WO2004053582A1 - 液晶表示装置およびその製造方法 - Google Patents

液晶表示装置およびその製造方法 Download PDF

Info

Publication number
WO2004053582A1
WO2004053582A1 PCT/JP2003/015658 JP0315658W WO2004053582A1 WO 2004053582 A1 WO2004053582 A1 WO 2004053582A1 JP 0315658 W JP0315658 W JP 0315658W WO 2004053582 A1 WO2004053582 A1 WO 2004053582A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
alignment
film
Prior art date
Application number
PCT/JP2003/015658
Other languages
English (en)
French (fr)
Inventor
Yasushi Tomioka
Hidetoshi Abe
Katsumi Kondo
Original Assignee
Hitachi Displays, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32500817&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004053582(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Displays, Ltd. filed Critical Hitachi Displays, Ltd.
Priority to US10/537,825 priority Critical patent/US7718234B2/en
Priority to KR1020057010331A priority patent/KR100750451B1/ko
Priority to CNB2003801053222A priority patent/CN100430802C/zh
Publication of WO2004053582A1 publication Critical patent/WO2004053582A1/ja
Priority to US12/781,815 priority patent/US8025939B2/en
Priority to US13/212,072 priority patent/US8758871B2/en
Priority to US14/273,648 priority patent/US9405152B2/en
Priority to US15/194,138 priority patent/US20160377925A1/en
Priority to US16/809,083 priority patent/US11520186B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/548Macromolecular compounds stabilizing the alignment; Polymer stabilized alignment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • C09K2323/0271Polyimidfluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/08Materials and properties glass transition temperature

Definitions

  • Liquid crystal display device and method of manufacturing the same
  • the present invention relates to a so-called in-plane switching (IPS) type liquid crystal display device that operates by applying an electric field to a liquid crystal layer in a direction substantially parallel to a substrate, and a method of manufacturing the same.
  • IPS in-plane switching
  • the display of a liquid crystal display device changes the alignment direction of the liquid crystal molecules by applying an electric field to the liquid crystal molecules of the liquid crystal layer sandwiched between a pair of substrates, and the resulting change in the optical characteristics of the liquid crystal layer.
  • a so-called active drive type liquid crystal display device having a switching element such as a thin film transistor for each pixel is provided with electrodes on each of a pair of substrates sandwiching a liquid crystal layer, and a direction of an electric field applied to the liquid crystal layer is determined by a direction of a substrate interface.
  • TN twisted nematic
  • the electric field generated by using the comb electrodes formed on one of the pair of substrates has a substantially parallel component on the substrate surface, and the liquid crystal molecules constituting the liquid crystal layer are rotated substantially in the plane parallel to the substrate.
  • the IPS system that performs display using the birefringence of the crystal layer is described in “Patent Document 1,” “Patent Document 2,” “Patent Document 3,” “Patent Document 4,” “Patent Document 5,” etc. Is disclosed.
  • the IPS method has a wider viewing angle than the conventional TN method due to in-plane switching of liquid crystal molecules. It has advantages such as wide area and low load capacity, and is promising as a new liquid crystal display device replacing the TN method, and has been rapidly progressing in recent years.
  • Patent Document 6 discloses an IPS system in which at least one of a pair of electrodes for applying an electric field to a liquid crystal layer is made of a transparent conductive film to improve the transmittance.
  • IPS type liquid crystal display devices with excellent viewing angle characteristics (brightness contrast ratio, gradation and color reversal) and bright displays are suitable for monitors and televisions with a large display area. It is a powerful technology.
  • an alignment control film having a liquid crystal alignment control ability is formed at an interface between a pair of substrates sandwiching a liquid crystal layer and the liquid crystal layer.
  • the margin for applying alignment treatment to the alignment control film is significantly narrower than that of the conventional TN method, especially the currently open normally open TN method (bright display at low voltage and dark display at high voltage).
  • the reasons for the narrow margin are the following three points (1) to (3).
  • IPS-TFT-LCD it is necessary to arrange a large number of elongated electrodes (sometimes called inter digital electrodes) with a width of about several microns in principle. Therefore, a fine step structure is formed.
  • the size of the step is determined by the thickness of the electrode and the shape of various films formed thereon, but is usually 0.1 ⁇ m (mm) or more.
  • An alignment control film also referred to as an alignment film
  • a polymer film such as polyimide
  • the initial alignment direction must be set at a certain angle or more from the direction in which the electrode extends or the direction perpendicular to it in principle.
  • the electrodes refer to signal wiring electrodes, common electrodes in pixels, and pixel electrodes.
  • To define the direction of the initial alignment by rubbing it is necessary to rub the fiber at a predetermined angle with a fiber of about 10 to 30 microns as described above, but it is necessary to rub the signal wiring electrode, the common electrode in the pixel, and the pixel electrode. Due to the wiring extending in the direction and the step between the ends, the fibers are dragged in the step direction from the set angle, and the orientation is disturbed, thereby causing a decrease in image quality such as an increase in black level.
  • the human eye perceives luminance unevenness as a relative ratio of luminance and responds close to a logarithmic scale, so it is sensitive to fluctuations in dark level.
  • the conventional normally open TN method in which liquid crystal molecules are forcedly arranged in one direction at a high voltage, is advantageous because it becomes insensitive to the initial alignment state.
  • the IPS method displays dark levels at low voltage or zero voltage, and is therefore sensitive to disturbances in the initial alignment state.
  • the liquid crystal molecules are arranged in a homogenous arrangement in which the orientation directions are parallel to each other on the upper and lower substrates, the light transmission axis of one of the polarizing plates is parallel to the liquid crystal molecule orientation direction, and the other polarizing plate is orthogonal (birefringence In this mode, the polarized light incident on the liquid crystal layer propagates linearly polarized light with little disturbance. This is useful for lowering dark levels.
  • the transmittance T of the birefringent mode can be generally expressed by the following equation.
  • T T 0 ⁇ sin 2 ⁇ 2 ⁇ (E) ⁇ ⁇ sin 2 ⁇ ( ⁇ ⁇ d eff ⁇ ⁇ n) / ⁇
  • T Is a coefficient, a numerical value mainly determined by the transmittance of the polarizing plate used in the liquid crystal panel.
  • ⁇ ( ⁇ ) is the angle between the orientation direction of liquid crystal molecules (effective optical axis of the liquid crystal layer) and the polarization transmission axis. Is the applied electric field strength, deii is the effective thickness of the liquid crystal layer, ⁇ n is the refractive index anisotropy of the liquid crystal, and ⁇ is the wavelength of light.
  • the product of the effective thickness d eif of the liquid crystal layer and the refractive index anisotropy ⁇ n of the liquid crystal, ie, d eif ′ An, is referred to as retardation.
  • the thickness d eff of the liquid crystal layer here does not correspond to the thickness of the entire liquid crystal layer but to the thickness of the liquid crystal layer that actually changes the alignment direction when a voltage is applied. This is because the liquid crystal molecules near the interface of the liquid crystal layer do not change their orientation direction even when a voltage is applied due to the effect of anchoring at the interface.
  • the difference is used in a liquid crystal panel
  • the liquid crystal material and the interface in contact with the liquid crystal layer for example, the type of the alignment film material, it can be estimated to be approximately 20 nm to 40 nm.
  • the brightness can be adjusted by changing the angle 0 according to the electric field strength E.
  • the uniformity of orientation is a very important factor, and the problem of the rubbing method currently used is becoming clear.
  • the rubbing orientation treatment involves TFT damage due to static electricity generated by friction.
  • TFT damage due to static electricity generated by friction.
  • various methods have been proposed. Among them, a method has been proposed in which polarized ultraviolet light or the like is irradiated on the surface of a polymer film to align liquid crystal molecules without rubbing.
  • Non-patent Document 1 does not require a conventional rubbing treatment, and is characterized in that the liquid crystal is oriented in a certain direction by irradiation with polarized light. According to this method, there are no problems such as scratches on the film surface due to the rubbing method, static electricity, and the like, and there is an advantage that the manufacturing process is simpler in consideration of industrial production. It is attracting attention as a new liquid crystal alignment treatment method.
  • the need to obtain photochemical sensitivity to polarized light has been proposed as a liquid crystal alignment film material used in previous reports, and it has been proposed to use a polymer compound with a photoreactive group introduced into the side chain of the polymer. ing.
  • a typical example is polyvinyl cinnamate.
  • dimerization in a side chain portion by light irradiation causes anisotropy to be expressed in the polymer film to orient the liquid crystal.
  • Another proposal is to disperse a low-molecular dichroic azo dye in a polymer material and irradiate the film surface with polarized light to orient liquid crystal molecules in a certain direction. Have been.
  • liquid crystal molecules are oriented by irradiating a specific polyimide film with polarized ultraviolet light or the like.
  • the liquid crystal alignment is developed by the decomposition of the polyimide main chain in a certain direction by light irradiation.
  • Patent Document 1 Japanese Patent Publication No. 63-2-1907
  • Patent Document 2 US Patent Specification No. 4 3 4 5 2 4 9
  • Patent Document 3 WO 91/10993
  • Patent Document 4 Japanese Patent Application Laid-Open No. 6-22739
  • Patent Document 5 Japanese Patent Application Laid-Open No. 6-160708
  • Patent Document 6 JP-A-9-73101
  • Patent Document 7 Patent No. 3303766
  • Patent Document 8 Japanese Patent Application Laid-Open No. H11-111
  • Non-Patent Document 1 Gibbons et al., "Neichiya” 3 5 Volume 1, 4 page 9 (1 9 9 1 year) (. WM Gibbons ei al, ature, 351, 49 (1991)) 0 Disclosure of the Invention
  • an object of the present invention is to solve the above-described problem of the narrow manufacturing margin of the alignment process, which is a unique problem of the IPS-TFT-LCD, to reduce the occurrence of display defects due to the fluctuation of the initial alignment direction, Another object of the present invention is to provide a particularly large-sized liquid crystal display device which realizes a stable liquid crystal orientation and has a high contrast quality and high quality image quality. Another object of the present invention is to provide a method for manufacturing a high-quality, high-definition liquid crystal display device excellent in mass productivity.
  • the present invention provides a liquid crystal display device comprising: a pair of substrates, at least one of which is transparent; a liquid crystal layer disposed between the pair of substrates; An electrode group for applying an electric field having a component substantially parallel to the plane to the liquid crystal layer, a plurality of active elements connected to these electrodes, and at least one of the liquid crystal layer and the pair of substrates; And an optical unit formed on at least one of the pair of substrates and changing optical characteristics according to a molecular alignment state of the liquid crystal layer.
  • At least one of the control films is made of photoreactive polyimide and Z or polyamic acid, and is characterized in that it is irradiated with substantially linearly polarized light to form an alignment control film.
  • the present invention is characterized in that the major axis direction of the liquid crystal molecules in the liquid crystal layer on the alignment control film is orthogonal to the substantially linearly polarized light axis irradiated with the light.
  • the photoreactive alignment control film is a polyamic acid or polyimide composed of at least cyclobutanetetracarboxylic dianhydride as an acid anhydride and at least an aromatic diamine as a diamine.
  • the cyclobutanetetracarboxylic dianhydride and the derivative thereof are compounds represented by the following general formula [17].
  • the aromatic diamine compound is characterized by containing at least one compound selected from the group consisting of the following general formulas [18] to [32].
  • the thickness of the orientation control film is 1 nm to 50 nm, and
  • the DC voltage component (so-called residual DC voltage) remaining between the electrodes in each pixel of the liquid crystal display device is reduced. This makes it possible to improve the afterimage and image sticking characteristics.
  • the present invention is characterized in that the pretilt angle of the liquid crystal layer of the liquid crystal display device is 1 degree or less.
  • the end of the electrode step acts as a guide for the fiber of the lapping cloth, so that the fiber is drawn in the direction in which the step is elongated, or the fiber does not reach the corner of the step, and the orientation treatment can be performed. Without Orientation failure may occur.
  • the alignment state near the electrode step is conspicuous, and thus the present invention is effective.
  • the present invention works effectively when the transparent electrode is formed of an ion-doped titanium oxide film or an ion-doped zinc oxide film (Zn ⁇ ).
  • the liquid crystal alignment film may have poor adhesion to the underlying organic insulating film, and the The rubbing alignment treatment may cause display defects such as peeling of the alignment film. In such a case, the present invention is effective.
  • the present invention is particularly effective when the common electrode and the Z or pixel electrode are formed on an organic insulating film, and a liquid crystal alignment film is formed on the organic insulating film and the electrode. Further, the present invention is characterized in that alignment control directions of liquid crystal molecules at two interfaces between a liquid crystal layer and an alignment control film formed on the pair of substrates are substantially the same.
  • the present invention is characterized in that the liquid crystal alignment film is irradiated with polarized light to impart liquid crystal alignment processing.
  • the light wavelength of polarized light used for the alignment treatment is in the range of 200 to 40 nm.
  • the present invention is more effective when using substantially linearly polarized light of the first wavelength and at least two types of light of the second wavelength used for the alignment treatment. .
  • the present invention is characterized in that the liquid crystal alignment control film has a glass transition temperature of 250 ° C. or higher. Further, in the present invention, when imparting the liquid crystal alignment ability to the liquid crystal alignment film by polarized light irradiation, at least one treatment of heating, infrared irradiation, far infrared irradiation, electron beam irradiation, and radiation irradiation is added. By It works more effectively.
  • heating, infrared irradiation, far-infrared radiation, electron beam irradiation, and radiation irradiation are applied to accelerate the provision of liquid crystal alignment capability by polarized light irradiation. It is effective for promoting and stabilizing the liquid crystal alignment ability by inducing a cross-linking reaction and the like.
  • the present invention works more effectively when at least one of heating, infrared irradiation, far-infrared irradiation, electron beam irradiation, and radiation irradiation is performed with a time overlap with the polarized light irradiation treatment.
  • the present invention also effectively works by performing the imidization baking treatment and the polarized light irradiation treatment of the orientation control film with a time overlap.
  • the temperature of the alignment control film is 100 ° C. It is desirably in the range of 400 ° C. to 400 ° C., and more desirably in the range of 150 ° C. to 300 ° C. Heating, infrared irradiation, and far-infrared irradiation can also be used for imidizing and firing the alignment control film, which is effective.
  • the target contrast is 500: 1 or more, and the time during which the target afterimage is eliminated is within 5 minutes.
  • the time when the afterimage is eliminated is determined by a method defined in the following embodiment.
  • FIG. 1 is a sectional view of a pixel portion for explaining a pixel configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view and a sectional view of a pixel portion for explaining a pixel configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 3 is a sectional view of a pixel portion for explaining a pixel configuration of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 4 is a plan view and a cross-sectional view of a pixel portion for explaining a pixel configuration of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a pixel configuration of a liquid crystal display device for explaining an embodiment of the present invention.
  • FIG. 6 is a sectional view of a pixel configuration of a liquid crystal display device for explaining an embodiment of the present invention.
  • FIG. 7 is a sectional view of a pixel portion for explaining a pixel configuration of a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 8 is a plan view of a pixel portion for explaining a pixel configuration of a liquid crystal display device according to a fourth embodiment of the present invention.
  • a substrate on which an active element such as a thin film transistor is formed is referred to as an active matrix substrate.
  • an active matrix substrate When the opposite substrate has a color filter, this is also referred to as a color filter substrate.
  • FIG. 1 is a schematic cross-sectional view of the vicinity of one pixel for explaining a first embodiment of a liquid crystal display device according to the present invention.
  • FIG. 2 is a schematic diagram of an active matrix substrate illustrating a configuration near one pixel for explaining a first embodiment of the liquid crystal display device according to the present invention, and FIG. 2 (a) is a plan view.
  • FIG. 2 (b) is a sectional view taken along the line A—A ′ of FIG. 2 (a)
  • FIG. 2 (c) is a sectional view taken along the line B—B ′ of FIG. 2 (a). Is shown.
  • FIG. 1 corresponds to a part of the cross section taken along the line A- ⁇ 'in FIG. 2 (a).
  • FIG. 2 (c) The cross-sectional view of (c) is a schematic view with emphasis on the main components, and does not correspond one-to-one with the cut portions of the ⁇ _ ⁇ 'line and ⁇ —B' line in FIG. 2 (a).
  • FIG. 2 (b) does not show the semiconductor film 116
  • FIG. 2 (c) shows only one through hole connecting the counter electrode and the common wiring 120. is there.
  • a gate electrode (scanning signal electrode) 104 made of Cr (chrome) and a common wiring (common electrode wiring) 1 are formed on a glass substrate 101 as an active matrix substrate.
  • a gate insulating film 107 made of silicon nitride is formed so as to cover the gate electrode 104 and the common electrode wiring 120.
  • a semiconductor film 116 made of amorphous silicon or polysilicon is disposed on the gate electrode 104 via a gate insulating film 107, and serves as an active element of a thin film transistor (TFT) as an active element. It works.
  • drain electrode (video signal wiring) 106 and the source electrode (pixel electrode) 105 made of Cr ⁇ Mo (chromium / molybdenum) are formed so as to overlap a part of the pattern of the semiconductor film 116.
  • a protective film 108 made of silicon nitride is formed so as to cover all of them.
  • the common electrode wiring is formed through a through hole 103 ′ formed through the gate insulating film 107 and the protective film 108.
  • a common electrode (common electrode) 103 connected to 120 is arranged on the overcoat layer 112. Also, as can be seen from FIG. 2 (a), the common electrode wiring 120 through the through hole 103 'so as to face the pixel electrode 105 in one pixel area in plan view. The extracted common electrode 103 is formed.
  • the pixel electrode 105 Is disposed further below the protective film 108 below the organic protective film 112, and has a configuration in which the common electrode 103 is disposed on the organic protective film 112.
  • One pixel is configured in a region sandwiched between the plurality of pixel electrodes 105 and the common electrode 103.
  • the alignment control film 10 is formed on the surface of the active matrix substrate on which the unit pixels configured as described above are arranged in a matrix, that is, on the organic protective film 1 12 on which the common electrode 103 is formed. 9 are formed.
  • a color fill layer 1 1 1 1 is divided for each pixel by a light shielding section (black matrix) 1 1 3. It is disposed, and the color filter layer 111 and the light-shielding part 113 are covered with an organic protective film 112 made of a transparent insulating material. Further, an orientation control film 109 is also formed on the organic protective film 112 to constitute a color filter substrate.
  • These alignment control films 109 are provided with a liquid crystal alignment ability by irradiating linear polarized light of ultraviolet rays taken out using a pile polarizer having a quartz plate laminated using a high-pressure mercury lamp as a light source.
  • the surface of the alignment control film is crosslinked by heating or the like.
  • a glass substrate 101 constituting an active matrix substrate and a glass substrate 102 constituting a counter electrode are arranged to face each other on the surface of the alignment control film 109, and liquid crystal molecules 110 are formed therebetween. It is configured such that a liquid crystal layer (liquid crystal composition layer) 110 ′ is arranged. Further, a polarizing plate 114 is formed on each of the outer surfaces of the glass substrate 101 constituting the active matrix substrate and the glass substrate 102 constituting the counter electrode.
  • an active matrix type liquid crystal display device using thin film transistors that is, a TFT liquid crystal display device
  • the liquid crystal molecules 110 constituting the liquid crystal composition layer 110 ′ are oriented substantially parallel to the substrates 101 and 102 facing each other when no electric field is applied. It is homogeneously oriented in the state of the initial orientation defined by the photo-alignment treatment.
  • a voltage is applied to the gate electrode 104 to turn on the thin film transistor (TFT)
  • an electric field 117 occurs in the liquid crystal composition layer due to a potential difference between the pixel electrode 105 and the common electrode 103.
  • the applied liquid crystal molecules 110 constituting the liquid crystal composition layer change their directions in the direction of the electric field due to the interaction between the dielectric anisotropy of the liquid crystal composition and the electric field.
  • display can be performed by changing the light transmittance of the present liquid crystal display device by the refraction anisotropy of the liquid crystal composition layer and the action of the polarizing plate 114.
  • the organic protective film 112 may be made of a thermosetting resin such as an acrylic resin, an epoxy acrylic resin, or a polyimide resin, which is excellent in insulation and transparency. Further, as the organic protective film 112, a light-curable transparent resin may be used, or an inorganic material such as a polysiloxane resin may be used. Further, the organic protective film 112 may also serve as the orientation control film 109.
  • a thermosetting resin such as an acrylic resin, an epoxy acrylic resin, or a polyimide resin, which is excellent in insulation and transparency.
  • a light-curable transparent resin may be used, or an inorganic material such as a polysiloxane resin may be used. Further, the organic protective film 112 may also serve as the orientation control film 109.
  • the non-contact optical alignment method is used instead of the rubbing alignment treatment in which the liquid crystal alignment control ability of the alignment control film 109 is directly rubbed with a buff cloth. There is no local disturbance of the orientation near the electrodes, and uniform orientation can be provided over the entire display region.
  • FIG. 3 is a schematic cross-sectional view of the vicinity of one pixel for explaining a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an active matrix substrate illustrating a configuration near one pixel for explaining a second embodiment of the liquid crystal display device according to the present invention.
  • FIG. 4 (a) is a plan view
  • FIG. 3 (a) is a sectional view taken along the line AA ′
  • FIG. 4 (c) is a sectional view taken along the line BB ′ in FIG. 3 (a).
  • FIG. 3 shows a part of a section taken along the line A-A 'in FIG. 4 (a).
  • the cross-sectional views of FIGS. 4 (b) and 4 (c) are schematically shown with emphasis on the main components, and are indicated by lines A—A ′ and B— in FIG. 2 (a). It does not correspond one-to-one to the section of the B 'line.
  • the semiconductor film 116 is not shown in FIG. 2 (b).
  • a gate electrode 104 made of Cr and a common electrode wiring 120 are disposed on a glass substrate 101 constituting an active matrix substrate.
  • a gate insulating film 107 made of silicon nitride is formed so as to cover the gate electrode 104 and the common electrode wiring 120.
  • a semiconductor film 116 made of amorphous silicon or polysilicon is disposed on the gate electrode 104 via a gate insulating film 107 so as to function as an active layer of a thin film transistor (TFT) as an active element.
  • TFT thin film transistor
  • a drain electrode 106 and a source electrode (pixel electrode) 105 made of chromium / molybdenum are arranged so as to overlap a part of the pattern of the semiconductor film 116, and nitrided so as to cover all of them.
  • a protective film 108 made of silicon is formed.
  • the organic protective film 112 is made of, for example, a transparent material such as an acrylic resin.
  • the pixel electrode 1 0 5 IT_ ⁇ : is composed of a transparent electrode such as (I ⁇ 2 0 3 S ⁇ ).
  • the common electrode 103 is connected to the common electrode wiring 120 through a through hole 103 ′ penetrating the gate insulating film 107, the protective film 108, and the organic protective film 112.
  • the common electrode 103 which forms a pair with the pixel electrode 105 when an electric field for driving the liquid crystal is applied, is formed so as to planarly surround the area of one pixel. Also, The common electrode 103 is disposed on the overcoat layer 112 on the organic protective film 112. The common electrode 103 is arranged so as to hide the drain electrode 106, the scanning signal wiring 104, and the thin film transistor (TFT) as an active element, which are arranged in a lower layer when viewed from above.
  • the semiconductor film also serves as a light shielding layer for shielding the semiconductor film 116 from light.
  • An orientation control film 109 is formed on the common electrode 103 thus formed.
  • the color filter layer 111, the organic protective film 112, and the orientation control film 109 formed thereon are also formed on the glass 102 constituting the counter substrate.
  • the high-pressure mercury lamp is used as a light source, and the alignment control film 109 is irradiated with linearly polarized ultraviolet light extracted using a pile polarizer having a quartz plate laminated thereon. Noh is given.
  • the surface of the orientation control film is crosslinked by heating or the like.
  • the glass substrate 101 and the opposing substrate 102 are disposed to face each other on the surface on which the alignment control film 109 is formed, and a liquid crystal composition layer 110 ′ composed of liquid crystal molecules 110 is interposed therebetween. It is configured to be arranged.
  • a polarizing plate 114 is formed on each of the outer surfaces of the glass substrate 101 and the counter substrate 102.
  • the pixel electrode 105 is formed under the organic protective film 112 and the protective film 108. And a common electrode 103 is disposed on the pixel electrode 105 and the organic protective film 112. When the electric resistance of the common electrode 103 is sufficiently low, the common electrode 103 is formed in the lowermost layer.
  • the common electrode wiring 120 that is used can also serve as the common electrode wiring. In this case, the formation of the common electrode wirings 120 arranged in the lowermost layer and the processing of the through holes accompanying the formation can be omitted.
  • one pixel is constituted by a region surrounded by a common electrode 103 formed in a lattice shape, and together with the pixel electrode 105, It is arranged so that one pixel is divided into four regions. Further, the pixel electrode 105 and the common electrode 103 opposed thereto have a zigzag bent structure arranged in parallel with each other, and one pixel forms two or more sub-pixels. This has a structure that offsets the in-plane color tone change.
  • FIG. 5 is a schematic cross-sectional view of the vicinity of one pixel for explaining a third embodiment of the liquid crystal display device according to the present invention.
  • the same reference numerals as those in the drawings of the above embodiments correspond to the same functional portions.
  • the pixel electrode 105 arranged under the protective film 108 is pulled up onto the organic protective film 112 through the through hole 103 '. It was arranged on the same layer as the common electrode 103. With this configuration, the voltage for driving the liquid crystal can be further reduced.
  • the liquid crystal molecules 110 constituting the liquid crystal composition layer 110 ′ are opposed to the glass substrates 101 and 102 facing each other.
  • the surface is almost parallel to the surface, and is homogeneously oriented in the initial orientation direction defined by the photo-alignment treatment.
  • a voltage is applied to the gate electrode 104 to turn on the thin film transistor (TFT)
  • an electric field is applied to the liquid crystal composition layer 110 ′ by a potential difference between the pixel electrode 105 and the common electrode 103.
  • the liquid crystal molecules 110 are oriented in the direction of the electric field due to the interaction between the dielectric anisotropy of the liquid crystal composition and the electric field. change.
  • display can be performed by changing the light transmittance of the liquid crystal display device by the refractive anisotropy of the liquid crystal composition layer 110 'and the action of the polarizing plate 114.
  • the material of the transparent conductive film constituting at least one of the pixel electrode and the common electrode is not particularly limited, but is easy to process and has high reliability. It is preferable to use a transparent conductive film ion-doped in titanium oxide such as indium-tin-oxide (IT ⁇ ) or zinc oxide ion-doped in consideration of the size.
  • a transparent conductive film ion-doped in titanium oxide such as indium-tin-oxide (IT ⁇ ) or zinc oxide ion-doped in consideration of the size.
  • IT ⁇ indium-tin-oxide
  • the IPS method unlike the vertical electric field method represented by the conventional TN method, there is no need for an interface tilt with the substrate surface in principle, and it is known that the smaller the interface tilt angle, the better the viewing angle characteristics.
  • the alignment control film is formed through the above four-step process. Depending on the order of the processes 1 to 4, further effects are expected in the following cases.
  • the orientation of the liquid crystal can be accelerated and the cross-linking reaction can be induced to form a more effective alignment control film.
  • the orientation control ability is imparted by cleavage of the cyclobutane ring by irradiation of polarized light.
  • male midi occurs.
  • the polymer will be divided. The remainder of the low molecules is generated. As small molecules are generated, they become unstable to stress.
  • the surface of the unstable alignment control film due to the carbon-carbon double bond can be stabilized by the crosslinking reaction.
  • the process (1) can also serve as the imidation process (2), and the alignment control film can be formed in a short time.
  • the first example corresponds to the liquid crystal display device described in the first embodiment of the present invention.
  • a first embodiment of the present invention will be described in detail with reference to FIG. 1 and FIG.
  • the glass substrate 101 forming the active matrix substrate and the glass substrate 102 forming the counter substrate have a thickness of 0.7.
  • the thin film transistor 115 formed on the glass substrate 101 is composed of the pixel electrode 105, the signal electrode 106, the scanning electrode 104, and the amorphous silicon 116.
  • the scanning electrode 104, the common electrode wiring 120, the signal electrode 106, and the pixel electrode 105 are all formed by patterning a chromium film, and the space between the pixel electrode 105 and the common electrode 103 is formed.
  • the common electrode 103 and the pixel electrode 105 were made of chromium film with low resistance and easy set-up.However, a transparent electrode was constructed using an ITO film to provide higher brightness characteristics. It is also possible to achieve.
  • the gate insulating film 107 and the protective insulating film 108 were made of silicon nitride, and each had a thickness of 0.3 m. An acryl-based resin was applied thereon, and a transparent and insulating organic protective film 112 was formed by heat treatment at 220 ° C. for 1 hour.
  • the pixel electrode 105 is arranged between the three common electrodes 103 as shown in FIG. 2 (a), and the number of pixels is 1 0 2 4 X 3 (corresponding to R, G, B) 1 0 2 4 X 3 X 7 6 8 composed of 106 signal electrodes 106 and 768 scanning electrodes 104
  • An active matrix substrate was formed.
  • a polyamic acid composed of 4,4 ′ diaminostilbene represented by the general formula [33] and 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the general formula [34] is used as an orientation control film.
  • the varnish was adjusted to a resin concentration of 5% by weight, NMP at 40% by weight, abutyl lactone at 40% by weight, and a butyl ester solution at 15% by weight. It is imidized by heat treatment at 0 ° C. for 30 minutes to form a dense polyimide orientation control film 109 of about 70 nm.
  • the same polyamic acid varnish was printed and formed on the surface of the other glass substrate 102 on which the IT ⁇ film was formed, and was heat-treated at 220 ° C for 30 minutes to obtain about 70 nm.
  • An orientation control film 109 consisting of a dense polyimide film was formed.
  • polarized UV (ultraviolet) light was applied to the polyimide alignment control film 109 in order to impart liquid crystal alignment ability to the surface.
  • a high-pressure mercury lamp is used as the light source, and the light is extracted through an interference filter in the range of 240 11111 to 380 11111; a polarization ratio of about 10 is obtained using a pile polarizer in which a quartz substrate is laminated.
  • Irradiation was performed at an irradiation energy of about 5 J / cm 2 with 1 linearly polarized light.
  • the orientation direction of the liquid crystal molecules on the surface of the orientation control film was found to be orthogonal to the polarization direction of the irradiated polarized UV light.
  • these two glass substrates 101 and 102 are made of a spherical polymer bead made of spherical polymer beads dispersed with their surfaces having an alignment control film 109 having liquid crystal alignment ability facing each other.
  • a liquid crystal display panel (also referred to as a cell) to be a liquid crystal display device was assembled by applying a sealant to the periphery with a spacer interposed.
  • the liquid crystal orientation directions of the two glass substrates were substantially parallel to each other, and the angle between the directions and the direction of the applied electric field was 75 °.
  • the dielectric anisotropy ⁇ ⁇ is positive and its value is 10.2 (1 3 ⁇ 4: ⁇ ⁇ , 20), and the refractive index anisotropy ⁇ ⁇ is 0.075 (wavelength 590 nm, 20 ° C), the torsional elastic constant K2 is 7.0 pN, and the nematic-isotropic phase transition temperature T (N-I) is about 76 ° C. Then, it was sealed with a sealing material made of an ultraviolet curable resin. A liquid crystal panel with a liquid crystal layer thickness (gap) of 4.2 m was manufactured.
  • the retardation (And) of this liquid crystal display panel is about 0.31 m.
  • an alignment control film and a liquid crystal composition equivalent to those used for this panel A pre-tilt angle of the liquid crystal was about 0.2 degree when a liquid crystal display panel having a homogeneous orientation was prepared using the method described above, and the crystal tilt method was used.
  • This liquid crystal display panel was sandwiched between two polarizing plates 114, and one of the polarizing plates was arranged so that the polarization transmission axis was substantially parallel to the above-mentioned liquid crystal orientation direction, and the other was perpendicular to it. After that, a drive circuit and a backlight were connected to form a module, and an active matrix liquid crystal display device was obtained.
  • the normally leak characteristic is such that dark display is performed at a low voltage and bright display is performed at a high voltage.
  • the display quality of the liquid crystal display device according to the first embodiment of the present invention was evaluated. As a result, a high-quality display with a contrast ratio of 600: 1 was confirmed, and the display quality in the halftone display was high. The viewing angle was confirmed.
  • the evaluation was performed using an oscilloscope combined with a photodiode.
  • a window pattern is displayed on the screen at the maximum luminance for 30 minutes, and then the entire screen is switched so that the afterimage is most noticeable, where the luminance is 10% of the maximum luminance.
  • the time until the pattern disappears was evaluated as the afterimage relaxation time.
  • the afterimage relaxation time allowed here is 5 minutes or less.
  • the relaxation time of the afterimage is 1 minute or less, and even in the visual image quality afterimage inspection, there is no unevenness of the image due to image burn-in or afterimage. Characteristics were obtained.
  • optical alignment can provide liquid crystal alignment, but the anchoring energy, that is, the energy that binds the aligned liquid crystal molecules to the alignment film surface, is weaker than general rubbing alignment. If the anchoring energy is weak, the reliability of the LCD device as a product will be insufficient. It is said that. In particular, in the case of homogenous orientation, it is said that the azimuthal anchoring energy is more important than the polar angular anchoring energy.
  • the 1,3-dimethyl-1,2,3,4-cyclobutanetetrahydrochloride represented by the general formula [35] was used as an acid dianhydride.
  • a carboxylic acid dianhydride and a polyamic acid composed of m-phenylenediamine as a diamine compound represented by the general formula [36] are printed and formed on the substrate surface, and the imprint is obtained by firing at 230 ° C for 30 minutes.
  • the film was formed into a film having a thickness of about 50 nm.
  • the substrate was heated with a hot plate at 200 ° C, and the surface was subjected to photo-alignment treatment by light irradiation using polarized UV of KrF excimer laser wavelength of 248 nm and nitrogen laser of 337 nm.
  • photo-alignment treatment by light irradiation using polarized UV of KrF excimer laser wavelength of 248 nm and nitrogen laser of 337 nm.
  • the nematic liquid crystal composition A was encapsulated in the same manner as in the first example, and annealing was performed at 100 for 10 minutes to obtain a favorable liquid crystal alignment almost perpendicular to the above-mentioned irradiation polarization direction.
  • annealing was performed at 100 for 10 minutes to obtain a favorable liquid crystal alignment almost perpendicular to the above-mentioned irradiation polarization direction.
  • a liquid crystal display panel having a liquid crystal layer thickness d of 4.0 m was obtained.
  • a liquid crystal display panel having a homogeneous alignment was prepared using an alignment control film used for the liquid crystal display panel and a liquid crystal composition equivalent to the liquid crystal composition, and the pretilt angle of the liquid crystal was measured using a crystal aperture one-step method. It showed about 0.5 degrees.
  • a quantitative evaluation of the image burn-in time and the after-image relaxation time of this liquid crystal display device showed that the after-image relaxation time was about 1 minute in the operating temperature range of 0 ° C to 50 ° C. In the inspection, no display unevenness due to image printing or afterimage was observed, and high display characteristics equivalent to those of Example 1 were obtained.
  • pyromellitic dianhydride represented by the general formula [37] was used as an acid dianhydride in the same manner as in Example 1 except for the orientation control film.
  • a liquid crystal display panel was constructed using a polyamic acid varnish comprising P-phenylenediamine represented by the general formula [38] as a diamine compound.
  • the display quality was evaluated by the same method as in the first embodiment, a wide viewing angle almost equal to that of the liquid crystal display device of the first embodiment was confirmed. It was confirmed that the trust ratio was below 100: 1 for the entire area. Also, in the same manner as in the first embodiment, when the image burning and the relaxation time of the afterimage of this liquid crystal display device were quantitatively evaluated, the relaxation time of the afterimage was within the operating temperature range of 0 to 50 ° C. About 7 minutes, even in the visual afterimage inspection, the relaxation time of the afterimage was slow, and high display characteristics equivalent to Example 1 could not be obtained.
  • the value of A 2 was about 6.5 X 1 0- 4 NZm.
  • the acid dianhydride was 1,2,3,4-cyclobutanetetracarboxylic dianhydride shown in the general formula [39] and the general formula [40]
  • a liquid crystal display panel was prepared by preparing a polyamic acid varnish using a 6: 4 molar ratio of pyromellitic dianhydride shown in the following and using p-phenylenediamine shown in the general formula [41] as a diamine compound. . At that time, the thickness of the orientation control film was set to about 50 nm.
  • a 2 is from about 8 2 X 1 0 - was 4 NZ m..
  • composition ratio of acid anhydride 1,2,3,4-cyclobutanetetracarboxylic dianhydride and pyromellitic dianhydride is 4 : In the case of 6, the display characteristics were remarkably reduced as compared with the other cases. Note Contrast ratio 2 0 0: the value of A 2 of the first panel is approximately 2. 3 X 1 0 - was 4 NZ m.
  • a liquid crystal display panel was constructed in the same manner as in the first embodiment except for the alignment treatment.
  • the orientation treatment was as follows.
  • a polyamic mixture of 4,4 ′ diaminostyrene represented by the general formula [33] and 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the general formula [34] is used.
  • the acid varnish was adjusted to a resin concentration of 5% by weight, NMP 40% by weight, ⁇ -butyl lactone 40% by weight, and butyl cellosolve 15% by weight. It is imidized by heat treatment at 20 ° C. for 30 minutes to form a dense polyimide orientation control film 109 of about 70 nm.
  • a similar polyamic acid varnish is printed and formed on the surface of the other glass substrate 102 on which the ITO film is formed, and is heat-treated at 220 ° C. for 30 minutes to be about 100 nm.
  • An orientation control film 109 composed of a dense polyimide film was formed.
  • polarized UV (ultraviolet) light was applied to the polyimide alignment control film 109.
  • a high-pressure mercury lamp is used as the light source, and 1 is in the range of 240 11 01 to 38 01 111 through an interference filter; the light is extracted and the polarization ratio is determined using a pile polarizer with a quartz substrate laminated.
  • the display quality was evaluated by the same method as in the first embodiment, a wide viewing angle almost equivalent to that of the liquid crystal display device of the first embodiment was confirmed, but the contrast ratio was 100% over the entire surface. : It was confirmed that the display was less than 1. Further, in the same manner as in the first embodiment, when the image printing and the relaxation time of the afterimage of this liquid crystal display device were quantitatively evaluated, the operating temperature range from 0 to 50 was obtained. The afterimage relaxation time was about 5 minutes in the frame, and the afterimage relaxation time was slow even in the visual image afterimage inspection, so that high display characteristics equivalent to Example 1 could not be obtained.
  • a 2 is from about 0 5 X 1 0 - was 4 N / m..
  • a liquid crystal display panel was constructed in the same manner as in the first embodiment except for the alignment film.
  • the surface of the other glass substrate 102 has the same polyamic composition.
  • An acid varnish was printed and heat-treated at 220 ° C. for 30 minutes to form an orientation control film 109 consisting of a dense polyimide film of about 70 nm.
  • polarized UV (ultraviolet) light was applied to the polyimide alignment control film 109 while the substrate was heated to 200 ° C. by a hot plate.
  • a high-pressure mercury lamp is used as a light source, UV light in the range of 240 nm to 380 nm is extracted through an interference filter, and a polarization ratio of about 10 is obtained using a pile polarizer with a quartz substrate laminated. Irradiation was performed at an irradiation energy of about 5 JZ cm 2 with 1 linearly polarized light.
  • the orientation direction of the liquid crystal molecules on the surface of the orientation control film was found to be orthogonal to the polarization direction of the irradiated polarized UV light.
  • the display quality was evaluated by the same method as in the first embodiment, a wide viewing angle almost equivalent to that of the liquid crystal display device of the first embodiment was confirmed, but the contrast ratio was 20% over the entire surface. 0: It was confirmed that the display was less than 1.
  • the relaxation time of image sticking and afterimage of this liquid crystal display device was quantitatively evaluated. Approximately 5 minutes, even in the visual image persistence inspection, the relaxation time of the afterimage was slow, and high display characteristics equivalent to Example 1 could not be obtained.
  • a 2 was found to be about 0. 1 X 1 0- 4 NZ m.
  • a fourth example will be described with reference to FIGS. 3 and 4 as a specific configuration of the liquid crystal display device according to the second embodiment of the present invention.
  • a glass substrate having a thickness of 0.7 D1II1 and a polished surface is used as the glass substrates 101 and 102.
  • Thin-film transistors 115 are pixel electrodes 105, signal electrodes 106, and scanning electrodes 104 And amorphous silicon 116.
  • the scanning electrodes 104 pattern the aluminum film, the common electrode wirings 120 and the signal electrodes 106 pattern the chrome film, and the pixel electrodes 105 pattern the ITO film. As shown in FIG.
  • the electrodes other than the scanning electrode 104 were formed in an electrode wiring pattern bent in a zigzag pattern. At that time, the bending angle was set to 10 degrees.
  • the gate insulating film 107 and the protective insulating film 108 were made of silicon nitride, and each had a thickness of 0.3 m.
  • a through hole is formed in a cylindrical shape having a diameter of about 100 m up to the common electrode wiring 120 by photolithography and etching, and An acrylic resin was applied, and a 1 hour heat treatment at 220 ° C. was performed to form a transparent and insulating interlayer insulating film 112 having a dielectric constant of about 4 to a thickness of about 1 thickness.
  • This interlayer insulating film 112 flattened the unevenness caused by the step of the pixel electrode 105 in the display area and the step unevenness at the boundary of the color filter layer 111 between adjacent pixels.
  • the through hole was etched again to a diameter of about 7 and a common electrode 103 connected to the common electrode wiring 120 was formed thereon by patterning an ITO film.
  • the distance between the pixel electrode 105 and the common electrode 103 was 7 m.
  • the common electrode 103 was formed in a lattice shape so as to cover the video signal wiring 106, the scanning signal wiring 104, and the thin film transistor 115, and to surround the pixel, and also served as a light shielding layer.
  • the pixel electrode 105 is arranged between the three common electrodes 103 in the unit pixel, and the number of pixels is 10 24 X 3 ( R, G, and B)
  • An active matrix substrate consisting of 106 signal electrodes 106 and 76 8 scanning electrodes 104 is used. Obtained.
  • the orientation control film 109 1,2,3,4-cyclobutanetetracarboxylic dianhydride shown in the general formula [42] and 1,4 diaminonaphthylene shown in the general formula [43] were used.
  • An alignment control film having a thickness of about 40 nm was prepared using the polyamic acid varnish, and the polarized light was irradiated at the irradiation energy of about 3 J cm ⁇ 2 in the same manner as in Example 1 for the alignment treatment method. However, during the polarized UV irradiation, the substrate on which the orientation control film was formed was also heated at about 150 ° C. on a hot plate at the same time.
  • a sealing agent is applied to the periphery of the two glass substrates with the surfaces having the liquid crystal alignment films facing each other and a spacer made of dispersed spherical polymer beads interposed therebetween.
  • the liquid crystal display panel was assembled.
  • the liquid crystal alignment directions of the two glass substrates were almost parallel to each other, and the angle between the directions and the direction of the applied electric field was 75 °.
  • the liquid crystal display the value 1 0 dielectric anisotropy delta epsilon is positive to the panel.
  • 2 (1 k ⁇ ⁇ , 2 0 ° C) is the refractive index anisotropy ⁇ n to zero.
  • This panel was sandwiched between two polarizing plates 114, and one of the polarizing plates was arranged so that the polarization transmission axis was substantially parallel to the above-mentioned liquid crystal orientation direction, and the other was perpendicular to it. After that, a drive circuit and a backlight were connected to form a module, and an active matrix liquid crystal display device was obtained.
  • the normal leak characteristic is such that dark display is performed at a low voltage and bright display is performed at a high voltage.
  • the aperture ratio was higher than that of the liquid crystal display device of the first embodiment, and the contrast ratio was 600: 1.
  • a high-quality display was confirmed, and a wide viewing angle during halftone display was also confirmed.
  • the relaxation time of the afterimage in the operating temperature range of 0 ° C. to 50 ° C. Is about 1 minute. No display unevenness was observed, and high display characteristics equivalent to Example 1 were obtained.
  • orientation control film formed on the glass substrate was scraped off in the same manner as in the present example, and a differential scanning calorimeter (DSC; Differential Scanning) was used.
  • DSC differential scanning calorimeter
  • the glass transition temperature of the orientation control film was evaluated using Calorimetry
  • a clear glass transition point could not be confirmed in the temperature range from 50 ° C to 300 ° C. Therefore, it is considered that the glass transition temperature of the orientation control film of this example is equal to or higher than the measurement temperature upper limit of 300 ° C.
  • a 2 The value of A 2 is about 8. 6 X 1 0 - was 4 N / m.
  • a polyamic acid varnish consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the general formula [44] and 2,6-diaminonaphthalene represented by the general formula [45] is used as the orientation control film.
  • An alignment control film with a film thickness of about 5 O nm was fabricated using the method described above. The alignment treatment was performed using the same high-pressure mercury lamp as in the first embodiment using an interference filter and a quartz pile polarizer. Irradiation was performed at a polarization energy of about 3 J / cm 2 with polarized UV having a polarization ratio of 10: 1 in the wavelength range of 0 nm to 310 nm.
  • the liquid crystal display panel of the fifth embodiment was manufactured in the same manner as in the fourth embodiment.
  • the display quality of the liquid crystal display device obtained by using this liquid crystal display panel was evaluated, high quality display equivalent to that of the liquid crystal display device of the fourth example was confirmed. Also, a wide viewing angle during halftone display was confirmed. (Chemical Formula 4 4)
  • the image printing and the relaxation time of the afterimage of the liquid crystal display device of the fifth embodiment were quantitatively evaluated.
  • the relaxation time of the afterimage is 1 minute or less as in the fourth embodiment 4. Even in the visual image quality afterimage inspection, no image burn-in and no display unevenness due to the afterimage were observed, and high display characteristics were obtained.
  • the orientation control film formed on the glass substrate was scraped off in the same manner as in the fourth embodiment, and the glass transition temperature of the orientation control film was evaluated using a differential scanning calorimeter (DSC). A clear glass transition point could not be confirmed in the temperature range from 50 ° C. to 300 ° C. Therefore, the glass transition temperature of the orientation control film of this example was 300 ° C., which is the upper limit of the measurement temperature. ° C or higher.
  • the value of A 2 was about 6.8 X 1 0- 4 NZm.
  • the molar ratio of 3,3'-dimethyl-1,4 'diaminobiphenyl shown in [46] and 4,4'-diaminophenylthioether shown in general formula [47] is 1: 2
  • a polyamic acid varnish was prepared by using 1,3-difluoro-1,2,3,4-cyclobutanetetracarboxylic dianhydride shown in the general formula [48] as an acid anhydride, and a film thickness of about 30 nm was obtained. The film was formed.
  • the alignment treatment was performed using the same high-pressure mercury lamp as in Example 5 using an interference filter and a quartz pile polarizer with a polarization ratio of 10: 1 in the wavelength range of 240 nm to 310 nm. Irradiation was performed at about 3 J / cm 2 with UV irradiation. At the same time, soft X-rays were irradiated from a short distance using a soft X-ray generator.
  • a liquid crystal display device according to the sixth embodiment was made in the same manner as the fifth embodiment except for the above steps, and the display quality of the liquid crystal display device according to the sixth embodiment of the present invention was evaluated. High-quality display showing a higher contrast ratio than the liquid crystal display device of Example 5 was confirmed. In addition, a wide viewing angle during halftone display was also confirmed. This is presumably because the light leakage caused by the disorder of the orientation of the liquid crystal around the space which is randomly distributed in the pixels and which is seen in the liquid crystal display device of the fifth embodiment was completely removed.
  • the relaxation time of the afterimage was 1 as in the fifth embodiment. Min., And the image quality afterimage inspection by visual observation did not show any image burn-in or display unevenness due to the afterimage, and high display characteristics were obtained.
  • the value of A 2 is from about 1. 0 X 1 0- 3 NZm Deatta.
  • Example 4 Except for the alignment control film used and the alignment treatment conditions, the same procedure as in Example 4 was carried out, except that 9-methoxy 2,7-diaminofluorene was used as the diamine compound represented by the general formula [49].
  • Polyamic acid consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride was printed and formed on the substrate surface as the acid dianhydride shown in [50], and it was 30 minutes at 230 ° C. This was baked to obtain an imidized film having a thickness of about 50 nm.
  • a photo-alignment treatment was performed by irradiating a polarized UV of 337 nm of a nitrogen laser with an irradiation energy of about 3 J / cm 2 .
  • the temperature of the orientation control film was about 180 ° C.
  • the nematic liquid crystal composition A was sealed in the same manner as in the fourth example, and then annealed at 100 ° C. for 10 minutes to obtain a favorable liquid crystal alignment almost perpendicular to the above-mentioned irradiation polarization direction.
  • liquid crystal display device having a liquid crystal layer thickness d of 4.0 m was obtained.
  • a homogeneously aligned cell was prepared using the same alignment control film and liquid crystal composition as used for this panel, and the pretilt angle of the liquid crystal was measured using the crystal rotation method.
  • the crystal rotation method was measured using the crystal rotation method.
  • the display quality of the liquid crystal display device according to the seventh embodiment of the present invention was evaluated by the same method as that of the first embodiment.
  • the contrast ratio was almost the same as that of the liquid crystal display device of the first embodiment.
  • a high-quality display exceeding 600: 1 was confirmed over the entire surface, and a wide viewing angle in halftone display was also confirmed.
  • the relaxation time of the afterimage was 1 minute or less. In the visual image quality afterimage inspection, no image burn-in or display unevenness due to image lag was observed, and high display characteristics were obtained.
  • a 2 is from about 8. 0 X 1 0- 4 NZm Deatta.
  • the diamine compound was 2,7-diaminobiphenylene shown in the general formula [51] and the dianhydride was generally used as an acid dianhydride.
  • Polyamic acid consisting of 1,2,3,4-cyclobutanetetracarboxylic dianhydride shown in formula [52] is printed on the surface of the substrate, and baked for 30 minutes and imidized for 30 minutes. Was performed to form a film having a thickness of about 20 nm. After that, while irradiating the surface with far-infrared rays, the photo-alignment treatment was performed by irradiating light using polarized UV of 337 nm of nitrogen laser. Was done.
  • the temperature of the orientation control film at that time was about 200 ° C.
  • the nematic liquid crystal composition A was encapsulated in the same manner as in the fourth embodiment, and then annealed at 100 ° C. for 10 minutes to obtain a favorable liquid crystal in a direction substantially perpendicular to the irradiation polarization direction. An orientation was obtained.
  • a liquid crystal display device having a liquid crystal layer thickness d of 4.0 im was obtained.
  • a cell of homogenous orientation was prepared using the same orientation control film and liquid crystal composition as used for this panel, and the pretilt angle of the liquid crystal was measured using the crystal rotation method.
  • the crystal rotation method was measured using the crystal rotation method.
  • the alignment control film used in the present example can also be used to filter light from a high-pressure mercury lamp through an interference filter or a pile pile polarizer made of quartz. 0 0 nm to 3 to 8 0 nm cases irradiated with polarized UV wavelength range at an irradiation energy of about 3 J Zcm 2, it was found that higher display characteristics as described above can be obtained. Furthermore, it was found that the same high display characteristics as described above can be obtained by irradiating a polarized UV of 300 to 38 O nm while irradiating a carbon dioxide laser of 10.5 m with 200 mJ. Was.
  • a 2 was about 1. 0 X 1 0- 3 N / m.
  • a ninth embodiment of the present invention will be described with reference to FIG.
  • the thin-film transistor 115 is composed of a source electrode 105, a signal electrode 106, a scanning electrode 104, and amorphous silicon 116.
  • the scan electrode 104 was formed by patterning an aluminum film, and the common electrode wiring 120, the signal electrode 106, and the source electrode 105 were formed by patterning a chromium film.
  • the gate insulating film 107 and the protective insulating film 108 were made of silicon nitride, and each had a thickness of 0.3 im.
  • a through hole is formed in a cylindrical shape having a diameter of about 1 O ⁇ m up to the source electrode 105 by photolithography and etching, and the source electrode 105 is formed thereon.
  • the pixel electrode 105 connected to the substrate was formed by patterning the IT film.
  • a through hole was formed in a cylindrical shape having a diameter of about 10 m, and the ITO film was patterned thereon to form the common electrode 103.
  • the distance between the pixel electrode 105 and the common electrode 103 was 7 m, and the electrode wiring pattern other than the scanning electrode 104 was formed in a zigzag bent electrode wiring pattern.
  • the bending angle was set to 10 degrees.
  • the common electrode 103 was formed in a lattice shape so as to cover the video signal wiring 106, the scanning signal wiring 104, and the thin film transistor 115, and to surround the pixels, and also served as a light shielding layer.
  • the pixel electrode 105 is arranged between the three common electrodes 103 in substantially the same manner as in Example 4 except that two types of through holes are formed in the unit pixel.
  • the number of pixels is composed of 102 4 X 3 (corresponding to R, G, B) signal electrodes 106 and 768 scanning electrodes 104.
  • An active matrix substrate of 768 was formed.
  • a liquid crystal display device according to a ninth embodiment was manufactured as shown in FIG. 5 in the same manner as in the fourth embodiment except for the pixel structure and the alignment control film used as described above.
  • the alignment control film used in the present example was 2,6 diamino, 9,10-dimethylanthracene represented by the general formula [53] as diamine, and 4,4'-diamino represented by the general formula [54].
  • tetracarboxylic dianhydride and 1,2,3,4-cyclobutanetetracarboxylic dianhydride shown in the general formula [56] were synthesized in a molar ratio of 1: 2
  • An alignment control film with a thickness of about 20 nm was prepared.
  • a 2 was about 8. 1 X 1 0- 4 N / m.
  • FIG. 6 is a schematic cross-sectional view of the vicinity of one pixel for explaining a tenth embodiment of the liquid crystal display device according to the present invention.
  • the thin film transistor 115 is composed of a pixel electrode 105, a signal electrode 106, a scanning electrode 104 and amorphous silicon 116.
  • the scanning electrode 104, the common electrode wiring 120 and the signal electrode 106, the pixel electrode 105 and the common electrode 103 are all formed by patterning a chrome film, and the pixel electrode 105 and the common electrode are formed.
  • the interval from 103 was 7 im.
  • the gate insulating film 107 and the protective insulating film 108 were made of silicon nitride, and each had a thickness of 0.3 m.
  • Polyamic acid varnish consisting of 1,4-cyclobutanetetracarboxylic dianhydride was printed on the substrate surface, baked at 230 ° C for 30 minutes, and imidized to a film thickness of about 20 nm. Filmed.
  • Example 6 was produced in the same manner as Example 1 except for the pixel structure.
  • the display quality of the liquid crystal display device of this example was evaluated, high-quality display equivalent to that of the liquid crystal display device of the first example was confirmed, and a wide viewing angle at the time of halftone display was also confirmed.
  • the afterimage relaxation time was 2 minutes or less. In image quality afterimage inspection by visual inspection, no image burn-in or display failure due to image retention was observed.
  • the value of A 2 was about 6.0 X 1 0- 4 NZm.
  • Example 10 Except for the composition of the used alignment control film and the method of forming the alignment control film and performing the alignment treatment, the same procedure as in Example 10 was carried out, and the diamine compound of the alignment control film of this example was represented by the general formula [60].
  • a polyamic acid varnish consisting of 7,7-diaminophenanthrene and 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the general formula [61] as an acid dianhydride is printed and formed on the substrate surface. Then, leveling was performed by heat treatment at 90 ° C for 2 minutes to form a film with a thickness of about 35 nm.
  • the surface is irradiated with far-infrared rays, and while maintaining the film surface at about 230 ° C, the light from the high-pressure mercury lamp is passed through an interference filter, a pile polarizer of Ishihide 220 to 380 the polarized UV of nm is subjected to irradiation by light alignment treatment with irradiation energy of about 3 J Zcni 2.
  • the thickness of the orientation control film after the treatment was about 25 nm. (Chemical 60)
  • a liquid crystal display device of the present example as shown in FIG. 6 was prepared in the same manner as in the tenth example, and after the nematic liquid crystal composition A was sealed therein, the temperature was reduced to 100 ° C. for 10 minutes. Annealing was performed to obtain good liquid crystal alignment in a direction substantially perpendicular to the above-mentioned irradiation polarization direction. Thus, a liquid crystal display device having a liquid crystal layer thickness d of 4 was obtained.
  • a homogeneously aligned cell was prepared using the same alignment control film and liquid crystal composition as used for this panel, and the pretilt angle of the liquid crystal was measured using the crystal rotation method.
  • the crystal rotation method was measured using the crystal rotation method.
  • a 2 was about 7. 2 X 1 0- 4 NZm.
  • the diamine compound of the alignment control film of this example was represented by the general formula [62] in the same manner as in Example 9.
  • a polyamic acid varnish consisting of 0-diaminoanthracene and 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the general formula [63] as an acid dianhydride is printed and formed on the substrate surface.
  • leveling was performed by heat treatment for 2 minutes to form a film having a thickness of about 30 nm.
  • the surface is irradiated with far-infrared rays, and while keeping the film surface at about 240 ° C, the light from the high-pressure mercury lamp is passed through an interference filter and a pile polarizer from Ishihide to 220-28.
  • the film was irradiated with polarized UV in the wavelength range of 0 nm at an irradiation energy of about 3 Jcm 2 , and subjected to an imidation baking treatment and a light directing treatment.
  • the thickness of the orientation control film after the treatment was about 26 nm. (Chem. 6 2)
  • Example 12 a liquid crystal display device of Example 12 as shown in FIG. 5 was prepared in the same manner as in Example 9, and the nematic liquid crystal composition A was sealed therein. By performing annealing, a good liquid crystal orientation was obtained in a direction substantially parallel to the above-mentioned irradiation polarization direction. Thus, a liquid crystal display device having a liquid crystal layer thickness d of 4.0 m was obtained. A homogeneous alignment cell was fabricated using the same alignment control film and liquid crystal composition as used for this panel, and the pretilt angle of the liquid crystal was measured using the crystal rotation method. Next, the display quality of the liquid crystal display device according to the seventh embodiment of the present invention was evaluated in the same manner as in the first embodiment.
  • FIG. 7 As a specific configuration of a liquid crystal display device according to a fourth embodiment of the present invention, a thirteenth example will be described with reference to FIGS. 7 and 8.
  • FIG. 7 As a specific configuration of a liquid crystal display device according to a fourth embodiment of the present invention, a thirteenth example will be described with reference to FIGS. 7 and 8.
  • FIG. 7 As a specific configuration of a liquid crystal display device according to a fourth embodiment of the present invention, a thirteenth example will be described with reference to FIGS. 7 and 8.
  • a glass substrate having a thickness of 0.7 mm and a polished surface is used as the substrate 101.
  • an insulating film 107, a thin-film transistor 115, a thin-film transistor 115 to prevent a short circuit of the electrodes 103, 105, 106, and 104 and the electrode 110 5 is formed to form a TFT substrate.
  • FIG. 8 shows the structure of the thin film transistor 115 and the electrodes 103, 105, 106.
  • the thin film transistor 115 is composed of a pixel electrode 105, a signal electrode 106, a scanning electrode 104, and amorphous silicon 116.
  • the scan electrode 104 is patterned with an aluminum film
  • the signal electrode 106 is patterned with a chromium film
  • the common electrode 103 and the pixel electrode 105 are connected to the Is formed by patterning.
  • the insulating film 107 and the protective insulating film 108 are made of silicon nitride, and have a thickness of 0.2 Atm and 0.3 m, respectively.
  • the capacitor is formed to have a structure in which the pixel electrodes 105 and the common electrode 103 sandwich the insulating films 107 and 108.
  • the pixel electrode 105 is arranged so as to overlap the upper layer of the solid common electrode 103.
  • the number of pixels is composed of 102 4 X 3 (corresponding to R, G, B) signal electrodes 106 and 76 8 scanning electrodes 104. Eight.
  • a color filter 111 with a black matrix 113 having the same configuration as that of the liquid crystal display device according to the first embodiment of the present invention was formed to form a counter color filter substrate.
  • a polyamic acid varnish composed of 4,4 ′ diaminodiphenylamine and 1,3-dichloro-1,2,3,4-cyclobutanetetracarboxylic dianhydride was used as an alignment control film, and the resin concentration was 5%.
  • % By weight, 40% by weight of NMP, 40% by weight of abutyl lactone, 15% by weight of butyl cellulose, and print-formed on the above active matrix substrate, and heat-treated at 220 for 30 minutes. It is imidized to form a dense polyimide orientation control film 109 of about 70 nm.
  • the same polyamic acid varnish is printed and formed on the surface of the other glass substrate 102 on which IT 0 is formed, and is subjected to a heat treatment at 220 ° C. for 30 minutes to obtain about 70 nm.
  • An orientation control film 109 consisting of a dense polyimide film was formed.
  • polarized UV (ultraviolet) light was applied to the polyimide alignment control film 109 while irradiating the surface with far infrared rays.
  • a high-pressure mercury lamp is used as a light source, and UV light in the range of 240 nm to 38 O nm is extracted through an interference filter, and a quartz substrate is laminated.
  • the light was converted to linearly polarized light having a polarization ratio of about 10: 1 and irradiated with irradiation energy of about 5 JZ cm 2 .
  • the temperature of the orientation control film was about 120 ° C.
  • the orientation direction of the liquid crystal molecules on the orientation control film surface was orthogonal to the polarization direction of the irradiated polarized UV.
  • the orientation directions of the orientation control films 109 on the TF ⁇ substrate and the color filter substrate were substantially parallel to each other, and the angle formed by the direction of the applied electric field 117 was 15 degrees.
  • Polymer beads having an average particle size of 4 m were dispersed as a spacer between these substrates, and a liquid crystal 110 was sandwiched between the TFT substrate and the color filter substrate.
  • the same liquid crystal composition A as in Example 1 was used for the liquid crystal 110.
  • the two polarizing plates 114 sandwiching the TFT substrate and the color filter substrate were arranged in crossed Nicols.
  • a normally closed characteristic is adopted, which takes a dark state at low voltage and a bright state at high voltage.
  • the configuration of the system for driving the liquid crystal display device according to the thirteenth embodiment of the present invention is the same as that of the first embodiment, and thus the details of the configuration are omitted.
  • the aperture ratio was higher than that of the liquid crystal display device according to the first embodiment, and the contrast ratio was 6500:
  • the high-quality display of No. 1 was confirmed, and the wide viewing angle at the halftone display was also confirmed.
  • the relaxation time of the afterimage was approximately 0 in the operating temperature range of 0 to 50. This was 1 minute, and the visual image quality afterimage inspection did not show any image burn-in or display unevenness due to the afterimage, and high display characteristics equivalent to Example 1 were obtained.
  • Example 1 azimuthal direction of the liquid crystal alignment layer interface in the same manner as Ankari in g Energy A 2, about 1. 0 XI 0- 3 N / m or more values were obtained.
  • the present invention in the IPS mode liquid crystal display device, the inherent problem that the production margin of the alignment treatment is narrow is solved, and the occurrence of display defects due to the fluctuation of the initial alignment direction is caused.
  • a liquid crystal display device that realizes stable liquid crystal alignment, has excellent mass productivity, and has a high contrast ratio and high quality image quality.

Abstract

IPS方式の液晶表示装置における液晶配向制御膜の初期配同方向の変動による表示不良の発生を低減し、かつ安定な液晶配向を実現し、量産性に優れ、かつコントラスト比を高めた高品位の画質を有する液晶表示装置を提供する。少なくとも一方が透明な一対の基板間に配置された液晶層と、該液晶層と基板との間に形成される配向制御とを有し、この配向制御膜109の少なくとも一方が光反応性のポリイミドおよび/またはポリアミック酸からなり、その配向制御膜能がほぼ直線に偏光した光を照射して付与されている。

Description

液晶表示装置およびその製造方法 技術分野
本発明は、 基板に対してほぼ平行方向に電界を液晶層に印加して動作 させる、 いわゆるインプレーン ' スイッチング (In-plane Switching: I P S ) 方式の液晶表示装置とその田製造方法に関する。 背景技術
通常、 液晶表示装置の表示は、 一対の基板間に挟まれた液晶層の液晶 分子に電界を印加することにより液晶分子の配向方向を変化させ、 それ により生じた液晶層の光学特性の変化により行われる。 従来、 画素毎に 薄膜トランジスタ等のスイッチング素子を備えた、 所謂ァクティブ駆動 型液晶表示装置は、 液晶層を挟持する一対に基板のそれぞれに電極を設 け、 液晶層に印加する電界の方向が基板界面に対してほぼ垂直になるよ うに設定され、 液晶層を構成する液晶分子の光旋光性を利用して表示を 行うツイステツ ドネマチック (Twisted Nemaiic : TN) 表示方式に代 表される。 この T N方式の液晶表示装置においては視野角が狭いことが 最大の課題とされている。
一方、 一対の基板の一方に形成した櫛歯電極を用いて発生する電界が 当該基板面にほぼ平行成分を有するようにして液晶層を構成する液晶分 子をほぼ基板と平行面内で回転動作させ、 裨晶層の複屈折性を用いて表 示を行う I P S方式が、 「特許文献 1」 , 「特許文献 2」 , 「特許文献 3」 , 「特許文献 4」 , 「特許文献 5」 等に開示されている。 この I P S方式は 液晶分子の面内スィツチングに起因して従来の TN方式に比べて視野角 が広く、 低負荷容量である、 などの利点があり、 TN方式に代わる新た な液晶表示装置として有望視され近年急速に進歩している。 また、 液晶 層に電界を印加するための対の電極の少なくとも何れか一方を透明導電 膜で構成することにより、 透過率を向上させた I P S方式が 「特許文献 6」 に開示されている。
このような視角特性 (輝度コントラスト比,階調 · 色調反転) に優れ、 表示の明るい I P S方式の液晶表示装置 ( I P S—T F T— L C Dと略 称する) は、 表示領域が大きなモニターやテレビなどへ向けた有力な技 術である。 液晶表示装置では、 液晶層を挟持する一対の基板の当該液晶 層との界面には液晶配向制御能を付与した配向制御膜が形成される。 し かし、 今後 2 0型以上のより大きな画面に対応した I P S— T F T— L C Dを実用化するには、 サイズの大きい表示装置 (大型パネル) 用の 新しい構造やプロセスの開発が必要である。
特に、液晶層に対面する表面に段差構造が多い I P S— T F T— LCD においては、 配向制御膜に大画面にわたって均一な配向処理を施すこと は困難である。 配向制御膜に配向処理を施す際のマージンは、 従来型の TN方式、 とりわけ現在生流のノーマリオープン型 T N方式 (低電圧で 明表示, 高電圧で暗表示) に比べて著しく狭い。 マージンが狭い理由は 以下の ( 1 ) 〜 ( 3 ) に説明する 3点である。
( 1 ) 段差構造
I P S— T F T— L CDにおいては、 原理上数ミクロン程度の幅を持 つ細長い電極 (櫛歯電極 (Inter digital electrode ) と称する場合も ある) を多数配設する必要がある。 そのため、 微細な段差構造が形成さ れる。 段差の大きさは電極の厚みやその上に形成される各種の膜の形状 により決まるが、 通常 0. 1ミクロン (mm) 以上である。 これらの膜の 最上層にポリイミ ド等の高分子膜からなる配向制御膜 (配向膜とも称す る) が形成される。
従来の量産技術においてはこの配向制御膜上をラビング処理し、 液晶 配向能 (初期配向) を付与する。 一方で、 ラビング用の布は、 太さが
1 0〜 3 0ミクロン程度の細い繊維を束ねて構成されており、 実質的に はこの細い繊維一本一本が配向膜の局所的な部分に一定方向の剪断力を 与えることで液晶配向能を付与する処理がなされる。 繊維としては数ミ ク口ン程度の極細繊維も存在するが、 ラビング用としてはある程度の摩 擦力を付与するための剛性が要求されることから、 このような極細繊維 を用いたものは実用化されていない。 I P S方式での電極間隔も上記繊 維の径と同程度の 1 0〜 3 0ミクロン程度であるため、 段差近傍のラビ ングは十分になされず、 配向が乱れやすい。 この配向の乱れは黒レベル の上昇、 ならびにそれによるコントラスト比の低下や、 輝度の不均一性 といった画質の低下を引き起こす。
( 2 ) 配向角
I P S— T F T— L C Dにおいては、 初期配向方向は原理上電極が伸 びた方向、 或いはそれと垂直な方向からある一定以上の角度をもってず らして設定する必要がある。 ここで電極とは、 信号配線電極, 画素内の 共通電極,画素電極を指す。初期配向の方向をラビングで規定するには、 前述のように 1 0〜 3 0ミクロン程度の繊維で所定角度方向に擦る必要 があるが、 信号配線電極, 画素内の共通電極, 画素電極といった一定方 向に伸びた配線とその端部の段差により、 設定の角度から段差方向に繊 維が引きずられてしまい配向が乱れ、 それによる黒レベルの上昇などの 画質の低下を引き起こす。
( 3 ) 暗レベルの沈み込み I P S— T F T— L C Dの特徴の一つとして、 暗レベル (黒表示) の 沈み込みが良好である点が挙げられる。 そのため、 他の方式に比較して 配向の乱れが目立ちやすい。 従来のノーマリオープン型 TN方式では暗 レベルが高電圧を印加した状態で得られる。 この場合、 高電圧では液晶 分子のほとんどが基板面に垂直な一方向である電界方向に揃っており、 その液晶分子配列と偏光板の配置との関係で暗レベルが得られている。 従って、 暗レベルの均一性は原理上低電圧時の初期配向状態にはあまり 依存しない。 更に、 人間の目は、 輝度のムラを輝度の相対的な比率とし て認識し、 かつ対数スケールに近い反応をするため、 暗レベルの変動に は敏感である。 この観点からも高電圧で強制的に一方向に液晶分子を配 列させる従来のノーマリオープン型 TN方式では、 初期配向状熊に鈍感 になり有利である。
一方、 I P S方式では低電圧或いは電圧ゼロにおいて暗レベルの表示 をするため、 初期配向状態の乱れには敏感である。 特に、 液晶分子配向 方向を上下基板上で互いに平行とするホモジニァス配列とし、 かつ一方 の偏光板の光透過軸をその液晶分子配向方向に平行、 他方の偏光板を直 交とした配置 (複屈折モードと呼ばれる) では、 液晶層に入射した偏光 光は直線偏光をほとんど乱されずに伝搬する。 このことは暗レベルを沈 み込ませるのに有効である。
複屈折モードの透過率 Tは、 一般に、 次の式で表せる。
T = T 0 · sin2 { 2 θ (E ) } · sin2 { (π · d e f f · Δ n)/ λ } ここで、 T。は係数で、 主として液晶パネルに使用される偏光板の透 過率で決まる数値、 θ (Ε)は液晶分子の配向方向 (液晶層の実効的な光 軸) と偏光透過軸のなす角度、 Εは印加電界強度、 d e i iは液晶層の実 効的な厚さ、 Δ nは液晶の屈折率異方性、 λは光の波長を表す。 また、 ここで、 液晶層の実効的な厚さ d e i f と液晶の屈折率異方性 Δ nの積、 すなわち d e i f ' A nをリタデーシヨンという。 なお、 ここでの液晶層 の厚さ d e f f は液晶層全体の厚さではなく、 電圧が印加されたとき、 実 際に配向方向を変える液晶層の厚さに相当する。 何故なら、 液晶層の界 面近傍の液晶分子は、 界面でのアンカリングの影響により、 電圧が印加 されてもその配向方向を変えないためである。 従って、 基板によって挾 持された液晶層全体の厚さを d L Cとすると、 この厚さ と d e i f の間 には、 常に d e f f < d乙 cの関係があり、 その差は液晶パネルに用いる 液晶材料と、 液晶層と接する界面、 例えば配向膜材料の種類によって異 なるが、 概ね 2 0 nm〜 4 0 nm程度と見積もることができる。
上記の式から明らかなように、 電界強度に依存するのは
sin2 { 2 0 (E)} の項であり、 角度 0を電界強度 Eに応じて変えること で輝度が調整できる。 ノーマリクローズ型にするには電圧無印加時に Θ = 0度となるよう偏光板を設定するため、 初期配向方向の乱れに敏感に なるように作用する。
このように I P S方式では、 配向均一性が非常に重要な要素であり、 現在用いられているラビング法の問題が明らかになってきている。 一般 的に、 ラピング配向処理には摩擦により発生する静電気による T F T破 損ゃラビング布の毛先の乱れや塵による配向乱れによる表示不良、 さら にはラビング布の交換頻度が多いなどラビング処理法に関わる問題が多 い。 これらのラビング配向処理の問題を解決する目的で、 ラビングなし で液晶の配向させるいわゆる 「ラピングレス」 配向法が検討され、 様々 な方法が提案されている。 そのなかでも、 偏光した紫外線等を高分子膜 の表面に照射し、 ラビング処理をすることなく液晶分子を配向させる方 法が提案されている。 その例として 「非特許文献 1」 に開示された方法は、 従来のラビング 処理を必要とせず、 偏光した光照射により一定方向に液晶を配向させる ことが特徴である。 この方法によれば、 ラビング法による膜表面の傷や 静電気等の問題がなく、 また工業的な生産を考慮した際の製造プロセス としてより簡便であることが利点であり、 今後のラビング処理を用いな い新たな液晶配向処理方法として注目されている。
これまでの報告で使用されている液晶配向膜材料として、 偏光した光 に対する光化学的感度を得る必要性から、 高分子の側鎖に光反応性基を 導入した高分子化合物を用いることが提案されている。 その代表的な例 としてポリビニルシンナメートが挙げられるが、 この場合光照射による 側鎖部分での二量化により高分子膜中に異方性を発現し液晶を配向させ るものと考えられている。 また、 その他として高分子材料中に低分子の 二色性ァゾ色素を分散し、 この膜表面に対して偏光した光を照射するこ とで一定の方向に液晶分子を配向させうることが提案されている。 また さらには、 特定のポリイミ ド膜に偏光した紫外線等を照射することによ つて液晶分子が配向することが報告されている。この場合光照射により、 一定方向のポリィミ ド主鎖が分解することにより液晶配向を発現してい るものと考えられる。
特許文献 1 : 特公昭 6 3— 2 1 9 0 7号公報
特許文献 2 : 米国特許明細書第 4 3 4 5 2 4 9号
特許文献 3 : W O 9 1 / 1 0 9 3 6号公報
特許文献 4 : 特開平 6— 2 2 7 3 9号公報
特許文献 5 : 特開平 6 - 1 6 0 8 7 8号公報
特許文献 6 : 特開平 9 - 7 3 1 0 1号公報
特許文献 7 : 特許第 3 3 0 3 7 6 6号明細書 特許文献 8 : 特開平 1 1 一 2 1 8 7 6 5号公報
非特許文献 1 : ギボンズら、 「ネイチヤー」 3 5 1巻、 4 9ページ ( 1 9 9 1年) (W.M. Gibbons ei al. , ature, 351, 49 (1991) )0 発明の開示
このようにラビング配向法の問題点を解決するラビングレス配向法と して光照射による光配向法が提案, 検討されているが、 実用上以下のよ うな問題点を抱えている。 ポリビニルシンナメ一ト等に代表される高分 子側鎖に光反応性基を導入した高分子材料系では、 配向の熱安定性が十 分ではなく実用性の面ではまだ十分な信頼性が得られてはいない。 また この場合、 液晶の配向を発現させる構造部位が高分子の側鎖部分である と考えられることから、 液晶分子をより均一に配向させ、 かつより強い 配向を得る上では必ずしも好ましいとは言い難い。 また低分子の二色性 色素を高分子中に分散した場合には、 液晶を配向させる色素自体が低分 子であり、 実用的な観点からみて熱的、 あるいは光に対する信頼性の面 で課題が残されている。
さらに、 特定のポリイミ ドに偏光した紫外線を照射する方法において は、 ポリイミ ド自体としては耐熱性等の信頼性は高いものの、 その配向 機構が光による分解に起因していると考えられることから、 実用面にお いて十分な信頼性を確保するのが困難である。 すなわち、 今後この偏光 照射を用いた液晶配向を実際に応用する場合には、 液晶を単に初期的に 配向させるだけでなく、 信頼性の観点から、 より安定な配向を発現させ ることが必要とされる。 また実際の工業的な応用を考えた場合、 熱的に も安定な高分子構造を選択することが望まれている。 これらの点で、 従 来光照射による液晶配向に対して提案されている高分子材料は配向力お W
8
よびその安定性の面で必ずしも十分ではなく、 光照射によるラビングレ ス配向を実現する大きな課題となっているのが実情である。
したがって、 本発明の目的は、 以上のような I P S— T F T— L C D の固有の問題である配向処理の製造マージンが狭いという問題を解決し、 初期配向方向の変動による表示不良の発生を低減し、 且つ安定な液晶配 向を実現し、 コントラスト比を高めた高品位な画質を有する特に大型の 液晶表示装置を提供することにある。 また本発明の他の目的は、 量産性 に優れた高画質 · 高精細度の液晶表示装置の製造方法を提供することに ある。
上記目的を達成するため、 本発明は、 少なく とも一方が透明な一対の 基板と、 前記一対の基板間に配置された液晶層と、 前記一対の基板の一 方の基板に形成され、 この基板面にほぼ平行成分を持った電界を前記液 晶層に印加するための電極群およびこれらの電極に接続された複数のァ クティブ素子と、 前記液晶層と前記一対の基板の少なくともどちらか一 方の基板の間に配置された配向制御膜と、 前記一対の基板の少なくとも どちらか一方の基板に形成され前記液晶層の分子配向状態に応じて光学 特性を変える光学手段とを有し、 前記配向制御膜の少なく とも一方が、 光反応性のポリイミ ドおよび Zまたはポリアミック酸からなり、 ほぼ直 線に偏光した光を照射して配向制御膜を形成することを特徴とする。
また本発明は.、 配向制御膜上の液晶層中の液晶分子の長軸方向が、 光 照射したほぼ直線に偏光した偏光軸と直交していることを特徴とする。 特に、 光反応性の配向制御膜が、 酸無水物として少なく ともシクロブ夕 ンテトラカルボン酸 2無水物, ジァミンとして少なく とも芳香族ジアミ ンから構成されるポリアミック酸またはポリイミ ドであることが望まし い。 また、 シクロブタンテトラカルボン酸 2無水物およびその誘導体が、 下記一般式 〔 1 7〕 で示される化合物であることを特徴とする。
〔化 1 7〕
"-〔17〕
Figure imgf000011_0001
(但し、 一般式 〔 1 7〕 において R l R 2 , R 3, R 4はそれぞれ独 立に水素原子, フッ素原子、 又は炭素数 n = 1〜 6のアルキル基、 アル コキシ基)。
一方、 芳香族ジアミン化合物は、 下記一般式 〔 1 8〕 〜 〔 3 2〕 から なる化合物群から選択される化合物の少なく とも 1種を含有することを 特徴とする。
〔化 1 8〕
〜〔18〕
Figure imgf000011_0002
Figure imgf000012_0001
m〕
Figure imgf000012_0002
3 L n
COS]-
3HN W-W
[ 0 2
Figure imgf000012_0003
〔 6 T 〕
0 T
8S9ST0/C00Zdf/X3d Z8S£ 00Z OAV „〜―
PCT/JP2003/015658
〔化 2 3〕
〔23〕
Figure imgf000013_0001
〔化 2 4〕
--,〔24〕
Figure imgf000013_0002
〔化 2 5〕
2
〔25〕
Figure imgf000013_0003
Figure imgf000014_0001
〔化 2 7〕
'■■〔27〕
Figure imgf000014_0002
■■•〔28〕
Figure imgf000014_0003
〔化 2 9 ) H2
H2N 〔29〕
Figure imgf000015_0001
〔化 3 0〕
H2 ■■〔30〕
Figure imgf000015_0002
〔化 3 1〕
R3 R4
Ri R2
〔31〕 2ISI- NH2
〔化 3 2〕
"•〔32〕
Figure imgf000016_0001
(但し、 一般式 〔 1 8〕 〜 〔 3 2〕 において R 2, R 3, R 4は それぞれ独立に水素原子,フッ素原子、又は炭素数 1〜 6のアルキル基, アルコキシ基、 又はピニル基 {— (CH2)m— CH= CH2, m= 0 , 1,
2 }又はァセチル基 {— (C H2)n— C三 CH、 n = 0, 1 , 2 } を示す。 また、一般式〔 5〕 にぉぃて はー 3—, — C O—, 一 NH—の結合基)。
また、 配向制御膜の膜厚を l nmから l O O nmのように薄膜にする ことにより、 光の透過性が向上すること、 さらに偏光照射による光反応 の効率が向上し効果的である。 また、 液晶表示装置を作製した場合にも 液晶を駆動する電圧を有効に液晶層に印加するのに効果的である。 さら に、 電極上の配向制御膜の膜厚が 1 n m〜 5 0 n m、 さらに l nm〜
3 O nmと薄膜化することにより液晶表示装置の各画素内の電極ノ配向 制御膜 Z液晶層 Z配向制御膜 Z電極の間に残留する直流電圧成分 (いわ ゆる残留 D C電圧) を低減することが可能となり、 ひいては残像, 焼き 付き特性が向上するなど効果的である。
また、 本発明は、 液晶表示装置の液晶層のプレチルト角が 1度以下で あることに特徴がある。 また、 従来のラビング配向法では電極段差端部 がラピング布の繊維のガイ ドとして作用し、 段差部が伸びた方向に繊維 が引き込まれたり、 段差のコーナー部に繊維が届かず配向処理ができず 配向不良が生じたりする。 特に、 画素電極、 又は共通電極、 又は共通電 極配線の少なく とも一方が透明な電極で構成されている場合には電極段 差近傍の配向状態が目立っため、 本発明が有効である。 特に、 透明電極 がイオンドープ酸化チタン膜、 又はイオンドープ酸化亜鉛膜 ( Z n〇) で構成されている場合には本発明が有効に作用する。 また、 一方で画素 電極およびそれと対向する共通電極がお互いに平行に配置されジグザグ な屈曲構造からなる場合には、 液晶配向膜が下地の有機絶縁膜との密着 性に劣る場合があり、 従来のラビング配向処理を施すと配向膜の剥がれ などの表示不良を引き起こす場合がある。 このような場合には本発明は 有効である。
また、 本発明は、 共通電極および Zまたは画素電極が、 有機絶縁膜上 に形成され、 その有機絶縁膜および電極上に液晶配向膜が形成されてい る場合に、 特に有効である。 また、 本発明は、 液晶層と前記一対の基板 上に形成されている配向制御膜との二つの界面における液晶分子の配向 制御方向がほぼ同一方向であることに特徴を有する。
そして、 本発明は、 液晶配向膜に偏光照射することにより液晶配向処 理を付与することを特徴とする。 本発明によれば、 配向処理に用いる偏 光の光波長が 2 0 0から 4 0 O n mの範囲であることを特徴とする。 さ らに、 本発明は、 配向処理に用いるほぼ直線に偏光した第一の波長の光 と、 第二の波長の光の少なく とも 2種類の波長の偏光を用いる場合にさ らに有効である。
また、 本発明は、 液晶配向制御膜のガラス転移温度が 2 5 0 °C以上で あることを特徴とする。 さらに、 本発明は、 液晶配向膜に偏光照射によ り液晶配向能を付与する場合に、 加熱, 赤外線照射, 遠赤外線照射, 電 子線照射, 放射線照射のうち少なく とも一つの処理を加えることにより 更に有効に作用する。 配向制御膜に偏光照射することにより液晶配向能 を付与する際に、 加熱, 赤外線照射, 遠赤外線照射, 電子線照射, 放射 線照射を加えることにより、 偏光照射による液晶配向能付与を加速、 更 には架橋反応などを誘起することにより、 液晶配向能を促進, 安定化す るのに効果的である。 特に、 加熱, 赤外線照射, 遠赤外線照射, 電子線 照射, 放射線照射のうち少なくとも一つの処理を偏光照射処理と時間的 な重なりをもって行うことにより本発明はさらに有効に作用する。
また、 配向制御膜のィミ ド化焼成処理と偏光照射処理を時間的な重な りをもって行うことによつても本発明は有効に作用する。 特に、 液晶配 向膜に偏光照射に加え、 加熱, 赤外線照射, 遠赤外線照射, 電子線照射, 放射線照射のうち少なくとも一つの処理を行う場合に、 配向制御膜の温 度が 1 0 0 °C〜 4 0 0 °Cの範囲であること、さらには 1 5 0 °C〜 3 0 0°C の範囲であることが望ましい。 また、 加熱, 赤外線照射, 遠赤外線照射 の処理は配向制御膜のイミ ド化焼成処理と兼用することも可能であり有 効である。
また、 本発明において、 目標とするコントラストは 5 0 0 : 1以上で あり、 目標とする残像が解消される時間は 5分以内であることとする。 なお、 残像の解消される時間は下記の実施形態において定義される方法 にて決定される。 図面の簡単な説明
第 1図は、 本発明による液晶表示装置の第 1の実施の形態の画素構成 を説明する画素部分の断面図である。
第 2図は、 本発明による液晶表示装置の第 1の実施の形態の画素構成 を説明する画素部分の平面図および断面図である。 第 3図は、 本発明による液晶表示装置の第 2の実施の形態の画素構成 を説明する画素部分の断面図である。
第 4図は、 本発明による液晶表示装置の第 2の実施の形態である液晶 表示装置の画素構成を説明する画素部分の平面図および断面図である。 第 5図は、 本発明の実施例を説明する液晶表示装置の画素の構成の断 面図である。
第 6図は、 本発明の実施例を説明する液晶表示装置の画素の構成の断 面図である。
第 7図は、 本発明の液晶表示装置の第 4の実施の形態である液晶表示 装置の画素構成を説明する画素部分の断面図である。
第 8図は、 本発明による液晶表示装置の第 4の実施の形態である液晶 表示装置の画素構成を説明する画素部分の平面図である。 発明を実施するための最良の形態
以下、本発明の実施の形態について、図面を参照して詳細に説明する。 なお、 以下では薄膜トランジスタ等のァクティブ素子を形成した基板を アクティブマトリクス基板と称する。 また、 その対向基板にカラ一フィ ル夕を有する場合はこれをカラ一フィル夕基板とも称する。
第 1図は本発明による液晶表示装置の第 1の実施の形態を説明する一 画素付近の模式断面図である。 また、 第 2図は本発明による液晶表示装 置の第 1の実施の形態を説明する一画素付近の構成を説明するァクティ ブマトリクス基板の模式図であり、 第 2図 ( a ) は平面図、 第 2図 (b ) は第 2図 ( a ) の A— A ' 線に沿った断面図、 第 2図 ( c ) は第 2図 ( a ) の B— B ' 線に沿った断面図を示す。 また、 第 1図は第 2図 ( a ) の A - Α ' 線に沿った断面の一部に対応する。 なお、 第 2図 (b ) と第 2図 ( c )の断面図は、要部構成を強調して模式的に示すもので、第 2図( a) の Α_Α' 線, Β— B ' 線の切断部に一対一で対応しない。 例えば、 第 2図 (b) では半導体膜 1 1 6は図示せず、 第 2図 ( c ) では対向電極 とコモン配線 1 2 0を接続するスルーホールは一箇所のみを代表して示 してある。
本実施の形態の液晶表示装置では、 アクティブマトリクス基板として ガラス基板 1 0 1上には、 C r (クロム) からなるゲート電極 (走査信 号電極) 1 0 4およびコモン配線 (共通電極配線) 1 2 0が配置され、 このゲート電極 1 0 4および共通電極配線 1 2 0を覆うように窒化シリ コンからなるゲート絶縁膜 1 0 7が形成されている。 また、 ゲート電極 1 0 4上には、 ゲート絶縁膜 1 0 7を介してアモルファスシリコンまた はポリシリコンからなる半導体膜 1 1 6が配置され、 ァクティブ素子と して薄膜トランジスタ (T F T) の能動層として機能するようにされて いる。 また、 半導体膜 1 1 6のパターンの一部に重畳するように C r · M o (クロム/モリブデン) よりなるドレイン電極 (映像信号配線) 1 0 6 とソース電極 (画素電極) 1 0 5が配置され、 これら全てを被覆 するように窒化シリコンよりなる保護膜 1 0 8が形成されている。
また、 第 2図 ( c ) に模式的に示したように、 ゲ一ト絶縁膜 1 0 7 と 保護膜 1 0 8を貫通して形成されたスルーホール 1 0 3 ' を介して共通 電極配線 1 2 0に接続するコモン電極 (共通電極) 1 0 3がオーバーコ ート層 1 1 2上に配置されている。 また、 第 2図 ( a) から分かるよう に、 平面的には一画素の領域においてその画素電極 1 0 5に対向するよ うに、 共通電極配線 1 2 0よりスルーホール 1 0 3 ' を介して引き出さ れている共通電極 1 0 3が形成されている。
したがって、 本発明の第 1の実施の形態においては、 画素電極 1 0 5 は有機保護膜 1 1 2の下層の保護膜 1 0 8のさらに下層に配置され、 有 機保護膜 1 1 2上に共通電極 1 0 3が配置された構成となっている。 こ れらの複数の画素電極 1 0 5 と共通電極 1 0 3 とに挟まれた領域で、 一 画素が構成される構造となっている。 また、 以上のように構成した単位 画素をマトリクス状に配置したアクティブマトリクス基板の表面、 すな わち、 共通電極 1 0 3が形成された有機保護膜 1 1 2上には配向制御膜 1 0 9が形成されている。
一方、 第 1図に示されたように、 対向基板を構成するガラス基板 1 0 2 には、 カラ一フィル夕層 1 1 1が遮光部 (ブラックマトリクス) 1 1 3 で画素ごとに区切られて配置され、 またカラ一フィルタ層 1 1 1および 遮光部 1 1 3上は透明な絶縁性材料からなる有機保護膜 1 1 2で覆われ ている。 さらにその有機保護膜 1 1 2上にも配向制御膜 1 0 9が形成さ れてカラ一フィルタ基板を構成している。
これらの配向制御膜 1 0 9は、 高圧水銀ランプを光源とし、 石英板を 積層したパイル偏光子を用いて取り出される紫外線の直線偏光照射によ り液晶配向能が付与されている。 なお配向制御膜は加熱等により表面が 架橋されている。
アクティブマトリクス基板を構成するガラス基板 1 0 1 と対向電極を 構成するガラス基板 1 0 2が、 配向制御膜 1 0 9の面で対向配置され、 これらの間に液晶分子 1 1 0で構成される液晶層(液晶組成物層) 1 1 0' が配置されているように構成されている。 また、 アクティブマトリクス 基板を構成するガラス基板 1 0 1および対向電極を構成するガラス基板 1 0 2の外側の面のそれぞれには、 偏光板 1 1 4が形成されている。 以上のようにして薄膜トランジスタを用いたアクティブマトリクス型 液晶表示装置 (すなわち、 T F T液晶表示装置) が構成される。 この T F T液晶表示装置では、 液晶組成物層 1 1 0 ' を構成する液晶分子 1 1 0は、 電界無印加時には対向配置されている基板 1 0 1 , 1 0 2面 にほぼ平行に配向された状態となり、 光配向処理で規定された初期配向 方向に向いた状態でホモジニァス配向している。 ここで、 ゲート電極 1 0 4に電圧を印加して薄膜トランジスタ (T F T ) をオンにすると、 画素電極 1 0 5 と共通電極 1 0 3の間の電位差により液晶組成物層に電 界 1 1 7が印加され、 液晶組成物が持つ誘電異方性と電界との相互作用 により液晶組成物層を構成する液晶分子 1 1 0は電界方向にその向きを 変える。 このとき液晶組成物層の屈折異方性と偏光板 1 1 4の作用によ り本液晶表示装置の光透過率を変化させ表示を行うことができる。
また、 有機保護膜 1 1 2は、 絶縁性,透明性に優れるアクリル系樹脂, エポキシアクリル系樹脂、 またはポリイミ ド系樹脂などの熱硬化性樹脂 を用いれば良い。 また、 有機保護膜 1 1 2 として光硬化性の透明な樹脂 を用いても良いし、 ポリシロキサン系の樹脂など無機系の材料を用いて も良い。 さらには、 有機保護膜 1 1 2が配向制御膜 1 0 9を兼ねるもの であっても良い。
以上のように、 第 1の実施の形態によれば、 配向制御膜 1 0 9の液晶 配向制御能をバフ布で直接摩擦するラビング配向処理ではなく、 非接触 の光配向法を用いることにより、電極近傍に局所的な配向の乱れがなく、 表示領域全面に渡り均一な配向を付与することが可能となる。
次に、 本発明による液晶表示装置の第 2の実施の形態を説明する。 第 3図は本発明による液晶表示装置の第 2の実施の形態を説明する一画素 付近の模式断面図である。 また、 第 4図は本発明による液晶表示装置の 第 2の実施の形態を説明する一画素付近の構成を説明するァクティブマ トリクス基板の模式図であり、 第 4図 ( a ) は平面図、 第 4図 (b ) は 第 3図 ( a) の A— A' 線に沿った断面図、 第 4図 ( c ) は第 3図 ( a ) の B— B ' 線に沿った断面図を示す。 また、 第 3図は第 4図 ( a) の A 一 A ' 線に沿った断面の一部を示している。 なお、 第 4図 ( b) と第 4 図 ( c ) はの断面図は、 要部構成を強調して模式的に示すもので、 第 2 図 ( a) の A— A' 線, B— B ' 線の切断部に一対一で対応しない。 例 えば、 第 2図 (b) では半導体膜 1 1 6は図示していない。
本発明の第 2の実施の形態の液晶表示装置では、 アクティブマトリク ス基板を構成するガラス基板 1 0 1上には、 C rよりなるゲート電極 1 0 4および共通電極配線 1 2 0が配置され、 ゲ一ト電極 1 0 4と共通 電極配線 1 2 0を覆うように窒化シリコンからなるゲ一ト絶縁膜 1 0 7 が形成されている。 また、 ゲート電極 1 0 4上には、 ゲート絶縁膜 107 を介してアモルファスシリコンあるいはポリシリコンからなる半導体膜 1 1 6が配置され、 アクティブ素子である薄膜トランジスタ (T F T) の能動層として機能するようにされている。
また、 半導体膜 1 1 6のパターンの一部に重畳するようにクロム · モ リブデンよりなるドレイン電極 1 0 6 , ソース電極 (画素電極) 1 0 5 が配置され、 これら全てを被覆するように窒化シリコンよりなる保護膜 1 0 8が形成されている。 この保護膜 1 0 8上には、 有機保護膜 1 1 2 が配置されている。 この有機保護膜 1 1 2は、 例えばアクリル樹脂など の透明な材料から構成する。 また、 画素電極 1 0 5は I T〇 ( I η 203 : S η) などの透明電極から構成されている。 共通電極 1 0 3は、 ゲート 絶縁膜 1 0 7 , 保護膜 1 0 8, 有機保護膜 1 1 2を貫通するスルーホー ル 1 0 3 ' を介し、 共通電極配線 1 2 0に接続している。
液晶を駆動する電界を与える場合に画素電極 1 0 5 と対をなす共通電 極 1 0 3は、平面的に一画素の領域を囲うように形成されている。また、 この共通電極 1 0 3は、有機保護膜 1 1 2の上のオーバーコート層 1 1 2 の上に配置されている。 そして、 この共通電極 1 0 3は、 上部から見た ときに下層に配置している ドレイン電極 1 0 6 , 走査信号配線 1 0 4お よび能動素子である薄膜トランジスタ(T F T )を隠すように配置され、 半導体膜 1 1 6を遮光する遮光層を兼ねている。
なお、 以上のように構成した単位画素(一画素)をマトリクス状に配置 したアクティブマトリクス基板を構成するガラス基板 1 0 1の表面、 す なわち、 有機保護膜 1 1 2上およびその上に形成された共通電極 1 0 3 の上には、 配向制御膜 1 0 9が形成されている。 一方、 対向基板を構成 するガラス 1 0 2にも、 カラーフィルタ層 1 1 1およびその上に形成さ れる有機保護膜 1 1 2, 配向制御膜 1 0 9が形成されている。
また、 第 2の実施の形態と同様に、 高圧水銀ランプを光源とし、 石英 板を積層したパイル偏光子を用いて取り出される紫外線の直線偏光照射 により、 これらの配向制御膜 1 0 9に液晶配向能が付与されている。 な お配向制御膜は加熱等により表面が架橋されている。
そして、 ガラス基板 1 0 1 と対向基板 1 0 2が、 配向制御膜 1 0 9の 形成面で対向配置され、 これらの間に液晶分子 1 1 0で構成された液晶 組成層 1 1 0 ' が配置されているように構成されている。 また、 ガラス 基板 1 0 1および対向基板 1 0 2の外側の面のそれぞれには偏光板 1 14 が形成されている。
このように、 本発明の第 2の実施の形態においても、 先に述べた第 1 の実施の形態と同様に、 画素電極 1 0 5は有機保護膜 1 1 2および保護 膜 1 0 8の下層に配置され、 画素電極 1 0 5と有機保護膜 1 1 2 との上 に共通電極 1 0 3が配置された構成となっている。 また、 共通電極 1 0 3 の電気抵抗が十分低い場合には、 当該共通電極 1 0 3は最下層に形成さ れている共通電極配線 1 2 0も兼ねることができる。 その際には、 最下 層に配置している共通電極配線 1 2 0の形成およびそれに伴うスルーホ ールの加工を省く ことができる。
この第 2の実施の形態では、 第 4図 ( a) に示すように格子状に形成 された共通電極 1 0 3に囲まれた領域で一画素が構成され、 画素電極 1 0 5 とあわせて一画素を 4つの領域に分割するように配置されている。 また画素電極 1 0 5およびそれと対向する共通電極 1 0 3がお互いに平 行に配置されたジグザグな屈曲構造からなり、 一画素が 2つ以上の複数 の副画素を形成している。 これにより面内での色調変化を相殺する構造 となっている。
また、 第 5図は本発明による液晶表示装置の第 3の実施の形態を説明 する一画素付近の模式断面図である。 図中、 前記した各実施例の図面と 同一符号は同一機能部分に対応する。 第 5図に示すように、 本実施の形 態では、 保護膜 1 0 8の下層に配置した画素電極 1 0 5をスルーホール 1 0 3 ' を介して有機保護膜 1 1 2上に引き上げて共通電極 1 0 3と同 層に配置した。 この構成とした場合には、 液晶を駆動する電圧をさらに 低減することが可能である。
以上のように構成された T F T液晶表示装置では、電界無印加時には、 液晶組成物層 1 1 0 ' を構成する液晶分子 1 1 0は対向配置されている ガラス基板 1 0 1 と 1 0 2面の面にほぼ平行状態となり、 光配向処理で 規定された初期配向方向に向いた状態でホモジニァス配向している。 こ こで、 ゲート電極 1 0 4に電圧を印加して薄膜トランジスタ (T F T) をオンにすると、 画素電極 1 0 5 と共通電極 1 0 3の間の電位差により 液晶組成物層 1 1 0 ' に電界 1 1 7が印加され、 液晶組成物が持つ誘電 異方性と電界との相互作用により液晶分子 1 1 0は電界方向にその向き を変える。 このとき液晶組成物層 1 1 0 ' の屈折異方性と偏光板 1 1 4 の作用により液晶表示装置の光透過率を変化させ表示を行うことができ る。
また、 上記した本発明の各実施の形態においては、 1つの画素におけ る共通電極と画素電極から構成される表示領域は複数組設けることが可 能である。 このように複数組設けることによって、 1つの画素が大きい 場合でも、 画素電極と共通電極との間の距離を短くできるので、 液晶を 駆動させるために印加する電圧を小さくできる。
また、 上記した本発明の各実施の形態においては、 画素電極と共通電 極の少なく とも一方を構成する透明導電膜の材料としては、 特に制限は ないが、 加工の容易さ、 信頼性の高さ等を考慮してインジウム一チン一 オキサイ ド ( I T〇) のようなチタン酸化物にイオンドープされた透明 導電膜、 またはイオンドープされた亜鉛酸化物を用いるのが望ましい。 一般的に、 I P S方式においては、 従来の T N方式に代表される縦電 界方式と異なり基板面との界面チルトが原理的に必要なく、 界面チルト 角が小さいほど視角特性が良いことが知られており、 光配向制御膜にお いても小さい界面チルト角が望ましく、 特に 1度以下が効果的である。 次に、 本発明による液晶表示装置の製造方法としての液晶配向制御膜 のラビングレス配向法を用いた配向制御膜の形成について説明する。 本 発明による配向制御膜の形成工程のフローは以下のようになる。 すなわ ち、
①配向制御膜の塗膜 · 形成 (表示領域全面にわたり均一な塗膜を形成 する)
1
②配向制御膜のィミ ド化焼成 (ワニス溶剤の除去と耐熱性の高いポリ ィミ ド化を促進する)
I
③偏光照射による液晶配向能付与 (表示領域に均一な配向能を付与す る)
+
④ (加熱, 赤外線照射, 遠赤外線照射, 電子線照射, 放射線照射) に よる配向能の促進 · 安定化
以上の 4段階のプロセスを介して配向制御膜を形成するが、 ①〜④の プロセスの順番によっては、 以下のような場合には更なる効果が期待さ れる。
( 1 ) 上記③, ④を時間的に重なるように処理することにより液晶配 向能付与を加速し架橋反応などを誘起することで、 さらに効果的に配向 制御膜を形成することが可能となる。 特に、 配向制御膜にシクロブタン テトラカルボン酸二無水物を用いたポリイミ ドを採用した場合、 配向制 御能の付与は偏光照射によるシクロブタン環の開裂により行われると考 えられるが、 ここで偏光照射と時間的に重なるように加熱工程を加える と、 環の開裂により生じる
①マレイミ ドが発生する。 マレイミ ドが架橋する表面が安定化してコン トラストと残像の提言に基による、
②ポリマーが分断されることになる。 低分子の残部が発生する。 低分子 が発生するのでストレスにたいして不安定な状態になる。
炭素一炭素の二重結合に起因する不安定な配向制御膜の表面を架橋反 応で安定化させることができる。
また ( 2 ) 上記④の加熱, 赤外線照射, 遠赤外線照射などを用いる場 合には、 上記②, ③, ④を時間的にオーバーラップさせることにより、 T/JP2003/015658
26
上記④のプロセスが上記②のィミ ド化プロセスを兼ねることも可能とな り、 短時間に配向制御膜の形成が可能となる。
次に、 本発明による液晶表示装置の製造方法の具体的な実施例につい て説明する。
「第 1実施例」
第 1実施例は前記した本発明の第 1の実施形態で説明した液晶表示装 置に対応する。 以下、 本発明の第 1実施例について第 1図及び第 2図を 参照して詳細に説明する。
本発明の第 1実施例である液晶表示装置の製造において、 アクティブ マトリクス基板を構成するガラス基板 1 0 1および対向基板 (カラーフ ィル夕基板) を構成するガラス基板 1 0 2として、 厚みが 0.7 mm で表 面を研磨したガラス基板を用いる。 ガラス基板 1 0 1に形成する薄膜ト ランジス夕 1 1 5は画素電極 1 0 5, 信号電極 1 0 6 , 走査電極 1 04 及びアモルファスシリコン 1 1 6から構成される。 走査電極 1 04, 共 通電極配線 1 2 0および信号電極 1 0 6, 画素電極 1 0 5はすべてクロ ム膜をパターニングして形成し、 画素電極 1 0 5と共通電極 1 0 3との 間隔は 7 / mとした。 尚、 共通電極 1 0 3と画素電極 1 0 5については 低抵抗でパ夕一ニングの容易なクロム膜を使用したが、 I TO膜を使用 し透明電極を構成して、より高い輝度特性の達成することも可能である。 ゲート絶縁膜 1 0 7と保護絶縁膜 1 0 8は窒化珪素からなり、 膜厚はそ れぞれ 0.3 mとした。その上にはァクリル系樹脂を塗布し、 2 2 0 °C, 1時間の加熱処理により透明で絶縁性のある有機保護膜 1 1 2を形成し た。
次に、 フォ トリソグラフィ, エッチング処理により、 第 2図 ( c ) に 示すように共通電極配線 1 2 0までスルーホ一ルを形成し、 共通電極配 線 1 2 0 と接続する共通電極 1 0 3をパターエングして形成した。
その結果、 単位画素 (一画素) 内では第 2図 ( a ) に示すように、 画 素電極 1 0 5が 3本の共通電極 1 0 3の間に配置されている構成となり、 画素数は 1 0 2 4 X 3 (R , G, Bに対応)本の信号電極 1 0 6と 7 6 8 本の走査電極 1 04とから構成される 1 0 2 4 X 3 X 7 6 8個とするァ クティブマトリクス基板を形成した。
次に、 配向制御膜として、 一般式 〔 3 3〕 に示す 4, 4 ' ジアミノス チルベンと一般式 〔 3 4〕 に示す 1 , 2 , 3 , 4—シクロブタンテトラ カルボン酸二無水物からなるポリァミック酸ワニスを、 樹脂分濃度 5重 量%、 NMP 4 0重量%、 アブチルラク トン 4 0重量%、 プチルセ口ソ ルブ 1 5重量%に調整し、 上記アクティブマトリクス基板の上に印刷形 成して 2 2 0 °Cで 3 0分の熱処理によりイミ ド化し、 約 7 0 n mの緻密 なポリィミ ド配向制御膜 1 0 9を形成する。
〔化 3 3〕
Figure imgf000029_0001
〔化 3 4〕
Figure imgf000029_0002
同様に、 I T〇を成膜したもう一方のガラス基板 1 0 2の表面にも同 様のポリアミック酸ワニスを印刷形成し、 2 2 0 °Cで 3 0分の熱処理を 行い、 約 7 0 n mの緻密なポリィミ ド膜からなる配向制御膜 1 0 9を形 成した。
そして、 基板をホッ トプレートで 2 0 0 °Cに加熱しつつ、 その表面に 液晶配向能を付与するために、 偏光 UV (紫外線) 光をポリイミ ド配向 制御膜 1 0 9に照射した。 光源には高圧水銀ランプを用い、 干渉フィル タを介して、 2 4 0 11111〜 3 8 0 11111の範囲の ; 光を取り出し、 石英 基板を積層したパイル偏光子を用いて偏光比約 1 0 : 1の直線偏光とし、 約 5 J /cm2 の照射エネルギーで照射した。 その結果、 配向制御膜表面 の液晶分子の配向方向は、 照射した偏光 UVの偏光方向に対し、 直交方 向であることがわかった。
次に、 これらの 2枚のガラス基板 1 0 1 , 1 0 2をそれぞれの液晶配 向能を有する配向制御膜 1 0 9を有する表面を相対向させて、 分散させ た球形のポリマビーズからなるスぺーサを介在させ、 周辺部にシール剤 を塗布し、 液晶表示装置となる液晶表示パネル (セルとも称する) を組 み立てた。 2枚のガラス基板の液晶配向方向は互いにほぼ並行で、 かつ 印加電界方向とのなす角度を 7 5 ° とした。 このセルに誘電異方性 Δ ε が正でその値が 1 0.2 ( 1 ¾: Η ζ , 2 0 ) であり、 屈折率異方性 Δ η が 0. 0 7 5 (波長 5 9 0 n m, 2 0 °C )、ねじれ弾性定数 K 2が 7. 0 p N、 ネマティ ック—等方相転移温度 T (N— I ) が約 7 6 ° Cのネマテック 液晶組成物 Aを真空で注入し、 紫外線硬化型樹脂からなる封止材で封止 した。 液晶層の厚み (ギャップ) は 4. 2 mの液晶パネルを製作した。
この液晶表示パネルのリタデ一シヨン (A n d) は、 約 0.3 1 mと なる。 また、 このパネルに用いた配向制御膜と液晶組成物と同等のもの を用いてホモジニァス配向の液晶表示パネルを作製し、 クリスタル口一 テーシヨ ン法を用いて液晶のプレチルト角を測定したところ約 0 . 2度 を示した。 この液晶表示パネルを 2枚の偏光板 1 1 4で挾み、 一方の偏 光板の偏光透過軸を上記の液晶配向方向とほぼ平行とし、 他方をそれに 直交するように配置した。 その後、駆動回路,バックライ トなどを接続し てモジュール化し、 アクティブマトリクス型の液晶表示装置を得た。 本 実施例では低電圧で暗表示、 高電圧で明表示となるノーマリーク口一ズ 特性とした。
次に、 本発明の第 1実施例である上記の液晶表示装置の表示品位を評 価したところ、 コントラスト比 6 0 0対 1の高品位の表示が確認される とともに、 中間調表示時における広視野角が確認された。
また次に、本発明の第 1実施例である液晶表示装置の画像の焼き付け, 残像を定量的に測定するため、 ホトダイォ一ドを組合せたオシロスコ一 プを用いて評価した。 まず、 画面上に最大輝度でウィンドウパターンを 3 0分間表示し、 その後、 残像が最も目立つ中間調表示、 ここでは輝度 が最大輝度の 1 0 %となるように全面を切り換え、 ウィンドウパターン のエツジ部のパターンが消えるまでの時間を残像緩和時間として評価し た。但し、 ここで許容される残像緩和時間は 5分以下である。その結果、 使用温度範囲 ( 0 〜 5 0 °0 において残像の緩和時間は 1分以下であ り、 目視による画質残像検査においても、 画像の焼き付け, 残像による 表示むらも一切見られず、 高い表示特性が得られた。
従来、 光配向では液晶の配向性を付与することはできるが、 アンカリ ングエネルギー、 すなわち配向した液晶分子を配向膜表面に束縛するェ ネルギ一が一般のラビング配向に比べ弱いといわれている。 このアンカ リングエネルギーが弱いと液晶表示装置の製品としての信頼性が不足す ると言われている。 特に、 ホモジニァス配向の場合には極角方向のアン 力リングエネルギーよりも方位角方向のアンカリングエネルギーが重要 といわれている。
そこで、 この様にして得た液晶表示装置と同一の配向膜材料を用い、 同一プロセスでガラス基板上に配向膜を形成、 配向処理し、 同一の液晶 組成物を封入して液晶セルを作製し、 トルクバランス法 (長谷川ほか、 液晶学会討論会講演予行集 3 B12 ( 2001 ) P251) により、 界面における液 晶分子と配向膜表面とのねじれ結合の強さ、 方位角方向アンカリングェ ネルギ一 A 2を測定すると、 6.0 X 1 0— 4NZmであった。
「第 2実施例」
第 2実施例で用いた配向制御膜以外は第 1実施例と同様にして、 酸二 無水物として一般式 〔 3 5〕 に示した 1, 3—ジメチルー 1, 2, 3 , 4—シクロブタンテトラカルボン酸二無水物と、 一般式 〔 3 6〕 に示し たジアミン化合物として m—フエ二レンジァミンからなるポリアミック 酸を基板表面に印刷形成して、 2 3 0 °Cで 3 0分の焼成でイミ ド化を行 い、膜厚約 5 0 n mに成膜した。その後、基板をホッ トプレートで 200で に加熱しつつ、 その表面に K r Fエキシマレーザの波長 2 4 8 nmと窒 素レーザの 3 3 7 nmの偏光 UVを用いた光照射による光配向処理を行 つた。 〔化 3 5〕
Figure imgf000033_0001
〔化 3 6〕
〔36〕
Figure imgf000033_0002
その後、 第 1実施例と同様にネマティ ック液晶組成物 Aを封入後、 1 0 0 で 1 0分のアニーリングを施し、 上記の照射偏光方向に対して ほぼ垂直方向に良好な液晶配向を得た。
このようにして、液晶層の厚み dが 4 . 0 mの液晶表示パネルを得た。 また、 この液晶表示パネルに用いた配向制御膜と液晶組成物と同等のも のを用いてホモジニァス配向の液晶表示パネルを作製し、 クリスタル口 一テーシヨン法を用いて液晶のプレチルト角を測定したところ約 0 . 5 度を示した。
次に、 第 1実施例同様の方法で、 液晶表示装置の表示品位を評価した ところ、 第 1実施例の液晶表示装置とほぼ同等のコントラスト比が全面 に渡り 5 0 0 : 1 を越える高品位の表示が確認されるとともに、 中間調 表示時における広い視野角も確認された。 また、 第 1実施例と同様にし て、 この液晶表示装置の画像の焼き付け, 残像の緩和時間を定量評価し たところ、 0 °C〜 5 0 °Cの使用温度範囲において残像の緩和時間は約 1 分であり、 目視による画質残像検査においても、 画像の焼き付け, 残像 による表示むらも一切見られず、 実施例 1同等の高い表示特性が得られ た。
「比較例 1」
本実施例の効果を説明するための比較例として、 配向制御膜以外は第 1実施例の場合と同様にして、 酸二無水物として一般式 〔 3 7〕 に示し たピロメリッ ト酸ニ無水物と、 ジアミン化合物として一般式 〔 3 8〕 に 示した P —フエ二レンジァミンからなるポリアミック酸ワニスを用いて 液晶表示パネルを構成した。
〔化 3 7〕
Figure imgf000034_0001
〔化 3 8〕
■■■〔38〕
Figure imgf000034_0002
これを第 1実施例と同様の方法で表示品位を評価したところ、 第 1実 施例の液晶表示装置とほぼ同等の広い視野角が確認されたものの、 コン トラスト比が全面に渡り 1 0 0 : 1を下回る表示であることが確認され た。 また、 第 1実施例と同様にして、 この液晶表示装置の画像の焼き付 け, 残像の緩和時間を定量評価したところ、 0 :〜 5 0 °Cの使用温度範 囲において残像の緩和時間が約 7分と、 目視による画質残像検査におい ても残像の緩和時間が遅く、 実施例 1同等の高い表示特性は得られなか つた。
また、 A 2の値は約 6.5 X 1 0— 4NZmであった。
「第 3実施例」
用いた配向制御膜以外は第 1実施例と同様にして、 酸二無水物として 一般式 〔3 9〕 に示す 1, 2 , 3, 4ーシクロブタンテトラカルボン酸 二無水物と一般式 〔40〕 に示すピロメリッ ト酸二無水物をモル比にし て 6 : 4とし、 ジァミン化合物として一般式 〔4 1〕 に示す p—フエ二 レンジアミンを用いてポリアミツク酸ワニスを調整し液晶表示パネルを 作製した。 その際、 配向制御膜の膜厚は約 5 0 nmとした。
〔化 3 9〕
Figure imgf000035_0001
〔化 4 0〕
〜〔40〕
Figure imgf000036_0001
〔化 4 1〕
…(: 41〕
Figure imgf000036_0002
次に、 第 1実施例と同様の方法で、 液晶表示装置の表示品位を評価し たところ、 第 1実施例の液晶表示装置とほぼ同等のコントラス ト比が全 面に渡り 5 0 0 : 1を越える高品位の表示が確認されるとともに、 中間 調表示時における広い視野角も確認された。 また、 本発明の第 1実施例 と同様にして、 この液晶表示装置の画像の焼き付け, 残像の緩和時間を 定量評価したところ、 0 °C〜5 0 °Cの使用温度範囲において残像の緩和 時間は約 1分であり、 目視による画質残像検査においても、 画像の焼き 付け, 残像による表示むらも一切見られず、 実施例 1同等の高い表示特 性が得られた。
また、 A 2の値は約 8 . 2 X 1 0 - 4 N Z mであった。
さらに、 配向制御膜に用いたポリアミツク酸ワニスの上記 2種類の酸 無水物 1, 2, 3, 4 —シクロブタンテトラカルボン酸二無水物とピロ メリッ ト酸ニ無水物の組成比を 1 : 1 と 4 : 6 した 2種類のポリァミツ ク酸ワニスを調整し、 それぞれを用いて 2種類の液晶表示パネルを作製 した。 この液晶表示パネルを用いた液晶表示装置のコントラス ト比はそ れぞれ約 4 7 0 : 1 , 2 0 0 : 1の結果を得た。 また、 残像の緩和時間 はそれぞれ約 2分と 6分という結果が得られ、 酸無水物 1 , 2, 3 , 4 ーシクロブタンテトラカルボン酸二無水物とピロメリ ッ ト酸ニ無水物の 組成比 4: 6の場合にはその他の場合に比べ表示特性が著しく低下した。 なおコントラス ト比 2 0 0 : 1のパネルの A 2の値は約 2. 3 X 1 0 -4 N Z mであった。
「比較例 2」
本実施例の効果を説明するための比較例として、 配向処理以外は第 1 実施例の場合と同様にして、 液晶表示パネルを構成した。
配向処理は以下とした。
上記配向制御膜として、 一般式 〔 3 3〕 に示す 4 , 4 ' ジアミノスチ ルペンと一般式 〔 3 4〕 に示す 1, 2, 3 , 4—シクロブタンテトラ力 ルボン酸二無水物からなるポリアミ ック酸ワニスを、 樹脂分濃度 5重 量%、 NM P 4 0重量%, τプチルラク トン 4 0重量%, ブチルセロソ ルブ 1 5重量%に調整し、 上記アクティブマトリクス基板の上に印刷形 成して 2 2 0 °Cで 3 0分の熱処理によりイミ ド化し、 約 7 O nmの緻密 なポリイミ ド配向制御膜 1 0 9を形成する。
〔化 3 3〕
Figure imgf000037_0001
〔化 3 4〕
Figure imgf000038_0001
同様に、 I T Oを成膜したもう一方のガラス基板 1 0 2の表面にも同 様のポリアミック酸ワニスを印刷形成し、 2 2 0 °Cで 3 0分の熱処理を 行い、 約 1 0 0 n mの緻密なポリイミ ド膜からなる配向制御膜 1 0 9を 形成した。
そして、 その表面に液晶配向能を付与するために、 偏光 U V (紫外線) 光をポリイミ ド配向制御膜 1 0 9に照射した。 光源には高圧水銀ランプ を用い、 干渉フィル夕を介して、 2 4 0 11 01〜 3 8 0 1 111の範囲の1;¥ 光を取り出し、 石英基板を積層したパイル偏光子を用いて偏光比約 1 0
: 1 の直線偏光とし、 約 3 J Z cm 2の照射エネルギーで照射した。 但し 偏光照射の際、 加熱等の架橋に関する工程は行わなかった。 その結果、 配向制御膜表面の液晶分子の配向方向は、 照射した偏光 U Vの偏光方向 に対し、 直交方向であることがわかった。
これを第 1実施例と同様の方法で表示品位を評価したところ、 第 1実 施例の液晶表示装置とほぼ同等の広い視野角が確認されたものの、 コン トラスト比が全面に渡り 1 0 0 : 1を下回る表示であることが確認され た。 また、 第 1実施例と同様にして、 この液晶表示装置の画像の焼き付 け, 残像の緩和時間を定量評価したところ、 0 〜 5 0での使用温度範 囲において残像の緩和時間が約 5分と、 目視による画質残像検査におい ても残像の緩和時間が遅く、 実施例 1同等の高い表示特性は得られなか つた。
また、 A 2の値は約 0 . 5 X 1 0 - 4 N / mであった。
「比較例 3」
本実施例の効果を説明するための比較例として、 配向膜以外は第 1実 施例の場合と同様にして、 液晶表示パネルを構成した。
配向膜は、 酸二無水物として一般式 〔 3 7〕 に示したピロメリッ ト酸 二無水物と、 ジァミン化合物として一般式 〔 3 8〕 に示した p —フエ二 レンジァミンからなるポリアミック酸ワニスを用いた。
〔化 3 7〕
Figure imgf000039_0001
〔化 3 8〕
'•'〔38〕
Figure imgf000039_0002
同様に、 もう一方のガラス基板 1 0 2の表面にも同様のポリアミック 酸ワニスを印刷形成し、 2 2 0 °Cで 3 0分の熱処理を行い、 約 7 0 n m の緻密なポリイミ ド膜からなる配向制御膜 1 0 9を形成した。
そして、 その表面に液晶配向能を付与するために、 基板をホッ トプレ ートで 2 0 0 °Cに加熱しつつ、 偏光 U V (紫外線) 光をポリイミ ド配向 制御膜 1 0 9に照射した。 光源には高圧水銀ランプを用い、 干渉フィル 夕を介して、 2 4 0 n m〜 3 8 0 n mの範囲の U V光を取り出し、 石英 基板を積層したパイル偏光子を用いて偏光比約 1 0 : 1の直線偏光とし、 約 5 J Z cm 2の照射エネルギーで照射した。 その結果、 配向制御膜表面 の液晶分子の配向方向は、 照射した偏光 U Vの偏光方向に対し、 直交方 向であることがわかった。
これを第 1実施例と同様の方法で表示品位を評価したところ、 第 1実 施例の液晶表示装置とほぼ同等の広い視野角が確認されたものの、 コン トラス ト比が全面に渡り 2 0 0 : 1 を下回る表示であることが確認され た。 また、 第 1実施例と同様にして、 この液晶表示装置の画像の焼き付 け, 残像の緩和時間を定量評価したところ、 0 °C〜 5 0での使用温度範 囲において残像の緩和時間が約 5分と、 目視による画質残像検査におい ても残像の緩和時間が遅く、 実施例 1同等の高い表示特性は得られなか つた
また、 A 2の値は約 0 . 1 X 1 0— 4 N Z mであつた。
「第 4実施例」
次に、 本発明の第 2の実施形態である液晶表示装置の具体的構成とし て第 4実施例を第 3図及び第 4図を用いて説明する。 本発明の第 4実施 例である液晶表示装置の製造において、 ガラス基板 1 0 1および 1 0 2 としては、 厚みが 0 . 7 D1II1 で表面を研磨したガラス基板を用いる。 薄膜 トランジスタ 1 1 5は画素電極 1 0 5,信号電極 1 0 6,走査電極 1 0 4 及びァモルファスシリコン 1 1 6から構成される。 走査電極 1 0 4はァ ルミ二ゥム膜をパターニングし、 共通電極配線 1 2 0および信号電極 1 0 6はクロム膜をパターニングし、 画素電極 1 0 5は I TO膜をパタ 一二ングし、 第 4図 ( a) に示すように走査電極 1 0 4以外はジグザグ に屈曲した電極配線パターンに形成した。 その際屈曲の角度は 1 0度に 設定した。ゲート絶縁膜 1 0 7 と保護絶縁膜 1 0 8は窒化珪素からなり、 膜厚はそれぞれ 0. 3 mとした。
次に、 フォ トリソグラフィ法とエッチング処理により、 第 4図 ( c ) に示すように共通電極配線 1 2 0まで約 1 0 ^ m径の円筒状にスルーホ ールを形成し、 その上にはアクリル系樹脂を塗布し、 2 2 0 °C、 で 1時 間の加熱処理により透明で絶縁性のある誘電率約 4の層間絶縁膜 1 1 2 を約 1 厚に形成した。 この層間絶縁膜 1 1 2により表示領域の画素 電極 1 0 5の段差起因の凹凸ならびに隣接する画素間のカラ一フィルタ 層 1 1 1の境界部分の段差凹凸を平坦化した。
その後、 約 7 径に上記スルーホール部を再度エッチング処理し、 その上から共通電極配線 1 2 0と接続する共通電極 1 0 3を I T O膜を パターニングして形成した。 その際、 画素電極 1 0 5 と共通電極 1 0 3 との間隔は 7 mとした。 さらにこの共通電極 1 0 3は映像信号配線 1 0 6 , 走査信号配線 1 0 4および薄膜トランジスタ 1 1 5の上部を覆 い画素を囲むように格子状に形成し、 遮光層を兼ねるようにした。
その結果、 単位画素内では第 4図 ( a) に示すように、 画素電極 105 が 3本の共通電極 1 0 3の間に配置されている構成となり、 画素数は 1 0 2 4 X 3 (R, G, Bに対応) 本の信号電極 1 0 6 と 7 6 8本の走 查電極 1 0 4とから構成される 1 0 2 4 X 3 X 7 6 8個とするァクティ ブマトリクス基板が得られた。 次に、 配向制御膜 1 0 9として、 一般式 〔 4 2〕 に示す 1 , 2, 3, 4ーシクロブタンテトラカルボン酸 2無水物と一般式〔 4 3〕に示す 1 , 4ージァミノナフ夕レンからなるポリアミック酸ワニスを用い、 膜厚約 4 0 nmの配向制御膜を作製し、 その配向処理方法は実施例 1 と同様の偏 光 U Vを約 3 J cm— 2の照射エネルギーで照射した。 但し、 偏光 U V照射 中に、 配向制御膜の形成してある基板をホッ トプレート上で約 1 5 0 °C に加熱処理も同時に実施した。
〔化 4 2〕
■'■〔42〕
Figure imgf000042_0001
〔化 4 3〕
〜〔43〕
Figure imgf000042_0002
次に、 これらの 2枚のガラス基板をそれぞれの液晶配向膜を有する表 面を相対向させて、 分散させた球形のポリマビーズからなるスぺーサを 介在させて、周辺部にシール剤を塗布し、液晶表示パネルを組み立てた。 2枚のガラス基板の液晶配向方向は互いにほぼ並行で、 かつ印加電界方 向とのなす角度を 7 5 ° とした。 この液晶表示パネルに誘電異方性 Δ ε が正でその値が 1 0 . 2 ( 1 k Η ζ, 2 0 °C ) であり、 屈折率異方性厶 n が 0 . 0 7 5 (波長 5 9 0 n m, 2 0 °C )、 ねじれ弾性定数 K 2が 7 . 0 ρ Ν、 ネマテイ ツクー等方相転移温度 Τ ( Ν— I ) が約 7 6 °Cのネマテ ィ ック液晶組成物 Aを真空で注入し、 紫外線硬化型樹脂からなる封止材 で封止した。 液晶層の厚み (ギャップ) は 4 . 2 mの液晶パネルを製作 した。 このパネルのリタデーシヨン (A n d ) は、 約 0 . 3 1 mとなる また、 この液晶表示パネルに用いた配向制御膜と液晶組成物と同等の ものを用いてホモジニァス配向の液晶表示パネルを作製し、 クリスタル ローテーション法を用いて液晶のプレチルト角を測定したところ約 0. 2 度を示した。 このパネルを 2枚の偏光板 1 1 4で挾み、 一方の偏光板の 偏光透過軸を上記の液晶配向方向とほぼ平行とし、 他方をそれに直交す るように配置した。 その後、 駆動回路, バックライ トなどを接続してモ ジュール化し、 アクティブマトリクス型の液晶表示装置を得た。 本実施 例では低電圧で暗表示、 高電圧で明表示となるノーマリーク口一ズ特性 とした。
次に、 本発明の第 4実施例である液晶表示装置の表示品位を評価した ところ、 第 1の実施例の液晶表示装置に比べて開口率が高く、 コントラ ス ト比 6 0 0 : 1の高品位の表示が確認されるとともに、 中間調表示時 における広視野角も確認された。 また、 本発明の第 1実施例と同様にし て、 この液晶表示装置の画像の焼き付け, 残像の緩和時間を定量評価し たところ、 0 °C〜 5 0での使用温度範囲において残像の緩和時間は約 1 分であり、 目視による画質残像検査においても、 画像の焼き付け, 残像 による表示むらも一切見られず、 実施例 1同等の高い表示特性が得られ た。
また、 本実施例と同様の方法でガラス基板上に作製した配向制御膜を 削り取り、 示差走査熱量計 (D S C ; Differential Scanning
Calorimetry ) を用いて配向制御膜のガラス転移温度を評価したところ、 5 0 °C〜 3 0 0 °Cまでの温度範囲では明確なガラス転移点を確認するこ とが出来なかった。 したがって、 本実施例の配向制御膜のガラス転移温 度は測定温度上限の 3 0 0 °C以上と考えられる。
また、 A 2の値は約 8. 6 X 1 0 -4N/mであった。
「第 5実施例」
配向制御膜として、 一般式 〔 44〕 に示す 1 , 2, 3, 4—シクロブ 夕ンテトラカルボン酸 2無水物と一般式 〔4 5〕 に示す 2 , 6—ジアミ ノナフタレンからなるポリアミック酸ワニスを用い、 膜厚約 5 O nmの 配向制御膜を作製し、 その配向処理方法は第 1実施例と同様の高圧水銀 ランプからの光を干渉フィル夕と石英のパイル偏光子を用いて 2 4 0 nm〜 3 1 0 nmの波長範囲で 1 0 : 1の偏光比の偏光 UVとし、 照射 エネルギーは約 3 J /cm2 で照射した。 それ以外は第 4実施例と同様に して第 5実施例の液晶表示パネルを作製した。 この液晶表示パネルを用 いて得た液晶表示装置の表示品位を評価したところ、 第 4実施例の液晶 表示装置と同等の高品位の表示が確認された。 また中間調表示時におけ る広視野角も確認された。 〔化 4 4〕
Figure imgf000045_0001
〔化 4 5〕
"■〔45〕
Figure imgf000045_0002
また、 本発明の第 1実施例と同様にして、 この第 5実施例の液晶表示 装置の画像の焼き付け, 残像の緩和時間を定量評価したところ、 0 ° (:〜 4 5 の使用温度範囲において残像の緩和時間は第 4実施例 4同様に 1 分以下であり、 目視による画質残像検査においても、 画像の焼き付け, 残像による表示むらも一切見られず、 高い表示.特性が得られた。 また、 第 4実施例と同様の方法でガラス基板上に作製した配向制御膜を削り取 り、 示差走査熱量計(D S C ; Differential Scanning Calorimetry)を用 いて配向制御膜のガラス転移温度を評価したところ、 5 0 °C〜 3 0 0 °C までの温度範囲では明確なガラス転移点を確認することが出来なかった。 したがって、 本実施例の配向制御膜のガラス転移温度は測定温度上限の 3 0 0 °C以上と考えられる。 また、 A 2の値は約 6.8 X 1 0— 4 NZmであった。
「第 6実施例」
液晶表示装置のセルギヤップ制御に用いているポリマービーズからな るスぺ一サの代わりに、 あらかじめアクティブマトリクス基板の配向制 御膜を形成する前にネガ型の感光性のァクリル系樹脂を塗布 · 露光 · 現 像処理により、 約 1 0 m径の柱状にパターニングして、 各画素の TFT 部分の近傍で走査配線' 1 04の上層の遮光層である共通電極 1 0 3上に 形成し、 その後に配向制御膜として、 ジァミン化合物として一般式
〔46〕 に示した 3, 3 ' —ジメチル一 4, 4 ' ージアミノビフエニル と一般式 〔4 7〕 に示した 4, 4 ' —ジァミノフエ二ルチオエーテルを モル比 1 : 2の割合とし、 酸無水物として一般式 〔48〕 に示した 1, 3—ジフルオロー 1, 2, 3, 4—シクロブタンテトラカルボン酸二無 水物を用いてポリアミック酸ワニスを調整し、 膜厚約 3 0 n mに製膜し た。 またその配向処理方法は実施例 5と同様の高圧水銀ランプからの光 を干渉フィルタと石英のパイル偏光子を用いて 240 nm〜 3 1 0 nm の波長範囲で 1 0 : 1の偏光比の偏光 UVとし、 照射エネルギーは約 3 J / cm2で照射した。 また同時に軟 X線発生装置を用い軟 X線を近距離 から照射した。
〔化 46〕
•〔46〕
Figure imgf000046_0001
Figure imgf000047_0001
〔化 4 8〕
"-〔48〕
Figure imgf000047_0002
以上の工程以外は第 5実施例と同様にして第 6の実施例となる液晶表 示装置を作し、 本発明の第 6実施例である液晶表示装置の表示品位を評 価したところ、 第 5実施例の液晶表示装置に比べて高いコントラスト比 を示す高品位の表示が確認された。 また、 中間調表示時における広視野 角も確認された。 これは第 5実施例の液晶表示装置に見られる画素内に ランダムに分布するスぺーサピーズ周りの液晶の配向の乱れに起因した 光漏れが完全に除去されたためと考えられる。
また、 本発明の第 1実施例と同様にして、 この第 6実施例の液晶表示 装置の画像の焼き付け, 残像の緩和時間を定量評価したところ、 残像の 緩和時間は実施例 5 と同様に 1分以下であり、 目視による画質残像検査 においても、 画像の焼き付け、 残像による表示むらも一切見られず、 高 い表示特性が得られた。 また、 A 2の値は約 1. 0 X 1 0—3NZmでぁった。
「第 7実施例」
用いた配向制御膜およびその配向処理条件以外は第 4実施例 4同様に して、一般式〔4 9〕 に示したジァミン化合物として 9ーメ トキシー 2 , 7—ジァミノフルオレンと、 一般式 〔 5 0〕 に示した酸二無水物として 1 , 2, 3, 4—シクロブタンテトラカルボン酸二無水物からなるポリ アミック酸を基板表面に印刷形成して、 2 3 0 °Cで 3 0分の焼成してィ ミ ド化を行い、 膜厚約 5 0 nmに成膜した。 その後、 その表面に遠赤外 線を照射しながら、 窒素レーザの 3 3 7 n mの偏光 U Vを照射エネルギ 一約 3 J / cm2で照射することにより光配向処理を行なった。 そのとき の配向制御膜の温度は約 1 8 0 °Cであった。
〔化 4 9〕
Figure imgf000048_0001
〔化 5 0〕
Figure imgf000048_0002
その後、 第 4実施例と同様にネマティ ック液晶組成物 Aを封入後、 1 0 0 °Cで 1 0分のアニーリングを施し、 上記の照射偏光方向に対して ほぼ垂直方向に良好な液晶配向を得た。
このようにして、 液晶層の厚み dが 4. 0 mの液晶表示装置を得た。 また、 このパネルに用いた配向制御膜と液晶組成物と同等のものを用い てホモジニァス配向のセルを作製し、 クリスタルローテーション法を用 いて液晶のプレチルト角を測定したところ約 0. 3度を示した。
次に、 第 1実施例と同様の方法で、 本発明の第 7実施例である液晶表 示装置の表示品位を評価したところ、 第 1の実施例の液晶表示装置とほ ぼ同等のコントラスト比が全面に渡り 6 0 0 : 1を越える高品位の表示 が確認されるとともに、中間調表示時における広い視野角も確認された。 また、 本発明の第 1実施例と同様にして、 この第 7実施例の液晶表示装 置の画像の焼き付け, 残像の緩和時間を定量評価したところ、 残像の緩 和時間は 1分以下であり、 目視による画質残像検査においても、 画像の 焼き付け, 残像による表示むらも一切見られず、 高い表示特性が得られ た。
また、 A 2の値は約 8. 0 X 1 0—4NZmでぁった。
「第 8実施例」
用いた配向制御膜およびその配向処理条件以外は第 4実施例と同様に して、 ジァミン化合物として一般式 〔 5 1〕 に示した 2 , 7—ジァミノ ビフエ二レンと、 酸二無水物として一般式 〔 5 2〕 に示した 1 , 2, 3, 4—シクロブタンテトラカルボン酸二無水物からなるポリアミック酸を 基板表面に印刷形成して、 2 3 0 :、 3 0分の焼成, イミ ド化を行い、 膜厚約 2 0 nmに製膜した。 その後、 その表面に遠赤外線を照射しなが ら、 窒素レーザの 3 3 7 nmの偏光 UVを用いた光照射による光配向処 理を行った。 そのときの配向制御膜の温度は約 2 0 0 °Cであった。 その 後、 第 4実施例と同様にネマティ ック液晶組成物 Aを封入後、 1 0 0 °C で 1 0分のアニーリングを施し、 上記の照射偏光方向に対してほぼ垂直 方向に良好な液晶配向を得た。
〔化 5 1〕
—〔51〕
. -〔52〕
Figure imgf000050_0001
このようにして、 液晶層の厚み dが 4 . 0 i mの液晶表示装置を得た。 また、 このパネルに用いた配向制御膜と液晶組成物と同等のものを用い てホモジニァス配向のセルを作製し、 クリスタルローテーション法を用 いて液晶のプレチルト角を測定したところ約 0 . 3度を示した。
次に、 実施例 1同様の方法で、 本発明の第 8実施例である液晶表示装 置の表示品位を評価したところ、 第 4実施例の液晶表示装置とほぼ同等 のコントラスト比が全面に渡り 6 0 0 : 1 を越える髙品位の表示が確認 されるとともに、中間調表示時における広い視野角も確認された。また、 本発明の第 1の実施例と同様にして、 この第 8の実施例の液晶表示装置 の画像の焼き付け, 残像の緩和時間を定量評価したところ、 残像の緩和 時間は 2分以下であり、 目視による画質残像検査においても、 画像の焼 き付け,残像による表示むらも一切見られず、高い表示特性が得られた。
また、 本実施例で用いた配向制御膜は、 遠赤外線照射および窒素レー ザの偏光 UV照射の組み合わせ以外にも、 例えば高圧水銀ランプからの 光を干渉フィルタ、 石英のパイル偏光子を介して 3 0 0 nm〜 3 8 0 nmの波長範囲の偏光 UVを照射エネルギー約 3 J Zcm2で照射した場 合にも、上記のような高い表示特性が得られることが分かった。さらに、 1 0. 5 mの炭酸ガスレーザーを 2 0 0 m J照射しながら上記 3 0 0 〜 3 8 O nm の偏光 U Vを照射した場合にも上記同様の高い表示特性が 得られることが分かった。
また、 A 2の値は約 1. 0 X 1 0— 3 N/mであった。
「第 9実施例」
以下、 本発明の第 9実施例について第 5図を用いて説明する。 本発明 の第 9の実施例である液晶表示装置の製造において、 基板 101, 102 としては、 厚みが 0 . 7 IM で表面を研磨したガラス基板を用いる。 薄膜 トランジスタ 1 1 5はソース電極 1 0 5, 信号電極 1 0 6 , 走査電極 1 0 4及びアモルファスシリコン 1 1 6から構成される。走查電極 104 はアルミニウム膜をパターニングし、 共通電極配線 1 2 0および信号電 極 1 0 6およびソース電極 1 0 5はクロム膜をパタ一ニングして形成し た。 ゲート絶緣膜 1 0 7 と保護絶縁膜 1 0 8は窒化珪素からなり、 膜厚 はそれぞれ 0. 3 imとした。その上にァクリル系樹脂を塗布し、 220 , 1時間の加熱処理により透明で絶縁性のある誘電率約 4の有機保護膜 1 1 2を約 1 . 0 m厚に形成した。この有機保護膜 1 1 2により表示領 域の画素電極 1 0 5の段差起因の凹凸ならびに隣接する画素間の段差凹 凸を平坦化した。
次に、 フォ トリソグラフィ法とエッチング処理により、 第 5図に示す ようにソース電極 1 0 5まで約 1 O ^ m径の円筒状にスルーホールを形 成し、 その上からソース電極 1 0 5 と接続する画素電極 1 0 5を I T〇 膜をパターニングして形成した。 また、 共通電極配線 1 2 0についても 約 1 0 m径の円筒状にスルーホールを形成し、 その上から I T O膜を パタ一ニングして共通電極 1 0 3を形成した。 その際、 画素電極 1 0 5 と共通電極 1 0 3 との間隔は 7 mとし、 走査電極 1 0 4以外はジグザ グに屈曲した電極配線パターンに形成した。 その際、 屈曲の角度は 1 0 度に設定した。 さらにこの共通電極 1 0 3は映像信号配線 1 0 6 , 走査 信号配線 1 0 4および薄膜トランジスタ 1 1 5の上部を覆い画素を囲む ように格子状に形成し、 遮光層を兼ねるようにした。
その結果、 単位画素内に 2種類のスルーホールが形成されている以外 は実施例 4とほぼ同様に、 画素電極 1 0 5が 3本の共通電極 1 0 3の間 に配置されている構成となり、 画素数は 1 0 2 4 X 3 ( R , G , Bに対 応) 本の信号電極 1 0 6 と 7 6 8本の走査電極 1 0 4とから構成される 1 0 2 4 X 3 X 7 6 8個とするアクティブマトリクス基板を形成した。 以上のように画素構造、 用いる配向制御膜以外は実施例 4と同様とし て、 第 5図に示すように第 9実施例の液晶表示装置を作製した。 本実施 例で用いた配向制御膜はジァミンとして一般式 〔 5 3〕 に示した 2, 6 ージァミノ、 9, 1 0 —ジメチルアントラセンと、 一般式 〔 5 4〕 に示 した 4, 4 ' —ジァミノべンゾフエノンをモル比 2 : 1の割合とし、 酸 二無水物として一般式 〔 5 5〕 に示した 1 , 2, 3, 4 —シクロブタン テトラカルボン酸二無水物と一般式 〔 5 6〕 に示した 1, 2 , 3 , 4— シクロブタンテトラカルボン酸二無水物をモル比 1 : 2の割合として合 成したポリアミック酸ワニスを用い、膜厚約 2 0 nmの配向制御膜を作製 した。
〔化 5 3〕
■■■〔53〕
Figure imgf000053_0001
Figure imgf000053_0002
〔化 5 5〕
Figure imgf000053_0003
〔化 5 6〕
--■〔56〕
Figure imgf000054_0001
次に、 本実施例 9の液晶表示装置の表示品位を評価したところ、 第 1 の実施例の液晶表示装置と同等の高品位の表示が確認されるとともに、 中間調表示時における広視野角も確認された。 次に、 本発明の第 1の実 施例と同様にして、 この本比較例 1の液晶表示装置の画像の焼き付け, 残像の緩和時間を定量評価したところ、 残像の緩和時間は 1分以下であ り、 目視による画質残像検査においても、 画像の焼き付け, 残像による 表示むらも一切見られず、 高い表示特性が得られた。
第 5図に示すように、 T F Tに直接接続されている画素電極が基板最 表面に形成され、 その上には薄い配向制御膜が形成される場合には、 通 常のラビング配向処理を行うと摩擦による帯電が発生し、 場合によって は表面近傍の画素電極を介して T F T素子がダメージを受けることがあ る。 このような場合は本実施例のようなラビングレスの光配向処理が非 常に有効である。
また、 A 2の値は約 8 . 1 X 1 0— 4 N / mであった。
「第 1 0実施例」
第 6図は本発明による液晶表示装置の第 1 0の実施の形態を説明する 一画素付近の模式断面図である。 本実施例の液晶表示装置の製造におい て、 ガラス基板 1 0 1 と 1 0 2としては、 厚みが 0. 7 mm で表面を研磨 したガラス基板を用いる。 薄膜トランジスタ 1 1 5は画素電極 1 0 5, 信号電極 1 0 6 , 走査電極 1 0 4及びァモルファスシリコン 1 1 6から 構成される。走査電極 1 0 4,共通電極配線 1 2 0および信号電極 106, 画素電極 1 0 5および共通電極 1 0 3はすべてクロム膜をパ夕一ニング して形成し、画素電極 1 0 5と共通電極 1 0 3 との間隔は 7 imとした。 ゲート絶緣膜 1 0 7 と保護絶縁膜 1 0 8は窒化珪素からなり、 膜厚はそ れぞれ 0. 3 mとした。 その上には配向制御膜として一般式 〔 5 7〕 に 示したジアミン化合物として 9 , 1 0—ジァミノアントラセンと、 酸二 無水物として一般式 〔 5 8〕 に示した 1 , 2, 3 , 4ーシクロブタンテ トラカルボン酸二無水物からなるポリアミック酸ワニスを基板表面に印 刷形成して、 2 3 0 °C, 3 0分の焼成、 イミ ド化を行い、 膜厚約 2 0 nmに成膜した。
〔化 5 7〕
-C57]
Figure imgf000055_0001
〔化 5 8〕
Figure imgf000056_0001
その後、 真空中でその表面に 5 e V、 約 0. 5 C/cm2の電子線を照 射しながら、 高圧水銀ランプからの光を干渉フィルタ, 石英のパイル偏 光子を介して 2 2 0 nm〜 3 8 0 n mの波長範囲の偏光 U Vを照射エネ ルギー約 3 J /cm2で照射し光配向処理を施した。 その結果、 画素数は 1 0 2 4 X 3 (R, G, Bに対応) 本の信号電極 1 0 6 と 7 6 8本の走 査電極 1 0 4とから構成される 1 0 2 4 X 3 X 7 6 8個とするァクティ ブマトリクス基板を形成した。 以上のように画素構造以外は実施例 1 と 同様として第 6図に示すような本実施例 1 0の液晶表示装置を作製した。 本実施例の液晶表示装置の表示品位を評価したところ、 第 1実施例の 液晶表示装置と同等の高品位の表示が確認されるとともに、 中間調表示 時における広視野角も確認された。 次に、 本発明の第 1の実施例と同様 にして、 この本実施例 1 0の液晶表示装置の画像の焼き付け, 残像の緩 和時間を定量評価したところ、 残像の緩和時間は 2分以下であり、 目視 による画質残像検査においても、 画像の焼き付け、 残像による表示不良 は認められなかった。 また、 本実施例で用いたジァミン化合物の誘導体 である一般式 〔 5 9〕 に示した 1 , 5—ジェチリルー 9, 1 0—ジアミ ノアントラセンをモル比で 5 0 %導入し合成したポリアミック酸ワニス を用いた場合には、 偏光 U Vの照射エネルギーが約 2 J cm2において 同等の高い表示特性が得られた。
〔化 5 9〕
Figure imgf000057_0001
また、 A 2の値は約 6.0 X 1 0— 4NZmであった。
「第 1 1実施例」
用いた配向制御膜の組成ならびに配向制御膜形成、 配向処理方法以外 は第 1 0実施例と同様にし、 本実施例の配向制御膜のジアミン化合物と して一般式 〔6 0〕 に示した 2, 7—ジァミノフエナントレンと、 酸二 無水物として一般式 〔6 1〕 に示す 1 , 2 , 3 , 4—シクロブタンテト ラカルボン酸二無水物からなるポリアミック酸ワニスを基板表面に印刷 形成して、 9 0°C, 2分の熱処理によるレべリングを行い、 膜厚約 3 5 nmに成膜した。 その後、 その表面に遠赤外線を照射し、 膜表面を約 2 3 0 °Cに保持しながら、 高圧水銀ランプからの光を干渉フィルタ, 石 英のパイル偏光子を介して 22 0〜 3 8 0 nmの波長範囲の偏光 U Vを 照射エネルギー約 3 J Zcni2で照射し光配向処理を施した。 処理後の配 向制御膜の膜厚は約 2 5 nmであった。 〔化 6 0〕
Figure imgf000058_0001
〔化 6 1〕
'■■〔61〕
Figure imgf000058_0002
その後、 第 1 0実施例と同様に第 6図に示すような本実施例の液晶表 示装置を作製し、 ネマティ ック液晶組成物 Aを封入後、 1 0 0 °C , 1 0 分のアニーリングを施し、 上記の照射偏光方向に対してほぼ垂直方向に 良好な液晶配向を得た。 このようにして、 液晶層の厚み dが 4 . の 液晶表示装置を得た。 また、 このパネルに用いた配向制御膜と液晶組成 物と同等のものを用いてホモジニァス配向のセルを作製し、 クリスタル ローテーション法を用いて液晶のプレチルト角を測定したところ約 0. 1 度を示した。
次に、 第 1実施例と同様の方法で、 本実施例の液晶表示装置の表示品 位を評価したところ、 一般にラビング配向処理で見られる電極段差近傍 の配向不良による光漏れがなく、 第 1の実施例の液晶表示装置とほぼ同 等のコントラスト比が全面に渡り 6 0 0 : 1を越える高品位の表示が確 認されるとともに、 中間調表示時における広い視野角も確認された。 ま た、 本発明の第 1実施例と同様にして、 この第 1 1実施例の液晶表示装 置の画像の焼き付け, 残像の緩和時間を定量評価したところ、 残像の緩 和時間は 1分以下であり、 目視による画質残像検査においても、 画像の 焼き付け, 残像による表示むらも一切見られず、 高い表示特性が得られ た。
また、 A 2の値は約 7. 2 X 1 0— 4NZmであった。
「第 1 2実施例」
用いた配向制御膜の組成ならびに配向制御膜形成、 配向処理方法以外 は実施例 9 と同様にして、 本実施例の配向制御膜のジアミン化合物とし て一般式 〔 6 2〕 に示した 9 , 1 0—ジァミノアントラセンと、 酸二無 水物として一般式 〔 6 3〕 に示した 1, 2, 3, 4—シクロブタンテト ラカルボン酸二無水物からなるポリアミツク酸ワニスを基板表面に印刷 形成して 9 0で、 2分の熱処理によるレべリングを行い、 膜厚約 3 0 nmに製膜した。 その後、 その表面に遠赤外線を照射し、 膜表面を約 2 4 0 °Cに保持しながら、 高圧水銀ランプからの光を干渉フィルタ、 石 英のパイル偏光子を介して 2 2 0〜 2 8 0 n mの波長範囲の偏光 U Vを 照射エネルギー約 3 Jノ cm2 で照射し、 ィミ ド化焼成処理ならびに光配 向処理を施した。 処理後の配向制御膜の膜厚は約 2 6 nmであった。 〔化 6 2〕
Figure imgf000060_0001
その後、 実施例 9 と同様に第 5図に示すような本実施例 1 2の液晶表 示装置を作製し、 ネマティ ック液晶組成物 Aを封入後、 1 0 0 °C, 1 0 分のァニ一リングを施し、 上記の照射偏光方向に対してほぼ平行方向に 良好な液晶配向を得た。 このようにして、 液晶層の厚み dが 4. 0 mの 液晶表示装置を得た。 また、 このパネルに用いた配向制御膜と液晶組成 物と同等のものを用いてホモジニァス配向のセルを作製し、 クリスタル ローテーション法を用いて液晶のプレチルト角を測定したところ約 0.1 度を示した。 次に、 第 1実施例と同様の方法で、 本発明の第 7実施例である液晶表 示装置の表示品位を評価したところ、 一般にラビング配向処理で見られ る電極段差近傍の配向不良による光漏れがなく、 第 1の実施例の液晶表 示装置とほぼ同等のコントラスト比が全面に渡り 6 0 0 : 1 を越える高 品位の表示が確認されるとともに、 中間調表示時における広い視野角も 確認された。 また、 本発明の第 1の実施例と同様にして、 この第 1 2の 実施例の液晶表示装置の画像の焼き付け, 残像の緩和時間を定量評価し たところ、 0 °C〜 5 0 °Cの使用温度範囲において残像の緩和時間は 1分 以下であり、 目視による画質残像検査においても、 画像の焼き付け, 残 像による表示むらも一切見られず、 高い表示特性が得られた。
「第 1 3実施例」
次に、 本発明の第 4の実施形態である液晶表示装置の具体的構成とし て第 1 3実施例を第 7図及び第 8図を用いて説明する。
本発明の第 1 3の実施例である液晶表示装置の製造において、 基板 1 0 1 としては、 厚みが 0. 7 mmで表面を研磨したガラス基板を用いる。 基板 1 0 1上には電極 1 0 3 , 1 0 5 , 1 0 6 , 1 0 4の短絡を防止す るための絶縁膜 1 0 7, 薄膜トランジスタ 1 1 5 , 薄膜トランジスタ 1 1 5及び電極 1 0 5, 1 0 6を保護する保護絶縁膜 1 0 8を形成して T F T基板とする。
第 8図は、 薄膜トランジスタ 1 1 5及び電極 1 0 3 , 1 0 5 , 1 0 6 の構造を示す。
薄膜トランジスタ 1 1 5は画素電極 1 0 5, 信号電極 1 0 6, 走査電 極 1 0 4及びアモルファスシリコン 1 1 6から構成される。 走查電極 1 0 4はアルミニウム膜をパ夕一ニングし、 信号電極 1 0 6はクロム膜 をパターニングし、 そして共通電極 1 0 3 と画素電極 1 0 5とは I T〇 をパターニングして形成する。
絶緣膜 1 0 7と保護絶縁膜 1 0 8は窒化珪素からなり、 膜厚はそれぞ れ 0. 2 Atmと 0. 3 mとした。 容量素子は画素電極 1 0 5 と共通電 極 1 0 3で絶縁膜 1 0 7 , 1 0 8を挟む構造として形成する。
画素電極 1 0 5は、 ベタ形状の共通電極 1 0 3の上層に重畳する形で 配置されている。 画素数は 1 0 2 4 X 3 (R, G, Bに対応) 本の信号 電極 1 0 6 と 7 6 8本の走査電極 1 0 4とから構成される 1 0 2 4 X 3 X 7 6 8個とする。
基板 1 0 2上には、 本発明の第 1実施例である液晶表示装置と同様の 構成のブラックマトリクス 1 1 3付きカラーフィル夕 1 1 1を形成し、 対向カラーフィル夕基板とした。
次に、配向制御膜として、 4, 4 ' ージアミノジフエニルァミンと 1 , 3—ジクロロー 1 , 2 , 3, 4ーシクロブタンテトラカルボン酸二無水 物からなるポリアミック酸ワニスを、 樹脂分濃度 5重量%, NM P 4 0 重量%, アブチルラク トン 4 0重量%, プチルセ口ソルブ 1 5重量%に 調整し、 上記ァクティブマトリクス基板の上に印刷形成して 2 2 0 で 3 0分の熱処理によりイミ ド化し、 約 7 0 n mの緻密なポリイミ ド配向 制御膜 1 0 9を形成する。
同様に、 I T 0を成膜したもう一方のガラス基板 1 0 2の表面にも同 様のポリアミック酸ワニスを印刷形成し、 2 2 0 °Cで 3 0分の熱処理を 行い、 約 7 0 n mの緻密なポリィミ ド膜からなる配向制御膜 1 0 9を形 成した。 その表面に液晶配向能を付与するために、 その表面に遠赤外線 を照射しながら、 偏光 UV (紫外線) 光をポリイミ ド配向制御膜 1 0 9 に照射した。 光源には高圧水銀ランプを用い、 干渉フィル夕を介して、 2 4 0 nm〜 3 8 O nmの範囲の UV光を取り出し、 石英基板を積層し たパイル偏光子を用いて偏光比約 1 0 : 1の直線偏光とし、 約 5 J Z cm 2の照射エネルギーで照射した。 そのときの配向制御膜の温度は約 1 2 0 ΐであった。
その結果、 配向制御膜表面の液晶分子の配向方向は、 照射した偏光 U Vの偏光方向に対し、 直交方向であることがわかった。
T F Τ基板及びカラーフィル夕基板における配向制御膜 1 0 9の配向 方向は互いにほぼ平行とし、 かつ印加電界 1 1 7の方向とのなす角度を 1 5度とした。 これらの基板間に平均粒径が 4 mの高分子ビーズをス ぺーサとして分散し、 T F T基板とカラ一フィルタ基板との間に液晶 1 1 0を挟み込んだ。 液晶 1 1 0は、 実施例 1 と同じ液晶組成物 Aを用 いた。
T F T基板とカラ一フィルタ基板とを挟む 2枚の偏光板 1 1 4はクロ スニコルに配置した。 そして、 低電圧で暗状態, 高電圧で明状態をとる ノーマリークローズ特性を採用した。 そして、 本発明の第 1 3の実施例である液晶表示装置を駆動するシス テムの構成は第 1実施例と同様であるので、 構成の詳細は省略する。 次に、 本発明の第 1 3実施例である液晶表示装置の表示品位を評価し たところ、 第 1の実施例の液晶表示装置に比べて開口率が高く、 コント ラス ト比 6 5 0 : 1の高品位の表示が確認されるとともに、 中間調表示 時における広視野角も確認された。 また、 本発明の第 1実施例と同様に して、 この液晶表示装置の画像の焼き付け, 残像の緩和時間を定量評価 したところ、 0で〜 5 0 の使用温度範囲において残像の緩和時間は約 1分であり、 目視による画質残像検査においても、 画像の焼き付け, 残 像による表示むらも一切見られず、 実施例 1同等の高い表示特性が得ら れた。 2003/015658
62
また実施例 1 と同様の方法で液晶配向膜界面の方位角方向アンカリ ン グエネルギー A 2を評価したところ、 約 1. 0 X I 0— 3 N/m以上の値 が得られた。 産業上の利用可能性
以上説明したように、 本発明によれば、 I P S方式の液晶表示装置に おいて、 配向処理の製造マ一ジンが狭いという固有の問題を解決し、 初 期配向方向の変動による表示不良の発生を低減し、 かつ安定な液晶配向 を実現し、 量産性に優れ、 かつコントラス ト比を高めた高品位な画質を 有する液晶表示装置を提供することができる。

Claims

請 求 の 範 囲
1 . 少なく とも一方が透明な一対の基板と、
前記一対の基板間に配置された液晶層と、
前記一対の基板の一方の基板に形成され、 当該基板面に対してほぼ平 行成分を持った電界を前記液晶層に印加するための電極群と、
前記電極群に接続された複数のァクティブ素子と、
前記液晶層と前記一対の基板の少なく とも何れか一方の基板に配置さ れた配向制御膜と、
前記一対の基板の少なくとも何れか一方の基板に形成され前記液晶層 の分子配向状態に応じて光学特性を変える光学手段とを有し、
前記配向制御膜の少なくとも一方が、 ほぼ直線に偏光した光を照射し て配向制御能を付与した光反応性のポリイミ ドおよび zまたはポリアミ ック酸からなる配向制御膜であることを特徴とする液晶表示装置。
2 . 前記配向制御膜上の液晶層を構成する液晶分子の長軸方向が、 前記 光照射したほぼ直線に偏光した偏光軸と平行または直交していることを 特徴とする請求の範囲第の範囲第 1項に記載の液晶表示装置。
3 . 前記光反応性の配向制御膜が、 シクロブタンテトラカルボン酸 2無 水物および又はその誘導体と芳香族ジアミンからなるポリアミック酸ま たはポリイミ ドを含んでいることを特徴とする請求の範囲第の範囲第 2 項に記載の液晶表示装置。
4 . 前記光反応性の配向制御膜が、 シクロブタンテトラカルボン酸 2無 水物および又はその誘導体と芳香族ジアミンからなるポリアミック酸ま たはポリイミ ドの繰り返し構造を少なく とも 5 0 %以上含んでいるポリ ァミック酸またはポリイミ ドであることを特徴とする請求の範囲第 2に 記載の液晶表示装置。
5. 前記シクロブタンテトラカルボン酸 2無水物およびその誘導体が、 下記一般式 〔 1〕
〔化 1〕
… 〕
Figure imgf000066_0001
(但し、 R 2 , R 3, R 4はそれぞれ独立に水素原子、 フッ素原 子、 又は炭素数 1〜 6のアルキル基, アルコキシ基) で示される化合物 であることを特徴とする請求の範囲第 3または 4に記載の液晶表示装置。
6. 前記芳香族ジァミン化合物が、 下記一般式 〔 2〕 〜 〔 1 6〕
〔化 2〕
■■■〔2〕
Figure imgf000066_0002
〔化 3〕
■〔3〕
Figure imgf000066_0003
Figure imgf000067_0001
C 9 ¾
Figure imgf000067_0002
8S9ST0/C00Zdf/X3d Z8S£ OOZ OAV
Figure imgf000068_0001
Figure imgf000068_0002
Figure imgf000068_0003
Figure imgf000069_0001
Figure imgf000069_0002
〔化 1 2〕
…い 2〕
Figure imgf000069_0003
3〕
2
〔13〕
Figure imgf000070_0001
〔化 1 4〕
〔14〕
Figure imgf000070_0002
〔化 1 5〕
〔15〕
Figure imgf000070_0003
〔化 1 6〕
NH2 〔16〕
Figure imgf000070_0004
(但し、 一般式 〔 2〕 〜 〔 1 6〕 において ぃ R 2, R 3 > R 4はそ れぞれ独立に水素原子、 フッ素原子、 又は炭素数 1〜 6のアルキル基、 アルコキシ基、 又はビニル基 {— (CH2)m— CH= C H2, m= 0 , 1 , 2 }又はァセチル基 {_ (CH2)n— Cョ CH、 n = 0, 1, 2 } を示す。 また、 一般式 〔 5〕 において Xは— S—, 一 C O—, -NH 一の結合基) からなる化合物群から選択される化合物の少なく とも 1種を含有するこ とを特徴とする請求の範囲第 3項または第 4項に記載の液晶表示装置。
7. 前記ポリイミ ド材料からなる前記配向制御膜の膜厚が、 l nmから l O O nmであることを特徴とする請求の範囲第 1項乃至第 6項の何れ かに記載の液晶表示装置。
8. 前記配向制御膜の前記電極群を構成する電極上の膜厚が、 l nmか ら 5 0 nmであることを特徴とする請求の範囲第 1項乃至第 6項の何れ かに記載の液晶表示装置。
9. 前記配向制御膜の前記電極群を構成する電極上の膜厚が、 l nmか ら 3 0 nmであることを特徵とする請求の範囲第 1項乃至第 5項の何れ かに記載の液晶表示装置。
1 0. 前記配向制御膜のガラス転移温度が 2 5 0 °C以上であることを特 徴とする請求の範囲第 1項乃至第 9項の何れかに記載の液晶表示装置。
1 1. 前記液晶層のプレチルト角が 1度以下であることを特徴とする請 求の範囲第 1項乃至第 1 0項の何れかに記載の液晶表示装置。
1 2. 前記電極群は画素電極と共通電極を有し、 前記画素電極と前記共 通電極の少なく とも一方が透明電極で構成されていることを特徴とする 請求の範囲第 1項乃至第 1 1項の何れかに記載の液晶表示装置。
1 3. 前記透明電極はイオンドープ酸化チタン膜、 又はイオンドープ酸 化亜鉛膜で構成されていることを特徴とする請求の範囲第 1 2に記載の 液晶表示装置。
1 4 . 前記共通電極または前記共通電極配線又は信号配線が、 A l , C r , Μ ο, Τ a , W、 またはこれらの何れか 1つを含む合金からなる ことを特徴とする請求の範囲第 1項乃至第 1 3項の何れかに記載の液晶 表示装置。
1 5 . 前記画素電極およびこれと対向する前記共通電極が互いに平行に 配置され、 かつ屈曲構造を有することを特徴とする請求の範囲第 1項乃 至第 1 4項の何れかに記載の液晶表示装置。
1 6 . 前記共通電極または Zおよび前記画素電極が有機絶縁膜上に形成 され、 前記有機絶縁膜および前記電極群上に前記液晶配向膜が形成され ていることを特徴とする請求の範囲第 1項乃至第 1 5項の何れかに記載 の液晶表示装置。
1 7 . 前記液晶層と前記一対の基板上に形成されている前記配向制御膜 との二つの界面における前記液晶分子の配向制御方向がほぼ同一方向で あることを特徴とする請求の範囲第 1項乃至第 1 6項の何れかに記載の 液晶表示装置。
1 8 · 一方の基板の基板面に対してほぼ平行成分を持った電界を印加す るための電極群と、 前記電極群に接続された複数のァクティブ素子を有 し、 少なく とも一方が透明な一対の基板の間に液晶層を挟持し、 前記液 晶層と前記一対の基板の少なく とも何れか一方の基板に、 ほぼ直線に偏 光した光を照射して配向制御能を付与した光反応性のポリイミ ドおよび ノまたはポリアミック酸からなる配向制御膜を配置し、 前記一対の基板 の少なく とも何れか一方の基板に形成され前記液晶層の分子配向状態に 応じて光学特性を変える光学手段とを有する液晶表示装置の製造方法で あって、
前記液晶配向膜に照射する前記偏光の光波長が 2 0 0 n mから 4 0 0 n mの範囲であることを特徴とする液晶表示装置の製造方法。
1 9 . 前記液晶配向膜に液晶配向能を付与するための配向処理が、 ほぼ 直線に偏光した第一の波長を持つ偏光と第二の波長を持つ偏光の少なく とも 2種類の波長の偏光照射処理であることを特徴とする請求の範囲第 1 8項に記載の液晶表示装置の製造方法。
2 0 . 前記液晶配向膜に液晶配向能を付与するための配向処理が、 ほぼ 直線に偏光した第一の波長を持つ偏光と第二の波長を持つ偏光の少なく とも 2種類の波長の偏光照射処理に加えて、 加熱, 赤外線照射, 遠赤外 線照射, 電子線照射, 放射線照射のうち少なくとも一つの二次処理を施 すことを特徴とする請求の範囲第 1 8項または第 1 9項に記載の液晶表 示装置の製造方法。
2 1 . 前記偏光照射処理と前記二次処理を時間的な重なりをもって行う ことを特徴とする請求の範囲第 2 0項に記載の液晶表示装置の製造方法。 2 2 . 前記二次処理が前記液晶配向膜のィミ ド化焼成処理を兼ねている ことを特徴とする請求の範囲第 2 0または請求の範囲第 2 1項記載の液 晶表示装置の製造方法。
2 3 . 前記二次処理を行う場合の前記配向制御膜の温度が、 l O O か ら 4 0 0 °Cの範囲であることを特徴とする請求の範囲第 2 0項または第 2 1項に記載の液晶表示装置の製造方法。
2 4 . 前記二次処理を行う場合の前記配向制御膜の温度が、 1 5 0 °Cか ら 3 0 0 °Cの範囲であることを特徴とする請求の範囲第 2 0項または第 2 1項に記載の液晶表示装置の製造方法。
PCT/JP2003/015658 2002-12-09 2003-12-08 液晶表示装置およびその製造方法 WO2004053582A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/537,825 US7718234B2 (en) 2002-12-09 2003-12-08 Liquid crystal display and method for manufacturing same
KR1020057010331A KR100750451B1 (ko) 2002-12-09 2003-12-08 액정 표시 장치 및 그의 제조 방법
CNB2003801053222A CN100430802C (zh) 2002-12-09 2003-12-08 液晶显示装置及其制造方法
US12/781,815 US8025939B2 (en) 2002-12-09 2010-05-18 Liquid crystal display and method for manufacturing same
US13/212,072 US8758871B2 (en) 2002-12-09 2011-08-17 Liquid crystal display and method for manufacturing same
US14/273,648 US9405152B2 (en) 2002-12-09 2014-05-09 Liquid crystal display and method for manufacturing same
US15/194,138 US20160377925A1 (en) 2002-12-09 2016-06-27 Liquid crystal display and method for manufacturing same
US16/809,083 US11520186B2 (en) 2002-12-09 2020-03-04 Liquid crystal display and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002356461 2002-12-09
JP2002-356461 2002-12-09

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10537825 A-371-Of-International 2003-12-08
US10/537,825 A-371-Of-International US7718234B2 (en) 2002-12-09 2003-12-08 Liquid crystal display and method for manufacturing same
US12/781,815 Continuation US8025939B2 (en) 2002-12-09 2010-05-18 Liquid crystal display and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2004053582A1 true WO2004053582A1 (ja) 2004-06-24

Family

ID=32500817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015658 WO2004053582A1 (ja) 2002-12-09 2003-12-08 液晶表示装置およびその製造方法

Country Status (6)

Country Link
US (6) US7718234B2 (ja)
JP (1) JP4504665B2 (ja)
KR (1) KR100750451B1 (ja)
CN (1) CN100430802C (ja)
TW (1) TWI244567B (ja)
WO (1) WO2004053582A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816509A1 (en) * 2004-10-19 2007-08-08 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US20100136263A1 (en) * 2005-09-22 2010-06-03 Chyi-Ming Leu Liquid crystal display device

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430802C (zh) * 2002-12-09 2008-11-05 株式会社日立显示器 液晶显示装置及其制造方法
US7916254B2 (en) 2003-10-27 2011-03-29 Hitachi Displays, Ltd. Liquid crystal display apparatus for performing alignment process by irradiating light
JP2006039069A (ja) * 2004-07-26 2006-02-09 Hitachi Ltd 液晶表示装置
WO2005083504A1 (ja) * 2004-02-26 2005-09-09 Nissan Chemical Industries, Ltd. 光配向用液晶配向剤およびそれを用いた液晶表示素子
JP4788108B2 (ja) * 2004-05-25 2011-10-05 日産化学工業株式会社 低誘電率、低線熱膨張係数、高透明性、高ガラス転移温度を併せ持つポリイミドとその前駆体
JP4653421B2 (ja) 2004-06-08 2011-03-16 株式会社 日立ディスプレイズ 液晶表示装置
KR20060059728A (ko) * 2004-11-29 2006-06-02 삼성에스디아이 주식회사 액정 표시 장치 및 그 제조 방법
JP4968422B2 (ja) * 2004-12-15 2012-07-04 Jsr株式会社 液晶配向膜の製造方法
WO2006104038A1 (ja) * 2005-03-29 2006-10-05 Nissan Chemical Industries, Ltd. ポリアミック酸、ポリイミド及びその製造方法
JP5116287B2 (ja) * 2005-11-21 2013-01-09 株式会社ジャパンディスプレイイースト 液晶表示装置
KR101446341B1 (ko) * 2005-12-30 2014-10-02 엘지디스플레이 주식회사 액정 표시 장치용 어레이 기판 및 그의 제조 방법
JP4870436B2 (ja) * 2006-01-10 2012-02-08 株式会社 日立ディスプレイズ 液晶表示装置
JP4884027B2 (ja) * 2006-02-27 2012-02-22 株式会社 日立ディスプレイズ 液晶表示装置の製造方法
JP2008090279A (ja) 2006-09-04 2008-04-17 Epson Imaging Devices Corp 液晶表示装置及び電子機器
KR101355145B1 (ko) * 2006-12-27 2014-02-04 삼성디스플레이 주식회사 액정표시패널용 어레이 기판과 컬러필터 기판, 이를 갖는액정표시패널 및 이의 제조 방법
US8619225B2 (en) * 2007-03-28 2013-12-31 Japan Display West Inc. Liquid crystal device with pixel electrode under the common electrode and thinner than drain electrode, method of manufacturing liquid crystal device, and electronic apparatus
JP5298461B2 (ja) * 2007-05-29 2013-09-25 セイコーエプソン株式会社 液晶装置及び電子機器
KR100902159B1 (ko) * 2007-06-13 2009-06-10 한국화학연구원 저온공정용 치환체를 가지는 지방족 고리계 가용성폴리이미드 광배향막 및 이를 이용한 액정 셀
KR101450877B1 (ko) * 2007-11-20 2014-10-14 엘지디스플레이 주식회사 액정표시장치 및 이의 제조 방법
JP2009128825A (ja) * 2007-11-27 2009-06-11 Funai Electric Co Ltd 液晶表示装置
KR101481703B1 (ko) * 2008-03-24 2015-01-12 삼성디스플레이 주식회사 광배향재, 이를 이용해 제조된 배향막을 갖는 표시 기판 및 그 표시 기판의 제조 방법
KR100909066B1 (ko) * 2008-07-28 2009-07-23 한국화학연구원 저온공정용 치환체를 가지는 지방족 고리계 가용성폴리이미드 광배향막 및 이를 이용한 액정 셀
JP5355970B2 (ja) 2008-09-16 2013-11-27 株式会社ジャパンディスプレイ 液晶表示装置
JP2010102014A (ja) * 2008-10-22 2010-05-06 Jsr Corp 液晶配向剤、液晶配向膜およびその形成方法ならびに液晶表示素子
JP5304174B2 (ja) * 2008-10-29 2013-10-02 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
TWI393732B (zh) 2009-03-31 2013-04-21 Daxin Materials Corp 液晶配向液
CN101885967B (zh) * 2009-05-15 2015-07-01 达兴材料股份有限公司 液晶配向液
JP5368250B2 (ja) * 2009-10-23 2013-12-18 株式会社ジャパンディスプレイ 液晶表示装置
JP5654228B2 (ja) * 2009-11-13 2015-01-14 株式会社ジャパンディスプレイ 液晶表示装置及び液晶表示装置の製造方法
KR101592919B1 (ko) * 2009-12-16 2016-02-11 엘지디스플레이 주식회사 액정표시장치
JP5222864B2 (ja) 2010-02-17 2013-06-26 株式会社ジャパンディスプレイイースト 液晶表示装置の製造方法
JP4944217B2 (ja) 2010-03-09 2012-05-30 株式会社 日立ディスプレイズ 液晶表示装置
CN102445790B (zh) * 2010-10-06 2016-05-18 株式会社日本显示器 取向膜、取向膜形成用组合物和液晶显示装置
TWI574994B (zh) * 2010-10-14 2017-03-21 Merck Patent Gmbh Liquid crystal display device
TWI545372B (zh) 2010-10-14 2016-08-11 Merck Patent Gmbh Liquid crystal display device
JP5193328B2 (ja) * 2011-03-02 2013-05-08 株式会社ジャパンディスプレイイースト 液晶表示装置
TWI452399B (zh) * 2011-05-27 2014-09-11 Lg Display Co Ltd 液晶顯示面板及其製造方法
WO2013024750A1 (ja) * 2011-08-12 2013-02-21 シャープ株式会社 液晶表示装置
JP5691996B2 (ja) * 2011-10-21 2015-04-01 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP5906063B2 (ja) * 2011-11-21 2016-04-20 株式会社ジャパンディスプレイ 液晶表示装置およびその製造方法
US9817277B2 (en) 2011-11-30 2017-11-14 Sharp Kabushiki Kaisha Liquid crystal display device
JP6057070B2 (ja) 2012-04-25 2017-01-11 Jnc株式会社 液晶配向剤、およびこれを用いた液晶表示素子
JP6090570B2 (ja) 2012-04-26 2017-03-08 Jnc株式会社 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6056187B2 (ja) 2012-05-09 2017-01-11 Jnc株式会社 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
TWI483046B (zh) * 2012-05-09 2015-05-01 Chunghwa Picture Tubes Ltd 畫素結構及陣列基板
JP6029364B2 (ja) * 2012-07-23 2016-11-24 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
JP6013067B2 (ja) * 2012-07-26 2016-10-25 株式会社ジャパンディスプレイ 表示装置及びその製造方法
CN102819144B (zh) 2012-07-30 2014-11-12 北京京东方光电科技有限公司 取向膜制备方法、取向实现方法及液晶显示装置
JP2013050724A (ja) * 2012-09-27 2013-03-14 Jsr Corp 液晶表示装置用基板の製造方法及び液晶表示装置用基板並びに液晶表示装置
US9771519B2 (en) * 2012-10-31 2017-09-26 Jnc Corporation Liquid crystal display device and method for manufacturing same
JP5983936B2 (ja) * 2012-11-19 2016-09-06 Jsr株式会社 液晶配向剤
TW201804221A (zh) * 2013-02-06 2018-02-01 迪愛生股份有限公司 液晶顯示元件及其製造方法
JP6350852B2 (ja) * 2013-03-21 2018-07-04 Jnc株式会社 液晶配向剤、液晶表示素子、およびテトラカルボン酸二無水物
JP6347917B2 (ja) 2013-05-27 2018-06-27 株式会社ジャパンディスプレイ 液晶表示装置およびその製造方法
KR20140146522A (ko) 2013-06-17 2014-12-26 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
KR20140147354A (ko) 2013-06-19 2014-12-30 삼성디스플레이 주식회사 배향막 형성 방법과 이를 이용한 액정 표시 장치 제조 방법
JP2015025905A (ja) 2013-07-25 2015-02-05 株式会社ジャパンディスプレイ 液晶表示装置
JP2015036712A (ja) 2013-08-12 2015-02-23 株式会社ジャパンディスプレイ 液晶表示パネルの製造方法
JP6097656B2 (ja) 2013-08-20 2017-03-15 株式会社ジャパンディスプレイ 液晶表示装置
KR20150029177A (ko) 2013-09-09 2015-03-18 삼성디스플레이 주식회사 액정 표시 장치
JP5639700B2 (ja) * 2013-09-12 2014-12-10 株式会社ジャパンディスプレイ 液晶配向剤ワニス
KR102071632B1 (ko) * 2013-09-26 2020-01-31 삼성디스플레이 주식회사 액정 광배향제, 이를 포함하는 액정 표시 장치 및 그 제조 방법
JP6400284B2 (ja) 2013-10-22 2018-10-03 株式会社ジャパンディスプレイ 液晶表示装置
KR20150065036A (ko) 2013-12-04 2015-06-12 삼성디스플레이 주식회사 액정 표시 장치의 구동 장치 및 방법
KR102124924B1 (ko) * 2013-12-10 2020-06-22 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102134770B1 (ko) 2014-01-20 2020-08-27 삼성디스플레이 주식회사 액정 표시 패널 및 이의 제조 방법
KR102240655B1 (ko) 2014-02-13 2021-04-16 삼성디스플레이 주식회사 노광 장치 및 이를 이용한 노광 방법
KR102212324B1 (ko) * 2014-02-21 2021-02-04 삼성디스플레이 주식회사 광배향제 및 이를 포함하는 액정 표시 장치
KR102185786B1 (ko) 2014-02-27 2020-12-03 삼성디스플레이 주식회사 액정 표시 장치 및 및 액정 표시 장치의 구동 방법
EP3125033B1 (en) 2014-03-28 2021-06-02 JNC Corporation Liquid crystal display device
KR20160144976A (ko) 2014-04-15 2016-12-19 제이엔씨 주식회사 액정 표시 소자
CN104020609A (zh) * 2014-05-16 2014-09-03 京东方科技集团股份有限公司 一种液晶涂布方法和显示面板制作方法
JP6287577B2 (ja) * 2014-05-23 2018-03-07 Jsr株式会社 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶表示素子
KR102205664B1 (ko) 2014-06-02 2021-01-22 삼성디스플레이 주식회사 액정 표시 장치 제조 방법
KR102205856B1 (ko) * 2014-06-11 2021-01-21 삼성디스플레이 주식회사 센서를 포함하는 유기 발광 표시 장치
KR20170023779A (ko) 2014-06-30 2017-03-06 제이엔씨 주식회사 액정 표시 소자
JPWO2016021333A1 (ja) * 2014-08-04 2017-06-01 Jnc株式会社 液晶表示素子
JP2016050235A (ja) * 2014-08-29 2016-04-11 国立大学法人北陸先端科学技術大学院大学 複合材料
JP6439351B2 (ja) * 2014-09-26 2018-12-19 東芝ライテック株式会社 紫外線照射装置
JP6461548B2 (ja) 2014-10-14 2019-01-30 株式会社ジャパンディスプレイ 液晶表示装置およびその製造方法
JP5905558B2 (ja) * 2014-10-24 2016-04-20 株式会社ジャパンディスプレイ 液晶配向剤ワニス
US10379408B2 (en) * 2014-11-05 2019-08-13 Samsung Display Co., Ltd. Curved display device
KR20160082813A (ko) 2014-12-29 2016-07-11 삼성디스플레이 주식회사 액정 표시 장치 및 그 구동 방법
JP6490497B2 (ja) 2015-06-03 2019-03-27 株式会社ジャパンディスプレイ 液晶表示装置及びその製造方法
CN105204254B (zh) * 2015-10-09 2019-01-04 深圳市华星光电技术有限公司 一种tft阵列基板、显示面板及其制作方法
KR102498553B1 (ko) 2015-11-19 2023-02-10 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 디스플레이 제조 장치 및 디스플레이 제조 방법
CN105974677B (zh) * 2016-07-29 2019-08-13 厦门天马微电子有限公司 一种显示面板、光配向膜以及制备方法
WO2018085087A1 (en) * 2016-11-01 2018-05-11 Fujifilm Electronic Materials U.S.A., Inc. Polyimides
JP7211360B2 (ja) * 2017-06-08 2023-01-24 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP2019066565A (ja) * 2017-09-28 2019-04-25 株式会社ジャパンディスプレイ 液晶表示装置
JP2019168612A (ja) 2018-03-23 2019-10-03 Jnc株式会社 液晶表示素子
CN109324454B (zh) * 2018-09-30 2020-10-16 惠科股份有限公司 一种显示面板和显示装置
WO2022014345A1 (ja) * 2020-07-14 2022-01-20 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
KR20230145112A (ko) 2021-02-16 2023-10-17 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2022190896A1 (ja) 2021-03-09 2022-09-15 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2022270287A1 (ja) 2021-06-24 2022-12-29 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307295A (ja) * 1996-11-06 1998-11-17 Nec Corp 横電界方式の液晶表示装置
JPH11264982A (ja) * 1998-03-17 1999-09-28 Hitachi Ltd アクティブマトリクス型液晶表示装置
JP2001281671A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd 液晶表示装置
JP2002258303A (ja) * 2001-02-28 2002-09-11 National Institute Of Advanced Industrial & Technology 液晶表示素子

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3731986A (en) 1971-04-22 1973-05-08 Int Liquid Xtal Co Display devices utilizing liquid crystal light modulation
JPS5510180B2 (ja) 1974-12-04 1980-03-14
JPS5691277A (en) 1979-12-25 1981-07-24 Citizen Watch Co Ltd Liquiddcrystal display panel
FI74871B (fi) 1986-06-26 1987-12-31 Sinisalo Sport Oy Skyddsklaede.
US4835249A (en) * 1986-12-31 1989-05-30 General Electric Company Process for preparing polyimides
DE4042747B4 (de) 1990-01-09 2009-10-08 Merck Patent Gmbh Elektrooptisches Flüssigkristallschaltelement
JPH0513902A (ja) 1990-09-04 1993-01-22 Chisso Corp フレキシブルプリント基板及びその製造法
JP2940354B2 (ja) 1992-09-18 1999-08-25 株式会社日立製作所 液晶表示装置
JP3123273B2 (ja) 1992-12-28 2001-01-09 株式会社日立製作所 アクティブマトリクス型液晶表示装置およびその製造方法
JP3309930B2 (ja) * 1993-07-16 2002-07-29 日産化学工業株式会社 液晶配向処理基板
JP3050477B2 (ja) * 1994-01-14 2000-06-12 日立化成工業株式会社 液晶配向膜
JP3050480B2 (ja) * 1994-01-19 2000-06-12 日立化成工業株式会社 液晶配向膜
JPH07287235A (ja) * 1994-04-18 1995-10-31 Sumitomo Bakelite Co Ltd 液晶配向剤及びこれを用いた液晶表示素子
US5612450A (en) 1994-05-17 1997-03-18 Japan Synthetic Rubber Co., Ltd. Liquid crystal aligning agent and liquid crystal display device
JP3357502B2 (ja) * 1994-05-17 2002-12-16 シャープ株式会社 液晶表示素子の製造方法
JP3474975B2 (ja) 1995-09-06 2003-12-08 株式会社 日立ディスプレイズ 液晶表示装置およびその製造方法
JP3203634B2 (ja) 1995-09-21 2001-08-27 ジェイエスアール株式会社 液晶配向剤
JP3425311B2 (ja) * 1996-03-04 2003-07-14 株式会社東芝 ネガ型感光性ポリマー樹脂組成物、これを用いたパターン形成方法、および電子部品
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
KR100450991B1 (ko) 1996-03-05 2005-05-19 니산 가가꾸 고오교 가부시끼가이샤 액정배향처리방법
JP3259946B2 (ja) * 1996-03-26 2002-02-25 シャープ株式会社 液晶表示素子およびその製造方法
US5929201A (en) 1996-03-29 1999-07-27 Elsicon, Inc. Fluorinated amine products
US5731405A (en) * 1996-03-29 1998-03-24 Alliant Techsystems Inc. Process and materials for inducing pre-tilt in liquid crystals and liquid crystal displays
EP0806698B1 (en) * 1996-05-08 2005-01-12 Hitachi, Ltd. In-plane switching-mode active-matrix liquid crystal display
EP0840161B1 (en) * 1996-05-16 2005-04-06 JSR Corporation Liquid crystal aligning agent
JPH09311315A (ja) * 1996-05-16 1997-12-02 Sharp Corp 強誘電性液晶素子および強誘電性液晶材料
KR19980057660A (ko) * 1996-12-30 1998-09-25 손욱 광배향성 조성물, 이로부터 형성된 배향막과 이배향막을 구비한 액정표시소자
JP3057045B2 (ja) * 1996-12-31 2000-06-26 三星エスディアイ株式会社 N−アラルキル置換芳香族ポリアミド配向剤及びその製造方法
US6433764B1 (en) * 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
DE69831186T2 (de) 1997-04-30 2006-06-08 Jsr Corp. Orientierungsschicht für Flüssigkristall und Verfahren zu ihrer Herstellung
JP3176565B2 (ja) 1997-07-14 2001-06-18 三菱電機株式会社 液晶表示装置
US6294639B1 (en) 1997-12-02 2001-09-25 Nissan Chemical Industries, Ltd. Liquid crystal aligning agent
JP3594786B2 (ja) 1998-01-30 2004-12-02 株式会社日立製作所 液晶表示装置
JP3303766B2 (ja) 1998-02-12 2002-07-22 株式会社日立製作所 液晶表示装置
TW438986B (en) * 1998-01-30 2001-06-07 Hitachi Ltd Liquid crystal display device
US5936691A (en) * 1998-07-17 1999-08-10 Kent State University Method of preparing alignment layer for use in liquid crystal devices using in-situ ultraviolet exposure
US6346975B2 (en) 1998-08-04 2002-02-12 International Business Machines Corporation Liquid crystal display having alignment layer using ion bombarded amorphous material 100Å thickness or less
TW473497B (en) 1998-08-06 2002-01-21 Ind Tech Res Inst Low pretilt angle polyamic acid alignment materials
JP4171543B2 (ja) 1998-09-03 2008-10-22 日産化学工業株式会社 ポリイミド前駆体及びポリイミド並びに液晶セル用配向処理剤
US7005165B2 (en) 1998-12-23 2006-02-28 Elsicon, Inc. Photosensitive polyimides for optical alignment of liquid crystals
JP3296426B2 (ja) * 1999-03-19 2002-07-02 株式会社東芝 液晶表示装置及びその製造方法
WO2000061684A1 (fr) 1999-04-09 2000-10-19 Chisso Corporation Composition de vernis et element d'affichage a cristaux liquides
JP2000319510A (ja) * 1999-05-14 2000-11-21 Jsr Corp 液晶配向剤および液晶配向処理方法
KR20050061610A (ko) * 1999-06-11 2005-06-22 마쯔시다덴기산교 가부시키가이샤 액정표시장치
US6746730B1 (en) 1999-06-28 2004-06-08 Chisso Corporation Varnish composition and liquid-crystal display element
JP2002131751A (ja) * 2000-10-25 2002-05-09 Hitachi Chemical Dupont Microsystems Ltd 液晶配向膜用組成物、液晶配向膜、液晶挟持基板、液晶表示装置及び横電界液晶表示装置
JP2002303870A (ja) 2001-01-30 2002-10-18 Jsr Corp 垂直配向型液晶配向膜および垂直配向型液晶表示素子
JP4534107B2 (ja) 2001-01-30 2010-09-01 Dic株式会社 光配向材料及びこれを用いた光配向膜の製造方法
JP3750055B2 (ja) * 2001-02-28 2006-03-01 株式会社日立製作所 液晶表示装置
CN1167138C (zh) * 2001-04-27 2004-09-15 瀚宇彩晶股份有限公司 横向电场液晶显示器的电极排列结构
JP2003073471A (ja) * 2001-08-31 2003-03-12 Jsr Corp 垂直配向型液晶配向剤およびそれを用いた液晶表示素子
JP2003255349A (ja) 2002-03-05 2003-09-10 Jsr Corp 液晶配向膜、液晶配向膜の製造方法、および液晶表示素子
CN100430802C (zh) * 2002-12-09 2008-11-05 株式会社日立显示器 液晶显示装置及其制造方法
JP4653421B2 (ja) * 2004-06-08 2011-03-16 株式会社 日立ディスプレイズ 液晶表示装置
JP4870436B2 (ja) * 2006-01-10 2012-02-08 株式会社 日立ディスプレイズ 液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10307295A (ja) * 1996-11-06 1998-11-17 Nec Corp 横電界方式の液晶表示装置
JPH11264982A (ja) * 1998-03-17 1999-09-28 Hitachi Ltd アクティブマトリクス型液晶表示装置
JP2001281671A (ja) * 2000-03-30 2001-10-10 Hitachi Ltd 液晶表示装置
JP2002258303A (ja) * 2001-02-28 2002-09-11 National Institute Of Advanced Industrial & Technology 液晶表示素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816509A1 (en) * 2004-10-19 2007-08-08 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
EP1816509A4 (en) * 2004-10-19 2009-10-21 Sharp Kk Liquid crystal display device and electronic apparatus therefor
EP2447768A1 (en) * 2004-10-19 2012-05-02 Sharp Kabushiki Kaisha Liquid crystal display device
US8253884B2 (en) 2004-10-19 2012-08-28 Sharp Kabushiki Kaisha Liquid crystal display device and electronic device using the same
US7618554B2 (en) 2004-12-10 2009-11-17 Adeka Corporation Liquid crystal composition
US20100136263A1 (en) * 2005-09-22 2010-06-03 Chyi-Ming Leu Liquid crystal display device
US8268413B2 (en) * 2005-09-22 2012-09-18 Industrial Technology Research Institute Liquid crystal display device

Also Published As

Publication number Publication date
TW200424640A (en) 2004-11-16
US8758871B2 (en) 2014-06-24
US9405152B2 (en) 2016-08-02
US20160377925A1 (en) 2016-12-29
JP2004206091A (ja) 2004-07-22
US20140248445A1 (en) 2014-09-04
TWI244567B (en) 2005-12-01
KR100750451B1 (ko) 2007-08-22
US8025939B2 (en) 2011-09-27
CN100430802C (zh) 2008-11-05
US20110301324A1 (en) 2011-12-08
US7718234B2 (en) 2010-05-18
US20100225865A1 (en) 2010-09-09
CN1723413A (zh) 2006-01-18
US11520186B2 (en) 2022-12-06
JP4504665B2 (ja) 2010-07-14
KR20050086904A (ko) 2005-08-30
US20200201126A1 (en) 2020-06-25
US20060061719A1 (en) 2006-03-23

Similar Documents

Publication Publication Date Title
US11520186B2 (en) Liquid crystal display and method for manufacturing same
JP4653421B2 (ja) 液晶表示装置
JP5150409B2 (ja) 液晶表示装置及びその製造方法
JP4870436B2 (ja) 液晶表示装置
JP5492516B2 (ja) 液晶表示装置
JP4944217B2 (ja) 液晶表示装置
US20130010244A1 (en) Liquid crystal display and method of manufacturing the same
JP6241058B2 (ja) 液晶表示装置
JP5939614B2 (ja) 配向膜およびそれを用いた液晶表示装置
JP4383825B2 (ja) 液晶表示装置
JP5939589B2 (ja) 配向膜材料
JP2012181527A (ja) 配向制御膜
JP5594835B2 (ja) 配向膜材料及び液晶表示装置
JP6174194B2 (ja) 配向膜およびそれを用いた液晶表示装置
JP2006039069A (ja) 液晶表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038A53222

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006061719

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10537825

Country of ref document: US

Ref document number: 1020057010331

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057010331

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10537825

Country of ref document: US