WO2005039738A1 - ハニカム構造体 - Google Patents

ハニカム構造体 Download PDF

Info

Publication number
WO2005039738A1
WO2005039738A1 PCT/JP2004/015808 JP2004015808W WO2005039738A1 WO 2005039738 A1 WO2005039738 A1 WO 2005039738A1 JP 2004015808 W JP2004015808 W JP 2004015808W WO 2005039738 A1 WO2005039738 A1 WO 2005039738A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing material
hole group
holes
inlet
cam structure
Prior art date
Application number
PCT/JP2004/015808
Other languages
English (en)
French (fr)
Inventor
Kazushige Ohno
Yukio Oshimi
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34510071&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005039738(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to DE602004011378.6T priority Critical patent/DE602004011378T3/de
Priority to EP04792936.9A priority patent/EP1676622B2/en
Priority to US10/521,592 priority patent/US7517502B2/en
Priority to PL04792936T priority patent/PL1676622T3/pl
Publication of WO2005039738A1 publication Critical patent/WO2005039738A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/244Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2476Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2478Structures comprising honeycomb segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J35/56
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2459Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the plugs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Definitions

  • the present invention relates to a filter for removing particulates and the like in exhaust gas discharged from an internal combustion engine such as a diesel engine, and a honeycomb structure used as a catalyst carrier.
  • Two types of through-holes are provided, and the end of the large-volume through-hole group on the exhaust gas outlet side is sealed with a sealing material, and the end of the small-volume through-hole group on the exhaust gas inlet side Is sealed with a sealing material, and the surface area of the through hole (hereinafter also referred to as the inlet side through hole) whose inlet side is opened is compared with the surface area of the through hole (hereinafter also referred to as the outlet side through hole) whose outlet side is open.
  • a filter that suppresses an increase in pressure loss during particulate collection by increasing the relative size is known (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).
  • a filter in which the shape of the inlet side through hole and the outlet side through hole is an octagon and a square, respectively, is also known (see, for example, Patent Document 4 and Patent Document 5).
  • a filter or the like in which the surface area of the inlet side through hole group is relatively larger than the surface area of the outlet side through hole group by increasing the number of inlet side through holes than the number of outlet side through holes. are also known (for example, see FIG. 3 of Patent Document 6 and Patent Document 7).
  • the total surface area of the inlet side through hole group and the total surface area of the outlet side through hole group Compared with the two-cam structure, the total surface area of the inlet-side through hole group is set to be relatively large, so that the thickness of the deposited layer of collected particulates is reduced.
  • the engine control is performed to increase the temperature of the exhaust gas, or the temperature of the heater installed upstream of the honeycomb structure is increased.
  • a regeneration process is performed in which the particulate is brought into contact with a high-temperature gas and burned, but by reducing the thickness of the deposited layer of the particulate, the burning rate of the particulate can be increased. it can.
  • the hard cam has a large aperture ratio.
  • the density of the through-holes occupying the large cam structure is increased, resulting in a low density and low heat capacity. Therefore, the responsiveness when the temperature is raised is also improved.
  • Patent Document 8 describes that 2-5 mm is preferable! /.
  • Patent Document 1 Japanese Patent Laid-Open No. 56-124417
  • Patent Document 2 Japanese Patent Laid-Open No. 62-96717
  • Patent Document 3 US Patent No. 4364761
  • Patent Document 4 International Publication No. 02Z10562A1 Pamphlet
  • Patent Document 5 French Patent Invention No. 2789327 Specification
  • Patent Document 6 Japanese Patent Laid-Open No. 58-196820
  • Patent Document 7 U.S. Pat.No. 4,417,908
  • Patent Document 8 US Patent Application Publication No. 2003Z0041730A1
  • the inventors of the present invention have intensively studied in view of the above problems, and as a result, cracks are generated in the outlet side sealing portion during the regeneration process.
  • the heat capacity of the her cam structure is reduced, and the temperature of the outlet-side sealing part rises rapidly during the regeneration process, resulting in a locally high temperature. I found out.
  • the inventor of the present invention prevents the outlet-side sealing portion from locally becoming hot during the regeneration process by increasing the heat capacity of the outlet-side sealing portion to some extent. It has been found that cracks can be prevented from occurring in the sealing portion, and the present invention has been completed.
  • the first hard-cam structure of the present invention is a columnar her-cam structure mainly composed of a porous ceramic force in which a plurality of through holes are arranged in parallel in the longitudinal direction with a partition wall therebetween.
  • the plurality of through-holes include an inlet-side through-hole group in which an end portion on the outlet side is sealed with a sealing material so that a total area of cross sections perpendicular to the longitudinal direction is relatively large,
  • the end portion on the inlet side is composed of a group of outlet-side through holes sealed with the sealing material so that the total area of the cross section is relatively small, and the opening ratio on the inlet side is X (% )
  • the her cam structure of the first aspect of the present invention further seals the inlet side through hole group per 11.8 cm 2 of the outlet side end face configured to include the outlet side through hole group.
  • the first structure of the present invention further satisfies the relationship of the following formula (4).
  • the first structure of the present invention further satisfies the relationship of the following formula (5).
  • the porous ceramic is preferably porous silicon carbide.
  • the her cam structure of the second aspect of the present invention is a sealing material on the outer peripheral surface of a her cam block in which a plurality of the her cam structures of the first aspect of the present invention are combined via a sealing material layer. A layer is formed.
  • first hard-cam structure of the present invention may be used as a filter when only one is used as a constituent member of the second hard-cam structure of the present invention! / ,.
  • a herm cam structure having a structure formed as a whole such as the her cam structure of the first aspect of the present invention
  • an integrated her cam structure A honeycomb structure having a structure in which a plurality of ceramic members are combined through a sealing material layer, such as the inventive Hercam structure, is also referred to as an aggregate-type honeycomb structure.
  • an integral type hard cam structure and an aggregate type hard cam structure it is called a her cam structure.
  • the inlet-side opening ratio X and the outlet-side end face per 11.8 cm 2 are configured to include the outlet-side through hole group.
  • the sum of the heat capacities at 500 ° C of the sealing material that seals the hole group satisfies the relationship of the above formulas (1) and (2).
  • the side sealing part can be prevented from becoming locally hot, and the thermal stress at the outlet side sealing part can be relieved to suppress the generation of cracks. Can do.
  • the opening ratio X on the inlet side and the outlet side end surface composed of the outlet side through hole group 11.8 cm 2 of the sealing material sealing the inlet side through hole group per 16.8 cm 2 The relationship between the sum Y of the heat capacities of Y and the sum of heat capacities Z at 25 ° C of the sealant sealing the inlet or through-hole group is expressed by the above formula (3)-( Since 5) is satisfied, the generation of thermal stress at the outlet side sealing portion can be more effectively mitigated, and the generation of cracks can be suppressed.
  • porous silicon carbide when porous silicon carbide is used as the porous ceramic, it is excellent in thermal conductivity, heat resistance, mechanical properties, chemical resistance, and the like. It will be.
  • the second hard-cam structure of the present invention a plurality of the hard-cam structures of the first present invention are combined through the seal material layer, so that the seal material layer It is possible to improve the heat resistance by reducing the thermal stress and to adjust the size freely by increasing or decreasing the number of the hard cam structures of the first present invention.
  • the same effect as the first hard-cam structure of the present invention described above can be obtained.
  • a honeycomb structure according to a first aspect of the present invention is a columnar hard cam structure mainly composed of a porous ceramic force in which a plurality of through holes are arranged in parallel in a longitudinal direction with a partition wall therebetween.
  • the through-hole includes an inlet-side through-hole group in which the end on the outlet side is sealed with a sealing material so that the sum of the areas of the cross-sections perpendicular to the longitudinal direction is relatively large, and the area of the cross-section.
  • the end portion on the inlet side is made up of the outlet side through-hole group sealed with the sealing material so that the total sum of these is relatively small, and the opening ratio on the inlet side is X (%),
  • the opening ratio X on the inlet side refers to the inlet at the end surface on the inlet side of the her cam structure. This is the ratio of the total area of the side through hole group.
  • the total area of the end face on the inlet side of the her cam structure is the sum of the areas of the parts composed of the through holes and the partition walls, and the total area of the end face on the inlet side does not include the part occupied by the sealing material layer. Suppose there is nothing.
  • Fig. 1 (a) is a perspective view schematically showing an example of an integrated her-cam structure of the present invention.
  • (b) is a cross-sectional view taken along line AA of the integrated her-cam structure of the present invention shown in (a).
  • the integral type hard cam structure 20 has a substantially quadrangular prism shape, and a large number of through holes 21 are arranged in parallel with a partition wall 23 in the longitudinal direction.
  • the through-hole 21 includes an inlet-side through-hole group 21a that is sealed by a sealing material 22 at an end portion on the outlet side of the integrated hermetic structure 20, and an inlet-side through hole group 21a. It consists of two types of through-holes, the outlet through-hole group 21b sealed by the sealing material 22 at the end, and the inlet-side through-hole group 21a has a total cross-sectional area perpendicular to the longitudinal direction.
  • the partition wall 23 is relatively large with respect to the hole group 21b, and the partition wall 23 that separates the through holes 21 functions as a filter. That is, the exhaust gas flowing into the inlet side through hole group 21a always passes through the partition wall 23 and then flows out from the outlet side through hole group 21b.
  • the integrated her cam structure of the present invention has an opening ratio of X (%) on the inlet side, and includes the outlet side through hole group described above per 11.8 cm 2 of the outlet side end face.
  • the inlet-side through-hole group per 11.8 cm 2 of the outlet-side end face configured to include the outlet-side through-hole group is sealed at 500 ° C of the sealing material.
  • the sum Y of heat capacities is an integrated her cam structure comprising a partition wall 23, a plurality of sealing materials 22 sealing the inlet side through hole group 21a, and an outlet side through hole group 21b. This is the sum of heat capacities when the heat capacity of one or more sealing materials 22 including the end portion per area of 11.8 cm 2 is measured at 500 ° C. .
  • the integrated her-cam structure of the present invention includes the outlet-side through hole group. On the exit side End face 11. Total heat capacity at 500 ° C of the sealing material 22 that seals the inlet side through hole group 21a per 8cm 2 Y force Relationship between the above formula (1) and the opening ratio X on the inlet side Meet.
  • End face on the outlet side configured to include the outlet side through-hole group 11.
  • the lower limit of total Y is 0.0157X-0.0678, and the upper limit is 1.15X-5.
  • 0.0157X— 0.0678 ⁇ Y the total heat capacity Y of the sealing material 22 sealing the inlet-side through hole group 21a is too small in relation to the opening ratio X on the inlet side.
  • the outlet side sealing part rapidly rises due to the heat generated by the combustion of the particulates accumulated in the deep part of the inlet side through hole 21a, and cracks are generated due to thermal stress.
  • the total heat capacity of the sealing material 22 that seals the inlet-side through hole group 21a is too large in relation to the opening ratio X on the inlet side.
  • the partition wall 23 in contact with the sealing material 22 that seals the inlet-side through-hole group 21a rapidly rises due to the heat generated by the combustion of the particulate accumulated in the deep part of the inlet-side through-hole 21a, while the inlet-side through-hole Cracks are generated near the interface between the sealing material 22 and the partition wall 23 where the temperature rise of the sealing material 22 that seals the group 21a is small.
  • Outlet-side end face configured to include the outlet-side through hole group 11.
  • the desirable lower limit of sum Y is 0.05X-0.55, and the desirable upper limit is 0.574X-2. That is, it is desirable that the integral type hard cam structure of the present invention further satisfies the relationship of the following formula (4). 0. 05X-0. 55 ⁇ Y ⁇ 0. 574 ⁇ -2--(4)
  • the lower limit of the opening ratio X on the inlet side is 35%, and the upper limit is 60%. If the opening ratio X on the inlet side is less than 35% or the opening ratio X on the inlet side exceeds 60%, there is no tendency for particulates to be easily collected in the deep part of the inlet-side through hole 21a. Therefore, it is not necessary to particularly adjust the relationship between the opening ratio X on the inlet side and the sum Y of the heat capacities of the sealing materials 22 sealing the inlet side through-hole 2 la group. Desirably, the lower limit of the opening ratio X on the inlet side is 40%, and the upper limit is 55%.
  • the integrated her-cam structure of the present invention has an opening ratio X on the inlet side and an inlet side through hole group per 11.8 cm 2 of an outlet side end surface including the outlet side through hole group.
  • the total heat capacity Y at 500 ° C of the sealing material is satisfied, so that the relationship of the above formulas (1) and (2) is satisfied.
  • the generation of thermal stress can be alleviated and the generation of cracks can be suppressed.
  • the aperture ratio X on the inlet side seals the inlet-side through-hole group of the end face 11. per 8 cm 2 of configured outlet comprising said exit side through-hole group by!
  • the total heat capacity Y of the sealing material 22 sealing the inlet side through-hole group 21a and the total heat capacity of the sealing material sealing the inlet-side through hole group at 500 ° C C For example, the material of the sealing material 22 and the thickness of the sealing material 22 (filling amount into the inlet side through-hole group 21a) are appropriately set so as to satisfy the relationship of the above formulas (1) and (5). Choose it!
  • the integrated Hercam structure 20 mainly has a porous ceramic force, and examples of the material include nitride ceramics such as aluminum nitride, silicon nitride, boron nitride, and titanium nitride, silicon carbide, and carbonized carbide. Examples thereof include carbide ceramics such as zirconium, titanium carbide, tantalum carbide, and tungsten carbide, and oxide ceramics such as alumina, zirconium, cordierite, mullite, and silica.
  • the integral type hard cam structure 20 may be formed of a composite of silicon and silicon carbide, aluminum titanate, and two or more kinds of material forces.
  • the particle size of the ceramic used in the manufacture of the integrated her cam structure 20 is not particularly limited, but it is desirable that the ceramics have less shrinkage in the subsequent firing step, for example, 0.3-50.
  • the sealing material 22 and the partition wall 23 constituting the integrated her cam structure 20 are made of the same porous ceramic.
  • the adhesive strength between the two can be increased, and the thermal expansion coefficient of the partition wall 23 and the thermal expansion coefficient of the sealing material 22 can be adjusted by adjusting the porosity of the sealing material 22 in the same manner as the partition wall 23.
  • the gap between the sealing material 22 and the partition wall 23 due to thermal stress during manufacturing or use, or the partition wall of the part that contacts the sealing material 22 or the sealing material 22 23 can be prevented from cracking.
  • the sealing material 22 may contain a metal or the like in addition to the ceramic described above in order to adjust its heat capacity.
  • the metal is not particularly limited, and examples thereof include iron, aluminum, metal silicon (Si) and the like. These may be used alone or in combination of two or more.
  • the thickness of the sealing material 22 is not particularly limited.
  • the specific heat capacity of silicon carbide at 25 ° C is 690 jZK'kg, Since the specific heat capacity at 500 ° C is 1120 JZK 'kg, in order to satisfy the relationship of the above formulas (1) and (2), it is desirable that the above formulas (3) and (4 ) 3 ⁇ 2 Omm is more desirable to satisfy the relationship
  • the thickness of the partition wall 23 is not particularly limited, but a desirable lower limit is 0.1 mm, and a desirable upper limit is 1.2 mm. If it is less than 1 mm, the strength of the integrated her-cam structure 20 may not be sufficient. 1. If the thickness exceeds 2 mm, the temperature of the partition wall 23 in contact with the sealing material 22 that seals the inlet-side through hole group 21a becomes difficult to rise, so thermal stress is applied near the interface between the sealing material 22 and the partition wall 23. Cracks may occur.
  • the porosity of the integral type hard cam structure 20 is not particularly limited, but a desirable lower limit is 20% and a desirable upper limit is 80%. If it is less than 20%, the integrated hermetic structure 20 may be clogged immediately. On the other hand, if it exceeds 80%, the strength of the integrated honeycomb structure 20 is reduced and easily broken. May be.
  • the porosity can be measured by a conventionally known method such as a mercury intrusion method, an Archimedes method, or a measurement using a scanning electron microscope (SEM).
  • the desirable lower limit of the average pore diameter of the integrated her-cam structure 20 is 1 ⁇ m, and the desirable upper limit is 100 m. : If it is less than L m, the particulates can easily become clogged. On the other hand, if it exceeds 100 m, the particulates pass through the pores, and the particulates cannot be collected and may not function as a filter.
  • the integrated her-cam structure 20 shown in FIG. 1 has a substantially quadrangular prism shape
  • the shape of the integrated her-cam structure of the present invention is not particularly limited as long as it is a columnar body.
  • a columnar body whose cross-sectional shape perpendicular to the longitudinal direction is polygonal, circular, elliptical, fan-shaped, etc. can be mentioned.
  • the end portion on the outlet side is made of a sealing material so that the sum of the areas of the cross sections perpendicular to the longitudinal direction is relatively large.
  • the through-holes constituting the inlet-side through-hole group and the through-holes constituting the Z- or outlet-side through-hole group are each one kind of through-hole having the same shape and the cross-sectional area perpendicular to the longitudinal direction. It may be composed of two or more types of through holes with different shapes and cross-sectional areas perpendicular to the longitudinal direction.
  • the shape as a basic unit is repeated.
  • the area ratio of the cross section differs between the inlet side through hole group and the outlet side through hole group.
  • there is a part lacking in the basic unit in the part near the outer periphery and that part deviates from the above principle. Therefore, if even the outer cell is measured strictly, if it is included in the hard structure of the present invention, it is calculated by excluding that cell or by repeating the basic unit. Then, calculate by dividing 1 part. Specifically, for example, as shown in FIG.
  • the shape of the cross-section perpendicular to the longitudinal direction of the through-hole is the same in all portions other than the vicinity of the outer periphery, and the cross-sectional shape is the same.
  • the two-cam structure having a configuration in which either one end of the hole is sealed and the sealing portion and the open portion of each end face are arranged in a checkered pattern as a whole. It is not included in the her cam structure of the present invention.
  • the exhaust gas purifying filter when regenerating the exhaust gas purifying filter that has collected particulates and the pressure loss has increased, the combustion power of the particulates during combustion In addition to carbon that disappears, it contains metals that burn and become oxides, and these remain as ash in the exhaust gas filter. Ashes usually remain near the outlet of the exhaust gas purification filter, the through holes that make up the exhaust gas purification filter are filled with ash near the outlet, and the ash The volume of the portion filled with the gas gradually increases, and the volume (area) of the portion functioning as the exhaust gas purifying filter gradually decreases. If the accumulated amount of ash becomes too large, it will no longer function as a filter, and the exhaust pipe power is removed and backwashed to remove the ash from the exhaust gas purification filter, or the exhaust gas purification filter is discarded. Will be.
  • the integrated her-cam structure of the present invention has a filter for exhaust gas purification even if ash accumulates, compared with the case where the volume of the inlet side through hole group and the volume of the outlet side through hole group are the same.
  • the volume (area) of the portion that functions as the pressure loss due to ash with a small reduction ratio is also reduced. Therefore, the period until the reverse cleaning or the like is required becomes longer, and the life of the exhaust gas purifying filter can be extended. As a result, maintenance costs required for backwashing and replacement can be greatly reduced.
  • the through-holes constituting adjacent inlet-side through-hole groups and Particulates accumulate evenly in the partition walls shared by the through-holes constituting the adjacent inlet-side through-hole groups, not only by the partition walls shared by the through-holes constituting the outlet-side through-hole group. This is because immediately after the start of particulate collection, the gas flows through the through-hole force constituting the inlet-side through-hole group and also toward the through-hole constituting the outlet-side through-hole group.
  • the through holes that make up the group and the through holes that make up the outlet side through hole group are deposited on the partition walls, but the force of collecting the particulates and forming a cake layer ⁇ , inlet Gas that does not flow easily through the partition walls shared by the through-holes constituting the side through-hole group and the through-holes constituting the outlet-side through-hole group, and is gradually shared by the through-holes constituting the inlet-side through-hole group In addition, the generation of gas flow also contributed. Therefore, after collecting the particulates for a certain period, the particulates are uniformly deposited on the partition walls of the through holes constituting the inlet side through hole group.
  • the integrated her cam structure of the present invention performs filtration. Therefore, when the same amount of particulates is accumulated, the thickness of the particulates accumulated in the partition walls can be reduced. For this reason, in the integrated her cam structure of the present invention, the rate of increase in pressure loss that increases as time elapses from the start of use decreases, and the pressure loss when considering the entire use period as a filter is reduced. Loss can be reduced.
  • the desirable lower limit of the aperture ratio (the entrance-side aperture ratio XZ-exit-side aperture ratio) is 1.5, and the desirable upper limit is 8.0. 1. If it is less than 5, the accumulation amount of the ash becomes large immediately, the pressure loss becomes high, and in order to make the pressure loss low, the partition wall must be thinned. The cam structure 20 may not have sufficient strength. On the other hand, if it exceeds 8.0, the opening ratio on the outlet side is too small, so that the pressure loss due to friction when passing through the outlet side through hole group 21b can be increased more than necessary.
  • the number of through-holes constituting the inlet-side through-hole group 21a and the number of through-holes constituting the outlet-side through-hole group 21b are not particularly limited. The same number is desirable. With such a configuration, it is difficult to participate in exhaust gas filtration. Walls can be minimized and pressure loss due to friction when passing through the through hole inlet side and friction when passing through the Z or through hole outlet side can be prevented from rising more than necessary. Is possible.
  • the number of through-holes as shown in FIG. 2 is substantially equal to the number of through-hole groups 101 in the inlet-side through-hole group 101 and the outlet-side through-hole group 102. When the number is substantially the same, the pressure loss due to friction when passing through the through-hole outlet side is low, so the pressure loss of the entire honeycomb structure is low.
  • FIG. 3 (a) one (d) and FIG. 4 (a) one (f) are cross-sectional views schematically showing a cross section perpendicular to the longitudinal direction in the integrated heart structure of the present invention.
  • FIG. 3 (e) is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction in a conventional integrated honeycomb structure.
  • the integrated her-cam structure 110 shown in FIG. 3 (a) has an aperture ratio of approximately 1.55, and the integrated her-cam structure 120 shown in FIG. 2.54, Fig. 3 (c) shows an integrated hammer structure 130, which is approximately 4.45, and Fig. 3 (d) shows an integrated harcom structure 140, which is approximately 9.86. It is. Figures 4 (a), (c), and (e) all have an aperture ratio of approximately 4.45, and Figures 4 (b), (d), and (f) all have approximately 6.00. It is.
  • FIGS. 3 (a) to 3 (d) are all large-volume through-holes 11 la, 121a, 1 31a, and 141a constituting the inlet-side through-hole group, and the above-described cross-sectional shape is an octagonal shape, and the outlet-side through-holes
  • the above-mentioned cross-sectional shapes of the small-volume through-holes ll lb, 121b, 131b, and 141b that form the group are quadrangular (square), each of which is arranged alternately, changing the cross-sectional area of the small-volume through-holes
  • the aperture ratio can be easily changed arbitrarily by slightly changing the cross-sectional shape of the large-volume through hole.
  • the aperture ratio of the integrated her-cam structure shown in FIG. 4 can be arbitrarily changed.
  • the integrated her-cam structure 150 shown in FIG. 3 (e) has an inlet-side through hole 152a and an outlet.
  • the cross-sectional shapes of the side through-holes 152b are both quadrangular and are arranged alternately.
  • the cross-sectional shapes of the large-volume through-holes 161a and 261a constituting the inlet-side through-hole group are pentagons. There are three corners, and the small-diameter through-holes 161b and 261b constituting the outlet-side through-hole group are quadrangular in cross section, and each occupies a diagonally opposite portion of a large square. It is configured as follows. 4 (c) One (d) of the integrated her-cam structure 170, 270 is a modified version of the cross section shown in FIG.
  • the bulkhead through holes 171a and 271a that make up the group and the small volume through holes 17 lb and 271b that make up the outlet side through hole group have a shape that expands with a curvature on the small volume through hole side.
  • the This curvature may be arbitrary, for example, the curve constituting the partition may correspond to 1Z4 circle. In this case, the aperture ratio is 3.66. Therefore, in the integrated hermetic structures 170, 270 shown in FIGS. 4 (c)-(d), the small volume through-holes 171b, 271b have a larger volume than that in which the curve constituting the partition corresponds to 1 Z4 circle. The area of the cross section is getting smaller.
  • the large-volume through-holes 181a and 281a that constitute the quadrilateral (rectangular) inlet-side through-hole group are output.
  • the small through-holes 281b and 281b constituting the mouth-side through hole group are provided adjacent to each other in the vertical direction to form a rectangular structural unit.
  • the above structural units are continuous in the vertical direction and are alternately in the horizontal direction. It ’s made up of differences.
  • FIG. 5 shows a configuration in which a large-volume through-hole 19 la constituting the inlet-side through-hole group and a small-volume through-hole 19 lb constituting the outlet-side through-hole group are provided in the integrated her cam structure 190 shown in FIG.
  • the integrated her cam structure 20 purifies CO, HC, NOx, etc. in the exhaust gas.
  • a catalyst that can be supported is good!
  • the integrated her cam structure 20 functions as a filter that collects particulates in the exhaust gas, and also contains C 0, HC, and NOx contained in the exhaust gas. It functions as a catalytic converter for purifying etc.
  • the catalyst to be supported on the integral type hard cam structure 20 is not particularly limited as long as it is a catalyst capable of purifying CO, HC, NOx, etc. in the exhaust gas.
  • a catalyst capable of purifying CO, HC, NOx, etc. in the exhaust gas For example, platinum, palladium And noble metals such as rhodium. Of these, a so-called three-way catalyst that has platinum, noradium, and rhodium power is desirable.
  • it also supports Al metal (group 1 of periodic table), alkaline earth metals (group 2 of periodic table), rare earth elements (group 3 of periodic table), transition metal elements, etc. as promoters You may let them.
  • the catalyst may be supported on the surface of the pores of the integral type hard cam structure 20, or may be supported with a certain thickness on the partition wall 23. Further, the catalyst may be uniformly supported on the surface of the partition wall 23 and the surface of Z or pores, or may be supported unevenly at a certain place. In particular, it is desirable that both of these are carried on the surface of the partition wall 23 in the through-hole 21 constituting the inlet-side through-hole group or on the surface of the pores near the surface. More desirable. This is because the catalyst can easily come into contact with the particulates, so that the particulates can be burned efficiently.
  • the catalyst when the catalyst is applied to the integral type hard cam structure 20, it is desirable to apply the catalyst after the surface is previously coated with a support material such as alumina. As a result, the specific surface area can be increased, the degree of dispersion of the catalyst can be increased, and the number of reaction sites of the catalyst can be increased. In addition, since the support metal can prevent sintering of the catalyst metal, the heat resistance of the catalyst is also improved. It makes it possible to reduce pressure loss.
  • the integrated Hercam structure of the present invention on which the catalyst is supported is a conventionally known DPF with catalyst.
  • Only one integrated hermetic structure of the present invention may be used as an integrated filter, but a plurality of V may be bundled through a sealing material layer and used as an aggregate filter. Is desirable.
  • the thermal stress is reduced by the sealing material layer to improve the heat resistance of the filter, and the number of integral type hard cam structures of the present invention can be increased or decreased freely. It is a force that can adjust the size of the filter.
  • the integrated filter and the aggregate filter have the same function.
  • an oxide ceramic such as cordierite is usually used as the material. This is because the filter can be manufactured at low cost and has a relatively small coefficient of thermal expansion, so that there is less risk of damage to the filter due to thermal stress during manufacture and use!
  • a surface be provided with a sealing material layer having a material strength that makes it difficult for gas to pass through compared to the integrated her cam structure of the present invention.
  • the sealing material layer By forming the sealing material layer on the outer peripheral surface, the integrated hearth structure of the present invention can be compressed by the sealing material layer, the strength is improved, and the ceramic particles accompanying the generation of cracks are improved. Shattering can be prevented.
  • the aggregated hard cam structure of the present invention has a sealing material layer on the outer peripheral surface of a her cam block in which a plurality of the integrated her cam structures of the present invention are combined via a sealing material layer. It is formed and functions as an aggregate filter.
  • FIG. 7 is a perspective view schematically showing an example of an aggregate type hard cam structure of the present invention.
  • the end of the outlet side is sealed with a sealing material so that the sum of the cross-sectional areas perpendicular to the longitudinal direction is relatively large.
  • the aggregate type hard cam structure 10 is used as a filter for exhaust gas purification, and the integrated type hard cam structure 20 is interposed via the seal material layer 14.
  • the seal material layer 14 is interposed via the seal material layer 14.
  • a plurality of hard cam blocks 15 are formed, and a seal material layer 13 for preventing leakage of exhaust gas is formed around the hard cam block 15.
  • silicon carbide having excellent thermal conductivity, heat resistance, mechanical characteristics, chemical resistance, and the like is used as a material constituting the integral type hard cam structure 20. Desirable.
  • the sealing material layer 14 is formed between the integrated ceramic structures 20 and functions as an adhesive that binds the plurality of integrated ceramic structures 20 together.
  • the sealing material layer 13 is formed on the outer peripheral surface of the honeycomb block 15, and when the aggregate type hard cam structure 10 is installed in the exhaust passage of the internal combustion engine, the sealing material layer 13 extends from the outer peripheral surface of the her cam block 15. It functions as a sealing material to prevent the exhaust gas passing through the through hole from leaking.
  • the sealing material layer 13 and the sealing material layer 14 may have the same material force or may be made of different materials. Furthermore, when the sealing material layer 13 and the sealing material layer 14 are made of the same material, the mixing ratio of the materials may be the same or different.
  • the sealing material layer 14 may also have a dense physical strength, or may have a porous physical strength so that exhaust gas can flow into the inside thereof. It is desirable that the sealing material layer 13 has a dense body strength.
  • the sealing material layer 13 is formed for the purpose of preventing the exhaust gas from leaking out of the outer peripheral surface of the her cam block 15 when the aggregate type hard cam structure 10 is installed in the exhaust passage of the internal combustion engine. Because.
  • the material constituting the sealing material layer 13 and the sealing material layer 14 is not particularly limited, for example,
  • an inorganic binder an organic binder, inorganic fibers and Z or inorganic particles.
  • Examples of the inorganic binder include silica sol and alumina sol. These may be used alone or in combination of two or more. Among the inorganic binders, silica zonole is desirable.
  • Examples of the organic binder include polybulal alcohol, methyl cellulose, ethyl cellulose, carboxymethyl cellulose, and the like. These may be used alone or in combination of two or more. Among the above organic binders, carboxylmethylcellulose is desired.
  • Examples of the inorganic fiber include ceramic fibers such as silica-alumina, mullite, alumina, and silica. These may be used alone or in combination of two or more. Among the inorganic fibers, silica alumina fibers are desirable.
  • examples of the inorganic particles include carbides, nitrides, and the like, and specific examples include inorganic powders or whiskers such as silicon carbide, silicon nitride, and boron nitride. These may be used alone or in combination of two or more. Of the inorganic particles, silicon carbide having excellent thermal conductivity is desirable.
  • the integrated her cam structure of the present invention when used as it is as a filter for an exhaust gas purifier, the same seal as that of the aggregated her cam structure of the present invention is used.
  • a material layer may be provided on the outer peripheral surface of the integrated her-cam structure of the present invention.
  • the aggregate-type hard cam structure 10 shown in FIG. 7 has a cylindrical force.
  • the shape of the aggregate-type honeycomb structure of the present invention is not particularly limited as long as it is a columnar body.
  • a columnar body whose cross-sectional shape perpendicular to the longitudinal direction is polygonal or elliptical can be mentioned.
  • the cross-sectional shape perpendicular to the longitudinal direction becomes a polygon, a circle, an ellipse, or the like.
  • the outer peripheral portion may be covered as described above, or after the above-described cross-sectional shape of the integrated her-cam structure of the present invention is preliminarily formed, the cross-section perpendicular to the longitudinal direction can be obtained by binding them with a sealing material.
  • the shape of the cross-section perpendicular to the longitudinal direction may be a fan-like shape in which the circle is divided into four parts.
  • the cylindrical aggregated hard cam structure of the present invention can be manufactured.
  • Hercam structure strength S of the present invention which is an integral filter composed entirely of a sintered strength
  • extrusion molding is performed using the above-described raw material paste mainly composed of ceramic.
  • a ceramic molded body having substantially the same shape as the integrated honeycomb structure of the present invention is manufactured.
  • a die used for extrusion molding in which the through hole is composed of two types of through holes, a large volume through hole and a small volume through hole, is selected according to the density of the through holes.
  • the raw material paste is not particularly limited, but it is desirable that the integrated her-cum structure of the present invention after manufacture has a porosity of 20 to 80%.
  • the ceramic as described above The powder which added the binder, the dispersion medium liquid, etc. to the powder which consists of can be mentioned.
  • the binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin.
  • the blending amount of the binder is desirably about 1 to 10 parts by weight per 100 parts by weight of the ceramic powder.
  • the dispersion medium liquid is not particularly limited, and examples thereof include organic solvents such as benzene, alcohols such as methanol, and water.
  • the dispersion medium liquid is blended in an appropriate amount so that the viscosity of the raw material paste is within a certain range.
  • a molding aid may be added to the raw material paste as necessary.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid sarcophagus, and polyalcohol.
  • the raw material paste may be added with a pore-forming agent such as balloons, spherical acrylic particles, and graphite, which are fine hollow spheres containing an acid oxide ceramic as necessary. Good.
  • the balloon is not particularly limited, and examples thereof include an alumina balloon, a glass micro balloon, a shirasu balloon, a fly ash balloon (FA balloon), and a mullite balloon. Among these, a fly ash balloon is desirable.
  • the ceramic molded body is dried using a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like to obtain a ceramic dried body.
  • a microwave dryer a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like.
  • the end of the inlet side through hole group and the end of the outlet side through hole group at the inlet side satisfy the above formula (1) with a sealing material paste as a sealing material A predetermined amount is filled in and the through hole is sealed.
  • the above-mentioned sealing material paste is not particularly limited, but it is desirable that the sealing material produced through a subsequent process has a porosity of 20 to 80%.
  • the same material paste as above The ceramic powder used in the above raw material paste should be added with ceramic fiber, powder with metal power as described above, lubricant, solvent, dispersant, solder, etc. Is more desirable. This is because it is possible to adjust the heat capacity of the sealing material manufactured through the post-process and to prevent the ceramic particles and the like in the sealing material paste from settling during the sealing process. .
  • the ceramic fiber is not particularly limited, and examples thereof include silica alumina, mullite, alumina, silica and the like. These may be used alone
  • Two or more kinds may be used in combination.
  • the dried ceramic body filled with the sealing material paste is degreased and fired under predetermined conditions to be made of porous ceramic, and the whole is made of a single sintered body.
  • An integrated hermetic structure according to the present invention can be manufactured.
  • the conditions for degreasing and firing the ceramic dried body the conditions conventionally used for producing a filter made of a porous ceramic can be applied.
  • an alumina film having a high specific surface area is formed on the surface of the ceramic fired body obtained by firing. It is desirable to provide a promoter and a catalyst such as platinum on the surface of the membrane.
  • the ceramic fired body is impregnated with a solution of a metal compound containing aluminum such as
  • Examples thereof include a heating method, a method in which a ceramic fired body is impregnated with a solution containing alumina powder, and a heating method.
  • Examples of a method for imparting a cocatalyst to the alumina film include rare earth such as Ce (NO)
  • Examples thereof include a method in which a ceramic fired body is impregnated with a solution of a metal compound containing an element and heated.
  • a dinitrodiammine platinum nitrate solution [Pt (NH) (NO)] HNO, platinum concentration 4.53 wt%) is used as a ceramic fired body.
  • Examples of the method include impregnation and heating.
  • the assembly of a plurality of integral-type hard cam structures 20 of the present invention that are bundled via a sealing material layer 14 as shown in FIG. Body type hard cam structure In the case of the structure 10, the sealing material paste layer 81 is formed on the side surface of the integrated hermetic structure 20 by applying a sealing material paste to be the sealing material layer 14 with a uniform thickness, On the seal material paste layer 81, the process of sequentially laminating the other integral type hard structure 20 is repeated to produce a laminate of the prismatic monolithic honeycomb structure 20 having a predetermined size. .
  • the description is abbreviate
  • the laminated body of the integrated her-cam structure 20 is heated to dry and solidify the sealing material paste layer 81 to form the sealing material layer 14, and then the outer periphery thereof using a diamond cutter or the like.
  • the hard cam block 15 is manufactured by cutting the portion into a shape as shown in FIG.
  • the sealing material layer 13 is formed on the outer periphery of the her cam block 15 to form the sealing material layer 13, so that a plurality of integrated her cam structures 20 are bound together via the sealing material layer 14.
  • the assembled aggregate filter 10 of the present invention can be manufactured.
  • the application of the honeycomb structure of the present invention is not particularly limited, but it is desirable to use it for an exhaust gas purification device of a vehicle.
  • FIG. 8 is a cross-sectional view schematically showing an example of an exhaust gas purification device for a vehicle in which the her cam structure of the present invention is installed.
  • the exhaust gas purifying device 600 mainly includes a her cam structure 60, a casing 630 that covers the outer side of the her cam structure 60, the her cam structure 60 and the casing. 630 and the heating means 610 provided on the exhaust gas inflow side of the her cam structure 60, and the side where the exhaust gas of the casing 630 is introduced
  • An inlet pipe 640 connected to an internal combustion engine such as an engine is connected to the end of the casing, and a discharge pipe 650 connected to the outside is connected to the other end of the casing 630.
  • the arrows indicate the flow of exhaust gas.
  • the her cam structure 60 may be the integrated her cam structure 20 shown in FIG. 1 or the aggregated her cam structure 10 shown in FIG. Good.
  • exhaust gas discharged from an internal combustion engine such as an engine is introduced into the casing 630 through the introduction pipe 640, and the inlet side through-hole group 21a Flows into the hard cam structure 60, passes through the partition wall 23, and puts the putty on the partition wall 23. After the particulates are collected and purified, they are discharged out of the hard cam structure 60 from the outlet side through-hole group 21b, and discharged to the outside through the discharge pipe 650.
  • the regeneration process of the hard cam structure 60 is performed.
  • the gas heated by the heating means 610 is caused to flow into the through-hole of the no-cam structure 60, whereby the her cam structure 60 is heated and the particulates deposited on the partition walls.
  • the patty chelate may be removed by combustion using a post-injection method.
  • the thickness after drying the sealing material paste having the same composition as that of the formed form was 1. Omm A predetermined through-hole was filled so that
  • the porosity is 42%
  • the average pore size 9 m is 34.3 mm X 34.3 mm X 150 mm
  • the number of through holes 21 is 28 Zcm 2 (large capacity through holes 21a: 14 Zcm 2 , small volume through holes 21b: 14 Zcm 2 )
  • the thickness of substantially all of the partition walls 23 is 0.40 mm, and an integral type hard cam structure 20 made of a silicon carbide sintered body is manufactured.
  • the large-capacity through hole 21a is formed on the end face on the outlet side. Only the small-volume through hole 21b was sealed with the sealing material at the inlet side end face.
  • the total heat capacity measured at 25 ° C of the outlet side sealing material 22 per 11.8 cm 2 of the outlet side end face composed of the outlet side through-hole group is 0.56 J / K.
  • the total heat capacity measured at 500 ° C. of the outlet side sealing material 22 per 11.8 cm 2 of the outlet side end face including the outlet side through hole group was 0.91 JZK.
  • alumina fiber having a fiber length of 0.2 mm 30% by weight of alumina fiber having a fiber length of 0.2 mm, 21% by weight of silicon carbide particles having an average particle diameter of 0.6 m, 15% by weight of silica sol, 5.6% by weight of carboxymethylcellulose, and 28.4% of water
  • a heat-resistant sealing material paste containing% by weight a number of integrated hermetic structures 20 are bundled by the method described with reference to FIG. 8, and then cut using a diamond cutter to obtain a circle.
  • a columnar ceramic block 15 was produced.
  • the thickness of the sealing material layer 14 for bundling the integrated her-cam structure 20 was adjusted to 1.0 mm.
  • an alumina silicate as an inorganic fiber ceramic fiber (shot content: 3%, fiber length: 0. 01- 100mm) 23. 3 weight 0/0, the average particle diameter of 0. 3 m as inorganic particles Silicon carbide powder 30. 2% by weight, silica sol as inorganic binder (contains SiO in sol
  • a sealing material paste layer having a thickness of 0.2 mm was formed on the outer periphery of the ceramic block 15 using the sealing material paste. Then, this sealing material paste layer was dried at 120 ° C. to produce a cylindrical aggregated hard structure 10 having a diameter of 143.8 mm and a length of 150 mm.
  • the cross-sectional shape perpendicular to the longitudinal direction of the integral type hard cam structure 20 was adjusted by changing the shape of the die when the mixed composition was extruded. Further, the thickness of the sealing material 22 was adjusted by changing the filling amount of the sealing material paste into the through holes 21. [0098] (Evaluation)
  • aggregate type c according to each of Examples and Comparative Examples - the cam structure and disposed in an exhaust passage of Enji down the exhaust gas Kiyoshii spoon device, rotational speed 3000 min _1 for the engine, Whether or not cracks occur in the aggregated hard cam structure when an operation is performed for a predetermined time at a torque of 50 Nm, followed by regeneration treatment while increasing the operating time and changing the collection amount.
  • a filter composed of an aggregate type hard cam structure according to the example and the comparative example is arranged in an exhaust passage of a direct injection 2L engine, and a cordierite acid catalyst ( ⁇ ) is placed in front of the filter.
  • cordierite acid catalyst
  • 5.66 X 3inch, cell number 400cpsi, wall thickness 8mil, Pt amount 90g / ft 3 ) are used as exhaust gas incubators, and the above engine is operated at a speed of 3000min-torque 50Nm for a predetermined time. A fixed amount of particulate was collected.
  • the engine speed was set to 4000 torque 200Nm, and when the filter temperature became constant at around 700 ° C, the engine was forced to burn 1050min—torque 30Nm, and the particulates were forcibly burned.
  • An experiment was conducted to perform this regeneration process while changing the amount of particulates collected to investigate whether or not the filter could generate cracks.
  • Example 4 10.0 to 38.6 F to 19.79 9. 42 5.
  • 80 8. 6 Example 5 20. 0 18. 86 11. 62 8. 5
  • Example 6 40. 0 37. 69 23. 22 7.
  • 8 Comparative Example 2 60. 0 56. 52 6.4 Comparative Example 3 0. 5 0. 56 0. 34 6.
  • 9 Example 7 1.0 1. 11 0. 68 8
  • 09 8- 9 Example 9 6. 0 0.64 2.24 6. 75 4. 18 9.5
  • Example 10 10 0 -46.51 to 23.71 11.30 6. 96 9.4 Example 11 20. 0 13. 92 9.2 Example 12 40. 0 45. 18 F. 9 Comparative Example 4 60. 0 67. 76 41 .4 4 6 6 Comparative Example 5 0. 5 0.69 0.42 6. 7
  • Example 22 10. 0 to 62.90 -31.89 15. 40 04 9. 51 8. 4
  • Example 23 20. 0 30. 9 ⁇ 5 ⁇ 19. 07 8. 2
  • Example 24 40. 0 61. 86 38. 11 7 8 Comparative Example 8 60. ⁇ 92. 87 57. 22 6. 9
  • the aggregate type honeycomb structure according to each example satisfying the relations of the above formulas (1) and (2) had a high regeneration limit value.
  • the aggregated hard structure according to each comparative example that does not satisfy the relationship of the above formulas (1) and (2) has a regeneration limit value as soon as a crack is generated at the outlet side sealing portion by the regeneration process. was weak.
  • FIG. 1 (a) is a perspective view schematically showing an example of an integrated her-cam structure of the present invention, and (b) is a diagram of the present invention shown in (a).
  • FIG. 3 is a cross-sectional view of the body-shaped her cam structure taken along line AA.
  • FIG. 2 A cross section perpendicular to the longitudinal direction of the honeycomb structure of the present invention configured such that the number of through holes is substantially 1: 2 between the inlet side through hole group 101 and the outlet side through hole group 102 FIG.
  • FIG. 3 (a) and (d) are cross-sectional views schematically showing a cross section perpendicular to the longitudinal direction in the integrated heart structure of the present invention, and (e) is a conventional one.
  • FIG. 2 is a cross-sectional view schematically showing a cross section perpendicular to the longitudinal direction in a body-type honeycomb structure.
  • FIG. 4 (a) and (f) are cross-sectional views schematically showing a part of a cross section perpendicular to the longitudinal direction in an integrated her-cam structure of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cross section perpendicular to the longitudinal direction in the integral honeycomb structure of the present invention.
  • FIG. 6 (a) and (d) are cross-sectional views schematically showing an example of a cross section perpendicular to the longitudinal direction in an integrated her-cam structure of the present invention.
  • FIG. 7 is a perspective view schematically showing an example of an aggregate type hard cam structure of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing an example of an exhaust gas purifying device for a vehicle in which the her cam structure of the present invention is installed.
  • FIG. 9 is a cross-sectional view schematically showing an example of a conventional honeycomb structure.

Abstract

本発明は、再生処理時に入口側貫通孔群を封口する封口材又はその近傍に熱応力が集中して、クラックが発生することを防止することができるハニカム構造体を提供することを目的とするものであり、本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設された主として多孔質セラミックからなる柱状のハニカム構造体であって、上記複数の貫通孔は、長手方向に垂直な断面の面積の総和が相対的に大きくなるように、出口側の端部が封口材により封止されてなる入口側貫通孔群と、上記断面の面積の総和が相対的に小さくなるように、入口側の端部が上記封口材により封止されてなる出口側貫通孔群とからなり、入口側の開口率をX(%)とし、上記出口側貫通孔群を含んで構成される出口側の端面11.8cm2あたりの上記入口側貫通孔群を封止している上記封口材の500°Cでの熱容量の総和をY(J/K)としたときに、下記式(1)及び(2)の関係を満たすことを特徴とする。 0.0157X−0.0678<Y<1.15X−5 …(1) 35≦X≦60 …(2)

Description

明 細 書
ノヽニカム構造体
技術分野
[0001] 本出願は、 2003年 10月 23曰に出願された曰本国特許出願 2003— 363783号を基 礎出願として優先権主張する出願である。
本発明は、ディーゼルエンジン等の内燃機関カゝら排出される排気ガス中のパティキュ レート等を除去するフィルタや、触媒担体等として用いられるハニカム構造体に関す る。
背景技術
[0002] バス、トラック等の車両や建設機械等の内燃機関力も排出される排気ガス中に含有さ れるスス等のパティキュレートが環境や人体に害を及ぼすことが最近問題となってい る。
そこで、排気ガス中のパティキュレートを捕集して、排気ガスを浄ィ匕することができる フィルタとして多孔質セラミック力もなるハ-カム構造体が種々提案されて!、る。
[0003] 従来、この種のハ-カム構造体として、相対的に容積の大きな貫通孔(以下、大容積 貫通孔ともいう)群と、相対的に容積の小さな貫通孔 (以下、小容積貫通孔ともいう) 群の 2種類の貫通孔を設け、大容積貫通孔群の排気ガス出口側の端部を封止材に より封口するとともに、小容積貫通孔群の排気ガス入口側の端部を封止材により封口 し、入口側が開放された貫通孔 (以下、入口側貫通孔ともいう)の表面積を出口側が 開放された貫通孔 (以下、出口側貫通孔ともいう)の表面積に比べて相対的に大きく することにより、パティキュレート捕集時の圧力損失の上昇を抑制したフィルタが知ら れている(例えば、特許文献 1、特許文献 2、特許文献 3参照)。このようなフィルタとし ては、入口側貫通孔及び出口側貫通孔の形状をそれぞれ八角形と四角形とにした フィルタも知られている(例えば、特許文献 4、特許文献 5参照)。
[0004] また、入口側貫通孔の数を出口側貫通孔の数よりも多くすることにより、入口側貫通 孔群の表面積を出口側貫通孔群の表面積に比べて相対的に大きくしたフィルタ等も 知られている(例えば、特許文献 6、特許文献 7の図 3参照)。 [0005] 即ち、特許文献 1一 7に開示された排気ガス浄ィ匕用フィルタとして用いられるハ-カム 構造体では、入口側貫通孔群の表面積の総量と出口側貫通孔群の表面積の総量と が等し 、ノ、二カム構造体と比較して、入口側貫通孔群の表面積の総量が相対的に 大きく設定されているため、捕集したパティキュレートの堆積層の厚さを薄くすること ができ、その結果、上述したように、パティキュレート捕集時の圧力損失の上昇を抑 制したり、パティキュレートの捕集限界量を多くすることができる。
[0006] さらに、一定量のパティキュレートを捕集した後には、エンジンコントローノレを行って 排気ガスの温度を上昇させたり、ハニカム構造体よりも排気ガスの上流側に設置した ヒータの温度を上昇させたりすることによって、パティキュレートを高温のガスと接触さ せて燃焼させる再生処理が行われるが、パティキュレートの堆積層の厚さを薄くする ことにより、パティキュレートの燃焼速度を早くすることができる。
[0007] 上述したような入口側貫通孔群の表面積を出口側貫通孔群の表面積に比べて相対 的に大きくしたノ、二カム構造体のなかでも、開口率が大きくなつているハ-カム構造 体の場合、ハ-カム構造体に占める貫通孔の容積の割合が大きくなつたことに起因 して、低密度、低熱容量となるので、速やかな昇温が可能となり、排気ガスの熱等に より昇温される際の応答性も向上することとなる。
[0008] しかしながら、入口側の開口率が大きいフィルタでは、再生処理時に入口側貫通孔 群を封口する封止材又はその近傍 (以下、出口側封止部ともいう)でクラックが生じや すいという問題があった。
なお、従来、ハ-カム構造体における封止材の厚さに関しては、例えば、特許文献 8 では、 2— 5mmとすることが好まし!/、との記載がある。
[0009] 特許文献 1:特開昭 56— 124417号公報
特許文献 2:特開昭 62-96717号公報
特許文献 3:米国特許第 4364761号明細書
特許文献 4:国際公開第 02Z10562A1号パンフレット
特許文献 5 :仏国特許発明第 2789327号明細書
特許文献 6:特開昭 58— 196820号公報
特許文献 7:米国特許第 4417908号明細書 特許文献 8:米国特許出願公開第 2003Z0041730A1号明細書
発明の開示
発明が解決しょうとする課題
[0010] 本発明の発明者は、上記課題に鑑み、鋭意検討した結果、再生処理時に出口側封 止部にクラックが発生するのは、入口側の開口率 Xを大きくすると、パティキュレート が入口側貫通孔の深部(出口側)で捕集されやすくなるとともに、ハ-カム構造体の 熱容量が小さくなり、再生処理時に特に出口側封止部が急激に温度上昇して局所 的に高温となるためであることを突き止めた。
そして、本発明の発明者は、上記結果に基づき、出口側封止部の熱容量をある程度 大きくすれば、再生処理時に出口側封止部が局所的に高温となることを防止し、出 口側封止部にクラックが発生するのを防止することができることを見出し、本発明を完 成させるに至った。
[0011] なお、上述した特許文献 8等では、入口側の開口率 Xと、入口側貫通孔群を封止し て 、る封止材の熱容量の総和 Yとの関係につ 、て、記載も示唆もされて 、な 、。 課題を解決するための手段
[0012] すなわち、第一の本発明のハ-カム構造体は、複数の貫通孔が隔壁を隔てて長手 方向に並設された主として多孔質セラミック力 なる柱状のハ-カム構造体であって 、上記複数の貫通孔は、長手方向に垂直な断面の面積の総和が相対的に大きくな るように、出口側の端部が封止材により封止されてなる入口側貫通孔群と、上記断面 の面積の総和が相対的に小さくなるように、入口側の端部が上記封止材により封止さ れてなる出口側貫通孔群とからなり、入口側の開口率を X(%)とし、上記出口側貫通 孔群を含んで構成される出口側の端面 11. 8cm2あたりの上記入口側貫通孔群を封 止している上記封止材の 500°Cでの熱容量の総和を Y(JZK)としたときに、下記式( 1)及び (2)の関係を満たすことを特徴とする。
0. 0157X-0. 0678<Y< 1. 15X-5
35≤Χ≤60 --- (2)
[0013] 第一の本発明のハ-カム構造体は、さらに、上記出口側貫通孔群を含んで構成され る出口側の端面 11. 8cm2あたりの入口側貫通孔群を封止している封止材の 25°Cで の熱容量の総和を Z CiZK)としたときに、下記式(3)の関係を満たすことが望ましい 0. 013X-0. 09<Z< 0. 7X-2. 5 - -- (3)
第一の本発明のハ-カム構造体は、さらに、下記式 (4)の関係を満たすことが望まし い。
0. 05X-0. 55<Y< 0. 574Χ-2 - -- (4)
第一の本発明のハ-カム構造体は、さらに、下記式(5)の関係を満たすことが望まし い。
0. 05Χ-0. 55<Z< 0. 354X-1 - -- (5)
第一の本発明のハ-カム構造体では、多孔質セラミックは、多孔質炭化珪素であるこ とが望ましい。
[0014] 第二の本発明のハ-カム構造体は、第一の本発明のハ-カム構造体がシール材層 を介して複数個組み合わされてなるハ-カムブロックの外周面にシール材層が形成 されてなることを特徴とする。
なお、第一の本発明のハ-カム構造体は、第二の本発明のハ-カム構造体の構成 部材として用いられる場合のほ力、 1個のみでフィルタとして用いられてもよ!/、。
以下においては、第一の本発明のハ-カム構造体のような、全体が一体として形成 された構造を有するハ-カム構造体を一体型ハ-カム構造体とも! ヽ、第二の本発 明のハ-カム構造体のような、セラミック部材がシール材層を介して複数個組み合わ された構造を有するハニカム構造体を集合体型ハニカム構造体ともいう。また、一体 型ハ-カム構造体と集合体型ハ-カム構造体とを特に区別しない場合に、ハ-カム 構造体という。
発明の効果
[0015] 第一の本発明のハ-カム構造体によれば、入口側の開口率 Xと、出口側貫通孔群を 含んで構成される出口側の端面 11. 8cm2あたりの入口側貫通孔群を封止している 封止材の 500°Cでの熱容量の総和 Yとにっ 、て、上記式(1)及び(2)の関係が満た されているので、再生処理時に、出口側封止部が局所的に高温となることを防止する ことができ、出口側封止部における熱応力を緩和してクラックの発生を抑制すること ができる。さらに、入口側の開口率 Xと、出口側貫通孔群を含んで構成される出口側 の端面 11. 8cm2あたりの入口側貫通孔群を封止している封止材の 500°Cでの熱容 量の総和 Y、及び Ζ又は、入口側貫通孔群を封止している封止材の 25°Cでの熱容 量の総和 Zとの関係について、上記式(3)—(5)が満たされているので、より効果的 に、出口側封止部における熱応力の発生を緩和することができ、クラックの発生を抑 ff¾することができる。
[0016] 第一の本発明のハ-カム構造体では、多孔質セラミックとして多孔質炭化珪素が用 いられていると、熱伝導性、耐熱性、機械的特性及び耐薬品性等に優れたものとな る。
[0017] 第二の本発明のハ-カム構造体によれば、第一の本発明のハ-カム構造体がシー ル材層を介して複数個組み合わされてなるため、上記シール材層により熱応力を低 減して耐熱性を向上させること、及び、第一の本発明のハ-カム構造体の個数を増 減させることで自由にその大きさを調整すること等が可能となる。勿論、第二の本発 明のハ-カム構造体では、上述した第一の本発明のハ-カム構造体と同様の効果も 享受することができる。
発明を実施するための最良の形態
[0018] 第一の本発明のハニカム構造体は、複数の貫通孔が隔壁を隔てて長手方向に並設 された主として多孔質セラミック力 なる柱状のハ-カム構造体であって、上記複数 の貫通孔は、長手方向に垂直な断面の面積の総和が相対的に大きくなるように、出 口側の端部が封止材により封止されてなる入口側貫通孔群と、上記断面の面積の総 和が相対的に小さくなるように、入口側の端部が上記封止材により封止されてなる出 口側貫通孔群とからなり、入口側の開口率を X(%)とし、上記出口側貫通孔群を含 んで構成される出口側の端面 11. 8cm2あたりの上記入口側貫通孔群を封止してい る上記封止材の 500°Cでの熱容量の総和を YCiZK)としたときに、下記式(1)及び( 2)の関係を満たすことを特徴とする。
0. 0157X-0. 0678<Y< 1. 15X-5
35≤Χ≤60 --- (2)
[0019] ここで、上記入口側の開口率 Xとは、ハ-カム構造体の入口側の端面における入口 側貫通孔群の面積の総和の占める比率である。なお、ハ-カム構造体の入口側の 端面の総面積は、貫通孔と隔壁とから構成される部分の面積の総和であり、入口側 の端面の総面積にシール材層の占める部分は含まないこととする。
[0020] 図 1 (a)は、本発明の一体型ハ-カム構造体の一例を模式的に示した斜視図であり、
(b)は、(a)に示した本発明の一体型ハ-カム構造体の A— A線断面図である。
[0021] 図 1に示したように、一体型ハ-カム構造体 20は、略四角柱状であり、その長手方向 に多数の貫通孔 21が隔壁 23を隔てて並設されている。貫通孔 21は、一体型ハ-カ ム構造体 20の出口側の端部で封止材 22により封口されてなる入口側貫通孔群 21a と、一体型ハ-カム構造体 20の入口側の端部で封止材 22により封口されてなる出 口貫通孔群 21bとの 2種類の貫通孔からなり、入口側貫通孔群 21aは、長手方向に 垂直な断面の面積の総和が出口側貫通孔群 21bに対して相対的に大きくなつており 、これらの貫通孔 21同士を隔てる隔壁 23がフィルタとして機能するようになって 、る 。即ち、入口側貫通孔群 21aに流入した排気ガスは、必ず隔壁 23を通過した後、出 口側貫通孔群 21bから流出するようになっている。
[0022] 本発明の一体型ハ-カム構造体は、入口側の開口率を X(%)とし、上記出口側貫通 孔群を含んで構成される出口側の端面 11. 8cm2あたりの上記入口側貫通孔群を封 止している上記封止材の 500°Cでの熱容量の総和を Y(JZK)としたときに、下記式( 1)及び (2)の関係を満たす。
0. 0157X-0. 0678<Y< 1. 15X-5
35≤Χ≤60 --- (2)
[0023] ここで、上記出口側貫通孔群を含んで構成される出口側の端面 11. 8cm2あたりの 上記入口側貫通孔群を封止して 、る上記封止材の 500°Cでの熱容量の総和 Yとは 、隔壁 23、入口側貫通孔群 21aを封止している複数の封止材 22、及び、出口側貫 通孔群 21bから構成される一体型ハ-カム構造体 20の出口側の端面の面積 11. 8c m2あたりに、その端部が含まれている 1以上の封止材 22について、その熱容量を 50 0°Cで測定したときの熱容量の総和である。
[0024] 排気ガス浄ィ匕用フィルタは、再生処理時に 500°C程度の高温になることから、本発明 の一体型ハ-カム構造体では、上記出口側貫通孔群を含んで構成される出口側の 端面 11. 8cm2あたりの入口側貫通孔群 21aを封止している封止材 22の 500°Cでの 熱容量の総和 Y力 入口側の開口率 Xに対して上記式( 1)の関係を満たしている。
[0025] 上記出口側貫通孔群を含んで構成される出口側の端面 11. 8cm2あたりの入口側貫 通孔群 21aを封止している封止材 22の 500°Cでの熱容量の総和 Yの下限は、 0. 01 57X-0. 0678であり、上限は、 1. 15X— 5である。 0. 0157X— 0. 0678≥Yである と、入口側の開口率 Xとの関係で、入口側貫通孔群 21aを封口している封止材 22の 熱容量の総和 Yが小さ過ぎるため、再生処理時に、入口側貫通孔 21aの深部に堆積 したパティキュレートの燃焼に伴う発熱により、出口側封止部が急激に昇温し、熱応 力によりクラックが生じてしまう。一方、 Y≥l . 15X— 5であると、入口側の開口率 Xと の関係で、入口側貫通孔群 21aを封口する封止材 22の熱容量の総和 Υが大き過ぎ るため、再生処理時に、入口側貫通孔 21aの深部に堆積したパティキュレートの燃焼 に伴う発熱により、入口側貫通孔群 21aを封口する封止材 22と接する隔壁 23が急激 に昇温する一方、入口側貫通孔群 21aを封口する封止材 22の昇温が小さぐ封止 材 22と隔壁 23との界面付近で熱応力によりクラックが生じてしまう。
[0026] 上記出口側貫通孔群を含んで構成される出口側の端面 11. 8cm2あたりの入口側貫 通孔群 21aを封止している封止材 22の 500°Cでの熱容量の総和 Yの望ましい下限 は、 0. 05X-0. 55であり、望ましい上限は、 0. 574X— 2である。すなわち、本発明 の一体型ハ-カム構造体は、さらに、下記式 (4)の関係を満たすことが望ましい。 0. 05X-0. 55<Y< 0. 574Χ-2 - -- (4)
[0027] また、排気ガス浄ィ匕用フィルタは、再生処理時に常温(25°C程度)から 500°C程度ま で昇温されることから、本発明の一体型ハ-カム構造体では、上記出口側貫通孔群 を含んで構成される出口側の端面 11. 8cm2あたりの入口側貫通孔群 21aを封止し ている封止材 22の 25°Cでの熱容量の総和 Z iZK)力 入口側の開口率 Xに対して 、下記式 (3)の関係を満たすことが望ましぐさらに、下記式 (5)の関係を満たすこと 力 り望ましい。
0. 013X-0. 09<Z< 0. 7X-2. 5 - -- (3)
0. 05X-0. 55<Z< 0. 354X-1 - -- (5)
[0028] 上記入口側の開口率 Xの下限は 35%であり、上限は 60%である。 入口側の開口率 Xが 35%未満であったり、入口側の開口率 Xが 60%を超えたりする と、パティキュレートが入口側貫通孔 21aの深部で捕集されやすくなる傾向が見られ なくなることから、入口側の開口率 Xと、入口側貫通孔 2 la群を封止している封止材 2 2の熱容量の総和 Yとの関係を特に調整する必要がない。上記入口側の開口率 Xの 望まし 、下限は 40%であり、望まし 、上限は 55%である。
[0029] 本発明の一体型ハ-カム構造体は、入口側の開口率 Xと、上記出口側貫通孔群を 含んで構成される出口側の端面 11. 8cm2あたりの入口側貫通孔群を封止している 封止材の 500°Cでの熱容量の総和 Yとにっ 、て、上記式(1)及び(2)の関係が満さ れているため、出口側封止部における熱応力の発生を緩和することができ、クラック の発生を抑制することができる。さらに、入口側の開口率 Xと、上記出口側貫通孔群 を含んで構成される出口側の端面 11. 8cm2あたりの入口側貫通孔群を封止して!/ヽ る封止材の 500°Cでの熱容量の総和 Y、及び Ζ又は、入口側貫通孔群を封止して いる封止材の 25°Cでの熱容量の総和 Ζとの関係について、上記式(3)—(5)が満た されており、より効果的に、出口側封止部における急激な温度上昇による熱応力の 発生を緩和することができ、クラックの発生を抑制することができる。
なお、入口側貫通孔群 21aを封止している封止材 22の熱容量の総和 Y、及び、入口 側貫通孔群を封止している封止材の 500°Cでの熱容量の総和 Ζは、例えば、封止材 22の材質と、封止材 22の厚さ(入口側貫通孔群 21aへの充填量)とを、上記式(1) 一(5)の関係を満たすように適宜選択すればよ!ヽ。
[0030] 一体型ハ-カム構造体 20は、主として多孔質セラミック力 なり、その材料としては、 例えば、窒化アルミニウム、窒化ケィ素、窒化ホウ素、窒化チタン等の窒化物セラミツ ク、炭化珪素、炭化ジルコニウム、炭化チタン、炭化タンタル、炭化タングステン等の 炭化物セラミック、アルミナ、ジルコ-ァ、コージユライト、ムライト、シリカ等の酸化物セ ラミック等を挙げることができる。また、一体型ハ-カム構造体 20は、シリコンと炭化珪 素との複合体、チタン酸アルミニウムと 、つた 2種類以上の材料力も形成されて 、るも のであってもよい。
[0031] 一体型ハ-カム構造体 20を製造する際に使用するセラミックの粒径としては特に限 定されないが、後の焼成工程で収縮が少ないものが望ましぐ例えば、 0. 3— 50 m程度の平均粒径を有する粉末 100重量部と、 0. 1-1. 程度の平均粒径を 有する粉末 5— 65重量部とを組み合わせたものが望ま 、。上記粒径のセラミック粉 末を上記配合で混合することで、多孔質セラミックからなる一体型ハ-カム構造体を 製造することができる。
[0032] なお、一体型ハ-カム構造体 20を構成する封止材 22と隔壁 23とは、同じ多孔質セ ラミックからなることがより望ましい。これにより、両者の接着強度を高くすることができ るとともに、封止材 22の気孔率を隔壁 23と同様に調整することで、隔壁 23の熱膨張 率と封止材 22の熱膨張率との整合を図ることができ、製造時や使用時の熱応力によ つて封止材 22と隔壁 23との間に隙間が生じたり、封止材 22や封止材 22に接触する 部分の隔壁 23にクラックが発生したりすることを防止することができる。
[0033] 封止材 22は、その熱容量を調整するために、上述のセラミックのほか、金属等を含有 していてもよい。
上記金属としては特に限定されず、例えば、鉄、アルミニウム、金属ケィ素(Si)等を 挙げることができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。
[0034] 封止材 22の厚さは特に限定されないが、例えば、封止材 22が多孔質炭化珪素から なる場合には、炭化珪素の 25°Cでの比熱容量が 690jZK'kgであり、 500°Cでの比 熱容量が 1120JZK' kgであることから、上記式(1)及び(2)の関係を満たすために 、 1一 40mmであることが望ましぐ上記式(3)及び (4)の関係を満たすために、 3— 2 Ommであることがより望まし!/、。
[0035] 隔壁 23の厚さは特に限定されないが、望ましい下限は 0. 1mmであり、望ましい上限 は 1. 2mmである。 0. 1mm未満であると、一体型ハ-カム構造体 20の強度が充分 でないことがある。 1. 2mmを超えると、入口側貫通孔群 21aを封止する封止材 22と 接する部分の隔壁 23が昇温しにくくなるため、封止材 22と隔壁 23との界面付近で熱 応力によりクラックが生じてしまうことがある。
[0036] 一体型ハ-カム構造体 20の気孔率は特に限定されないが、望ましい下限は 20%で あり、望ましい上限は 80%である。 20%未満であると、一体型ハ-カム構造体 20が すぐに目詰まりを起こすことがあり、一方、 80%を超えると、一体型ハニカム構造体 2 0の強度が低下して容易に破壊されることがある。 なお、上記気孔率は、例えば、水銀圧入法、アルキメデス法及び走査型電子顕微鏡 (SEM)による測定等の従来公知の方法により測定することができる。
[0037] 一体型ハ-カム構造体 20の平均気孔径の望ましい下限は 1 μ mであり、望ましい上 限は 100 mである。: L m未満であると、パティキュレートが容易に目詰まりを起こ すことがある。一方、 100 mを超えると、パティキュレートが気孔を通り抜けてしまい 、該パティキュレートを捕集することができず、フィルタとして機能しないことがある。
[0038] 図 1に示した一体型ハ-カム構造体 20は、略四角柱状であるが、本発明の一体型ハ 二カム構造体の形状は柱状体であれば特に限定されず、例えば、長手方向に垂直 な断面の形状が多角形、円形、楕円形、扇形等力 なる柱状体を挙げることができる
[0039] また、本発明の一体型ハ-カム構造体では、貫通孔は、長手方向に垂直な断面の 面積の総和が相対的に大きくなるように、出口側の端部が封止材により封止されてな る入口側貫通孔群と、上記断面の面積の総和が相対的に小さくなるように、入口側 の端部が上記封止材により封止されてなる出口側貫通孔群との 2種類の貫通孔から なる。
[0040] なお、上記入口側貫通孔群と上記出口側貫通孔群との組み合わせとしては、(1)入 口側貫通孔群を構成する個々の貫通孔と、出口側貫通孔群を構成する個々の貫通 孔とで、長手方向に垂直な断面の面積が同じであって、入口側貫通孔群を構成する 貫通孔の数が多い場合、(2)入口側貫通孔群を構成する個々の貫通孔と、出口側 貫通孔群を構成する個々の貫通孔とで、上記断面の面積が異なり、両者の貫通孔の 数も異なる場合、(3)入口側貫通孔群を構成する個々の貫通孔と、出口側貫通孔群 を構成する個々の貫通孔とで、入口側貫通孔群を構成する貫通孔の上記断面の面 積が大きぐ両者の貫通孔の数が同じ場合が含まれる。
また、入口側貫通孔群を構成する貫通孔及び Z又は出口側貫通孔群を構成する貫 通孔は、その形状や長手方向に垂直な断面の面積等が同じ 1種の貫通孔からそれ ぞれ構成されていてもよぐその形状や長手方向に垂直な断面の面積等が異なる 2 種以上の貫通孔からそれぞれ構成されて!、てもよ!/、。
[0041] また、本発明のハ-カム構造体は、基本ユニットとしての形状の繰り返しが起こってお り、その基本ユニットでみて、入口側貫通孔群と出口側貫通孔群とで断面の面積比 が異なるものである。し力しながら、外周に近い部分には、基本ユニットに欠けた部分 が存在し、その部分については、上記原則から外れる。従って、外周の 1一 2セルま でも厳密に測定した場合に、本発明のハ-カム構造体に含まれる場合には、その 1 一 2セルを除 、て計算するか、基本ユニットの繰り返しとならな 、部位を除 1、て計算 することとする。具体的には、例えば、図 9に示すように、貫通孔の長手方向に垂直な 断面の形状が、その外周付近近傍以外の部分で、全て同一であり、かつ、その断面 形状が同一の貫通孔について、いずれか一方の端部が封止されるとともに、全体とし て各端面の封止部と開放部とが市松模様を呈するように配置された構成を有するノ、 二カム構造体は、本発明のハ-カム構造体に含まないものとする。
[0042] 排気ガス浄化用フィルタでは、パティキュレートを捕集して圧力損失が上昇した排気 ガス浄ィ匕用フィルタを再生する際には、パティキュレートを燃焼させる力 パティキユレ ート中には、燃焼して消滅する炭素等のほかに、燃焼して酸ィ匕物となる金属等が含ま れており、これらが排気ガス浄ィ匕用フィルタ中にアッシュとして残留する。アッシュは、 通常、排気ガス浄ィ匕用フィルタの出口に近いところに残留するので、排気ガス浄ィ匕用 フィルタを構成する貫通孔は、出口に近いところ力もアッシュが充填されていき、アツ シュが充填された部分の容積が次第に大きくなるとともに、排気ガス浄ィ匕用フィルタと して機能する部分の容積 (面積)が次第に小さくなつていく。そして、アッシュの蓄積 量が多くなりすぎると、もはやフィルタとして機能しなくなり、排気管力 取り出して逆 洗浄を行ってアッシュを排気ガス浄ィ匕用フィルタから取り除くか、排気ガス浄化用フィ ルタを廃棄することとなる。
本発明の一体型ハ-カム構造体は、入口側貫通孔群の容積と出口側貫通孔群の容 積とが同じものと比べると、アッシュが蓄積しても、排気ガス浄ィ匕用フィルタとして機能 する部分の容積 (面積)は減少比率が小さぐアッシュに起因する圧力損失も小さくな る。従って、逆洗浄等を必要とするまでの期間も長くなり、排気ガス浄ィ匕用フィルタと しての寿命を長くすることができる。その結果、逆洗や交換等により必要となるメンテ ナンス費用を大幅に削減することができる。
[0043] 本発明の一体型ハ-カム構造体では、隣り合う入口側貫通孔群を構成する貫通孔と 出口側貫通孔群を構成する貫通孔とが共有する隔壁のみでなぐ隣り合う入口側貫 通孔群を構成する貫通孔同士が共有する隔壁にも一様にパティキュレートが蓄積す る。これは、パティキュレートの捕集開始直後は、入口側貫通孔群を構成する貫通孔 力も出口側貫通孔群を構成する貫通孔へ向力つてガスが流れるために、パティキュ レートは入口側貫通孔群を構成する貫通孔と出口側貫通孔群を構成する貫通孔と が共有する隔壁上に堆積するのであるが、パティキュレートの捕集が進んでケーク層 を形成するにした力 ^、、入口側貫通孔群を構成する貫通孔と出口側貫通孔群を構 成する貫通孔とが共有する隔壁にガスが流れにくくなり、徐々に入口側貫通孔群を 構成する貫通孔同士が共有する隔壁にもガスの流れが生じることが分力つた。よって 、ある一定期間パティキュレートの捕集を行った後には、入口側貫通孔群を構成する 貫通孔の隔壁上には一様にパティキュレートが堆積するようになる。
[0044] 従って、開口率を一定として、入口側貫通孔群を構成する貫通孔同士が共有する隔 壁のないフィルタと比較した際に、本発明の一体型ハ-カム構造体では、ろ過するた めの隔壁の表面積が大きいため、同じ量のパティキュレートを蓄積させたときに、隔 壁に蓄積するパティキュレートの厚みを減少させることができる。このため、本発明の 一体型ハ-カム構造体では、使用を開始してから時間が経過するに従って上昇する 圧力損失の上昇率が小さくなり、フィルタとしての使用期間全体で考えた際の圧力損 失を低減することができる。
[0045] 一体型ハ-カム構造体 20では、開口率比 (入口側の開口率 XZ出口側の開口率) の望ましい下限は 1. 5であり、望ましい上限は 8. 0である。 1. 5未満であると、アツシ ュの堆積量がすぐに大きくなつて、圧損が高くなり、また、低い圧損にするためには、 隔壁を薄くしなければならな 、ため、一体型ハ-カム構造体 20の強度が充分でな 、 ことがある。一方、 8. 0を超えると、出口側の開口率が小さ過ぎるために、出口側貫 通孔群 21bを通過する際の摩擦に起因する圧力損失が必要以上に上昇することが める。
[0046] 一体型ハ-カム構造体 20では、入口側貫通孔群 21aを構成する貫通孔の数、及び 、出口側貫通孔群 21bを構成する貫通孔の数は特に限定されないが、実質的に同 数であることが望ましい。このような構成にすると、排気ガスのろ過に関与しにくい隔 壁を最小限にすることができ、貫通孔入口側を通過する際の摩擦及び Z又は貫通 孔出口側を通過する際の摩擦に起因する圧力損失が必要以上に上昇することを抑 えることが可能である。例えば、図 2に示すような貫通孔の数が実質的に入口側貫通 孔群 101と出口側貫通孔群 102とで 1 : 2であるハ-カム構造体 100と比較すると、貫 通孔の数が実質的に同数である場合では、貫通孔出口側を通過する際の摩擦によ る圧力損失が低いため、ハニカム構造体全体としての圧力損失が低くなる。
[0047] 次に、本発明のハニカム構造体の長手方向に垂直な断面における大容積貫通孔群 を構成する貫通孔及び小容積貫通孔群を構成する貫通孔の構成の具体例につい て説明する。
図 3 (a)一 (d)及び図 4 (a)一 (f)は、本発明の一体型ハ-カム構造体における長手 方向に垂直な断面を模式的に示した断面図であり、図 3 (e)は、従来の一体型ハニ カム構造体における長手方向に垂直な断面を模式的に示した断面図である。
[0048] 図 3 (a)に示した一体型ハ-カム構造体 110は、上記開口率比がほぼ 1. 55、図 3 (b )に示した一体型ハ-カム構造体 120は、ほぼ 2. 54、図 3 (c)に示した一体型ハ-カ ム構造体 130は、ほぼ 4. 45、図 3 (d)に示した一体型ハ-カム構造体 140は、ほぼ 9. 86である。また、図 4 (a)、(c)、(e)は、上記開口率比がすべてほぼ 4. 45であり、 図 4 (b)、(d)、(f)は、すべてほぼ 6. 00である。
なお、図 3 (d)に示した一体型ハ-カム構造体 140のように、上記開口率比が大きい と、出口側貫通孔群を構成する小容積貫通孔 141bの容積が小さすぎるため、初期 の圧力損失が大きくなりすぎることがある。
[0049] 図 3 (a)—(d)は、すべて入口側貫通孔群を構成する大容積貫通孔 11 la、 121a, 1 31a、 141aの上記断面形状は 8角形であり、出口側貫通孔群を構成する小容積貫 通孔 l l lb、 121b, 131b, 141bの上記断面形状は 4角形 (正方形)であり、それぞ れが交互に配列されており、小容積貫通孔の断面積を変化させ、大容積貫通孔の 断面形状を少し変化させることにより、上記開口率比を任意に変動させることが容易 にできる。同様に、図 4に示す一体型ハ-カム構造体に関しても任意にその開口率 比を変動させることができる。
なお、図 3 (e)に示した一体型ハ-カム構造体 150は、入口側貫通孔 152a及び出口 側貫通孔 152bの上記断面形状はともに 4角形であり、それぞれが交互に配列されて いる。
[0050] 図 4 (a)一 (b)に示す一体型ハ-カム構造体 160、 260では、入口側貫通孔群を構 成する大容積貫通孔 161a、 261aの上記断面形状は 5角形であり、そのうちの 3つの 角がほぼ直角となっており、出口側貫通孔群を構成する小容積貫通孔 161b、 261b の上記断面形状は 4角形で、それぞれ大きな四角形の斜めに対向する部分を占める ように構成されている。図 4 (c)一(d)に示す一体型ハ-カム構造体 170、 270では、 図 3 (a)一 (d)に示す上記断面の形状を変形したものであって、入口側貫通孔群を 構成する大容積貫通孔 171a、 271aと出口側貫通孔群を構成する小容積貫通孔 17 lb、 271bとが共有する隔壁を小容積貫通孔側にある曲率を持って広げた形状であ る。この曲率は任意のものであってよぐ例えば、隔壁を構成する曲線が 1Z4円に相 当するものであってもよい。この場合、その上記開口率比は 3. 66となる。従って、図 4 (c) - (d)に示す一体型ハ-カム構造体 170、 270では、隔壁を構成する曲線が 1 Z4円に相当するものよりも、さらに小容積貫通孔 171b、 271bの上記断面の面積が 小さくなつている。図 4 (e)—(f)に示す一体型ハ-カム構造体 180、 280では、いず れも 4角形 (長方形)の入口側貫通孔群を構成する大容積貫通孔 181a、 281aと出 口側貫通孔群を構成する小容積貫通孔 281b、 281bとが上下に隣接して設けられ て長方形の構成単位を形成しており、上記構成単位が上下方向に連続し、左右方 向に互 、違いになって構成されて 、る。
[0051] 本発明のハニカム構造体の長手方向に垂直な断面における入口側貫通孔群を構成 する貫通孔及び出口側貫通孔群を構成する貫通孔の構成のその他の具体例として は、例えば、図 5に示した一体型ハ-カム構造体 190における入口側貫通孔群を構 成する大容積貫通孔 19 la及び出口側貫通孔群を構成する小容積貫通孔 19 lbを 設けた構成、図 6 (a)—(d)に示した一体型ハ-カム構造体 200、 21、 220、 230に おける入口側貫通孔群を構成する大容積貫通孔 201a、 211a, 221a, 231a及び出 口側貫通孔群を構成する小容積貫通孔 201b、 211b, 221b, 231bを設けた構成 等を挙げることができる。
[0052] また、一体型ハ-カム構造体 20には、排気ガス中の CO、 HC及び NOx等を浄化す ることができる触媒が担持されて 、てもよ!/、。
このような触媒が担持されていることで、一体型ハ-カム構造体 20は、排気ガス中の パティキュレートを捕集するフィルタとして機能するとともに、排気ガスに含有される C 0、 HC及び NOx等を浄ィ匕するための触媒コンバータとして機能する。
[0053] 一体型ハ-カム構造体 20に担持させる触媒としては排気ガス中の CO、 HC及び NO X等を浄ィ匕することができる触媒であれば特に限定されず、例えば、白金、パラジウム 、ロジウム等の貴金属等を挙げることができる。なかでも、白金、ノラジウム、ロジウム 力もなる、いわゆる三元触媒が望ましい。また、貴金属に加えて助触媒として、アル力 リ金属 (元素周期表 1族)、アルカリ土類金属 (元素周期表 2族)、希土類元素 (元素 周期表 3族)、遷移金属元素等を担持させてもよい。
[0054] 上記触媒は、一体型ハ-カム構造体 20の気孔の表面に担持されていてもよいし、隔 壁 23上にある厚みをもって担持されていてもよい。また、上記触媒は、隔壁 23の表 面及び Z又は気孔の表面に均一に担持されていてもよいし、ある一定の場所に偏つ て担持されていてもよい。なかでも、入口側貫通孔群を構成する貫通孔 21内におけ る隔壁 23の表面又は表面付近の気孔の表面に担持されていることが望ましぐこれ らの両方ともに担持されていることがより望ましい。上記触媒とパティキュレートとが接 触しやすいため、パティキュレートの燃焼を効率よく行うことができるからである。
[0055] また、一体型ハ-カム構造体 20に上記触媒を付与する際には、予めその表面をァ ルミナ等のサポート材により被覆した後に、上記触媒を付与することが望ましい。これ により、比表面積を大きくして、触媒の分散度を高め、触媒の反応部位を増やすこと ができる。また、サポート材によって触媒金属のシンタリングを防止することができるの で、触媒の耐熱性も向上する。カロえて、圧力損失を下げることを可能にする。
[0056] 上記触媒が担持された本発明の一体型ハ-カム構造体は、従来公知の触媒付 DPF
(ディーゼル 'パティキュレート'フィルタ)と同様のガス浄ィ匕装置として機能するもので ある。従って、ここでは、本発明の一体型ハ-カム構造体が触媒担持体としても機能 する場合の詳 Uヽ説明を省略する。
[0057] 本発明の一体型ハ-カム構造体は、 1個のみで一体型フィルタとして用いられてもよ V、が、シール材層を介して複数個結束されて集合体型フィルタとして用いられること が望ましい。上記集合体型フィルタとすることにより、上記シール材層により熱応力を 低減してフィルタの耐熱性を向上させること、及び、本発明の一体型ハ-カム構造体 の個数を増減させることで自由にその大きさを調整すること等が可能となる力 である なお、一体型フィルタと集合体型フィルタとは、同様の機能を有するものである。
[0058] なお、本発明の一体型ハ-カム構造体力もなる一体型フィルタでは、その材料として は、通常、コージエライト等の酸ィ匕物セラミックが使用される。安価に製造することがで きるとともに、比較的熱膨張係数が小さいため、製造中及び使用中に熱応力によつ てフィルタが破損する恐れが少な!/、からである。
[0059] また、図 1には示していないが、本発明の一体型ハ-カム構造体力もなる一体型フィ ルタでは、下述の本発明の集合体型ハ-カム構造体と同様に、外周面に本発明の 一体型ハ-カム構造体よりも気体を通過させにくい材質力 なるシール材層が形成さ れていることが望ましい。上記シール材層が外周面に形成されることにより、上記シー ル材層により本発明の一体型ハ-カム構造体を圧縮することができ、強度を向上し、 クラックの発生に伴うセラミック粒子の脱粒を防止することができる。
[0060] 本発明の集合体型ハ-カム構造体は、本発明の一体型ハ-カム構造体がシール材 層を介して複数個組み合わされてなるハ-カムブロックの外周面にシール材層が形 成されてなるものであり、集合体型フィルタとして機能する。
[0061] 図 7は、本発明の集合体型ハ-カム構造体の一例を模式的に示した斜視図である。
図 7に示す集合体型ハ-カム構造体において、多数の貫通孔は、長手方向に垂直 な断面の面積の総和が相対的に大きくなるように、出口側の端部が封止材により封 止されてなる入口側貫通孔群と、上記断面の面積の総和が相対的に小さくなるように 、入口側の端部が上記封止材により封止されてなる出口側貫通孔群とからなるもの である。
[0062] 図 7に示したように、集合体型ハ-カム構造体 10は、排気ガス浄ィ匕用フィルタとして 用いられるものであり、一体型ハ-カム構造体 20がシール材層 14を介して複数個結 束されてハ-カムブロック 15を構成し、このハ-カムブロック 15の周囲に、排気ガス の漏洩を防止するためのシール材層 13が形成されて ヽるものである。 [0063] なお、集合体型ハ-カム構造体 10では、一体型ハ-カム構造体 20を構成する材料 として、熱伝導性、耐熱性、機械的特性及び耐薬品性等に優れた炭化珪素が望まし い。
[0064] 集合体型ハ-カム構造体 10において、シール材層 14は、一体型セラミック構造体 2 0間に形成され、複数個の一体型セラミック構造体 20同士を結束する接着剤として 機能するものであり、一方、シール材層 13は、ハニカムブロック 15の外周面に形成さ れ、集合体型ハ-カム構造体 10を内燃機関の排気通路に設置した際、ハ-カムブ ロック 15の外周面から貫通孔を通過する排気ガスが漏れ出すことを防止するための 封止材として機能するものである。
なお、集合体型ハ-カム構造体 10において、シール材層 13とシール材層 14とは、 同じ材料力もなるものであってもよぐ異なる材料からなるものであってもよい。さらに 、シール材層 13及びシール材層 14が同じ材料からなるものである場合、その材料の 配合比は同じであってもよぐ異なっていてもよい。
[0065] ただし、シール材層 14は、緻密体力もなるものであってもよぐその内部への排気ガ スの流入が可能なように、多孔質体力もなるものであってもよいが、シール材層 13は 、緻密体力もなるものであることが望ましい。シール材層 13は、集合体型ハ-カム構 造体 10を内燃機関の排気通路に設置した際、ハ-カムブロック 15の外周面カも排 気ガスが漏れ出すことを防止する目的で形成されているからである。
[0066] シール材層 13及びシール材層 14を構成する材料としては特に限定されず、例えば
、無機ノインダ一と、有機バインダーと、無機繊維及び Z又は無機粒子とからなるも の等を挙げることができる。
[0067] 上記無機バインダーとしては、例えば、シリカゾル、アルミナゾル等を挙げることがで きる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機バインダー のなかでは、シリカゾノレが望ましい。
[0068] 上記有機バインダーとしては、例えば、ポリビュルアルコール、メチルセルロース、ェ チルセルロース、カルボキシメチルセルロース等を挙げることができる。これらは、単 独で用いてもよぐ 2種以上を併用してもよい。上記有機バインダーのなかでは、カル ボキシメチルセルロースが望まし 、。 [0069] 上記無機繊維としては、例えば、シリカ アルミナ、ムライト、アルミナ、シリカ等のセラ ミックファイバ一等を挙げることができる。これらは、単独で用いてもよぐ 2種以上を併 用してもよい。上記無機繊維のなかでは、シリカ アルミナファイバーが望ましい。
[0070] 上記無機粒子としては、例えば、炭化物、窒化物等を挙げることができ、具体的には 、炭化珪素、窒化珪素、窒化硼素等力 なる無機粉末又はウイスカ一等を挙げること ができる。これらは、単独で用いてもよぐ 2種以上を併用してもよい。上記無機粒子 のなかでは、熱伝導性に優れる炭化珪素が望ま 、。
[0071] なお、上述したように、本発明の一体型ハ-カム構造体をそのまま排気ガス浄ィ匕用フ ィルタとして用いる場合には、本発明の集合体型ハ-カム構造体と同様のシール材 層が本発明の一体型ハ-カム構造体の外周面に設けられてもよい。
[0072] 図 7に示した集合体型ハ-カム構造体 10は、円柱状である力 本発明の集合体型ハ 二カム構造体の形状としては、柱状体であれば特に限定されず、例えば、長手方向 に垂直な断面の形状が多角形、楕円形等力もなる柱状体を挙げることができる。 本発明の集合体型ハ-カム構造体は、本発明の一体型ハ-カム構造体を複数個結 束させた後、長手方向に垂直な断面の形状が多角形、円形又は楕円形等となるよう に外周部をカ卩ェしてもよいし、予め本発明の一体型ハ-カム構造体の上記断面形状 をカロェした後に、それらをシール材により結束させることによって、長手方向に垂直な 断面の形状を多角形、円形又は楕円形等としてもよぐ例えば、長手方向に垂直な 断面の形状が円を 4分割した扇形である柱状の本発明の一体型ハ-カム構造体を 4 個結束させて円柱状の本発明の集合体型ハ-カム構造体を製造することができる。
[0073] 次に、上述した本発明のハ-カム構造体の製造方法の一例について説明する。
本発明のハ-カム構造体力 S、その全体が一の焼結体力 構成された一体型フィルタ である場合、まず、上述したようなセラミックを主成分とする原料ペーストを用いて押 出成形を行い、本発明の一体型ハニカム構造体と略同形状のセラミック成形体を作 製する。この際、例えば、貫通孔が大容積貫通孔と小容積貫通孔との 2種類の貫通 孔からなる押出成形に使用する金型を、貫通孔の密度に合わせて選定する。
[0074] 上記原料ペーストとしては特に限定されないが、製造後の本発明の一体型ハ-カム 構造体の気孔率が 20— 80%となるものが望ましぐ例えば、上述したようなセラミック からなる粉末に、バインダー及び分散媒液等を加えたものを挙げることができる。
[0075] 上記バインダーとしては特に限定されず、例えば、メチルセルロース、カルボキシメチ ルセルロース、ヒドロキシェチルセルロース、ポリエチレングリコール、フエノール榭脂 、エポキシ榭脂等を挙げることができる。
上記バインダーの配合量は、通常、セラミック粉末 100重量部に対して、 1一 10重量 部程度が望ましい。
[0076] 上記分散媒液としては特に限定されず、例えば、ベンゼン等の有機溶媒、メタノール 等のアルコール、水等を挙げることができる。
上記分散媒液は、上記原料ペーストの粘度が一定範囲内となるように適量配合され る。
[0077] これらセラミック粉末、バインダー及び分散媒液は、アトライター等で混合し、ニーダ 一等で充分に混練した後、押出成形される。
[0078] また、上記原料ペーストには、必要に応じて成形助剤を添加してもよい。
上記成形助剤としては特に限定されず、例えば、エチレングリコール、デキストリン、 脂肪酸石鹼、ポリアルコール等を挙げることができる。
[0079] さらに、上記原料ペーストには、必要に応じて酸ィ匕物系セラミックを成分とする微小中 空球体であるバルーンや、球状アクリル粒子、グラフアイト等の造孔剤を添加してもよ い。
上記バルーンとしては特に限定されず、例えば、アルミナバルーン、ガラスマイクロバ ルーン、シラスバルーン、フライアッシュバルーン(FAバルーン)、ムライトバルーン等 を挙げることができる。これらのなかでは、フライアッシュバルーンが望ましい。
[0080] 次に、上記セラミック成形体を、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧 乾燥機、真空乾燥機、凍結乾燥機等を用いて乾燥させ、セラミック乾燥体とする。次 V、で、入口側貫通孔群の出口側の端部、及び、出口側貫通孔群の入口側の端部に 、封止材となる封止材ペーストを上記式(1)を満たすように所定量充填し、貫通孔を 目封じする。
[0081] 上記封止材ペーストとしては特に限定されないが、後工程を経て製造される封止材 の気孔率が 20— 80%となるものが望ましぐ例えば、上記原料ペーストと同様のもの を用いることができる力 上記原料ペーストで用いたセラミック粉末に、セラミックフアイ バー、上述したような金属力もなる粉末、潤滑剤、溶剤、分散剤、ノ^ンダ一等を添 カロしたものであることがより望ましい。後工程を経て製造される封止材の熱容量を調 整することができるとともに、上記封口処理の途中で封止材ペースト中のセラミック粒 子等が沈降することを防止することができるからである。
上記セラミックファイバ一としては特に限定されず、例えば、シリカ アルミナ、ムライト 、アルミナ、シリカ等力もなるものを挙げることができる。これらは、単独で用いてもよく
、 2種以上を併用してもよい。
[0082] 次に、上記封止材ペーストが充填されたセラミック乾燥体に対して、所定の条件で脱 脂、焼成を行うことにより、多孔質セラミックからなり、その全体が一の焼結体から構成 された本発明の一体型ハ-カム構造体を製造することができる。
上記セラミック乾燥体の脱脂及び焼成の条件は、従来から多孔質セラミックからなる フィルタを製造する際に用いられている条件を適用することができる。
[0083] なお、本発明の一体型ハ-カム構造体に触媒を担持させる場合には、焼成して得ら れたセラミック焼成体の表面に高 、比表面積のアルミナ膜を形成し、このアルミナ膜 の表面に助触媒、及び、白金等の触媒を付与することが望ましい。
[0084] 上記セラミック焼成体の表面にアルミナ膜を形成する方法としては、例えば、 Al(NO
) 等のアルミニウムを含有する金属化合物の溶液をセラミック焼成体に含浸させて
3 3
加熱する方法、アルミナ粉末を含有する溶液をセラミック焼成体に含浸させて加熱す る方法等を挙げることがでさる。
上記アルミナ膜に助触媒を付与する方法としては、例えば、 Ce (NO ) 等の希土類
3 3
元素等を含有する金属化合物の溶液をセラミック焼成体に含浸させて加熱する方法 等を挙げることができる。
上記アルミナ膜に触媒を付与する方法としては、例えば、ジニトロジアンミン白金硝酸 溶液([Pt (NH ) (NO ) ]HNO、白金濃度 4. 53重量%)等をセラミック焼成体に
3 2 2 2 3
含浸させて加熱する方法等を挙げることができる。
[0085] また、本発明のハ-カム構造体力 図 7に示したような、本発明の一体型ハ-カム構 造体 20がシール材層 14を介して複数個結束されて構成された集合体型ハ-カム構 造体 10である場合、次に、一体型ハ-カム構造体 20の側面に、シール材層 14とな るシール材ペーストを均一な厚さで塗布してシール材ペースト層 81を形成し、このシ ール材ペースト層 81の上に、順次他の一体型ハ-カム構造体 20を積層する工程を 繰り返し、所定の大きさの角柱状の一体型ハニカム構造体 20の積層体を作製する。 なお、上記シール材ペーストを構成する材料としては、既に説明しているのでここで はその説明を省略する。
[0086] 次に、この一体型ハ-カム構造体 20の積層体を加熱してシール材ペースト層 81を 乾燥、固化させてシール材層 14とし、その後、ダイヤモンドカッター等を用いて、その 外周部を図 7に示したような形状に切削することで、ハ-カムブロック 15を作製する。 そして、ハ-カムブロック 15の外周に上記シール材ペーストを用 、てシール材層 13 を形成することで、一体型ハ-カム構造体 20がシール材層 14を介して複数個結束さ れて構成された本発明の集合体型フィルタ 10を製造することができる。
[0087] 本発明のハニカム構造体の用途は特に限定されないが、車両の排気ガス浄化装置 に用いることが望ましい。
図 8は、本発明のハ-カム構造体が設置された車両の排気ガス浄ィ匕装置の一例を模 式的に示した断面図である。
[0088] 図 8に示したように、排気ガス浄化装置 600は、主に、ハ-カム構造体 60、ハ-カム 構造体 60の外方を覆うケーシング 630、ハ-カム構造体 60とケーシング 630との間 に配置される保持シール材 620、及び、ハ-カム構造体 60の排気ガス流入側に設 けられた加熱手段 610から構成されており、ケーシング 630の排気ガスが導入される 側の端部には、エンジン等の内燃機関に連結された導入管 640が接続されており、 ケーシング 630の他端部には、外部に連結された排出管 650が接続されている。な お、図 8中、矢印は排気ガスの流れを示している。
また、図 8において、ハ-カム構造体 60は、図 1に示した一体型ハ-カム構造体 20 であってもよぐ図 7に示した集合体型ハ-カム構造体 10であってもよい。
[0089] このような構成力もなる排気ガス浄ィ匕装置 600では、エンジン等の内燃機関から排出 された排気ガスは、導入管 640を通ってケーシング 630内に導入され、入口側貫通 孔群 21aからハ-カム構造体 60内に流入し、隔壁 23を通過して、この隔壁 23でパテ ィキュレートが捕集されて浄化された後、出口側貫通孔群 21bからハ-カム構造体 6 0外に排出され、排出管 650を通って外部へ排出されることとなる。
[0090] また、排気ガス浄ィ匕装置 600では、ハ-カム構造体 60の隔壁に大量のパティキユレ ートが堆積し、圧力損失が高くなると、ハ-カム構造体 60の再生処理が行われる。 上記再生処理では、加熱手段 610を用いて加熱されたガスをノヽ-カム構造体 60の 貫通孔の内部へ流入させることで、ハ-カム構造体 60を加熱し、隔壁に堆積したパ ティキュレートを燃焼除去する。また、ポストインジェクション方式を用いてパティキユレ ートを燃焼除去してもよい。
実施例
[0091] 以下に実施例を掲げ、図 1、 3及び 7を参照して本発明を更に詳しく説明するが、本 発明はこれら実施例のみに限定されるものではない。
[0092] (実施例 1)
平均粒径 10 mの α型炭化珪素粉末 60重量%と、平均粒径 0. 5 μ ΐηの 13型炭化 珪素粉末 40重量%とを湿式混合し、得られた混合物 100重量部に対して、有機バイ ンダー (メチルセルロース)を 5重量部、水を 10重量部加えて混練して混合組成物を 得た。次に、上記混合組成物に可塑剤と潤滑剤とを少量加えてさらに混練した後、 押出成形を行い、図 3 (a)に示した断面形状と略同様の断面形状で、入口側の開口 率が 37. 97%、開口率比が 1. 52の生成形体を作製した。
[0093] 次に、マイクロ波乾燥機等を用いて上記生成形体を乾燥させ、セラミック乾燥体とし た後、上記生成形体と同様の組成の封止材ペーストを乾燥後の厚さが 1. Ommとな るように所定の貫通孔に充填した。
次いで、再び乾燥機を用いて乾燥させた後、 400°Cで脱脂し、常圧のアルゴン雰囲 気下 2200°C、 3時間で焼成を行うことにより、気孔率が 42%、平均気孔径が 9 m、 その大きさが 34. 3mm X 34. 3mm X 150mm,貫通孔 21の数が 28個 Zcm2 (大容 積貫通孔 21a : 14個 Zcm2、小容積貫通孔 21b : 14個 Zcm2)、実質的に全ての隔 壁 23の厚さが 0. 40mmで、炭化珪素焼結体からなる一体型ハ-カム構造体 20を製 し 7こ。
なお、一体型ハ-カム構造体 20では、出口側の端面において、大容積貫通孔 21a のみを封止材により封止し、入口側の端面において、小容積貫通孔 21bのみを封止 材により封止した。また、上記出口側貫通孔群を含んで構成される出口側の端面 11 . 8cm2あたりの出口側の封止材 22の 25°Cで測定した熱容量の総和は、 0. 56J/K であり、上記出口側貫通孔群を含んで構成される出口側の端面 11. 8cm2あたりの 出口側の封止材 22の 500°Cで測定した熱容量の総和は、 0. 91JZKであった。
[0094] 繊維長 0. 2mmのアルミナファイバー 30重量%、平均粒径 0. 6 mの炭化珪素粒 子 21重量%、シリカゾル 15重量%、カルボキシメチルセルロース 5. 6重量%、及び 、水 28. 4重量%を含む耐熱性のシール材ペーストを用いて一体型ハ-カム構造体 20を、図 8を用いて説明した方法により多数結束させ、続いて、ダイヤモンドカッター を用いて切断することにより、円柱状のセラミックブロック 15を作製した。
このとき、一体型ハ-カム構造体 20を結束するシール材層 14の厚さが 1. 0mmとな るように調整した。
[0095] 次に、無機繊維としてアルミナシリケートからなるセラミックファイバー(ショット含有率: 3%、繊維長: 0. 01— 100mm) 23. 3重量0 /0、無機粒子として平均粒径 0. 3 mの 炭化珪素粉末 30. 2重量%、無機バインダーとしてシリカゾル (ゾル中の SiOの含有
2 率: 30重量%) 7重量%、有機バインダーとしてカルボキシメチルセルロース 0. 5重 量0 /0及び水 39重量%を混合、混練してシール材ペーストを調製した。
[0096] 次に、上記シール材ペーストを用いて、セラミックブロック 15の外周部に厚さ 0. 2mm のシール材ペースト層を形成した。そして、このシール材ペースト層を 120°Cで乾燥 して、直径 143. 8mm X長さ 150mmの円柱状の集合体型ハ-カム構造体 10を製 ¾aしこ。
[0097] (実施例 2— 24、比較例 1一 8)
表 1に示したように、一体型ハ-カム構造体 20の長手方向に垂直な断面形状 (入口 側開口率、開口率比)及び封止材 22の厚さを変更したほかは、実施例 1と同様にし て集合体型ハ-カム構造体 10を製造した。
なお、一体型ハ-カム構造体 20の長手方向に垂直な断面形状は、混合組成物の押 出成形を行う際のダイの形状を変更することにより調整した。また、封止材 22の厚さ は、貫通孔 21への封止材ペーストの充填量を変更することにより調整した。 [0098] (評価)
図 8に示したように、各実施例及び比較例に係る集合体型ハ-カム構造体をェンジ ンの排気通路に配設して排気ガス浄ィ匕装置とし、上記エンジンを回転数 3000min_1 、トルク 50Nmで所定の時間運転し、その後に再生処理を行う実験を、運転する時間 を増加させ、捕集量を変えながら継続して行い、集合体型ハ-カム構造体にクラック が発生するか否かを調査した。そして、クラックが発生した際とクラックが発生しなかつ た際とに捕集していたパティキュレートの量から、クラックが発生しな力つた際の最大 値を再生限界値とした。
具体的には、実施例及び比較例に係る集合体型ハ-カム構造体からなるフィルタを 、直噴 2Lエンジンの排気通路に配置し、フィルタの前方にはコージユライト製酸ィ匕触 媒( φ 5. 66 X 3inch、セル数 400cpsi、壁厚 8mil、 Pt量 90g/ft3)を隣接させて排 気ガス净化装置とし、上記エンジンを回転数 3000min— トルク 50Nmで所定の時 間運転し、所定量のパティキュレートを捕集した。その後、エンジンを回転数を 4000 トルク 200Nmにして、フィルタ温度が 700°C付近で一定になったところで、ェ ンジンを回転数 1050min— トルク 30Nmにすることによってパティキュレートを強制 燃焼させた。そして、この再生処理を行う実験を、パティキュレートの捕集量を変化さ せながら行い、フィルタにクラックが発生する力否かを調査した。
結果を表 1に示した。
[0099] [表 1]
/\二カム 入口側 封ロ材 出口側封止材 出口側封止材 構造体 開口率 開口率 隔壁厚さ Ifさ 0.0157X— 0.0678 0.05X 総熱容量 Y 0.013Χ- 0.09 0.Ο5Χ-0.55 総熱容量 ζ 再生限界値 断面形状 Χ(¾) 比 (mm) (mm) -1.15X-5 ~0.574X-2 (J/K at 500°C) -0.7Χ-2.5 — 0.354Χ-1 (J/K at 25°C) (g/L) 比較例 1 0. 5 0. 44 0. 27 6. 9 実施例 1 (0 1.0 0. 91 0. 56 7. 8 実施例 2 ο 3.0 2. 83 1. 74 8. 4 実施例 3 6.0 0.53 1.90 5. 64 3. 47 8. 6
133(a) 37. 9フ 1. 52 0. 40 0.40~24.08 1.35~12.44
実施例 4 10. 0 ~38.6フ ~19.79 9. 42 5. 80 8. 6 実施例 5 20. 0 18. 86 11. 62 8. 5 実施例 6 40. 0 37. 69 23. 22 7. 8 比較例 2 60. 0 56. 52 6.4 比較例 3 0. 5 0. 56 0. 34 6. 9 実施例 7 1.0 1. 11 0. 68 8 実施例 8 3. 0 3. 39 2. 09 8- 9 実施例 9 6. 0 0.64 2.24 6. 75 4. 18 9. 5 図 3(b) 44. フ 9 2. 33 0. 40 0.49~28.85 1,69— 14.86
実施例 10 10 0 -46.51 ~23.71 11. 30 6. 96 9.4 実施例 11 20. 0 13. 92 9. 2 実施例 12 40. 0 45. 18 フ. 9 比較例 4 60. 0 67. 76 41.フ 4 6. 6 比較例 5 0. 5 0.69 0.42 6. 7
/ίJί li·( |ϊ/ι J|ΐ■ 3 1. 0 1.31 0. 81 7. 6 宝施例 14 3 0 3. 99 2.46 3. 3 失 リ 1 O 図 D. ·> 59 99 4. 92
3(c) 51. 77 3. 88 0. 40 リ 0 7.
0.58-33.74 2.04-17.33
天 /I¾l15リ 1わ 1 U. U ~54.54 ~27.72 13. 24 8. 16 o. Ό 実施例 1フ 20. 0 16. 39 8. 3 実施例 18 40. 0 53. 14 32. フ 4 フ. 7 比較例 6 60. 0 6. 7 比較例 7 0. 5 0. 73 0. 45 6. 3 実施例 19 1. 0 1. 53 0. 94 7. 3 実施例 20 3. 0 4. 64 2. 86 8. 1 実施例 21 6. 0 0.86 2.95 9D C. 26 5. 72 8. 5 図 3(d) 7. 89 0. 40 0.68~38.83 2.40-19.90
実施例 22 10. 0 ~62.90 -31.89 15. 40 04 9. 51 8. 4 実施例 23 20. 0 30. 9 ο5 ∞ 19. 07 8. 2 実施例 24 40. 0 61. 86 38. 11 7. 8 比較例 8 60. □ 92. 87 57. 22 6. 9
O
00
ο
CO [0100] 表 1に示したように、上記式(1)及び(2)の関係を満たす各実施例に係る集合体型ハ 二カム構造体は、再生限界値が高かった。一方、上記式(1)及び (2)の関係を満た していない各比較例に係る集合体型ハ-カム構造体は、再生処理により出口側封止 部においてクラックが発生しやすぐ再生限界値が低力つた。
図面の簡単な説明
[0101] [図 1] (a)は、本発明の一体型ハ-カム構造体の一例を模式的に示した斜視図であり 、(b)は、(a)に示した本発明の一体型ハ-カム構造体の A— A線断面図である。
[図 2]貫通孔の数が実質的に入口側貫通孔群 101と出口側貫通孔群 102とで 1 : 2と なるように構成された本発明のハニカム構造体の長手方向に垂直な断面を模式的に 示した断面図である。
[図 3] (a)一 (d)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断 面を模式的に示した断面図であり、(e)は、従来の一体型ハニカム構造体における 長手方向に垂直な断面を模式的に示した断面図である。
[図 4] (a)一 (f)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断面 の一部を模式的に示した断面図である。
[図 5]本発明の一体型ハニカム構造体における長手方向に垂直な断面の一例を模 式的に示した断面図である。
[図 6] (a)一 (d)は、本発明の一体型ハ-カム構造体における長手方向に垂直な断 面の一例を模式的に示した断面図である。
[図 7]本発明の集合体型ハ-カム構造体の一例を模式的に示した斜視図である。
[図 8]本発明のハ-カム構造体が設置された車両の排気ガス浄化装置の一例を模式 的に示した断面図である。
[図 9]従来のハニカム構造体の一例を模式的に示した断面図である。
符号の説明
[0102] 10 集合体型ハニカム構造体
13 シール材層
14 シール材層
15 ノヽニカムブロック 一体型ハ-カム構造体 貫通孔
a 入口側貫通孔群b 出口側貫通孔群 封止材
隔壁

Claims

請求の範囲
[1] 複数の貫通孔が隔壁を隔てて長手方向に並設された主として多孔質セラミックからな る柱状のハ-カム構造体であって、
前記複数の貫通孔は、長手方向に垂直な断面の面積の総和が相対的に大きくなる ように、出口側の端部が封止材により封止されてなる入口側貫通孔群と、前記断面の 面積の総和が相対的に小さくなるように、入口側の端部が前記封止材により封止さ れてなる出口側貫通孔群とからなり、
入口側の開口率を χ(%)とし、前記出口側貫通孔群を含んで構成される出口側の端 面 11. 8cm2あたりの前記入口側貫通孔群を封止して!/、る前記封止材の 500°Cでの 熱容量の総和を YCFZK)としたときに、下記式(1)及び (2)の関係を満たすことを特 徴とするハ-カム構造体。
0. 0157X-0. 0678<Y< 1. 15X-5
35≤Χ≤60 - -- (2)
[2] さらに、前記出口側貫通孔群を含んで構成される出口側の端面 11. 8cm2あたりの 入口側貫通孔群を封止して 、る封止材の 25°Cでの熱容量の総和を Z Q/K)とした ときに、下記式(3)の関係を満たす請求項 1に記載のハニカム構造体。
0. 013X-0. 09<Ζ< 0. 7Χ-2. 5 - -- (3)
[3] さらに、下記式 (4)の関係を満たす請求項 1又は 2に記載のハニカム構造体。
0. 05Χ-0. 55<Υ< 0. 574Χ-2 - -- (4)
[4] さらに、下記式(5)の関係を満たす請求項 3に記載のハニカム構造体。
0. 05Χ-0. 55<Z< 0. 354X-1 - -- (5)
[5] 多孔質セラミックは、多孔質炭化珪素である請求項 1一 4のいずれ力 1に記載のハ- カム構造体。
[6] 請求項 1一 5の 、ずれか 1に記載のハ-カム構造体がシール材層を介して複数個組 み合わされてなるハ-カムブロックの外周面にシール材層が形成されてなるハ-カム 構造体。
PCT/JP2004/015808 2003-10-23 2004-10-25 ハニカム構造体 WO2005039738A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE602004011378.6T DE602004011378T3 (de) 2003-10-23 2004-10-25 Wabenstrukturkörper
EP04792936.9A EP1676622B2 (en) 2003-10-23 2004-10-25 Honeycomb structure body
US10/521,592 US7517502B2 (en) 2003-10-23 2004-10-25 Honeycomb structural body
PL04792936T PL1676622T3 (pl) 2003-10-23 2004-10-25 Kształtka o strukturze plastra miodu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003363783A JP4439236B2 (ja) 2003-10-23 2003-10-23 ハニカム構造体
JP2003-363783 2003-10-23

Publications (1)

Publication Number Publication Date
WO2005039738A1 true WO2005039738A1 (ja) 2005-05-06

Family

ID=34510071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015808 WO2005039738A1 (ja) 2003-10-23 2004-10-25 ハニカム構造体

Country Status (10)

Country Link
US (1) US7517502B2 (ja)
EP (1) EP1676622B2 (ja)
JP (1) JP4439236B2 (ja)
KR (1) KR100680078B1 (ja)
CN (1) CN100346862C (ja)
AT (1) ATE383902T1 (ja)
DE (2) DE202004021341U1 (ja)
ES (1) ES2300840T3 (ja)
PL (1) PL1676622T3 (ja)
WO (1) WO2005039738A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787705A1 (de) * 2005-11-18 2007-05-23 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Dieselbrennkraftmaschine
JP2010527322A (ja) * 2007-05-14 2010-08-12 ジーイーオー2 テクノロジーズ,インク. 高空隙率セラミック体のための低熱膨張係数結合システムおよび製造方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7314496B2 (en) * 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
CN100345611C (zh) * 2002-09-13 2007-10-31 揖斐电株式会社 蜂窝状结构体
US20060051556A1 (en) * 2003-09-12 2006-03-09 Ibiden Co., Ltd. Sintered ceramic compact and ceramic filter
DE602004011971T3 (de) * 2003-10-20 2012-10-18 Ibiden Co., Ltd. Wabenstruktur
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
JP4673084B2 (ja) * 2004-02-26 2011-04-20 日本碍子株式会社 ハニカムフィルタ及び排ガス処理装置
PL1626037T3 (pl) * 2004-05-06 2008-11-28 Ibiden Co Ltd Struktura ulowa i sposób jej wytwarzania
JP5161458B2 (ja) * 2004-09-02 2013-03-13 イビデン株式会社 ハニカム構造体の製造方法
DE602005019182D1 (de) 2004-09-30 2010-03-18 Ibiden Co Ltd Wabenstruktur
CN100540111C (zh) 2005-08-26 2009-09-16 揖斐电株式会社 蜂窝结构体及其制造方法
KR100944133B1 (ko) 2005-09-28 2010-02-24 이비덴 가부시키가이샤 허니컴 필터
JPWO2007043245A1 (ja) 2005-10-12 2009-04-16 イビデン株式会社 ハニカムユニット及びハニカム構造体
JP5225687B2 (ja) 2005-12-16 2013-07-03 日本碍子株式会社 触媒担体
WO2007096986A1 (ja) * 2006-02-24 2007-08-30 Ibiden Co., Ltd. 端面加熱装置、ハニカム集合体の端面乾燥方法、及び、ハニカム構造体の製造方法
US8398797B2 (en) * 2006-09-29 2013-03-19 Hitachi Metals, Ltd. Production method of cordierite-based ceramic honeycomb filter
CN101374590B (zh) * 2006-10-05 2011-12-21 揖斐电株式会社 蜂窝结构体
WO2008099450A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008099454A1 (ja) * 2007-02-09 2008-08-21 Ibiden Co., Ltd. ハニカム構造体および排気ガス処理装置
WO2008120385A1 (ja) * 2007-03-29 2008-10-09 Ibiden Co., Ltd. ハニカム構造体、ハニカム構造体の製造方法、排ガス浄化装置及び排ガス浄化装置の製造方法
JPWO2008120499A1 (ja) * 2007-03-29 2010-07-15 日本碍子株式会社 ハニカムセグメント
JPWO2008126335A1 (ja) * 2007-03-30 2010-07-22 イビデン株式会社 ハニカム構造体及びハニカム構造体の製造方法
WO2008129671A1 (ja) * 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
US7781372B2 (en) * 2007-07-31 2010-08-24 GE02 Technologies, Inc. Fiber-based ceramic substrate and method of fabricating the same
US8814974B2 (en) * 2007-08-24 2014-08-26 Corning Incorporated Thin-walled porous ceramic wall-flow filter
CN101821488B (zh) * 2007-08-31 2013-05-22 尤尼弗瑞克斯I有限责任公司 基板安装系统
DE102008042372A1 (de) 2007-09-26 2009-04-23 Denso Corporation, Kariya Abgasreinigungsfilter
JPWO2009041611A1 (ja) * 2007-09-28 2011-01-27 京セラ株式会社 ハニカム構造体およびこれを用いた浄化装置
KR101621983B1 (ko) * 2008-02-05 2016-05-31 바스프 코포레이션 미립자 트랩을 갖는 가솔린 엔진 배출물 처리 시스템
DE102008000688A1 (de) * 2008-03-14 2009-09-17 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Brennkraftmaschine
JP5456268B2 (ja) * 2008-03-28 2014-03-26 日本碍子株式会社 ハニカム構造体
JP2009243274A (ja) * 2008-03-28 2009-10-22 Mazda Motor Corp パティキュレートフィルタ
JP5188237B2 (ja) * 2008-03-28 2013-04-24 日本碍子株式会社 ハニカム構造体
JP2009285605A (ja) * 2008-05-30 2009-12-10 Toyota Motor Corp 排ガス浄化用触媒
JP2010227755A (ja) * 2009-03-26 2010-10-14 Ngk Insulators Ltd セラミックハニカム構造体
CN102470310B (zh) * 2009-10-08 2014-07-23 揖斐电株式会社 废气净化装置和废气净化方法
EP2368619B1 (en) 2010-03-26 2014-06-25 Imerys Ceramic honeycomb structures
WO2011117964A1 (ja) * 2010-03-23 2011-09-29 イビデン株式会社 ハニカム構造体
WO2011117963A1 (ja) * 2010-03-23 2011-09-29 イビデン株式会社 ハニカム構造体
US8815189B2 (en) 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
JP5773716B2 (ja) * 2011-04-08 2015-09-02 京セラ株式会社 ハニカム構造体の焼成方法
JP6170492B2 (ja) * 2012-06-15 2017-07-26 イビデン株式会社 ハニカムフィルタ
WO2013186922A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2013186923A1 (ja) 2012-06-15 2013-12-19 イビデン株式会社 ハニカムフィルタ
WO2014054159A1 (ja) 2012-10-04 2014-04-10 イビデン株式会社 ハニカムフィルタ
JP5677648B2 (ja) * 2012-12-27 2015-02-25 住友化学株式会社 ハニカム構造体の製造方法
JP6239303B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239304B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239307B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239305B2 (ja) 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6239306B2 (ja) * 2013-07-31 2017-11-29 イビデン株式会社 ハニカムフィルタ
JP6081951B2 (ja) * 2014-03-26 2017-02-15 日本碍子株式会社 ハニカム構造体の製造方法
US11148089B2 (en) * 2016-04-22 2021-10-19 Corning Incorporated Rectangular outlet honeycomb structures, particulate filters, extrusion dies, and method of manufacture thereof
JP6826858B2 (ja) * 2016-10-11 2021-02-10 日本碍子株式会社 目封止ハニカム構造体
JP6615802B2 (ja) * 2017-02-06 2019-12-04 日本碍子株式会社 目封止ハニカム構造体の製造方法
JP2019177312A (ja) * 2018-03-30 2019-10-17 日本碍子株式会社 ハニカムフィルタ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159811A (ja) * 2000-11-24 2002-06-04 Ngk Insulators Ltd ハニカムフィルター及びその製造方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003176709A (ja) * 2001-10-03 2003-06-27 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2003236322A (ja) * 2001-12-03 2003-08-26 Hitachi Metals Ltd セラミックハニカムフィルタ

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267071A (en) 1977-08-08 1981-05-12 Mobil Oil Corporation Catalyst for hydrotreating residual petroleum oil
CA1145270A (en) 1979-12-03 1983-04-26 Morris Berg Ceramic filters for diesel exhaust particulates and methods of making
US4276071A (en) 1979-12-03 1981-06-30 General Motors Corporation Ceramic filters for diesel exhaust particulates
EP0043694B1 (en) 1980-07-03 1986-02-12 Corning Glass Works Particulate filter and material for producing the same
US4329162A (en) * 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
JPS5892409A (ja) 1981-11-27 1983-06-01 Asahi Glass Co Ltd 選択性透過膜
US4416676A (en) 1982-02-22 1983-11-22 Corning Glass Works Honeycomb filter and method of making it
US4417908A (en) 1982-02-22 1983-11-29 Corning Glass Works Honeycomb filter and method of making it
US4420316A (en) 1982-02-22 1983-12-13 Corning Glass Works Filter apparatus and method of making it
JPS58150015A (ja) 1982-03-01 1983-09-06 Mazda Motor Corp デイ−ゼルエンジンの排気浄化装置
JPS61424A (ja) 1984-06-12 1986-01-06 Nippon Denso Co Ltd セラミツクフイルタ
JPS63185425A (ja) 1987-01-28 1988-08-01 Ngk Insulators Ltd 排ガス浄化用セラミツクハニカムフイルタ
JP2619291B2 (ja) 1989-09-18 1997-06-11 キヤノン株式会社 自動給紙装置
JP3130587B2 (ja) 1991-09-17 2001-01-31 イビデン株式会社 排気ガス浄化装置のハニカムフィルタ
JPH0647620A (ja) 1991-10-11 1994-02-22 Isuzu Motors Ltd 歯車類の加工方法
JP2726616B2 (ja) 1993-12-15 1998-03-11 日本碍子株式会社 多孔質セラミックハニカムフィルタ
DK1270202T3 (da) 1996-01-12 2006-08-07 Ibiden Co Ltd Filter til rensning af udstödningsgas
US5930994A (en) 1996-07-02 1999-08-03 Ibiden Co., Ltd. Reverse cleaning regeneration type exhaust emission control device and method of regenerating the same
JP2000167329A (ja) 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
JP2002530175A (ja) 1998-11-20 2002-09-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ コードレス走査ヘッドの充電器を備える超音波診断イメージングシステム
FR2789327B1 (fr) 1999-02-09 2001-04-20 Ecia Equip Composants Ind Auto Structure de filtration poreuse et dispositif de depollution la comportant
JP4642955B2 (ja) 1999-06-23 2011-03-02 イビデン株式会社 触媒担体およびその製造方法
DE60033977T2 (de) 1999-09-29 2007-12-20 Ibiden Co., Ltd., Ogaki Wabenförmiger Filter und Anordnung von keramischen Filtern
JP4051163B2 (ja) 1999-09-29 2008-02-20 イビデン株式会社 セラミックフィルタ集合体
JP3862458B2 (ja) 1999-11-15 2006-12-27 日本碍子株式会社 ハニカム構造体
JP4455708B2 (ja) 2000-01-17 2010-04-21 日本碍子株式会社 ハニカム構造体及びその製造方法
JP4049501B2 (ja) 2000-01-24 2008-02-20 日本碍子株式会社 セラミックス構造体
JP2001329830A (ja) 2000-03-15 2001-11-30 Ibiden Co Ltd 排気ガス浄化フィルタの再生装置及びフィルタ再生方法、排気ガス浄化フィルタの再生プログラム及びそのプログラムを格納する記録媒体
JP4471452B2 (ja) 2000-05-29 2010-06-02 日本碍子株式会社 フィルターエレメントの製造方法
JP4511065B2 (ja) 2000-06-05 2010-07-28 日本碍子株式会社 ハニカム構造体とハニカムフィルター、及びそれらの製造方法
DE10037403A1 (de) 2000-08-01 2002-02-14 Daimler Chrysler Ag Partikelfilter
JP2002070531A (ja) 2000-08-24 2002-03-08 Ibiden Co Ltd 排気ガス浄化装置、排気ガス浄化装置のケーシング構造
US6508852B1 (en) 2000-10-13 2003-01-21 Corning Incorporated Honeycomb particulate filters
DE60212351T2 (de) 2001-03-22 2007-05-24 Ibiden Co., Ltd., Ogaki Abgasreinigungsvorrichtung
JP2003001029A (ja) 2001-06-18 2003-01-07 Hitachi Metals Ltd 多孔質セラミックハニカムフィルタ
KR100518112B1 (ko) 2001-08-08 2005-10-04 도요타지도샤가부시키가이샤 배기가스 정화장치
US20030041730A1 (en) 2001-08-30 2003-03-06 Beall Douglas M. Honeycomb with varying channel size
JP3893049B2 (ja) 2001-11-20 2007-03-14 日本碍子株式会社 ハニカム構造体及びその製造方法
DE60233448D1 (de) 2001-12-03 2009-10-01 Hitachi Metals Ltd Keramischer Wabenfilter
EP1479882B2 (en) 2002-02-05 2012-08-22 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination
EP1479881B1 (en) 2002-02-05 2017-05-10 Ibiden Co., Ltd. Honeycomb filter for exhaust gas decontamination, adhesive, coating material and process for producing honeycomb filter for exhaust gas decontamination
JP4279497B2 (ja) * 2002-02-26 2009-06-17 日本碍子株式会社 ハニカムフィルタ
ES2300563T3 (es) 2002-03-04 2008-06-16 Ibiden Co., Ltd. Filtro de tipo para purificacion de gas de escape y aparato de purificacion de gas de escape.
WO2003081001A1 (fr) 2002-03-22 2003-10-02 Ibiden Co., Ltd. Filtre en nid d'abeille pour clarification de gaz d'echappement
US20050169818A1 (en) 2002-03-25 2005-08-04 Ibiden Co., Ltd. Filter for exhaust gas decontamination
JP2004000896A (ja) 2002-03-25 2004-01-08 Ngk Insulators Ltd ハニカムフィルター
ATE411095T1 (de) 2002-03-29 2008-10-15 Ibiden Co Ltd Keramikfilter und abgasdekontaminierungseinheit
JPWO2003084640A1 (ja) 2002-04-09 2005-08-11 イビデン株式会社 排気ガス浄化用ハニカムフィルタ
CN100371562C (zh) 2002-04-10 2008-02-27 揖斐电株式会社 废气净化用蜂窝状过滤器
ATE376617T1 (de) 2002-04-11 2007-11-15 Ibiden Co Ltd Wabenfilter zur reinigung von abgas
FR2840545B1 (fr) 2002-06-07 2008-07-04 Saint Gobain Ct Recherches Corps filtrant pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
US7314496B2 (en) 2002-09-13 2008-01-01 Ibiden Co., Ltd. Honeycomb structure
CN100345611C (zh) 2002-09-13 2007-10-31 揖斐电株式会社 蜂窝状结构体
US7534482B2 (en) 2002-10-07 2009-05-19 Ibiden Co., Ltd. Honeycomb structural body
JP4437084B2 (ja) 2002-10-07 2010-03-24 イビデン株式会社 ハニカム構造体
ES2278332T3 (es) 2003-06-05 2007-08-01 Ibiden Co., Ltd. Cuerpo con estructura de panal.
DE602004011971T3 (de) 2003-10-20 2012-10-18 Ibiden Co., Ltd. Wabenstruktur
PL1790623T3 (pl) 2003-11-12 2009-11-30 Ibiden Co Ltd Sposób wytwarzania struktury ceramicznej
WO2005064128A1 (ja) 2003-12-25 2005-07-14 Ibiden Co., Ltd. 排気ガス浄化装置および排気ガス浄化装置の再生方法
US7387829B2 (en) 2004-01-13 2008-06-17 Ibiden Co., Ltd. Honeycomb structure, porous body, pore forming material for the porous body, and methods for manufacturing the pore forming material, the porous body and the honeycomb structure
KR100680097B1 (ko) 2004-02-23 2007-02-09 이비덴 가부시키가이샤 허니콤 구조체 및 배기 가스 정화 장치
JP4666390B2 (ja) 2004-04-05 2011-04-06 イビデン株式会社 ハニカム構造体、ハニカム構造体の製造方法及び排気ガス浄化装置
PL1626037T3 (pl) 2004-05-06 2008-11-28 Ibiden Co Ltd Struktura ulowa i sposób jej wytwarzania
CN101249350B (zh) 2004-05-18 2012-02-22 揖斐电株式会社 蜂窝结构体及废气净化装置
ATE405804T1 (de) 2004-07-01 2008-09-15 Ibiden Co Ltd Verfahren zur herstellung von porösen keramischen körpern
KR100844250B1 (ko) 2004-08-04 2008-07-07 이비덴 가부시키가이샤 소성로 및 이것을 이용한 다공질 세라믹 부재의 제조 방법
WO2006013652A1 (ja) 2004-08-04 2006-02-09 Ibiden Co., Ltd. 連続焼成炉及びこれを用いた多孔質セラミック部材の製造方法
CN101374590B (zh) 2006-10-05 2011-12-21 揖斐电株式会社 蜂窝结构体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159811A (ja) * 2000-11-24 2002-06-04 Ngk Insulators Ltd ハニカムフィルター及びその製造方法
WO2002096827A1 (fr) * 2001-05-31 2002-12-05 Ibiden Co., Ltd. Corps fritte ceramique poreux et procede permettant sa production, et filtre a gasoil particulaire
JP2003176709A (ja) * 2001-10-03 2003-06-27 Hitachi Metals Ltd セラミックハニカムフィルタ
JP2003236322A (ja) * 2001-12-03 2003-08-26 Hitachi Metals Ltd セラミックハニカムフィルタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1787705A1 (de) * 2005-11-18 2007-05-23 Robert Bosch Gmbh Filtereinrichtung, insbesondere für ein Abgassystem einer Dieselbrennkraftmaschine
JP2010527322A (ja) * 2007-05-14 2010-08-12 ジーイーオー2 テクノロジーズ,インク. 高空隙率セラミック体のための低熱膨張係数結合システムおよび製造方法

Also Published As

Publication number Publication date
CN100346862C (zh) 2007-11-07
EP1676622A4 (en) 2006-09-27
DE602004011378T2 (de) 2008-08-07
DE202004021341U1 (de) 2007-11-15
US20060159602A1 (en) 2006-07-20
KR100680078B1 (ko) 2007-02-09
DE602004011378D1 (de) 2008-03-06
JP4439236B2 (ja) 2010-03-24
CN1723070A (zh) 2006-01-18
PL1676622T3 (pl) 2008-06-30
US7517502B2 (en) 2009-04-14
EP1676622B2 (en) 2020-04-22
DE602004011378T3 (de) 2021-04-22
JP2005125237A (ja) 2005-05-19
EP1676622B1 (en) 2008-01-16
ATE383902T1 (de) 2008-02-15
ES2300840T3 (es) 2008-06-16
KR20060008276A (ko) 2006-01-26
EP1676622A1 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
KR100680078B1 (ko) 벌집형 구조체
US7785695B2 (en) Honeycomb structured body
JP4969103B2 (ja) ハニカム構造体
JP4812316B2 (ja) ハニカム構造体
JP4553737B2 (ja) ハニカム構造体
JP5270879B2 (ja) ハニカム構造体
JP2011179501A (ja) ハニカム構造体
JP4471622B2 (ja) ハニカム構造体
JPWO2004024295A1 (ja) ハニカム構造体
WO2008044269A1 (fr) Structure en nid d&#39;abeilles
JP2006223983A (ja) ハニカム構造体
JP5096978B2 (ja) ハニカム触媒体
JP4471621B2 (ja) ハニカム構造体
JP2014148924A (ja) 排ガス浄化装置
JP5184867B2 (ja) ハニカムフィルタ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2005521592

Country of ref document: US

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2004792936

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020057009847

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048018137

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006159602

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10521592

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057009847

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004792936

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020057009847

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004792936

Country of ref document: EP