JP3817259B2 - 導電性高分子アクチュエータ - Google Patents

導電性高分子アクチュエータ Download PDF

Info

Publication number
JP3817259B2
JP3817259B2 JP2006518518A JP2006518518A JP3817259B2 JP 3817259 B2 JP3817259 B2 JP 3817259B2 JP 2006518518 A JP2006518518 A JP 2006518518A JP 2006518518 A JP2006518518 A JP 2006518518A JP 3817259 B2 JP3817259 B2 JP 3817259B2
Authority
JP
Japan
Prior art keywords
conductive polymer
displacement
polymer film
extraction member
displacement extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006518518A
Other languages
English (en)
Other versions
JPWO2005114827A1 (ja
Inventor
勝彦 浅井
和夫 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP3817259B2 publication Critical patent/JP3817259B2/ja
Publication of JPWO2005114827A1 publication Critical patent/JPWO2005114827A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Description

本発明は、圧縮方向に対する剛性及び伸張方向に対する駆動力を有する導電性高分子アクチュエータ及びそれを用いるロボットに関する。
家庭用ロボットなど人間に近い場所において動作する機械に対する要求の高まりに伴い、人間の筋肉のようにしなやかな動作をする人工筋肉アクチュエータへの期待も大きくなっている。人工筋肉アクチュエータの候補として、これまでに様々な方式のアクチュエータが提案されているが、その中の一つとして、導電性高分子を用いたアクチュエータが提案されている。
導電性高分子を用いた人工筋肉アクチュエータの一例としては、図11A,図11B,図11Cに示すようなたわみ変形を発生させるアクチュエータが提案されている。このアクチュエータは、導電性高分子膜であるポリアニリン膜体21a、21bで固体電解質成形体22を挟み込む構造となっている。スイッチ98をオンすることで、電源97において設定された電位差がポリアニリン膜体21a、21b間に与えられ、図11Bに示されるように、一方のポリアニリン膜体21bには陰イオンが挿入されて伸長し、他方のポリアニリン膜体21aからは陰イオンが離脱して縮小し、結果としてたわみ変形が発生するようになる(例えば、特許文献1参照)。
この構成では、電極として作用する二つの導電性高分子膜の変位量の差によりたわみ変形を発生させているが、一方で、電解質托体層を液体もしくはゲル状の物質とすることで、両電極の変形がお互いに影響しないようにし、片方の導電性高分子の変位のみを取り出して伸縮変形を行うアクチュエータとする構成も知られている。この場合、変位を利用しない電極については導電性高分子である必要はなく、主に金属電極が用いられているが、金属電極上に導電性高分子を設けることで変位が増加することも示されている(例えば、非特許文献1参照)。
このような導電性高分子アクチュエータは、2〜3Vの低電圧で筋肉に匹敵するような歪みを発生することから、人工筋肉としての実用化が期待されている。
しかし、導電性高分子を伸縮変形を行うアクチュエータとして用いる場合には、導電性高分子が膜状であることから、そのままでは伸張方向への駆動力や圧縮方向への剛性を持つことはできない。その対策として、バネによる予圧を導電性高分子膜の伸張方向へ加えることで両方向への駆動力や剛性を発生させる方法が非特許文献1に示されている。また、非特許文献2には重りによる予圧を加えても同様の効果を得る方法が示されている。
特開平11−169393号公報 Proceedings of SPIE,Vol.4695の8〜16ページ Japanese Journal of Applied Physics,Vol.41,Part 1,No.12の7532〜7536ページ
しかしながら、前述した構成で伸縮変形を行うアクチュエータを構成した場合にも課題がある。バネによる予圧を加えた構成では、十分な剛性や駆動力を得るためには剛性の高いバネが必要となり、この場合には、収縮方向変位は減少することになる。
一方、重りによる予圧を加えた構成では、重力方向の影響を受けるとともに、重りの質量が動特性に影響を与えるといった問題点がある。
従って、本発明の目的は、かかる点に鑑み、予圧を必要とせずに伸張方向の駆動力と圧縮方向の剛性を持つことができる導電性高分子アクチュエータ及びそれを用いるロボットを提供することにある。
上記目的を達成するために、本発明は以下のように構成する。
本発明の第1態様によれば、電解質托体層を介して接続される第1導電性高分子膜と第2導電性高分子膜と、
上記第1導電性高分子膜に接続された第1変位取出部材と、
上記第2導電性高分子膜に接続された第2変位取出部材とを備え、
上記第1変位取出部材の変位方向と上記第2変位取出部材の変位方向が異なるように配置されるとともに、上記第1及び第2変位取り出し部材が、一方の膨張方向変位を他方の収縮方向変位に相互変換するリンク機構により接続されて、上記第1導電性高分子膜と上記第2導電性高分子膜の間に電位差を与えることで、酸化還元反応により上記第1導電性高分子膜と上記第2導電性高分子膜の一方が膨張し、他方が収縮する導電性高分子アクチュエータを提供する。
よって、本発明によれば、予圧を必要とせずに、伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。すなわち、本発明によれば、酸化還元反応により一方が膨張し、他方が収縮する二つの導電性高分子膜を、一方の収縮方向変位を他方の膨張方向変位に相互変換するリンク機構により接続することで、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる。更に、一方の導電性高分子膜の圧縮方向に外力が加わった場合には、他方の導電性高分子膜の伸張方向の剛性によって受けることできるようになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つアクチュエータが得られるようになる。
本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号を付している。
以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する前に、本発明の種々の態様について説明する。
本発明の第1態様によれば、電解質托体層を介して接続される第1導電性高分子膜と第2導電性高分子膜と、
上記第1導電性高分子膜に接続された第1変位取出部材と、
上記第2導電性高分子膜に接続された第2変位取出部材とを備え、
上記第1変位取出部材の変位方向と上記第2変位取出部材の変位方向が異なるように配置されるとともに、上記第1及び第2変位取出部材が、一方の膨張方向変位を他方の収縮方向変位に相互変換するように接続されて、上記第1導電性高分子膜と上記第2導電性高分子膜の間に電位差を与えることで、酸化還元反応により上記第1導電性高分子膜と上記第2導電性高分子膜の一方が膨張し、他方が収縮する導電性高分子アクチュエータを提供する。
このような構成によれば、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる。更に、一方の導電性高分子膜の圧縮方向に外力が加わった場合には、他方の導電性高分子膜の伸張方向の剛性によって受けることできるようになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
本発明の第2態様によれば、上記第1及び第2変位取出部材の接続が、リンク機構を介した接続である第1の態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、変位取出節部材の変位はリンク機構により容易に相互変換されることになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
本発明の第3態様によれば、上記第1及び第2変位取出部材の接続が、それぞれの変位方向と異なる角度をなす部位における相互接続である第1の態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、隣り合う二つの変位取出部材における、変位方向と異なる角度をなす部位同士の面方向の相対運動に伴い、変位取出部材の変位が相互変換されるようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
本発明の第4態様によれば、上記第1及び第2変位取出部材の接続が、弾性体を介した接続である第1の態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、弾性力のために変位は減少するものの、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる。更に、一方の導電性高分子膜の圧縮方向に外力が加わった場合には、他方の導電性高分子膜の伸張方向の剛性によって受けることできるようになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
本発明の第5態様によれば、上記第1変位取出部材は上記第1導電性高分子膜のそれぞれの端部を保持しかつ電気的接続されるとともに、上記第2変位取出部材は上記第2導電性高分子膜のそれぞれの端部を保持しかつ電気的接続され、
上記リンク機構は、隣接する上記第1変位取出部材と上記第2変位取出部材と同士を同じ長さの連結部材で連結して、上記連結部材により平行リンク機構を構成している第2の態様に記載の導電性高分子アクチュエータを提供する。
本発明の第6態様によれば、上記第1導電性高分子膜と上記第2導電性高分子膜が、厚み方向に交互に配置されている第1〜5のいずれか1つの態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、第1導電性高分子膜の両面は第2導電性高分子膜に対向し、同様に第2導電性高分子膜の両面は第1導電性高分子膜に対向するようになるので、高密度に多層化した導電性高分子アクチュエータを得ることができる。
本発明の第7態様によれば、上記第1導電性高分子膜と上記第2導電性高分子膜が、平行に配置されている第1〜6のいずれか1つの態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、隣り合う導電性高分子膜間の距離が一定になるので、導電性高分子膜の同一面における反応のばらつきが減少し、より安定した出力の導電性高分子アクチュエータを得ることができる。
本発明の第8態様によれば、上記第1導電性高分子膜と上記第2導電性高分子膜が等間隔に配置されている第7の態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、隣り合う導電性高分子膜間の距離を全て最小限にすることができ、より高密度に多層化した導電性高分子アクチュエータを得ることができる。
本発明の第9態様によれば、上記第1変位取出部材と上記第2変位取出部材の変位方向が、それぞれ上記第1導電性高分子膜と上記第2導電性高分子膜の長手方向と等しい第1〜8のいずれか1つの態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、導電性高分子膜の膨張収縮により発生する伸縮が最も大きくなる方向を用いることになるので、アクチュエータ内部における不要な歪みの少ない導電性高分子アクチュエータを得ることができる。
本発明の第10態様によれば、上記第1変位取出部材と上記第2変位取出部材の変位方向が、直交している第1〜9のいずれか1つの態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、荷重方向や変位方向の変換を行う際に無用のモーメントを発生させることが無くなるので、導電性高分子膜の剛性や発生力を無駄なく利用した導電性高分子アクチュエータを得ることができる。
本発明の第11態様によれば、上記第1変位取出部材及び上記第2変位取出部材のどちらかもしくは両方が、それぞれの変位取出部材の変位方向にのみ移動可能なガイド機構と接続されている第1〜10のいずれか1つの態様に記載の導電性高分子アクチュエータを提供する。
このような構成によれば、ガイド機構により目的とする方向以外の変位が抑制されるので、駆動力が変位方向のみに対して作用する導電性高分子アクチュエータを得ることができる。
本発明の第12態様によれば、ロボットアームと、
第1〜5態様のいずれか1つに記載の導電性高分子アクチュエータを2本1組の拮抗筋構造として構成された、上記ロボットアームの一対の駆動部とを備えるロボットを提供する。
このような構成によれば、上記した種々の効果を奏することができる導電性高分子アクチュエータを2本1組の拮抗筋構造の駆動部として、上記ロボットアームに適用することができる。この結果、多自由度を生かし、人間の腕のようにしなやかな動きをするロボットアームが得られる。これにより、特に家庭用途に適したロボットアームを実現することができる。
以下、本発明の種々の実施の形態を、図面に基づいて詳細に説明する。
(第1実施形態)
図1は、本発明にかかる第1実施形態の導電性高分子アクチュエータの一例としての人工筋肉アクチュエータ1の概略を示した斜視図である。また図2A〜図2Cにその上面図を示す。
図1において、2a〜2d、3a〜3cは酸化還元反応に伴って膨張収縮変形する導電性高分子製の矩形たとえば長方形の伸縮体である膜状の伸縮板である。導電性高分子膜である伸縮板2a〜2d、3a〜3cを構成する導電性高分子としては、ポリピロール、ポリアニリン、又はポリメトキシアニリン等が利用可能だが、ポリピロールは変位が大きい点で望ましい。また、導電性高分子の伸縮板2a〜2d、3a〜3cの厚みはそれぞれ数十μm程度であるのが望ましい。それより薄いと強度的に弱く、それより厚いと導電性高分子の伸縮板2a〜2d、3a〜3cの内部まで十分にイオンが出入りできなくなるので望ましくない。
導電性高分子の伸縮板2a〜2d、3a〜3cは電解質托体層の一例であるゲル状電解質4a〜4fを介して交互に積層配置されている。ゲル状電解質4a〜4fの厚みは数十μm〜数mm程度が望ましく、これより厚いと、導電性高分子の伸縮板を密に配置することができず、アクチュエータの発生力が低下する。一方、薄すぎると、ゲル状電解質中に含まれるイオンが少なくなり、アクチュエータの変位が減少するようになる。導電性高分子の伸縮板2a〜2d、3a〜3cはそれぞれ、全く同一形状、厚み、材料で構成されて、平行かつ等間隔で配置されており、位相は90度異なって長手方向が互いに直交するように配置されている。また、ゲル状電解質の電解質托体層4a〜4fも、それぞれ、全く同一形状、厚み、材料で構成されて、平行かつ等間隔で配置されている。ゲル状電解質の電解質托体層4a〜4fの大きさは、導電性高分子の伸縮板2a〜2dと伸縮板3a〜3cとが互いに直交するように配置されたとき伸縮板2a〜2dと伸縮板3a〜3cとが重なり合う部分の大きさとほぼ同じにしている。よって、導電性高分子の伸縮板2a〜2d、3a〜3c及びゲル状電解質の電解質托体層4a〜4fは、それぞれの中心軸が大略同一で、かつ、図において、上から下向きに、導電性高分子の伸縮板2a、ゲル状電解質の電解質托体層4a、導電性高分子の伸縮板3a、ゲル状電解質の電解質托体層4b、導電性高分子の伸縮板2b、ゲル状電解質の電解質托体層4c、導電性高分子の伸縮板3b、ゲル状電解質の電解質托体層4d、導電性高分子の伸縮板2c、ゲル状電解質の電解質托体層4e、導電性高分子の伸縮板3c、ゲル状電解質の電解質托体層4f、導電性高分子の伸縮板2dの順に配置されている。このように配置することで、導電性高分子の伸縮板2a〜2d、3a〜3cにおける反応のばらつきが減少するようになる。また、隣り合う導電性高分子の伸縮板2a〜2d、3a〜3cの間隔が等しいことから、無駄なく積層することが可能になり、高密度に実装することができるようになる。
導電性高分子の伸縮板2a〜2dは、その両端をそれぞれ変位取出部材の一例である金属構造体5a、5bによって保持されかつ電気的に接続されている。同様に、導電性高分子の伸縮板3a〜3cは、その両端をそれぞれ変位取出部材の一例である金属構造体5c、5dによって保持されかつ電気的に接続されている。金属構造体によって導電性高分子の伸縮板を保持する方法としては、金属構造体5a〜5dをそれぞれ複数の金属ブロックで構成し、その金属ブロックの間に導電性高分子の伸縮板2a〜2d、3a〜3cを挟んだ状態で金属ブロックを一体化して金属構造体とするなどの方法がある。金属ブロック同士を一体化する方法としては、ネジ止め、溶接、圧着、又は接着等が利用できる。金属構造体および金属ブロックの材質としては、白金、チタン、ニッケル、又はステンレス等の金属が利用可能であるが、ステンレスは安価な点で望ましい。
金属構造体5a、5bの変位方向は、導電性高分子の伸縮板2a〜2dの長手方向と等しく、金属構造体5c、5dの変位方向は、導電性高分子の伸縮板3a〜3cの長手方向と等しくなっており、金属構造体5a、5bと金属構造体5c、5dのそれぞれの変位方向は互いに直交するように配置されている。金属構造体5a、5bと金属構造体5c、5dのそれぞれを変位させることを考えると、金属構造体5a、5bと金属構造体5c、5dのそれぞれの変位方向と異なる方向に対する導電性高分子の伸縮板2a〜2d、3a〜3cの変形は、不要な歪みの原因となるため望ましくない。そこで、金属構造体5a〜5dの変位方向が導電性高分子の伸縮板2a〜2d、3a〜3cの変形が最も大きくなる方向言い換えれば伸縮方向を用いることで、アクチュエータ内部における不要な歪みが少なくなるようにしている。
金属構造体5a〜5dは、それらの上面の中心において、ピン20により、それぞれ同じ長さの絶縁性の連結部材の一例としての連結棒6a〜6dで回動自在に接続され、連結棒6a〜6dは平行四辺形の枠を構成するように組み合わされて4節リンク機構30が構成されている。金属構造体5a〜5dの裏面(図の金属構造体5a〜5dの下面側)にも同様に、それらの下面の中心において、ピン20により、それぞれ同じ長さの絶縁性の別の連結棒6a〜6dで別のリンク機構30が設けられている。このような構成にすることで、荷重方向や変位方向の変換を行う際に無用のモーメントを発生させることが無く、導電性高分子の伸縮板2a〜2d、3a〜3cの剛性や発生力を無駄なく利用することができるようになる。
また、金属構造体5aに接続された配線は、電源7の一方の極に接続されている。電源7の他方の極には、スイッチ8を介して金属構造体5cが接続されている。
次に、この人工筋肉アクチュエータ1の作用を説明する。
導電性高分子の伸縮板2a〜2d、3a〜3cが収縮する原因としては、アニオン(陰イオン)の出入り、カチオン(陽イオン)の出入り、高分子構造の変化等があるが、図2A、図2B及び図2Cによる動作原理の説明では、ポリピロールなどの材料系においてアニオンのドープ、アンドープが主たる変形のメカニズムとされていることから、アニオンの出入りについて述べることにする。
図2Aはスイッチオフの状態で導電性高分子の伸縮板2a〜2d、3a〜3cに電圧を印加していない状態を示し、図2Bは導電性高分子の伸縮板2a〜2dに正の電位を印加し、導電性高分子の伸縮板3a〜3cに負の電位を印加した場合を示している。また、図2Cは導電性高分子の伸縮板2a〜2dに負の電位を印加し、導電性高分子の伸縮板3a〜3cに正の電位を印加した場合を示している。
図2Aと図2Bと図2Cのイオンの動き様子を示したものが図12A〜図12Fである。すなわち、図12A,図12Bと図12C,図12Dと図12E,図12Fはそれぞれ図2Aと図2Bと図2Cに対応している。それぞれ図12A,図12C,図12Eが導電性高分子の伸縮板2a〜2dの長手方向の変位を示した図であり、図12B,図12D,図12Fが先の図12A、図12C、図12Eとは90度位相が異なる導電性高分子の伸縮板3a〜3cの長手方向の変位を示した図である。これらの図のように、導電性高分子の伸縮板2a〜2d、3a〜3cのそれぞれは、アニオンが内部に入り込むことで伸張し、アニオンが内部から放出されることで収縮するようになる。具体的には以下のようになる。
まず、図2A及び図12A,図12Bの電圧無印加のスイッチオフの状態から、図2B及び図12C,図12Dに示すように導電性高分子の伸縮板2a〜2d、3a〜3cに電位が印加されると、電圧無印加時にゲル状電解質の電解質托体層4a〜4fにそれぞれ均質に存在したアニオンが、正電極側の導電性高分子の伸縮板2a〜2d側に引き寄せられ、導電性高分子の伸縮板2a〜2dの内部に入り込むようになる。この酸化過程に伴って導電性高分子の伸縮板2a〜2dが長手方向沿いに一斉に伸長する。一方、負電極側の導電性高分子の伸縮板3a〜3c側からは、内部に存在したアニオンがゲル状電解質の電解質托体層4a〜4fに放出される。この還元過程に伴って導電性高分子の伸縮板3a〜3cが長手方向沿いに収縮する。これらの伸長及び収縮の結果、上記リンク機構30の連結棒6a〜6dは、電圧無印加時には正方形を呈していたのが、図2Bに示されるように縦長の平行四辺形を呈するようになる。
導電性高分子の伸縮板2a〜2d、3a〜3cは膜状の物質なので、伸張方向に駆動力を発生させることはできないが、導電性高分子の伸縮板3a〜3cの収縮が、4本の連結棒6a〜6dによって構成される4節平行リンク機構30により導電性高分子の伸縮板2a〜2dの伸張方向(すなわち、図2Bの上下方向)に変換されるために、人工筋肉アクチュエータ1は導電性高分子の伸縮板2a〜2dの伸張方向へ変形し、駆動力を発生するようになる。
また、図2C及び図12E,図12Fは導電性高分子の伸縮板2a〜2dに負の電位を印加し、導電性高分子の伸縮板3a〜3cに正の電位を印加した場合を示している。図2Bの場合とは逆に、電圧無印加時にゲル状電解質の電解質托体層4a〜4fに均質に存在したアニオンが、正電極側の導電性高分子の伸縮板3a〜3c側に引き寄せられ、導電性高分子の伸縮板3a〜3c内部に入り込むようになる。この酸化過程に伴って導電性高分子の伸縮板3a〜3cが伸長する。一方、負電極側の導電性高分子の伸縮板2a〜2d側からは、内部に存在したアニオンがゲル状電解質の電解質托体層4a〜4fに放出される。この還元過程に伴って導電性高分子の伸縮板2a〜2dが収縮する。これらの伸長及び収縮の結果、上記リンク機構30の連結棒6a〜6dは、電圧無印加時には正方形を呈していたのが、図2Cに示されるように横長の平行四辺形を呈するようになる。
導電性高分子の伸縮板2a〜2dの収縮は、4本の連結棒6a〜6dによって構成される4節平行リンク機構30により導電性高分子の伸縮板3a〜3cの伸張方向(すなわち、図2Cの左右方向)に変換されるが、導電性高分子の伸縮板3a〜3cは伸張しているので、導電性高分子の伸縮板2a〜2dの収縮を妨げることはなく、人工筋肉アクチュエータ1は導電性高分子の伸縮板2a〜2dの収縮方向(すなわち、図2Cの左右方向)へ変形し、駆動力を発生するようになる。
逆に、アクチュエータ1に対して導電性高分子の伸縮板2a〜2dの収縮方向(すなわち、図2Cの上下方向)への外力が加わった場合、導電性高分子の伸縮板2a〜2dは収縮方向への剛性を持たないものの、その外力は連結棒6a〜6dによって構成される4節リンク機構30を介して導電性高分子の伸縮板3a〜3cの伸張方向(すなわち、図2Cの左右方向)の剛性によって受け止められることになる。また、導電性高分子の伸縮板2a〜2dの伸張方向への外力については、そのまま導電性高分子の伸縮板2a〜2dの剛性によって受け止められることになる。
以上のように、第1実施形態によれば、上記第1導電性高分子膜である伸縮体2a〜2dに接続された上記第1変位取出部材の金属構造体5a、5bの変位方向と、上記第2導電性高分子膜である伸縮体3a〜3cに接続された上記第2変位取出部材の金属構造体5c、5dの変位方向が異なるように配置されるとともに、上記第1及び第2変位取出部材の金属構造体5a、5b及び5c、5dが、一方の膨張方向変位を他方の収縮方向変位に相互変換するように連結棒6a〜6dによって構成される4節リンク機構30を備えるようにしている。このように構成することで、酸化還元反応により一方が膨張し、他方が収縮する二種類の導電性高分子膜2a〜2d,3a〜3cを、一方の導電性高分子膜の収縮方向変位を他方の導電性高分子膜の膨張方向変位に相互変換するリンク機構30により接続することができて、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる。すなわち、導電性高分子の伸縮板2a〜2dの収縮方向への変形は4節リンク機構30により導電性高分子の伸縮板3a〜3cの伸張方向への変形に相互変換されるとともに、導電性高分子の伸縮板2a〜2dの伸張方向への変形も4節リンク機構30により導電性高分子の伸縮板3a〜3cの収縮方向への変形に相互変換されることから、一方の導電性高分子膜である伸縮体2a〜2d又は3a〜3cの伸張方向の駆動力を他方の導電性高分子膜である伸縮体3a〜3c又は2a〜2dの圧縮方向の駆動力によって発生させることができるようになる。更に、一方の導電性高分子膜である伸縮体2a〜2d又は3a〜3cの圧縮方向に外力が加わった場合には、他方の導電性高分子膜である伸縮体3a〜3c又は2a〜2dの伸張方向の剛性によって受けることできるようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
なお、第1実施形態では、変位取出部材5a、5bと5c、5dによって導電性高分子の伸縮板2a〜2d、3a〜3cをそれぞれ挟み込んで保持する方法について説明したが、保持方法はこれに限定されるものではなく、導電性高分子の伸縮板に設けた穴部に変位取出部材を挿入することで保持を行っても良い。また、導電性高分子の伸縮板を折り返して環状にした部分に変位取出部材を挿入したり、変位取出部材に設けた穴部に導電性高分子の伸縮板を通した後で抜け防止のためのストッパーを装着するなど、変位取出部材の伸張方向への移動もしくは導電性高分子の伸縮板の収縮に対しての保持のみを行っても良い。また、第1実施形態では、両面にリンク機構30を設けているが、これは必ずしも両面である必要はなく、片面であっても良い。更に、連結棒6a〜6dも必ずしも絶縁性である必要はなく、電源7の両極が短絡しなければよいので、変位取出部材5a、5b、5c、5dとの連結部に絶縁性を持たせてもよい。変位取出部材についても、必ずしも金属体である必要はなく、電源7と導電性高分子の伸縮板を接続するための配線部を備えていればよい。また、配線を直接導電性高分子の伸縮板に接続して変位取出部材との接続を無くしても良い。これらいずれの場合についても、本発明に含まれる。
(第2実施形態)
図3A〜図3Cは、本発明にかかる第2実施形態の導電性高分子アクチュエータの一例としての人工筋肉アクチュエータ1Bの概略を示した上面図である。なお、前述した第1実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明は省略する。
第2実施形態では、第1実施形態における連結棒6a〜6dによって構成された4節リンク機構30の代わりに、変位取出部材の一例である金属構造体5a〜5dの端部が互いに接触するように配置されている。各接触面には、絶縁性の板状の摺動部材9a〜9hが設けられている。すなわち、金属構造体5aの両側部の接触面にはそれぞれ摺動部材9aと9bが固定され、金属構造体5bの両側部の接触面にはそれぞれ摺動部材9cと9dが固定され、金属構造体5cの両側部の接触面にはそれぞれ摺動部材9eと9fが固定され、金属構造体5dの両側部の接触面にはそれぞれ摺動部材9gと9hが固定されている。よって、金属構造体5aと金属構造体5cとの間では摺動部材9aと摺動部材9eとが摺動可能に対向し、金属構造体5cと金属構造体5bとの間では摺動部材9fと摺動部材9cとが摺動可能に対向し、金属構造体5bと金属構造体5dとの間では摺動部材9dと摺動部材9gとが摺動可能に対向し、金属構造体5dと金属構造体5aとの間では摺動部材9hと摺動部材9bとが摺動可能に対向している。摺動部材9a〜9hのそれぞれとしては、フッ素樹脂などが低摩擦特性、耐薬品性などを備える点で望ましい。接触面の角度は、金属構造体5a〜5dの変位方向と異なる角度(例えば、変位方向とは45度傾斜した角度)となっており、人工筋肉アクチュエータ1Bに対して導電性高分子の伸縮板2a−1、2a−2の収縮方向への外力が加わった場合、導電性高分子の伸縮板3a−1、3a−2に伸張方向の変位が発生するようになっている。これにより、加わった外力は導電性高分子の伸縮板3a−1、3a−2の剛性によって受け止められることになる。また、導電性高分子の伸縮板2a−1、2a−2に正の電圧が加わって伸張する場合には、同時に導電性高分子の伸縮板3a−1、3a−2には負の電圧が加わって収縮するようになるので、金属構造体5a、5bは、金属構造体5c、5dが導電性高分子の伸縮板3a−1、3a−2の収縮方向に変位するのに伴って、導電性高分子の伸縮板2a−1、2a−2の伸張方向に変位するようになる。導電性高分子の伸縮板2a〜2d、3a〜3cについては、第2実施形態では、第1実施形態における導電性高分子2a〜2d、3a〜3cをそれぞれ2つに分割した状態となっている、すなわち、導電性高分子の伸縮板2a〜2d、3a〜3cはそれぞれ二枚の並列配置された伸縮板2a−1、2a−2、2b−1、2b−2、2c−1、2c−2、2d−1、2d−2、3a−1、3a−2、3b−1、3b−2、3c−1、3c−2より構成されるようになっているが、このようにすることで、より変位方向と異なる方向に対する膨張を抑制することができるようになる。分割については、2分割に限定されるものではなく、必要に応じて更に細かく分割しても良いし、分割しなくても良い。また、図3A〜図3Cでは導電性高分子の伸縮板2a−1、2a−2の間及び伸縮板3a−1、3a−2の間に隙間をそれぞれ設けているが、この隙間については無くても問題はない。
以上のように、第2実施形態によれば、導電性高分子の伸縮板2a−1、2a−2の収縮方向への変形は導電性高分子の伸縮板3a−1、3a−2の伸張方向への変形に相互変換されるとともに、導電性高分子の伸縮板2a−1、2a−2の伸張方向への変形も導電性高分子の伸縮板3a−1、3a−2の収縮方向への変形に相互変換されることから、一方の導電性高分子膜である伸縮板の伸張方向の駆動力を他方の導電性高分子膜である伸縮板の圧縮方向の駆動力によって発生させることができるようになる。更に、一方の導電性高分子膜である伸縮板の圧縮方向に外力が加わった場合には、他方の導電性高分子膜である伸縮板の伸張方向の剛性によって受けることできるようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
なお、第2実施形態では、変位取出部材である金属構造体5a〜5dの端部に摺動部材9a〜9hを設けているが、これは球状、円柱状などの転がり接触を実現する部材であっても良い。また、変位取出部材は必ずしも金属体である必要はなく、電源7と導電性高分子の伸縮板2a〜2d、3a〜3cを接続するための配線部を備えていればよい。更に、変位取出部材をフッ素樹脂などとすることで、摺動部材を用いずに直接接触させても良い。
また、変位取出部材を相互接続させる方法は、接触に限定されるものではなく、非接触な物理的作用による相互接続であってもよい。このような物理的作用として、磁石の反発力や、静電反発力等が利用可能である。
これらいずれの場合についても、本発明に含まれる。
(第3実施形態)
図4A〜図4Cは、本発明にかかる第3実施形態の導電性高分子アクチュエータの一例としての人工筋肉アクチュエータ1Cの概略を示した上面図である。なお、前述した実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明は省略する。
第3実施形態では、第1実施形態における連結棒6a〜6dによって構成された4節リンク機構30の代わりに、絶縁性の弾性体の一例としての1つの弾性体リング10によって金属構造体5a〜5dが連結されている。具体的には、1つの弾性体リング10とそれぞれの金属構造体5a〜5dの上面の例えば中央部とがピン19により固定されている。人工筋肉アクチュエータ1Cに対して導電性高分子の伸縮板2a−1、2a−2の収縮方向への外力が加わった場合、弾性体リング10は外力の方向に縮むと同時に導電性高分子の伸縮板3a−1、3a−2の伸張方向に伸びるようになる。これにより、加わった外力は導電性高分子の伸縮板3a−1、3a−2の剛性によって受け止められることになる。また、導電性高分子の伸縮板2a−1、2a−2に正の電圧が加わって伸張する場合には、同時に導電性高分子の伸縮板3a−1、3a−2には負の電圧が加わって収縮するようになるので、金属構造体5a、5bは、金属構造体5c、5dが導電性高分子の伸縮板3a−1、3a−2の収縮方向に変位するのに伴って、導電性高分子の伸縮板2a−1、2a−2の伸張方向に変位するようになる。
以上のように、第3実施形態によれば、導電性高分子の伸縮板2a−1、2a−2の収縮方向への変形は導電性高分子の伸縮板3a−1、3a−2の伸張方向への変形に相互変換されるとともに、導電性高分子の伸縮板2a−1、2a−2の伸張方向への変形も導電性高分子の伸縮板3a−1、3a−2の収縮方向への変形に相互変換されることから、一方の導電性高分子の伸縮板の伸張方向の駆動力を他方の導電性高分子の伸縮板の圧縮方向の駆動力によって発生させることができるようになる。更に、一方の導電性高分子の伸縮板の圧縮方向に外力が加わった場合には、他方の導電性高分子の伸縮板の伸張方向の剛性によって受けることできるようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子アクチュエータを得ることができる。
なお、第3実施形態において、弾性体リングは必ずしも絶縁性である必要はなく、電源7の両極が短絡しなければよいので、変位取出部材との連結部に絶縁性を持たせても良いし、変位取出部材を絶縁性としても良い。これらいずれの場合についても、本発明に含まれる。
(第4実施形態)
図5は、本発明にかかる第4実施形態の導電性高分子アクチュエータの一例としての人工筋肉アクチュエータ1Dの概略を示した斜視図である。なお、前述した実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明は省略する。
第4実施形態では、第1実施形態にガイド機構18を付加した構造となっている。金属構造体5b−1は大略H形状の金属板体より構成され、上面側及び下面側のそれぞれ突出した凸部には、丸棒状のガイドレール11a,11b,11c,11dの各一端がそれぞれ固定されている。金属構造体5a−1は、金属構造体5b−1とほぼ同じ大きさの大略H形状の金属板体より構成され、上面側及び下面側のそれぞれの突出した凸部には、丸棒状のガイドレール11a,11b,11c,11dの各他端側がそれぞれ貫通し軸受(図示せず)を介して保持されている。金属構造体5c−1は、金属構造体5b−1,5a−1より大きな大略H形状の金属板体より構成され、上面側及び下面側のそれぞれ突出した凸部には、丸棒状のガイドレール11e,11f,11g,11hの各一端がそれぞれ固定されている。金属構造体5d−1は、金属構造体5b−1,5a−1より大きな大略H形状の金属板体より構成され、上面側及び下面側のそれぞれ突出した凸部には、丸棒状のガイドレール11e,11f,11g,11hの各一端がそれぞれ貫通し軸受(図示せず)を介して保持されている。よって、ガイドレール11a,11b,11c,11dの外側にこれらと直交するように、ガイドレール11e,11f,11g,11hが配置されている。それぞれのリンク機構30は、ガイドレール11a,11b,11c,11dの内側に配置され、それぞれのリンク機構30の連結棒6a、6b、6c、6dの移動動作はそれぞれの凸部に接触せず上記動作が妨げられることがないようにしている。ガイドレール11a〜11dの方向は、導電性高分子の伸縮板2a〜2dの伸縮方向と等しく、ガイドレール11e〜11hの方向は、導電性高分子の伸縮板3a〜3cの伸縮方向と等しくなっている。このようにガイド機構18を構成することにより、金属構造体5a−1、5b−1、5c−1、5d−1が変位する方向が限定されるようになる。すなわち、導電性高分子の伸縮板2a〜2d、3a〜3cにおける伸縮のばらつきや、各部材における誤差などの要因により、金属構造体5a−1、5b−1、5c−1、5d−1に対して所定の変位方向と異なる方向への駆動力が加わっても、金属構造体5a−1、5b−1、5c−1、5d−1は導電性高分子の伸縮板2a〜2d、3a〜3cの伸縮方向にのみ変位するようになる。
以上のように、第4実施形態によれば、第1実施形態と同様に予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持ちつつ、変位取出部材の変位方向や駆動力の方向が導電性高分子の発生する変位のばらつきや構造における誤差による影響を受けない導電性高分子アクチュエータを得ることができる。
なお、第4実施形態においては、ガイドレール11a〜11d、11e〜11hの本数を一方向当たり4本としたが、必ずしも4本である必要はなく、1本以上であればよい。また、ガイドを2方向に設けているが、これは図6に示すように金属構造体5a−1、5b−1にのみガイドレール11a〜11dを設けてガイドを1方向だけにしても良い。更に、ガイドは必ずしもガイドレールである必要はなく、各種リニアガイドが利用可能である。これらいずれの場合についても、本発明に含まれる。
(第5実施形態)
図7は、本発明にかかる第5実施形態の導電性高分子アクチュエータの一例としての人工筋肉アクチュエータ1Eの概略を示した斜視図である。また図8A,図8B,図8Cにそれぞれその断面図を示す。すなわち、図8Aはスイッチオフの状態で導電性高分子の伸縮板2a〜2b、3a〜3cに電圧を印加していない状態を示し、図8Bは導電性高分子の伸縮板2a〜2bに負の電位を印加し、導電性高分子の伸縮板3a〜3cに正の電位を印加した場合を示している。また、図8Cは導電性高分子の伸縮板2a〜2bに正の電位を印加し、導電性高分子の伸縮板3a〜3cに負の電位を印加した場合を示している。なお、前述した実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明は省略する。
図8A,図8B,図8Cはそれぞれにおいて、導電性高分子の伸縮板2a〜2b、3a〜3d、変位取出部材の別の例としての矩形の金属板5a〜5dは、直方体箱状のケース12、矩形板状のフタ13によって囲まれた密閉空間を満たす電解質托体層の別の例である電解液14の液中の大略中央部に配置されている。電解液14としては、NaPF6、若しくはTBAPF6などの電解質を水、もしくはプロピレンカーボネートなどの有機溶媒に溶解させたものや、BMIPF6などのイオン性液体が利用可能である。アニオンとしてPF6を含む電解質は、導電性高分子であるポリピロールとの組み合わせで大きな変位が得られることから望ましい。4つの変位取出部材5a〜5dのうちの変位取出部材5aは、フタ13と一体となるようにフタ13の内面に固定されている。
変位取出部材5bには、ロッド15が接続されており、ロッド15は、ケース12に設けられたシール部材16aを貫通して、ケース12の外部に突出している。変位取出部材5aに接続された配線は、フタ13に備えられたシール部材16bを経て電源7の一方の極に接続されている。電源7の他方の極には、スイッチ8を介して変位取出部材5cが接続されている。スイッチ8と変位取出部材5cを接続する配線は、フタ13に備えられたシール部材16cを通して、ケース12、フタ13によって囲まれた空間の内外を接続している。
この結果、図8Aのスイッチオフの状態から、図8Bに示すように、導電性高分子の伸縮板2a〜2bに負の電位を印加し、導電性高分子の伸縮板3a〜3cに正の電位を印加した場合には、4節リンク機構30が上下方向に伸び左右方向に縮んで、変位取出部材5bが図8Aよりも図8Bの左方向に移動するため、ロッド15がケース12内に入り込む。逆に、図8Cに示されるように、導電性高分子の伸縮板2a〜2bに正の電位を印加し、導電性高分子の伸縮板3a〜3cに負の電位を印加した場合には、4節リンク機構30が左右方向に伸び上下方向に縮んで、変位取出部材5bが図8Aよりも図8Bの右方向に移動するため、ロッド15がケース12内から出る。
このように構成することで、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持ちつつ、変位取出部材5a〜5dの変位方向や駆動力の方向が導電性高分子の伸縮板2a〜2b、3a〜3dの発生する変位のばらつきや構造における誤差による影響を受けないという第1実施形態と同様の特徴を持ちつつ、保持が容易なプッシュ・プルタイプの導電性高分子アクチュエータを得ることができる。
なお、第5実施形態においては、電解質托体層を電解液14としたが、前述の実施形態と同様にゲル状電解質4a、4bなどとしても良い。これらいずれの場合についても、本発明に含まれる。
また、第5実施形態における人工筋肉アクチュエータ1Eを複数本用いたロボットアームの構成例を図9に示す。人工筋肉アクチュエータ1a〜1hを2本1組として拮抗筋構造として各ロボットアームの一対の駆動部を構成する。各ロボットアームの一対の駆動部のうちの一方の駆動部を伸張、他方の駆動部を収縮することで、また、それらとは逆に動作させることで、ロボットアームの一対の駆動部が連結された軸101〜104に正逆回転運動を発生させることができる。具体的には、図9の構成では、人工筋肉アクチュエータ1a、1bの伸張及び収縮動作によって上下軸101が正逆回転し、以下同様に、人工筋肉アクチュエータ1c、1dの伸張及び収縮動作によって軸102が、人工筋肉アクチュエータ1e、1fの伸張及び収縮動作によって軸103が、人工筋肉アクチュエータ1g、1hの伸張及び収縮動作によって軸104がそれぞれ正逆回転するようになっている。
詳しくは、4自由度のロボットアームは、固定壁301に対して、上下方向軸沿いに横方向沿いの平面内で正逆回転する第1関節の上下軸101と、上下方向沿いの平面内で正逆回転する第2関節の軸102と、第2腕308と第1腕311との間で相互に正逆回転とする第3関節の軸103と、第1腕311と手313との間で相互に正逆回転とする第4関節の軸104とより構成されている。
第1関節101では、上下端部が軸受け304と305で回転自在にかつ上下方向沿いに支持された回転軸303の上端部の両側に円形支持体302,302が回転自在に連結され、かつ、人工筋肉アクチュエータ1a、1b(ただし、人工筋肉アクチュエータ1bは人工筋肉アクチュエータ1aの背後に配設されるため図示せず。)の各一端部が固定壁301に連結されるとともに各他端部が上記各円形支持体302の支持軸102(第2関節の軸102)に連結されている。よって、人工筋肉アクチュエータ1a、1bの拮抗駆動により、第1関節の上下軸101回りに横方向沿いの平面内でロボットアームの第1腕311と第2腕308と手313とを一体的に正逆回転運動させることができる。なお、上側の軸受け305は支持棒306で固定壁301に支持されている。
第2関節では、回転軸303の両側に固定された2つの円形支持体302,302に、第2腕用リンク308の一端が固定されている。第2腕用リンク308の円形支持体302,302と、回転軸303の一端に直交して固定された支持体307,307との間には、人工筋肉アクチュエータ1c、1dが連結されて、人工筋肉アクチュエータ1c、1dの拮抗駆動により、第2関節の支持軸102である横軸回りに上下方向沿い面内でロボットアームの第1腕311と第2腕308と手313とを一体的に正逆回転させる。
第3関節では、第2腕308沿いでかつ第2腕308の先端に第2腕308と交差して回転自在に連結されかつ第1腕311の基端が固定された支持体310と、第2腕308の基端に直交して固定された支持体309,309との間に人工筋肉アクチュエータ1e、1fが連結されて、人工筋肉アクチュエータ1e、1fの拮抗駆動により、第3関節の支持軸103である横軸回りに上下方向沿い面内で第1腕311と手313とを一体的に正逆回転させる。
第4関節では、第1腕311沿いでかつ第2腕308の先端と第1腕311の基端との間に第1腕311と交差しかつ第1腕311の基端に固定された支持体310と、第1腕311の先端と手313の基端との間に第1腕311と交差しかつ手313の基端に固定された支持体312との間に人工筋肉アクチュエータ1g、1hが連結されて、人工筋肉アクチュエータ1g、1hの拮抗駆動により、第3関節の支持軸103である横軸回りに上下方向沿い面内で手313を正逆回転させる。
人工筋肉アクチュエータ1a、1b、人工筋肉アクチュエータ1c、1d、人工筋肉アクチュエータ1e、1f、人工筋肉アクチュエータ1g、1hのそれぞれは、制御コンピュータ1001により、それぞれの電源7の電圧やスイッチ8の状態が適宜制御され、人工筋肉アクチュエータ1a、1b、人工筋肉アクチュエータ1c、1d、人工筋肉アクチュエータ1e、1f、人工筋肉アクチュエータ1g、1hのそれぞれの収縮・伸張動作が制御される。
このような構成とすることで、多自由度を生かし、人間の腕のようにしなやかな動きをするロボットアームが得られる。これにより、特に家庭用途に適したロボットアームを実現することができる。
また、第5実施形態における人工筋肉アクチュエータ1Eを少なくとも1本用いたロボットハンドの一部である指部の構成例を図10A及び図10Bに示す。人工筋肉アクチュエータ1Eはロボットハンドの甲31に固定され、電源7、スイッチ8の状態に従って人工筋肉アクチュエータ1Eのロッド15に接続されたワイヤ34を進退させる。ワイヤ34は、基端側の指32a、32bを貫通し、先端側の指32cに結合されている。甲31と指32aは回転軸33aによって回転可能な状態で連結されている。同様に、指32aと指32bは回転軸33bで、指32bと指32cは回転軸33cで回転可能な状態で連結されている。人工筋肉アクチュエータ1Eが収縮すると、ワイヤ34は甲31の方向に引っ張られることから、ロボットハンドの指部は図10Bのように折れ曲がった状態となるように変形する。逆に人工筋肉アクチュエータ1Eが伸張すると、ワイヤ34は甲31から引き出されるようになるので、ロボットハンドの指部は図10Aのように伸びた状態となるように変形するようになる。
人工筋肉アクチュエータ1Eは、制御コンピュータ1000により、電源7の電圧、スイッチ8の状態が適宜制御され、人工筋肉アクチュエータの収縮・伸張動作が制御される。これに伴って、ロボットハンドの指部の屈曲動作が制御される。また、ロボットハンドの複数の指部にそれぞれ人工筋肉アクチュエータ1Eを用いることにより、把持動作を制御することができる。
このような構成とすることで、人間の指又は手のようにしなやかな動きをするロボットハンドの指部又はロボットハンドが得られる。これにより、特に家庭用途に適したロボットハンドの指部又はロボットハンドを実現することができる。
なお、上記各実施形態において、導電性高分子の伸縮板2a、2a−1、2a−2、2b、2c、2d、3a、3b、3cに適切な変位を発生させるため、柔軟電極に印加された電圧は、電解質托体層であるゲル状電解質4a、4b、4c、4d、4e、4fや電解液14で電気分解が起こらない程度の電圧とすることが好ましい。
なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
本発明にかかる導電性高分子アクチュエータは、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つアクチュエータを得ることができるものであり、人工筋肉アクチュエータ等として有用であるとともに、それを用いてロボットのロボットアームやロボットハンドの駆動部として好適なものである。
本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
図1は、本発明の第1実施形態による人工筋肉アクチュエータの概略を示す斜視図である。 図2Aは、本発明の第1実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図2Bは、本発明の第1実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図2Cは、本発明の第1実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図3Aは、本発明の第2実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図3Bは、本発明の第2実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図3Cは、本発明の第2実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図4Aは、本発明の第3実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図4Bは、本発明の第3実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図4Cは、本発明の第3実施形態による人工筋肉アクチュエータの概略を示す上面図である。 図5は、本発明の第4実施形態による人工筋肉アクチュエータの概略を示す斜視図である。 図6は、本発明の第4実施形態による人工筋肉アクチュエータの別の構成についての概略を示す斜視図である。 図7は、本発明の第5実施形態による人工筋肉アクチュエータの概略を示す斜視図である。 図8Aは、本発明の第5実施形態による人工筋肉アクチュエータの概略を示す一部断面上面図である。 図8Bは、本発明の第5実施形態による人工筋肉アクチュエータの概略を示す一部断面上面図である。 図8Cは、本発明の第5実施形態による人工筋肉アクチュエータの概略を示す一部断面上面図である。 図9は、本発明の第5実施形態における人工筋肉アクチュエータを用いたロボットアームの概略図である。 図10Aは、本発明の第5実施形態における人工筋肉アクチュエータを用いたロボットハンドの一部である指部の概略図である。 図10Bは、本発明の第5実施形態における人工筋肉アクチュエータを用いたロボットハンドの一部である指部の概略図である。 図11Aは、従来構成の人工筋肉アクチュエータの概略を示す図である。 図11Bは、従来構成の人工筋肉アクチュエータの概略を示す図である。 図11Cは、従来構成の人工筋肉アクチュエータの概略を示す図である。 図12Aは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 図12Bは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 図12Cは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 図12Dは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 図12Eは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 図12Fは、本発明の第1実施形態による人工筋肉アクチュエータにおける、アニオンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。

Claims (12)

  1. 電解質托体層を介して接続される第1導電性高分子膜と第2導電性高分子膜と、
    上記第1導電性高分子膜に接続された第1変位取出部材と、
    上記第2導電性高分子膜に接続された第2変位取出部材とを備え、
    上記第1変位取出部材の変位方向と上記第2変位取出部材の変位方向が異なるように配置されるとともに、上記第1及び第2変位取出部材が、一方の膨張方向変位を他方の収縮方向変位に相互変換するように接続されて、上記第1導電性高分子膜と上記第2導電性高分子膜の間に電位差を与えることで、酸化還元反応により上記第1導電性高分子膜と上記第2導電性高分子膜の一方が膨張し、他方が収縮する導電性高分子アクチュエータ。
  2. 上記第1及び第2変位取出部材の接続が、リンク機構を介した接続である請求項1に記載の導電性高分子アクチュエータ。
  3. 上記第1及び第2変位取出部材の接続が、それぞれの変位方向と異なる角度をなす部位における相互接続である請求項1に記載の導電性高分子アクチュエータ。
  4. 上記第1及び第2変位取出部材の接続が、弾性体を介した接続である請求項1に記載の導電性高分子アクチュエータ。
  5. 上記第1変位取出部材は上記第1導電性高分子膜のそれぞれの端部を保持しかつ電気的接続されるとともに、上記第2変位取出部材は上記第2導電性高分子膜のそれぞれの端部を保持しかつ電気的接続され、
    上記リンク機構は、隣接する上記第1変位取出部材と上記第2変位取出部材と同士を同じ長さの連結部材で連結して、上記連結部材により平行リンク機構を構成している請求項2に記載の導電性高分子アクチュエータ。
  6. 上記第1導電性高分子膜と上記第2導電性高分子膜が、厚み方向に交互に配置されている請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータ。
  7. 上記第1導電性高分子膜と上記第2導電性高分子膜が、平行に配置されている請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータ。
  8. 上記第1導電性高分子膜と上記第2導電性高分子膜が等間隔に配置されている請求項7に記載の導電性高分子アクチュエータ。
  9. 上記第1変位取出部材と上記第2変位取出部材の変位方向が、それぞれ上記第1導電性高分子膜と上記第2導電性高分子膜の長手方向と等しい請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータ。
  10. 上記第1変位取出部材と上記第2変位取出部材の変位方向が、直交している請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータ。
  11. 上記第1変位取出部材及び上記第2変位取出部材のどちらかもしくは両方が、それぞれの変位取出部材の変位方向にのみ移動可能なガイド機構と接続されている請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータ。
  12. ロボットアームと、
    請求項1〜5のいずれか1つに記載の導電性高分子アクチュエータを2本1組の拮抗筋構造として構成された、上記ロボットアームの一対の駆動部とを備えるロボット。
JP2006518518A 2004-05-24 2005-05-06 導電性高分子アクチュエータ Active JP3817259B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004153234 2004-05-24
JP2004153234 2004-05-24
PCT/JP2005/008341 WO2005114827A1 (ja) 2004-05-24 2005-05-06 導電性高分子アクチュエータ

Publications (2)

Publication Number Publication Date
JP3817259B2 true JP3817259B2 (ja) 2006-09-06
JPWO2005114827A1 JPWO2005114827A1 (ja) 2009-01-22

Family

ID=35428649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006518518A Active JP3817259B2 (ja) 2004-05-24 2005-05-06 導電性高分子アクチュエータ

Country Status (4)

Country Link
US (1) US7259495B2 (ja)
JP (1) JP3817259B2 (ja)
CN (1) CN100557940C (ja)
WO (1) WO2005114827A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166953B2 (en) * 2001-03-02 2007-01-23 Jon Heim Electroactive polymer rotary clutch motors
JP3939337B2 (ja) * 2005-08-23 2007-07-04 松下電器産業株式会社 高分子アクチュエータ
US7952261B2 (en) 2007-06-29 2011-05-31 Bayer Materialscience Ag Electroactive polymer transducers for sensory feedback applications
JP5152483B2 (ja) * 2007-10-05 2013-02-27 ソニー株式会社 撮像装置
WO2009122466A1 (ja) * 2008-04-04 2009-10-08 パナソニック株式会社 導電性高分子アクチュエータ、その製造方法、およびその駆動方法
ES2338623B1 (es) * 2008-08-05 2012-02-07 Universidad Miguel Hernandez Brazo robótico.
JP5472680B2 (ja) * 2009-04-09 2014-04-16 国立大学法人 筑波大学 装着式動作補助装置
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
CN102342013B (zh) * 2009-05-26 2014-07-16 阿尔卑斯电气株式会社 高分子促动器装置
JP2014513510A (ja) 2011-03-01 2014-05-29 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 変形可能なポリマー装置及び変形可能なポリマーフィルムを作るための自動化された製造プロセス
WO2012129357A2 (en) 2011-03-22 2012-09-27 Bayer Materialscience Ag Electroactive polymer actuator lenticular system
WO2013142552A1 (en) 2012-03-21 2013-09-26 Bayer Materialscience Ag Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
WO2014066576A1 (en) 2012-10-24 2014-05-01 Bayer Intellectual Property Gmbh Polymer diode
US10797217B2 (en) * 2015-03-31 2020-10-06 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive polymer
EP3282494B1 (en) 2016-08-11 2020-07-22 Postech Academy-Industry Foundation Electroactive actuator, mechanical device including the same, and polymer electrolyte
WO2019165234A1 (en) * 2018-02-23 2019-08-29 Ohio State Innovation Foundation Passivated conductive films, and electroactuators containing same
CN113381228A (zh) 2020-02-24 2021-09-10 菲尼克斯亚太电气(南京)有限公司 模块化插芯的固定支架、连接器及连接器的安装方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) * 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) * 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
JPH0979129A (ja) * 1995-09-11 1997-03-25 Terumo Corp アクチュエータ素子
US5977685A (en) * 1996-02-15 1999-11-02 Nitta Corporation Polyurethane elastomer actuator
JPH11169393A (ja) 1997-12-15 1999-06-29 Keiichi Kanefuji 人工筋肉体
JP3709723B2 (ja) * 1998-06-25 2005-10-26 松下電工株式会社 アクチュエータ
JP2000133854A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd アクチュエータ
US6835173B2 (en) * 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7839055B2 (en) 2008-03-27 2010-11-23 Panasonic Corporation Flat-plate lamination-type conductive polymer actuator and flat-plate lamination-type conductive polymer actuator device as well as operating method thereof
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator

Also Published As

Publication number Publication date
CN100557940C (zh) 2009-11-04
US7259495B2 (en) 2007-08-21
CN1771657A (zh) 2006-05-10
JPWO2005114827A1 (ja) 2009-01-22
US20060219983A1 (en) 2006-10-05
WO2005114827A1 (ja) 2005-12-01

Similar Documents

Publication Publication Date Title
JP3817259B2 (ja) 導電性高分子アクチュエータ
JP3939337B2 (ja) 高分子アクチュエータ
CN107431121B (zh) 基于电活性聚合物的致动器或传感器设备
Mirfakhrai et al. Polymer artificial muscles
RU2714307C2 (ru) Устройство актюации
Baughman Conducting polymer artificial muscles
Otero et al. Biomimetic electrochemistry from conducting polymers. A review: artificial muscles, smart membranes, smart drug delivery and computer/neuron interfaces
Carpi et al. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?
JP4598884B2 (ja) ポリマーアクチュエータ
JP2000133854A (ja) アクチュエータ
JP4696662B2 (ja) アクチュエータモジュール
Vallem et al. A soft variable‐area electrical‐double‐layer energy harvester
JP2005051949A (ja) アクチュエータ及びそれを用いた関節駆動機構
JP2007159222A (ja) 高分子アクチュエータ及び高分子アクチュエータにより駆動されるロボットアーム及びロボットアームを有するロボット
JP4250536B2 (ja) 導電性高分子アクチュエータ
JP2011103713A (ja) アクチュエーター
JP2010161894A (ja) 平板積層型導電性高分子アクチュエータ、ロボットアーム、ロボットハンド、及び、平板積層型導電性高分子アクチュエータの製造方法
Shahinpoor Ion-exchange polymer-metal composites as biomimetic sensors and actuators
Barpuzary et al. Smart bioinspired actuators: crawling, linear, and bending motions through a multilayer design
JP2006192529A (ja) 関節駆動装置
JP2006067719A (ja) 導電性高分子アクチュエータおよびその駆動方法
JP2009189220A (ja) アクチュエータ及びこれを用いたアクチュエータ構造体
Li et al. Electroactive Polymers for Artificial Muscles
JP4852996B2 (ja) アクチュエータシステム
Hyeon et al. High-Performance One-Body Electrochemical Torsional Artificial Muscles Built Using Carbon Nanotubes and Ion-Exchange Polymers

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Ref document number: 3817259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7