WO2009122466A1 - 導電性高分子アクチュエータ、その製造方法、およびその駆動方法 - Google Patents

導電性高分子アクチュエータ、その製造方法、およびその駆動方法 Download PDF

Info

Publication number
WO2009122466A1
WO2009122466A1 PCT/JP2008/000876 JP2008000876W WO2009122466A1 WO 2009122466 A1 WO2009122466 A1 WO 2009122466A1 JP 2008000876 W JP2008000876 W JP 2008000876W WO 2009122466 A1 WO2009122466 A1 WO 2009122466A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
film
polymer film
solid electrolyte
actuator
Prior art date
Application number
PCT/JP2008/000876
Other languages
English (en)
French (fr)
Inventor
工藤祐治
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2008800021941A priority Critical patent/CN101657961B/zh
Priority to PCT/JP2008/000876 priority patent/WO2009122466A1/ja
Priority to JP2008546017A priority patent/JP4256470B1/ja
Priority to US12/363,284 priority patent/US7696669B2/en
Publication of WO2009122466A1 publication Critical patent/WO2009122466A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/005Electro-chemical actuators; Actuators having a material for absorbing or desorbing gas, e.g. a metal hydride; Actuators using the difference in osmotic pressure between fluids; Actuators with elements stretchable when contacted with liquid rich in ions, with UV light, with a salt solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0075For improving wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/03Microengines and actuators
    • B81B2201/032Bimorph and unimorph actuators, e.g. piezo and thermo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0118Cantilevers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to a conductive polymer actuator that can be applied to a home robot, a manufacturing method thereof, and a driving method thereof.
  • the present invention relates to an actuator using an electrochemical reaction and a manufacturing method thereof.
  • Patent Document 1 a gel is bent by an electric field (Patent Document 1), a strong electric field is applied between dielectric elastomer thin films to deform it (Non-Patent Document 1), and a conductive polymer is stretched by an oxidation-reduction reaction. (Patent Document 2) and the like.
  • An actuator that bends the gel by an electric field has a problem that the generated stress is small and the power consumption increases because the bending property cannot be maintained unless the electric field is continuously applied.
  • a high voltage of several hundred to several kilovolts is required for deformation, and when used for a home robot, the voltage is too high and there is a risk of electric shock or the like.
  • conductive polymer actuators that use the expansion and contraction associated with oxidation and reduction of conductive polymers have a relatively simple structure, are easy to reduce in size and weight, are flexible, and can be driven at a low voltage of several volts. It has a feature that the generated stress is sufficiently strong.
  • a bending type actuator utilizing the expansion and contraction of a conductive polymer has a structure in which a conductive polymer film is laminated on at least one surface of a solid electrolyte film as shown in FIG.
  • 201 is an actuator element
  • 202a and 202b are conductive polymer films
  • 203 is a solid electrolyte film
  • 204a and 204b are electrodes.
  • a metal electrode thin film (counter electrode) is formed on the other side of the solid electrolyte membrane in order to apply a voltage.
  • a metal electrode thin film may be formed on the conductive polymer film in order to apply a voltage.
  • the laminated film is bent by applying a predetermined voltage between the conductive polymer film and the counter electrode or between the conductive polymer films.
  • the operating principle of bending is considered as follows. That is, the conductive polymer is oxidized and reduced by voltage application, and ions are taken into or taken out of the conductive polymer film accordingly.
  • the volume of the conductive polymer film changes due to the entry and exit of the ions, and the actuator is bent because it is laminated with the solid electrolyte film that does not change in volume. For example, in the configuration shown in FIG. 2, when ions are taken into the upper conductive polymer film or ions are taken out from the lower conductive polymer film, the upper conductive film is turned downward. When ions are extracted from the conductive polymer film or ions are taken into the lower conductive polymer film, the film bends upward.
  • Examples of conductive polymers used for actuators include polyaniline, polypyrrole, polythiophene, and derivatives thereof (Patent Document 2).
  • Conductive polymer actuators use ions in and out of the conductive polymer film as a result of the electrical oxidation and reduction of the conductive polymer as the principle of operation.
  • An electrolyte is required, and in order to operate in air, a solid electrolyte having sufficient ionic conductivity at a temperature of about room temperature is required.
  • a material named ion gel has been created. This is a material in which at least one of a polymer or a monomer dispersed in an ionic liquid is gelled, the ionic liquid is retained in the three-dimensional network structure of the gel, has flexibility, and is 10 ⁇ at room temperature.
  • a value of 2 S / cm which is 100 times or more that of a conventional polyether polymer solid electrolyte, has been achieved (Non-patent Document 2).
  • Patent Document 3 Patent Document 4
  • Patent Document 3 discloses a polymer actuator device.
  • FIG. 9 and its description include a control electrode A (reference numeral 203), an electrolytic displacement part A (reference numeral 201) made of a conductive polymer, an electrolyte part (reference numeral 202), and a conductive polymer.
  • a polymer actuator device comprising an electrolytic displacement portion B (reference numeral 201 ′) and a control electrode B (reference numeral 203 ′) is disclosed.
  • paragraph number 0077 of Patent Document 3 describes that polythiophene is preferable as the conductive polymer.
  • Paragraph No. 0078 of Patent Document 3 discloses that a fluorine-based polymer such as polyvinylidene fluoride or a copolymer thereof is used as the polymer solid electrolyte. Furthermore, it is disclosed that sulfonic acid may be introduced into the basic skeleton.
  • Patent Document 4 discloses a conductive polymer gel and a method for producing the same, an actuator, a patch label for ion introduction, and a bioelectrode.
  • paragraph No. 0069 (Example 7) of Patent Document 4 poly (3,4-ethylenedioxythiophene) -poly (ethylenesulfonic acid) colloidal dispersion (abbreviated as PEDOT / PSS)
  • PEDOT / PSS polyethylene glycol
  • An object of the present invention is to improve the adhesion between a solid electrolyte membrane made of a conductive polymer membrane and an ionic gel, and to realize a bent type conductive polymer actuator that does not deteriorate even if it is repeatedly operated. Furthermore, it aims at providing the manufacturing method for implement
  • the present invention relates to a vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)], polyvinylidene fluoride (PVDF), perfluorosulfonic acid / PTFE copolymer, polymethyl methacrylate (PMMA), polyethylene oxide ( PEO), a solid electrolyte membrane made of a mixture of an organic polymer containing at least one of polyacrylonitrile (PAN) and an ionic liquid, and polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) on at least one surface of the solid electrolyte membrane.
  • a conductive polymer actuator having a laminated structure with a conductive polymer film made of a mixture of (1), wherein the conductive polymer film contains polyethylene glycol. To do.
  • the present invention relates to vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)], polyvinylidene fluoride (PVDF), perfluorosulfonic acid / PTFE copolymer, polymethyl methacrylate (PMMA), poly
  • a solid electrolyte membrane comprising a mixture of an organic polymer containing at least one of ethylene oxide (PEO) and polyacrylonitrile (PAN) and an ionic liquid; and at least one surface of the solid electrolyte membrane is polyethylene dioxythiophene (PEDOT) and polystyrenesulfonic acid
  • a bend-type conductive polymer actuator is realized in which the adhesion between the conductive polymer film and the solid electrolyte film made of ionic gel is improved, and the characteristics are not deteriorated even when operated repeatedly.
  • FIG. 1 is a schematic cross-sectional view of an actuator according to an embodiment of the present invention.
  • the actuator 101 is composed of a laminate of conductive polymer films 102a and 102b and a solid electrolyte film 103, and electrodes 105a and 105b are disposed so as to sandwich one end of the conductive polymer films 102a and 102b.
  • the actuator 101 bends with the portion sandwiched between the electrodes 105a and 105b as a fixed portion.
  • the conductive polymer used in the present invention has a conjugated double bond, so that ⁇ electrons spread throughout the polymer and contribute to electronic conductivity. Electrical conduction of conducting polymers is thought to occur when polarons and bipolarons generated by the interaction of oxidants doped in polymers and ⁇ electrons in polymers become charge carriers. .
  • polyaniline, polypyrrole, polythiophene, and derivatives thereof can be used as the conductive polymer.
  • PEDOT polyethylenedioxythiophene
  • PEDOT polyethylenedioxythiophene
  • PES polystyrene
  • PEDOT Polyethylenedioxythiophene
  • polyethylene dioxythiophene (PEDOT) and polystyrene sulfonic acid (PSS) in the mixture constituting the conductive polymer are represented by [Chemical Formula 1] and [Chemical Formula 2], respectively.
  • Polyethylenedioxythiophene has a feature that the ⁇ -position of a chemically active five-membered ring is preliminarily modified and inactivated by oxygen, and thus is less susceptible to oxidative degradation.
  • polystyrene sulfonic acid is strongly bonded to polyethylene dioxythiophene by ionic bond.
  • the conductive polymer film mixed with polyethylene glycol can be prepared by preparing a liquid in which polyethylene glycol is dissolved in a conductive polymer dispersion or solution, applying the solution to a substrate, and then drying the solvent. .
  • the mixing ratio of polyethylene glycol to the conductive polymer dispersion or solution is preferably 0.05 weight percent to 10 weight percent, more preferably 0.1 weight percent.
  • the present inventors have found from a number of experiments that the conductive polymer membrane is phenomenological. It has been found that the adhesiveness varies greatly depending on the wettability of the surface with water. And it turned out that this wettability changes by mixing the organic molecule different from this polymer with a conductive polymer. For example, in the case of a single conductive polymer film composed of a mixture of PEDOT and PSS, or when polyvinyl alcohol is mixed with this, the produced actuator is bonded to the solid electrolyte film composed of the conductive polymer film and ion gel. The bending motion was difficult.
  • the static contact angle with respect to pure water on the surface of the conductive polymer film was 41.1 ° or more.
  • an actuator prepared by mixing polyethylene glycol with a conductive polymer made of a mixture of PEDOT and PSS was firmly bonded to a solid electrolyte membrane made of ion gel and was capable of bending.
  • the static contact angle with respect to water on the surface of the polymer film was 35.5 ° or less. From these results, when the contact angle is smaller than the predetermined value, the density of the polar group on the surface of the conductive polymer film becomes more than a certain value, and this density of the polar group is involved in the binding with the solid electrolyte constituent molecule. It is presumed that this is because.
  • the solid electrolyte membrane 103 used in the present invention is named an ionic gel in which at least one of a polymer or a monomer dispersed in an ionic liquid is gelled and the ionic liquid is held in the three-dimensional network structure of the gel.
  • the material is flexible and has a value of 10 ⁇ 2 S / cm at room temperature, which is 100 times or more that of a conventional polyether polymer solid electrolyte.
  • an ionic gel can be used alone as the solid electrolyte membrane, the ionic gel can also be used by impregnating a porous membrane such as paper or a membrane filter.
  • the ionic liquid is also called a room temperature molten salt or simply a molten salt, and is a salt that shows a molten state in a wide temperature range including normal temperature (room temperature).
  • various known ionic liquids can be used, but those which show a liquid state and are stable at a temperature close to room temperature (room temperature) or room temperature (room temperature) are preferable.
  • ionic liquids preferably used in the present invention include those composed of the following cations represented by [Chemical Formula 3] to [Chemical Formula 6] and anions (X ⁇ ).
  • R represents an alkyl group having 1 to 12 carbon atoms or an alkyl group containing an ether bond and having a total number of carbon and oxygen of 3 to 12, and in [Chemical Formula 3], R 1 represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom. In [Chemical Formula 3], it is preferable that R and R 1 are different. In [Chemical Formula 5] and [Chemical Formula 6], x is an integer of 1 to 4, respectively. In the present invention, an imidazolium ion represented by [Chemical Formula 3] is more preferable.
  • anion (X ⁇ ) examples include a tetrafluoroborate anion, a hexafluorophosphate anion, a bis (trifluoromethanesulfonyl) imido anion, a perchlorate anion, a tris (trifluoromethanesulfonyl) carbonate anion, and a trifluoromethanesulfonate anion.
  • Dicyanamide anion, trifluoroacetate anion, organic carboxylate anion and halogen ion are preferred.
  • Organic polymers that can be used to obtain a gel-like composition that becomes an ionic gel include vinylidene fluoride / hexafluoropropylene copolymer [P (VDF / HFP)], polyvinylidene fluoride (PVDF), and perfluorosulfonic acid.
  • PVDF / HFP vinylidene fluoride / hexafluoropropylene copolymer
  • PVDF polyvinylidene fluoride
  • perfluorosulfonic acid perfluorosulfonic acid.
  • / PTFE copolymer polymethyl methacrylate (PMMA), polyethylene oxide (PEO), and polyacrylonitrile (PAN).
  • a monomer for example, methyl methacrylate, MMA
  • a crosslinking agent for example, ethylene glycol dimethacrylate, EGDMA
  • a polymerization initiator for example, azobisisobutyronitrile, AIBN
  • a gel-like composition that becomes an ionic gel even when an organic polymer is formed can be obtained by performing a polymerization reaction in (1).
  • the solid electrolyte is obtained by mixing the ionic liquid and at least one of the polymer or monomer to prepare an ionic gel precursor, heating it, and then cooling it, but from the viewpoint of strength and ionic conductivity.
  • the weight ratio is preferably 9: 1 to 6: 4, and more preferably 8: 2 to 7: 3.
  • the molar ratio is preferably 3: 7 to 7: 3, and more preferably 4: 6 to 6: 4.
  • the electrode may be any material that has electronic conductivity and can easily exchange electrons with the conductive polymer without chemically reacting with the conductive polymer, such as gold, silver, platinum, copper, and chromium, And carbon-containing plates can be used.
  • Example 1 [Preparation of conductive polymer film mixed with organic molecules] An aqueous dispersion of a PEDOT / PSS mixture in which 5% by weight of dimethyl sulfoxide (DMSO) and 1% by weight of polyethylene glycol 8000 are dissolved on a slide glass cleaned with acetone and then subjected to oxygen plasma treatment (product name BYTRON PH500, manufactured by Stark) ) was dripped in a predetermined amount. Then, it was naturally dried at room temperature to evaporate the solvent, and a conductive polymer film was formed on the slide glass. Finally, the conductive polymer film was peeled off from the slide glass using a razor. The obtained conductive polymer film had an average thickness of 10 ⁇ m, an electrical conductivity measured using a four-end needle method of 300 S / cm, and a static contact angle with respect to pure water of 23.0 °.
  • DMSO dimethyl sulfoxide
  • polyethylene glycol 8000 polyethylene glycol 8000
  • a polyethylene terephthalate (PET) sheet having a thickness of 0.1 mm was cut into a size of 76 mm ⁇ 26 mm, and this was adhered to a slide glass having a size of 76 mm ⁇ 26 mm. Two sets of this were produced. Then, a slide glass produced by sandwiching a capacitor separator paper having a thickness of 40 ⁇ m was adhered so that the two PET sheets face each other with a predetermined gap therebetween. At this time, the capacitor separator paper was impregnated with an ion gel precursor. Thereafter, the mixture was heated at 100 ° C.
  • PET polyethylene terephthalate
  • electrolyte ion gel the ion gel-impregnated paper obtained here is referred to as electrolyte ion gel.
  • Conductive polymer film / electrolyte ion gel / conductive polymer film is formed by superposing conductive polymer films on both sides of the electrolyte ion gel so as to be opposed to each other, heating in a thermostatic bath at 100 ° C. for 30 minutes, and then cooling to room temperature. The three-layer structure was formed.
  • This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
  • a molecular actuator was fabricated.
  • Bending displacement was evaluated by triangulation using a laser displacement meter.
  • the measurement point of the triangular measurement was set at a position of 5 mm in the length direction from the electrode mounting portion.
  • Table 1 shows the amount of displacement when driven by a 1 Hz rectangular wave.
  • the bent type conductive polymer actuator having this configuration has excellent adhesion between the conductive polymer film and the solid electrolyte film, and can be operated for a long time.
  • Example 2 [Preparation of conductive polymer film mixed with organic molecules]
  • An aqueous dispersion of PEDOT and PSS mixture in which 5 weight percent N-methylpyrrolidone (NMP) and 5 weight percent polyethylene glycol 8000 are dissolved on a silicon substrate that has been cleaned with acetone and then subjected to oxygen plasma treatment. A predetermined amount of PH500) was dropped. Thereafter, the solvent was volatilized by natural drying at room temperature, and a conductive polymer film was formed on the silicon substrate. Finally, the silicon substrate was immersed in a 50 volume percent potassium hydroxide aqueous solution, and the conductive polymer film was peeled from the substrate.
  • the obtained conductive polymer film had an average thickness of 8 ⁇ m, an electrical conductivity measured using a four-end needle method of 280 S / cm, and a static contact angle with pure water of 25.1 °.
  • a polyethylene terephthalate (PET) sheet having a thickness of 0.1 mm was cut into a size of 76 mm ⁇ 26 mm, and this was adhered to a slide glass having a size of 76 mm ⁇ 26 mm. Two sets of this were produced. Then, a slide glass produced by sandwiching a capacitor separator paper having a thickness of 40 ⁇ m was adhered so that the two PET sheets face each other with a predetermined gap therebetween. At this time, the capacitor separator paper was impregnated with an ion gel precursor. Thereafter, the mixture was heated at 100 ° C.
  • PET polyethylene terephthalate
  • electrolyte ion gel the ion gel-impregnated paper obtained here is referred to as electrolyte ion gel.
  • Conductive polymer film / electrolyte ion gel / conductive polymer film is formed by superposing conductive polymer films on both sides of the electrolyte ion gel so as to be opposed to each other, heating in a thermostatic bath at 100 ° C. for 30 minutes, and then cooling to room temperature. The three-layer structure was formed.
  • This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
  • a molecular actuator was fabricated.
  • the bent type conductive polymer actuator having this configuration is excellent in adhesiveness between the conductive polymer film and the solid electrolyte film and can be operated for a long time.
  • Example 3 A bent conductive polymer actuator was produced in the same manner as in Example 1 except that 0.05, 0.1, 0.5, 5, 10 weight percent of polyethylene glycol 8000 was dissolved. When a voltage of ⁇ 1.0 V is applied to these actuators, the actuator bends in response to the applied voltage without peeling off at the electrolyte ion gel-conductive polymer film interface, and the displacement is an initial 10-Hz rectangular wave. The rotation average displacement was 0.50 mm or more. As in the first and second embodiments, these can stably bend even in long-term continuous driving. On the other hand, a dispersion in which 20% by weight of polyethylene glycol 8000 was dissolved had a very poor film quality, and it was not possible to produce a bending type conductive polymer actuator in the same manner as in Example 1.
  • Conductive polymer membranes are laminated on both sides of the electrolyte ion gel produced in the same manner as in Example 1, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the conductive polymer membrane and the electrolyte ion gel are cooled.
  • a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
  • a molecular actuator was fabricated.
  • This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave and the initial 10-time average displacement was 0.05 mm or less.
  • Conductive polymer membranes are stacked on both sides of the electrolyte ion gel produced in the same manner as in Example 2, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the conductive polymer membrane and the electrolyte ion gel are cooled.
  • a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
  • a molecular actuator was fabricated.
  • This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave and the initial 10-time average displacement was 0.05 mm or less.
  • Conductive polymer membranes are laminated on both sides of the electrolyte ion gel produced in the same manner as in Example 1, heated at 100 ° C. for 30 minutes in a thermostatic bath, and then cooled to room temperature, whereby the conductive polymer membrane and the electrolyte ion gel are cooled.
  • a three-layer structure was formed by bonding. This three-layer structure is cut to a width of 2.5 mm and a length of 15 mm, a platinum electrode having a width of 2 mm and a length of 10 mm is attached to a region of 5 mm in the longitudinal direction from one end portion, and a bending type conductive high height having a movable portion length of 10 mm is attached.
  • a molecular actuator was fabricated.
  • This actuator has extremely low adhesiveness between the electrolyte ion gel and the conductive polymer film, and when a voltage of ⁇ 1.0 V is applied, peeling occurs at the interface between the electrolyte ion gel and the conductive polymer film, and the bending responds to the applied voltage. Without operation, the displacement was a 1 Hz rectangular wave and the initial 10-time average displacement was 0.05 mm or less.
  • a highly reliable actuator that is small, light and flexible, and can be suitably used in fields such as medical, industrial, and home robots or micromachines. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Micromachines (AREA)

Abstract

 導電性高分子膜と固体電解質膜相互の接着性を向上させて屈曲型動作の導電性高分子アクチュエータの動作を確実にする。  フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む有機ポリマーとイオン液体との混合物からなる固体電解質膜と、前記固体電解質膜の少なくとも片面にポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなる導電性高分子膜との積層構造の導電性高分子アクチュエータであって、前記導電性高分子膜中にポリエチレングリコールが含まれることを特徴とする。

Description

導電性高分子アクチュエータ、その製造方法、およびその駆動方法
 本発明は、家庭用のロボットなどに適用することが出来る導電性高分子アクチュエータ、その製造方法、およびその駆動方法に関する。特に、電気化学反応を利用したアクチュエータとその製造方法に関する。
 近年、医療、および家庭用のロボット分野において小型かつ軽量で柔軟性に富むアクチュエータの必要性が高まっている。なぜならば、家庭やオフィス、病院などで家事支援や仕事支援、高齢者や障害者の介護支援など人の間近で活躍することが期待されるロボットを動作させるためのアクチュエータには、人間の筋肉のような性質(例えば、触れても怪我をしない安全性やぶつかっても痛くない柔らかさなど)が求められるからである。
 小型で軽量なアクチュエータとしては、静電引力型、圧電型、超音波式、および、形状記憶合金式などがすでに実用化されているが、これらは、無機材料を用いていることと、その動作原理から柔軟性に富むアクチュエータにはなり得ない。そこで、近年、高分子等の有機材料を用いることで、軽量で柔軟性に富むアクチュエータを実現しようとする試みが各方面で盛んに行われている。
 例えば、ゲルを電界によって屈曲させるもの(特許文献1)、誘電性エラストマー薄膜間に強電界を印加してこれを変形させるもの(非特許文献1)、酸化還元反応によって導電性高分子を伸縮させるもの(特許文献2)等がある。
 ゲルを電界によって屈曲させる方式のアクチュエータは、発生応力が小さく、電界を印加し続けないと屈曲性が保てないので消費電力が多くなるというという課題を有する。また、誘電性エラストマー薄膜を用いるものは、数百~数キロボルトの高電圧が変形に必要であり、家庭用ロボットに利用する場合には電圧が高過ぎるために感電などの危険性が課題となる。一方、導電性高分子の酸化還元に伴う伸縮を利用した導電性高分子アクチュエータは比較的単純な構造を持ち、小型化および軽量化が容易で、柔軟性に富み、数ボルトの低電圧で駆動が可能であり、発生応力も十分強いという特徴を有している。
 導電性高分子の伸縮を利用した屈曲型アクチュエータは、図2に示すように固体電解質膜の少なくとも片面に導電性高分子膜を積層させた構造をしている。図2において、201はアクチュエータ素子、202a、202bは導電性高分子膜、203は固体電解質膜、204a、204bは電極である。固体電解質膜の片面のみに導電性高分子膜を積層させた場合、固体電解質膜のもう片面には電圧を印加するために金属電極薄膜(対極)を形成する。導電性高分子膜には、電圧を印加するために金属電極薄膜が形成される場合もある。そして、導電性高分子膜と対極の間、または導電性高分子膜間に所定の電圧を印加することで積層膜が屈曲する。屈曲の動作原理は、以下のようであると考えられている。すなわち、電圧印加によって導電性高分子が酸化還元し、それに伴い導電性高分子膜中へイオンが取り込まれるか取り出される。このイオンの出入りにより導電性高分子膜の体積が変化し、体積変化しない固体電解質膜と積層させてあることからアクチュエータが屈曲する。例えば図2の構成において、上側の導電性高分子膜中へイオンが取り込まれた、または下側の導電性高分子膜中からイオンが取り出された場合には下方向に、逆に上側の導電性高分子膜中からイオンが取り出された、または下側の導電性高分子膜中へイオンが取り込まれた場合には上方向に屈曲する。
 アクチュエータに用いる導電性高分子としてはポリアニリン、ポリピロール、ポリチオフェンおよびその誘導体がある(特許文献2)。
 導電性高分子アクチュエータは、動作原理として導電性高分子が電気的に酸化還元することに伴う導電性高分子膜中へのイオンの出入を利用しているため、動作のためにイオン供給源として電解質が必要であり、空気中動作させるためには室温程度の温度で十分なイオン導電性を持つ固体電解質が必要となるが、近年イオンゲルと名付けられた材料が創製されている。これは、イオン液体中に分散させたポリマーまたはモノマーの少なくともいずれか一方をゲル化させ、ゲルの三次元網目構造中にイオン液体を保持した材料であり、柔軟性を持ち、かつ室温で10-2S/cmという、従来のポリエーテル系高分子固体電解質の100倍以上の値が達成されている(非特許文献2)。
 その他、本発明に関連し得る文献として、特許文献3および特許文献4が挙げられる。
 特許文献3は、高分子アクチュエータデバイスを開示している。そして、その図9およびその説明には、制御電極A(参照符号:203)、導電性高分子からなる電解変位部A(参照符号201)、電解質部(参照符号:202)、導電性高分子からなる電解変位部B(参照符号201’)、および制御電極B(参照符号:203’)からなる高分子アクチュエータデバイスが開示されている。
 さらに、特許文献3の段落番号0077には、導電性高分子としてはポリチオフェンが好ましいと記載されている。特許文献3の段落番号0078には、高分子固体電解質としては、ポリフッ化ビニリデンなどのフッ素系高分子やその共重合体が用いられることが開示されている。さらに、その基本骨格に、スルホン酸を導入しても良いことが開示されている。
 特許文献4は、導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極を開示している。そして、特許文献4の段落番号0069(実施例7)には、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(エチレンスルホン酸)コロイド分散液(PEDOT/PSSと略されている)に、ポリエチレングリコールを添加することが開示されている。
特開平11-206162号公報 特開2006-050780号公報 特開2006-129541号公報 特開2005-145987号公報 R.Pelrine,R.Kornbluh,Q.Pei and J.Joseph:Science,287,836-839(2000) イオン性液体 -開発の最前線と未来- 2003年 大野弘幸監修 シーエムシー出版
 従来の導電性高分子アクチュエータには、導電性高分子としてポリアニリン、ポリピロール、ポリチオフェンおよびその誘導体が用いられているが、これらの導電性高分子膜とイオンゲルからなる固体電解質膜は相互の接着性が低い。そのため、導電性高分子膜とイオンゲルからなる固体電解質膜を積層させ屈曲型アクチュエータを形成した場合、その動作時に導電性高分子膜とイオンゲルからなる固体電解質膜が剥離するという課題があった。
 本発明は、導電性高分子膜とイオンゲルからなる固体電解質膜相互の接着性を向上させ、繰り返し動作させても劣化しない屈曲型導電性高分子アクチュエータを実現することを目的とする。さらに、このアクチュエータを実現するための製造方法を提供することを目的とする。
 本発明は、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む有機ポリマーとイオン液体との混合物からなる固体電解質膜と、前記固体電解質膜の少なくとも片面にポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなる導電性高分子膜との積層構造の導電性高分子アクチュエータであって、前記導電性高分子膜中にポリエチレングリコールが含まれることを特徴とする導電性高分子アクチュエータを提供する。
 また、本発明は、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含む有機ポリマーとイオン液体との混合物からなる固体電解質膜と、前記固体電解質膜の少なくとも片面にポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体からなる導電性高分子膜との積層構造の導電性高分子アクチュエータの製造方法であって、前記導電性高分子膜中にポリエチレングリコールを混合する工程と、前記固体電解質膜の少なくとも片面に前記導電性高分子膜を積層させる工程からなることを特徴とする導電性高分子アクチュエータの製造方法を提供する。
 本発明によれば、導電性高分子膜とイオンゲルからなる固体電解質膜との接着性が向上し、繰り返し動作させても特性が低下しない屈曲型動作の導電性高分子アクチュエータが実現する。
本発明による実施形態のアクチュエータの模式断面図 従来の屈曲型アクチュエータの模式断面図
符号の説明
 101  アクチュエータ素子
 102a 導電性高分子膜
 102b 導電性高分子膜
 103  固体電解質膜
 104a 電極
 104b 電極
 201  アクチュエータ素子
 202a 導電性高分子膜
 202b 導電性高分子膜
 203  固体電解質膜
 204a 電極
 204b 電極
 以下に、本発明の実施の形態について、図面を参照しながら説明する。
 図1は、本発明による実施形態のアクチュエータの模式断面図である。アクチュエータ101は、導電性高分子膜102a、102b、固体電解質膜103の積層体から成り、導電性高分子膜102a、102bの一端を挟むように電極105a、105bが設置されている。電極105aと電極105b間に数ボルトの電圧を印加することによりアクチュエータ101は電極105a、105bで挟持された部分を固定部として屈曲動作する。
 本発明に用いられる導電性高分子は、共役二重結合を有し、これによりπ電子が高分子全体に広がり電子導電性に寄与する。導電性高分子の電気伝導は、高分子中にドープされた酸化剤と高分子中のπ電子との相互作用により生成したポーラロンおよびバイポーラロンが荷電キャリアとなることにより起こるものと考えられている。本発明では導電性高分子に、ポリアニリン、ポリピロール、ポリチオフェンおよびその誘導体を用いることができるが、特に、ポリエチレンジオキシチオフェン(PEDOT)を含むことが好ましく、さらに、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)の混合体を用いることが好ましい。ポリエチレンジオキシチオフェン(PEDOT)は、このモノマーを予め化学重合することが可能であるので、この高分子が分散した液を基板に塗布するだけで導電性高分子膜が形成可能である。このため、スピンコートやスリットコート、バーコート、ディップ、キャスト法を用いることで大面積基板に均一な厚みの高分子膜を容易に実現することができ、また、作製方法も簡単で量産化に適している。
 前記導電性高分子を構成する混合体のポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)はそれぞれ[化1]および[化2]で表される。ポリエチレンジオキシチオフェンは、化学的に活性な五員環のβ位が予め酸素によって修飾され不活性化されているために酸化劣化を受けにくいという特徴を持っている。また、混合体において、ポリスチレンスルホン酸はポリエチレンジオキシチオフェンとイオン結合で強く結合している。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 導電性高分子膜と固体電解質膜の接着性を向上させるためには、導電性高分子にこの分子とは異なる有機分子を混入することが有効であることを本発明者は見出した。特に、有機分子として、ポリエチレングリコールを用いることでその接着性が際だって向上することを本発明者らは見出した。ポリエチレングリコールを混合した導電性高分子膜は、導電性高分子分散液または溶液にポリエチレングリコールを溶解させた液体を作製し、これを基板に塗布した後溶媒を乾燥することにより作製することができる。導電性高分子分散液または溶液(導電性高分子固体含有率1重量パーセント)に対するポリエチレングリコールの混合割合としては、0.05重量パーセントから10重量パーセントが好ましく、さらに好ましくは0.1重量パーセントから5重量パーセントである。この範囲よりも少ない場合、導電性高分子膜とイオンゲルからなる固体電解質膜の接着性の向上は得られず、作製したアクチュエータを動作した時に導電性高分子膜と固体電解質膜は剥離し、屈曲動作が困難となる。一方、この範囲よりも多い場合、導電性高分子を膜として得ることが困難になる。
 導電性高分子膜とイオンゲルからなる固体電解質膜間の接着性を決めるメカニズムの詳細は良く分かっていないが、本発明者らは数多くの実験から、現象論的ではあるが、導電性高分子膜表面の水に対する濡れ性の違いによって接着性が大きく変わることを見出した。そして、この濡れ性は、導電性高分子にこの高分子とは異なる有機分子を混合することで変化することが分かった。例えば、PEDOTとPSSの混合体からなる導電性高分子膜単独の場合、または、これにポリビニルアルコールを混合した場合、作製したアクチュエータは、導電性高分子膜とイオンゲルからなる固体電解質膜とは接着せず、屈曲動作が困難であった。この時の導電性高分子膜表面の純水に対する静的接触角が41.1°以上であった。これに対し、PEDOTとPSSの混合体からなる導電性高分子にポリエチレングリコールを混合して作製したアクチュエータは、イオンゲルからなる固体電解質膜と強固に接着し、屈曲動作が可能であった。この時の高分子膜表面の水に対する静的接触角は35.5°以下であった。これらの結果から、接触角が所定の値より小さい場合、導電性高分子膜表面の極性基の密度が一定以上となり、この極性基の密度が固体電解質構成分子との間の結合に関与しているためだと推測される。
 本発明に用いられる固体電解質膜103は、イオン液体中に分散させたポリマーまたはモノマーの少なくともいずれか一方をゲル化させ、ゲルの三次元網目構造中にイオン液体を保持した、イオンゲルと名付けられた材料であり、柔軟性を持ち、かつ室温で10-2S/cmという、従来のポリエーテル系高分子固体電解質の100倍以上の値が達成されているものである。固体電解質膜としてイオンゲルを単独で用いることも出来るが、イオンゲルを紙やメンブレンフィルター等の多孔質膜に含浸させて用いることも出来る。
 イオン液体は、常温溶融塩または単に溶融塩などとも称されるものであり、常温(室温)を含む幅広い温度域で溶融状態を示す塩である。
 本発明においては、公知の各種のイオン液体を使用することができるが、常温(室温)または常温(室温)に近い温度において液体状態を示し安定なものが好ましい。
 本発明において好ましく用いられるイオン液体として、下記の[化3]から[化6]で表されるカチオンと、アニオン(X)よりなるものを例示する。
Figure JPOXMLDOC01-appb-C000003

 
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 上記の[化3]から[化6]において、Rは炭素数1~12のアルキル基またはエーテル結合を含み炭素と酸素の合計数が3~12のアルキル基を示し、[化3]においてRは炭素数1~4のアルキル基または水素原子を示す。[化3]において、RとRは異なることが好ましい。[化5]および[化6]において、xはそれぞれ1~4の整数である。本発明においては、[化3]で示されるイミダゾリウムイオンがより好適である。
 アニオン(X)としては、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオン、ビス(トリフルオロメタンスルホニル)イミド酸アニオン、過塩素酸アニオン、トリス(トリフルオロメタンスルホニル)炭素酸アニオン、トリフルオロメタンスルホン酸アニオン、ジシアンアミドアニオン、トリフルオロ酢酸アニオン、有機カルボン酸アニオンおよびハロゲンイオンより選ばれる少なくとも1種が好ましい。
 イオンゲルとなるゲル状組成物を得るのに用いることのできる有機ポリマーとしては、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)が挙げられる。
 また、イオン液体中にモノマー(例えばメタクリル酸メチル、MMA)、架橋剤(例えばエチレングリコールジメタクリラート、EGDMA)、重合開始剤(例えばアゾビスイソブチロニトリル、AIBN)を溶解させ、イオン液体中で重合反応を行うことによって有機ポリマーを形成してもイオンゲルとなるゲル状組成物を得ることができる。
 固体電解質は、上記イオン液体と上記ポリマーまたはモノマーの少なくともいずれか一方を混合してイオンゲル前駆体を調製し、これを加熱した後冷却することで得られるが、強度およびイオン導電性の観点から鑑みて、イオン液体と有機ポリマーの場合、重量比は9:1~6:4であることが好ましく、8:2~7:3であることがより好ましい。また、イオン液体とモノマーの場合、モル比は3:7~7:3が好ましく、4:6~6:4であることがより好ましい。
 電極は、電子伝導性を持ち、導電性高分子と化学反応することなく容易に導電性高分子と電子の授受を行うものであれば良く、金、銀、白金、銅、クロム等の金属、および炭素含有板を用いることができる。
 以下、実施例を挙げて本発明によるアクチュエータをさらに詳細に説明するが、本発明はこれに限定されない。
 (実施例1)
 [有機分子が混合された導電性高分子膜作製]
 アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)、1重量パーセントのポリエチレングリコール8000を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上に導電性高分子膜を形成した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。得られた導電性高分子膜は平均厚さ10μm、四端針法を用いて測定した導電率は300S/cm、純水に対する静的接触角は23.0°であった。
 [イオンゲル原料調製]
 イオンゲルを作製するためのイオン液体には、カチオンとして、エチルメチルイミダゾリウム(EMI)、アニオンとして、ビス(トリフルオロメタンスルホニル)イミド[(CFSO](TFSI)を用いた。混合するポリマーとしてはフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を用いた。EMITFSIとP(VDF/HFP)混合比は重量比で8:2とし、混合した後マグネチックスターラーを用いて十分攪拌した。以下、この混合液をイオンゲル前駆体と記す。
 [電解質イオンゲル作製]
 厚み0.1mmのポリエチレンテレフタレート(PET)シートを76mm×26mmの大きさに裁断し、これを大きさ76mm×26mmのスライドグラスに密着させた。これを2組作製した。そして、二つのPETシートが所定の間隔を空けて対向するように、40μm厚のコンデンサセパレータ紙を挟んで作製したスライドガラスを密着させた。この時、コンデンサセパレータ紙にイオンゲル前駆体を含浸させておいた。その後、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで厚さ40μmのイオンゲル含浸紙を得た。PETシートとイオンゲル含浸紙は相互の接着性が極めて低いため容易に剥離できた。以下、ここで得られたイオンゲル含浸紙を電解質イオンゲルと記す。
 [電解質イオンゲル-導電性高分子膜の積層]
 電解質イオンゲルの両面に導電性高分子膜を対向させて重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで、導電性高分子膜/電解質イオンゲル/導電性高分子膜の三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
 屈曲変位量は、レーザー変位計を用いた三角測定で評価した。三角測定の測定点は、電極取付け部から長さ方向に5mmの位置とした。
 このアクチュエータに±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離することなく印加電圧に応答した屈曲動作をした。1Hzの矩形波で駆動した際の変位量を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、この構成の屈曲型導電性高分子アクチュエータは導電性高分子膜と固体電解質膜の接着性に優れ、長期動作可能であることが示された。
 (実施例2)
 [有機分子が混合された導電性高分子膜作製]
 アセトン洗浄後酸素プラズマ処理したシリコン基板上に、5重量パーセントのNメチルピロリドン(NMP)、5重量パーセントのポリエチレングリコール8000を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、シリコン基板上に導電性高分子膜を形成した。最後に、シリコン基板を50体積パーセントの水酸化カリウム水溶液に浸漬し、導電性高分子膜を基板から剥離した。得られた導電性高分子膜は平均厚さ8μm、四端針法を用いて測定した導電率は280S/cm、純水に対する静的接触角は25.1°であった。
 [イオンゲル原料調製]
 イオンゲルを作製するためのイオン液体には、カチオンとして、ブチルメチルイミダゾリウム(BMI)、アニオンとしてヘキサフルオロリン酸アニオン(PF )を用いた。混合するポリマーとしてはフッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]を用いた。EMITFSIとP(VDF/HFP)混合比は重量比で8:2とし、混合した後マグネチックスターラーを用いて十分攪拌した。以下、この混合液をイオンゲル前駆体と記す。
 [電解質イオンゲル作製]
 厚み0.1mmのポリエチレンテレフタレート(PET)シートを76mm×26mmの大きさに裁断し、これを大きさ76mm×26mmのスライドグラスに密着させた。これを2組作製した。そして、二つのPETシートが所定の間隔を空けて対向するように、40μm厚のコンデンサセパレータ紙を挟んで作製したスライドガラスを密着させた。この時、コンデンサセパレータ紙にイオンゲル前駆体を含浸させておいた。その後、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで厚さ40μmのイオンゲル含浸紙を得た。PETシートとイオンゲル含浸紙は相互の接着性が極めて低いため容易に剥離できた。以下、ここで得られたイオンゲル含浸紙を電解質イオンゲルと記す。
 [電解質イオンゲル-導電性高分子膜の積層]
 電解質イオンゲルの両面に導電性高分子膜を対向させて重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで、導電性高分子膜/電解質イオンゲル/導電性高分子膜の三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
 このアクチュエータに±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離することなく印加電圧に応答した屈曲動作をした。1Hzの矩形波で駆動した際の変位量を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から、この構成の屈曲型導電性高分子アクチュエータは導電性高分子膜と固体電解質膜の接着性に優れ、長期動作可能であることが示された。
 (実施例3)
 ポリエチレングリコール8000を0.05、0.1、0.5、5、10重量パーセント溶解させた以外実施例1と同様にして屈曲型導電性高分子アクチュエータを作製した。これらのアクチュエータに±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離することなく印加電圧に応答した屈曲動作をし、変位量は1Hzの矩形波で初期の10回平均変位量が0.50mm以上であった。これらは実施例1および2と同様に長期連続駆動においても安定して屈曲動作することが可能である。一方ポリエチレングリコール8000を20重量パーセント溶解させた分散液は膜質が非常に脆く実施例1と同様にして屈曲型導電性高分子アクチュエータを作製することが出来なかった。
Figure JPOXMLDOC01-appb-T000003
 (比較例1)
 アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上に導電性高分子膜を形成した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。得られた膜の純水に対する静的接触角は45.5°であった。
 実施例1と同様にして作製した電解質イオンゲルの両面に導電性高分子膜を重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで導電性高分子膜と電解質イオンゲルを接着して三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
 このアクチュエータは、電解質イオンゲルと導電性高分子膜の接着性が極めて低く、±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離を起こして印加電圧に応答した屈曲動作をせず、変位量は1Hzの矩形波で初期の10回平均変位量が0.05mm以下であった。(表3)
 (比較例2)
 アセトン洗浄後酸素プラズマ処理したシリコン基板上に、5重量パーセントのNメチルピロリドン(NMP)を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、シリコン基板上に導電性高分子膜を形成した。最後に、シリコン基板を50体積パーセントの水酸化カリウム水溶液に浸漬し、導電性高分子膜を基板から剥離した。得られた導電性高分子膜の純水に対する静的接触角は41.1°であった。
 実施例2と同様にして作製した電解質イオンゲルの両面に導電性高分子膜を重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで導電性高分子膜と電解質イオンゲルを接着して三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
 このアクチュエータは、電解質イオンゲルと導電性高分子膜の接着性が極めて低く、±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離を起こして印加電圧に応答した屈曲動作をせず、変位量は1Hzの矩形波で初期の10回平均変位量が0.05mm以下であった。(表3)
 (比較例3)
 アセトン洗浄後酸素プラズマ処理したスライドグラス上に、5重量パーセントのジメチルスルホキシド(DMSO)、1重量パーセントのポリビニルアルコール22000を溶解したPEDOTとPSS混合体の水分散液(スタルク社製、商品名バイトロンPH500)を所定量滴下した。その後、室温で自然乾燥して溶媒を揮発させ、スライドグラス上に導電性高分子膜を形成した。最後に、剃刀を用いて導電性高分子膜をスライドグラスから剥離した。得られた膜の純水に対する静的接触角は60.4°であった。
 実施例1と同様にして作製した電解質イオンゲルの両面に導電性高分子膜を重ね、恒温槽にて100℃、30分間加熱し、その後室温に冷却することで導電性高分子膜と電解質イオンゲルを接着して三層構造体を形成した。この三層構造体を幅2.5mm、長さ15mmに裁断し、一端部から長手方向に5mmの領域に幅2mm、長さ10mmの白金電極を取り付け、可動部長さ10mmの屈曲型導電性高分子アクチュエータを作製した。
 このアクチュエータは、電解質イオンゲルと導電性高分子膜の接着性が極めて低く、±1.0Vの電圧を印加したところ、電解質イオンゲル-導電性高分子膜界面で剥離を起こして印加電圧に応答した屈曲動作をせず、変位量は1Hzの矩形波で初期の10回平均変位量が0.05mm以下であった。
 本発明によれば、小型かつ軽量で柔軟性に富む高信頼性のアクチュエータを簡便に製造することが可能となり、医療、産業、および家庭用のロボット、またはマイクロマシンなどの分野において好適に用いることができる。

Claims (9)

  1.  第1電極、固体電解質膜、導電性高分子膜、および第2電極が順に積層された積層体からなる屈曲型導電性高分子アクチュエータであって、
     前記固体電解質膜は、有機ポリマーとイオン液体との混合物からなり、
     前記有機ポリマーは、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含み、
     前記導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記導電性高分子膜中にポリエチレングリコールが含まれることを特徴とする、
     屈曲型導電性高分子アクチュエータ。
  2.  請求項1に記載の屈曲型導電性高分子アクチュエータであって、
     前記第1電極と前記固体電解質膜との間に、第2の導電性高分子膜を具備し、
     前記第2の導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記第2の導電性高分子膜中にポリエチレングリコールが含まれることを特徴とする、
     屈曲型導電性高分子アクチュエータ。
  3.  請求項1に記載の屈曲型導電性高分子アクチュエータであって、
     前記有機ポリマーは、前記フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]である、
     屈曲型導電性高分子アクチュエータ。
  4.  屈曲型導電性高分子アクチュエータの製造方法であって、
     屈曲型導電性高分子アクチュエータは、第1電極、固体電解質膜、導電性高分子膜、および第2電極が順に積層された積層体からなり、
     前記固体電解質膜は、有機ポリマーとイオン液体との混合物からなり、
     前記有機ポリマーは、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含み、
     前記導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記導電性高分子膜中にポリエチレングリコールが含まれ、
     前記屈曲型導電性高分子アクチュエータの製造方法は、
     前記導電性高分子膜中にポリエチレングリコールを混合する工程と、
     前記固体電解質膜の少なくとも片面に前記導電性高分子膜を積層させる工程と
    を有することを特徴とする屈曲型導電性高分子アクチュエータの製造方法。
  5.  請求項4に記載の屈曲型導電性高分子アクチュエータの製造方法であって、
     前記第1電極と前記固体電解質膜との間に、第2の導電性高分子膜を具備し、
     前記第2の導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記第2の導電性高分子膜中にポリエチレングリコールが含まれ、
     前記導電性高分子膜を積層させる工程においては、前記固体電解質膜の両面に前記導電性高分子膜を積層させることによって、前記導電性絶縁膜および前記第2の導電性絶縁膜が形成される、
     屈曲型導電性高分子アクチュエータの製造方法。
  6.  請求項4に記載の屈曲型導電性高分子アクチュエータの製造方法であって、
     前記有機ポリマーは、前記フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]である、
     屈曲型導電性高分子アクチュエータの製造方法。
  7.  第1電極、固体電解質膜、導電性高分子膜、および第2電極が順に積層された積層体からなる屈曲型導電性高分子アクチュエータの駆動方法であって、
     前記固体電解質膜は、有機ポリマーとイオン液体との混合物からなり、
     前記有機ポリマーは、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]、ポリフッ化ビニリデン(PVDF)、パーフルオロスルホン酸/PTFE共重合体、ポリメチルメタクリレート(PMMA)、ポリエチレンオキシド(PEO)、ポリアクリロニトリル(PAN)の少なくとも一種以上を含み、
     前記導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記導電性高分子膜中にポリエチレングリコールが含まれ、
     前記屈曲型導電性高分子アクチュエータの駆動方法は、
     前記第1電極と前記第2電極との間に電位差を印加させる工程
    を包含する、屈曲型導電性高分子アクチュエータの駆動方法。
  8.  請求項7に記載の屈曲型導電性高分子アクチュエータの駆動方法であって、
     前記第1電極と前記固体電解質膜との間に、第2の導電性高分子膜を具備し、
     前記第2の導電性高分子膜は、ポリエチレンジオキシチオフェン(PEDOT)とポリスチレンスルホン酸(PSS)との混合体からなり、さらに
     前記第2の導電性高分子膜中にポリエチレングリコールが含まれることを特徴とする、
     屈曲型導電性高分子アクチュエータの駆動方法。
  9.  請求項7に記載の屈曲型導電性高分子アクチュエータの駆動方法であって、
     前記有機ポリマーは、前記フッ化ビニリデン/ヘキサフルオロプロピレン共重合体[P(VDF/HFP)]である、
     屈曲型導電性高分子アクチュエータの駆動方法。
PCT/JP2008/000876 2008-04-04 2008-04-04 導電性高分子アクチュエータ、その製造方法、およびその駆動方法 WO2009122466A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800021941A CN101657961B (zh) 2008-04-04 2008-04-04 导电性高分子致动器及其制造方法
PCT/JP2008/000876 WO2009122466A1 (ja) 2008-04-04 2008-04-04 導電性高分子アクチュエータ、その製造方法、およびその駆動方法
JP2008546017A JP4256470B1 (ja) 2008-04-04 2008-04-04 導電性高分子アクチュエータ、その製造方法、およびその駆動方法
US12/363,284 US7696669B2 (en) 2008-04-04 2009-01-30 Electrically conductive polymer actuator, method for manufacturing the same, and method of driving the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000876 WO2009122466A1 (ja) 2008-04-04 2008-04-04 導電性高分子アクチュエータ、その製造方法、およびその駆動方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/363,284 Continuation US7696669B2 (en) 2008-04-04 2009-01-30 Electrically conductive polymer actuator, method for manufacturing the same, and method of driving the same

Publications (1)

Publication Number Publication Date
WO2009122466A1 true WO2009122466A1 (ja) 2009-10-08

Family

ID=40666648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/000876 WO2009122466A1 (ja) 2008-04-04 2008-04-04 導電性高分子アクチュエータ、その製造方法、およびその駆動方法

Country Status (4)

Country Link
US (1) US7696669B2 (ja)
JP (1) JP4256470B1 (ja)
CN (1) CN101657961B (ja)
WO (1) WO2009122466A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001771A1 (ja) * 2008-07-02 2010-01-07 アルプス電気株式会社 高分子アクチュエータ及び高分子アクチュエータ搭載デバイス
US8480917B2 (en) * 2008-12-12 2013-07-09 Samsung Electronics Co., Ltd. Solid electrolyte polymer, polymer actuator using cross-linked polyvinylidene fluoride-based polymer, and method of manufacturing the polymer actuator
JP5402140B2 (ja) * 2009-03-24 2014-01-29 ソニー株式会社 アクチュエータ
JP5487678B2 (ja) * 2009-03-31 2014-05-07 ソニー株式会社 アクチュエータ
JP5279902B2 (ja) * 2009-05-26 2013-09-04 アルプス電気株式会社 高分子アクチュエータ装置
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
KR101357462B1 (ko) * 2011-07-22 2014-02-04 서울대학교산학협력단 지능형 연성 복합재 작동기
CN102476503A (zh) * 2011-07-29 2012-05-30 深圳光启高等理工研究院 一种基于高分子材料的微结构的制备方法
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
KR101714713B1 (ko) * 2015-09-23 2017-03-09 숭실대학교산학협력단 센서 결합형 액추에이터 햅틱 소자와 그 제작방법
CN105405977B (zh) * 2015-10-29 2017-10-31 华中科技大学 一种自支撑pedot‑pss薄膜及其制备方法与应用
CN106863335B (zh) * 2017-03-06 2019-07-02 青岛大学 一种离子共聚物-无机复合电驱动双指抓取器及其制备方法
CA3140457A1 (en) * 2018-06-05 2019-12-12 Sumitra RAJAGOPALAN Stretchable solid-state electroactive polymer actuators
CN109199339B (zh) * 2018-09-12 2021-06-08 合肥工业大学 一种用于监测人体体温的可穿戴柔性温度传感器及其制备方法
CN110510570B (zh) * 2019-08-31 2023-03-24 三体次元信息科技(宁波)有限公司 磺化pvdf基ipmc电致动器及其制备方法和在vr触感手套中的应用
KR20230003129A (ko) * 2020-05-01 2023-01-05 다이킨 고교 가부시키가이샤 복합체, 폴리머 전해질, 전기 화학 디바이스, 폴리머계 고체 전지 및 액추에이터
CN113611437A (zh) * 2021-07-30 2021-11-05 南京邮电大学 一种全柔性透明薄膜电极及其制备方法和应用
CN115568272A (zh) * 2022-10-28 2023-01-03 江苏振宁半导体研究院有限公司 一种离子液体聚合物致动器的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169394A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 金属電極を表面に有する人工筋肉体
JP2005111245A (ja) * 2003-02-19 2005-04-28 Eamex Co 筒状導電性高分子成形物とその製造方法及びこれを用いたアクチュエータ並びにその用途
JP2005176428A (ja) * 2003-12-08 2005-06-30 Japan Science & Technology Agency アクチュエータ素子
JP2006050780A (ja) * 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The 導電性高分子アクチュエータ
JP2008011593A (ja) * 2006-06-27 2008-01-17 Konica Minolta Opto Inc アクチュエータ素子、及びアクチュエータ素子の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154474B2 (ja) 1998-01-09 2008-09-24 独立行政法人産業技術総合研究所 アクチュエータ素子の製造方法
EP0924033A3 (en) 1997-12-15 1999-11-17 Keiichi Kaneto Artificial muscles
JP3983731B2 (ja) 2003-01-28 2007-09-26 トッパン・フォームズ株式会社 導電性高分子ゲル及びその製造方法、アクチュエータ、イオン導入用パッチラベル並びに生体電極
MY159369A (en) * 2003-01-28 2016-12-30 Toppan Forms Co Ltd Conductive polymer gel and method of producing the same, actuator, iontophoretic patch label, biomedical electrode, toner, conductive functional member, antistatic sheet, printed circuit member, conductive paste, electrode for fuel cell, and fuel cell
US7586242B2 (en) * 2004-02-05 2009-09-08 Panasonic Corporation Actuator and method for manufacturing planar electrode support for actuator
JP3817259B2 (ja) * 2004-05-24 2006-09-06 松下電器産業株式会社 導電性高分子アクチュエータ
JP2006129541A (ja) 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd 高分子アクチュエータデバイス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11169394A (ja) * 1997-12-15 1999-06-29 Keiichi Kanefuji 金属電極を表面に有する人工筋肉体
JP2005111245A (ja) * 2003-02-19 2005-04-28 Eamex Co 筒状導電性高分子成形物とその製造方法及びこれを用いたアクチュエータ並びにその用途
JP2005176428A (ja) * 2003-12-08 2005-06-30 Japan Science & Technology Agency アクチュエータ素子
JP2006050780A (ja) * 2004-08-04 2006-02-16 Japan Carlit Co Ltd:The 導電性高分子アクチュエータ
JP2008011593A (ja) * 2006-06-27 2008-01-17 Konica Minolta Opto Inc アクチュエータ素子、及びアクチュエータ素子の製造方法

Also Published As

Publication number Publication date
JP4256470B1 (ja) 2009-04-22
JPWO2009122466A1 (ja) 2011-07-28
CN101657961A (zh) 2010-02-24
CN101657961B (zh) 2012-08-22
US7696669B2 (en) 2010-04-13
US20090251027A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4256470B1 (ja) 導電性高分子アクチュエータ、その製造方法、およびその駆動方法
JP4287504B1 (ja) 導電性高分子アクチュエータおよびその製造方法
JP4256469B1 (ja) 導電性高分子アクチュエータおよびその製造方法
JP4038685B2 (ja) アクチュエータ素子
Duncan et al. Beyond Nafion: charged macromolecules tailored for performance as ionic polymer transducers
JP5156940B2 (ja) 高分子アクチュエータおよびその製造方法
JP2010161870A (ja) 導電性高分子アクチュエータおよびその製造方法
US10199561B2 (en) Carbon nanofiber actuator
JP4691703B2 (ja) アクチュエータ素子およびその製造方法
JP6964855B2 (ja) 導電性薄膜、積層体、アクチュエータ素子及びその製造方法
JP2011205751A (ja) 導電性高分子アクチュエータ及びアクチュエータ用駆動素子の製造方法
JP6359248B2 (ja) 導電性薄膜、積層体、アクチュエータ素子及びその製造法
WO2011024219A1 (ja) 導電性高分子アクチュエータ、並びにその駆動方法および製造方法
JP2012135071A (ja) アクチュエータ用複合導電性薄膜、アクチュエータ素子
WO2017033836A1 (ja) ナノカーボン高分子アクチュエータ
JP7307931B2 (ja) 導電性薄膜、積層体、アクチュエータ素子及びその製造方法
JP2022173845A (ja) 液晶電解質膜、並びにアクチュエータ、圧電素子及び応力センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002194.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008546017

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08738488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08738488

Country of ref document: EP

Kind code of ref document: A1