WO2005114827A1 - 導電性高分子アクチュエータ - Google Patents

導電性高分子アクチュエータ Download PDF

Info

Publication number
WO2005114827A1
WO2005114827A1 PCT/JP2005/008341 JP2005008341W WO2005114827A1 WO 2005114827 A1 WO2005114827 A1 WO 2005114827A1 JP 2005008341 W JP2005008341 W JP 2005008341W WO 2005114827 A1 WO2005114827 A1 WO 2005114827A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
displacement
polymer film
extraction member
actuator according
Prior art date
Application number
PCT/JP2005/008341
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Asai
Kazuo Yokoyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006518518A priority Critical patent/JP3817259B2/ja
Priority to US11/271,971 priority patent/US7259495B2/en
Publication of WO2005114827A1 publication Critical patent/WO2005114827A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/006Motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S310/00Electrical generator or motor structure
    • Y10S310/80Piezoelectric polymers, e.g. PVDF

Definitions

  • the present invention relates to a conductive polymer actuator having rigidity in a compression direction and driving force in an extension direction, and a robot using the same.
  • FIGS. 11A, 11B, and 11C As an example of an artificial muscle actuator using a conductive polymer, an actuator that generates a bending deformation as shown in FIGS. 11A, 11B, and 11C has been proposed.
  • This actuator has a structure in which a solid electrolyte molded body 22 is sandwiched between polyaline film bodies 21a and 21b which are conductive polymer films.
  • the switch 98 When the switch 98 is turned on, a potential difference set by the power supply 97 is applied between the poly-phosphorous film bodies 21a and 21b, and as shown in FIG.
  • Patent Document 1 Japanese Patent Laid-Open No. -169393
  • Non-Patent Document 1 Proceedings of SPIE, Vol. 4695, pp. 8-16 proposes a method of generating driving force and rigidity in both directions by applying preload by a panel in the direction of extension of the conductive polymer film. [This is shown! / Puru. Further, Patent Document 2 (Japanese Journal of Applied Physics, Vol. 41, Part 1, No. 12, pp. 7532-7536) discloses a method of obtaining the same effect even when the preload due to weight is reduced.
  • an object of the present invention is to provide a conductive polymer actuator which can have a driving force in an extending direction and a rigidity in a compressing direction without requiring a preload, and a robot using the same, in view of the power. To provide.
  • the present invention is configured as follows.
  • the first conductive polymer film and the second conductive polymer film connected via the electrolyte support layer
  • a first displacement extraction member connected to the first conductive polymer film
  • a second displacement extraction member connected to the second conductive polymer film
  • the displacement direction of the first displacement extraction member and the displacement direction of the second displacement extraction member are arranged so as to be different from each other, and the first and second displacement extraction members are changed in one of the expansion directions.
  • the first conductive polymer film and the second conductive polymer film are connected by a link mechanism that mutually converts the position into the other displacement in the contraction direction.
  • a conductive polymer actuator in which one of the first conductive polymer film and the second conductive polymer film expands and the other contracts.
  • a conductive polymer actuator having a driving force in the extension direction and rigidity in the compression direction without requiring a preload. That is, according to the present invention, two conductive polymer films, one of which expands and the other contracts due to an oxidation-reduction reaction, are connected by a link mechanism that mutually converts a displacement in one contraction direction into a displacement in another expansion direction. By doing so, the driving force in the extension direction of one conductive polymer film can be generated by the driving force in the compression direction of the other conductive polymer film.
  • FIG. 1 is a perspective view schematically showing an artificial muscle actuator according to a first embodiment of the present invention
  • FIG. 2A is a top view schematically showing an artificial muscle actuator according to a first embodiment of the present invention
  • FIG. 2B is a top view schematically showing the artificial muscle actuator according to the first embodiment of the present invention.
  • FIG. 2C is a top view schematically showing an artificial muscle actuator according to the first embodiment of the present invention.
  • FIG. 3A is a top view schematically showing an artificial muscle actuator according to a second embodiment of the present invention.
  • FIG. 3B schematically shows an artificial muscle actuator according to a second embodiment of the present invention. It is a top view
  • FIG. 3C is a top view schematically showing an artificial muscle actuator according to a second embodiment of the present invention.
  • FIG. 4A is a top view schematically showing an artificial muscle actuator according to a third embodiment of the present invention.
  • FIG. 4B is a top view schematically showing an artificial muscle actuator according to a third embodiment of the present invention.
  • FIG. 4C is a top view schematically showing an artificial muscle actuator according to the third embodiment of the present invention.
  • FIG. 5 is a perspective view schematically showing an artificial muscle actuator according to a fourth embodiment of the present invention.
  • FIG. 6 is a perspective view schematically showing another configuration of the artificial muscle actuator according to the fourth embodiment of the present invention.
  • FIG. 7 is a perspective view schematically showing an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 8A is a partial cross-sectional top view schematically showing an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 8B is a partial cross-sectional top view schematically showing an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 8C is a partial cross-sectional top view schematically showing an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 9 is a schematic view of a robot arm using an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 10A is a schematic view of a finger part which is a part of a robot hand using an artificial muscle actuator according to a fifth embodiment of the present invention.
  • FIG. 10B is a schematic view of a finger part which is a part of a robot hand using the artificial muscle actuator according to the fifth embodiment of the present invention.
  • FIG. 11A is a diagram schematically showing an artificial muscle actuator having a conventional configuration
  • FIG. 11B is a view schematically showing an artificial muscle actuator of a conventional configuration
  • FIG. 11C is a view schematically showing an artificial muscle actuator of a conventional configuration
  • FIG. 12A is a view showing a state of expansion and contraction of a conductive polymer stretching plate accompanying movement of an ion in the artificial muscle actuator according to the first embodiment of the present invention.
  • FIG. 12B FIG. FIG.
  • FIG. 12C is a view showing a state of expansion and contraction of a conductive polymer stretching plate accompanying movement of an ion in the artificial muscle actuator according to the first embodiment of the present invention.
  • FIG. 12D is a diagram showing expansion and contraction of a conductive polymer stretching plate accompanying movement of an ion in the artificial muscle actuator according to the embodiment.
  • FIG. 12D shows an artificial muscle according to a first embodiment of the present invention.
  • FIG. 12E is a view showing a state of expansion and contraction of the stretchable plate of FIG. 12E.
  • FIG. 12E is a view of the stretchable plate of the conductive polymer accompanying movement of the ion in the artificial muscle actuator according to the first embodiment of the present invention.
  • FIG. 12F is a view showing a state of expansion and contraction of a conductive polymer expandable plate accompanying movement of an ion in the artificial muscle actuator according to the first embodiment of the present invention.
  • a first conductive polymer film and a second conductive polymer film connected via an electrolyte support layer
  • a first displacement extraction member connected to the first conductive polymer film
  • a second displacement extraction member connected to the second conductive polymer film
  • the displacement direction of the first displacement extraction member and the displacement direction of the second displacement extraction member are arranged so as to be different from each other, and the first and second displacement extraction members displace one expansion direction displacement in the other contraction direction displacement.
  • the first conductive polymer film is connected to the first conductive polymer film by an oxidation-reduction reaction by applying a potential difference between the first conductive polymer film and the second conductive polymer film.
  • One of the second conductive polymer films expands and the other contracts.
  • an electrically conductive polymer actuator is provided.
  • the driving force in the extension direction of one conductive polymer film can be generated by the driving force in the compression direction of the other conductive polymer film. Furthermore, when an external force is applied in the compression direction of one conductive polymer film, it can be received by the stiffness of the other conductive polymer film in the expansion direction. A conductive polymer actuator having driving force and rigidity in the compression direction can be obtained.
  • connection between the first and second displacement extraction members is a connection via a link mechanism.
  • the displacement of the displacement take-out node member can be easily converted to each other by the link mechanism, and the driving force in the extension direction and the rigidity in the compression direction can be obtained without applying a preload.
  • a conductive polymer actuator can be obtained.
  • the electrical connection according to the first aspect wherein the connection between the first and second displacement extraction members is an interconnection at a portion forming an angle different from each of the displacement directions.
  • a conductive polymer activator Provide a conductive polymer activator.
  • the displacement of the displacement extraction member is mutually converted with the relative movement of the two adjacent displacement extraction members at a different angle from the displacement direction in the surface direction.
  • a conductive polymer actuator having a driving force in the extension direction and rigidity in the compression direction can be obtained without applying a preload.
  • connection between the first and second displacement extraction members is a connection via an elastic body.
  • the driving force in the extension direction of one conductive polymer film is changed to the driving force in the compression direction of the other conductive polymer film. Can be generated. Furthermore, when an external force is applied in the compression direction of one conductive polymer film, it can be received by the stiffness of the other conductive polymer film in the extension direction, and can be applied in the extension direction without applying a preload. A conductive polymer actuator having driving force and rigidity in the compression direction can be obtained.
  • the first displacement extraction member holds each end of the first conductive polymer film and is electrically connected thereto, and the second displacement extraction member. Is Each end of the second conductive polymer film is held and electrically connected, and the link mechanism connects the adjacent first displacement extraction member and the second displacement extraction member with the same length.
  • the conductive polymer actuator according to the second aspect wherein the conductive polymer actuator is connected by a member and forms a parallel link mechanism by the connecting member.
  • the first conductive polymer film and the second conductive polymer film are alternately arranged in the thickness direction, and the first to fifth conductive films are shifted by one.
  • the present invention provides a conductive polymer actuator according to one aspect.
  • both surfaces of the first conductive polymer film face the second conductive polymer film, and similarly, both surfaces of the second conductive polymer film have the first conductive high film. Since it comes to face the molecular film, it is possible to obtain a conductive polymer actuator which is multilayered at high density.
  • the first conductive polymer film and the second conductive polymer film described in any one of the first to sixth aspects arranged in parallel. Provide a conductive polymer actuator.
  • the distance between adjacent conductive polymer films becomes constant, so that variations in the reaction on the same surface of the conductive polymer film are reduced, and a more stable output of the conductive polymer film is achieved. It is possible to obtain a conductive polymer activator.
  • the conductive polymer actuator according to the seventh aspect wherein the first conductive polymer film and the second conductive polymer film are arranged at equal intervals. I will provide a.
  • the distance between adjacent conductive polymer films can be all minimized, and a conductive polymer actuator having a multilayer structure with higher density can be obtained.
  • the displacement directions of the first displacement extraction member and the second displacement extraction member are the first conductive polymer film and the second conductive polymer film, respectively. Any one of the first to eighth forces equal to the longitudinal direction of the conductive polymer actuator is provided.
  • the conductive direction according to any one of the first to ninth aspects, wherein the displacement directions of the first displacement extraction member and the second displacement extraction member are orthogonal to each other. Provide polymer actuators.
  • either or both of the first displacement extraction member and the second displacement extraction member are connected to the guide mechanism that can move only in the displacement direction of each displacement extraction member.
  • the conductive polymer actuator according to any one of the first to tenth aspects is provided.
  • a robot provided with a pair of drive units of the robot arm, wherein the pair of the conductive polymer actuators according to any one of the first to fifth aspects is configured as a pair of antagonistic muscle structures.
  • the conductive polymer actuator capable of exhibiting the various effects described above can be applied to the robot arm as a driving unit having a pair of antagonistic muscle structures. .
  • the robot arm that moves as supple as a human arm, taking advantage of multiple degrees of freedom. This makes it possible to realize a robot arm particularly suitable for home use.
  • FIG. 1 is a perspective view schematically showing an artificial muscle activator 1 as an example of a conductive polymer actuator according to a first embodiment of the present invention.
  • 2A to 2C show top views.
  • reference numerals 2a to 2d and 3a to 3c denote conductive materials which expand and contract due to an oxidation-reduction reaction.
  • This is a film-like elastic plate which is a rectangular, for example, rectangular elastic body made of a conductive polymer.
  • Polypyrrole, polyaline, polymethoxyaline, or the like can be used as the conductive polymer constituting the stretchable plates 2a to 2d and 3a to 3c, which are conductive polymer films.Polypyrrole has a large displacement Is desirable.
  • the thickness of the conductive polymer stretch plates 2a to 2d and 3a to 3c is preferably about several tens / zm, respectively. If it is thinner than that, it is weak in strength. If it is thicker than that, it is not desirable because ions cannot sufficiently enter and exit inside the conductive polymer stretch plates 2a to 2d and 3a to 3c.
  • the conductive polymer stretch plates 2a to 2d and 3a to 3c are alternately stacked via gel electrolytes 4a to 4f which are examples of an electrolyte support layer. If the thickness of the gel electrolytes 4a to 4f is several tens; about zm to several mm is desired, if the thickness is larger than this, the conductive polymer expansion and contraction plates cannot be densely arranged, and the generation power of the actuator decreases. . On the other hand, if the thickness is too small, the amount of ions contained in the gel electrolyte decreases, and the displacement of the actuator decreases.
  • the conductive polymer elastic plates 2a to 2d and 3a to 3c are made of exactly the same shape, thickness, and material, and are arranged in parallel and at equal intervals. Are arranged so as to be orthogonal to.
  • the electrolyte support layers 4a to 4f of the gel electrolyte are made of exactly the same shape, thickness and material, and are arranged in parallel and at equal intervals.
  • the size of the electrolyte support layers 4a to 4f of the gel electrolyte is larger than that of the stretchable plates 2a to 2d when the stretchable plates 2a to 2d and the stretchable plates 3a to 3c of the conductive polymer are arranged so as to be orthogonal to each other.
  • the conductive polymer stretch plates 2a to 2d and 3a to 3c and the gel electrolyte electrolyte support layers 4a to 4f have substantially the same central axis, and are directed downward from the top in the figure.
  • a conductive polymer stretch plate 3c, a gel electrolyte electrolyte support layer 4f, and a conductive polymer stretch plate 2d are arranged in this order.
  • the conductive polymer elastic plates 2a to 2d are held and electrically connected at both ends by metal structures 5a and 5b, which are examples of displacement extracting members.
  • both ends of the conductive polymer elastic plates 3a to 3c are held and electrically connected to metal structures 5c and 5d, respectively, which are examples of displacement extraction members.
  • the metal structures 5a to 5d are each composed of a plurality of metal blocks, and the conductive polymer stretch plate is placed between the metal blocks.
  • a metal block is integrally formed with a metal structure sandwiched between 2a to 2d and 3a to 3c.
  • metal structures and the metal block As a method for integrally joining the metal blocks, screwing, welding, crimping, bonding, or the like can be used.
  • a metal such as platinum, titanium, nickel, or stainless steel can be used.
  • Stainless steel is preferable because it is inexpensive.
  • the displacement direction of the metal structures 5a and 5b is equal to the longitudinal direction of the conductive polymer stretch plates 2a to 2d.
  • the displacement direction of the metal structures 5c and 5d is the conductive polymer stretch plate 3a. 3c, and the displacement directions of the metal structures 5a and 5b and the metal structures 5c and 5d are arranged so as to be orthogonal to each other. Considering that each of the metal structures 5a and 5b and the metal structures 5c and 5d is displaced, the conductive polymer in the direction different from the respective displacement directions of the metal structures 5a and 5b and the metal structures 5c and 5d is considered.
  • the deformation of the elastic plates 2a to 2d and 3a to 3c is not desirable because it causes unnecessary distortion.
  • the displacement direction of the metal structures 5a to 5d is the direction in which the deformation of the conductive polymer expandable plates 2a to 2d and 3a to 3c is the largest.In other words, the use of the expandable and contractible direction reduces unnecessary distortion inside the actuator. I am trying to become.
  • the metal structures 5a to 5d are rotatably connected at the centers of their upper surfaces by connecting pins 6a to 6d as an example of an insulating connecting member having the same length by a pin 20.
  • the connecting rods 6a to 6d are combined to form a parallelogram frame to form a four-bar linkage mechanism 30.
  • the pins 20 at the center of the lower surfaces are similarly insulated with the same length.
  • Another link mechanism 30 is provided with another connecting rod 6a to 6d of another sex.
  • the wiring connected to the metal structure 5 a is connected to one pole of the power supply 7.
  • a metal structure 5c is connected to the other pole of the power supply 7 via a switch 8.
  • causes of contraction of the conductive polymer stretch plates 2a to 2d and 3a to 3c include the ingress and egress of ions (anions), the ingress and egress of cations (cations), and changes in the polymer structure.
  • doping and undoping of anion is considered to be the main mechanism of deformation in a material system such as polypyrrole. , Will be described.
  • FIG. 2A shows a state in which no voltage is applied to the conductive polymer elastic plates 2a to 2d and 3a to 3c in the switch-off state
  • FIG. 2B shows a state in which the conductive polymer elastic plates 2a to 2d are not applied.
  • the figure shows a case where a positive potential is applied and a negative potential is applied to the conductive polymer stretch plates 3a to 3c.
  • FIG. 2C shows a case where a negative potential is applied to the conductive polymer elastic plates 2a to 2d and a positive potential is applied to the conductive polymer elastic plates 3a to 3c.
  • FIGS. 12A to 12F show the movement of ions in FIG. 2A, FIG. 2B and FIG. 2C. That is, FIGS. 12A, 12B and 12C, FIGS. 12D and 12E and 12F correspond to FIGS. 2A, 2B and 2C, respectively.
  • 12A, 12C, and 12E show the longitudinal displacement of the conductive polymer elastic plates 2a to 2d, respectively, and FIGS.12B, 12D, and 12F show the previous FIGS.
  • FIG. 12E is a diagram showing the displacement in the longitudinal direction of the conductive polymer stretchable plates 3a to 3c out of phase by 90 degrees.
  • each of the conductive polymer stretch plates 2a to 2d and 3a to 3c expands when the a-on enters the inside, and contracts when the a-on is released from the inside. I will do it. Specifically, it is as follows.
  • the conductive polymer elastic plates 2a to 2d and 3a to 3c are film-like substances and cannot generate a driving force in the direction of extension, but the contraction force of the conductive polymer elastic plates 3a to 3c.
  • the four-bar parallel link mechanism 30 composed of four connecting rods 6a to 6d converts the conductive polymer stretching plate 2a to 2d in the direction of extension (ie, the vertical direction in FIG. 2B).
  • the actuator 1 is deformed in the direction of extension of the conductive polymer expansion and contraction plates 2a to 2d, and generates a driving force.
  • FIG. 2C, FIG. 12E, and FIG. 12F show cases where a negative potential is applied to the conductive polymer stretch plates 2a to 2d and a positive potential is applied to the conductive polymer stretch plates 3a to 3c.
  • a negative potential is applied to the conductive polymer stretch plates 2a to 2d
  • a positive potential is applied to the conductive polymer stretch plates 3a to 3c.
  • the a-on force uniformly present in the electrolyte carrier layers 4a to 4f of the gel electrolyte when no voltage was applied was applied to the conductive polymer elastic plates 3a to 3c on the positive electrode side. It is drawn and enters the inside of the conductive polymer stretch plates 3a to 3c.
  • the stretching plates 3a to 3c of the conductive polymer elongate during this process.
  • the contraction of the conductive polymer elastic plates 2a to 2d is performed by the four-node parallel link mechanism 30 composed of the four connecting rods 6a to 6d in the direction in which the conductive polymer elastic plates 3a to 3c extend. That is, the force converted to the left and right directions in FIG. 2C)
  • the conductive polymer stretch plates 3a to 3c are stretched. Therefore, the artificial muscle actuator 1 that does not hinder the contraction of the conductive polymer elastic plates 2a to 2d moves in the contraction direction of the conductive polymer elastic plates 2a to 2d (that is, the left and right direction in FIG. 2C). It deforms and generates a driving force.
  • the direction and the displacement direction of the metal structures 5c and 5d of the second displacement extraction member connected to the elastic members 3a to 3c, which are the second conductive polymer films, are arranged so as to be different from each other.
  • the metal structures 5a, 5b and 5c, 5d of the first and second displacement extraction members are constituted by connecting rods 6a to 6d so as to mutually convert one displacement in the expansion direction into another displacement in the compression direction.
  • a link mechanism 30 is provided.
  • the two types of conductive polymer films 2a to 2d and 3a to 3c one of which expands and the other contracts due to the oxidation-reduction reaction, can be used to reduce the displacement of one conductive high molecular film in the contraction direction. It can be connected by the link mechanism 30 that converts the expansion into the displacement of the other conductive polymer film in the expansion direction, and the driving force in the expansion direction of one conductive polymer film is changed in the compression direction of the other conductive polymer film. It can be generated by the driving force of.
  • the deformation of the conductive polymer elastic plates 2a to 2d in the contraction direction is mutually converted into the deformation of the conductive polymer elastic plates 3a to 3c in the expansion direction by the four-node link mechanism 30.
  • the deformation of the conductive polymer elastic plates 2a to 2d in the extension direction is also converted into the deformation of the conductive polymer elastic plates 3a to 3c in the contraction direction by the four-node link mechanism 30.
  • the driving force in the extension direction of the elastic body 2a to 2d or 3a to 3c, which is the conductive polymer film, is generated by the driving force in the compression direction of the other conductive polymer film, the elastic body 3a to 3c or 2a to 2d.
  • one of the conductive polymer films of the elastic body 2a ⁇ When an external force is applied in the compression direction of 2d or 3a to 3c, it can be received by the rigidity of the other conductive polymer film, which is the elastic body 3a to 3c or 2a to 2d, in the extension direction.
  • a conductive polymer actuator having a driving force in the extension direction and rigidity in the compression direction can be obtained without applying a preload.
  • the force holding method described in the method of holding the conductive polymer elastic plates 2a to 2d and 3a to 3c by sandwiching them with the displacement extracting members 5a, 5b and 5c, 5d, respectively is not limited to this, and the holding may be performed by inserting a displacement extraction member into a hole provided in a stretchable plate made of a conductive polymer.
  • the displacement taking-out member may be moved in the extension direction or may be held only against the contraction of the conductive polymer expansion / contraction plate, for example, by attaching a stopper.
  • the link mechanism 30 is provided on both sides.
  • the link mechanism 30 does not necessarily have to be provided on both sides, and may be provided on one side.
  • the connecting rods 6a to 6d do not necessarily have to be insulative, and it is not necessary to short-circuit both poles of the power supply 7. You may.
  • the displacement extracting member also needs to be provided with a wiring portion for connecting the power source 7 and the conductive polymer stretching plate, which need not necessarily be a metal body. Further, the wiring may be directly connected to the conductive polymer expansion and contraction plate to eliminate the connection with the displacement extracting member. Any of these cases is included in the present invention.
  • FIGS. 3A to 3C are top views schematically showing an artificial muscle actuator 1B as an example of the conductive polymer actuator of the second embodiment according to the present invention. Note that the same reference numerals are given to portions that perform the same functions as in the above-described first embodiment, and overlapping descriptions are omitted.
  • the ends of the metal structures 5a to 5d which are examples of the displacement extraction member, are provided. They are arranged so that they touch each other.
  • Each contact surface is provided with insulating plate-shaped sliding members 9a to 9h. That is, the contact surfaces on both sides of the metal structure 5a are respectively slid.
  • the moving members 9a and 9b are fixed, and sliding members 9c and 9d are fixed to the contact surfaces on both sides of the metal structure 5b, respectively, and the sliding members 9e are fixed to the contact surfaces on both sides of the metal structure 5c.
  • sliding members 9g and 9h are fixed, and sliding members 9g and 9h are fixed to the contact surfaces on both sides of the metal structure 5d, respectively. Therefore, the sliding member 9a and the sliding member 9e slidably face each other between the metal structure 5a and the metal structure 5c, and the sliding member 9f between the metal structure 5c and the metal structure 5b. And the sliding member 9c are slidably opposed to each other. Between the metal structure 5b and the metal structure 5d, the sliding member 9d and the sliding member 9g are slidably opposed to each other and the metal structure 5d is opposed to the metal structure 5d. The sliding member 9h and the sliding member 9b are slidably opposed to each other between the metal structure 5a.
  • each of the sliding members 9a to 9h fluorine resin or the like is desirable in that it has low friction characteristics, chemical resistance and the like.
  • the angle of the contact surface is different from the direction of displacement of the metal structures 5a to 5d (for example, an angle inclined by 45 degrees with respect to the direction of displacement).
  • the conductive polymers 2a to 2d and 3a to 3c in the first embodiment are each divided into two.
  • the conductive polymer stretch plates 2a to 2d and 3a to 3c are two stretch plates 2a-1, 2a-2, 2b-1, 2, 2b-2, and 2c, respectively, arranged in parallel. — 1, 2c—2, 2d—1, 2d—2, 3a—1, 3a—2, 3b—1, 3b—2, 3c—1, 3c—2 By doing so, expansion in a direction different from the displacement direction can be further suppressed.
  • the division is not limited to two divisions, and may be further divided as necessary, or may not be divided.
  • 3A to 3C a gap is provided between the conductive polymer stretchable plates 2a-1 and 2a-2 and between the stretchable plates 3a-1 and 3a-2. There is no problem even if there is no force in this gap!
  • the conductive polymer elastic plates 2a-1, 2a-2 are deformed in the shrinking direction in the conductive polymer elastic plates 3a-1, 3a.
  • the elastic polymer 2a—1 and 2a— are both converted to each other in the stretching direction and the conductive polymer elastic plates 3a—1 and 3a— are also transformed in the stretching direction.
  • the driving force in the stretching direction of the one conductive polymer film in the stretching direction is converted to the driving force in the compression direction of the other conductive polymer film in the stretching direction. Will be able to be generated by.
  • the elastic plate can be received by the expansion direction rigidity of the other conductive polymer film.
  • a conductive polymer actuator having a driving force in the extension direction and rigidity in the compression direction can be obtained without applying a preload.
  • the sliding members 9a to 9h are provided at the ends of the metal structures 5a to 5d as the displacement extracting members.
  • the sliding members 9a to 9h realize rolling contact such as spherical and cylindrical shapes. It may be a member that does.
  • the displacement extracting member is not necessarily required to be a metal body, and may have a wiring portion for connecting the power source 7 and the conductive polymer elastic plates 2a to 2d and 3a to 3c.
  • the displacement take-out member may be made of fluorine resin or the like so that the displacement take-out member may be brought into direct contact without using a sliding member.
  • the method of interconnecting the displacement extraction members is not limited to contact, but may be interconnection by non-contact physical action.
  • a repulsive force of a magnet, an electrostatic repulsive force or the like can be used.
  • FIGS. 4A to 4C are top views schematically showing an artificial muscle actuator 1C as an example of a conductive polymer actuator according to a third embodiment of the present invention. Note that the same reference numerals are given to portions that perform the same functions as those in the above-described embodiment, and redundant description will be omitted.
  • one elastic ring 10 as an example of an insulating elastic body is used instead of the four-bar link mechanism 30 constituted by the connecting rods 6a to 6d in the first embodiment.
  • the metal structures 5a to 5d are connected.
  • one elastic ring 10 and the upper surface of each of the metal structures 5 a to 5 d, for example, the central portion are fixed by pins 19.
  • the elastic ring 10 contracts in the direction of the external force and at the same time the conductive polymer
  • the elastic boards 3a-1 and 3a-2 extend in the direction of extension.
  • the applied external force is received by the rigidity of the conductive polymer elastic plates 3a-1 and 3a-2.
  • a positive voltage is applied to the conductive polymer elastic plates 2a-1 and 2a-2 to expand
  • a negative voltage is simultaneously applied to the conductive polymer elastic plates 3a-1 and 3a-2.
  • the metal structures 5a and 5b are displaced in the direction of contraction of the conductive polymer expansion and contraction plates 3a-1 and 3a-2, the metal structures 5a and 5b become conductive.
  • the elastic polymer 2a-1 and 2a-2 are displaced in the direction of extension.
  • the conductive polymer elastic plates 2a-1, 2a-2 are deformed in the contraction direction in the conductive polymer elastic plates 3a-1, 3a.
  • the elastic polymer 2a—1 and 2a— are both converted to each other in the stretching direction and the conductive polymer elastic plates 3a—1 and 3a— are also transformed in the stretching direction. Since it is mutually converted into the deformation in the contraction direction of (2), the driving force of one conductive polymer in the expansion direction of the expansion and contraction plate is generated by the driving force of the other conductive polymer in the compression direction of the expansion and contraction plate.
  • the elastic ring is not necessarily required to be insulative. Since both electrodes of the power supply 7 do not have to be short-circuited, the connecting portion with the displacement take-out member should be insulated. Alternatively, the displacement extracting member may be made insulative. Any of these cases is included in the present invention.
  • FIG. 5 is a perspective view schematically showing an artificial muscle actuator 1D as an example of the conductive polymer actuator of the fourth embodiment according to the present invention. Note that the above-described embodiment Portions performing the same functions as those of the embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • the fourth embodiment has a structure in which the guide mechanism 18 is added to the first embodiment.
  • the metal structure 5b-1 is composed of a substantially H-shaped metal plate, and the projecting protrusions on the upper surface and the lower surface respectively have round bar-shaped guide rails 11a, lib, 11c, and lid. Each end is fixed respectively.
  • the metal structure 5a-1 is composed of a substantially H-shaped metal plate having substantially the same size as the metal structure 5b-1.
  • Each of the protruding projections on the upper surface side and the lower surface side has a round bar-shaped guide.
  • the other end of each of the rails 11a, lib, 11c, lid penetrates and is held via a bearing (not shown).
  • the metal structure 5c-1 is composed of a substantially H-shaped metal plate that is larger than the metal structures 5b-1, 5a-1, and has round bar-shaped protrusions on the upper surface side and the lower surface side, respectively.
  • One end of each of the guide rails l ie, l lf, l lg, and l lh is fixed respectively.
  • the metal structure 5d-1 is composed of a substantially H-shaped metal plate, which is larger than the metal structures 5b-1, 5a-1.
  • the protruding projections on the upper surface and the lower surface respectively have round bar-shaped guide rails.
  • One ends of l ie, l lf, l lg, and l lh respectively penetrate and are held through bearings (not shown).
  • the guide rails lie, llf, llg, and lh are arranged outside the guide rails 11a, lib, 11c, and lid so as to be orthogonal to these.
  • Each link mechanism 30 is arranged inside the guide rail 11a, lib, 11c, lid, and the movement of the connecting rods 6a, 6b, 6c, 6d of the respective link mechanism 30 comes into contact with the respective convex portions. The above operation is not obstructed.
  • Guide rail 1 la ⁇ The direction of L Id is the same as the direction of expansion and contraction of the conductive polymer elastic plates 2a to 2d.
  • the direction of the guide rail l le to llh is the direction of the conductive polymer elastic plates 3a to 3c.
  • the guide mechanism 18 By configuring the guide mechanism 18 in this manner, the directions in which the metal structures 5a-1, 5b-1, 5c-1, and 5d-1 are displaced are limited. That is, the metal structures 5a-1, 5b-1, 5c-1, and 5d-1 are caused by factors such as variation in expansion and contraction of the conductive polymer stretch plates 2a to 2d and 3a to 3c and errors in each member.
  • the metal structures 5a-1, 5b-1, 1, 5c-1, and 5d-1 are electrically conductive polymer stretch plates 2a to 2d and 3a even if a driving force is applied to the It is displaced only in the expansion and contraction direction of ⁇ 3c.
  • the guide rails 11 & to 11 (1, the number of l le to l lh is four per direction.
  • the force is not necessarily four, but may be one or more.
  • the guide rails 11a to 11 are provided only on the metal structures 5a-1 and 5b-1.
  • the guide is not necessarily a guide rail, and various linear guides are available, and any of these cases is included in the present invention.
  • FIG. 7 is a perspective view schematically showing an artificial muscle activator 1E as an example of the conductive polymer actuator of the fifth embodiment according to the present invention.
  • 8A, 8B, and 8C show cross-sectional views, respectively. That is, FIG. 8A shows a state in which no voltage is applied to the conductive polymer stretch plates 2a to 2b and 3a to 3c in the switch-off state, and FIG. 8B shows a state in which the conductive polymer stretch plates 2a to 2b are negative. Is applied, and a positive potential is applied to the conductive polymer elastic plates 3a to 3c.
  • FIG. 8A shows a state in which no voltage is applied to the conductive polymer stretch plates 2a to 2b and 3a to 3c in the switch-off state
  • FIG. 8B shows a state in which the conductive polymer stretch plates 2a to 2b are negative. Is applied, and a positive potential is applied to the conductive polymer elastic plates 3a to 3c.
  • FIG. 8A shows a
  • FIG. 8C shows a case where a positive potential is applied to the conductive polymer stretch plates 2a to 2b and a negative potential is applied to the conductive polymer stretch plates 3a to 3c.
  • portions that perform the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • FIGS. 8A, 8B, and 8C respectively show conductive polymer elastic plates 2a to 2b, 3a to 3d, and rectangular metal plates 5a to 5d as another example of a displacement extraction member.
  • the case 12 is disposed substantially at the center of the electrolyte solution 14 which is another example of the electrolyte support layer filling the enclosed space surrounded by the rectangular plate-shaped lid 13.
  • the electrolyte solution 14 a solution in which an electrolyte such as NaPF6 or TBAPF6 is dissolved in water or an organic solvent such as propylene carbonate, or an ionic liquid such as BMIPF6 can be used.
  • the electrolyte containing PF6 as an iron has the ability to obtain a large displacement in combination with polypyrrole, which is a conductive polymer.
  • the displacement extracting member 5a of the four displacement extracting members 5a to 5d is fixed to the inner surface of the lid 13 so as to be integrated with the lid 13.
  • a rod 15 is connected to the displacement extracting member 5b, and the rod 15 is provided on the case 12. It penetrates through the sealed member 16a and projects outside the case 12.
  • the wiring connected to the displacement extracting member 5a is connected to one pole of the power source 7 via a sealing member 16b provided on the lid 13.
  • a displacement extracting member 5c is connected to the other pole of the power supply 7 via a switch 8.
  • the wiring connecting the switch 8 and the displacement extracting member 5c connects the inside and the outside of the space surrounded by the case 12 and the lid 13 through a sealing member 16c provided on the lid 13.
  • the displacement direction of the displacement extraction members 5a to 5d and the direction of the drive force can be made high in conductivity while maintaining the driving force in the extension direction and the rigidity in the compression direction without applying a preload.
  • a push-pull type conductive material that is easy to hold while having the same characteristics as the first embodiment in that it is not affected by the variation in displacement generated by the molecular elastic plates 2a to 2b and 3a to 3d and the error in the structure. It is possible to obtain a conductive polymer activator.
  • the electrolyte support layer is the electrolytic solution 14, but may be a gel electrolyte 4a, 4b or the like as in the above-described embodiment. Any of these cases is included in the present invention.
  • FIG. 9 shows a configuration example of a robot arm using a plurality of artificial muscle actuators 1E according to the fifth embodiment.
  • Artificial muscle actuator la ⁇ A pair of drive units for each robot arm is configured as an antagonistic muscle structure with two sets of Lh. By extending one of the pair of driving units of each robot arm and contracting the other of the driving units, and by operating the other unit in the opposite direction, the pair of driving units of the robot arm are connected. Forward and reverse rotational movements can be generated on the axes 101 to 104. Specifically, in the configuration of FIG.
  • the vertical axis 101 rotates forward and backward by the extension and contraction operations of the meat actuators la and lb, and similarly, the extension and contraction operations of the artificial muscle actuators lc and Id cause the axis 102 to expand and contract the artificial muscle actuators le and If.
  • the shaft 103 rotates forward and backward by the contracting operation, and the shaft 104 rotates by extending and contracting the artificial muscle actuators lg and lh, respectively.
  • the four-degree-of-freedom robot arm includes a vertical axis 101 of the first joint that rotates forward and reverse with respect to the fixed wall 301 in a plane along the vertical direction and a horizontal direction, and a vertical axis along the vertical direction.
  • the axis 102 of the second joint that rotates forward and backward in the plane
  • the axis 103 of the third joint that rotates forward and backward between the second arm 308 and the first arm 311, the first arm 311 and the hand 313
  • a shaft 104 of the fourth joint which rotates forward and backward with respect to each other.
  • the circular supports 302, 302 are rotatably connected to both sides of the upper end of a rotating shaft 303 whose upper and lower ends are rotatable by bearings 304 and 305 and supported along the vertical direction. And one end of the artificial muscle activator la, lb (not shown, since the artificial muscle activator lb is disposed behind the artificial muscle activator la), and is connected to the fixed wall 301. The other end is connected to the support shaft 102 (the shaft 102 of the second joint) of each of the circular supports 302.
  • the first arm 311, the second arm 308, and the hand 313 of the robot arm are integrally fixed in a plane along the horizontal direction around the vertical axis 101 of the first joint by the antagonistic drive of the artificial muscle actuators la and lb. Can be rotated in reverse.
  • the upper bearing 305 is supported by a fixed wall 301 by a support rod 306.
  • one end of a link 308 for the second arm is fixed to two circular supports 302, 302 fixed to both sides of the rotation shaft 303.
  • the first arm 311, the second arm 308, and the hand 313 of the robot arm are integrated in the plane along the vertical axis around the horizontal axis, which is the support axis 102 of the second joint, by the antagonistic drive of the artificial muscle actuators lc and Id. And forward and reverse rotation.
  • a support is rotatably connected along the second arm 308 and to the distal end of the second arm 308 so as to cross the second arm 308 and to which the base end of the first arm 311 is fixed.
  • An artificial muscle actuator le, 1 between 310 and supports 309, 309 fixed perpendicular to the base end of the second arm 308, 1 f is connected, and the first arm 311 and hand 313 are integrally reversed in the vertical direction around the horizontal axis, which is the support axis 103 of the third joint, by the antagonistic drive of the artificial muscle actuators le and If. Rotate.
  • the fourth joint it intersects with the first arm 311 along the first arm 311 and between the distal end of the second arm 308 and the proximal end of the first arm 311 and is fixed to the proximal end of the first arm 311.
  • Artificial muscle actuator between the fixed support 310 and the support 312 which intersects the first arm 311 between the distal end of the first arm 311 and the proximal end of the hand 313 and is fixed to the proximal end of the hand 313.
  • lg, lh is connected, artificial muscle Akuchi Yueta l g, the antagonistic driving of lh, to forward and reverse rotation of the hand 313 in a vertical direction along plane horizontal axis is a supporting shaft 103 of the third joint.
  • the artificial muscle actuator la, lb, the artificial muscle activator lc, ld, the artificial muscle actuator le, lf, the artificial muscle activator lg, lh are controlled by the control computer 1001 to control the voltage of the power supply 7 and the switch 8 respectively.
  • the state of the artificial muscle activator la, lb, the artificial muscle activator lc, ld, the artificial muscle activator le, lf, the artificial muscle activator lg, lh is controlled as appropriate.
  • FIGS. 10A and 10B show a configuration example of a finger portion which is a part of a robot hand using at least one artificial muscle actuator 1E according to the fifth embodiment.
  • the artificial muscle actuator 1E is fixed to the instep 31 of the robot hand, and moves the wire 34 connected to the rod 15 of the muscle muscle actuator 1E according to the state of the power supply 7 and the switch 8.
  • the wire 34 passes through the fingers 32a and 32b on the proximal side and is connected to the finger 32c on the distal side.
  • the upper 31 and the finger 32a are rotatably connected by a rotating shaft 33a.
  • the finger 32a and the finger 32b are rotatably connected to each other on the rotation axis 33b, and the finger 32b and the finger 32c are rotatable about the rotation axis 33c.
  • the wire 34 is pulled in the direction of the instep 31 and the finger of the robot node is deformed so as to be bent as shown in FIG. 10B.
  • the wire 34 is pulled out from the upper 31 and the fingers of the robot hand are changed to the extended state as shown in FIG. 10A. To be shaped.
  • the voltage of the power supply 7 and the state of the switch 8 are appropriately controlled by the control computer 1000, and the contraction / extension operation of the artificial muscle actuator is controlled. Accordingly, the bending operation of the finger portion of the robot hand is controlled.
  • the gripping operation can be controlled by using the artificial muscle actuator 1E for each of a plurality of fingers of the robot hand.
  • the flexible electrode is used to generate an appropriate displacement in the conductive polymer elastic plates 2a, 2a-1, 2a-2, 2b, 2c, 2d, 3a, 3b, 3c.
  • the voltage applied to the electrode is preferably such that the electrolysis does not occur in the gel electrolytes 4a, 4b, 4c, 4d, 4e, and 4f, which are the electrolyte support layers, and the electrolyte solution 14.
  • the conductive polymer actuator according to the present invention can obtain an actuator having driving force in the extension direction and rigidity in the compression direction without applying a preload, and is useful as an artificial muscle actuator.
  • it is suitable for use as a drive unit of a robot arm or a robot hand using the same.

Abstract

 酸化還元反応により一方が膨張し、他方が収縮する二つの導電性高分子膜(2a,3a)を、一方の収縮方向変位を他方の膨張方向変位に相互変換するリンク機構(30)により接続することで、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる。

Description

明 細 書
導電性高分子ァクチユエータ
技術分野
[0001] 本発明は、圧縮方向に対する剛性及び伸張方向に対する駆動力を有する導電性 高分子ァクチユエータ及びそれを用いるロボットに関する。
背景技術
[0002] 家庭用ロボットなど人間に近い場所において動作する機械に対する要求の高まり に伴い、人間の筋肉のようにしなやかな動作をする人工筋肉ァクチユエータへの期 待も大きくなつている。人工筋肉ァクチユエータの候補として、これまでに様々な方式 のァクチユエータが提案されているが、その中の一つとして、導電性高分子を用いた ァクチユエータが提案されて 、る。
[0003] 導電性高分子を用いた人工筋肉ァクチユエータの一例としては、図 11A,図 11B, 図 11Cに示すようなたわみ変形を発生させるァクチユエータが提案されている。この ァクチユエータは、導電性高分子膜であるポリア-リン膜体 21a、 21bで固体電解質 成形体 22を挟み込む構造となっている。スィッチ 98をオンすることで、電源 97にお いて設定された電位差がポリア-リン膜体 21a、 21b間に与えられ、図 11Bに示され るように、一方のポリア-リン膜体 21bには陰イオンが挿入されて伸長し、他方のポリ ァ-リン膜体 21aからは陰イオンが離脱して縮小し、結果としてたわみ変形が発生す るようになる (例えば、特許文献 1 (特開平 11 - 169393号公報)参照)。
[0004] この構成では、電極として作用する二つの導電性高分子膜の変位量の差によりた わみ変形を発生させているが、一方で、電解質托体層を液体もしくはゲル状の物質 とすることで、両電極の変形がお互いに影響しないようにし、片方の導電性高分子の 変位のみを取り出して伸縮変形を行うァクチユエータとする構成も知られて 、る。この 場合、変位を利用しない電極については導電性高分子である必要はなぐ主に金属 電極が用いられているが、金属電極上に導電性高分子を設けることで変位が増加す ることも示されている(例えば、非特許文献 1 (Proceedings of SPIE, Vol. 4695 の 8〜16ページ)参照)。 [0005] このような導電性高分子ァクチユエータは、 2〜3Vの低電圧で筋肉に匹敵するよう な歪みを発生することから、人工筋肉としての実用化が期待されている。
[0006] しかし、導電性高分子を伸縮変形を行うァクチユエータとして用いる場合には、導 電性高分子が膜状であることから、そのままでは伸張方向への駆動力や圧縮方向へ の剛性を持つことはできない。その対策として、パネによる予圧を導電性高分子膜の 伸張方向へ加えることで両方向への駆動力や剛性を発生させる方法が非特許文献 1 (Proceedings of SPIE, Vol. 4695の 8〜16ページ)【こ示されて!/ヽる。また、 特許文献 2 (Japanese Journal of Applied Physics, Vol. 41, Part 1, No. 12の 7532〜7536ページ)には重りによる予圧をカ卩えても同様の効果を得る方法が 示されている。
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、前述した構成で伸縮変形を行うァクチユエータを構成した場合にも課 題がある。パネによる予圧を加えた構成では、十分な剛性や駆動力を得るためには 剛性の高いパネが必要となり、この場合には、収縮方向変位は減少することになる。
[0008] 一方、重りによる予圧を加えた構成では、重力方向の影響を受けるとともに、重りの 質量が動特性に影響を与えるといった問題点がある。
[0009] 従って、本発明の目的は、力かる点に鑑み、予圧を必要とせずに伸張方向の駆動 力と圧縮方向の剛性を持つことができる導電性高分子ァクチユエータ及びそれを用 いるロボットを提供することにある。
課題を解決するための手段
[0010] 上記目的を達成するために、本発明は以下のように構成する。
[0011] 本発明の第 1態様によれば、電解質托体層を介して接続される第 1導電性高分子 膜と第 2導電性高分子膜と、
上記第 1導電性高分子膜に接続された第 1変位取出部材と、
上記第 2導電性高分子膜に接続された第 2変位取出部材とを備え、
上記第 1変位取出部材の変位方向と上記第 2変位取出部材の変位方向が異なるよ うに配置されるとともに、上記第 1及び第 2変位取り出し部材が、一方の膨張方向変 位を他方の収縮方向変位に相互変換するリンク機構により接続されて、上記第 1導 電性高分子膜と上記第 2導電性高分子膜の間に電位差を与えることで、酸化還元反 応により上記第 1導電性高分子膜と上記第 2導電性高分子膜の一方が膨張し、他方 が収縮する導電性高分子ァクチユエータを提供する。
発明の効果
[0012] よって、本発明によれば、予圧を必要とせずに、伸張方向の駆動力と圧縮方向の 剛性を持つ導電性高分子ァクチユエータを得ることができる。すなわち、本発明によ れば、酸化還元反応により一方が膨張し、他方が収縮する二つの導電性高分子膜を 、一方の収縮方向変位を他方の膨張方向変位に相互変換するリンク機構により接続 することで、一方の導電性高分子膜の伸張方向の駆動力を他方の導電性高分子膜 の圧縮方向の駆動力によって発生させることができる。更に、一方の導電性高分子 膜の圧縮方向に外力が加わった場合には、他方の導電性高分子膜の伸張方向の 剛性によって受けることできるようになり、予圧を加えなくても伸張方向の駆動力と圧 縮方向の剛性を持つァクチユエータが得られるようになる。
図面の簡単な説明
[0013] 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形 態に関連した次の記述から明らかになる。この図面においては、
[図 1]図 1は、本発明の第 1実施形態による人工筋肉ァクチユエータの概略を示す斜 視図であり、
[図 2A]図 2Aは、本発明の第 1実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
[図 2B]図 2Bは、本発明の第 1実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
[図 2C]図 2Cは、本発明の第 1実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
[図 3A]図 3Aは、本発明の第 2実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
[図 3B]図 3Bは、本発明の第 2実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
圆 3C]図 3Cは、本発明の第 2実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
圆 4A]図 4Aは、本発明の第 3実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
圆 4B]図 4Bは、本発明の第 3実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
圆 4C]図 4Cは、本発明の第 3実施形態による人工筋肉ァクチユエータの概略を示す 上面図であり、
[図 5]図 5は、本発明の第 4実施形態による人工筋肉ァクチユエータの概略を示す斜 視図であり、
[図 6]図 6は、本発明の第 4実施形態による人工筋肉ァクチユエータの別の構成につ いての概略を示す斜視図であり、
[図 7]図 7は、本発明の第 5実施形態による人工筋肉ァクチユエータの概略を示す斜 視図であり、
圆 8A]図 8Aは、本発明の第 5実施形態による人工筋肉ァクチユエータの概略を示す 一部断面上面図であり、
圆 8B]図 8Bは、本発明の第 5実施形態による人工筋肉ァクチユエータの概略を示す 一部断面上面図であり、
圆 8C]図 8Cは、本発明の第 5実施形態による人工筋肉ァクチユエータの概略を示す 一部断面上面図であり、
[図 9]図 9は、本発明の第 5実施形態における人工筋肉ァクチユエータを用いたロボッ トアームの概略図であり、
[図 10A]図 10Aは、本発明の第 5実施形態における人工筋肉ァクチユエータを用い たロボットハンドの一部である指部の概略図であり、
圆 10B]図 10Bは、本発明の第 5実施形態における人工筋肉ァクチユエータを用いた ロボットハンドの一部である指部の概略図であり、
[図 11A]図 11Aは、従来構成の人工筋肉ァクチユエータの概略を示す図であり、 [図 11B]図 11Bは、従来構成の人工筋肉ァクチユエータの概略を示す図であり、 [図 11C]図 11Cは、従来構成の人工筋肉ァクチユエータの概略を示す図であり、 [図 12A]図 12Aは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図であり、 [図 12B]図 12Bは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図であり、 [図 12C]図 12Cは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図であり、 [図 12D]図 12Dは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図であり、 [図 12E]図 12Eは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図であり、 [図 12F]図 12Fは、本発明の第 1実施形態による人工筋肉ァクチユエータにおける、 ァ-オンの移動に伴う導電性高分子の伸縮板の伸縮の様子を示した図である。 発明を実施するための最良の形態
[0014] 本発明の記述を続ける前に、添付図面において同じ部品については同じ参照符号 を付している。
[0015] 以下に、本発明にかかる実施の形態を図面に基づいて詳細に説明する前に、本発 明の種々の態様について説明する。
[0016] 本発明の第 1態様によれば、電解質托体層を介して接続される第 1導電性高分子 膜と第 2導電性高分子膜と、
上記第 1導電性高分子膜に接続された第 1変位取出部材と、
上記第 2導電性高分子膜に接続された第 2変位取出部材とを備え、
上記第 1変位取出部材の変位方向と上記第 2変位取出部材の変位方向が異なるよ うに配置されるとともに、上記第 1及び第 2変位取出部材が、一方の膨張方向変位を 他方の収縮方向変位に相互変換するように接続されて、上記第 1導電性高分子膜と 上記第 2導電性高分子膜の間に電位差を与えることで、酸化還元反応により上記第 1導電性高分子膜と上記第 2導電性高分子膜の一方が膨張し、他方が収縮する導 電性高分子ァクチユエータを提供する。
[0017] このような構成によれば、一方の導電性高分子膜の伸張方向の駆動力を他方の導 電性高分子膜の圧縮方向の駆動力によって発生させることができる。更に、一方の 導電性高分子膜の圧縮方向に外力が加わった場合には、他方の導電性高分子膜 の伸張方向の剛性によって受けることできるようになり、予圧を加えなくても伸張方向 の駆動力と圧縮方向の剛性を持つ導電性高分子ァクチユエータを得ることができる。
[0018] 本発明の第 2態様によれば、上記第 1及び第 2変位取出部材の接続が、リンク機構 を介した接続である第 1の態様に記載の導電性高分子ァクチユエータを提供する。
[0019] このような構成によれば、変位取出節部材の変位はリンク機構により容易に相互変 換されることになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ 導電性高分子ァクチユエータを得ることができる。
[0020] 本発明の第 3態様によれば、上記第 1及び第 2変位取出部材の接続が、それぞれ の変位方向と異なる角度をなす部位における相互接続である第 1の態様に記載の導 電性高分子ァクチユエータを提供する。
[0021] このような構成によれば、隣り合う二つの変位取出部材における、変位方向と異な る角度をなす部位同士の面方向の相対運動に伴い、変位取出部材の変位が相互変 換されるようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を 持つ導電性高分子ァクチユエータを得ることができる。
[0022] 本発明の第 4態様によれば、上記第 1及び第 2変位取出部材の接続が、弾性体を 介した接続である第 1の態様に記載の導電性高分子ァクチユエータを提供する。
[0023] このような構成によれば、弾性力のために変位は減少するものの、一方の導電性高 分子膜の伸張方向の駆動力を他方の導電性高分子膜の圧縮方向の駆動力によつ て発生させることができる。更に、一方の導電性高分子膜の圧縮方向に外力が加わ つた場合には、他方の導電性高分子膜の伸張方向の剛性によって受けることできる ようになり、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性 高分子ァクチユエータを得ることができる。
[0024] 本発明の第 5態様によれば、上記第 1変位取出部材は上記第 1導電性高分子膜の それぞれの端部を保持しかつ電気的接続されるとともに、上記第 2変位取出部材は 上記第 2導電性高分子膜のそれぞれの端部を保持しかつ電気的接続され、 上記リンク機構は、隣接する上記第 1変位取出部材と上記第 2変位取出部材と同士 を同じ長さの連結部材で連結して、上記連結部材により平行リンク機構を構成してい る第 2の態様に記載の導電性高分子ァクチユエータを提供する。
[0025] 本発明の第 6態様によれば、上記第 1導電性高分子膜と上記第 2導電性高分子膜 力 厚み方向に交互に配置されて 、る第 1〜5の 、ずれか 1つの態様に記載の導電 性高分子ァクチユエータを提供する。
[0026] このような構成によれば、第 1導電性高分子膜の両面は第 2導電性高分子膜に対 向し、同様に第 2導電性高分子膜の両面は第 1導電性高分子膜に対向するようにな るので、高密度に多層化した導電性高分子ァクチユエータを得ることができる。
[0027] 本発明の第 7態様によれば、上記第 1導電性高分子膜と上記第 2導電性高分子膜 力 平行に配置されている第 1〜6のいずれか 1つの態様に記載の導電性高分子ァ クチユエータを提供する。
[0028] このような構成によれば、隣り合う導電性高分子膜間の距離が一定になるので、導 電性高分子膜の同一面における反応のばらつきが減少し、より安定した出力の導電 性高分子ァクチユエータを得ることができる。
[0029] 本発明の第 8態様によれば、上記第 1導電性高分子膜と上記第 2導電性高分子膜 が等間隔に配置されている第 7の態様に記載の導電性高分子ァクチユエータを提供 する。
[0030] このような構成によれば、隣り合う導電性高分子膜間の距離を全て最小限にするこ とができ、より高密度に多層化した導電性高分子ァクチユエータを得ることができる。
[0031] 本発明の第 9態様によれば、上記第 1変位取出部材と上記第 2変位取出部材の変 位方向が、それぞれ上記第 1導電性高分子膜と上記第 2導電性高分子膜の長手方 向と等しい第 1〜8のいずれ力 1つの態様に記載の導電性高分子ァクチユエ一タを提 供する。
[0032] このような構成によれば、導電性高分子膜の膨張収縮により発生する伸縮が最も大 きくなる方向を用いることになるので、ァクチユエータ内部における不要な歪みの少な V、導電性高分子ァクチユエータを得ることができる。 [0033] 本発明の第 10態様によれば、上記第 1変位取出部材と上記第 2変位取出部材の 変位方向が、直交している第 1〜9のいずれか 1つの態様に記載の導電性高分子ァ クチユエータを提供する。
[0034] このような構成によれば、荷重方向や変位方向の変換を行う際に無用のモーメント を発生させることが無くなるので、導電性高分子膜の剛性や発生力を無駄なく利用し た導電性高分子ァクチユエータを得ることができる。
[0035] 本発明の第 11態様によれば、上記第 1変位取出部材及び上記第 2変位取出部材 のどちら力もしくは両方力 それぞれの変位取出部材の変位方向にのみ移動可能な ガイド機構と接続されている第 1〜10のいずれか 1つの態様に記載の導電性高分子 ァクチユエータを提供する。
[0036] このような構成によれば、ガイド機構により目的とする方向以外の変位が抑制される ので、駆動力が変位方向のみに対して作用する導電性高分子ァクチユエータを得る ことができる。
[0037] 本発明の第 12態様によれば、ロボットアームと、
第 1〜5態様のいずれか 1つに記載の導電性高分子ァクチユエータを 2本 1組の拮 抗筋構造として構成された、上記ロボットアームの一対の駆動部とを備えるロボットを 提供する。
[0038] このような構成によれば、上記した種々の効果を奏することができる導電性高分子 ァクチユエータを 2本 1組の拮抗筋構造の駆動部として、上記ロボットアームに適用す ることができる。この結果、多自由度を生かし、人間の腕のようにしなやかな動きをす るロボットアームが得られる。これにより、特に家庭用途に適したロボットアームを実現 することができる。
[0039] 以下、本発明の種々の実施の形態を、図面に基づいて詳細に説明する。
[0040] (第 1実施形態)
図 1は、本発明にかかる第 1実施形態の導電性高分子ァクチユエータの一例として の人工筋肉ァクチユエータ 1の概略を示した斜視図である。また図 2A〜図 2Cにその 上面図を示す。
[0041] 図 1において、 2a〜2d、 3a〜3cは酸化還元反応に伴って膨張収縮変形する導電 性高分子製の矩形たとえば長方形の伸縮体である膜状の伸縮板である。導電性高 分子膜である伸縮板 2a〜2d、 3a〜3cを構成する導電性高分子としては、ポリピロ一 ル、ポリア-リン、又はポリメトキシァ-リン等が利用可能だ力 ポリピロールは変位が 大きい点で望ましい。また、導電性高分子の伸縮板 2a〜2d、 3a〜3cの厚みはそれ ぞれ数十/ z m程度であるのが望ましい。それより薄いと強度的に弱ぐそれより厚いと 導電性高分子の伸縮板 2a〜2d、 3a〜3cの内部まで十分にイオンが出入りできなく なるので望ましくない。
導電性高分子の伸縮板 2a〜2d、 3a〜3cは電解質托体層の一例であるゲル状電 解質 4a〜4fを介して交互に積層配置されて ヽる。ゲル状電解質 4a〜4fの厚みは数 十; z m〜数 mm程度が望ましぐこれより厚いと、導電性高分子の伸縮板を密に配置 することができず、ァクチユエータの発生力が低下する。一方、薄すぎると、ゲル状電 解質中に含まれるイオンが少なくなり、ァクチユエータの変位が減少するようになる。 導電性高分子の伸縮板 2a〜2d、 3a〜3cはそれぞれ、全く同一形状、厚み、材料で 構成されて、平行かつ等間隔で配置されており、位相は 90度異なって長手方向が互 いに直交するように配置されている。また、ゲル状電解質の電解質托体層 4a〜4fも、 それぞれ、全く同一形状、厚み、材料で構成されて、平行かつ等間隔で配置されて いる。ゲル状電解質の電解質托体層 4a〜4fの大きさは、導電性高分子の伸縮板 2a 〜2dと伸縮板 3a〜3cとが互いに直交するように配置されたとき伸縮板 2a〜2dと伸 縮板 3a〜3cとが重なり合う部分の大きさとほぼ同じにしている。よって、導電性高分 子の伸縮板 2a〜2d、 3a〜3c及びゲル状電解質の電解質托体層 4a〜4fは、それぞ れの中心軸が大略同一で、かつ、図において、上から下向きに、導電性高分子の伸 縮板 2a、ゲル状電解質の電解質托体層 4a、導電性高分子の伸縮板 3a、ゲル状電 解質の電解質托体層 4b、導電性高分子の伸縮板 2b、ゲル状電解質の電解質托体 層 4c、導電性高分子の伸縮板 3b、ゲル状電解質の電解質托体層 4d、導電性高分 子の伸縮板 2c、ゲル状電解質の電解質托体層 4e、導電性高分子の伸縮板 3c、ゲ ル状電解質の電解質托体層 4f、導電性高分子の伸縮板 2dの順に配置されて ヽる。 このように配置することで、導電性高分子の伸縮板 2a〜2d、 3a〜3cにおける反応の ばらつきが減少するようになる。また、隣り合う導電性高分子の伸縮板 2a〜2d、 3a〜 3cの間隔が等しいことから、無駄なく積層することが可能になり、高密度に実装する ことがでさるよう〖こなる。
[0043] 導電性高分子の伸縮板 2a〜2dは、その両端をそれぞれ変位取出部材の一例であ る金属構造体 5a、 5bによって保持されかつ電気的に接続されている。同様に、導電 性高分子の伸縮板 3a〜3cは、その両端をそれぞれ変位取出部材の一例である金 属構造体 5c、 5dによって保持されかつ電気的に接続されている。金属構造体によつ て導電性高分子の伸縮板を保持する方法としては、金属構造体 5a〜5dをそれぞれ 複数の金属ブロックで構成し、その金属ブロックの間に導電性高分子の伸縮板 2a〜 2d、 3a〜3cを挟んだ状態で金属ブロックを一体ィ匕して金属構造体とするなどの方法 がある。金属ブロック同士を一体ィ匕する方法としては、ネジ止め、溶接、圧着、又は接 着等が利用できる。金属構造体および金属ブロックの材質としては、白金、チタン、二 ッケル、又はステンレス等の金属が利用可能である力 ステンレスは安価な点で望ま しい。
[0044] 金属構造体 5a、 5bの変位方向は、導電性高分子の伸縮板 2a〜2dの長手方向と 等しぐ金属構造体 5c、 5dの変位方向は、導電性高分子の伸縮板 3a〜3cの長手方 向と等しくなつており、金属構造体 5a、 5bと金属構造体 5c、 5dのそれぞれの変位方 向は互いに直交するように配置されている。金属構造体 5a、 5bと金属構造体 5c、 5d のそれぞれを変位させることを考えると、金属構造体 5a、 5bと金属構造体 5c、 5dの それぞれの変位方向と異なる方向に対する導電性高分子の伸縮板 2a〜2d、 3a〜3 cの変形は、不要な歪みの原因となるため望ましくない。そこで、金属構造体 5a〜5d の変位方向が導電性高分子の伸縮板 2a〜2d、 3a〜3cの変形が最も大きくなる方向 言い換えれば伸縮方向を用いることで、ァクチユエータ内部における不要な歪みが 少なくなるようにしている。
[0045] 金属構造体 5a〜5dは、それらの上面の中心において、ピン 20により、それぞれ同 じ長さの絶縁性の連結部材の一例としての連結棒 6a〜6dで回動自在に接続され、 連結棒 6a〜6dは平行四辺形の枠を構成するように組み合わされて 4節リンク機構 30 が構成されて 、る。金属構造体 5a〜5dの裏面(図の金属構造体 5a〜5dの下面側) にも同様に、それらの下面の中心において、ピン 20により、それぞれ同じ長さの絶縁 性の別の連結棒 6a〜6dで別のリンク機構 30が設けられて 、る。このような構成にす ることで、荷重方向や変位方向の変換を行う際に無用のモーメントを発生させること が無ぐ導電性高分子の伸縮板 2a〜2d、 3a〜3cの剛性や発生力を無駄なく利用す ることがでさるよう〖こなる。
[0046] また、金属構造体 5aに接続された配線は、電源 7の一方の極に接続されて 、る。電 源 7の他方の極には、スィッチ 8を介して金属構造体 5cが接続されて 、る。
[0047] 次に、この人工筋肉ァクチユエータ 1の作用を説明する。
[0048] 導電性高分子の伸縮板 2a〜2d、 3a〜3cが収縮する原因としては、ァ-オン(陰ィ オン)の出入り、カチオン(陽イオン)の出入り、高分子構造の変化等があるが、図 2A 、図 2B及び図 2Cによる動作原理の説明では、ポリピロールなどの材料系においてァ 二オンのドープ、アンドープが主たる変形のメカニズムとされていることから、ァ-オン の出入りにつ 、て述べることにする。
[0049] 図 2Aはスィッチオフの状態で導電性高分子の伸縮板 2a〜2d、 3a〜3cに電圧を 印加していない状態を示し、図 2Bは導電性高分子の伸縮板 2a〜2dに正の電位を 印加し、導電性高分子の伸縮板 3a〜3cに負の電位を印加した場合を示している。ま た、図 2Cは導電性高分子の伸縮板 2a〜2dに負の電位を印加し、導電性高分子の 伸縮板 3a〜3cに正の電位を印加した場合を示している。
[0050] 図 2Aと図 2Bと図 2Cのイオンの動き様子を示したものが図 12A〜図 12Fである。す なわち、図 12A,図 12Bと図 12C,図 12Dと図 12E,図 12Fはそれぞれ図 2Aと図 2 Bと図 2Cに対応している。それぞれ図 12A,図 12C,図 12Eが導電性高分子の伸縮 板 2a〜2dの長手方向の変位を示した図であり、図 12B,図 12D,図 12Fが先の図 1 2A、図 12C、図 12Eとは 90度位相が異なる導電性高分子の伸縮板 3a〜3cの長手 方向の変位を示した図である。これらの図のように、導電性高分子の伸縮板 2a〜2d 、 3a〜3cのそれぞれは、ァ-オンが内部に入り込むことで伸張し、ァ-オンが内部か ら放出されることで収縮するようになる。具体的には以下のようになる。
[0051] まず、図 2A及び図 12A,図 12Bの電圧無印加のスィッチオフの状態から、図 2B及 び図 12C,図 12Dに示すように導電性高分子の伸縮板 2a〜2d、 3a〜3cに電位が 印加されると、電圧無印加時にゲル状電解質の電解質托体層 4a〜4fにそれぞれ均 質に存在したァ-オン力 正電極側の導電性高分子の伸縮板 2a〜2d側に引き寄せ られ、導電性高分子の伸縮板 2a〜2dの内部に入り込むようになる。この酸化過程に 伴って導電性高分子の伸縮板 2a〜2dが長手方向沿いに一斉に伸長する。一方、 負電極側の導電性高分子の伸縮板 3a〜3c側からは、内部に存在したァ-オンがゲ ル状電解質の電解質托体層 4a〜4fに放出される。この還元過程に伴って導電性高 分子の伸縮板 3a〜3cが長手方向沿いに収縮する。これらの伸長及び収縮の結果、 上記リンク機構 30の連結棒 6a〜6dは、電圧無印加時には正方形を呈して 、たのが 、図 2Bに示されるように縦長の平行四辺形を呈するようになる。
[0052] 導電性高分子の伸縮板 2a〜2d、 3a〜3cは膜状の物質なので、伸張方向に駆動 力を発生させることはできないが、導電性高分子の伸縮板 3a〜3cの収縮力 4本の 連結棒 6a〜6dによって構成される 4節平行リンク機構 30により導電性高分子の伸縮 板 2a〜2dの伸張方向(すなわち、図 2Bの上下方向)に変換されるために、人工筋肉 ァクチユエータ 1は導電性高分子の伸縮板 2a〜 2dの伸張方向へ変形し、駆動力を 発生するようになる。
[0053] また、図 2C及び図 12E,図 12Fは導電性高分子の伸縮板 2a〜2dに負の電位を 印加し、導電性高分子の伸縮板 3a〜3cに正の電位を印加した場合を示して ヽる。 図 2Bの場合とは逆に、電圧無印加時にゲル状電解質の電解質托体層 4a〜4fに均 質に存在したァ-オン力 正電極側の導電性高分子の伸縮板 3a〜3c側に引き寄せ られ、導電性高分子の伸縮板 3a〜3c内部に入り込むようになる。この酸ィ匕過程に伴 つて導電性高分子の伸縮板 3a〜3cが伸長する。一方、負電極側の導電性高分子 の伸縮板 2a〜2d側からは、内部に存在したァ-オンがゲル状電解質の電解質托体 層 4a〜4fに放出される。この還元過程に伴って導電性高分子の伸縮板 2a〜2dが収 縮する。これらの伸長及び収縮の結果、上記リンク機構 30の連結棒 6a〜6dは、電圧 無印加時には正方形を呈していたの力 図 2Cに示されるように横長の平行四辺形を 呈するようになる。
[0054] 導電性高分子の伸縮板 2a〜2dの収縮は、 4本の連結棒 6a〜6dによって構成され る 4節平行リンク機構 30により導電性高分子の伸縮板 3a〜3cの伸張方向(すなわち 、図 2Cの左右方向)に変換される力 導電性高分子の伸縮板 3a〜3cは伸張してい るので、導電性高分子の伸縮板 2a〜2dの収縮を妨げることはなぐ人工筋肉ァクチ ユエータ 1は導電性高分子の伸縮板 2a〜2dの収縮方向(すなわち、図 2Cの左右方 向)へ変形し、駆動力を発生するようになる。
[0055] 逆に、ァクチユエータ 1に対して導電性高分子の伸縮板 2a〜2dの収縮方向(すな わち、図 2Cの上下方向)への外力が加わった場合、導電性高分子の伸縮板 2a〜2d は収縮方向への剛性を持たないものの、その外力は連結棒 6a〜6dによって構成さ れる 4節リンク機構 30を介して導電性高分子の伸縮板 3a〜3cの伸張方向(すなわち 、図 2Cの左右方向)の剛性によって受け止められることになる。また、導電性高分子 の伸縮板 2a〜2dの伸張方向への外力については、そのまま導電性高分子の伸縮 板 2a〜2dの剛性によって受け止められることになる。
[0056] 以上のように、第 1実施形態によれば、上記第 1導電性高分子膜である伸縮体 2a 〜2dに接続された上記第 1変位取出部材の金属構造体 5a、 5bの変位方向と、上記 第 2導電性高分子膜である伸縮体 3a〜3cに接続された上記第 2変位取出部材の金 属構造体 5c、 5dの変位方向が異なるように配置されるとともに、上記第 1及び第 2変 位取出部材の金属構造体 5a、 5b及び 5c、 5dが、一方の膨張方向変位を他方の収 縮方向変位に相互変換するように連結棒 6a〜6dによって構成される 4節リンク機構 3 0を備えるようにしている。このように構成することで、酸化還元反応により一方が膨張 し、他方が収縮する二種類の導電性高分子膜 2a〜2d, 3a〜3cを、一方の導電性高 分子膜の収縮方向変位を他方の導電性高分子膜の膨張方向変位に相互変換する リンク機構 30により接続することができて、一方の導電性高分子膜の伸張方向の駆 動力を他方の導電性高分子膜の圧縮方向の駆動力によって発生させることができる 。すなわち、導電性高分子の伸縮板 2a〜2dの収縮方向への変形は 4節リンク機構 3 0により導電性高分子の伸縮板 3a〜3cの伸張方向への変形に相互変換されるととも に、導電性高分子の伸縮板 2a〜2dの伸張方向への変形も 4節リンク機構 30により 導電性高分子の伸縮板 3a〜3cの収縮方向への変形に相互変換されることから、一 方の導電性高分子膜である伸縮体 2a〜2d又は 3a〜3cの伸張方向の駆動力を他方 の導電性高分子膜である伸縮体 3a〜3c又は 2a〜2dの圧縮方向の駆動力によって 発生させることができるようになる。更に、一方の導電性高分子膜である伸縮体 2a〜 2d又は 3a〜3cの圧縮方向に外力が加わった場合には、他方の導電性高分子膜で ある伸縮体 3a〜3c又は 2a〜2dの伸張方向の剛性によって受けることできるようにな るので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分 子ァクチユエータを得ることができる。
[0057] なお、第 1実施形態では、変位取出部材 5a、 5bと 5c、 5dによって導電性高分子の 伸縮板 2a〜2d、 3a〜3cをそれぞれ挟み込んで保持する方法について説明した力 保持方法はこれに限定されるものではなぐ導電性高分子の伸縮板に設けた穴部に 変位取出部材を挿入することで保持を行っても良い。また、導電性高分子の伸縮板 を折り返して環状にした部分に変位取出部材を挿入したり、変位取出部材に設けた 穴部に導電性高分子の伸縮板を通した後で抜け防止のためのストッパーを装着する など、変位取出部材の伸張方向への移動もしくは導電性高分子の伸縮板の収縮に 対しての保持のみを行っても良い。また、第 1実施形態では、両面にリンク機構 30を 設けているが、これは必ずしも両面である必要はなぐ片面であっても良い。更に、連 結棒 6a〜6dも必ずしも絶縁性である必要はなぐ電源 7の両極が短絡しなければよ いので、変位取出部材 5a、 5b、 5c、 5dとの連結部に絶縁性を持たせてもよい。変位 取出部材についても、必ずしも金属体である必要はなぐ電源 7と導電性高分子の伸 縮板を接続するための配線部を備えていればよい。また、配線を直接導電性高分子 の伸縮板に接続して変位取出部材との接続を無くしても良い。これらいずれの場合 についても、本発明に含まれる。
[0058] (第 2実施形態)
図 3A〜図 3Cは、本発明にかかる第 2実施形態の導電性高分子ァクチユエータの 一例としての人工筋肉ァクチユエータ 1Bの概略を示した上面図である。なお、前述し た第 1実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明 は省略する。
[0059] 第 2実施形態では、第 1実施形態における連結棒 6a〜6dによって構成された 4節リ ンク機構 30の代わりに、変位取出部材の一例である金属構造体 5a〜5dの端部が互 いに接触するように配置されている。各接触面には、絶縁性の板状の摺動部材 9a〜 9hが設けられている。すなわち、金属構造体 5aの両側部の接触面にはそれぞれ摺 動部材 9aと 9bが固定され、金属構造体 5bの両側部の接触面にはそれぞれ摺動部 材 9cと 9dが固定され、金属構造体 5cの両側部の接触面にはそれぞれ摺動部材 9e と 9fが固定され、金属構造体 5dの両側部の接触面にはそれぞれ摺動部材 9gと 9h が固定されている。よって、金属構造体 5aと金属構造体 5cとの間では摺動部材 9aと 摺動部材 9eとが摺動可能に対向し、金属構造体 5cと金属構造体 5bとの間では摺動 部材 9fと摺動部材 9cとが摺動可能に対向し、金属構造体 5bと金属構造体 5dとの間 では摺動部材 9dと摺動部材 9gとが摺動可能に対向し、金属構造体 5dと金属構造体 5aとの間では摺動部材 9hと摺動部材 9bとが摺動可能に対向している。摺動部材 9a 〜9hのそれぞれとしては、フッ素榭脂などが低摩擦特性、耐薬品性などを備える点 で望ましい。接触面の角度は、金属構造体 5a〜5dの変位方向と異なる角度 (例えば 、変位方向とは 45度傾斜した角度)となっており、人工筋肉ァクチユエータ 1Bに対し て導電性高分子の伸縮板 2a— 1、 2a— 2の収縮方向への外力が加わった場合、導 電性高分子の伸縮板 3a— 1、 3a— 2に伸張方向の変位が発生するようになつて 、る 。これにより、加わった外力は導電性高分子の伸縮板 3a— 1、 3a— 2の剛性によって 受け止められることになる。また、導電性高分子の伸縮板 2a— 1、 2a— 2に正の電圧 が加わって伸張する場合には、同時に導電性高分子の伸縮板 3a— 1、 3a— 2には 負の電圧が加わって収縮するようになるので、金属構造体 5a、 5bは、金属構造体 5c 、 5dが導電性高分子の伸縮板 3a— 1、 3a— 2の収縮方向に変位するのに伴って、 導電性高分子の伸縮板 2a— 1、 2a— 2の伸張方向に変位するようになる。導電性高 分子の伸縮板 2a〜2d、 3a〜3cについては、第 2実施形態では、第 1実施形態にお ける導電性高分子 2a〜2d、 3a〜3cをそれぞれ 2つに分割した状態となっている、す なわち、導電性高分子の伸縮板 2a〜2d、 3a〜3cはそれぞれ二枚の並列配置され た伸縮板 2a— 1、 2a— 2、 2b— 1、 2b— 2、 2c— 1、 2c— 2、 2d— 1、 2d— 2、 3a— 1 、 3a— 2、 3b— 1、 3b— 2、 3c— 1、 3c— 2より構成されるようになって!/ヽる力 このよう にすることで、より変位方向と異なる方向に対する膨張を抑制することができるように なる。分割については、 2分割に限定されるものではなぐ必要に応じて更に細かく分 割しても良いし、分割しなくても良い。また、図 3A〜図 3Cでは導電性高分子の伸縮 板 2a— 1、 2a— 2の間及び伸縮板 3a— 1、 3a— 2の間に隙間をそれぞれ設けている 力 この隙間につ 、ては無くても問題はな!/、。
[0060] 以上のように、第 2実施形態によれば、導電性高分子の伸縮板 2a— 1、 2a— 2の収 縮方向への変形は導電性高分子の伸縮板 3a— 1、 3a— 2の伸張方向への変形に相 互変換されるとともに、導電性高分子の伸縮板 2a— 1、 2a— 2の伸張方向への変形 も導電性高分子の伸縮板 3a— 1、 3a— 2の収縮方向への変形に相互変換されること から、一方の導電性高分子膜である伸縮板の伸張方向の駆動力を他方の導電性高 分子膜である伸縮板の圧縮方向の駆動力によって発生させることができるようになる 。更に、一方の導電性高分子膜である伸縮板の圧縮方向に外力が加わった場合に は、他方の導電性高分子膜である伸縮板の伸張方向の剛性によって受けることでき るようになるので、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導 電性高分子ァクチユエータを得ることができる。
[0061] なお、第 2実施形態では、変位取出部材である金属構造体 5a〜5dの端部に摺動 部材 9a〜9hを設けているが、これは球状、円柱状などの転がり接触を実現する部材 であっても良い。また、変位取出部材は必ずしも金属体である必要はなぐ電源 7と 導電性高分子の伸縮板 2a〜2d、 3a〜3cを接続するための配線部を備えていれば よい。更に、変位取出部材をフッ素榭脂などとすることで、摺動部材を用いずに直接 接触させても良い。
[0062] また、変位取出部材を相互接続させる方法は、接触に限定されるものではなぐ非 接触な物理的作用による相互接続であってもよい。このような物理的作用として、磁 石の反発力や、静電反発力等が利用可能である。
[0063] これら!/、ずれの場合につ!、ても、本発明に含まれる。
[0064] (第 3実施形態)
図 4A〜図 4Cは、本発明に力かる第 3実施形態の導電性高分子ァクチユエータの 一例としての人工筋肉ァクチユエータ 1Cの概略を示した上面図である。なお、前述し た実施形態と同様な機能を果たす部分には、同一の符号を付して重複する説明は 省略する。
[0065] 第 3実施形態では、第 1実施形態における連結棒 6a〜6dによって構成された 4節リ ンク機構 30の代わりに、絶縁性の弾性体の一例としての 1つの弾性体リング 10によ つて金属構造体 5a〜5dが連結されている。具体的には、 1つの弾性体リング 10とそ れぞれの金属構造体 5a〜5dの上面の例えば中央部とがピン 19により固定されてい る。人工筋肉ァクチユエータ 1Cに対して導電性高分子の伸縮板 2a— 1、 2a— 2の収 縮方向への外力が加わった場合、弾性体リング 10は外力の方向に縮むと同時に導 電性高分子の伸縮板 3a— 1、 3a— 2の伸張方向に伸びるようになる。これにより、加 わった外力は導電性高分子の伸縮板 3a— 1、 3a— 2の剛性によって受け止められる ことになる。また、導電性高分子の伸縮板 2a— 1、 2a— 2に正の電圧が加わって伸張 する場合には、同時に導電性高分子の伸縮板 3a— 1、 3a— 2には負の電圧が加わ つて収縮するようになるので、金属構造体 5a、 5bは、金属構造体 5c、 5dが導電性高 分子の伸縮板 3a— 1、 3a— 2の収縮方向に変位するのに伴って、導電性高分子の 伸縮板 2a - 1, 2a- 2の伸張方向に変位するようになる。
[0066] 以上のように、第 3実施形態によれば、導電性高分子の伸縮板 2a— 1、 2a— 2の収 縮方向への変形は導電性高分子の伸縮板 3a— 1、 3a— 2の伸張方向への変形に相 互変換されるとともに、導電性高分子の伸縮板 2a— 1、 2a— 2の伸張方向への変形 も導電性高分子の伸縮板 3a— 1、 3a— 2の収縮方向への変形に相互変換されること から、一方の導電性高分子の伸縮板の伸張方向の駆動力を他方の導電性高分子の 伸縮板の圧縮方向の駆動力によって発生させることができるようになる。更に、一方 の導電性高分子の伸縮板の圧縮方向に外力が加わった場合には、他方の導電性 高分子の伸縮板の伸張方向の剛性によって受けることできるようになるので、予圧を 加えなくても伸張方向の駆動力と圧縮方向の剛性を持つ導電性高分子ァクチユエ一 タを得ることがでさる。
[0067] なお、第 3実施形態において、弾性体リングは必ずしも絶縁性である必要はなぐ 電源 7の両極が短絡しなければょ 、ので、変位取出部材との連結部に絶縁性を持た せても良いし、変位取出部材を絶縁性としても良い。これらいずれの場合についても 、本発明に含まれる。
[0068] (第 4実施形態)
図 5は、本発明にかかる第 4実施形態の導電性高分子ァクチユエータの一例として の人工筋肉ァクチユエータ 1Dの概略を示した斜視図である。なお、前述した実施形 態と同様な機能を果たす部分には、同一の符号を付して重複する説明は省略する。
[0069] 第 4実施形態では、第 1実施形態にガイド機構 18を付加した構造となって ヽる。金 属構造体 5b— 1は大略 H形状の金属板体より構成され、上面側及び下面側のそれ ぞれ突出した凸部には、丸棒状のガイドレール 11a, l ib, 11c, l idの各一端がそ れぞれ固定されている。金属構造体 5a— 1は、金属構造体 5b— 1とほぼ同じ大きさ の大略 H形状の金属板体より構成され、上面側及び下面側のそれぞれの突出した 凸部には、丸棒状のガイドレール 11a, l ib, 11c, l idの各他端側がそれぞれ貫通 し軸受(図示せず)を介して保持されている。金属構造体 5c— 1は、金属構造体 5b— 1, 5a— 1より大きな大略 H形状の金属板体より構成され、上面側及び下面側のそれ ぞれ突出した凸部には、丸棒状のガイドレール l ie, l lf, l lg, l lhの各一端がそ れぞれ固定されている。金属構造体 5d— 1は、金属構造体 5b— 1, 5a— 1より大きな 大略 H形状の金属板体より構成され、上面側及び下面側のそれぞれ突出した凸部 には、丸棒状のガイドレール l ie, l lf, l lg, l lhの各一端がそれぞれ貫通し軸受( 図示せず)を介して保持されている。よって、ガイドレール 11a, l ib, 11c, l idの外 側にこれらと直交するように、ガイドレール l ie, l lf, l lg, l lhが配置されている。 それぞれのリンク機構 30は、ガイドレール 11a, l ib, 11c, l idの内側に配置され、 それぞれのリンク機構 30の連結棒 6a、 6b、 6c、 6dの移動動作はそれぞれの凸部に 接触せず上記動作が妨げられることがな 、ようにして 、る。ガイドレール 1 la〜: L Idの 方向は、導電性高分子の伸縮板 2a〜2dの伸縮方向と等しぐガイドレール l le〜l l hの方向は、導電性高分子の伸縮板 3a〜3cの伸縮方向と等しくなつている。このよう にガイド機構 18を構成することにより、金属構造体 5a— 1、 5b— 1、 5c— 1、 5d— 1が 変位する方向が限定されるようになる。すなわち、導電性高分子の伸縮板 2a〜2d、 3a〜3cにおける伸縮のばらつきや、各部材における誤差などの要因により、金属構 造体 5a— 1、 5b— 1、 5c— 1、 5d— 1に対して所定の変位方向と異なる方向への駆 動力が加わっても、金属構造体 5a— 1、 5b— 1、 5c— 1、 5d— 1は導電性高分子の 伸縮板 2a〜2d、 3a〜3cの伸縮方向にのみ変位するようになる。
[0070] 以上のように、第 4実施形態によれば、第 1実施形態と同様に予圧を加えなくても伸 張方向の駆動力と圧縮方向の剛性を持ちつつ、変位取出部材の変位方向や駆動 力の方向が導電性高分子の発生する変位のばらつきや構造における誤差による影 響を受けない導電性高分子ァクチユエータを得ることができる。
[0071] なお、第 4実施形態においては、ガィドレール11&〜11(1、 l le〜l lhの本数を一 方向当たり 4本とした力 必ずしも 4本である必要はなぐ 1本以上であればよい。また 、ガイドを 2方向に設けている力 これは図 6に示すように金属構造体 5a—l、 5b- 1 にのみガイドレール 11a〜: L idを設けてガイドを 1方向だけにしても良い。更に、ガイ ドは必ずしもガイドレールである必要はなぐ各種リニアガイドが利用可能である。こ れらいずれの場合についても、本発明に含まれる。
[0072] (第 5実施形態)
図 7は、本発明にかかる第 5実施形態の導電性高分子ァクチユエータの一例として の人工筋肉ァクチユエータ 1Eの概略を示した斜視図である。また図 8A,図 8B,図 8 Cにそれぞれその断面図を示す。すなわち、図 8Aはスィッチオフの状態で導電性高 分子の伸縮板 2a〜2b、 3a〜3cに電圧を印加していない状態を示し、図 8Bは導電 性高分子の伸縮板 2a〜2bに負の電位を印加し、導電性高分子の伸縮板 3a〜3cに 正の電位を印加した場合を示している。また、図 8Cは導電性高分子の伸縮板 2a〜2 bに正の電位を印加し、導電性高分子の伸縮板 3a〜3cに負の電位を印加した場合 を示している。なお、前述した実施形態と同様な機能を果たす部分には、同一の符 号を付して重複する説明は省略する。
[0073] 図 8A,図 8B,図 8Cはそれぞれにおいて、導電性高分子の伸縮板 2a〜2b、 3a〜 3d、変位取出部材の別の例としての矩形の金属板 5a〜5dは、直方体箱状のケース 12、矩形板状のフタ 13によって囲まれた密閉空間を満たす電解質托体層の別の例 である電解液 14の液中の大略中央部に配置されている。電解液 14としては、 NaPF 6、若しくは TBAPF6などの電解質を水、もしくはプロピレンカーボネートなどの有機 溶媒に溶解させたものや、 BMIPF6などのイオン性液体が利用可能である。ァ-ォ ンとして PF6を含む電解質は、導電性高分子であるポリピロールとの組み合わせで 大きな変位が得られること力も望ましい。 4つの変位取出部材 5a〜5dのうちの変位取 出部材 5aは、フタ 13と一体となるようにフタ 13の内面に固定されている。
[0074] 変位取出部材 5bには、ロッド 15が接続されており、ロッド 15は、ケース 12に設けら れたシール部材 16aを貫通して、ケース 12の外部に突出している。変位取出部材 5a に接続された配線は、フタ 13に備えられたシール部材 16bを経て電源 7の一方の極 に接続されている。電源 7の他方の極には、スィッチ 8を介して変位取出部材 5cが接 続されている。スィッチ 8と変位取出部材 5cを接続する配線は、フタ 13に備えられた シール部材 16cを通して、ケース 12、フタ 13によって囲まれた空間の内外を接続し ている。
[0075] この結果、図 8Aのスィッチオフの状態から、図 8Bに示すように、導電性高分子の 伸縮板 2a〜2bに負の電位を印加し、導電性高分子の伸縮板 3a〜3cに正の電位を 印加した場合には、 4節リンク機構 30が上下方向に伸び左右方向に縮んで、変位取 出部材 5bが図 8Aよりも図 8Bの左方向に移動するため、ロッド 15がケース 12内に入 り込む。逆に、図 8Cに示されるように、導電性高分子の伸縮板 2a〜2bに正の電位を 印加し、導電性高分子の伸縮板 3a〜3cに負の電位を印加した場合には、 4節リンク 機構 30が左右方向に伸び上下方向に縮んで、変位取出部材 5bが図 8Aよりも図 8B の右方向に移動するため、ロッド 15がケース 12内から出る。
[0076] このように構成することで、予圧を加えなくても伸張方向の駆動力と圧縮方向の剛 性を持ちつつ、変位取出部材 5a〜5dの変位方向や駆動力の方向が導電性高分子 の伸縮板 2a〜2b、 3a〜3dの発生する変位のばらつきや構造における誤差による影 響を受けないという第 1実施形態と同様の特徴を持ちつつ、保持が容易なプッシュ' プルタイプの導電性高分子ァクチユエータを得ることができる。
[0077] なお、第 5実施形態においては、電解質托体層を電解液 14としたが、前述の実施 形態と同様にゲル状電解質 4a、 4bなどとしても良い。これらいずれの場合について も、本発明に含まれる。
[0078] また、第 5実施形態における人工筋肉ァクチユエータ 1Eを複数本用いたロボットァ ームの構成例を図 9に示す。人工筋肉ァクチユエータ la〜: Lhを 2本 1組として拮抗筋 構造として各ロボットアームの一対の駆動部を構成する。各ロボットアームの一対の 駆動部のうちの一方の駆動部を伸張、他方の駆動部を収縮することで、また、それら とは逆に動作させることで、ロボットアームの一対の駆動部が連結された軸 101〜10 4に正逆回転運動を発生させることができる。具体的には、図 9の構成では、人工筋 肉ァクチユエータ la、 lbの伸張及び収縮動作によって上下軸 101が正逆回転し、以 下同様に、人工筋肉ァクチユエータ lc、 Idの伸張及び収縮動作によって軸 102が、 人工筋肉ァクチユエータ le、 Ifの伸張及び収縮動作によって軸 103が、人工筋肉ァ クチユエータ lg、 lhの伸張及び収縮動作によって軸 104がそれぞれ正逆回転する ようになっている。
[0079] 詳しくは、 4自由度のロボットアームは、固定壁 301に対して、上下方向軸沿いに横 方向沿いの平面内で正逆回転する第 1関節の上下軸 101と、上下方向沿いの平面 内で正逆回転する第 2関節の軸 102と、第 2腕 308と第 1腕 311との間で相互に正逆 回転とする第 3関節の軸 103と、第 1腕 311と手 313との間で相互に正逆回転とする 第 4関節の軸 104とより構成されている。
[0080] 第 1関節 101では、上下端部が軸受け 304と 305で回転自在にかつ上下方向沿い に支持された回転軸 303の上端部の両側に円形支持体 302, 302が回転自在に連 結され、かつ、人工筋肉ァクチユエータ la、 lb (ただし、人工筋肉ァクチユエータ lb は人工筋肉ァクチユエータ laの背後に配設されるため図示せず。)の各一端部が固 定壁 301に連結されるとともに各他端部が上記各円形支持体 302の支持軸 102 (第 2関節の軸 102)に連結されている。よって、人工筋肉ァクチユエータ la、 lbの拮抗 駆動により、第 1関節の上下軸 101回りに横方向沿いの平面内でロボットアームの第 1腕 311と第 2腕 308と手 313とを一体的に正逆回転運動させることができる。なお、 上側の軸受け 305は支持棒 306で固定壁 301に支持されて 、る。
[0081] 第 2関節では、回転軸 303の両側に固定された 2つの円形支持体 302, 302に、第 2腕用リンク 308の一端が固定されている。第 2腕用リンク 308の円形支持体 302, 3 02と、回転軸 303の一端に直交して固定された支持体 307, 307との間には、人工 筋肉ァクチユエータ lc、 Idが連結されて、人工筋肉ァクチユエータ lc、 Idの拮抗駆 動により、第 2関節の支持軸 102である横軸回りに上下方向沿い面内でロボットァー ムの第 1腕 311と第 2腕 308と手 313とを一体的に正逆回転させる。
[0082] 第 3関節では、第 2腕 308沿いでかつ第 2腕 308の先端に第 2腕 308と交差して回 転自在に連結されかつ第 1腕 311の基端が固定された支持体 310と、第 2腕 308の 基端に直交して固定された支持体 309, 309との間に人工筋肉ァクチユエータ le、 1 fが連結されて、人工筋肉ァクチユエータ le、 Ifの拮抗駆動により、第 3関節の支持 軸 103である横軸回りに上下方向沿い面内で第 1腕 311と手 313とを一体的に正逆 回転させる。
[0083] 第 4関節では、第 1腕 311沿いでかつ第 2腕 308の先端と第 1腕 311の基端との間 に第 1腕 311と交差しかつ第 1腕 311の基端に固定された支持体 310と、第 1腕 311 の先端と手 313の基端との間に第 1腕 311と交差しかつ手 313の基端に固定された 支持体 312との間に人工筋肉ァクチユエータ lg、 lhが連結されて、人工筋肉ァクチ ユエータ lg、 lhの拮抗駆動により、第 3関節の支持軸 103である横軸回りに上下方 向沿い面内で手 313を正逆回転させる。
[0084] 人工筋肉ァクチユエータ la、 lb、人工筋肉ァクチユエータ lc、 ld、人工筋肉ァクチ ユエータ le、 lf、人工筋肉ァクチユエータ lg、 lhのそれぞれは、制御コンピュータ 10 01により、それぞれの電源 7の電圧やスィッチ 8の状態が適宜制御され、人工筋肉ァ クチユエータ la、 lb、人工筋肉ァクチユエータ lc、 ld、人工筋肉ァクチユエータ le、 lf、人工筋肉ァクチユエータ lg、 lhのそれぞれの収縮'伸張動作が制御される。
[0085] このような構成とすることで、多自由度を生かし、人間の腕のようにしなやかな動きを するロボットアームが得られる。これにより、特に家庭用途に適したロボットアームを実 現することができる。
[0086] また、第 5実施形態における人工筋肉ァクチユエータ 1Eを少なくとも 1本用いたロボ ットハンドの一部である指部の構成例を図 10A及び図 10Bに示す。人工筋肉ァクチ ユエータ 1Eはロボットハンドの甲 31に固定され、電源 7、スィッチ 8の状態に従って人 ェ筋肉ァクチユエータ 1Eのロッド 15に接続されたワイヤ 34を進退させる。ワイヤ 34 は、基端側の指 32a、 32bを貫通し、先端側の指 32cに結合されている。甲 31と指 3 2aは回転軸 33aによって回転可能な状態で連結されている。同様に、指 32aと指 32 bは回転軸 33bで、指 32bと指 32cは回転軸 33cで回転可能な状態で連結されてい る。人工筋肉ァクチユエータ 1Eが収縮すると、ワイヤ 34は甲 31の方向に引っ張られ ることから、ロボットノヽンドの指部は図 10Bのように折れ曲がった状態となるように変形 する。逆に人工筋肉ァクチユエータ 1Eが伸張すると、ワイヤ 34は甲 31から引き出さ れるようになるので、ロボットハンドの指部は図 10Aのように伸びた状態となるように変 形するようになる。
[0087] 人工筋肉ァクチユエータ IEは、制御コンピュータ 1000により、電源 7の電圧、スイツ チ 8の状態が適宜制御され、人工筋肉ァクチユエータの収縮 ·伸張動作が制御される 。これに伴って、ロボットハンドの指部の屈曲動作が制御される。また、ロボットハンド の複数の指部にそれぞれ人工筋肉ァクチユエータ 1Eを用いることにより、把持動作 を制御することができる。
[0088] このような構成とすることで、人間の指又は手のようにしなやかな動きをするロボット ハンドの指部又はロボットノ、ンドが得られる。これにより、特に家庭用途に適したロボ ットハンドの指部又はロボットノヽンドを実現することができる。
[0089] なお、上記各実施形態において、導電性高分子の伸縮板 2a、 2a— 1、 2a— 2、 2b 、 2c、 2d、 3a、 3b、 3cに適切な変位を発生させるため、柔軟電極に印加された電圧 は、電解質托体層であるゲル状電解質 4a、 4b、 4c、 4d、 4e、 4fや電解液 14で電気 分解が起こらな 、程度の電圧とすることが好ま 、。
[0090] なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより 、それぞれの有する効果を奏するようにすることができる。
産業上の利用可能性
[0091] 本発明にかかる導電性高分子ァクチユエータは、予圧を加えなくても伸張方向の駆 動力と圧縮方向の剛性を持つァクチユエータを得ることができるものであり、人工筋 肉ァクチユエータ等として有用であるとともに、それを用いてロボットのロボットアーム やロボットハンドの駆動部として好適なものである。
[0092] 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載され ているが、この技術の熟練した人々にとつては種々の変形や修正は明白である。そ のような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限り において、その中に含まれると理解されるべきである。

Claims

請求の範囲
[1] 電解質托体層を介して接続される第 1導電性高分子膜と第 2導電性高分子膜と、 上記第 1導電性高分子膜に接続された第 1変位取出部材と、
上記第 2導電性高分子膜に接続された第 2変位取出部材とを備え、
上記第 1変位取出部材の変位方向と上記第 2変位取出部材の変位方向が異なるよ うに配置されるとともに、上記第 1及び第 2変位取出部材が、一方の膨張方向変位を 他方の収縮方向変位に相互変換するように接続されて、上記第 1導電性高分子膜と 上記第 2導電性高分子膜の間に電位差を与えることで、酸化還元反応により上記第
1導電性高分子膜と上記第 2導電性高分子膜の一方が膨張し、他方が収縮する導 電性高分子ァクチユエータ。
[2] 上記第 1及び第 2変位取出部材の接続が、リンク機構を介した接続である請求項 1 に記載の導電性高分子ァクチユエータ。
[3] 上記第 1及び第 2変位取出部材の接続が、それぞれの変位方向と異なる角度をな す部位における相互接続である請求項 1に記載の導電性高分子ァクチユエータ。
[4] 上記第 1及び第 2変位取出部材の接続が、弾性体を介した接続である請求項 1に 記載の導電性高分子ァクチユエータ。
[5] 上記第 1変位取出部材は上記第 1導電性高分子膜のそれぞれの端部を保持しか つ電気的接続されるとともに、上記第 2変位取出部材は上記第 2導電性高分子膜の それぞれの端部を保持しかつ電気的接続され、
上記リンク機構は、隣接する上記第 1変位取出部材と上記第 2変位取出部材と同士 を同じ長さの連結部材で連結して、上記連結部材により平行リンク機構を構成してい る請求項 2に記載の導電性高分子ァクチユエータ。
[6] 上記第 1導電性高分子膜と上記第 2導電性高分子膜が、厚み方向に交互に配置さ れている請求項 1〜5のいずれ力 1つに記載の導電性高分子ァクチユエータ。
[7] 上記第 1導電性高分子膜と上記第 2導電性高分子膜が、平行に配置されて!ヽる請 求項 1〜5のいずれか 1つに記載の導電性高分子ァクチユエータ。
[8] 上記第 1導電性高分子膜と上記第 2導電性高分子膜が等間隔に配置されている請 求項 7に記載の導電性高分子ァクチユエータ。
[9] 上記第 1変位取出部材と上記第 2変位取出部材の変位方向が、それぞれ上記第 1 導電性高分子膜と上記第 2導電性高分子膜の長手方向と等しい請求項 1〜5のいず れか 1つに記載の導電性高分子ァクチユエータ。
[10] 上記第 1変位取出部材と上記第 2変位取出部材の変位方向が、直交している請求 項 1〜5のいずれか 1つに記載の導電性高分子ァクチユエータ。
[11] 上記第 1変位取出部材及び上記第 2変位取出部材のどちらかもしくは両方が、そ れぞれの変位取出部材の変位方向にのみ移動可能なガイド機構と接続されて 、る 請求項 1〜5のいずれか 1つに記載の導電性高分子ァクチユエータ。
[12] ロボットアームと、
請求項 1〜5のいずれか 1つに記載の導電性高分子ァクチユエータを 2本 1組の拮 抗筋構造として構成された、上記ロボットアームの一対の駆動部とを備えるロボット。
PCT/JP2005/008341 2004-05-24 2005-05-06 導電性高分子アクチュエータ WO2005114827A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006518518A JP3817259B2 (ja) 2004-05-24 2005-05-06 導電性高分子アクチュエータ
US11/271,971 US7259495B2 (en) 2004-05-24 2005-11-14 Conductive polymer actuator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004153234 2004-05-24
JP2004-153234 2004-05-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/271,971 Continuation US7259495B2 (en) 2004-05-24 2005-11-14 Conductive polymer actuator

Publications (1)

Publication Number Publication Date
WO2005114827A1 true WO2005114827A1 (ja) 2005-12-01

Family

ID=35428649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008341 WO2005114827A1 (ja) 2004-05-24 2005-05-06 導電性高分子アクチュエータ

Country Status (4)

Country Link
US (1) US7259495B2 (ja)
JP (1) JP3817259B2 (ja)
CN (1) CN100557940C (ja)
WO (1) WO2005114827A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529760A (ja) * 2008-08-05 2011-12-15 ウニベルシダ ミゲル エルナンデス 人の腕の動きを制御するロボットアーム
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7166953B2 (en) * 2001-03-02 2007-01-23 Jon Heim Electroactive polymer rotary clutch motors
JP3939337B2 (ja) * 2005-08-23 2007-07-04 松下電器産業株式会社 高分子アクチュエータ
JP5602626B2 (ja) 2007-06-29 2014-10-08 アーティフィシャル マッスル,インク. 感覚性フィードバック用途のための電気活性ポリマートランスデューサー
JP5152483B2 (ja) * 2007-10-05 2013-02-27 ソニー株式会社 撮像装置
WO2009119069A1 (ja) 2008-03-27 2009-10-01 パナソニック株式会社 平板積層型導電性高分子アクチュエータ及び平板積層型導電性高分子アクチュエータ装置、並びにその作動方法
CN101657961B (zh) * 2008-04-04 2012-08-22 松下电器产业株式会社 导电性高分子致动器及其制造方法
JP5472680B2 (ja) * 2009-04-09 2014-04-16 国立大学法人 筑波大学 装着式動作補助装置
EP2239793A1 (de) 2009-04-11 2010-10-13 Bayer MaterialScience AG Elektrisch schaltbarer Polymerfilmaufbau und dessen Verwendung
CN102342013B (zh) * 2009-05-26 2014-07-16 阿尔卑斯电气株式会社 高分子促动器装置
CA2828809A1 (en) 2011-03-01 2012-09-07 Francois EGRON Automated manufacturing processes for producing deformable polymer devices and films
EP2689284A4 (en) 2011-03-22 2014-08-20 Bayer Ip Gmbh ELECTROACTIVE POLYMER ACTUATOR LENS SYSTEM
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
WO2014066576A1 (en) 2012-10-24 2014-05-01 Bayer Intellectual Property Gmbh Polymer diode
US10797217B2 (en) * 2015-03-31 2020-10-06 Koninklijke Philips N.V. Actuator or sensor device based on an electroactive polymer
EP3282494B1 (en) 2016-08-11 2020-07-22 Postech Academy-Industry Foundation Electroactive actuator, mechanical device including the same, and polymer electrolyte
WO2019165234A1 (en) * 2018-02-23 2019-08-29 Ohio State Innovation Foundation Passivated conductive films, and electroactuators containing same
CN113381228A (zh) 2020-02-24 2021-09-10 菲尼克斯亚太电气(南京)有限公司 模块化插芯的固定支架、连接器及连接器的安装方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979129A (ja) * 1995-09-11 1997-03-25 Terumo Corp アクチュエータ素子
JP2000083389A (ja) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd アクチュエータ
JP2000133854A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd アクチュエータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910854A (en) * 1993-02-26 1999-06-08 Donnelly Corporation Electrochromic polymeric solid films, manufacturing electrochromic devices using such solid films, and processes for making such solid films and devices
US5668663A (en) * 1994-05-05 1997-09-16 Donnelly Corporation Electrochromic mirrors and devices
US5977685A (en) * 1996-02-15 1999-11-02 Nitta Corporation Polyurethane elastomer actuator
JPH11169393A (ja) 1997-12-15 1999-06-29 Keiichi Kanefuji 人工筋肉体
US6835173B2 (en) * 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979129A (ja) * 1995-09-11 1997-03-25 Terumo Corp アクチュエータ素子
JP2000083389A (ja) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd アクチュエータ
JP2000133854A (ja) * 1998-10-27 2000-05-12 Matsushita Electric Works Ltd アクチュエータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529760A (ja) * 2008-08-05 2011-12-15 ウニベルシダ ミゲル エルナンデス 人の腕の動きを制御するロボットアーム
US8143764B2 (en) 2009-09-24 2012-03-27 Panasonic Corporation Flat stacked-type conductive polymer actuator

Also Published As

Publication number Publication date
CN1771657A (zh) 2006-05-10
US20060219983A1 (en) 2006-10-05
CN100557940C (zh) 2009-11-04
JPWO2005114827A1 (ja) 2009-01-22
JP3817259B2 (ja) 2006-09-06
US7259495B2 (en) 2007-08-21

Similar Documents

Publication Publication Date Title
WO2005114827A1 (ja) 導電性高分子アクチュエータ
CN107431121B (zh) 基于电活性聚合物的致动器或传感器设备
Baughman Conducting polymer artificial muscles
Bar-Cohen et al. Electroactive polymer (EAP) actuators—background review
RU2714307C2 (ru) Устройство актюации
Mirfakhrai et al. Polymer artificial muscles
Madden Mobile robots: motor challenges and materials solutions
JP3939337B2 (ja) 高分子アクチュエータ
US9130154B2 (en) Three-electrode linear and bending polymeric actuator
CN107924989B (zh) 基于电活性聚合物或光活性聚合物的致动器设备
CN102204079A (zh) 聚合物致动器
JP2000133854A (ja) アクチュエータ
Vallem et al. A soft variable‐area electrical‐double‐layer energy harvester
US7327067B2 (en) Actuator modules
Han et al. High-performance dual-mode triboelectric nanogenerator based on hierarchical auxetic structure
JP2005051949A (ja) アクチュエータ及びそれを用いた関節駆動機構
Maziz et al. Soft linear electroactive polymer actuators based on polypyrrole
Choi et al. Microrobot actuated by soft actuators based on dielectric elastomer
JP2007159222A (ja) 高分子アクチュエータ及び高分子アクチュエータにより駆動されるロボットアーム及びロボットアームを有するロボット
CN109951101B (zh) 压电驱动的超精密四自由度定位调姿机构及其激励方法
Wang et al. Polymerization-driven self-wrinkling on a frozen hydrogel surface toward ultra-stretchable polypyrrole-based supercapacitors
JP4250536B2 (ja) 導電性高分子アクチュエータ
JP2010161894A (ja) 平板積層型導電性高分子アクチュエータ、ロボットアーム、ロボットハンド、及び、平板積層型導電性高分子アクチュエータの製造方法
Shahinpoor Ion-exchange polymer-metal composites as biomimetic sensors and actuators
Chiba et al. Possibilities of artificial muscles using dielectric elastomers and their applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006518518

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11271971

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20058002720

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11271971

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase