に記載の電子部品。
2 3 . 前記電気絶縁部材が、 前記外装材の外部に引き出された一リード端子の厚 みよりも 0 . 2 mm以上厚いことを特徴とする請求項 1 7に記載の電子部品。
2 4. 内部電極が埋設された誘電体基体と、 前記誘電体基体に設けられた一対の 端子部を有する複数の積層型コンデンサと、 前記一対の端子部に接続される一対 のリード端子と、 前記複数の積層型コンデンサと前記リード端子の一部を覆う外 装材を有する電子部品であって、 前記外装材の外部に引き出されたリード端子の 端子間距離を拡張するリ一ド端子間距離拡張部を有することを特徴とする電子部 品。
2 5 . 前記リード端子間距離拡張部が、 引き出されたリード端子の中において存 在する外装材からの引き出し位置におけるリ一ド端子の隣接間距離よりも広い隣 接間距離を有する位置をもつ部位であることを特徴とする請求項 2 4に記載の電 子部品。
2 6 . 前記リード端子間距離拡張部が、 前記外装材の外部に引き出されたリード 端子に設けられた屈曲部であることを特徴とする請求項 2 4に記載の電子部品。
2 7 . 前記外装材の外部に引き出されたリード端子の端子間距離が 0 . 5 mm以 上 5 mm以下であることを特徴とする請求項 2 4に記載の電子部品。
2 8 . 前記外装材に覆われる素子として、 単一の基体から形成され、 前記単一の 基体に複数の対となる端子部を有する素子が用いられることを特徴とする請求項
1に記載の電子部品。
2 9 . 前記単一の基体に複数の対となる端子部を有する素子が、 前記外装材に単 数封止されることを特徴とする請求項 2 8に記載の電子部品。
3 0 . 前記外装材に覆われる積層型コンデンサとして、 単一の基体から形成され、 前記単一の基体に複数の対となる端子部を有する積層型コンデンサが用いられる ことを特徴とする請求項 1 5に記載の電子部品。
3 1 . 前記単一の基体から形成され、 前記単一の基体に複数の対となる端子部を 有する積層型コンデンサが、 前記外装材に単数封止されることを特徴とする請求 項 3 0に記載の電子部品。
PCT/JP2004/012766 2003-12-18 2004-08-27 電子部品 WO2005062318A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003420648A JP4379107B2 (ja) 2003-12-18 2003-12-18 電子部品
JP2003-420648 2003-12-18
JP2004126627A JP4415744B2 (ja) 2003-12-11 2004-04-22 電子部品
JP2004-126627 2004-04-22

Publications (1)

Publication Number Publication Date
WO2005062318A1 true WO2005062318A1 (ja) 2005-07-07

Family

ID=34680661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012766 WO2005062318A1 (ja) 2003-12-18 2004-08-27 電子部品

Country Status (3)

Country Link
US (1) US7139160B2 (ja)
TW (1) TW200522099A (ja)
WO (1) WO2005062318A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108663A1 (en) * 2004-11-19 2006-05-25 Sanzo Christopher J Surface mount inductor with integrated componentry
US20070072340A1 (en) * 2004-11-19 2007-03-29 Sanzo Christopher J Electronic Device with Inductor and Integrated Componentry
US7133274B2 (en) * 2005-01-20 2006-11-07 Matsushita Electric Industrial Co., Ltd. Multilayer capacitor and mold capacitor
EP1801142B1 (en) * 2005-12-16 2016-02-24 Canon Kabushiki Kaisha Resin composition,resin cured product, and liquid discharge head
JP4953795B2 (ja) * 2006-12-22 2012-06-13 パナソニック株式会社 電子部品、及びその作成方法
KR100926619B1 (ko) * 2007-12-05 2009-11-11 삼성모바일디스플레이주식회사 적층 세라믹 커패시터를 실장한 인쇄회로기판 및 이를이용한 평판 표시장치
DE202008005708U1 (de) * 2008-04-24 2008-07-10 Vishay Semiconductor Gmbh Oberflächenmontierbares elektronisches Bauelement
DE102013109093B4 (de) * 2012-08-24 2022-01-20 Tdk Corp. Keramische elektronische komponente
US10104764B2 (en) 2014-03-18 2018-10-16 Texas Instruments Incorporated Electronic device package with vertically integrated capacitors
JP7192387B2 (ja) * 2018-10-22 2022-12-20 Tdk株式会社 電子部品
KR102620522B1 (ko) * 2019-07-25 2024-01-03 삼성전기주식회사 전자 부품 및 그 실장 기판
US10998132B1 (en) * 2019-10-16 2021-05-04 Infineon Technologies Ag Capacitor and electronics module assembly with low-inductance connection features

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459124U (ja) * 1990-09-27 1992-05-21
JPH06125236A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd Lcフィルタ

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856431A (ja) 1981-09-30 1983-04-04 Adamando Kogyo Kk キヤピラリ−チツプ
DE3412492A1 (de) 1984-04-03 1985-10-03 Siemens AG, 1000 Berlin und 8000 München Elektrischer kondensator als chip-bauelement
JPS6127327A (ja) 1984-07-17 1986-02-06 Kayaba Ind Co Ltd 油圧緩衝装置
JPS61129322A (ja) 1984-11-27 1986-06-17 Nissan Motor Co Ltd ドアコ−ナピ−ス
US4734819A (en) 1985-12-20 1988-03-29 Rogers Corporation Decoupling capacitor for surface mounted leadless chip carrier, surface mounted leaded chip carrier and pin grid array package
US4748537A (en) 1986-04-24 1988-05-31 Rogers Corporation Decoupling capacitor and method of formation thereof
EP0327860A1 (de) 1988-02-10 1989-08-16 Siemens Aktiengesellschaft Elektrisches Bauelement in Chip-Bauweise und Verfahren zu seiner Herstellung
JP2865817B2 (ja) 1990-06-27 1999-03-08 川崎製鉄株式会社 H形鋼の反り矯正用ローラ矯正機
JP2678099B2 (ja) 1991-06-04 1997-11-17 松下電器産業株式会社 面実装用磁器コンデンサ
US5420745A (en) 1991-09-30 1995-05-30 Matsushita Electric Industrial Co., Ltd. Surface-mount type ceramic capacitor
JP3205014B2 (ja) 1991-09-30 2001-09-04 松下電器産業株式会社 面実装系磁器コンデンサ
JP3210042B2 (ja) 1991-11-08 2001-09-17 松下電器産業株式会社 面実装用電子部品
JP3215459B2 (ja) 1991-09-30 2001-10-09 松下電器産業株式会社 面実装用磁器コンデンサの実装構造
JPH05101975A (ja) 1991-09-30 1993-04-23 Matsushita Electric Ind Co Ltd 面実装用の磁器コンデンサ
JP3099509B2 (ja) 1992-04-24 2000-10-16 松下電器産業株式会社 面実装用の磁器コンデンサ
JPH06163315A (ja) 1992-11-17 1994-06-10 Matsushita Electric Ind Co Ltd 面実装用磁器コンデンサ
JP3387130B2 (ja) 1992-12-25 2003-03-17 松下電器産業株式会社 面実装用磁器コンデンサ
JPH0766325A (ja) 1993-08-26 1995-03-10 Rohm Co Ltd 合成樹脂パッケージ型電子部品の構造
JPH097877A (ja) 1995-04-18 1997-01-10 Rohm Co Ltd 多層セラミックチップ型コンデンサ及びその製造方法
JP3340625B2 (ja) 1996-07-04 2002-11-05 株式会社村田製作所 表面実装型セラミック電子部品
US5889445A (en) 1997-07-22 1999-03-30 Avx Corporation Multilayer ceramic RC device
US6046507A (en) 1997-12-08 2000-04-04 Advanced Micro Devices Electrophoretic coating methodology to improve internal package delamination and wire bond reliability
DE69936008T2 (de) * 1998-01-07 2008-01-10 Tdk Corp. Keramischer Kondensator
JP3777856B2 (ja) 1998-11-20 2006-05-24 松下電器産業株式会社 面実装用電子部品
DE19953594A1 (de) 1998-11-20 2000-05-25 Matsushita Electric Ind Co Ltd Oberflächenmontierte elektronische Komponente
JP3881481B2 (ja) 1999-10-14 2007-02-14 ローム株式会社 固体電解コンデンサの製法
JP2002025852A (ja) 2000-07-07 2002-01-25 Matsushita Electric Ind Co Ltd 電子部品
JP2002043170A (ja) 2000-07-21 2002-02-08 Murata Mfg Co Ltd 積層セラミックコンデンサモジュール
JP2002043166A (ja) 2000-07-24 2002-02-08 Matsushita Electric Ind Co Ltd 電子部品
JP4736225B2 (ja) 2001-04-16 2011-07-27 パナソニック株式会社 コンデンサ
JP3910045B2 (ja) * 2001-11-05 2007-04-25 シャープ株式会社 電子部品内装配線板の製造方法
JP4187184B2 (ja) * 2002-02-28 2008-11-26 Tdk株式会社 電子部品
JP3885938B2 (ja) * 2002-03-07 2007-02-28 Tdk株式会社 セラミック電子部品、ペースト塗布方法及びペースト塗布装置
US6870727B2 (en) * 2002-10-07 2005-03-22 Avx Corporation Electrolytic capacitor with improved volumetric efficiency
JP2004247594A (ja) * 2003-02-14 2004-09-02 Nec Tokin Corp チップ型コンデンサ及びその製造方法並びにモールド金型

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0459124U (ja) * 1990-09-27 1992-05-21
JPH06125236A (ja) * 1992-10-12 1994-05-06 Matsushita Electric Ind Co Ltd Lcフィルタ

Also Published As

Publication number Publication date
US7139160B2 (en) 2006-11-21
US20050133240A1 (en) 2005-06-23
TW200522099A (en) 2005-07-01

Similar Documents

Publication Publication Date Title
JP4953988B2 (ja) 積層コンデンサおよびコンデンサ実装基板
KR101952860B1 (ko) 적층 세라믹 커패시터 및 그 실장 기판
US20150124370A1 (en) Multilayer ceramic capacitor
JP2002025852A (ja) 電子部品
WO2005062318A1 (ja) 電子部品
JP2019525522A (ja) 雑音信号をフィルタリングするためのフィルタ素子
US8395881B2 (en) Multilayer feedthrough capacitor and mounted structure of multilayer feedthrough capacitor
JPWO2015182114A1 (ja) 半導体装置、内蔵用キャパシタユニット、半導体実装体と、内蔵用キャパシタユニットの製造方法
US7042700B2 (en) Electronic component
KR102516764B1 (ko) 복합 전자 부품
US20190014655A1 (en) Composite component-embedded circuit board and composite component
JP4736225B2 (ja) コンデンサ
JP4379107B2 (ja) 電子部品
KR101809121B1 (ko) 대전력 세라믹커패시터 패키징장치
JP5741416B2 (ja) 電子部品の実装構造
KR102202471B1 (ko) 복합 전자 부품 및 그 실장 기판
KR101813364B1 (ko) 복합 전자 부품 및 그 실장 기판
JP2006093532A (ja) 電子部品
JP2003257779A (ja) 電子部品
KR20120050289A (ko) 캐패시터 내장형 인쇄회로기판
KR102189802B1 (ko) 복합 전자 부품 및 그 실장 기판
JP2005183434A (ja) 電子部品
JP3454941B2 (ja) リードフレーム
KR101740860B1 (ko) 복합 전자 부품 및 그 실장 기판
JP2006339401A (ja) 電子部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase