WO2005057772A1 - アクチュエータ素子およびその製造方法 - Google Patents
アクチュエータ素子およびその製造方法 Download PDFInfo
- Publication number
- WO2005057772A1 WO2005057772A1 PCT/JP2004/018040 JP2004018040W WO2005057772A1 WO 2005057772 A1 WO2005057772 A1 WO 2005057772A1 JP 2004018040 W JP2004018040 W JP 2004018040W WO 2005057772 A1 WO2005057772 A1 WO 2005057772A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ionic liquid
- polymer
- layer
- gel
- gel composition
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 239000002608 ionic liquid Substances 0.000 claims abstract description 64
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 54
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 46
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 46
- 229920000642 polymer Polymers 0.000 claims abstract description 46
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims description 29
- 238000003892 spreading Methods 0.000 claims description 10
- 230000007480 spreading Effects 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 6
- 238000007639 printing Methods 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 5
- 239000004020 conductor Substances 0.000 claims description 3
- 238000010030 laminating Methods 0.000 claims 2
- 239000000499 gel Substances 0.000 description 59
- 239000002109 single walled nanotube Substances 0.000 description 34
- 230000004044 response Effects 0.000 description 29
- 238000006073 displacement reaction Methods 0.000 description 24
- 150000002500 ions Chemical class 0.000 description 24
- 230000004043 responsiveness Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 14
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 14
- 229920001940 conductive polymer Polymers 0.000 description 13
- 108010025899 gelatin film Proteins 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 6
- 238000005266 casting Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008602 contraction Effects 0.000 description 4
- 239000003014 ion exchange membrane Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000007605 air drying Methods 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- -1 dicyanamide-one Chemical compound 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229940021013 electrolyte solution Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920000128 polypyrrole Polymers 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000000981 high-pressure carbon monoxide method Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- MMNYLVQQZFXFBS-UHFFFAOYSA-N carboxy trifluoromethanesulfonate Chemical compound OC(=O)OS(=O)(=O)C(F)(F)F MMNYLVQQZFXFBS-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001595 contractor effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010325 electrochemical charging Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- CEIPQQODRKXDSB-UHFFFAOYSA-N ethyl 3-(6-hydroxynaphthalen-2-yl)-1H-indazole-5-carboximidate dihydrochloride Chemical compound Cl.Cl.C1=C(O)C=CC2=CC(C3=NNC4=CC=C(C=C43)C(=N)OCC)=CC=C21 CEIPQQODRKXDSB-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003335 steric effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G7/00—Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
- F03G7/005—Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
- B81B3/0064—Constitution or structural means for improving or controlling the physical properties of a device
- B81B3/0094—Constitution or structural means for improving or controlling physical properties not provided for in B81B3/0067 - B81B3/0091
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/24—Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/724—Devices having flexible or movable element
- Y10S977/725—Nanomotor/nanoactuator
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/24995—Two or more layers
Definitions
- the present invention relates to an electrochemical actuator element and a method for manufacturing the same.
- the electrochemical actuator element is an actuator element that drives an electrochemical process such as an electrochemical reaction or charging and discharging of an electric double layer as a driving force.
- the electron conductive polymer actuator is driven at a low voltage and has a large expansion / contraction ratio.
- advantages such as high pressure generated, the best performance method for producing polypyrrole with a slow response speed is only electrolytic polymerization, and the response is due to ion doping and undoping based on redox reactions. Therefore, it has been pointed out that there is a problem in repeated durability in principle.
- the conventional actuator is driven only in a limited environment, mainly in an electrolyte solution, and thus has a very limited use. Therefore, the development of an actuator device driven in the air is indispensable for putting a small actuator into practical use for a wide range of applications.
- an example in which an electronic conductive polymer is attached to both sides of an ion exchange resin, or a high boiling organic solvent such as propylene carbonate is used.
- a conductive polymer is adhered to a gel film containing the polymer film and used as an element of an actuator by utilizing expansion and contraction of electrodes on both sides.
- these examples have problems of solvent drying and low ionic conductivity, and have not been an essential solution.
- room temperature which is recently known as an ionic liquid and is also referred to as a room temperature molten salt or simply a molten salt.
- ionic liquid which is also referred to as a room temperature molten salt or simply a molten salt.
- Application research using a salt that exhibits a molten state is underway. Since the ionic liquid has a negligible vapor pressure, it can prevent the solvent from drying due to volatilization.
- Non-Patent Document 1 Science, Vol. 284, 1999, p. 1340
- Non-Patent Document 2 Science, Vol. 297, 2002, p. 983
- Non-Patent Document 3 Electrochimica Acta, Vol. 48, 2003, p.
- An object of the present invention is to provide a flexible and simple structure that can be driven at a low voltage, operates stably in the air and in a vacuum, is extremely simple in manufacturing, and has a long repetitive durability. It is an object of the present invention to provide an actuator element which is easy and has a high response and can be put to practical use for a wide range of applications.
- the present inventors have conducted intensive studies, and as a result, by using a gel of carbon nanotubes and an ionic liquid as a conductive and stretchable active layer, a novel operable in air or vacuum. Finding that an actuator element can be obtained, and completing the present invention. Reached.
- the present invention provides a conductor material for an actuator element, an electrode layer for an actuator element, an ion conductive layer for an actuator element, an actuator element, and a method for manufacturing an actuator element as described below. .
- a conductive material for an actuator element which has a gel force between a carbon nanotube and an ionic liquid.
- An electrode layer for an actuator element having a gel composition of carbon nanotubes, an ionic liquid, and a polymer.
- the gel composition of the ionic liquid and the polymer The electrode layer of the gel composition of the ionic liquid and the polymer is insulated from each other on the surface of the ion conductive layer.
- An actuator element formed of at least two elements and capable of causing a curve and a deformation by applying a potential difference to the electrode layer.
- an electrode layer composed of a gel composition of a carbon nanotube, an ionic liquid and a polymer is formed.
- An actuator element which is formed in an insulated state, has a conductive layer formed on the surface of the electrode layer, and can bend and deform by applying a potential difference to the conductive layer.
- the ionic liquid (ionic liquid) used in the present invention is also referred to as a room temperature molten salt or simply a molten salt, and is a salt that exhibits a molten state in a wide temperature range including room temperature (room temperature). It is.
- the ionic liquid exhibits a liquid state at room temperature (room temperature) or as close to room temperature as possible and is stable.
- a room temperature molten salt having a conductivity of 0.1 ISm- 1 or more is preferable.
- suitable ionic liquids to be used include a cation represented by the following general formula (I)-(IV) (preferably imidazolidium ion) and an ionic liquid (X- ) Can be exemplified.
- R represents an alkyl group having a carbon number of 11 to 12 or an alkyl group containing an ether bond and having a total of 3 to 12 carbon atoms and oxygen atoms.
- 1 represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
- R and R 1 are the same Preferably not.
- X is an integer of 1-4 each.
- Examples of the a-one (X—) include tetrafluoroborate-a-one, hexafluorophosphate-a-one, bis (trifluoromethanesulfol-l) imidate ayuon, and perchlorate-a-one. , Tris (trifluoromethanesulfonyl) carbonate, trifluoromethanesulfonate, dicyanamide-one, trifluoroacetate, organic carboxylic acid, and at least one selected from the group consisting of One is preferred.
- the carbon nanotube used in the present invention is a carbon-based material having a shape in which a graph ensheet is wound into a cylindrical shape, and is divided into a single-walled nanotube (SWNT) and a multi-walled nanotube (MWNT) based on the number of peripheral walls.
- SWNT single-walled nanotube
- MWNT multi-walled nanotube
- Various types are known, such as chiral (spiral) type, zigzag type, and armchair type, due to differences in the structure of the graph ensheet.
- any type of carbon nanotube can be used as long as it is a so-called carbon nanotube.
- a single-walled nanotube having a large aspect ratio that is, a thin and long single-walled nanotube is likely to form a gel.
- a gel composition from SWNT.
- carbon nanotubes for practical use include HiPco (trade name of carbon 'Nanotechnology I' Inc.), which can be relatively mass-produced using monocarbon oxide as a raw material. It is not limited to this.
- polymers that can be used to obtain a gel composition include polyvinylidene-fluoridene-hexafluoropropylene copolymer [PVDF (HFP)] and polyvinylidene fluoride.
- PVDF polyvinylidene-fluoridene-hexafluoropropylene copolymer
- HFP polyvinylidene fluoride
- PHEMA poly 2-hydroxyethyl methacrylate
- PMMA polymethyl methacrylate
- PEO polyethylene oxide
- PAN polyacrylonitrile
- FIG. 1 shows a schematic configuration (cross section) of an example of the actuator element of the present invention.
- FIG. 1 (A) shows an ion conductive layer 1 having a gel composition of an ionic liquid and a polymer, and an electrode layer 2 of a gel composition of a carbon nanotube, an ionic liquid and a polymer.
- the figure shows a three-layer actuator element sandwiched between two.
- the electrode layers 2 and 2 are formed in a mutually insulated state.
- FIG. 1B shows a five-layered actuator element in which conductive layers 3 and 3 are further formed outside the electrode layers 2 and 2 in order to increase the surface conductivity of the electrodes.
- the gel composition constituting the electrode layers 2 and 2 is composed of carbon nanotubes, an ionic liquid, and a polymer.
- a carbon nanotube gel is obtained from the carbon nanotubes and the ionic liquid, and a polymer is blended with the gel to maintain mechanical strength to obtain a gel composition.
- the gel of the carbon nanotube and the ionic liquid is generated by applying a shearing force to the carbon nanotube in the presence of the ionic liquid.
- Gels of carbon nanotubes and ionic liquids are rare materials in which carbon nanotubes are finely dispersed without impairing their properties, are non-volatile, nonflammable, and have high thermal stability.
- gel: polymer 1: 2—4: 1
- gel: polymer 1: 1: 1: 2: 1.
- a solvent such as 4-methylpentan-2-one may be used.
- the gel composition constituting the ion conductive layer 1 is composed of an ionic liquid and a polymer.
- a solvent such as 4-methylpentane 2-one may be used.
- a gel composition constituting each layer is sequentially produced by a spreading method (casting method). A film may be formed, and the solvent may be evaporated and dried.
- the thickness of the ion conductive layer 1 and the thickness of the electrode layer 2 are each preferably 10-500 ⁇ m, more preferably 50-200 / zm.
- a spin coating method, a printing method, a spray method, or the like can be used.
- an extrusion method, an injection method, or the like can be used.
- bonding of carbon nanotube paper by pressing, spreading (casting) or the like, bonding of a noble metal layer by sputtering, vapor deposition, or the like, carbon bonding by spraying, printing, or the like There is a method such as application of a paste. Of these, joining of the noble metal layer by a sputtering method is more preferred.
- the thickness of the conductive layer 3 is preferably 10 to 50 nm.
- the actuator element can be operated flexibly in air or vacuum.
- the operation principle of such an actuator element is such that when a potential difference is applied to the electrode layers 2 and 2 formed in a mutually insulated state on the surface of the ion conductive layer 1, the electrode layers 2 and This is because an electric double layer is formed at the interface between the carbon nanotube phase and the ionic liquid phase in 2, and the electrode layers 2 and 2 expand and contract due to the interfacial stress.
- the bending to the positive electrode side is due to the fact that the carbon nanotube has a larger effect at the negative electrode side due to the quantum chemical effect. It is considered that the ionic radius is large and the minus pole side is extended more by the steric effect.
- reference numeral 4 denotes a cation of the ionic liquid
- reference numeral 5 denotes an ion of the ionic liquid.
- the effective area of the interface between the gel of the carbon nanotube and the ionic liquid is extremely large, so that the impedance in the interface electric double layer becomes small, This contributes to the effective use of the electrical expansion and contraction effect.
- mechanically the adhesion at the interface is improved, and the durability of the element is increased.
- a durable element with good responsiveness and large displacement in air or vacuum can be obtained.
- the structure is simple, miniaturization is easy, and it can be operated with low power.
- the actuator element of the present invention operates durably in air or vacuum, and operates flexibly at low voltage. Therefore, the actuator element of a robot (for example, a home robot) that comes into contact with a person who needs safety is required. , Actuators for personal robots such as pet robots and amusement robots), as well as for space environments, in vacuum chambers, and for rescue. It is ideally suited for robots working in special environments, medical and welfare robots such as surgical devices and muscle suits, and actuators for micro machines.
- the actuator element of the present invention which uses an ionic liquid that does not evaporate at all, can be effectively used as an actuator with no fear of contamination and as a process actuator in a vacuum environment.
- an electrode layer on the surface of the ion conductive layer requires at least two layers. As shown in FIG. 3, a large number of electrode layers 2 are arranged on the surface of the planar ion conductive layer 1. However, it is possible to make complicated movements. With such an element, it is possible to realize transportation by peristalsis and a micromanipulator. Further, the shape of the actuator element of the present invention is not limited to a planar shape, and an element having an arbitrary shape can be easily manufactured. For example, the one shown in FIG. 4 has four electrode layers 2 formed around the rod of the ion conductive layer 1 having a diameter of about lmm. With this element, an actuator that can be inserted into a thin tube can be realized.
- the actuator element of the present invention operates stably in air or vacuum, and can be driven at a low voltage. Further, it is easy to manufacture, large in displacement and displacement force, easy to miniaturize, and operates quickly and flexibly.
- FIG. 1 (A) is a view schematically showing a configuration of an example of an actuator element (three-layer structure) of the present invention
- FIG. 1 (B) is a diagram showing an actuator element (3) of the present invention
- FIG. 3 is a diagram schematically illustrating an example of a configuration (five-layer structure).
- FIG. 2 is a view showing the operation principle of the actuator element of the present invention.
- FIG. 3 is a diagram schematically showing another example of the actuator element of the present invention.
- FIG. 4 is a diagram schematically showing another example of the actuator element of the present invention.
- FIG. 5 is a diagram schematically showing a displacement measuring device.
- FIG. 6 is a diagram showing the responsiveness of the three-layered film of Example 1.
- FIG. 7 is a diagram showing the responsiveness of the three-layered film of Example 1.
- FIG. 8 is a view showing the responsiveness of the three-layer structure film of Example 1.
- FIG. 9 is a diagram showing the responsiveness of the five-layer structure film of Example 2.
- FIG. 10 is a diagram showing the responsiveness of the five-layer structure film of Example 2.
- FIG. 11 is a view showing the responsiveness of a five-layer structure film of Example 3.
- FIG. 12 is a diagram showing a change over time in the responsiveness of the five-layered film of Example 3.
- PVDF (HFP) polyvinylidene fluoride-hexafluoropropylene copolymer
- the ionic liquid used in the examples has the formula: [0055] [Formula 4]
- BF- Fluoroborate (BF-) salt (hereinafter also referred to as BMIBF) was used.
- the carbon nanotubes used in the examples are single-walled carbon nanotubes (Carbon Nanotechnology I. Product name "HiPco” manufactured by Incorporated) (hereinafter also referred to as SWNT).
- the solvent used in the examples is 4-methylpentane 2-one (hereinafter also referred to as MP).
- PTFE polytetrafluoroethylene
- the response was evaluated by cutting the three-layer structure film or the five-layer structure film obtained in the example into a strip having a width of Imm and a length of 15 mm. As shown in FIG. The part was gripped by a holder with electrodes, a voltage was applied in the air, and the displacement at a position 10 mm from the fixed end was measured using a laser displacement meter. At the same time, voltage and current were measured.
- a gel was prepared. By kneading, the ionic liquid was gelled by the carbon nanotubes.
- the SWNT gel (73 mg), polymer [PVDF (HFP)] (71 mg) and MP (0.8 ml) prepared in (1) above were mixed by heating at 70-80 ° C, and the first layer (electrode A gel composition was prepared to constitute the first layer and the third layer (electrode layer).
- the gel-like material constituting the second layer (ion conductive layer) sandwiched between them consists of BMIPF (70 mg), PVDF (HFP) (70 mg) and MP (0.4 ml).
- FIG. 6 is a diagram of the voltage, the current flowing at that time, and the displacement from immediately above immediately after the square wave voltage of 0.1 Hz and 4 Vp.p.
- the vertical axis indicates “VoltageZV”, “CurrentZmA”, and “DisplacementZmm” from the top.
- the horizontal axis indicates “TimeZsec”.
- As for the current only the charging current similar to that of the capacitor flows. From the displacement diagram, it can be seen that the film is bent to the positive pole side when a three-layer film force voltage is applied.
- FIG. 7 is the same as FIG. 6 and shows the response 30 minutes after the voltage is applied, and the response hardly changes.
- Fig. 8 shows the displacement response when the frequency of the square wave voltage of 4Vp.p. was changed. From above, 0.1 ⁇ , 1 ⁇ , 2Hz, 4Hz is there. From this, it can be seen that response up to about several tens of Hz is possible.
- Table 1 shows the voltage value (peak to peak) of the added 0.1 Hz square wave voltage and the response displacement (peak to peak) at that time.
- SWNT single-walled carbon nanotube
- EMITFSI gel EMITFSI gel
- SWNT 21 mg
- EMITFSI 86 mg
- a gel film having a three-layer structure was produced in the same manner as in Example 1.
- the mixing ratio is as follows: SWNT gel (105 mg) prepared in (1) above, polymer [PVDF (HFP)] (54 mg), and MP (1. layer) as the first layer (electrode layer) and the third layer (electrode layer). Oml).
- EMITFSI 160 mg
- PVDF (HFP) 80 mg
- MP 0.7 ml
- Carbon nanotube paper (conducting layer) was bonded to the three-layer gel film prepared in (2) above with a double-sided force by pressing.
- FIG. 9 is a diagram of voltage, current flowing at that time, and displacement when a square wave voltage of 0.1 Hz and 4 Vp.p. was obtained.
- the response is similar to that of the first embodiment, but both the current and the displacement response are much larger than the first embodiment. This is thought to be due to the high conductivity of the carbon nanotube paper.
- Figure 10 Shows the displacement response when the frequency of the square wave voltage of 4Vp.-p. is changed.
- Table 2 shows the voltage value of the added 0.1 Hz square wave voltage (peak-to-peak) and the response displacement (peak-to-peak) at that time.
- a gel was prepared.
- Second and fourth layers SWNT gel (129 mg) prepared in (1) above, polymer [PV DF (HFP)] (65 mg) and MP (1.5 ml)
- Second layer (ion conductive layer): BMIBF (149mg), polymer [PVDF (HFP)] (75mg) and
- FIG. 11 is a diagram showing the current in the left column and the displacement in the right column when a square wave voltage of 0.1 Hz is applied. From above, the response when a 2Vp.-p. square wave voltage is applied, the response when a 3Vp.-p. square wave voltage is applied, and the response when a 4Vp.p. square wave voltage is applied , 5 Vp.p. response when a square wave voltage is applied, 6 Vp. The response when the square wave voltage of P. is applied is shown. It can be seen that the presence of the conductive layer reduces the electric resistance and improves the response characteristics. Fig.
- FIG. 12 shows the results of a durability test in which a square wave voltage of 0.1Hz and 4Vp.p. was continuously applied for 24 hours.
- Figure 12 plots the peak-to-peak value of the current and the response displacement when the voltage was applied against the time since the voltage was applied. From the figure, the current is slightly smaller but there is almost no change. The displacement largely decreases mainly in the first few hours, and then decreases less. From this figure, it is considered that the durability for 24 hours or more (9000 times or more) is sufficient. In this way, the responsiveness is almost the same as in Example 2 in which carbon nanotube paper is joined by press, but the durability is far superior.
- Table 3 shows the voltage value of the added 0.1 Hz square wave voltage (peak-to-peak) and the response displacement (peak-to-peak) at that time.
- a gel was prepared.
- the following components were formed into a film by a casting method.
- First and third layers (electrode layer): SWNT gel (160 mg), polymer [PV DF (HFP)] (80 mg) and MP (1.5 ml) prepared in (1) above
- Second layer (ion conductive layer): BMIBF (163mg), polymer [PVDF (HFP)] (82mg) and And MP (0.6 ml)
- SWNT 65 mg
- EMITFSI 246 mg
- the following components were formed into a film by a casting method.
- First and third layers SWNT gel (163 mg), polymer [PV DF (HFP)] (82 mg) and MP (1.2 ml) prepared in (1) above
- Second layer (ion conductive layer); EMITFSI (161mg), polymer [PVDF (HFP)] (80mg) and MP (0.6ml)
- Gold was applied as a conductive layer to both surfaces of the gel film having the three-layer structure prepared in (2) above by a sputtering method (using a sputtering machine for preparing a sample with a scanning electron microscope, 20 mA at 20 mA for a total of 20 minutes per side).
- Example c Five-layered finolem formed by applying a carbon paste to a three-layered film to form a conductive layer
- the conductive layer was formed by spraying and spraying a substance obtained by diluting a carbon paste (trade name: Dotite XC-32, manufactured by Fujikura Kasei Co., Ltd.) with toluene on both sides of the three-layer gel film of sample a and spraying it. .
- a carbon paste trade name: Dotite XC-32, manufactured by Fujikura Kasei Co., Ltd.
- Table 4 shows the (peak 'two' peak) and the corresponding response displacement (peak 'two' peak).
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Combustion & Propulsion (AREA)
- Nanotechnology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Analytical Chemistry (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Micromachines (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Carbon And Carbon Compounds (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/567,740 US7315106B2 (en) | 2003-12-08 | 2004-12-03 | Actuator element and production method therefor |
CN2004800226873A CN1833352B (zh) | 2003-12-08 | 2004-12-03 | 致动器元件及其生产方法 |
AU2004298164A AU2004298164B2 (en) | 2003-12-08 | 2004-12-03 | Actuator element and production method therefor |
EP04820166A EP1693950A4 (en) | 2003-12-08 | 2004-12-03 | ACTUATOR ELEMENT AND MANUFACTURING METHOD THEREFOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003409344A JP4038685B2 (ja) | 2003-12-08 | 2003-12-08 | アクチュエータ素子 |
JP2003-409344 | 2003-12-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005057772A1 true WO2005057772A1 (ja) | 2005-06-23 |
Family
ID=34674894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/018040 WO2005057772A1 (ja) | 2003-12-08 | 2004-12-03 | アクチュエータ素子およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US7315106B2 (ja) |
EP (1) | EP1693950A4 (ja) |
JP (1) | JP4038685B2 (ja) |
KR (1) | KR100730292B1 (ja) |
CN (1) | CN1833352B (ja) |
AU (1) | AU2004298164B2 (ja) |
WO (1) | WO2005057772A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006288040A (ja) * | 2005-03-31 | 2006-10-19 | National Institute Of Advanced Industrial & Technology | アクチュエータ素子およびその製造方法 |
WO2007088746A1 (ja) * | 2006-02-03 | 2007-08-09 | Daikin Industries, Ltd. | アクチュエータ素子 |
EP1860765A2 (en) * | 2006-05-26 | 2007-11-28 | Olympus Corporation | Actuator moveable by an electric field and corresponding method |
JP2012212053A (ja) * | 2011-03-31 | 2012-11-01 | Sony Corp | レンズモジュール、撮像装置、電子機器、変位素子シート、および変位素子シートの製造方法 |
JP2013014719A (ja) * | 2011-07-06 | 2013-01-24 | National Institute Of Advanced Industrial Science & Technology | 油脂或いは撥水剤を含むアクチュエータ素子 |
US8871974B2 (en) | 2005-12-02 | 2014-10-28 | Kanto Denka Kogyo Co., Ltd. | Ionic liquid containing phosphonium cation having P—N bond and method for producing same |
CN110475971A (zh) * | 2017-01-10 | 2019-11-19 | 弗劳恩霍夫应用研究促进协会 | 具有机械致动器的微机械装置 |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361430B1 (en) * | 2003-04-08 | 2008-04-22 | The United States Of America As Represented By The United States Department Of Energy | Carbon nanotube-polymer composite actuators |
WO2006088033A1 (ja) * | 2005-02-17 | 2006-08-24 | Kaneka Corporation | 金属表面コーティング用組成物、導電性高分子の製造方法、金属表面のコーティング方法、ならびに電解コンデンサおよびその製造方法 |
JP4873453B2 (ja) * | 2005-03-31 | 2012-02-08 | 独立行政法人産業技術総合研究所 | 導電性薄膜、アクチュエータ素子及びその製造方法 |
JP4802680B2 (ja) * | 2005-11-18 | 2011-10-26 | ソニー株式会社 | アクチュエータ |
JP4732876B2 (ja) | 2005-11-30 | 2011-07-27 | 株式会社日立製作所 | アクチュエータ、アクチュエータモジュールおよびアクチュエータモジュール製造方法 |
EP1983008B1 (en) | 2006-02-07 | 2012-12-26 | Daikin Industries, Ltd. | Fluorine-containing polymer containing heteroaromatic ring |
DE102006010828B3 (de) * | 2006-03-07 | 2007-05-03 | Tyco Electronics Amp Gmbh | Elektrisches Schaltelement, insbesondere Relais, mit Schwenkhebel-Schaltmechanik |
US8268197B2 (en) * | 2006-04-04 | 2012-09-18 | Seeo, Inc. | Solid electrolyte material manufacturable by polymer processing methods |
US8563168B2 (en) | 2006-04-04 | 2013-10-22 | The Regents Of The University Of California | High elastic modulus polymer electrolytes |
JP5114722B2 (ja) * | 2006-05-29 | 2013-01-09 | 独立行政法人理化学研究所 | センサ機能付き統合型ソフトアクチュエータ |
JP5156940B2 (ja) * | 2006-06-08 | 2013-03-06 | 国立大学法人福井大学 | 高分子アクチュエータおよびその製造方法 |
CN101473522B (zh) | 2006-06-20 | 2012-06-06 | 松下电器产业株式会社 | 高分子致动器 |
JP4568885B2 (ja) * | 2006-07-31 | 2010-10-27 | 独立行政法人産業技術総合研究所 | 高強度、高導電性薄膜によるアクチュエータ素子及びその製造方法 |
US7495368B2 (en) * | 2006-08-31 | 2009-02-24 | Evigia Systems, Inc. | Bimorphic structures, sensor structures formed therewith, and methods therefor |
KR100847493B1 (ko) | 2006-11-08 | 2008-07-22 | 한국전자통신연구원 | 고안정성 고분자 구동기의 제조방법 및 이로부터 얻은고분자 구동기 |
EP2114628A2 (en) * | 2006-11-28 | 2009-11-11 | University of Tartu | A shape changing manipulator comprising self-sensing actuators made of an electroactive polymer material |
JP4714700B2 (ja) * | 2007-02-26 | 2011-06-29 | 日本航空電子工業株式会社 | 高分子電解質膜アクチュエータの作製方法及び高分子電解質膜アクチュエータ |
JP4931002B2 (ja) * | 2007-03-16 | 2012-05-16 | 独立行政法人産業技術総合研究所 | ポリマーイオンゲルを用いたアクチュエータ素子及びその製造方法 |
JP2008245428A (ja) * | 2007-03-27 | 2008-10-09 | Furukawa Electric Co Ltd:The | 振動・衝撃吸収素子、振動・衝撃吸収装置及び振動・衝撃吸収素子の作動方法 |
JP2008253012A (ja) * | 2007-03-29 | 2008-10-16 | Tdk Corp | 高分子アクチュエータ及びその製造方法 |
JP5004078B2 (ja) * | 2007-04-24 | 2012-08-22 | 独立行政法人産業技術総合研究所 | 高アスペクト比のカーボンナノチューブを用いた高配向性電極によるアクチュエータ素子 |
JP5110574B2 (ja) | 2007-06-25 | 2012-12-26 | 独立行政法人産業技術総合研究所 | 高アスペクト比のカーボンナノチューブとイオン液体から構成される導電性薄膜、アクチュエータ素子 |
JP4863297B2 (ja) * | 2007-06-25 | 2012-01-25 | 独立行政法人産業技術総合研究所 | カーボンナノチューブを用いた高強度、高導電性薄膜およびアクチュエータ素子製造方法 |
KR100917233B1 (ko) * | 2007-07-26 | 2009-09-16 | 한국전자통신연구원 | 표면 코팅된 고분자 구동기 및 그의 제조방법 |
JP5012284B2 (ja) * | 2007-07-26 | 2012-08-29 | ソニー株式会社 | アクチュエータシステム |
CN101458599B (zh) | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101655720B (zh) | 2008-08-22 | 2012-07-18 | 清华大学 | 个人数字助理 |
CN101464763B (zh) | 2007-12-21 | 2010-09-29 | 清华大学 | 触摸屏的制备方法 |
CN101656769B (zh) | 2008-08-22 | 2012-10-10 | 清华大学 | 移动电话 |
CN101458597B (zh) * | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101458593B (zh) | 2007-12-12 | 2012-03-14 | 清华大学 | 触摸屏及显示装置 |
CN101470560B (zh) * | 2007-12-27 | 2012-01-25 | 清华大学 | 触摸屏及显示装置 |
CN101458605B (zh) | 2007-12-12 | 2011-03-30 | 鸿富锦精密工业(深圳)有限公司 | 触摸屏及显示装置 |
CN101458595B (zh) | 2007-12-12 | 2011-06-08 | 清华大学 | 触摸屏及显示装置 |
CN101458598B (zh) * | 2007-12-14 | 2011-06-08 | 清华大学 | 触摸屏及显示装置 |
CN101470558B (zh) | 2007-12-27 | 2012-11-21 | 清华大学 | 触摸屏及显示装置 |
CN101458594B (zh) | 2007-12-12 | 2012-07-18 | 清华大学 | 触摸屏及显示装置 |
CN101458596B (zh) | 2007-12-12 | 2011-06-08 | 北京富纳特创新科技有限公司 | 触摸屏及显示装置 |
CN101458606B (zh) * | 2007-12-12 | 2012-06-20 | 清华大学 | 触摸屏、触摸屏的制备方法及使用该触摸屏的显示装置 |
CN101458608B (zh) | 2007-12-14 | 2011-09-28 | 清华大学 | 触摸屏的制备方法 |
CN101419519B (zh) | 2007-10-23 | 2012-06-20 | 清华大学 | 触摸屏 |
CN101676832B (zh) | 2008-09-19 | 2012-03-28 | 清华大学 | 台式电脑 |
CN101458600B (zh) | 2007-12-14 | 2011-11-30 | 清华大学 | 触摸屏及显示装置 |
CN101470559B (zh) * | 2007-12-27 | 2012-11-21 | 清华大学 | 触摸屏及显示装置 |
CN101470566B (zh) | 2007-12-27 | 2011-06-08 | 清华大学 | 触摸式控制装置 |
CN101458604B (zh) | 2007-12-12 | 2012-03-28 | 清华大学 | 触摸屏及显示装置 |
CN101458609B (zh) | 2007-12-14 | 2011-11-09 | 清华大学 | 触摸屏及显示装置 |
CN101458602B (zh) | 2007-12-12 | 2011-12-21 | 清华大学 | 触摸屏及显示装置 |
CN101419518B (zh) | 2007-10-23 | 2012-06-20 | 清华大学 | 触摸屏 |
CN101458975B (zh) | 2007-12-12 | 2012-05-16 | 清华大学 | 电子元件 |
CN101464757A (zh) | 2007-12-21 | 2009-06-24 | 清华大学 | 触摸屏及显示装置 |
CN101458601B (zh) * | 2007-12-14 | 2012-03-14 | 清华大学 | 触摸屏及显示装置 |
CN101458607B (zh) | 2007-12-14 | 2010-12-29 | 清华大学 | 触摸屏及显示装置 |
US8574393B2 (en) | 2007-12-21 | 2013-11-05 | Tsinghua University | Method for making touch panel |
CN101464765B (zh) | 2007-12-21 | 2011-01-05 | 鸿富锦精密工业(深圳)有限公司 | 触摸屏及显示装置 |
CN101464764B (zh) | 2007-12-21 | 2012-07-18 | 清华大学 | 触摸屏及显示装置 |
CN101464766B (zh) | 2007-12-21 | 2011-11-30 | 清华大学 | 触摸屏及显示装置 |
CN101470565B (zh) * | 2007-12-27 | 2011-08-24 | 清华大学 | 触摸屏及显示装置 |
EP2240975B1 (en) * | 2008-01-16 | 2016-11-16 | Seeo, Inc | Gel polymer electrolytes for batteries |
JP4982805B2 (ja) * | 2008-02-06 | 2012-07-25 | 独立行政法人産業技術総合研究所 | 三層型アクチュエータにおいて各層の伸縮を測定する方法 |
WO2009122466A1 (ja) * | 2008-04-04 | 2009-10-08 | パナソニック株式会社 | 導電性高分子アクチュエータ、その製造方法、およびその駆動方法 |
US8784603B2 (en) * | 2008-04-28 | 2014-07-22 | Florida State University Research Foundation, Inc. | Actuator device including nanoscale fiber films |
JP2009278787A (ja) * | 2008-05-15 | 2009-11-26 | Sony Corp | アクチュエータ素子 |
EE200800042A (et) * | 2008-05-30 | 2010-02-15 | Tartu Ülikool | Aktuaator |
CN101715626A (zh) | 2008-06-11 | 2010-05-26 | 松下电器产业株式会社 | 导电性高分子致动器及其制造方法 |
WO2010001771A1 (ja) | 2008-07-02 | 2010-01-07 | アルプス電気株式会社 | 高分子アクチュエータ及び高分子アクチュエータ搭載デバイス |
CN101620327B (zh) * | 2008-07-04 | 2015-06-03 | 清华大学 | 触摸式液晶显示屏 |
US8237677B2 (en) | 2008-07-04 | 2012-08-07 | Tsinghua University | Liquid crystal display screen |
US8390580B2 (en) | 2008-07-09 | 2013-03-05 | Tsinghua University | Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen |
US9154058B2 (en) * | 2008-08-15 | 2015-10-06 | Board Of Regents, The University Of Texas System | Nanofiber actuators and strain amplifiers |
CN101828330B (zh) * | 2008-08-15 | 2012-05-30 | 松下电器产业株式会社 | 导电性高分子致动器及其制造方法 |
JP5252405B2 (ja) * | 2008-09-12 | 2013-07-31 | アルプス電気株式会社 | 高分子アクチュエータ |
KR101603772B1 (ko) * | 2008-12-12 | 2016-03-18 | 삼성전자주식회사 | 고체 전해질 폴리머, 가교된 pvdf계 폴리머를 이용한 폴리머 액츄에이터 및 이의 제조 방법 |
US8480917B2 (en) * | 2008-12-12 | 2013-07-09 | Samsung Electronics Co., Ltd. | Solid electrolyte polymer, polymer actuator using cross-linked polyvinylidene fluoride-based polymer, and method of manufacturing the polymer actuator |
IT1392321B1 (it) * | 2008-12-15 | 2012-02-24 | St Microelectronics Srl | Sistema sensore/attuatore interamente in materiale organico |
WO2010100907A1 (ja) * | 2009-03-04 | 2010-09-10 | パナソニック株式会社 | ポリマーアクチュエータ |
CN102365816B (zh) * | 2009-03-31 | 2015-06-24 | 大金工业株式会社 | 高分子致动器元件用电极膜和具有其的高分子致动器元件 |
JP5487678B2 (ja) * | 2009-03-31 | 2014-05-07 | ソニー株式会社 | アクチュエータ |
JP5472680B2 (ja) * | 2009-04-09 | 2014-04-16 | 国立大学法人 筑波大学 | 装着式動作補助装置 |
CN101924816B (zh) | 2009-06-12 | 2013-03-20 | 清华大学 | 柔性手机 |
JP5516850B2 (ja) * | 2009-07-17 | 2014-06-11 | ソニー株式会社 | 表示機能付き突起パターン形成装置 |
JP5631042B2 (ja) | 2009-08-27 | 2014-11-26 | キヤノン株式会社 | アクチュエータ |
JP5473483B2 (ja) | 2009-08-27 | 2014-04-16 | キヤノン株式会社 | アクチュエータ |
EE200900080A (et) | 2009-10-26 | 2011-06-15 | Tartu �likool | Kihiline aktuaator |
JP5495744B2 (ja) | 2009-12-08 | 2014-05-21 | キヤノン株式会社 | アクチュエータ |
JP5733938B2 (ja) * | 2009-12-08 | 2015-06-10 | キヤノン株式会社 | アクチュエータ |
JP5404357B2 (ja) * | 2009-12-08 | 2014-01-29 | キヤノン株式会社 | アクチュエータ |
WO2011070853A1 (ja) * | 2009-12-10 | 2011-06-16 | 株式会社ニコン | 空間光変調器、照明光学系、露光装置、およびデバイス製造方法 |
JP5477643B2 (ja) * | 2010-03-30 | 2014-04-23 | 独立行政法人産業技術総合研究所 | カーボンナノチューブ、アルカリ金属塩および/またはアルカリ土類金属塩、イオン液体及びポリマーから構成される電極膜、固体電解質膜、アクチュエータ素子 |
JP5734064B2 (ja) | 2010-04-27 | 2015-06-10 | キヤノン株式会社 | アクチュエータ |
DE102011075127B4 (de) * | 2010-05-04 | 2014-10-30 | Electronics And Telecommunications Research Institute | Mikroventilstruktur mit einem Polymeraktor und Lab-on-a-chip Modul |
JP2012005340A (ja) | 2010-05-18 | 2012-01-05 | Canon Inc | イオン移動型アクチュエータ |
WO2011151679A1 (en) | 2010-06-02 | 2011-12-08 | Indian Institute Of Science | Energy harvesting devices using carbon nanotube (cnt)-based electrodes |
IT1400870B1 (it) | 2010-06-25 | 2013-07-02 | Fond Istituto Italiano Di Tecnologia | Attuatore polimerico lineare e flessionale, a tre elettrodi. |
JP5679733B2 (ja) * | 2010-08-06 | 2015-03-04 | キヤノン株式会社 | アクチュエータ |
CN101912848B (zh) * | 2010-08-25 | 2012-06-20 | 清华大学 | 电致动清洁装置 |
JP2012097219A (ja) * | 2010-11-04 | 2012-05-24 | Sony Corp | 導電性インク、導電性インクの製造方法および透明導電膜の製造方法 |
JP2012135156A (ja) | 2010-12-22 | 2012-07-12 | Canon Inc | アクチュエータ |
TWI525881B (zh) | 2010-12-30 | 2016-03-11 | 財團法人工業技術研究院 | 具低穿透率之有機無機混成之複合質子交換膜 |
JP5652237B2 (ja) * | 2011-02-10 | 2015-01-14 | セイコーエプソン株式会社 | ナノ粒子分散イオンゲルの製造方法 |
EE05663B1 (et) | 2011-03-05 | 2013-06-17 | Tartu Ülikool | Sensormaterjal |
JP5765704B2 (ja) * | 2011-03-28 | 2015-08-19 | 国立研究開発法人産業技術総合研究所 | アクチュエータ素子 |
JP5842380B2 (ja) * | 2011-05-12 | 2016-01-13 | セイコーエプソン株式会社 | ナノ粒子の製造方法 |
JP6128508B2 (ja) | 2011-07-07 | 2017-05-17 | 国立研究開発法人産業技術総合研究所 | カーボンナノファイバーアクチュエータ |
CN102436934B (zh) * | 2011-09-15 | 2014-06-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | 复合纳米碳纸及其制备方法 |
JP2013123366A (ja) | 2011-11-10 | 2013-06-20 | Canon Inc | アクチュエータ |
KR20130056628A (ko) * | 2011-11-22 | 2013-05-30 | 삼성전기주식회사 | 고분자 압전 소자 |
JP2013144777A (ja) * | 2011-12-15 | 2013-07-25 | Canon Inc | 制電性ポリエステル樹脂成形体 |
KR101621782B1 (ko) | 2012-03-08 | 2016-05-31 | 엠파이어 테크놀로지 디벨롭먼트 엘엘씨 | 디스플레이를 위한 액티브 매트릭스 조명 유닛 |
JPWO2013147031A1 (ja) | 2012-03-30 | 2015-12-14 | 国立研究開発法人産業技術総合研究所 | 炭素電極を用いたアクチュエータ素子 |
JP5930533B2 (ja) * | 2012-06-08 | 2016-06-08 | アルプス電気株式会社 | 高分子アクチュエータ及びその製造方法 |
CN104583118B (zh) * | 2012-08-23 | 2018-02-16 | 独立行政法人科学技术振兴机构 | 碳纳米材料、组合物、导电性材料及其制造方法 |
CN104684469B (zh) | 2012-10-02 | 2016-12-07 | 独立行政法人科学技术振兴机构 | 信号检测装置以及信号检测方法 |
JP2016012947A (ja) * | 2012-11-01 | 2016-01-21 | アルプス電気株式会社 | 高分子アクチュエータ素子 |
JP6296530B2 (ja) * | 2013-07-18 | 2018-03-20 | 国立研究開発法人科学技術振興機構 | 生体適合性電極構造体及びその製造方法、並びに、デバイス及びその製造方法 |
US9437804B2 (en) | 2013-08-13 | 2016-09-06 | Palo Alto Research Center Incorporated | Electroactive polymer structures printed with varying compositions of ions |
KR101563902B1 (ko) | 2013-08-23 | 2015-10-28 | 고려대학교 산학협력단 | 다공성 고분자막을 포함하는 액추에이터 |
JP6225726B2 (ja) * | 2014-01-29 | 2017-11-08 | ダイキン工業株式会社 | 導電性含フッ素ポリマー組成物 |
EP3103388A4 (en) | 2014-02-06 | 2017-09-06 | Toray Industries, Inc. | Electrode and method for manufacturing electrode |
EP3186823A4 (en) * | 2014-08-28 | 2018-08-22 | Applied Materials, Inc. | Exfoliation process for removal of deposited materials from masks carriers, and deposition tool components |
JP5954389B2 (ja) * | 2014-11-05 | 2016-07-20 | セイコーエプソン株式会社 | ナノ粒子分散イオンゲルの製造方法 |
WO2016084031A1 (en) | 2014-11-27 | 2016-06-02 | Fondazione Istituto Italiano Di Tecnologia | Carbon nanotube-based material and polymerized ionic liquid for production of an actuator |
US10309379B2 (en) | 2015-01-16 | 2019-06-04 | The University Of Tokyo | Vibration energy harvester |
JP6011986B2 (ja) * | 2015-04-09 | 2016-10-25 | 国立研究開発法人産業技術総合研究所 | 油脂或いは撥水剤を含むアクチュエータ素子 |
CN105206738B (zh) * | 2015-10-26 | 2017-11-07 | 福建师范大学 | 电致动材料及电致动器 |
EP3523832B1 (en) * | 2016-10-04 | 2020-05-13 | Koninklijke Philips N.V. | Actuator device based on an electroactive polymer |
JP7002544B2 (ja) * | 2016-12-08 | 2022-01-20 | リンテック・オブ・アメリカ・インコーポレイテッド | 人工筋肉アクチュエータの改良 |
DE102017207913A1 (de) * | 2017-05-10 | 2018-11-15 | Robert Bosch Gmbh | Robotergliedmaße |
CN110510570B (zh) * | 2019-08-31 | 2023-03-24 | 三体次元信息科技(宁波)有限公司 | 磺化pvdf基ipmc电致动器及其制备方法和在vr触感手套中的应用 |
WO2021084074A1 (en) | 2019-10-30 | 2021-05-06 | Solvay Sa | Compositions and films comprising a polymer and tis2 particles, and their preparation and uses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002063073A1 (en) * | 2000-12-23 | 2002-08-15 | Wen Lu | Long-lived conjugated polymer electrochemical devices incorporating ionic liquids |
JP2002353078A (ja) * | 2001-05-29 | 2002-12-06 | Asahi Glass Co Ltd | 積層型電気二重層キャパシタモジュール |
JP2003342483A (ja) * | 2002-03-20 | 2003-12-03 | Sanyo Chem Ind Ltd | 導電性エラストマー |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2293710T3 (es) * | 1998-02-20 | 2008-03-16 | National Institute Of Advanced Industrial Science And Technology | Accionadores polimericos y procedimientos para producirlos. |
US6555945B1 (en) * | 1999-02-25 | 2003-04-29 | Alliedsignal Inc. | Actuators using double-layer charging of high surface area materials |
EP1212800B1 (en) * | 1999-07-20 | 2007-12-12 | Sri International | Electroactive polymer generators |
US8172998B2 (en) * | 2003-08-21 | 2012-05-08 | Virginia Tech Intellectual Properties, Inc. | Ionic solvents used in ionic polymer transducers, sensors and actuators |
-
2003
- 2003-12-08 JP JP2003409344A patent/JP4038685B2/ja not_active Expired - Lifetime
-
2004
- 2004-12-03 US US10/567,740 patent/US7315106B2/en not_active Expired - Fee Related
- 2004-12-03 EP EP04820166A patent/EP1693950A4/en not_active Withdrawn
- 2004-12-03 CN CN2004800226873A patent/CN1833352B/zh not_active Expired - Fee Related
- 2004-12-03 WO PCT/JP2004/018040 patent/WO2005057772A1/ja active Application Filing
- 2004-12-03 AU AU2004298164A patent/AU2004298164B2/en not_active Ceased
- 2004-12-03 KR KR1020067002916A patent/KR100730292B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002063073A1 (en) * | 2000-12-23 | 2002-08-15 | Wen Lu | Long-lived conjugated polymer electrochemical devices incorporating ionic liquids |
JP2002353078A (ja) * | 2001-05-29 | 2002-12-06 | Asahi Glass Co Ltd | 積層型電気二重層キャパシタモジュール |
JP2003342483A (ja) * | 2002-03-20 | 2003-12-03 | Sanyo Chem Ind Ltd | 導電性エラストマー |
Non-Patent Citations (1)
Title |
---|
See also references of EP1693950A4 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4691703B2 (ja) * | 2005-03-31 | 2011-06-01 | 独立行政法人産業技術総合研究所 | アクチュエータ素子およびその製造方法 |
JP2006288040A (ja) * | 2005-03-31 | 2006-10-19 | National Institute Of Advanced Industrial & Technology | アクチュエータ素子およびその製造方法 |
US8871974B2 (en) | 2005-12-02 | 2014-10-28 | Kanto Denka Kogyo Co., Ltd. | Ionic liquid containing phosphonium cation having P—N bond and method for producing same |
WO2007088746A1 (ja) * | 2006-02-03 | 2007-08-09 | Daikin Industries, Ltd. | アクチュエータ素子 |
JP2007204682A (ja) * | 2006-02-03 | 2007-08-16 | Daikin Ind Ltd | アクチュエータ素子 |
US8123983B2 (en) | 2006-02-03 | 2012-02-28 | Daikin Industries, Ltd. | Actuator element |
EP1860765A2 (en) * | 2006-05-26 | 2007-11-28 | Olympus Corporation | Actuator moveable by an electric field and corresponding method |
US7602098B2 (en) | 2006-05-26 | 2009-10-13 | Olympus Corporation | Method for driving ion conducting actuator and ion conducting actuator |
EP1860765A3 (en) * | 2006-05-26 | 2009-03-11 | Olympus Corporation | Actuator moveable by an electric field and corresponding method |
JP2012212053A (ja) * | 2011-03-31 | 2012-11-01 | Sony Corp | レンズモジュール、撮像装置、電子機器、変位素子シート、および変位素子シートの製造方法 |
JP2013014719A (ja) * | 2011-07-06 | 2013-01-24 | National Institute Of Advanced Industrial Science & Technology | 油脂或いは撥水剤を含むアクチュエータ素子 |
CN110475971A (zh) * | 2017-01-10 | 2019-11-19 | 弗劳恩霍夫应用研究促进协会 | 具有机械致动器的微机械装置 |
US11639718B2 (en) | 2017-01-10 | 2023-05-02 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Micromechanical devices with mechanical actuators |
Also Published As
Publication number | Publication date |
---|---|
EP1693950A4 (en) | 2008-11-12 |
EP1693950A1 (en) | 2006-08-23 |
CN1833352B (zh) | 2010-10-27 |
KR100730292B1 (ko) | 2007-06-19 |
AU2004298164B2 (en) | 2009-02-26 |
CN1833352A (zh) | 2006-09-13 |
AU2004298164A1 (en) | 2005-06-23 |
KR20060052980A (ko) | 2006-05-19 |
US7315106B2 (en) | 2008-01-01 |
US20060266981A1 (en) | 2006-11-30 |
JP4038685B2 (ja) | 2008-01-30 |
JP2005176428A (ja) | 2005-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005057772A1 (ja) | アクチュエータ素子およびその製造方法 | |
Asaka | Soft actuators | |
JP5110574B2 (ja) | 高アスペクト比のカーボンナノチューブとイオン液体から構成される導電性薄膜、アクチュエータ素子 | |
JP5083911B2 (ja) | カーボンナノチューブと重合性イオン液体およびイオン液体から構成されるアクチュエータ素子 | |
JP4256470B1 (ja) | 導電性高分子アクチュエータ、その製造方法、およびその駆動方法 | |
JP4691703B2 (ja) | アクチュエータ素子およびその製造方法 | |
JP4568885B2 (ja) | 高強度、高導電性薄膜によるアクチュエータ素子及びその製造方法 | |
US10199561B2 (en) | Carbon nanofiber actuator | |
JP5473483B2 (ja) | アクチュエータ | |
JP5004078B2 (ja) | 高アスペクト比のカーボンナノチューブを用いた高配向性電極によるアクチュエータ素子 | |
JP5332027B2 (ja) | 導電補助剤を添加したカーボンナノチューブ電極を用いたアクチュエータ素子 | |
JP6964855B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造方法 | |
JP5888666B2 (ja) | 多層カーボンナノチューブとポリマーおよびイオン液体から構成される導電性薄膜、アクチュエータ素子 | |
JP5477643B2 (ja) | カーボンナノチューブ、アルカリ金属塩および/またはアルカリ土類金属塩、イオン液体及びポリマーから構成される電極膜、固体電解質膜、アクチュエータ素子 | |
JP2010158104A (ja) | アクチュエータ | |
JP2012135071A (ja) | アクチュエータ用複合導電性薄膜、アクチュエータ素子 | |
JP6359248B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造法 | |
JP2012135074A (ja) | カーボンナノチューブとポリフッ化ビニリデンポリマーおよびイオン液体から構成される導電性薄膜、アクチュエータ素子 | |
JP7307931B2 (ja) | 導電性薄膜、積層体、アクチュエータ素子及びその製造方法 | |
WO2017033836A1 (ja) | ナノカーボン高分子アクチュエータ | |
Asaka | 13 Soft Actuators Kinji Asaka |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480022687.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004298164 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004820166 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2004298164 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006266981 Country of ref document: US Ref document number: 10567740 Country of ref document: US Ref document number: 1020067002916 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067002916 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004820166 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10567740 Country of ref document: US |