JP6090570B2 - 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 - Google Patents

光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 Download PDF

Info

Publication number
JP6090570B2
JP6090570B2 JP2013049581A JP2013049581A JP6090570B2 JP 6090570 B2 JP6090570 B2 JP 6090570B2 JP 2013049581 A JP2013049581 A JP 2013049581A JP 2013049581 A JP2013049581 A JP 2013049581A JP 6090570 B2 JP6090570 B2 JP 6090570B2
Authority
JP
Japan
Prior art keywords
formula
liquid crystal
ring
alignment
aligning agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013049581A
Other languages
English (en)
Other versions
JP2013242526A (ja
Inventor
裕子 片野
裕子 片野
洋一郎 大木
洋一郎 大木
智幸 松田
智幸 松田
啓介 伊澤
啓介 伊澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Petrochemical Corp
Original Assignee
JNC Corp
JNC Petrochemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JNC Corp, JNC Petrochemical Corp filed Critical JNC Corp
Priority to JP2013049581A priority Critical patent/JP6090570B2/ja
Publication of JP2013242526A publication Critical patent/JP2013242526A/ja
Application granted granted Critical
Publication of JP6090570B2 publication Critical patent/JP6090570B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/106Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、特定の脂環式テトラカルボン酸二無水物を含有するテトラカルボン酸二無水物とジアミンとを反応させて得られるポリアミック酸またはその誘導体を含有する光配向用液晶配向剤、この光配向用液晶配向剤を用いた光配向膜およびこの光配向膜を有する液晶表示素子に関する。
パソコンのモニター、液晶テレビ、ビデオカメラのビューファインダー、投写型ディスプレイ等の様々な表示装置、さらには、光プリンターヘッド、光フーリエ変換素子、ライトバルブ等のオプトエレクトロニクス関連素子等、今日製品化されて一般に流通している液晶表示素子は、ネマティック液晶を用いた表示素子が主流である。ネマティック液晶表示素子の表示方式は、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モードがよく知られている。近年、これらのモードの問題点の1つである視野角の狭さを改善するために、光学補償フィルムを用いたTN型液晶表示素子、垂直配向と突起構造物の技術を併用したMVA(Multi-domain Vertical Alignment)モード、あるいは横電界方式のIPS(In-Plane Switching)モード等が提案され、実用化されている。
これらの液晶表示素子に均一な表示特性を持たせるためには、液晶の分子配列を均一に制御することが必要である。具体的には、基板上の液晶分子を一方向に均一に配向させること、液晶分子に基板面から一定の傾斜角(プレチルト角)を持たせること等である。このような役割を担うのが液晶配向膜である。液晶配向膜は、液晶表示素子の表示品位に係わる重要な要素の一つであり、表示素子の高品質化に伴って液晶配向膜の役割が年々重要になってきている。
液晶配向膜は液晶配向剤を用いて形成される。現在主として用いられている液晶配向剤とは、ポリアミック酸もしくは可溶性のポリイミドを有機溶剤に溶解させた溶液(ワニス)である。この溶液を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。この膜に液晶分子を配向させる性質を与える(配向処理)方法として、現在工業的に用いられているのがラビング法である。ラビング法は、ナイロン、レイヨン、ポリエステル等の繊維を植毛した布を用いて液晶配向膜の表面を一方向に擦る処理であり、これによって液晶分子の一様な配向を得ることが可能になる。しかし、ラビング法は工程中に発生する配向膜の削れや繊維ごみ等の付着による表示欠陥や、静電気の発生によってTFT(Thin-Film-Transistor)素子が破壊されて起こる表示不良等の問題を抱えている。
この問題を解決するために、形成された膜に光を照射して配向処理を施す光配向法が提案され、今日までに光分解法、光異性化法、光二量化法、光架橋法等多くの配向機構が紹介されている(例えば、非特許文献1および特許文献1〜5を参照。)。光配向法はラビング法に比べて配向の均一性が高く、また非接触の配向法であるため膜に傷が付かず、発塵や静電気等の液晶表示素子の表示不良を発生させる原因を低減できる等の利点がある。
光配向法による液晶配向膜(以降、「光配向膜」と略記することがある。)に用いる材料の検討も数多くなされているが、テトラカルボン酸二無水物、特にシクロブタンテトラカルボン酸二無水物を原料に用いたポリイミドを用いた光配向膜が、液晶分子を均一かつ安定に配向させることができると報告されている(例えば、特許文献1を参照。)。これは基板上に形成した膜に紫外線等を照射して、ポリイミドに化学変化を起こさせることによって液晶を一定方向に配向させる機能を与える方法である。しかしながら、このような方式による光配向膜はラビング法による配向膜に比べて、不純物イオンの量が増加して電圧保持率が低下する等、電気特性が劣るという問題があった。これを解決するためにポリイミドを構成する分子構造に様々な検討が加えられている(例えば、特許文献2および3を参照。)。
一方、光配向法はラビング法に比べて液晶分子の配向性が劣るため、アンカリングエネルギーが小さく、液晶表示素子の応答速度の低下や焼き付きを引き起こすという問題が指摘されている。
我々はポリアミック酸構造中に光異性化または光二量化を起こす光反応性基を有する光配向膜の検討を行ってきた(例えば、特許文献4、6および7を参照。)。該光配向膜はアンカリングエネルギーが大きく、配向性が良好で、かつ電圧保持率など電気特性が良好であった。しかしながら、該光反応性基が光を吸収するため、透過率が低くなるという問題があり、改善の余地があった。
特開平9−297313号公報 特開2004−206091号公報 国際公開第2005/83504号パンフレット 特開2005−275364号公報 特開2006−171304号公報 特開2007−248637公報 特開2009−069493公報
液晶、第3巻、第4号、262ページ、1999年
本発明の課題は、液晶分子の配向性に優れた液晶配向剤を提供することである。本発明の課題はさらに、この液晶配向剤を用いた光配向膜を提供することであり、この光配向膜を用いた液晶表示素子を提供することである。
本発明者らは、式(1)であらわされるテトラカルボン酸二無水物とジアミンとを原料としたポリアミック酸またはその誘導体と光反応性構造を有するポリアミック酸またはその誘導体とを含有する光配向用液晶配向剤を用いることにより、配向性の良好でかつ透過率の高い光配向用液晶配向膜が得られることを見出し、本発明を完成させた。
本発明は以下の構成からなる。
[1]下記〔A〕成分および〔B〕成分を含有する液晶配向剤であって、配向膜形成後、〔A〕成分および〔B〕成分が上下2層に分かれる、光配向用液晶配向剤。
〔A〕成分:テトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物およびジアミンの少なくとも1つが、下記式(I)〜(VII)から選ばれる少なくとも1つの光異性化または光二量化可能な光反応性構造を有する、ポリアミック酸またはその誘導体
〔B〕成分:光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物が下記式(1)から選ばれる少なくとも1つのテトラカルボン酸二無水物を含有するポリアミック酸またはその誘導体
Figure 0006090570

式(I)〜(VII)において、R2およびR3は独立して−NH2または−CO−O−CO−を有する1価の有機基であり、R4は芳香環を有する2価の有機基である。
Figure 0006090570
[2]〔A〕成分において、前記光反応性構造がポリアミック酸またはその誘導体の主鎖に存在する、[1]に記載の光配向用液晶配向剤。
[3]〔A〕成分において、前記光反応性構造が下記式(I−1)、(II−1)、(III−1)、(IV−1)、(IV−2)、(V−1)、(VI−1)、および(VII−1)〜(VII−3)から選ばれるテトラカルボン酸二無水物およびジアミンの少なくとも1つを反応させて得られるポリアミック酸またはその誘導体に存在する、[1]または[2]に記載の光配向用液晶配向剤。
Figure 0006090570

Figure 0006090570
Figure 0006090570
式(I−1)、(II−1)、(III−1)、(IV−1)、(V−1)、(VI−1)、(VII−1)および(VII−2)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
式(VII−1)において、R5は独立して−CH3、-OCH3、−CF3、または−COOCH3であり;そして
bは0〜2の整数である。
[4]〔A〕成分において、前記光反応性構造が下記式(I−1−1)、(II−1−1)、(VI−1−1)、(VII−1−1)、(VII−1−2)および(VII−3)から選ばれる少なくとも1つのテトラカルボン酸二無水物またはジアミンを反応させて得られるポリアミック酸またはその誘導体に存在する、[3]に記載の光配向用液晶配向剤。

Figure 0006090570
[5]〔A〕成分において、前記光反応性構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が、下記式(AN−I)〜(AN−VII)からなる群から選ばれる少なくとも1つのテトラカルボン酸二無水物である、[1]〜[4]のいずれか1つに記載の光配向用液晶配向剤。
Figure 0006090570
式(AN−I)、(AN−IV)および(AN−V)において、Xは独立して単結合または−CH2−であり;
式(AN−II)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO2−、−C(CH32−、または−C(CF32−であり;
式(AN−II)〜(AN−IV)において、Yは独立して下記の3価の基の群から選ばれる1つであり、
Figure 0006090570
これらの基の任意の水素はメチル、エチルまたはフェニルで置き換えられてもよく;
式(AN−III)〜(AN−V)において、環Aは炭素数3〜10の単環式炭化水素の基または炭素数6〜30の縮合多環式炭化水素の基であり、この基の任意の水素はメチル、エチルまたはフェニルで置き換えられていてもよく、環に掛かっている結合手は環を構成する任意の炭素に連結しており、2本の結合手が同一の炭素に連結してもよく;
式(AN−VI)において、X10は炭素数2〜6のアルキレンであり;
Meはメチルであり;
Phはフェニルであり;
式(AN−VII)において、G10は独立して−O−、−COO−または−OCO−であり;そして、
rは独立して0または1である。
[6]〔A〕成分において、前記光反応性構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が下記式(AN−1−1)、(AN−1−13)、(AN−2−1)、(AN−3−1)、(AN−3−2)、および(AN−4−17)から選ばれる少なくとも1つのテトラカルボン酸二無水物である、[5]に記載の光配向用液晶配向剤。
Figure 0006090570
式(AN−4−17)において、mは1〜12の整数である。
[7]〔A〕成分において、前記光反応性構造を有するジアミン以外のジアミンが下記式(DI−1)〜(DI−17)からなる群から選ばれる少なくとも1つのジアミンである、[1]〜[6]のいずれか1つに記載の光配向用液晶配向剤。
Figure 0006090570
式(DI−1)において、mは1〜12の整数であり;
(DI−3)および(DI−5)〜(DI−7)において、G21は独立して単結合、−NH−、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−NHCO−、−C(CH32−、−C(CF32−、−(CH2m'−、−O−(CH2m'−O−、−N(CH3)−(CH2k−N(CH3)−、または−S−(CH2m'−S−であり、m’は独立して1〜12の整数であり、kは1〜5の整数であり;
(DI−6)および(DI−7)において、G22は独立して単結合、−O−、−S−、−CO−、−C(CH32−、−C(CF32−、または炭素数1〜10のアルキレンであり;
式(DI−2)〜(DI−7)中のシクロヘキサン環およびベンゼン環の任意の−Hは、−F、−CH3、−OH、−CF3、−CO2H、−CONH2、またはベンジルで置き換えられていてもよく、加えて式(DI−4)においてベンゼン環の任意の−Hは、下記式(DI−4−a)〜(DI−4−c)で置き換えられていてもよく、
Figure 0006090570
式(DI−4−a)および(DI−4−b)において、R20は独立して−Hまたは−CH3であり;
式(DI−2)〜(DI−7)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;そして、
シクロヘキサン環またはベンゼン環への−NH2の結合位置は、G21またはG22の結合位置を除く任意の位置である。
Figure 0006090570
式(DI−8)において、R21およびR22は独立して炭素数1〜3のアルキルまたはフェニルであり;
23は独立して炭素数1〜6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり;
wは1〜10の整数であり;
式(DI−9)において、R23は独立して炭素数1〜5のアルキル、炭素数1〜5のアルコキシまたは−Clであり;
pは独立して0〜3の整数であり;
qは0〜4の整数であり;
式(DI−10)において、R24は−H、炭素数1〜4のアルキル、フェニル、またはベンジルであり;
式(DI−11)において、G24は−CH2−または−NH−であり;
式(DI−12)において、G25は単結合、炭素数2〜6のアルキレンまたは1,4−フェニレンであり;
rは0または1であり;
式(DI−12)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;そして、
式(DI−9)、(DI−11)および(DI−12)において、ベンゼン環に結合する−NH2の結合位置は任意の位置であり;
Figure 0006090570
式(DI−13)において、G26は単結合、−O−、−COO−、−OCO−、−CO−、−CONH−、−CH2O−、−OCH2−、−CF2O−、−OCF2−、または−(CH2m'−であり、m’は1〜12の整数であり;
25は炭素数3〜20のアルキル、フェニル、シクロヘキシル、ステロイド骨格を有する基、または下記の式(DI−13−a)で表される基であり、このアルキルにおいて、任意の−Hは−Fで置き換えられてもよく、任意の−CH2−は−O−で置き換えられていてもよく、このフェニルの−Hは、−F、−CH3、−OCH3、−OCH2F、−OCHF2、−OCF3、炭素数3〜20のアルキル、または炭素数3〜20のアルコキシで置き換えられていてもよく、このシクロヘキシルの−Hは炭素数3〜20のアルキルまたは炭素数3〜20のアルコキシで置き換えられていてもよく、ベンゼン環に結合する−NH2の結合位置はその環において任意の位置であることを示し;
Figure 0006090570
式(DI−13−a)において、G27、G28およびG29は結合基を表し、これらは独立して単結合、または炭素数1〜12のアルキレンであり、このアルキレン中の1以上の−CH2−は−O−、−COO−、−OCO−、−CONH−、−CH=CH−で置き換えられていてもよく;
環B21、環B22、環B23、および環B24は独立して1,4−フェニレン、1,4−シクロへキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,4−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,6−ジイル、ナフタレン−2,7−ジイル、またはアントラセン−9,10−ジイルであり;
環B21、環B22、環B23、および環B24において、任意の−Hは−Fまたは−CH3で置き換えられてもよく;
s,tおよびuは独立して0〜2の整数であり、これらの合計は1〜5であり;
s,tまたはuが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、2つの環は同じであっても異なっていてもよく;
26は−F、−OH、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、−CN、−OCH2F、−OCHF2、または−OCF3であり、この炭素数1〜30のアルキルの任意の−CH2−は下記式(DI−13−b)で表される2価の基で置き換えられていてもよく;
Figure 0006090570
式(DI−13−b)において、R27およびR28は独立して炭素数1〜3のアルキルであり;
vは1〜6の整数であり;
Figure 0006090570
式(DI−14)および式(DI−15)において、G30は独立して単結合、−CO−または−CH2−であり;
29は独立して−Hまたは−CH3であり;
30は−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり;
式(DI−15)におけるベンゼン環の1つの−Hは、炭素数1〜20のアルキルまたはフェニルで置き換えられてもよく;
式(DI−14)および式(DI−15)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
ベンゼン環に結合する−NH2はその環における結合位置が任意であることを示し;
Figure 0006090570
式(DI−16)および式(DI−17)において、G31は独立して−O−または炭素数1〜6のアルキレンであり;
32は単結合または炭素数1〜3のアルキレンであり;
31は−Hまたは炭素数1〜20のアルキルであり、このアルキルの任意の−CH2−は、−O−で置き換えられてもよく;
32は炭素数6〜22のアルキルであり;
33は−Hまたは炭素数1〜22のアルキルであり;
環B25は1,4−フェニレンまたは1,4−シクロヘキシレンであり;
rは0または1であり;そして、
ベンゼン環に結合する−NH2はその環における結合位置が任意であることを示す。
[8]〔A〕成分において、前記ジアミンが、下記式(DI−5−1)から選ばれる少なくとも1つである、[7]に記載の光配向用液晶配向剤。
Figure 0006090570
式(DI−5−1)において、mは1〜12の整数である。
[9]〔B〕成分において、式(1)が、下記式(1−a)または(1−b)で表されるテトラカルボン酸二無水物から選ばれる少なくとも1つのテトラカルボン酸二無水物である、[1]〜[8]のいずれか1つに記載の光配向用液晶配向剤。
Figure 0006090570
[10]〔B〕成分において、式(1)で表されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が、前記式(AN−I)〜(AN−VII)からなる群から選ばれる少なくとも1つのテトラカルボン酸二無水物である、[1]〜[9] のいずれか1つに記載の光配向用液晶配向剤。
[11]〔B〕成分において、前記テトラカルボン酸二無水物が、下記式(AN−1−1)、(AN−2−1)、(AN−3−1)、(AN−3−2)、(AN−4−1)、(AN−4−5)、(AN−4−17)、(AN−4−21)、(AN−7−2)、(AN−10)、および(AN−11−3)から選ばれる少なくとも1つのテトラカルボン酸二無水物である、[10]に記載の光配向用液晶配向剤。
Figure 0006090570
式(AN−4−17)において、mは1〜12の整数である。
[12]〔B〕成分において、ジアミンが前記式(DI−1)〜(DI−17)からなる群から選ばれる少なくとも1つのジアミン、および/または、下記式(2−a)〜(2−c)から選ばれる少なくとも1つのジヒドラジド化合物である、[1]〜[11]のいずれか1つに記載の光配向用液晶配向剤。
Figure 0006090570
式(2−a)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO2−、−C(CH32−、または−C(CF32−であり;
式(2−b)において、環Bはシクロヘキサン環、ベンゼン環またはナフタレン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;
式(2−c)において、環Cはそれぞれ独立してシクロヘキサン環、またはベンゼン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;Yは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO2−、−C(CH32−、または−C(CF32−である。
[13]〔B〕成分において、ジアミンが、下記式(DI−1−3)、(DI−1−4)、(DI−2−1)、(DI−4−1)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−22)、(DI−5−28)、(DI−5−30)、(DI−7−3)、(DI−9−1)、(DI−13−4)、(DI−13−5)、(DI−13−47)、(DI−16−1)、(DI−16−2)、および(DI−16−4)から選ばれる少なくとも1つのジアミンである、[12]に記載の光配向用液晶配向剤。
Figure 0006090570
Figure 0006090570
式(DI−5−1)、(DI−5−12)および(DI−7−3)において、mは1〜12の整数であり;
式(DI−5−30)において、kは1〜5の整数であり;
式(DI−7−3)において、nは1または2であり;
式(DI−13−4)および(DI−13−5)において、R35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり;
式(DI−16−1)および(DI−16−2)において、R40は−Hまたは炭素数1〜20のアルキルであり;
式(DI−16−4)において、R41は−Hまたは炭素数1〜12のアルキルである。
[14]〔B〕成分において、前記ジヒドラジド化合物が式(2−a−1)〜(2−a−2)、(2−b−1)〜(2−b−3)または(2−c−1)〜(2−c−6)から選ばれる少なくとも1つのジヒドラジド化合物である、[12]または[13]に記載の光配向用液晶配向剤。
Figure 0006090570
式(2−a−2)において、mは1〜12の整数である。
[15] [A]成分および〔B〕成分を含有する液晶配向剤であって、アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、[1]〜[14]のいずれか1つに記載の光配向用液晶配向剤。
[16] アルケニル置換ナジイミド化合物が、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、およびN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)からなる化合物の群から選ばれる少なくとも1つである、[15]に記載の光配向用液晶配向剤。
[17]ラジカル重合性不飽和二重結合を有する化合物が、N,N’−エチレンビスアクリルアミド、N,N’−(1,2−ジヒドロキシエチレン)ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)からなる化合物の群から選ばれる少なくとも1つである、[15]に記載の光配向用液晶配向剤。
[18] エポキシ化合物が、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、および3−アミノプロピルトリエトキシシランからなる化合物の群から選ばれる少なくとも1つである、[15]に記載の光配向用液晶配向剤。
[19][1]〜[18]のいずれか1つに記載の光配向用液晶配向剤によって形成された光配向用液晶配向膜。
[20][1]〜[18]のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、膜に偏紫外線を照射する工程とを経て形成される光配向用液晶配向膜。
[21][1]〜[18]のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、乾燥した膜に偏紫外線を照射する工程と、次いでその膜を加熱焼成する工程を経て形成される光配向用液晶配向膜。
[22][1]〜[18]のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、乾燥した膜を加熱焼成する工程と、次いでその膜に偏紫外線を照射する工程とを経て形成される光配向用液晶配向膜。
[23][19]〜[22]のいずれか1つに記載の光配向用液晶配向膜を有する液晶表示素子。
本発明のポリアミック酸またはその誘導体を用いた配向剤を用いれば、光照射による化学変化の感度が良好で、液晶分子の配向性に優れた光配向膜を得ることができ、かつ透過率の高い光配向膜を得ることができる。そしてこの光配向膜を有する表示特性に優れた液晶表示素子を得ることができる。
本発明で用いる用語について説明する。式(I−1)で表される化合物を化合物(I−1)と記述することがある。他の式で表される化合物についても同様に略記することがある。化学構造式を定義する際に用いる「任意の」は、位置だけでなく個数についても任意であることを示す。化学構造式において、文字(例えばA)を六角形で囲った基は環構造の基(環A)であることを意味する。
本発明の光配向用液晶配向剤について説明する。本発明の光配向用液晶配向剤は、〔A〕成分:テトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物およびジアミンの少なくとも1つが、下記式(I)〜(VII)から選ばれる少なくとも1つの光異性化または光二量化可能な光反応性構造を有する、ポリアミック酸またはその誘導体、および〔B〕成分:光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、下記式(1)から選ばれる少なくとも1つのテトラカルボン酸二無水物が必須であるポリアミック酸またはその誘導体を含有する光配向用液晶配向剤である。
前記ポリアミック酸の誘導体とは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。このようなポリアミック酸の誘導体としては、例えば可溶性ポリイミド、ポリアミック酸エステル、ポリヒドラジド酸、ポリアミック酸アミド、およびポリヒドラジド酸−アミド酸等が挙げられ、より具体的には1)ポリアミック酸の全てのアミノとカルボキシルとが脱水閉環反応したポリイミド、2)部分的に脱水閉環反応した部分ポリイミド、3)ポリアミック酸のカルボキシルがエステルに変換されたポリアミック酸エステル、4)テトラカルボン酸二無水物化合物に含まれる酸二無水物の一部を有機ジカルボン酸に置き換えて反応させて得られたポリアミック酸−ポリアミド共重合体、さらに5)該ポリアミック酸−ポリアミド共重合体の一部もしくは全部を脱水閉環反応させたポリアミドイミド等が挙げられる。前記ポリアミック酸またはその誘導体は、1種の化合物であってもよいし、2種以上であってもよい。
本発明の液晶配向剤は、これらのポリアミック酸またはその誘導体から選択される前記 [A]成分および[B]成分の2つの成分を含有しており、[A]成分と[B]成分の合計量に対する[A]成分の割合としては、5重量%〜95重量%が好ましい。[A]成分の割合が少ないと、十分な配向性が得られない可能性があり、[B]成分の割合が少ないと、本発明の目的とする効果が得られない可能性がある。そのため、[A]成分の割合としては、10重量%〜80重量%がより好ましく、20重量%〜70重量%がさらに好ましい。
本発明の液晶配向剤を基板に塗布し、予備加熱によって乾燥させた後、偏光板を介して紫外線の直線偏光を照射すると、偏光方向に概ね平行しているポリマー主鎖の、式(I)〜(VII)から選ばれる少なくとも1つの光反応性基が光異性化または光二量化を起こす。偏光方向に概ね平行しているポリマーの主鎖が選択的に光異性化または光二量化されることによって、膜を形成しているポリマーの主鎖は、照射した紫外線の偏光方向に対して概ね直角方向に向いた成分が支配的になる。そのため、基板を加熱してポリアミック酸を脱水・閉環させてポリイミド膜とした後、この基板を用いて組み立てたセルに注入された液晶組成物の液晶分子は、照射した紫外線の偏光方向に対して直角の方向に長軸を揃えて配向する。膜に紫外線の直線偏光を照射する工程は、ポリイミド化のための加熱工程の前でもよく、加熱してポリイミド化した後であってもよい。
本発明の光配向用液晶配向剤は、下記[A]成分および[B]成分を含有する液晶配向剤であって、配向膜形成後、[A]成分および[B]成分が上下2層に分かれる、光配向用液晶配向剤である。
〔A〕成分:テトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物およびジアミンの少なくとも1つが、下記式(I)〜(VII)から選ばれる少なくとも1つの光異性化または光二量化可能な光反応性構造を有する、ポリアミック酸またはその誘導体、および
〔B〕成分:光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、下記式(1)から選ばれる少なくとも1つのテトラカルボン酸二無水物が必須であるポリアミック酸またはその誘導体。
Figure 0006090570
式(I)〜(VII)において、R2およびR3は独立して−NH2または−CO−O−CO−を有する1価の有機基であり、R4は芳香環を有する2価の有機基である。

Figure 0006090570
本発明の光配向用液晶配向剤は〔A〕成分および〔B〕成分を含有する液晶配向剤であるが、それぞれ分子量を制御したポリマーを、基板に塗布し、予備乾燥を行うことによって、光反応性構造を有する〔A〕成分を上層、〔B〕成分を下層に分離することができる。これは、混在するポリマーにおいて、表面エネルギーの小さなポリマーは上層に、表面エネルギーの大きなポリマーは下層に分離する現象を用いることにより、制御することができる。層分離の確認は形成された配向膜の表面エネルギーが〔A〕成分のみを含有する液晶配向剤によって形成された膜の表面エネルギーと同じまたは近い値であることで確認できる。
本発明の〔A〕成分について説明する。本発明の〔A〕成分はテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物およびジアミンの少なくとも1つが、前記式(I)〜(VII)から選ばれる少なくとも1つの光異性化または光二量化可能な光反応性構造を有する、ポリアミック酸またはその誘導体である。
〔A〕成分において、上記式(I)〜(VII)から選択される少なくとも一つの構造を有するテトラカルボン酸二無水物またはジアミンの少なくとも1つを材料に用いることで、良好な感光性を発揮することができる。好適な材料として下記式(I−1)、(II−1)、(III−1)、(IV−1)、(IV−2)、(V−1)、(VI−1)、および(VII−1)〜(VII−3)のテトラカルボン酸二無水物およびジアミンを挙げることができる。
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(I−1)、(II−1)、(III−1)、(IV−1)、(V−1)、(VI−1)、(VII−1)および(VII−2)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し、
式(VII−1)において、R5は独立して−CH3、-OCH3、−CF3、または−COOCH3であり、そしてbは0〜2の整数である。
反応性および感光性の点から、上記式(II−1)、(VI−1)、(VII−1)、および(VII−3)から選ばれる少なくとも1つのテトラカルボン酸二無水物またはジアミンを好適にも用いることができる。上記式(II−1)、(VI−1)および(VII−1)において、特にアミノ基の結合位置がパラ位のものを好適に用いることができ、中でも式(VII−1)において、bが0のものをより好適に用いることができる。
〔A〕成分において、前記光反応性構造を有するテトラカルボン酸二無水物および前記光反応性構造を有するジアミン以外の、光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを制限なく使用することができる。
本発明の〔B〕成分について説明する。本発明の〔B〕成分は光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体である。使用されるテトラカルボン酸二無水物は、下記式(1)である。
Figure 0006090570
下記式(1)は、具体的には、下記式(1−a)または式(1−b)であり、少なくともいずれかが必須である。
Figure 0006090570
式(1−a)または式(1−b)で表されるテトラカルボン酸二無水物は1つの化合物を単独で用いてもよく、2つ以上を混合して用いてもよい。式(1−a)または式(1−b)で表されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物と混合して用いてもよい。この際のテトラカルボン酸二無水物の混合物中の式(1−a)または式(1−b)で表されるテトラカルボン酸二無水物は10重量%以上の割合で用いられ、30重量%以上であることが好ましく、50重量%以上であるとより好ましい。
〔B〕成分において、前記式(1−a)および式(1−b)以外のテトラカルボン酸二無水物およびジアミンを制限なく使用することができる。
本発明のポリアミック酸およびその誘導体を製造する為に使用するテトラカルボン酸二無水物について説明する。本発明の光配向用配向剤は前記〔A〕成分および前記〔B〕成分のポリアミック酸またはその誘導体を含有するが、〔A〕成分を製造するにあたっては、上述した光反応性構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物をさらに使用することができ、公知のテトラカルボン酸二無水物から制限されることなく選択することができる。また〔B〕成分を製造するにあたっては、前記式(1)以外のその他の公知のテトラカルボン酸二無水物から制限されることなく選択することができる。このようなテトラカルボン酸二無水物は、芳香環に直接ジカルボン酸二無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸二無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。
このようなテトラカルボン酸二無水物の好適な例としては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(AN−I)〜(AN−VII)で表されるテトラカルボン酸二無水物が挙げられる。
さらに詳しくは以下の式(AN−1)〜(AN−16−14)の式で表されるテトラカルボン酸二無水物が挙げられる。
Figure 0006090570
式(AN−1)において、G11は単結合、炭素数1〜12のアルキレン、1,4−フェニレン、または1,4−シクロヘキシレンである。X11は独立して単結合または−CH2−である。G12は独立してCHまたはNである。G12がCHであるとき、CHの水素は−CH3に置き換えられてもよい。G12がNであるとき、G11が単結合および−CH2−であることはなく、X11は単結合であることはない。そしてR11は−Hまたは−CH3である。式(AN−1)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
式(AN−1−2)および(AN−1−14)において、mは1〜12の整数である。
Figure 0006090570
式(AN−2)において、R12は独立して−H、−CH3、−CH2CH3、またはフェニルである。式(AN−2)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−3)において、環A11はシクロヘキサン環もしくはベンゼン環である。式(AN−3)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−4)において、G13は単結合、−CH2−、−CH2CH2−、−O−、−S−、−C(CH32−、−SO2−、−CO−または−C(CF32−である。環A11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。G13は環A11の任意の位置に結合してよい。式(AN−4)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−4−17)において、mは1〜12の整数である。

Figure 0006090570
Figure 0006090570
式(AN−5)において、R11は−H、または−CH3である。ベンゼン環を構成する炭素原子に結合位置が固定されていないR11は、ベンゼン環における結合位置が任意であることを示す。式(AN−5)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−6)において、X11は独立して単結合または−CH2−である。X12は−CH2−、−CH2CH2−または−CH=CH−である。nは1または2である。式(AN−6)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−7)において、X11は単結合または−CH2−である。式(AN−7)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−8)において、X11は単結合または−CH2−である。R12は−H、−CH3、−CH2CH3、またはフェニルであり、環A12はシクロヘキサン環もしくはシクロヘキセン環である。式(AN−8)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−9)において、rはそれぞれ独立して0または1である。式(AN−9)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
式(AN−10)は下記のテトラカルボン酸二無水物である。
Figure 0006090570
Figure 0006090570
式(AN−11)において、環A11は独立してシクロヘキサン環またはベンゼン環である。式(AN−11)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−12)において、環A11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。式(AN−12)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−13)において、X13は炭素数2〜6のアルキレンである。式(AN−13)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−14)において、G14は独立して−O−、−COO−または−OCO−であり、rは独立して0または1である。式(AN−14)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
Figure 0006090570
式(AN−15)において、wは1〜10の整数である。式(AN−15)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
Figure 0006090570
上記以外のテトラカルボン酸二無水物として、下記の化合物が挙げられる。
Figure 0006090570
〔A〕成分において、各特性を向上させる好適な材料について述べる。液晶表示素子の配向性を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−2−1)、(AN−3−2)、(AN−4−5)、(AN−4−17)、および(AN−4−21で表される化合物が特に好ましい。
液晶表示素子の透過率を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−13)、(AN−2−1)〜(AN−2−7)、および(AN−3−1)で表される化合物が特に好ましい。
〔B〕成分において、各特性を向上させる好適な材料について述べる。液晶表示素子の配向性を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−3−2)、(AN−4−5)、(AN−4−17)、(AN−4−21)、(AN−7−2)、(AN−10)、および(AN−11−3)で表される化合物が特に好ましい。
液晶表示素子の透過率を向上させることを重視する場合には、上記の酸二無水物のうち、式(AN−1−1)、(AN−1−13)、(AN−2−1)、(AN−3−1)、(AN−4−1)、(AN−7−2)、および(AN−10)で表される化合物が特に好ましい。
本発明のポリアミック酸およびその誘導体を製造する為に使用するジアミンについて説明する。本発明の〔A〕成分および〔B〕成分のポリアミック酸またはその誘導体を製造するにあたっては、〔A〕成分においては、上述した光反応性構造を有するジアミン化合物以外のジアミン化合物をさらに使用することができ、公知のジアミン化合物から制限されることなく選択することができる。また〔B〕成分においては、公知のジアミン化合物から制限されることなく選択することができる。
ジアミン化合物はその構造によって2種類に分けることができる。即ち、2つのアミノ基を結ぶ骨格を主鎖として見たときに、主鎖から分岐する基、即ち側鎖基を有するジアミンと側鎖基を持たないジアミンである。この側鎖基はプレチルト角を大きくする効果を有する基である。このような効果を有する側鎖基は炭素数3以上の基である必要があり、具体的な例として炭素数3以上のアルキル、炭素数3以上のアルコキシ、炭素数3以上のアルコキシアルキル、およびステロイド骨格を有する基を挙げることができる。1つ以上の環を有する基であって、その末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシおよび炭素数2以上のアルコキシアルキルのいずれか1つを有する基も側鎖基としての効果を有する。以下の説明では、このような側鎖基を有するジアミンを側鎖型ジアミンと称することがある。そして、このような側鎖基を持たないジアミンを非側鎖型ジアミンと称することがある。
非側鎖型ジアミンと側鎖型ジアミンを適切に使い分けることにより、それぞれに必要なプレチルト角に対応することができる。側鎖型ジアミンは、本発明の特性を損なわない程度に併用するのが好ましい。また側鎖型ジアミンおよび非側鎖型ジアミンについて、液晶に対する垂直配向性、電圧保持率、焼き付き特性および配向性を向上させる目的で取捨選択して使用することが好ましい。
非側鎖型ジアミンについて説明する。既知の側鎖を有さないジアミンとしては、以下の式(DI−1)〜(DI−12)のジアミンを挙げることができる。
Figure 0006090570
上記の式(DI−1)において、mは1〜12の整数であり、アルキレンの任意の水素は−OHに置き換えられてもよい。(DI−3)および(DI−5)〜(DI−7)において、G21は独立して単結合、−NH−、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−CONCH3−、−NHCO−、−C(CH32−、−C(CF32−、−(CH2m'−、−O−(CH2m'−O−、−N(CH3)−(CH2k−N(CH3)−、または−S−(CH2m'−S−であり、m’は独立して1〜12の整数であり、kは1〜5の整数である。(DI−6)および(DI−7)において、G22は独立して単結合、−O−、−S−、−CO−、−C(CH32−、−C(CF32−、または炭素数1〜10のアルキレンである。式(DI−2)〜(DI−7)中のシクロヘキサン環およびベンゼン環の任意の−Hは、−F、−CH3、−OH、−CF3、−CO2H、−CONH2、またはベンジルで置き換えられてもよく、加えて式(DI−4)においては、下記式(DI−4−a)〜(DI−4−c)で置き換えられていてもよい。環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。そして、シクロヘキサン環またはベンゼン環への−NH2の結合位置は、G21またはG22の結合位置を除く任意の位置である。
Figure 0006090570
式(DI−4−a)および(DI−4−b)において、R20は独立して−Hまたは−CH3である。
Figure 0006090570
式(DI−8)において、R21およびR22は独立して炭素数1〜3のアルキルまたはフェニルであり、G23は独立して炭素数1〜6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり、wは1〜10の整数である。
式(DI−9)において、R23は独立して炭素数1〜5のアルキル、炭素数1〜5のアルコキシまたは−Clであり、pは独立して0〜3の整数であり、qは0〜4の整数である。
式(DI−10)において、R24は−H、炭素数1〜4のアルキル、フェニル、またはベンジルである。
式(DI−11)において、G24は−CH2−または−NH−である。
式(DI−12)において、G25は単結合、炭素数2〜6のアルキレンまたは1,4−フェニレンであり、rは0または1である。そして、環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。
式(DI−9)、式(DI−11)および式(DI−12)において、ベンゼン環に結合する−NH2の結合位置は、任意の位置である。
上記式(DI−1)〜(DI−12)の側鎖を有さないジアミンとして、以下の式(DI−1−1)〜(DI−12−1)の具体例を挙げることができる。
式(DI−1)〜(DI−3)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−4)で表されるジアミンの例を以下に示す。
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(DI−5)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−5−1)において、mは1〜12の整数である。
Figure 0006090570
式(DI−5−12)および式(DI−5−13)において、mは1〜12の整数である。
Figure 0006090570
式(DI−5−16)において、vは1〜6の整数である。

Figure 0006090570
式(DI−5−30)において、kは1〜5の整数である。
式(DI−6)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−7)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−7−3)および(DI−7−4)において、mは1〜12の整数であり、nは独立して1または2である。
Figure 0006090570
式(DI−8)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−9)で表されるジアミンの例を以下に示す。
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(DI−10)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−11)で表されるジアミンの例を以下に示す。
Figure 0006090570
式(DI−12)で表されるジアミンの例を以下に示す。
Figure 0006090570
このような非側鎖型ジアミンは液晶表示素子のイオン密度を低下させる等、電気特性を改善する効果がある。本発明の液晶配向剤に用いられるポリアミック酸またはポリイミドを製造する為に使用するジアミンとして非側鎖型ジアミンを用いる場合、ジアミン総量に占めるその割合を0〜95モル%とすることが好ましく、0〜90モル%とすることがより好ましい。
側鎖型ジアミンについて説明する。側鎖型ジアミンの側鎖基としては、以下の基をあげることができる。
側鎖基としてまず、アルキル、アルキルオキシ、アルキルオキシアルキル、アルキルカルボニル、アルキルカルボニルオキシ、アルキルオキシカルボニル、アルキルアミノカルボニル、アルケニル、アルケニルオキシ、アルケニルカルボニル、アルケニルカルボニルオキシ、アルケニルオキシカルボニル、アルケニルアミノカルボニル、アルキニル、アルキニルオキシ、アルキニルカルボニル、アルキニルカルボニルオキシ、アルキニルオキシカルボニル、アルキニルアミノカルボニル等を挙げることができる。これらの基におけるアルキル、アルケニルおよびアルキニルは、いずれも炭素数3以上の基である。但し、アルキルオキシアルキルにおいては、基全体で炭素数3以上であればよい。これらの基は直鎖状であっても分岐鎖状であってもよい。
次に、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシまたは炭素数2以上のアルコキシアルキルを有することを条件に、フェニル、フェニルアルキル、フェニルアルキルオキシ、フェニルオキシ、フェニルカルボニル、フェニルカルボニルオキシ、フェニルオキシカルボニル、フェニルアミノカルボニル、フェニルシクロヘキシルオキシ、炭素数3以上のシクロアルキル、シクロヘキシルアルキル、シクロヘキシルオキシ、シクロヘキシルオキシカルボニル、シクロヘキシルフェニル、シクロヘキシルフェニルアルキル、シクロヘキシルフェニルオキシ、ビス(シクロヘキシル)オキシ、ビス(シクロヘキシル)アルキル、ビス(シクロヘキシル)フェニル、ビス(シクロヘキシル)フェニルアルキル、ビス(シクロヘキシル)オキシカルボニル、ビス(シクロヘキシル)フェニルオキシカルボニル、およびシクロヘキシルビス(フェニル)オキシカルボニル等の環構造の基を挙げることができる。
さらに、2個以上のベンゼン環を有する基、2個以上のシクロヘキサン環を有する基、またはベンゼン環およびシクロヘキサン環で構成される2環以上の基であって、結合基が独立して単結合、−O−、−COO−、−OCO−、−CONH−もしくは炭素数1〜3のアルキレンであり、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のフッ素置換アルキル、炭素数1以上のアルコキシ、または炭素数2以上のアルコキシアルキルを有する環集合基を挙げることができる。ステロイド骨格を有する基も側鎖基として有効である。
側鎖を有するジアミンとしては、以下の式(DI−13)〜(DI−17)で表される化合物を挙げることができる。
Figure 0006090570
式(DI−13)において、G26は単結合、−O−、−COO−、−OCO−、−CO−、−CONH−、−CH2O−、−OCH2−、−CF2O−、−OCF2−、または−(CH2m'−であり、m’は1〜12の整数である。G26の好ましい例は単結合、−O−、−COO−、−OCO−、−CH2O−、および炭素数1〜3のアルキレンであり、特に好ましい例は単結合、−O−、−COO−、−OCO−、−CH2O−、−CH2−および−CH2CH2−である。R25は炭素数3〜30のアルキル、フェニル、ステロイド骨格を有する基、または下記の式(DI−13−a)で表される基である。このアルキルにおいて、任意の−Hは−Fで置き換えられてもよく、そして任意の−CH2−は−O−、−CH=CH−または−C≡C−で置き換えられていてもよい。このフェニルの−Hは、−F、−CH3、−OCH3、−OCH2F、−OCHF2、−OCF3、炭素数3〜30のアルキルまたは炭素数3〜30のアルコキシで置き換えられていてもよく、このシクロヘキシルの−Hは炭素数3〜30のアルキルまたは炭素数3〜30のアルコキシで置き換えられていてもよい。ベンゼン環に結合する−NH2の結合位置はその環において任意の位置であることを示すが、その結合位置はメタまたはパラであることが好ましい。即ち、基「R25−G26−」の結合位置を1位としたとき、2つの結合位置は3位と5位、または2位と5位であることが好ましい。
Figure 0006090570
式(DI−13−a)において、G27、G28およびG29は結合基であり、これらは独立して単結合、または炭素数1〜12のアルキレンであり、このアルキレンの1以上の−CH2−は−O−、−COO−、−OCO−、−CONH−、−CH=CH−で置き換えられていてもよい。環B21、環B22、環B23および環B24は独立して1,4−フェニレン、1,4−シクロへキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,7−ジイルまたはアントラセン−9,10−ジイルであり、環B21、環B22、環B23および環B24において、任意の−Hは−Fまたは−CH3で置き換えられてもよく、s、tおよびuは独立して0〜2の整数であって、これらの合計は1〜5であり、s、tまたはuが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、そして、2つの環は同じであっても異なっていてもよい。R26は−F、−OH、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、−CN、−OCH2F、−OCHF2、または−OCF3であり、この炭素数1〜30のアルキルの任意の−CH2−は下記式(DI−13−b)で表される2価の基で置き換えられていてもよい。
Figure 0006090570
式(DI−13−b)において、R27およびR28は独立して炭素数1〜3のアルキルであり、vは1〜6の整数である。R26の好ましい例は炭素数1〜30のアルキルおよび炭素数1〜30のアルコキシである。
Figure 0006090570
式(DI−14)および式(DI−15)において、G30は独立して単結合、−CO−または−CH2−であり、R29は独立して−Hまたは−CH3であり、R30は−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルである。式(DI−15)におけるベンゼン環の1つの−Hは、炭素数1〜20のアルキルまたはフェニルで置き換えられてもよい。そして、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(DI−14)における2つの基「−フェニレン−G30−O−」の一方はステロイド核の3位に結合し、もう一方はステロイド核の6位に結合していることが好ましい。式(DI−15)における2つの基「−フェニレン−G30−O−」のベンゼン環への結合位置は、ステロイド核の結合位置に対して、それぞれメタ位またはパラ位であることが好ましい。式(DI−14)および式(DI−15)において、ベンゼン環に結合する−NH2はその環における結合位置が任意であることを示す。
Figure 0006090570
式(DI−16)および式(DI−17)において、G31は独立して−O−または炭素数1〜6のアルキレンであり、G32は単結合または炭素数1〜3のアルキレンである。R31は−Hまたは炭素数1〜20のアルキルであり、このアルキルの任意の−CH2−は、−O−、−CH=CH−または−C≡C−で置き換えられてもよい。R32は炭素数6〜22のアルキルであり、R33は−Hまたは炭素数1〜22のアルキルである。環B25は1,4−フェニレンまたは1,4−シクロヘキシレンであり、rは0または1である。そしてベンゼン環に結合する−NH2はその環における結合位置が任意であることを示すが、独立してG31の結合位置に対してメタ位またはパラ位であることが好ましい。
側鎖型ジアミンの具体例を以下に例示する。上記式(DI−13)〜(DI−17)の側鎖を有するジアミン化合物として、下記の式(DI−13−1)〜(DI−17−3)で表される化合物を挙げることができる。
式(DI−13)で表される化合物の例を以下に示す。
Figure 0006090570
式(DI−13−1)〜(DI−13−11)において、R34は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数5〜25のアルキルまたは炭素数5〜25のアルコキシである。R35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数3〜25のアルキルまたは炭素数3〜25のアルコキシである。
Figure 0006090570
式(DI−13−12)〜(DI−13−17)において、R36は炭素数4〜30のアルキルであり、好ましくは炭素数6〜25のアルキルである。R37は炭素数6〜30のアルキルであり、好ましくは炭素数8〜25のアルキルである。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(DI−13−18)〜(DI−13−43)において、R38は炭素数1〜20のアルキルまたは炭素数1〜20のアルコキシであり、好ましくは炭素数3〜20のアルキルまたは炭素数3〜20のアルコキシである。R39は−H、−F、炭素数1〜30のアルキル、炭素数1〜30のアルコキシ、−CN、−OCH2F、−OCHF2または−OCF3であり、好ましくは炭素数3〜25のアルキル、または炭素数3〜25のアルコキシである。そしてG33は炭素数1〜20のアルキレンである。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(DI−14)で表される化合物の例を以下に示す。
Figure 0006090570
式(DI−15)で表される化合物の例を以下に示す。
Figure 0006090570
Figure 0006090570
式(DI−16)で表される化合物の例を以下に示す。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
式(DI−16−1)〜(DI−16−12)において、R40は−Hまたは炭素数1〜20のアルキル、好ましくは−Hまたは炭素数1〜10のアルキルであり、そしてR41は−Hまたは炭素数1〜12のアルキルである。
式(DI−17)で表される化合物の例を以下に示す。
Figure 0006090570
式(DI−17−1)〜(DI−17−3)において、R37は炭素数6〜30のアルキルであり、R41は−Hまたは炭素数1〜12のアルキルである。
本発明におけるジアミンとしては、前述した式(I−1)、(II−1)、(III−1)、(IV−1)、(V−1)、(VI−1)、および(VII−1)〜(VII−2)で表される感光性ジアミンおよび式(DI−1−1)〜(DI−17−3)で表されるジアミン以外のジアミンも用いることができる。このようなジアミンとしては、例えば、式(DI−13−1)〜(DI−17−3)以外の側鎖構造を有するジアミンが挙げられる。
例えば下記式(DI−18−1)〜(DI−18−8)で表される化合物が挙げられる。
Figure 0006090570
式(DI−18−1)〜(DI−18−8)中、R42はそれぞれ独立して炭素数3〜30のアルキル基を表す。
Figure 0006090570
式(DI−18−9)〜(DI−18−11)において、eは2〜10の整数であり、式(DI−18−12)中、R43はそれぞれ独立して−H、−NHBocまたは−N(Boc)2であり、R43の少なくとも1つは−NHBocまたは−N(Boc)2であり、式(DI−18−13)において、R44は−NHBocまたは−N(Boc)2であり、そして、mは1〜12の整数である。ここでBocはt−ブトキシカルボニル基である。
本発明の〔B〕成分において、ジアミンとして、下記式(2−a)〜(2−c)から選ばれる少なくとも1つのジヒドラジドを使用してもよい。
Figure 0006090570
式(2−a)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO2−、−C(CH32−、または−C(CF32−であり;
式(2−b)において、環Bはシクロヘキサン環、ベンゼン環またはナフタレン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;
式(2−c)において、環Cはそれぞれ独立してシクロヘキサン環、またはベンゼン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;Yは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO2−、−C(CH32−、または−C(CF32−である。
前記ジヒドラジドの具体例としては、下記式(2−a−1)〜(2−a−2)、(2−b−1)〜(2−b−3)または(2−c−1)〜(2−c−6)が挙げられる。
Figure 0006090570
式(2−a−2)において、mは1〜12の整数である。
本発明の液晶配向剤を用いる液晶表示素子が大きなプレチルト角を必要とする場合、特に2度以上のプレチルト角を発現させるためには、本発明の液晶配向剤に用いるポリアミック酸およびその誘導体の製造に際して、側鎖型ジアミンのジアミン総量に占める割合を5〜70モル%とすることが好ましく、10〜50モル%とすることがより好ましい。
各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。このため、このような置き換えによって、得られる重合体(ポリアミック酸またはその誘導体)の分子量を容易に制御することができ、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、一種でも二種以上でもよい。前記モノアミンとしては、例えばアニリン、4−ヒドロキシアニリン、シクロヘキシルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、およびn−エイコシルアミンが挙げられる。
〔A〕成分において、各特性を向上させる好適な材料について述べる。上記のジアミンの具体例のうち、液晶の配向性をさらに向上させることを重視する場合には、ジアミンが、式(DI−4−1)、(DI−4−12)〜(DI−4−14)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−22)、(DI−5−28)、(DI−5−30)、(DI−7−3)、(DI−9−1)、(DI−13−4)、(DI−13−5)、(DI−13−47)、(DI−16−1)、(DI−16−2)、(DI−16−4)、(DI−16−5)、(DI−16−7)、および(DI−16−8)で表されるジアミンが好ましい。または(DI−5−1)で表されるジアミンがさらに好ましい。
〔B〕成分において、各特性を向上させる好適な材料について述べる。上記のジアミンの具体例のうち、液晶の配向性をさらに向上させることを重視する場合には、ジアミンが、式(DI−1−3)、(DI−4−1)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−22)、(DI−5−28)、(DI−5−30)、(DI−7−3)、(DI−9−1)、(DI−13−4)、(DI−13−5)、(DI−13−47)、(DI−16−1)、(DI−16−2)または(DI−16−4)で表されるジアミンが好ましい。
上記のジアミンの具体例のうち、透過率をさらに向上させることを重視する場合には、ジアミンが、式(DI−1−3)、(DI−1−4)、(DI−2−1)、(2−a―1)、または(2−a−2)で表されるジアミンが好ましい。
上記のジアミンの具体例のうち、配向膜の層分離性をさらに向上させることを重視する場合には、ジアミンが、式(DI−1−3)、(DI−1−4)、(DI−2−1)、(2−a―1)、(2−a−2)、(2−b−1)〜(2−b−3)、または(2−c−1)〜(2−c−6)で表されるジアミンが好ましい。または(DI−1−3)、(DI−1−4)、(DI−2−1)、(2−a−2)、(2−b−1)、(2−b−2)、または(2−c−1)〜(2−c−3)、で表されるジアミンがさらに好ましい。
本発明の液晶配向剤に用いるポリアミック酸、またはその誘導体は、上記の酸二無水物の混合物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。
本発明のポリアミック酸またはその誘導体は、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。
<アルケニル置換ナジイミド化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種で用いてもよいし、2種以上を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
以下にナジイミド化合物について具体的に説明する。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物の例は、下記の式(NA)で表される化合物が挙げられる。
Figure 0006090570
式(NA)において、L1およびL2は独立して−H、炭素数1〜12のアルキル、炭素数3〜6のアルケニル、炭素数5〜8のシクロアルキル、アリールまたはベンジルであり、nは1または2である。
式(NA)において、n=1のとき、Wは炭素数1〜12のアルキル、炭素数2〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリール、ベンジル、−Z1−(O)r−(Z2O)k−Z3−H(ここで、Z1、Z2およびZ3は独立して炭素数2〜6のアルキレンであり、rは0または1であり、そして、kは1〜30の整数である。)で表される基、−(Z4r−B−Z5−H(ここで、Z4およびZ5は独立して炭素数1〜4のアルキレンまたは炭素数5〜8のシクロアルキレンであり、Bはフェニレンであり、そして、rは0または1である。)で表される基、−B−T−B−H(ここで、Bはフェニレンであり、そして、Tは−CH2−、−C(CH32−、−O−、−CO−、−S−、または−SO2−である。)で表される基、またはこれらの基の1〜3個の−Hが−OHで置換された基である。
このとき、好ましいWは、炭素数1〜8のアルキル、炭素数3〜4のアルケニル、シクロヘキシル、フェニル、ベンジル、炭素数4〜10のポリ(エチレンオキシ)エチル、フェニルオキシフェニル、フェニルメチルフェニル、フェニルイソプロピリデンフェニル、およびこれらの基の1個または2個の−Hが−OHで置き換えられた基である。
式(NA)において、n=2のとき、Wは炭素数2〜20のアルキレン、炭素数5〜8のシクロアルキレン、炭素数6〜12のアリーレン、−Z1−O−(Z2O)k−Z3−(ここで、Z1〜Z3、およびkの意味は前記の通りである。)で表される基、−Z4−B−Z5−(ここで、Z4、Z5およびBの意味は前記の通りである。)で表される基、−B−(O−B)r−T−(B−O)r−B−(ここで、Bはフェニレンであり、Tは炭素数1〜3のアルキレン、−O−または−SO2−であり、rの意味は前記の通りである。)で表される基、またはこれらの基の1〜3個の−Hが−OHで置き換えられた基である。
このとき、好ましいWは炭素数2〜12のアルキレン、シクロヘキシレン、フェニレン、トリレン、キシリレン、−C36−O−(Z2−O)n−O−C36−(ここで、Z2は炭素数2〜6のアルキレンであり、nは1または2である。)で表される基、−B−T−B−(ここで、Bはフェニレンであり、そして、Tは−CH2−、−O−または−SO2−である。)で表される基、−B−O−B−C36−B−O−B−(ここで、Bはフェニレンである。)で表される基、およびこれらの基の1個または2個の−Hが−OHで置き換えられた基である。
このようなアルケニル置換ナジイミド化合物は、例えば特許第2729565号公報に記載されているように、アルケニル置換ナジック酸無水物誘導体とジアミンとを80〜220℃の温度で0.5〜20時間保持することにより合成して得られる化合物や市販されている化合物を用いることができる。アルケニル置換ナジイミド化合物の具体例として、以下に示す化合物が挙げられる。
N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2−エチルヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−フェニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシ−1−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシシクロヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(4−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−{2−(2−ヒドロキシエトキシ)エチル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、およびこれらのオリゴマー、
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
1,2−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2’−{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2’−{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、
1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、およびこれらのオリゴマー等。
さらに、本発明に用いられるアルケニル置換ナジイミド化合物は、非対称なアルキレン・フェニレン基を含む下記の式で表される化合物でもよい。
Figure 0006090570
アルケニル置換ナジイミド化合物のうち、好ましい化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン。
更に好ましいアルケニル置換ナジイミド化合物を以下に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)。
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)。
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
そして、特に好ましいアルケニル置換ナジイミド化合物としては、下記式(NA−1)で表されるビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、式(NA−2)で表されるN,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、および式(NA−3)で表されるN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)が挙げられる。
Figure 0006090570
<ラジカル重合性不飽和二重結合を有する化合物>
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は一種の化合物であってもよいし、二種以上の化合物であってもよい。なお、ラジカル重合性不飽和二重結合を有する化合物にはアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像の発生を抑制するために、ラジカル重合性不飽和二重結合を有する化合物/アルケニル置換ナジイミド化合物が重量比で0.1〜10であることが好ましく、0.5〜5であることがより好ましい。
以下にラジカル重合性不飽和二重結合有する化合物について具体的に説明する。
ラジカル重合性不飽和二重結合を有する化合物としては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド等の(メタ)アクリル酸誘導体、およびビスマレイミドが挙げられる。ラジカル重合性不飽和二重結合を有する化合物は、ラジカル重合性不飽和二重結合を2つ以上有する(メタ)アクリル酸誘導体であることがより好ましい。
(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−2−メチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸−2−ヒドロキシエチル、および(メタ)アクリル酸−2−ヒドロキシプロピルが挙げられる。
2官能(メタ)アクリル酸エステルの具体例としては、例えばエチレンビスアクリレート、東亜合成化学工業(株)の製品であるアロニックスM−210、アロニックスM−240およびアロニックスM−6200、日本化薬(株)の製品であるKAYARAD HDDA、KAYARAD HX−220、KAYARAD R−604およびKAYARAD R−684、大阪有機化学工業(株)の製品であるV260、V312およびV335HP、並びに共栄社油脂化学工業(株)の製品であるライトアクリレートBA−4EA、ライトアクリレートBP−4PAおよびライトアクリレートBP−2PAが挙げられる。
3官能以上の多官能(メタ)アクリル酸エステルの具体例としては、例えば4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)、東亜合成化学工業(株)の製品であるアロニックスM−400、アロニックスM−405、アロニックスM−450、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、日本化薬(株)の製品であるKAYARAD TMPTA、KAYARAD DPCA−20、KAYARAD DPCA−30、KAYARAD DPCA−60、KAYARAD DPCA−120、および大阪有機化学工業(株)の製品であるVGPTが挙げられる。
(メタ)アクリル酸アミド誘導体の具体例としては、例えばN−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルアクリルアミド、N−n−プロピルメタクリルアミド、N−シクロプロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エトキシエチルアクリルアミド、N−エトキシエチルメタクリルアミド、N−テトラヒドロフルフリルアクリルアミド、N−テトラヒドロフルフリルメタクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−アクリロイルピロリディン、N,N’−メチレンビスアクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−ジヒドロキシエチレンビスアクリルアミド、N−(4−ヒドロキシフェニル)メタクリルアミド、N−フェニルメタクリルアミド、N−ブチルメタクリルアミド、N−(iso−ブトキシメチル)メタクリルアミド、N−[2−(N,N−ジメチルアミノ)エチル]メタクリルアミド、N,N−ジメチルメタクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−(メトキシメチル)メタクリルアミド、N−(ヒドロキシメチル)−2−メタクリルアミド、N−ベンジル−2−メタクリルアミド、およびN,N’−メチレンビスメタクリルアミドが挙げられる。
上記の(メタ)アクリル酸誘導体のうち、N,N’−メチレンビスアクリルアミド、N,N’−ジヒドロキシエチレン−ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N−ジヒドロキシエチレンアクリレートアニリン)が特に好ましい。
ビスマレイミドとしては、例えばケイ・アイ化成(株)製のBMI−70およびBMI−80、並びに大和化成工業(株)製のBMI−1000、BMI−3000、BMI−4000、BMI−5000およびBMI−7000が挙げられる。
<オキサジン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は一種の化合物であってもよいし、二種以上の化合物であってもよい。オキサジン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
以下にオキサジン化合物について具体的に説明する。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。
またオキサジン化合物におけるオキサジン構造の数は、特に限定されない。
オキサジンの構造には種々の構造が知られている。本発明では、オキサジンの構造は特に限定されないが、オキサジン化合物におけるオキサジン構造には、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が挙げられる。
オキサジン化合物としては、例えば下記式(OX−1)〜(OX−6)に示す化合物が挙げられる。なお下記式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。
Figure 0006090570
式(OX−1)〜(OX−3)において、L3およびL4は炭素数1〜30の有機基であり、式(OX−1)〜(OX−6)において、L5〜L8は−Hまたは炭素数1〜6の炭化水素基であり、式(OX−3)、式(OX−4)および式(OX−6)において、Q1は単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−NHCO−、−C(CH32−、−C(CF32−、−(CH2v−、−O−(CH2v−O−、−S−(CH2v−S−であり、ここでvは1〜6の整数であり、式(OX−5)および式(OX−6)において、Q2は独立して単結合、−O−、−S−、−CO−、−C(CH32−、−C(CF32−または炭素数1〜3のアルキレンであり、Q2におけるベンゼン環、ナフタレン環に結合している水素は独立して−F、−CH3、−OH、−COOH、−SO3H、−PO32と置き換えられていてもよい。
また、オキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、オキサジン構造を主鎖中に有するオリゴマーやポリマーが含まれる。
式(OX−1)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
式(OX−1−2)において、L3は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(OX−2)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
Figure 0006090570
式中、L3は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(OX−3)で表されるオキサジン化合物としては、下記式(OX−3−I)で表されるオキサジン化合物が挙げられる。
Figure 0006090570
式(OX−3−I)において、L3およびL4は炭素数1〜30の有機基であり、L5からL8は−Hまたは炭素数1〜6の炭化水素基であり、Q1は単結合、−CH2−、−C(CH32−、−CO−、−O−、−SO2−、−C(CH32−、または−C(CF32−である。式(OX−3−I)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
式中、L3およびL4は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(OX−4)で表されるオキサジン化合物しては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
Figure 0006090570
式(OX−5)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
式(OX−6)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
Figure 0006090570
Figure 0006090570
Figure 0006090570
これらのうち、より好ましくは、式(OX−2−1)、(OX−3−1)、(OX−3−3)、(OX−3−5)、(OX−3−7)、(OX−3−9)、(OX−4−1)〜(OX−4−6)、(OX−5−3)、(OX−5−4)、および(OX−6−2)〜(OX−6−4)で表されるオキサジン化合物が挙げられる。
オキサジン化合物は、国際公開2004/009708号パンフレット、特開平11−12258号公報、特開2004−352670号公報に記載の方法と同様の方法で製造することができる。
式(OX−1)で表されるオキサジン化合物は、フェノール化合物と1級アミンとアルデヒドとを反応させることによって得られる(国際公開2004/009708号パンフレット参照。)。
式(OX−2)で表されるオキサジン化合物は、1級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加えて反応させることによって得られる(国際公開2004/009708号パンフレット参照。)。
式(OX−3)で表されるオキサジン化合物は、有機溶媒中でフェノール化合物1モル、そのフェノール性水酸基1個に対し少なくとも2モル以上のアルデヒド、および1モルの一級アミンを、2級脂肪族アミン、3級脂肪族アミンまたは塩基性含窒素複素環化合物の存在下で反応させることによって得られる(国際公開2004/009708号パンフレットおよび特開平11−12258号公報参照。)。
式(OX−4)〜(OX−6)で表されるオキサジン化合物は、4,4’−ジアミノジフェニルメタン等の、複数のベンゼン環とそれらを結合する有機基とを有するジアミン、ホルマリン等のアルデヒド、およびフェノールを、n−ブタノール中、90℃以上の温度で脱水縮合反応させることにより得られる(特開2004−352670号公報参照。)。
<オキサゾリン化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物はオキサゾリン構造を有する化合物である。オキサゾリン化合物は一種の化合物であってもよいし、二種以上の化合物であってもよい。オキサゾリン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることが好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが、上記の目的から好ましい。
以下にオキサゾリン化合物について具体的に説明する。
オキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1種だけ有していてもよいし、2種以上有していてもよい。またオキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン環構造を側鎖に有する重合体であってもよいし、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよいし、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する2種以上のモノマーの共重合体であってもよいし、オキサゾリン構造を側鎖に有する2種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。
オキサゾリン化合物としては、例えば2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)が挙げられる。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも挙げられる。これらのうち、より好ましくは、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンが挙げられる。
<エポキシ化合物>
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は一種の化合物であってもよいし、二種以上の化合物であってもよい。エポキシ化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
以下にエポキシ化合物について具体的に説明する。
エポキシ化合物としては、分子内にエポキシ環を1つまたは2つ以上有する種々の化合物が挙げられる。分子内にエポキシ環を1つ有する化合物としては、例えばフェニルグリシジルエーテル、ブチルグリシジルエーテル、3,3,3−トリフルオロメチルプロピレンオキシド、スチレンオキシド、ヘキサフルオロプロピレンオキシド、シクロヘキセンオキシド、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−グリシジルフタルイミド、(ノナフルオロ−N−ブチル)エポキシド、パーフルオロエチルグリシジルエーテル、エピクロロヒドリン、エピブロモヒドリン、N,N−ジグリシジルアニリン、および3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパンが挙げられる。
分子内にエポキシ環を2つ有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートおよび3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランが挙げられる。
分子内にエポキシ環を3つ有する化合物としては、例えば2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(商品名「テクモアVG3101L」、(三井化学(株)製))が挙げられる。
分子内にエポキシ環を4つ有する化合物としては、例えば1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、および3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシランが挙げられる。
上記の他、分子内にエポキシ環を有する化合物の例として、エポキシ環を有するオリゴマーや重合体も挙げられる。エポキシ環を有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
エポキシ環を有するモノマーと共重合を行う他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドが挙げられる。
エポキシ環を有するモノマーの重合体の好ましい具体例としては、ポリグリシジルメタクリレート等が挙げられる。また、エポキシ環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
これら例の中でも、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。
より体系的には、エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。なお、エポキシ化合物はエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。
エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。
グリシジルエーテルとしては、例えばビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物が挙げられる。
グリシジルエステルとしては、例えばジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が挙げられる。
グリシジルアミンとしては、例えばポリグリシジルアミン化合物およびグリシジルアミン型エポキシ樹脂が挙げられる。
エポキシ基含有アクリル系化合物としては、例えばオキシラニルを有するモノマーの単独重合体および共重合体が挙げられる。
グリシジルアミドとしては、例えばグリシジルアミド型エポキシ化合物が挙げられる。
鎖状脂肪族型エポキシ化合物としては、例えばアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
環状脂肪族型エポキシ化合物としては、例えばシクロアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
ビスフェノールA型エポキシ化合物としては、例えばjER828、jER1001、jER1002、jER1003、jER1004、jER1007、jER1010(いずれも三菱化学(株)製)、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれもDIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも三井化学(社)製)が挙げられる。
ビスフェノールF型エポキシ化合物としては、例えばjER806、jER807、jER4004P(いずれも三菱化学(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも東都化成(株)製)、DER−354(ダウ・ケミカル社製)、エピクロン830、およびエピクロン835(いずれもDIC(株)製)が挙げられる。
ビスフェノール型エポキシ化合物としては、例えば2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
水素化ビスフェノール−A型エポキシ化合物としては、例えばサントートST−3000(東都化成(株)製)、リカレジンHBE−100(新日本理化(株)製)、およびデナコールEX−252(ナガセケムテックス(株)製)が挙げられる。
水素化ビスフェノール型エポキシ化合物としては、例えば水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
臭素化ビスフェノール−A型エポキシ化合物としては、例えばjER5050、jER5051(いずれも三菱化学(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも東都化成(株)製)、DER−530、DER−538(いずれもThe Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれもDIC(株)製)が挙げられる。
フェノールノボラック型エポキシ化合物としては、例えばjER152、jER154(いずれも三菱化学(株)製)、YDPN−638(東都化成社製)、DEN431、DEN438(いずれもThe Dow Chemical Company製)、エピクロンN−770(DIC(株)製)、EPPN−201、およびEPPN−202(いずれも日本化薬(株)製)が挙げられる。
クレゾールノボラック型エポキシ化合物としては、例えばjER180S75(三菱化学(株)製)、YDCN−701、YDCN−702(いずれも東都化成社製)、エピクロンN−665、エピクロンN−695(いずれもDIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも日本化薬(株)製)が挙げられる。
ビスフェノールAノボラック型エポキシ化合物としては、例えばjER157S70(三菱化学(株)製)、およびエピクロンN−880(DIC(株)製)が挙げられる。
ナフタレン骨格含有エポキシ化合物としては、例えばエピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれもDIC(株)製)、およびNC−7000(日本化薬社製)が挙げられる。
芳香族ポリグリシジルエーテル化合物としては、例えばハイドロキノンジグリシジルエーテル(下記式EP−1)、カテコールジグリシジルエーテル(下記式EP−2)レゾルシノールジグリシジルエーテル(下記式EP−3)、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(下記式EP−4)、トリス(4−グリシジルオキシフェニル)メタン(下記式EP−5)、jER1031S、jER1032H60(いずれも三菱化学(株)製)、TACTIX−742(The Dow Chemical Company製)、デナコールEX−201(ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも日本化薬(株)製)、テクモアVG3101L(三井化学(株)製)、下記式EP−6で表される化合物、および下記式EP−7で表される化合物が挙げられる。
Figure 0006090570
Figure 0006090570
ジシクロペンタジエンフェノール型エポキシ化合物としては、例えばTACTIX−556(The Dow Chemical Company製)、およびエピクロンHP−7200(DIC(株)製)が挙げられる。
脂環式ジグリシジルエーテル化合物としては、例えばシクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(新日本理化(株)製)が挙げられる。
脂肪族ポリグリシジルエーテル化合物としては、例えばエチレングリコールジグリシジルエーテル(下記式EP−8)、ジエチレングリコールジグリシジルエーテル(下記式EP−9)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式EP−10)、トリプロピレングリコールジグリシジルエーテル(下記式EP−11)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式EP−12)、1,4−ブタンジオールジグリシジルエーテル(下記式EP−13)、1,6−ヘキサンジオールジグリシジルエーテル(下記式EP−14)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式EP−15)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれもナガセケムテックス(株)製)、DD−503((株)ADEKA製)、リカレジンW−100(新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式EP−16)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれもナガセケムテックス(株)製)が挙げられる。
Figure 0006090570
Figure 0006090570
ポリサルファイド型ジグリシジルエーテル化合物としては、例えばFLDP−50、およびFLDP−60(いずれも東レチオコール(株)製)が挙げられる。
ビフェノール型エポキシ化合物としては、例えばYX−4000、YL−6121H(いずれも三菱化学(株)製)、NC−3000P、およびNC−3000S(いずれも日本化薬(株)製)が挙げられる。
ジグリシジルエステル化合物としては、例えばジグリシジルテレフタレート(下記式EP−17)、ジグリシジルフタレート(下記式EP−18)、ビス(2−メチルオキシラニルメチル)フタレート(下記式EP−19)、ジグリシジルヘキサヒドロフタレート(下記式EP−20)、下記式EP−21で表される化合物、下記式EP−22で表される化合物、および下記式EP−23で表される化合物が挙げられる。
Figure 0006090570
グリシジルエステルエポキシ化合物としては、例えばjER871、jER872(いずれも三菱化学(株)製)、エピクロン200、エピクロン400(いずれもDIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれもナガセケムテックス(株)製)が挙げられる。
ポリグリシジルアミン化合物としては、例えばN,N−ジグリシジルアニリン(下記式EP−24)、N,N−ジグリシジル−o−トルイジン(下記式EP−25)、N,N−ジグリシジル−m−トルイジン(下記式EP−26)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式EP−27)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式EP−28)、N,N,O−トリグリシジル−p−アミノフェノール(下記式EP−29)、N,N,O−トリグリシジル−m−アミノフェノール(下記式EP−30)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン(下記式EP−31)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(三菱ガス化学(株)製)、下記式EP−32)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(三菱ガス化学(株)製)、下記式EP−33)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式EP−34)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−35)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−36)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−37)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−38)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式EP−39)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式EP−40)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式EP−41)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式EP−42)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式EP−43)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−44)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式EP−45)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式EP−46)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−47)、下記式EP−48で表される化合物、および下記式EP−49で表される化合物が挙げられる。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
オキシラニルを有するモノマーの単独重合体としては、例えばポリグリシジルメタクリレートが挙げられる。オキシラニルを有するモノマーの共重合体としては、例えばN−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
オキシラニルを有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
オキシラニルを有するモノマーの共重合体におけるオキシラニルを有するモノマー以外の他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。
グリシジルイソシアヌレートとしては、例えば1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−50)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−51)、およびグリシジルイソシアヌレート型エポキシ樹脂が挙げられる。
Figure 0006090570
鎖状脂肪族型エポキシ化合物としては、例えばエポキシ化ポリブタジエン、およびエポリードPB3600((株)ダイセル製)が挙げられる。
環状脂肪族型エポキシ化合物としては、例えば3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(セロキサイド2021((株)ダイセル製)、下記式EP−52)、2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式EP−53)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式EP−54)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000((株)ダイセル製)、下記式EP−55)、下記式EP−56で表される化合物、CY−175、CY−177、CY−179(いずれもThe Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150((株)ダイセル製)、および環状脂肪族型エポキシ樹脂が挙げられる。
Figure 0006090570
エポキシ化合物は、ポリグリシジルアミン化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、および環状脂肪族型エポキシ化合物の一以上であることが好ましく、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N,N,O−トリグリシジル−p−アミノフェノール、ビスフェノールAノボラック型エポキシ化合物、およびクレゾールノボラック型エポキシ化合物の一以上であることが好ましい。
また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えばポリアミック酸およびその誘導体以外の高分子化合物、および低分子化合物が挙げられ、それぞれの目的に応じて選択して使用することができる。
例えば、前記高分子化合物としては、有機溶媒に可溶性の高分子化合物が挙げられる。このような高分子化合物を本発明の液晶配向剤に添加することは、形成される液晶配向膜の電気特性や配向性を制御する観点から好ましい。該高分子化合物としては、例えばポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルが挙げられる。
また、前記低分子化合物としては、例えば1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。
シランカップリング剤としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンが挙げられる。好ましいシランカップリング剤は3−アミノプロピルトリエトキシシランである。
イミド化触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類が挙げられる。前記イミド化触媒は、N,N−ジメチルアニリン、o−, m−, p−ヒドロキシアニリン、o−, m−, p−ヒドロキシピリジン、およびイソキノリンから選ばれる一種または二種以上であることが好ましい。
シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総重量の0〜20重量%であり、0.1〜10重量%であることが好ましい。
イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5等量であり、0.05〜3等量であることが好ましい。
その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総重量の0〜100重量%であり、0.1〜50重量%であることが好ましい。
また例えば、本発明の液晶配向剤は、本発明の効果が損なわれない範囲(好ましくは前記ポリアミック酸またはその誘導体の20重量%以内の量)で、アクリル酸ポリマー、アクリレートポリマー、および、テトラカルボン酸二無水物、ジカルボン酸またはその誘導体とジアミンとの反応生成物であるポリアミドイミド等の他のポリマー成分をさらに含有していてもよい。
本発明のポリアミック酸またはその誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはその誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比0.9〜1.1程度)とすることが好ましい。
本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、10,000〜500,000であることが好ましく、20,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液による前記ポリアミック酸またはその誘導体の分解物の有機溶剤による抽出物をGC、HPLCもしくはGC−MSで分析することにより、使用されているモノマーを確認することができる。
また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。
溶剤としては、前記ポリアミック酸またはその誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。
ポリアミック酸またはその誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンが挙げられる。
塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。
これらの中で、前記溶剤は、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、およびジプロピレングリコールモノメチルエーテルが特に好ましい。
本発明の配向剤中のポリアミック酸の濃度は0.1〜40重量%であることが好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。
本発明配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1〜30重量%、より好ましくは1〜10重量%である。
本発明の液晶配向膜について、詳細に説明する。本発明の液晶配向膜は、前述した本発明の液晶配向剤の塗膜を加熱することによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程を経ることによって得ることができる。本発明の液晶配向膜については、必要に応じて、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。
塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(IndiumTinOxide)、IZO(In23−ZnO)、IGZO(In−Ga−ZnO4)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製の基板が挙げられる。
液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。
前記加熱乾燥工程は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に対して比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。
前記加熱焼成工程は、前記ポリアミック酸またはその誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。前記塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に100〜300℃程度の温度で1分間〜3時間行うことが好ましく、120〜280℃がより好ましく、150〜250℃がさらに好ましい。
本発明の液晶配向膜の形成方法において、液晶を水平および/または垂直方向に対して一方向に配向させるために、配向膜へ異方性を付与する手段として、ラビング法や光配向法など公知の形成方法を好適に用いることができる。特に光配向法を好適に用いることができる。
光配向法による本発明の液晶配向膜の形成方法について、詳細に説明する。光配向法を用いた本発明の液晶配向膜は、塗膜を加熱乾燥した後、放射線の直線偏光または無偏光を照射することにより、塗膜に異方性を付与し、その膜を加熱焼成することにより形成することができる。または、塗膜を加熱乾燥し、加熱焼成した後に、放射線の直線偏光または無偏光を照射することにより形成することができる。配向性の点から、放射線の照射工程は加熱焼成工程前に行うのが好ましい。
さらに、液晶配向膜の液晶配向能を上げるために、塗膜を加熱しながら放射線の直線偏光または無偏光を照射することもできる。放射線の照射は、塗膜を加熱乾燥する工程、または加熱焼成する工程で行ってもよく、加熱乾燥工程と加熱焼成工程の間に行ってもよい。該工程における加熱乾燥温度は、30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。また該工程における加熱焼成温度は、30℃〜300℃の範囲であること、さらには50℃〜250℃の範囲であることが好ましい。
放射線としては、例えば150〜800nmの波長の光を含む紫外線または可視光を用いることができるが、300〜400nmの光を含む紫外線が好ましい。また、直線偏光または無偏光を用いることができる。これらの光は、前記塗膜に液晶配向能を付与することができる光であれば特に限定されないが、液晶に対して強い配向規制力を発現させたい場合、直線偏光が好ましい。
本発明の液晶配向膜は、低エネルギーの光照射でも高い液晶配向能を示すことができる。前記放射線照射工程における直線偏光の照射量は0.05〜20J/cmであることが好ましく、0.5〜10J/cmがより好ましい。また直線偏光の波長は200〜400nmであることが好ましく、300〜400nmであることがより好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間短縮の観点から好ましい。また、本発明の液晶配向膜は、直線偏光を照射することにより、直線偏光の偏光方向に対して垂直な方向に液晶を配向させることができる。
プレチルト角を発現させたい場合に前記膜に照射する光は、前述同様直線偏光であっても無偏光であってもよい。プレチルト角を発現させたい場合に前記膜に照射される光の照射量は0.05〜20J/cmであることが好ましく、0.5〜10J/cmが特に好ましく、その波長は250〜400nmであることが好ましく、300〜380nmが特に好ましい。プレチルト角を発現させたい場合に前記膜に照射する光の前記膜表面に対する照射角度は特に限定されないが、30〜60度であることが配向処理時間短縮の観点から好ましい。
放射線の直線偏光または無偏光を照射する工程に使用する光源には、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、Deep UVランプ、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、水銀キセノンランプ、エキシマランプ、KrFエキシマレーザー、蛍光ランプ、LEDランプ、ナトリウムランプ、マイクロウェーブ励起無電極ランプ、などを制限なく用いることができる。
本発明の液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。例えば、本発明の液晶配向膜は焼成または放射線照射後の膜を洗浄液で洗浄する工程は必須としないが、他の工程の都合で洗浄工程を設けることができる。
洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における前記洗浄工程にも適用することができる。
本発明の液晶配向膜の液晶配向能を高めるために、加熱焼成工程の前後、ラビング工程の前後、または、偏光または無偏光の放射線照射の前後に、熱や光によるアニール処理を用いることができる。該アニール処理において、アニール温度が30〜180℃、好ましくは50〜150℃であり、時間は1分〜2時間が好ましい。また、アニール処理に使用するアニール光には、UVランプ、蛍光ランプ、LEDランプなどが挙げられる。光の照射量は0.3〜10J/cmであることが好ましい。
本発明の液晶配向膜の膜厚は、特に限定されないが、10〜300nmであることが好ましく、30〜150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。
本発明の液晶配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005−275364号公報等に記載の偏光IRを用いた方法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーを用いた方法によっても評価することができる。本発明の配向膜を液晶組成物用配向膜として使用した場合、より大きな膜の異方性を持つ材料が液晶組成物に対し大きな配向規制力を持つと考えられる。
本発明の液晶配向膜は、液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。
本発明の液晶表示素子について、詳細に説明する。
本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。
前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。
液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許第3086228号公報、特許第2635435号公報、特表平5−501735号公報、特開平8−157826号公報、特開平8−231960号公報、特開平9−241644号公報(EP885272A1明細書)、特開平9−302346号公報(EP806466A1明細書)、特開平8−199168号公報(EP722998A1明細書)、特開平9−235552号公報、特開平9−255956号公報、特開平9−241643号公報(EP885271A1明細書)、特開平10−204016号公報(EP844229A1明細書)、特開平10−204436号公報、特開平10−231482号公報、特開2000−087040号公報、特開2001−48822号公報等に開示されている液晶組成物が挙げられる。
誘電率異方性が負の好ましい液晶組成物には、特開昭57−114532号公報、特開平2−4725号公報、特開平4−224885号公報、特開平8−40953号公報、特開平8−104869号公報、特開平10−168076号公報、特開平10−168453号公報、特開平10−236989号公報、特開平10−236990号公報、特開平10−236992号公報、特開平10−236993号公報、特開平10−236994号公報、特開平10−237000号公報、特開平10−237004号公報、特開平10−237024号公報、特開平10−237035号公報、特開平10−237075号公報、特開平10−237076号公報、特開平10−237448号公報(EP967261A1明細書)、特開平10−287874号公報、特開平10−287875号公報、特開平10−291945号公報、特開平11−029581号公報、特開平11−080049号公報、特開2000−256307号公報、特開2001−019965号公報、特開2001−072626号公報、特開2001−192657号公報等に開示されている液晶組成物が挙げられる。
誘電率異方性が正または負の液晶組成物に一種以上の光学活性化合物を添加して使用することも何ら差し支えない。
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。実施例における液晶表示素子の評価法は次の通りである。
<重量平均分子量(Mw)>
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
<配向膜のリタデーションおよび膜厚測定>
分光エリプソメータM−2000U(J.A.Woollam Co. Inc.製)を使用して求めた。本実施例の場合、膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち大きなリタデーション値を持つものは、大きな配向度を持つ。
<配向膜の透過率測定>
UV−Visスペクトル測定装置(日本分光V−660)を用い、配向膜の透過率を測定した。配向膜を形成していないガラス基板をリファレンスとした。
実施例において用いる溶剤は次の通りである。
<溶剤>
N−メチル−2−ピロリドン:NMP
ブチルセロソルブ(エチレングリコールモノブチルエーテル):BC
<添加剤>
添加剤(Ad1):ビス[4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル]メタン
添加剤(Ad2):N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン
添加剤(Ad3):3−アミノプロピルトリエトキシシラン
添加剤(Ad4):2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン
添加剤(Ad5):1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン
<1.〔A〕のポリアミック酸の合成>
[合成例1]
温度計、攪拌機、原料投入仕込み口および窒素ガス導入口を備えた50mLの褐色四つ口フラスコにジアミン(VII−1−1)1.543gおよび脱水NMP30.0gを入れ、乾燥窒素気流下攪拌溶解した。次いで酸二無水物(AN−2−1)1.140g、(AN−3−2)0.317gおよび脱水NMP7.0gを入れ、室温で24時間攪拌を続けた。この反応溶液にBC10.0gを加えて、ポリマー固形分濃度が6重量%のポリアミック酸溶液を得た。このポリアミック酸溶液をPA1とする。PA1に含まれるポリアミック酸の重量平均分子量は44,400であった。
[合成例2〜10]
表1に示したようにテトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠してポリマー固形分濃度が6重量%のポリアミック酸溶液(PA2)〜(PA10)を調製した。合成例1結果を含めて、得られたポリアミック酸の重量平均分子量の測定結果を表1にまとめた。
Figure 0006090570
<2.〔B〕のポリアミック酸の合成>
[合成例11]
温度計、攪拌機、原料投入仕込み口および窒素ガス導入口を備えた50mLの褐色四つ口フラスコにジアミン(DI−1−3)0.596gおよび脱水NMP30gを入れ、乾燥窒素気流下攪拌溶解した。次いで酸二無水物(1−a)(日本精化(株)製)2.404gおよび脱水NMP7.0gを入れ、室温で24時間攪拌を続けた。この反応溶液にBC10.0gを加えて、ポリマー固形分濃度が6重量%のポリアミック酸溶液を得た。このポリアミック酸溶液をPA11とする。PA11に含まれるポリアミック酸の重量平均分子量は57,300であった。
[合成例12〜29]
表2に示したようにテトラカルボン酸二無水物およびジアミンを変更した以外は、合成例11に準拠してポリマー固形分濃度が6重量%のポリアミック酸溶液(PA12)〜(PA29)を調製した。合成例11の結果を含めて、得られたポリアミック酸の重量平均分子量の測定結果を表2にまとめた。
Figure 0006090570
ポリマー〔A〕として、合成例1で合成したポリアミック酸PA1と、ポリマー〔B〕として合成例11で合成したポリアミック酸PA11を重量比で〔A〕/〔B〕=3/7で混合し、PA30とした。
〔A〕成分と〔B〕成分ポリアミック酸の種類および〔A〕/〔B〕混合比を変更した以外は、PA30に準拠してポリマー固形分濃度が6重量%のポリアミック酸溶液(PA31)〜(PA99)を調製した。PA30を含めて、〔A〕成分と〔B〕成分ポリアミック酸の種類および〔A〕/〔B〕混合比を表(3−1)〜表(3−10)にまとめた。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
〔A〕成分としてポリアミック酸溶液(PA10)と〔B〕成分としてポリアミック酸溶液(PA23)を〔A〕/〔B〕=3/7で混合して調製したポリアミック酸溶液(PA96)に、添加剤(Ad1)をポリマー重量当たり10重量%の割合で添加した。得られたポリアミック酸溶液をPA100とする。
表3−11に示したようにポリアミック酸溶液に添加剤(Ad2)〜(Ad5)を表に示す割合でポリアミック酸溶液(PA96)、(PA97)、そして(PA98)に添加し、(PA101)〜(PA104)を調製した。
Figure 0006090570
<3.リタデーション・透過率測定用基板の作製および測定方法>
[実施例1]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA30)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をガラス基板にスピンナー(ミカサ株式会社製、スピンコーター(1H−DX2))にて塗布した。なお、以降の実施例、比較例をも含めて、液晶配向剤の粘度に応じてスピンナーの回転速度を調整し、配向膜が下記の膜厚になるようにした。ポリアミック酸溶液塗布後、ホットプレート(アズワン株式会社製、ECホットプレート(EC−1200N))上で70℃にて80秒間加熱乾燥し、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器UVD-S365)を用いて光量を測定し、波長365nmで5.0±0.1J/cm2になるよう、露光時間を調整した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC−231))中で、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。得られた基板のリタデーションを測定したところ、3.66nmであった。また、得られた基板の透過率を測定したところ、波長300nmにおける透過率は71.3%であった。
[実施例2〜46]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA31〜PA34、PA36〜PA38、PA40〜PA47、PA49〜PA55、PA57〜PA60、PA62〜PA65、PA67〜PA70、PA72〜PA74、PA76〜PA78、PA80〜PA82、およびPA84〜PA86)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法で測定用基板を作製し、リタデーションと透過率を測定した。実施例1の結果と合わせて表4−1〜表4−7にまとめた。ポリアミック酸溶液PA31〜PA34、PA36〜PA38、PA40〜PA47、PA49〜PA55、PA57〜PA60、PA62〜PA65、PA67〜PA70、PA72〜PA74、PA76〜PA78、PA80〜PA82、およびPA84〜PA86に応じて順に実施例2〜46とした。
[比較例1〜11]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA35、PA39、PA48、PA56、PA61、PA66、PA71、PA75、PA79、PA83、およびPA87)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法で測定用基板を作製し、透過率とリタデーションを測定した。ポリアミック酸溶液PA35、PA39、PA48、PA56、PA61、PA66、PA71、PA75、PA79、PA83、およびPA87に応じて順に比較例1〜11とした。実施例1〜46の結果と合わせて表4−1〜表4−7にまとめた。
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
Figure 0006090570
[実施例47]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA88)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をガラス基板にスピンナー(ミカサ株式会社製、スピンコーター(1H−DX2))にて塗布した。ポリアミック酸溶液塗布後、ホットプレート(アズワン株式会社製、ECホットプレート(EC−1200N))上で70℃にて80秒間加熱乾燥し、ウシオ電機(株)製UVランプ(UVL−1500M2−N1)を用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器UVD-S365)を用いて光量を測定し、波長365nmで5.0±0.1J/cm2になるよう、露光時間を調整した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC−231))中で、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。最後に、加熱後の基板をクリーンオーブン中で、120℃にて30分間の加熱アニールを行った。得られた基板のリタデーションを測定したところ、10.25nmであった。また、得られた基板の透過率を測定したところ、波長300nmにおける透過率は74.2%であった。
[実施例48〜52]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA88〜PA90、およびPA92〜PA94)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例47に準じた方法で測定用基板を作製し、リタデーションと透過率を測定した。実施例47の結果と合わせて表4−8および表4−9にまとめた。ポリアミック酸溶液PA88〜PA90、PA92〜PA94に応じて順に実施例48〜52とした。
[比較例12および13]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA91およびPA95)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例47に準じた方法で測定用基板を作製し、透過率とリタデーションを測定した。ポリアミック酸溶液PA91およびPA95を比較例12および13とした。実施例47〜52の結果と合わせて表4−8および表4−9にまとめた。
Figure 0006090570
Figure 0006090570
[実施例53]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA96)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をガラス基板にスピンナー(ミカサ株式会社製、スピンコーター(1H−DX2))にて塗布した。ポリアミック酸溶液塗布後、ホットプレート(アズワン株式会社製、ECホットプレート(EC−1200N))上で70℃にて80秒間加熱乾燥し、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器UVD-S365)を用いて光量を測定し、波長365nmで5.0±0.1J/cm2になるよう、露光時間を調整した。紫外線露光中、基板の温度は50℃に加熱した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。次いで、クリーンオーブン(エスペック株式会社製、クリーンオーブン(PVHC−231))中で、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。最後に、加熱後の基板をクリーンオーブン中で、120℃にて30分間の加熱アニールを行った。得られた基板のリタデーションを測定したところ、11.81nmであった。また、得られた基板の透過率を測定したところ、波長300nmにおける透過率は74.8%であった。
[実施例54および55]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA97およびPA98)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例53に準じた方法で測定用基板を作製し、リタデーションと透過率を測定した。ポリアミック酸溶液PA97およびPA98を実施例54および55とし、実施例53の結果と合わせて表4−10にまとめた。
[比較例14]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA99)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例53に準じた方法で測定用基板を作製し、透過率とリタデーションを測定した。実施例53〜55の結果と合わせて表4−10にまとめた。
Figure 0006090570
[実施例56〜60]
ポリマー固形分濃度6重量%のポリアミック酸溶液(PA100〜PA104)に、NMP/BC=4/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例53に準じた方法で測定用基板を作製し、リタデーションと透過率を測定した。ポリアミック酸溶液PA100〜PA104に応じて順に実施例56〜60とし、表4−11にまとめた。
Figure 0006090570
実施例1〜60および比較例1〜14との比較により、本発明の配向膜はリタデーションを向上させ、液晶への高い配向性を付与するのに非常に有用である、かつ、透過率が大きく改善されることが分かる。
本発明の特定の脂環式酸二無水物を原料として用いたポリアミック酸およびその誘導体と光反応性構造を有するポリアミック酸およびその誘導体とを含有する光配向用液晶配向剤を液晶配向剤として用いれば、液晶分子の配向性に優れ、かつ透過率の高い配向膜を提供できる。そしてこの配向膜を有する表示特性に優れた液晶表示素子を提供できる。

Claims (23)

  1. 下記[A]成分および[B]成分を含有する液晶配向剤であって、配向膜形成後、[A]成分および[B]成分が上下2層に分かれる、光配向用液晶配向剤。
    [A]成分:テトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物およびジアミンの少なくとも1つが、下記式(I)〜(VII)から選ばれる少なくとも1つの光異性化または光二量化可能な光反応性構造を有する、ポリアミック酸またはその誘導体
    [B]成分:光反応性構造を有さないテトラカルボン酸二無水物およびジアミンを反応させて得られるポリアミック酸またはその誘導体であって、テトラカルボン酸二無水物が下記式(1)から選ばれる少なくとも1つのテトラカルボン酸二無水物を含有するポリアミック酸またはその誘導体
    Figure 0006090570
    式(I)〜(VII)において、RおよびRは独立して−NH2または−CO−O−CO−を有する1価の有機基であり、Rは芳香環を有する2価の有機基である。

    Figure 0006090570
  2. [A]成分において、前記光反応性構造がポリアミック酸またはその誘導体の主鎖に存在する、請求項1に記載の光配向用液晶配向剤。
  3. [A]成分において、前記光反応性構造が下記式(I−1)、(II−1)、(III−1)、(IV−1)、(IV−2)、(V−1)、(VI−1)、および(VII−1)〜(VII−3)から選ばれるテトラカルボン酸二無水物およびジアミンの少なくとも1つを反応させて得られるポリアミック酸またはその誘導体に存在する、請求項1または2に記載の光配向用液晶配向剤。
    Figure 0006090570
    Figure 0006090570
    Figure 0006090570
    式(I−1)、(II−1)、(III−1)、(IV−1)、(V−1)、(VI−1)、(VII−1)および(VII−2)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
    式(VII−1)において、Rは独立して−CH、−OCH、−CF、または−COOCHであり;そして
    bは0〜2の整数である。
  4. [A]成分において、前記光反応性構造が下記式(I−1−1)、(II−1−1)、(VI−1−1)、(VII−1−1)、(VII−1−2)および(VII−3)から選ばれる少なくとも1つのテトラカルボン酸二無水物またはジアミンを反応させて得られるポリアミック酸またはその誘導体に存在する、請求項3に記載の光配向用液晶配向剤。
    Figure 0006090570
  5. [A]成分において、前記光反応性構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が、下記式(AN−I)〜(AN−VII)からなる群から選ばれる少なくとも1つのテトラカルボン酸二無水物である、請求項1〜4のいずれか1つに記載の光配向用液晶配向剤。
    Figure 0006090570
    式(AN−I)、(AN−IV)および(AN−V)において、Xは独立して単結合または−CH−であり;
    式(AN−II)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO−、−C(CH−、または−C(CF−であり;
    式(AN−II)〜(AN−IV)において、Yは独立して下記の3価の基の群から選ばれる1つであり、
    Figure 0006090570
    これらの基の任意の水素はメチル、エチルまたはフェニルで置き換えられてもよく;
    式(AN−III)〜(AN−V)において、環Aは炭素数3〜10の単環式炭化水素の基または炭素数6〜30の縮合多環式炭化水素の基であり、この基の任意の水素はメチル、エチルまたはフェニルで置き換えられていてもよく、環に掛かっている結合手は環を構成する任意の炭素に連結しており、2本の結合手が同一の炭素に連結してもよく;
    式(AN−VI)において、X10は炭素数2〜6のアルキレンであり;
    Meはメチルであり;
    Phはフェニルであり;
    式(AN−VII)において、G10は独立して−O−、−COO−または−OCO−であり;そして、
    rは独立して0または1である。
  6. [A]成分において、前記光反応性構造を有するテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が下記式(AN−1−1)、(AN−1−13)、(AN−2−1)、(AN−3−1)、(AN−3−2)、および(AN−4−17)から選ばれる少なくとも1つのテトラカルボン酸二無水物である、請求項5に記載の光配向用液晶配向剤。
    Figure 0006090570
    式(AN−4−17)において、mは1〜12の整数である。
  7. [A]成分において、前記光反応性構造を有するジアミン以外のジアミンが下記式(DI−1)〜(DI−17)からなる群から選ばれる少なくとも1つのジアミンである、請求項1〜6のいずれか1つに記載の光配向用液晶配向剤。
    Figure 0006090570
    式(DI−1)において、mは1〜12の整数であり;
    (DI−3)および(DI−5)〜(DI−7)において、G21は独立して単結合、−NH−、−O−、−S−、−S−S−、−SO−、−CO−、−CONH−、−NHCO−、−C(CH−、−C(CF−、−(CHm’−、−O−(CHm’−O−、−N(CH)−(CH−N(CH)−、または−S−(CHm’−S−であり、m’は独立して1〜12の整数であり、kは1〜5の整数であり;
    (DI−6)および(DI−7)において、G22は独立して単結合、−O−、−S−、−CO−、−C(CH−、−C(CF−、または炭素数1〜10のアルキレンであり;
    式(DI−2)〜(DI−7)中のシクロヘキサン環およびベンゼン環の任意の−Hは、−F、−CH、−OH、−CF、−COH、−CONH、またはベンジルで置き換えられていてもよく、加えて式(DI−4)においてベンゼン環の任意の−Hは、下記式(DI−4−a)〜(DI−4−c)で置き換えられていてもよく、
    Figure 0006090570
    式(DI−4−a)および(DI−4−b)において、R20は独立して−Hまたは−CHであり;
    式(DI−2)〜(DI−7)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;そして、
    シクロヘキサン環またはベンゼン環への−NHの結合位置は、G21またはG22の結合位置を除く任意の位置である。
    Figure 0006090570
    式(DI−8)において、R21およびR22は独立して炭素数1〜3のアルキルまたはフェニルであり;
    23は独立して炭素数1〜6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり;
    wは1〜10の整数であり;
    式(DI−9)において、R23は独立して炭素数1〜5のアルキル、炭素数1〜5のアルコキシまたは−Clであり;
    pは独立して0〜3の整数であり;
    qは0〜4の整数であり;
    式(DI−10)において、R24は−H、炭素数1〜4のアルキル、フェニル、またはベンジルであり;
    式(DI−11)において、G24は−CH−または−NH−であり;
    式(DI−12)において、G25は単結合、炭素数2〜6のアルキレンまたは1,4−フェニレンであり;
    rは0または1であり;
    式(DI−12)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;そして、
    式(DI−9)、(DI−11)および(DI−12)において、ベンゼン環に結合する−NHの結合位置は任意の位置であり;
    Figure 0006090570
    式(DI−13)において、G26は単結合、−O−、−COO−、−OCO−、−CO−、−CONH−、−CHO−、−OCH−、−CFO−、−OCF−、または−(CHm’−であり、m’は1〜12の整数であり;
    25は炭素数3〜20のアルキル、フェニル、シクロヘキシル、ステロイド骨格を有する基、または下記の式(DI−13−a)で表される基であり、このアルキルにおいて、任意の−Hは−Fで置き換えられてもよく、任意の−CH2−は−O−で置き換えられていてもよく、このフェニルの−Hは、−F、−CH、−OCH、−OCHF、−OCHF、−OCF、炭素数3〜20のアルキル、または炭素数3〜20のアルコキシで置き換えられていてもよく、このシクロヘキシルの−Hは炭素数3〜20のアルキルまたは炭素数3〜20のアルコキシで置き換えられていてもよく、ベンゼン環に結合する−NHの結合位置はその環において任意の位置であることを示し;
    Figure 0006090570
    式(DI−13−a)において、G27、G28およびG29は結合基を表し、これらは独立して単結合、または炭素数1〜12のアルキレンであり、このアルキレン中の1以上の−CH−は−O−、−COO−、−OCO−、−CONH−、−CH=CH−で置き換えられていてもよく;
    環B21、環B22、環B23、および環B24は独立して1,4−フェニレン、1,4−シクロへキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,4−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,6−ジイル、ナフタレン−2,7−ジイル、またはアントラセン−9,10−ジイルであり;
    環B21、環B22、環B23、および環B24において、任意の−Hは−Fまたは−CHで置き換えられてもよく;
    s,tおよびuは独立して0〜2の整数であり、これらの合計は1〜5であり;
    s,tまたはuが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、2つの環は同じであっても異なっていてもよく;
    26は−F、−OH、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、−CN、−OCHF、−OCHF、または−OCFであり、この炭素数1〜30のアルキルの任意の−CH−は下記式(DI−13−b)で表される2価の基で置き換えられていてもよく;
    Figure 0006090570
    式(DI−13−b)において、R27およびR28は独立して炭素数1〜3のアルキルであり;
    vは1〜6の整数であり;
    Figure 0006090570
    式(DI−14)および式(DI−15)において、G30は独立して単結合、−CO−または−CH2−であり;
    29は独立して−Hまたは−CHであり;
    30は−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルであり;
    式(DI−15)におけるベンゼン環の1つの−Hは、炭素数1〜20のアルキルまたはフェニルで置き換えられてもよく;
    式(DI−14)および式(DI−15)において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示し;
    ベンゼン環に結合する−NHはその環における結合位置が任意であることを示し;
    Figure 0006090570
    式(DI−16)および式(DI−17)において、G31は独立して−O−または炭素数1〜6のアルキレンであり;
    32は単結合または炭素数1〜3のアルキレンであり;
    31は−Hまたは炭素数1〜20のアルキルであり、このアルキルの任意の−CH2−は、−O−で置き換えられてもよく;
    32は炭素数6〜22のアルキルであり;
    33は−Hまたは炭素数1〜22のアルキルであり;
    環B25は1,4−フェニレンまたは1,4−シクロヘキシレンであり;
    rは0または1であり;そして、
    ベンゼン環に結合する−NHはその環における結合位置が任意であることを示す。
  8. [A]成分において、前記ジアミンが、下記式(DI−5−1)から選ばれる少なくとも1つである、請求項7に記載の光配向用液晶配向剤。
    Figure 0006090570
    式(DI−5−1)において、mは1〜12の整数である。
  9. [B]成分において、式(1)が下記式(1−a)または(1−b)で表されるテトラカルボン酸二無水物から選ばれる少なくとも1つのテトラカルボン酸二無水物である、請求項1〜8のいずれか1つに記載の光配向用液晶配向剤。
    Figure 0006090570
  10. [B]成分において、式(1)で表されるテトラカルボン酸二無水物以外のテトラカルボン酸二無水物が、前記式(AN−I)〜(AN−VII)からなる群から選ばれる少なくとも1つのテトラカルボン酸二無水物である、請求項1〜9のいずれか1つに記載の光配向用液晶配向剤。
  11. [B]成分において、前記テトラカルボン酸二無水物が、下記式(AN−1−1)、(AN−2−1)、(AN−3−1)、(AN−3−2)、(AN−4−1)、(AN−4−5)、(AN−4−17)、(AN−4−21)、(AN−7−2)、(AN−10)、および(AN−11−3)から選ばれる少なくとも1つのテトラカルボン酸二無水物である、請求項10に記載の光配向用液晶配向剤。
    Figure 0006090570
    式(AN−4−17)において、mは1〜12の整数である。
  12. [B]成分において、ジアミンが前記式(DI−1)〜(DI−17)からなる群から選ばれる少なくとも1つのジアミン、および/または、下記式(2−a)〜(2−c)から選ばれる少なくとも1つのジヒドラジド化合物である、請求項1〜11のいずれか1つに記載の光配向用液晶配向剤。
    Figure 0006090570
    式(2−a)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO−、−C(CH−、または−C(CF−であり;
    式(2−b)において、環Bはシクロヘキサン環、ベンゼン環またはナフタレン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;
    式(2−c)において、環Cはそれぞれ独立してシクロヘキサン環、またはベンゼン環であり、この基の任意の水素はメチル、エチル、またはフェニルで置き換えられてもよく;Yは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO−、−C(CH−、または−C(CF−である。
  13. [B]成分において、ジアミンが、下記式(DI−1−3)、(DI−1−4)、(DI−2−1)、(DI−4−1)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−22)、(DI−5−28)、(DI−5−30)、(DI−7−3)、(DI−9−1)、(DI−13−4)、(DI−13−5)、(DI−13−47)、(DI−16−1)、(DI−16−2)、および(DI−16−4)から選ばれる少なくとも1つのジアミンである、請求項12に記載の光配向用液晶配向剤。
    Figure 0006090570
    Figure 0006090570
    式(DI−5−1)、(DI−5−12)および(DI−7−3)において、mは1〜12の整数であり;
    式(DI−5−30)において、kは1〜5の整数であり;
    式(DI−7−3)において、nは1または2であり;
    式(DI−13−4)および(DI−13−5)において、R35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり;
    式(DI−16−1)および(DI−16−2)において、R40は−Hまたは炭素数1〜20のアルキルであり;
    式(DI−16−4)において、R41は−Hまたは炭素数1〜12のアルキルである。
  14. [B]成分において、前記ジヒドラジド化合物が式(2−a−1)〜(2−a−2)、(2−b−1)〜(2−b−3)または(2−c−1)〜(2−c−6)から選ばれる少なくとも1つのジヒドラジド化合物である、請求項12または13に記載の光配向用液晶配向剤。
    Figure 0006090570
    式(2−a−2)において、mは1〜12の整数である。
  15. [A]成分および[B]成分を含有する液晶配向剤であって、アルケニル置換ナジイミド化合物、ラジカル重合性不飽和二重結合を有する化合物、オキサジン化合物、オキサゾリン化合物、およびエポキシ化合物からなる化合物の群から選ばれる少なくとも1つをさらに含有する、請求項1〜14のいずれか1つに記載の光配向用液晶配向剤。
  16. アルケニル置換ナジイミド化合物が、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、およびN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)からなる化合物の群から選ばれる少なくとも1つである、請求項15に記載の光配向用液晶配向剤。
  17. ラジカル重合性不飽和二重結合を有する化合物が、N,N’−エチレンビスアクリルアミド、N,N’−(1,2−ジヒドロキシエチレン)ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)からなる化合物の群から選ばれる少なくとも1つである、請求項15に記載の光配向用液晶配向剤。
  18. エポキシ化合物が、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、および3−アミノプロピルトリエトキシシランからなる化合物の群から選ばれる少なくとも1つである、請求項15に記載の光配向用液晶配向剤。
  19. 請求項1〜18のいずれか1つに記載の光配向用液晶配向剤によって形成された光配向用液晶配向膜。
  20. 請求項1〜18のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、膜に偏紫外線を照射する工程とを経て形成する光配向用液晶配向膜の製造方法
  21. 請求項1〜18のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、乾燥した膜に偏紫外線を照射する工程と、次いでその膜を加熱焼成する工程を経て形成する光配向用液晶配向膜の製造方法
  22. 請求項1〜18のいずれか1つに記載の光配向用液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、乾燥した膜を加熱焼成する工程と、次いでその膜に偏紫外線を照射する工程とを経て形成する光配向用液晶配向膜の製造方法
  23. 請求項19に記載の光配向用液晶配向膜を有する液晶表示素子。
JP2013049581A 2012-04-26 2013-03-12 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 Active JP6090570B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013049581A JP6090570B2 (ja) 2012-04-26 2013-03-12 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012101365 2012-04-26
JP2012101365 2012-04-26
JP2013049581A JP6090570B2 (ja) 2012-04-26 2013-03-12 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Publications (2)

Publication Number Publication Date
JP2013242526A JP2013242526A (ja) 2013-12-05
JP6090570B2 true JP6090570B2 (ja) 2017-03-08

Family

ID=49460202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013049581A Active JP6090570B2 (ja) 2012-04-26 2013-03-12 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Country Status (4)

Country Link
JP (1) JP6090570B2 (ja)
KR (1) KR101962478B1 (ja)
CN (1) CN103374355A (ja)
TW (1) TWI592437B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024892A1 (ja) * 2012-08-10 2014-02-13 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
JP5894567B2 (ja) * 2013-08-21 2016-03-30 シャープ株式会社 液晶表示装置の製造方法
CN106164758A (zh) * 2014-03-28 2016-11-23 捷恩智株式会社 液晶显示元件
KR20150118527A (ko) * 2014-04-14 2015-10-22 제이엔씨 주식회사 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20150118659A (ko) 2014-04-14 2015-10-23 삼성디스플레이 주식회사 액정 표시 장치
CN106164220A (zh) * 2014-04-15 2016-11-23 捷恩智株式会社 液晶显示元件
JP6461544B2 (ja) * 2014-10-08 2019-01-30 株式会社ジャパンディスプレイ 液晶表示装置およびその製造方法
JP6421545B2 (ja) * 2014-10-21 2018-11-14 Jnc株式会社 ポリアミック酸またはその誘導体を含む液晶配向剤、液晶配向膜および液晶表示素子
CN105694912B (zh) * 2014-12-11 2019-11-19 捷恩智株式会社 光取向用液晶取向剂、液晶取向膜及使用其的液晶显示元件
JP6520657B2 (ja) * 2015-11-16 2019-05-29 Jnc株式会社 ジアミン、ポリアミック酸またはその誘導体、液晶配向剤、液晶配向膜および液晶表示素子
JP6589657B2 (ja) * 2016-01-21 2019-10-16 Jnc株式会社 液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6565730B2 (ja) * 2016-02-18 2019-08-28 Jnc株式会社 ジアミン、ポリアミック酸またはその誘導体、液晶配向剤、液晶配向膜および液晶表示素子
KR20170125704A (ko) * 2016-05-06 2017-11-15 제이엔씨 주식회사 액정 표시 소자
WO2018155674A1 (ja) * 2017-02-27 2018-08-30 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
TWI742094B (zh) * 2017-06-13 2021-10-11 奇美實業股份有限公司 液晶配向膜的製造方法及液晶顯示元件
CN109581702B (zh) * 2017-09-28 2022-05-20 江苏和成显示科技有限公司 液晶显示器件
JPWO2021059999A1 (ja) * 2019-09-24 2021-04-01
WO2023120683A1 (ja) * 2021-12-24 2023-06-29 積水化学工業株式会社 液晶表示素子用シール剤、液晶表示素子、及び、多価ヒドラジド化合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
CN100430802C (zh) 2002-12-09 2008-11-05 株式会社日立显示器 液晶显示装置及其制造方法
CN100437301C (zh) 2004-02-26 2008-11-26 日产化学工业株式会社 光取向用液晶取向剂及使用它的液晶显示元件
JP4620438B2 (ja) 2004-02-27 2011-01-26 チッソ株式会社 液晶配向膜、液晶配向剤、及び液晶表示素子
JP4968422B2 (ja) 2004-12-15 2012-07-04 Jsr株式会社 液晶配向膜の製造方法
JP4775796B2 (ja) 2006-03-14 2011-09-21 独立行政法人物質・材料研究機構 液晶配向膜、液晶配向剤、及び液晶表示素子
JP5156894B2 (ja) 2007-09-13 2013-03-06 独立行政法人物質・材料研究機構 液晶配向剤、液晶配向膜及びその製造方法、並びに液晶表示素子
JP5407394B2 (ja) * 2008-03-21 2014-02-05 Jnc株式会社 光配向剤、配向膜およびこれを用いた液晶表示素子
JP5878710B2 (ja) * 2010-09-01 2016-03-08 日本精化株式会社 アミド基含有脂環式テトラカルボン酸二無水物、並びにこれを用いた樹脂

Also Published As

Publication number Publication date
JP2013242526A (ja) 2013-12-05
KR101962478B1 (ko) 2019-03-26
TW201343725A (zh) 2013-11-01
TWI592437B (zh) 2017-07-21
KR20130121018A (ko) 2013-11-05
CN103374355A (zh) 2013-10-30

Similar Documents

Publication Publication Date Title
JP6308282B2 (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6090570B2 (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6056187B2 (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6057070B2 (ja) 液晶配向剤、およびこれを用いた液晶表示素子
JP6176354B2 (ja) ジアミン
JP6398236B2 (ja) 液晶配向剤および液晶表示素子
JP6213281B2 (ja) 感光性ジアミン、液晶配向剤および液晶表示素子
JP6350852B2 (ja) 液晶配向剤、液晶表示素子、およびテトラカルボン酸二無水物
JP6103257B2 (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6565730B2 (ja) ジアミン、ポリアミック酸またはその誘導体、液晶配向剤、液晶配向膜および液晶表示素子
JP6252009B2 (ja) 新規ジアミン、これを用いたポリマー、液晶配向剤、液晶配向膜、および液晶表示素子
JP2016224415A (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2018010108A (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2016041683A (ja) トリアゾール含有テトラカルボン酸二無水物、液晶配向剤、液晶配向膜、および液晶表示素子
JP5888810B2 (ja) ジアミン、これを用いた液晶配向剤、およびこれを用いた液晶表示素子
JP2017003965A (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP6561624B2 (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2018101122A (ja) 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2017146597A (ja) 液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2019007988A (ja) 液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170124

R150 Certificate of patent or registration of utility model

Ref document number: 6090570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250