WO2018155674A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜及び液晶表示素子 Download PDF

Info

Publication number
WO2018155674A1
WO2018155674A1 PCT/JP2018/006889 JP2018006889W WO2018155674A1 WO 2018155674 A1 WO2018155674 A1 WO 2018155674A1 JP 2018006889 W JP2018006889 W JP 2018006889W WO 2018155674 A1 WO2018155674 A1 WO 2018155674A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
aligning agent
carbon atoms
Prior art date
Application number
PCT/JP2018/006889
Other languages
English (en)
French (fr)
Inventor
秀則 石井
達哉 名木
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to KR1020197027959A priority Critical patent/KR102521136B1/ko
Priority to JP2019501856A priority patent/JP7131538B2/ja
Priority to CN201880026895.2A priority patent/CN110546559B/zh
Publication of WO2018155674A1 publication Critical patent/WO2018155674A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a novel liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element using the same.
  • Liquid crystal display elements are widely used as display units for personal computers, mobile phones, smartphones, televisions and the like.
  • the liquid crystal display element includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the alignment of liquid crystal molecules in the liquid crystal layer, A thin film transistor (TFT) for switching an electric signal supplied to the pixel electrode is provided.
  • TFT thin film transistor
  • As a driving method of liquid crystal molecules a vertical electric field method such as a TN method and a VA method, and a horizontal electric field method such as an IPS method and an FFS method are known.
  • the horizontal electric field method in which an electrode is formed only on one side of the substrate and an electric field is applied in a direction parallel to the substrate is wider than the vertical electric field method in which voltage is applied to the electrodes formed on the upper and lower substrates to drive the liquid crystal. It is known as a liquid crystal display element having viewing angle characteristics and capable of high-quality display.
  • the horizontal electric field type liquid crystal cell is excellent in viewing angle characteristics, since there are few electrode portions formed in the substrate, if the voltage holding ratio is low, a sufficient voltage is not applied to the liquid crystal and the display contrast is lowered. Further, if the stability of the liquid crystal alignment is small, the liquid crystal does not return to the initial state when the liquid crystal is driven for a long time, which causes a decrease in contrast and an afterimage. Therefore, the stability of the liquid crystal alignment is important. Furthermore, static electricity is likely to be accumulated in the liquid crystal cell, and charges are accumulated in the liquid crystal cell even when a positive / negative asymmetric voltage generated by driving is applied, and these accumulated charges affect the display as a disorder of liquid crystal alignment or an afterimage. The display quality of the liquid crystal element is significantly reduced. In addition, charges are accumulated by irradiating the liquid crystal cell with backlight light immediately after driving, and afterimages are generated even during short-time driving, and the size of flicker (flicker) changes during driving. It will occur.
  • Patent Document 1 contains a specific diamine and an aliphatic tetracarboxylic acid derivative as a liquid crystal aligning agent that has excellent voltage holding ratio and reduced charge accumulation when used in such a horizontal electric field type liquid crystal display element.
  • a liquid crystal aligning agent is disclosed.
  • an alignment film having a low volume resistivity as in Patent Document 2 or a volume resistivity as in Patent Document 3 also varies depending on a backlight of a liquid crystal display element.
  • a method of using an alignment film that is difficult to perform has been proposed.
  • the characteristics required for the liquid crystal alignment film are becoming stricter, and it is difficult to sufficiently satisfy all the required characteristics with these conventional techniques.
  • the present invention provides a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that are capable of obtaining a liquid crystal aligning film that has excellent voltage holding ratio, quick relaxation of accumulated charges, and good stability of liquid crystal alignment. Let it be an issue.
  • the present inventors have found that various properties can be improved simultaneously by introducing a specific structure into the polymer contained in the liquid crystal aligning agent. Completed the invention.
  • the present invention is based on this finding and has the following gist.
  • Coalescence (A) At least one polymer selected from a polyamic acid obtained by using a tetracarboxylic dianhydride component and a diamine component containing a diamine represented by the following formula (2) and an imidized polymer of the polyamic acid (B And a liquid crystal aligning agent.
  • Y 1 is a divalent organic group having at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring
  • B 1 and B 2 are each independently A hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group.
  • Y 1 in the formula (2) is at least one selected from structures of the following formulas (YD-1) to (YD-5).
  • a 1 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • Z 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent.
  • W 1 is a hydrocarbon group having 1 to 10 carbon atoms
  • a 2 is a monovalent organic group having 3 to 15 carbon atoms having a nitrogen atom-containing heterocyclic ring, or A disubstituted amino group substituted with an aliphatic group having 1 to 6 carbon atoms, wherein W 2 is a divalent amino group having 6 to 15 carbon atoms and having 1 to 2 benzene rings
  • W 3 is an alkylene group having 2 to 5 carbon atoms, biphenylene, or a divalent organic group having 12 to 18 carbon atoms including a nitrogen atom-containing heterocyclic ring
  • Z 2 is a hydrogen atom, 1 to 5 carbon atoms Or a benzene ring
  • a 3 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • a 4 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • W 5 is a carbon atom having 2 to 5 carbon atoms. Alkylene.
  • a 1 , A 2 , A 3 , and A 4 described in the formulas (YD-1), (YD-2), (YD-4), and (YD-5) are pyrrolidine, pyrrole, imidazole
  • Y 1 is at least one selected from the group consisting of divalent organic groups having the structures of the following formulas (YD-6) to (YD-22). Liquid crystal aligning agent in any one of ⁇ 3>.
  • h is an integer of 1 to 3
  • j is an integer of 0 to 3
  • Y 1 in formula (2) is composed of a divalent organic group having the structure of the above formulas (YD-14), (YD-18), (YD-21) and (YD-22)
  • ⁇ 6> A liquid crystal alignment film obtained by applying and baking the liquid crystal alignment agent according to any one of ⁇ 1> to ⁇ 5>.
  • a liquid crystal display device comprising the liquid crystal alignment film of ⁇ 6>.
  • liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, a liquid crystal aligning film having excellent voltage holding ratio, quickening of accumulated charge, good liquid crystal alignment stability, and a liquid crystal display element having excellent display characteristics are provided. Although it is not clear why the above-mentioned problems can be solved by the present invention, it is generally considered as follows.
  • the above structure (2) of the polymer contained in the liquid crystal aligning agent of the present invention has a conjugated structure. Thereby, for example, in the liquid crystal alignment film, the movement of charges can be promoted, and the relaxation of accumulated charges can be promoted.
  • the liquid crystal aligning agent of this invention is a composition used for forming a liquid crystal aligning film, the specific polymer (A) obtained from the diamine represented by the said Formula (1), and the structure of said Formula (2) And a liquid crystal aligning agent containing a specific polymer (B) obtained from a diamine having a diol. That is, in other words, the present invention relates to a liquid crystal alignment polymer composition containing the characteristic polymer (A) and the specific polymer (B).
  • the content of the specific polymer (A) and the specific polymer (B) is 5 to 90% by weight of the specific polymer (A) with respect to the total amount of the specific polymer (A) and the specific polymer (B). More preferably, it is 10 to 50% by weight. That is, the specific polymer (B) is 95 to 10% by weight, more preferably 90 to 50% by weight, based on the total amount of the specific polymer (A) and the specific polymer (B). If the specific polymer (A) is too small, the stability of the liquid crystal alignment is deteriorated, and if the specific polymer (B) is too small, the relaxation property of the accumulated charge is deteriorated.
  • the specific polymer (A) and the specific polymer (B) contained in the liquid crystal aligning agent of the present invention may each be one type or two or more types.
  • the polymer of this invention is a polymer obtained from the diamine component containing the diamine represented by the said Formula (1), and the acid dianhydride component containing tetracarboxylic dianhydride.
  • Specific examples include polyamic acid, polyamic acid ester, polyimide, polyurea, polyamide and the like.
  • a polyimide precursor containing a structural unit represented by the following formula (3) From the viewpoint of use as a liquid crystal aligning agent, a polyimide precursor containing a structural unit represented by the following formula (3), And at least one selected from polyimides which are imidized products thereof.
  • a polyimide precursor is more preferable in that the polymer is reoriented more highly because there are many free rotation sites in the polymer.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 11 is a divalent organic group derived from the diamine of formula (1)
  • R 11 is a hydrogen atom. Or an alkyl group having 1 to 5 carbon atoms.
  • R 11 is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably a hydrogen atom, from the viewpoint of ease of imidization by heating.
  • the liquid crystal aligning agent of this invention is selected from the polyamic acid obtained using the tetracarboxylic dianhydride component and the diamine component containing the diamine represented by following formula (1), and the imidized polymer of this polyamic acid.
  • X is - (CH 2) n-a represents, n represents - (CH 2) - is 8 or a natural number of 9 indicating the number of, any - (CH 2) - are each independently a, -O -, - S -, - COO -, - OCO -, - CONH- and a group selected from -NHCO-, may be replaced by the conditions in which these groups are not adjacent, R 1 and R 2 is each independently a monovalent organic group, and p1 and p2 are each independently an integer of 0 to 4.)
  • Examples of the monovalent organic group herein include an alkyl group, an alkenyl group, an alkoxy group, a fluoroalkyl group, a fluoroalkenyl group, or a fluoroalkoxy group having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms.
  • a monovalent organic group a methyl group is preferable.
  • the total number of carbon atoms, oxygen atoms, sulfur atoms, and nitrogen atoms involved in the main chain length among the number of X atoms is an even number, the resulting linearity of the polymer is increased.
  • the heating step after rubbing or irradiation with polarized ultraviolet rays it is preferable because a liquid crystal alignment film imparted with high alignment control ability can be obtained by reorienting in a higher order.
  • the total number of carbon atoms, oxygen atoms, sulfur atoms and nitrogen atoms involved in the length of the main chain is 1 per methylene of the main chain and 1 per ether bond. This is the total when the number per sulfide bond is 1, the number per ester bond is 2, and the number per amide bond is 2.
  • Arbitrary — (CH 2 ) — in X is any one of —O—, —S—, —COO—, and —OCO— in that the one having a weaker hydrogen bonding force reorients in a higher order. Replacement is preferred, and —O— is particularly preferred.
  • p1 and p2 are preferably 0 in that the phenyl groups are easy to overlap with each other because of less steric hindrance, and reorientate in a higher order.
  • n 8 or more
  • the alignment regulating power is high.
  • the polymer (A) has a high migration property to the upper layer, that is, the interface that is not on the substrate side, and therefore contributes to the improvement of the orientation.
  • n 10 or more
  • the orientation regulating force of the polymer (A) itself is greatly reduced. Therefore, the effect of the present invention cannot be obtained unless n is 8 or 9.
  • the resulting polymer has high linearity, and as a result, reorients in a higher order in the heating step after polarized light irradiation.
  • a liquid crystal alignment film having a high alignment control ability can be obtained.
  • X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited.
  • X 1 in the polyimide precursor is required for the solubility of the polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, the accumulated charge, etc.
  • one type may be used in the same polymer, or two or more types may be mixed.
  • (A-1) and (A-2) are preferred from the viewpoints of photoreactivity, liquid crystal orientation, and voltage holding ratio.
  • the polyimide precursor containing the structural unit represented by the formula (3) is at least selected from the structural unit represented by the following formula (4) and a polyimide that is an imidized product thereof, as long as the effects of the present invention are not impaired.
  • One kind may be included.
  • X 2 is a tetravalent organic group derived from a tetracarboxylic acid derivative
  • Y 12 is a divalent organic group derived from a diamine
  • R 12 is R in the formula (3).
  • 11 and R 22 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Moreover, it is preferable that at least one of two R ⁇ 22 > is a hydrogen atom.
  • Examples of X 2 include the structures of formulas (X-1) to (X-46) described in paragraphs 13 to 14 of International Publication No. 2015/119168, and the above (A-1). The structures of (A-21) are listed.
  • Y 12 is a divalent organic group derived from diamine, and its structure is not particularly limited. Y 12 depends on the degree of required properties such as the solubility of the polymer in the solvent, the coating property of the liquid crystal aligning agent, the orientation of the liquid crystal when it is used as the liquid crystal alignment film, the voltage holding ratio, and the accumulated charge. 1 type may be selected in the same polymer, and 2 or more types may be mixed.
  • R 32 is a single bond or a divalent organic group, and a single bond is preferable.
  • R 33 is a structure represented by — (CH 2 ) n —. n is an integer of 2 to 10, preferably 3 to 7. Arbitrary —CH 2 — may be replaced with an ether, ester, amide, urea, or carbamate bond under the condition that they are not adjacent to each other.
  • R 34 is a single bond or a divalent organic group. Any hydrogen atom on the benzene ring may be replaced by a monovalent organic group, and a fluorine atom or a methyl group is preferred.
  • the structural unit represented by Formula (3) is represented by Formula (3) and Formula It is preferably 30 mol% to 100 mol%, more preferably 50 mol% to 100 mol%, particularly preferably 70 mol% to 100 mol%, based on the total of (4).
  • component used for the liquid crystal aligning agent of this invention is a polyamic acid obtained using the tetracarboxylic dianhydride component and the diamine component containing the diamine represented by the said Formula (2), and the imide of this polyamic acid It is at least one kind of polymer selected from chemical polymers.
  • tetracarboxylic dianhydride component As tetracarboxylic dianhydride used for manufacture of the (B) component of this invention, the tetracarboxylic dianhydride represented by following formula (6) is mentioned.
  • X 3 includes a structure selected from the above-mentioned (A-1) to (A-21) described for the component (A).
  • the tetracarboxylic dianhydride component to be used may be one type, or two or more types.
  • the diamine component used for the production of the liquid crystal aligning agent of the present invention contains the diamine of the above formula (2).
  • Y 1 is a divalent organic group having at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring
  • B 1 and B 2 are each independently A hydrogen atom or an optionally substituted alkyl group, alkenyl group, or alkynyl group.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, and a cyclohexyl group.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group that is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above. Specific examples of the alkyloxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • alkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • thioester group which is a substituent
  • a structure represented by —C (S) OR— or —OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
  • B 1 and B 2 a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • the structure of Y 1 in the formula (2) is not particularly limited as long as it has at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring. Absent. If specific examples are given, at least one kind selected from the group consisting of an amino group represented by the following formulas (YD-1) to (YD-5), an imino group, and a nitrogen-containing heterocyclic ring may be used. Examples thereof include a divalent organic group having a structure.
  • a 1 is a nitrogen atom-containing heterocyclic ring having 3 to 15 carbon atoms
  • Z 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. is there.
  • W 1 is a hydrocarbon group having 1 to 10 carbon atoms
  • a 2 is a monovalent organic group having 3 to 15 carbon atoms having a nitrogen atom-containing heterocyclic ring, or 1 carbon atom To a di-substituted amino group substituted with an aliphatic group of 1 to 6.
  • W 2 is a divalent organic group having 6 to 15 carbon atoms and having 1 to 2 benzene rings
  • W 3 is alkylene or biphenylene having 2 to 5 carbon atoms or a nitrogen atom
  • Z 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a benzene ring
  • a is an integer of 0 to 1.
  • a 3 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms.
  • a 4 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms, and W 5 is an alkylene having 2 to 5 carbon atoms.
  • carbazole can be mentioned, piperazine, piperidine, indole, benzimidazole, imidazole, carbazole, pyrrole. And pyridine are more preferred.
  • Y 2 in the formula (2) include divalent organic groups having nitrogen atoms represented by the following formulas (YD-6) to (YD-43).
  • the accumulated charge can be relaxed faster, so that the equations (YD-14), (YD-18), (YD-19), (YD-20), (YD-21), (YD-23) ) To (YD-30) and (YD-40) to (YD-43) are more preferred, (YD-14), (YD-18), (YD-23), (YD-25) and (YD- 40) to (YD-43) are particularly preferred.
  • h is an integer of 1 to 3
  • j is an integer of 0 to 3.
  • j is an integer from 0 to 3.
  • j is an integer from 0 to 3.
  • the ratio of the diamine represented by the formula (2) in the polyamic acid and the imidized polymer of the polyamic acid of the present invention is preferably 10 to 100 mol%, more preferably 30%, based on 1 mol of the total diamine. To 100 mol%, more preferably 50 to 100 mol%.
  • the diamine represented by the formula (2) in the polyamic acid and the imidized polymer of the polyamic acid as the component (B) of the present invention may be used singly or in combination.
  • the diamine represented by the formula (2) is preferably used in the above preferred amount as a total.
  • the polyamic acid and the imidized polymer of polyamic acid which are the component (B) contained in the liquid crystal aligning agent of the present invention are represented by the following formula (7) in addition to the diamine represented by the above formula (2).
  • Diamine may be used.
  • Y 2 in the following formula (7) is a divalent organic group, and the structure thereof is not particularly limited, and two or more kinds may be mixed. If specific examples are shown, the following (Y-1) to (Y-75) can be mentioned.
  • the proportion of the diamine represented by the formula (7) is preferably 0 to 90 mol%, more preferably 0 to 50 mol%, still more preferably 0 to 20 mol% with respect to 1 mol of the total diamine. .
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the method (1), (2) or (3) shown below.
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone from the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can synthesize
  • the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the organic solvent used in the above reaction is not particularly limited as long as the produced polyamic acid can be dissolved, but specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, Examples thereof include N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, and ⁇ -butyrolactone. These may be used alone or in combination. Furthermore, even if the solvent does not dissolve the polyamic acid, it may be used by mixing with the above solvent as long as the produced polyamic acid does not precipitate. In addition, since water in the organic solvent inhibits the polymerization reaction and further causes hydrolysis of the generated polyamic acid, it is preferable to use a dehydrated and dried organic solvent as much as possible.
  • a solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride component is used as it is or in an organic solvent.
  • a method of adding by dispersing or dissolving in a solvent a method of adding a diamine component to a solution in which a tetracarboxylic dianhydride component is dispersed or dissolved in an organic solvent, and a tetracarboxylic dianhydride component and a diamine component.
  • the method of adding alternately etc. are mentioned, In this invention, any of these methods may be sufficient.
  • the tetracarboxylic dianhydride component or the diamine component is composed of a plurality of types of compounds
  • the plurality of types of components may be reacted in a mixed state in advance or may be reacted individually and sequentially.
  • the temperature at which the tetracarboxylic dianhydride component and the diamine component are reacted in an organic solvent is usually 0 to 150 ° C., preferably 5 to 100 ° C., more preferably 10 to 80 ° C. When the temperature is higher, the polymerization reaction is completed earlier, but when it is too high, a high molecular weight polymer may not be obtained.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, it is preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the initial reaction may be carried out at a high concentration, and then an organic solvent may be added.
  • the ratio of the tetracarboxylic dianhydride component and the diamine component used for the polyamic acid polymerization reaction is preferably 1: 0.8 to 1.2 in terms of molar ratio.
  • the polyamic acid obtained by adding an excess of the diamine component may increase the coloration of the solution. If the coloration of the solution is a concern, the ratio may be 1: 0.8 to 1. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1: 1, the higher the molecular weight of the polyamic acid obtained. If the molecular weight of the polyamic acid is too small, the strength of the coating film obtained therefrom may be insufficient.
  • the polyamic acid used in the liquid crystal aligning agent of the present invention is preferably 0.1 to 2.0, more preferably 0.2 to 1.5 in terms of reduced viscosity (concentration 0.5 dl / g, 30 ° C. in NMP). is there.
  • the solvent used for the polymerization of the polyamic acid is not desired to be contained in the liquid crystal aligning agent of the present invention, or if unreacted monomer components or impurities are present in the reaction solution, the precipitate is collected and purified.
  • the polyamic acid solution is preferably added to a stirring poor solvent, and the precipitate is recovered.
  • recovery of polyamic acid Methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene etc. can be illustrated.
  • the polyamic acid precipitated by introducing it into a poor solvent can be recovered by filtration, washing and drying at room temperature or under reduced pressure at normal temperature or under reduced pressure.
  • the polyamic acid can be purified.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
  • the molecular weight of the (A) component and the (B) component polyimide precursor used in the present invention is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, Preferably, it is 10,000 to 100,000.
  • Examples of the polyimide that is the component (A) and the component (B) used in the present invention include polyimides obtained by ring-closing the polyimide precursor.
  • the ring closure rate (also referred to as imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the use and purpose.
  • the liquid crystal aligning agent of this invention is a composition used for forming a liquid crystal aligning film,
  • the specific polymer (A) which has a structure represented by said Formula (1), and the structure of said Formula (2). Even if the specific polymer (A) and the specific polymer (B) contained in the liquid crystal aligning agent of the present invention are each one type, It may be more than types.
  • other polymers that is, a divalent group represented by the formula (1) and a polymer having neither a divalent group represented by the formula (2) are contained. It may be.
  • the other polymer examples include polyamic acid, polyimide, polyamic acid ester, polyester, polyamide, polyurea, polyorganosiloxane, cellulose derivative, polyacetal, polystyrene or derivatives thereof, poly (styrene-phenylmaleimide) derivative, poly ( And (meth) acrylate.
  • the proportion of the specific polymer in the total polymer components is preferably 5% by mass or more, and an example thereof is 5 to 95% by mass.
  • the liquid crystal aligning agent is used for producing a liquid crystal aligning film, and generally takes the form of a coating liquid from the viewpoint of forming a uniform thin film. Also in the liquid crystal aligning agent of this invention, it is preferable that it is a coating liquid containing an above-described polymer component and the organic solvent in which this polymer component is dissolved. At that time, the concentration of the polymer in the liquid crystal aligning agent can be appropriately changed by setting the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, the content is preferably 1% by mass or more, and from the viewpoint of storage stability of the solution, it is preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent is not particularly limited as long as the polymer component is uniformly dissolved.
  • Specific examples are N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, dimethyl sulfoxide, ⁇ -butyrolactone, 1,3-dimethyl.
  • -2-Imidazolidinone, methyl ethyl ketone, cyclohexanone, cyclopentanone and the like can be mentioned.
  • N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, or ⁇ -butyrolactone is preferably used.
  • the organic solvent contained in the liquid crystal aligning agent uses a mixed solvent that is used in combination with a solvent that improves the coating properties and the surface smoothness of the coating film when the liquid crystal aligning agent is applied in addition to the above-described solvents.
  • a mixed solvent is also preferably used in the liquid crystal aligning agent of the present invention. Specific examples of the organic solvent to be used in combination are given below, but the organic solvent is not limited to these examples.
  • ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 2,6- Zimechi -4-heptanol, 1,2-ethanedi
  • D 1 represents an alkyl group having 1 to 3 carbon atoms
  • D 2 represents an alkyl group having 1 to 3 carbon atoms
  • D-3 represents an alkyl group having 1 to 4 carbon atoms.
  • preferred solvent combinations include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ethylene glycol monobutyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, propylene glycol monobutyl ether, and N-ethyl-2-pyrrolidone.
  • propylene glycol monobutyl ether N-methyl-2-pyrrolidone and ⁇ -butyrolactone, 4-hydroxy-4-methyl-2-pentanone and diethylene glycol diethyl ether, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and propylene glycol monobutyl ether 2,6-dimethyl-4-heptanone, N-methyl-2-pyrrolidone and ⁇ -butyrolactone, propylene glycol monobutyl ether and diisopropyl ether, N-methyl-2-pyro Examples thereof include lidone, ⁇ -butyrolactone, propylene glycol monobutyl ether and 2,6-dimethyl-4-heptanol, N-methyl-2-pyrrolidone, ⁇ -butyrolactone and dipropylene glycol dimethyl ether.
  • the kind and content of such a solvent are appropriately selected according to the application device, application conditions, application environment, and the like of the liquid crystal aligning agent
  • an additive such as a silane coupling agent may be added to the liquid crystal aligning agent of the present invention, and other resin components may be added.
  • Examples of the compound that improves the adhesion between the liquid crystal alignment film and the substrate include a functional silane-containing compound and an epoxy group-containing compound, such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- Glycidoxypropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2- Aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl- 3-aminopropyl
  • additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the film.
  • additives are preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered.
  • the liquid crystal alignment film of the present invention is obtained from the liquid crystal alignment agent. If an example of the method of obtaining a liquid crystal aligning film from a liquid crystal aligning agent is given, a liquid crystal aligning agent in the form of a coating solution is applied to a substrate, dried and baked on a film obtained by rubbing or photo-aligning. And a method of performing an alignment treatment.
  • the substrate on which the liquid crystal aligning agent is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as an acrylic substrate or a polycarbonate substrate can be used together with a glass substrate or a silicon nitride substrate. At that time, it is preferable to use a substrate on which an ITO electrode or the like for driving the liquid crystal is used from the viewpoint of simplification of the process.
  • an opaque object such as a silicon wafer can be used as long as only one substrate is used, and a material that reflects light such as aluminum can be used for the electrode in this case.
  • the application method of the liquid crystal aligning agent is not particularly limited, but industrially, screen printing, offset printing, flexographic printing, inkjet method, and the like are common.
  • Other coating methods include a dipping method, a roll coater method, a slit coater method, a spinner method, and a spray method, and these may be used depending on the purpose.
  • the solvent is evaporated and baked by a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven.
  • a heating means such as a hot plate, a thermal circulation oven, or an IR (infrared) oven.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent.
  • the thickness of the liquid crystal alignment film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so that it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a horizontal electric field type liquid crystal display element such as an IPS mode or an FFS mode, and is particularly useful as a liquid crystal alignment film of an FFS mode liquid crystal display element.
  • the liquid crystal display device of the present invention is a device in which a liquid crystal cell is prepared by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent, and the liquid crystal cell is used as an element.
  • a liquid crystal display element having a passive matrix structure will be described as an example.
  • an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • a liquid crystal alignment film is formed on each substrate under the above conditions.
  • an ultraviolet curable sealing material is disposed at a predetermined position on one of the two substrates on which the liquid crystal alignment film is formed, and liquid crystals are disposed at predetermined positions on the liquid crystal alignment film surface.
  • the other substrate is bonded and pressure-bonded so that the liquid crystal alignment film faces, and the liquid crystal is spread on the front surface of the liquid crystal alignment film, and then the entire surface of the substrate is irradiated with ultraviolet rays to cure the sealing material. Get a cell.
  • an opening that can be filled with liquid crystal from the outside is provided when a sealing material is disposed at a predetermined location on one substrate.
  • a liquid crystal material is injected into the liquid crystal cell through an opening provided in the sealing material, and then the opening is sealed with an adhesive to obtain a liquid crystal cell.
  • the liquid crystal material may be injected by a vacuum injection method or a method utilizing capillary action in the atmosphere.
  • the liquid crystal material examples include a nematic liquid crystal and a smectic liquid crystal. Among them, a nematic liquid crystal is preferable, and either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, it is preferable to attach a pair of polarizing plates to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the liquid crystal alignment film and the liquid crystal display element of the present invention are not limited to the above description as long as the liquid crystal aligning agent of the present invention is used, and may be manufactured by other known methods. good. The process from the liquid crystal aligning agent to obtaining the liquid crystal display element is disclosed in, for example, paragraph 17 of page 17 to paragraph 0081 of page 19 of JP-A-2015-135393.
  • a lateral electric field drive type liquid crystal display element can be obtained.
  • the second substrate instead of using a substrate having no lateral electric field driving conductive film instead of a substrate having a lateral electric field driving conductive film, the above steps [I] to [III] (for lateral electric field driving) Since a substrate having no conductive film is used, for the sake of convenience, in this application, the steps [I ′] to [III ′] may be abbreviated as steps), thereby providing a first liquid crystal alignment film having alignment controllability. Two substrates can be obtained.
  • the manufacturing method of the horizontal electric field drive type liquid crystal display element is: [IV] A step of obtaining a liquid crystal display element by arranging the first and second substrates obtained above so that the liquid crystal alignment films of the first and second substrates face each other with liquid crystal interposed therebetween; Have Thereby, a horizontal electric field drive type liquid crystal display element can be obtained.
  • step [I] a polymer composition containing a photosensitive main chain polymer and an organic solvent is applied to a substrate having a conductive film for driving a lateral electric field, and then dried to form a coating film.
  • the photosensitive main chain polymer in the present invention is the specific polymer (A).
  • ⁇ Board> Although it does not specifically limit about a board
  • the substrate has a conductive film for driving a lateral electric field.
  • the conductive film include, but are not limited to, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) when the liquid crystal display element is a transmission type.
  • examples of the conductive film include a material that reflects light such as aluminum, but are not limited thereto.
  • a method for forming a conductive film on a substrate a conventionally known method can be used.
  • the method for applying the polymer composition described above onto a substrate having a conductive film for driving a lateral electric field is not particularly limited.
  • the application method is generally performed by screen printing, offset printing, flexographic printing, an inkjet method, or the like.
  • other coating methods there are a dip method, a roll coater method, a slit coater method, a spinner method (rotary coating method), a spray method, and the like, and these may be used depending on the purpose.
  • the polymer composition After the polymer composition is applied on the substrate having the conductive film for driving the transverse electric field, it is 30 to 150 ° C., preferably 70 to 70 ° C. by a heating means such as a hot plate, a thermal circulation oven or an IR (infrared) oven.
  • the solvent can be evaporated at 110 ° C. to obtain a coating film. If the drying temperature is too low, the solvent tends to be insufficiently dried, and if the heating temperature is too high, thermal imidization proceeds, resulting in excessive photodegradation reaction due to polarized light exposure. In some cases, reorientation in one direction due to self-assembly becomes difficult, and orientation stability may be impaired.
  • the drying temperature at this time is preferably a temperature at which the thermal imidization of the specific polymer does not substantially proceed from the viewpoint of liquid crystal alignment stability. If the thickness of the coating film is too thick, it will be disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Therefore, it is preferably 5 nm to 300 nm, more preferably 10 nm to 150 nm. It is. In addition, it is also possible to provide the process of cooling the board
  • step [II] the coating film obtained in step [I] is irradiated with polarized ultraviolet rays.
  • the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • ultraviolet rays to be used ultraviolet rays having a wavelength in the range of 100 nm to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of coating film to be used.
  • ultraviolet light having a wavelength in the range of 240 nm to 400 nm can be selected and used so that a photodegradation reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp or a metal halide lamp can be used.
  • the irradiation amount of polarized ultraviolet rays depends on the coating film used.
  • the amount of irradiation is polarized ultraviolet light that realizes the maximum value of ⁇ A (hereinafter also referred to as ⁇ Amax), which is the difference between the ultraviolet light absorbance in a direction parallel to the polarization direction of polarized ultraviolet light and the ultraviolet light absorbance in a direction perpendicular to the polarization direction of the polarized ultraviolet light.
  • the amount is preferably in the range of 1% to 70%, more preferably in the range of 1% to 50%.
  • step [III] the ultraviolet-irradiated coating film polarized in step [II] is heated.
  • An orientation control ability can be imparted to the coating film by heating.
  • a heating means such as a hot plate, a heat circulation type oven, or an IR (infrared) type oven can be used.
  • the heating temperature can be determined in consideration of the temperature at which good liquid crystal alignment stability and electrical characteristics are exhibited in the coating film used.
  • the heating temperature is preferably within a temperature range in which the main chain polymer exhibits good liquid crystal alignment stability. If the heating temperature is too low, the anisotropy effect due to heat and thermal imidization tend to be insufficient, and if the heating temperature is too high, the anisotropy imparted by polarized light exposure In this case, it may be difficult to reorient in one direction due to self-organization.
  • the thickness of the coating film formed after heating is preferably 5 nm to 300 nm, more preferably 50 nm to 150 nm, for the same reason described in the step [I].
  • the production method of the present invention can realize highly efficient introduction of anisotropy into the coating film. And a board
  • the step [IV] is performed in the same manner as in the above [I ′] to [III ′], similarly to the substrate (first substrate) obtained in [III] and having the liquid crystal alignment film on the conductive film for lateral electric field driving.
  • the obtained liquid crystal alignment film-attached substrate (second substrate) having no conductive film is placed oppositely so that both liquid crystal alignment films face each other through liquid crystal, and a liquid crystal cell is formed by a known method.
  • This is a step of manufacturing a lateral electric field drive type liquid crystal display element.
  • a substrate having no lateral electric field driving conductive film was used in place of the substrate having the lateral electric field driving conductive film in the step [I].
  • steps [I] to [III] It can be carried out in the same manner as in steps [I] to [III]. Since the difference between the steps [I] to [III] and the steps [I ′] to [III ′] is only the presence or absence of the conductive film, the description of the steps [I ′] to [III ′] is omitted. To do.
  • the first and second substrates described above are prepared, spacers are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and the liquid crystal is injected under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed.
  • Etc. can be illustrated.
  • the diameter of the spacer at this time is preferably 1 ⁇ m to 30 ⁇ m, more preferably 2 ⁇ m to 10 ⁇ m. This spacer diameter determines the distance between the pair of substrates that sandwich the liquid crystal layer, that is, the thickness of the liquid crystal layer.
  • substrate with a coating film of this invention irradiates the polarized ultraviolet-ray, after apply
  • high-efficiency anisotropy is introduced into the main chain polymer film, and a substrate with a liquid crystal alignment film having a liquid crystal alignment control ability is manufactured.
  • the coating film used in the present invention the introduction of highly efficient anisotropy into the coating film is realized by utilizing the principle of molecular reorientation induced by self-assembly based on the photoreaction of the main chain.
  • the main chain type polymer has a photodegradable group as a photoreactive group
  • a liquid crystal display element is formed.
  • the coating film used in the method of the present invention is a liquid crystal alignment film having anisotropy introduced with high efficiency and excellent alignment control ability by sequentially performing irradiation of polarized ultraviolet rays on the coating film and heat treatment. can do.
  • the irradiation amount of polarized ultraviolet rays to the coating film and the heating temperature in the heat treatment are optimized. Thereby, introduction of anisotropy into the coating film with high efficiency can be realized.
  • the optimal irradiation amount of polarized ultraviolet light for introducing highly efficient anisotropy into the coating film used in the present invention is the irradiation amount of polarized ultraviolet light that optimizes the amount of photodegradation reaction of the photosensitive group in the coating film.
  • the amount of photoreaction is not sufficient. In that case, sufficient self-organization does not proceed even after heating.
  • the optimum amount of the photolytic reaction of the photosensitive group by irradiation with polarized ultraviolet light is preferably 0.1 to 90 mol% of the polymer film. More preferably, it is 1 mol% to 80 mol%.
  • the amount of photodecomposition reaction of the photosensitive group in the main chain of the polymer film is optimized by optimizing the irradiation amount of polarized ultraviolet rays. Then, in combination with the subsequent heat treatment, highly efficient introduction of anisotropy into the coating film used in the present invention is realized. In that case, a suitable amount of polarized ultraviolet rays can be determined based on the evaluation of ultraviolet absorption of the coating film used in the present invention.
  • the ultraviolet absorption in the direction parallel to the polarization direction of the polarized ultraviolet ray and the ultraviolet absorption in the vertical direction after the irradiation with the polarized ultraviolet ray are measured.
  • ⁇ A which is the difference between the ultraviolet absorbance in the direction parallel to the polarization direction of polarized ultraviolet rays and the ultraviolet absorbance in the direction perpendicular to the polarization direction of the polarized ultraviolet rays.
  • the maximum value of ⁇ A ( ⁇ Amax) realized in the coating film used in the present invention and the irradiation amount of polarized ultraviolet light that realizes it are obtained.
  • a preferable amount of polarized ultraviolet rays to be irradiated in the production of the liquid crystal alignment film can be determined on the basis of the amount of polarized ultraviolet rays to realize this ⁇ Amax.
  • the above-described main chain type polymer provides liquid crystal alignment stability as a reference, as described above.
  • a suitable heating temperature should be determined. Therefore, for example, the temperature range in which the main chain polymer used in the present invention provides liquid crystal alignment stability is determined in consideration of the temperature at which good liquid crystal alignment stability and electrical characteristics are exhibited in the coating film used. And can be set in a temperature range according to a liquid crystal alignment film made of a conventional polyimide or the like. That is, the heating temperature after irradiation with polarized ultraviolet rays is preferably 150 ° C. to 300 ° C., more preferably 180 ° C. to 250 ° C. By doing so, greater anisotropy is imparted to the coating film used in the present invention.
  • the liquid crystal display element provided by the present invention exhibits high reliability against external stresses such as light and heat.
  • the lateral electric field drive type liquid crystal display element substrate manufactured using the polymer of the present invention or the lateral electric field drive type liquid crystal display element having the substrate has excellent reliability and a large screen. And can be suitably used for high-definition liquid crystal televisions.
  • the liquid crystal alignment film manufactured by the method of the present invention has excellent liquid crystal alignment stability and reliability, it can be used for a variable phase shifter using liquid crystal. For example, it can be suitably used for an antenna that can vary the resonance frequency.
  • the viscosity of the polymer solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24), temperature 25 Measured at ° C.
  • Example 1 In a 50 mL Erlenmeyer flask containing a stir bar, 4.03 g of the polyimide solution (PAA-1) obtained in Synthesis Example 1 and 6.05 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 were weighed. The mixture was stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-1).
  • Example 2 In a 50 mL Erlenmeyer flask containing a stir bar, 4.01 g of the polyimide solution (PAA-1) obtained in Synthesis Example 1 and 6.02 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 were weighed. The mixture was stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-2).
  • Example 3 In a 50 mL Erlenmeyer flask containing a stir bar, 4.04 g of the polyimide solution (PAA-1) obtained in Synthesis Example 1 and 6.07 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 were weighed. The mixture was stirred for 2 hours with a magnetic stirrer to obtain a liquid crystal aligning agent (A-3).
  • Example 4 In a 50 mL Erlenmeyer flask containing a stir bar, 4.03 g of the polyimide solution (PAA-1) obtained in Synthesis Example 1 and 6.04 g of the polyamic acid solution (PAA-5) obtained in Synthesis Example 5 were weighed. The resultant was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-4).
  • a method for manufacturing a liquid crystal cell for evaluation of liquid crystal orientation and relaxation characteristics of stored charge is described below.
  • a liquid crystal cell having a configuration of an FFS liquid crystal display element was manufactured.
  • a substrate with electrodes was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • an IZO electrode constituting the counter electrode as the first layer was formed on the entire surface.
  • a SiN (silicon nitride) film formed by the CVD method was formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film is arranged as a third layer, and two pixels, a first pixel and a second pixel, are formed. .
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer is a comb tooth formed by arranging a plurality of U-shaped electrode elements whose central portion is bent, as in the figure described in Japanese Patent Application Laid-Open No. 2014-77845 (Japan Published Patent Publication). It has a shape. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements having a bent central portion, the shape of each pixel is not rectangular but bent at the central portion in the same manner as the electrode elements. It has a shape that is similar to a bold, Kumon character. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the direction of a line segment projected onto the substrate with the polarization plane of polarized ultraviolet rays to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode forms an angle of + 10 ° (clockwise). In the second region of the pixel, the electrode element of the pixel electrode is formed at an angle of ⁇ 10 ° (clockwise).
  • the direction of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode in the substrate plane is It comprised so that it might become a mutually reverse direction.
  • liquid crystal aligning agents obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were filtered through a 1.0 ⁇ m filter, and then applied to the prepared substrate with electrodes by spin coating. Subsequently, it was dried for 90 seconds on a hot plate set to 70 ° C. Next, using an exposure apparatus manufactured by Ushio Electric Co., Ltd .: APL-L050121S1S-APW01, the substrate was irradiated with linearly polarized ultraviolet light from a vertical direction through a wavelength selection filter and a polarizing plate.
  • the direction of the polarization plane was set so that the direction of the line segment obtained by projecting the polarization plane of polarized ultraviolet rays onto the substrate was inclined by 10 ° with respect to the third-layer IZO comb-teeth electrode. Subsequently, baking was performed for 30 minutes in an IR (infrared) oven set at 230 ° C., and a substrate with a polyimide liquid crystal alignment film having a film thickness of 100 nm subjected to alignment treatment was obtained.
  • IR infrared
  • substrate with a polyimide liquid crystal aligning film by which the alignment process was performed similarly to the above was also obtained for the glass substrate which has the columnar spacer of 4 micrometers in height with the ITO electrode formed in the back surface as a counter substrate.
  • a set of these two substrates with a liquid crystal alignment film is used as one set, and a sealing agent is printed on the other substrate leaving a liquid crystal injection port.
  • the polarizing planes were bonded and pressure-bonded so that the line segments projected onto the substrate were parallel. Thereafter, the sealing agent was cured to produce an empty cell having a cell gap of 4 ⁇ m.
  • Liquid crystal MLC-7026-100 (negative liquid crystal manufactured by Merck & Co., Inc.) was injected into the empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 120 ° C. for 30 minutes and allowed to stand overnight at 23 ° C., and then used for evaluation of liquid crystal alignment properties and relaxation characteristics of accumulated charges.
  • the liquid crystal cell After leaving, the liquid crystal cell is placed between two polarizing plates arranged so that the polarization axes are orthogonal, and the backlight is turned on with no voltage applied so that the brightness of the transmitted light is minimized.
  • the arrangement angle of the liquid crystal cell was adjusted. Then, the rotation angle when the liquid crystal cell was rotated from the angle at which the second region of the first pixel became darkest to the angle at which the first region became darkest was calculated as an angle ⁇ .
  • the second area was compared with the first area, and a similar angle ⁇ was calculated. Then, the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell.
  • the value of the angle ⁇ of the liquid crystal cell was less than 1.0 °, it was defined as “good”, and when the value of the angle ⁇ was 1.0 ° or more, it was defined as “bad”.
  • the liquid crystal cell is placed between two polarizing plates arranged so that their polarization axes are orthogonal to each other, and the pixel electrode and the counter electrode are short-circuited to be at the same potential, and the LED is displayed from under the two polarizing plates.
  • the angle of the liquid crystal cell was adjusted so that the brightness of the LED backlight transmitted light measured on the two polarizing plates was minimized by irradiating the backlight.
  • the VT characteristics (voltage-transmittance characteristics) at a temperature of 23 ° C. are measured, and an AC voltage with a relative transmittance of 23% is measured. Calculated. Since this AC voltage corresponds to a region where the change in luminance with respect to the voltage is large, it is convenient for evaluating the accumulated charge via the luminance.
  • the accumulated charge relaxation characteristic is a state where the relative transmittance immediately after the DC voltage is superimposed is 30% or more. From the above, it was evaluated how much the relative transmittance after 30 minutes was lowered. That is, the evaluation was made by defining “good” when the relative transmittance 30 minutes after DC voltage superposition was lowered to less than 28%, and “bad” when the relative transmittance was 28% or more.
  • Liquid crystal for evaluation of liquid crystal alignment and relaxation characteristics of accumulated charge except that a glass substrate with ITO electrode was used and 4 ⁇ m bead spacers were dispersed on the liquid crystal alignment film surface on one substrate before printing the sealant.
  • a liquid crystal cell for measuring voltage holding ratio was produced in the same procedure as the production of the cell.
  • the voltage holding ratio was evaluated using the liquid crystal cell. Specifically, an alternating voltage of 2 VPP is applied to the liquid crystal cell obtained by the above method at a temperature of 70 ° C. for 60 ⁇ sec, the voltage after 167 milliseconds is measured, and how much the voltage is maintained. It was calculated as a voltage holding ratio (also referred to as VHR). The measurement was performed by using a voltage holding ratio measuring device (VHR-1, manufactured by Toyo Technica Co., Ltd.) with settings of Voltage: ⁇ 1 V, Pulse Width: 60 ⁇ s, and Frame Period: 167 ms. When the value of the voltage holding ratio of the liquid crystal cell was 95% or more, it was defined as “good”, and when the value of the voltage holding ratio was less than 95%, it was defined as “bad”.
  • VHR-1 voltage holding ratio measuring device
  • Example 5 Using the liquid crystal aligning agent (A-1) obtained in Example 1, two types of liquid crystal cells were produced as described above. Irradiation with polarized ultraviolet rays was performed using a high pressure mercury lamp through a wavelength selection filter: 240LCF and a 254 nm type polarizing plate. The irradiation amount of polarized ultraviolet rays is measured by measuring the amount of light using an illuminometer UVD-S254SB manufactured by Ushio Electric Co., Ltd., and changing the wavelength in the range of 600 to 1800 mJ / cm 2. Three or more liquid crystal cells having different amounts were prepared.
  • the polarized UV irradiation dose with the best angle ⁇ was 1500 mJ / cm 2 , and the angle ⁇ was 0.56 °, which was good.
  • the accumulated charge relaxation characteristics of the same polarized UV irradiation dose evaluated in advance before the evaluation of the liquid crystal orientation were good with a relative transmittance of 26.0% after 30 minutes of DC voltage superposition. .
  • the voltage holding rate was 96.8%, and was favorable.
  • Table 1 shows the results of the evaluation of the polarized ultraviolet ray irradiation amount and the liquid crystal alignment, which had the best angle ⁇ , when the liquid crystal aligning agents obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were used. The result of evaluation of relaxation characteristics and the result of evaluation of voltage holding ratio are shown.
  • the angle ⁇ which is the difference between the orientation azimuth angles before and after the AC drive, is good when it is less than 1.0 °, and at the same time, the DC voltage showing the relaxation characteristics of the accumulated charges.
  • the relative transmittance after 30 minutes of superimposition is good at less than 28.0%, the voltage holding ratio is 95% or more, showing good characteristics, and all have good afterimage characteristics. Excellent improvement.
  • Comparative Examples 4 to 6 the angle ⁇ , the relative transmittance 30 minutes after DC voltage superposition, and the voltage holding ratio were not all good. As described above, it was confirmed that the liquid crystal display device manufactured by the method of the present invention exhibits very excellent afterimage characteristics.
  • a substrate for a horizontal electric field drive type liquid crystal display element manufactured using the composition of the present invention or a horizontal electric field drive type liquid crystal display element having the substrate has excellent reliability, and has a large screen and a high definition liquid crystal television. It can utilize suitably for.
  • the liquid crystal alignment film manufactured by the method of the present invention has excellent liquid crystal alignment stability and reliability, it can be used for a variable phase shifter using liquid crystal. For example, it can be suitably used for an antenna that can vary the resonance frequency.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

本発明は、テトラカルボン酸二無水物成分と下記式(1)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(A)と、テトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(B)とを含む液晶配向剤に関する。本発明によれば、電圧保持率に優れ、蓄積電荷の緩和が早く、液晶配向の安定性が良好な液晶配向膜が得られる液晶配向剤、液晶配向膜、及び液晶表示素子を提供することができる。 式(1)中、Xは-(CH2)n-を表し、nは8または9の自然数である。 式(2)中、Y1はアミノ基等を有する2価の有機基であり、B1、B2はそれぞれ独立して水素原子等である。

Description

液晶配向剤、液晶配向膜及び液晶表示素子
 本発明は、新規な液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。
 液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。
 横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、電圧保持率が低いと液晶に十分な電圧がかからず表示コントラストが低下する。また、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラスト低下や残像の原因となるため、液晶配向の安定性が重要である。更に、静電気が液晶セル内に蓄積されやすく、駆動によって生じる正負非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶素子の表示品位を著しく低下させる。また、駆動直後にバックライト光が液晶セルに照射されることによっても電荷が蓄積され、短時間の駆動でも残像が発生する、駆動中にフリッカー(ちらつき)の大きさが変化する等の問題を生じてしまう。
 このような横電界方式の液晶表示素子に用いた際、電圧保持率に優れ、かつ電荷蓄積を低減した液晶配向剤として、特許文献1には、特定ジアミンと脂肪族テトラカルボン酸誘導体とを含有する液晶配向剤が開示されている。また、残像が消えるまでの時間を短くする方法としては、特許文献2のような体積抵抗率の低い配向膜や、特許文献3のような、体積抵抗率が液晶表示素子のバックライトによっても変化しにくい配向膜を使用する方法が提案されている。しかし、液晶表示素子の高性能化に伴い、液晶配向膜に要求される特性も厳しくなってきており、これらの従来の技術では全ての要求特性を十分に満足することは難しい。
国際公開公報WO2004/021076号パンフレット 国際公開公報WO2004/053583号パンフレット 国際公開公報WO2013/008822号パンフレット
 本発明は、電圧保持率に優れ、蓄積電荷の緩和が早く、液晶配向の安定性が良好な液晶配向膜を得ることができる液晶配向剤、液晶配向膜、及び液晶表示素子を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造を導入することで種々の特性が同時に改善されることを見出し、本発明を完成した。本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
<1> テトラカルボン酸二無水物成分と下記式(1)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(A)と、
 テトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(B)と
を含む、液晶配向剤。
Figure JPOXMLDOC01-appb-C000005
 
Figure JPOXMLDOC01-appb-C000006
 
 式(1)中、Xは-(CH)n-を表し、nは-(CH)-の個数を表す8または9の自然数であり、任意の-(CH)-はそれぞれ独立に、-O-、-S-、-COO-、-OCO-、-CONH-及び-NHCO-から選ばれる基に、これらの基が隣り合わない条件で置き換わっていてもよく、R及びRはそれぞれ独立に1価の有機基であり、p1及びp2はそれぞれ独立に0~4の整数である。
 式(2)中、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B、Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
<2> 式(2)中のYが、下記式(YD-1)~(YD-5)の構造から選ばれる少なくとも1種類である、前記<1>の液晶配向剤。
Figure JPOXMLDOC01-appb-C000007
 
 (式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレン又は窒素原子含有複素環を含む炭素数12~18の2価の有機基であり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。)
<3> 式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA、A、A、及びAが、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン、及びカルバゾールからなる群から選ばれる少なくとも1種類である、前記<1>または<2>の液晶配向剤。
<4> 式(2)におけるYが、下記式(YD-6)~(YD-22)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、前記<1>~<3>のいずれかの液晶配向剤。
Figure JPOXMLDOC01-appb-C000008
 
 (式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)及び(YD-22)中、jは0から3の整数である。)
<5> 式(2)におけるYが、上記記式(YD-14)、(YD-18)、(YD-21)及び(YD-22)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類であることを特徴とする、前記<1>~<4>のいずれかの液晶配向剤。
<6> 前記<1>~<5>のいずれかの液晶配向剤を塗布、焼成して得られる、液晶配向膜。
<7> 前記<6>の液晶配向膜を具備する、液晶表示素子。
 本発明の液晶配向剤を用いることにより、電圧保持率に優れ、蓄積電荷の緩和が早く、液晶配向の安定性が良好な液晶配向膜、及び表示特性に優れた液晶表示素子が提供される。
 本願発明により何故に上記の課題を解決できるかは定かではないが、概ね次のように考えられる。
 本発明の液晶配向剤に含有される重合体の有する上記(2)の構造は、共役構造を有する。これにより、例えば液晶配向膜中において、電荷の移動を促進させることができ、蓄積電荷の緩和を促進させることができる。
 本発明の液晶配向剤は、液晶配向膜を形成するのに用いる組成物であり、上記式(1)で表されるジアミンから得られる特定重合体(A)と、上記式(2)の構造を有するジアミンから得られる特定重合体(B)とを含む液晶配向剤とを含有することを特徴とする。
 すなわち、換言すると、本発明は、前記特性重合体(A)と、前記特定重合体(B)都を含む、液晶配向性の重合体組成物に関する。
 特定重合体(A)と特定重合体(B)の含有量は、特定重合体(A)と特定重合体(B)の合計量に対して、特定重合体(A)が5~90重量%であり、より好ましくは10~50重量%である。即ち、特定重合体(A)と特定重合体(B)の合計量に対して、特定重合体(B)は95~10重量%であり、より好ましくは90~50重量%である。特定重合体(A)が少なすぎると、液晶配向の安定性が悪化し、特定重合体(B)が少なすぎると、蓄積電荷の緩和特性が悪化する。本発明の液晶配向剤に含有される特定重合体(A)と特定重合体(B)は、それぞれ1種類であっても、2種類以上であっても良い。
<(A)成分の重合体>
 本発明の重合体は、上記式(1)で表されるジアミンを含むジアミン成分と、テトラカルボン酸二無水物を含む酸二無水物成分から得られる重合体である。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられるが、液晶配向剤としての使用の観点から、下記式(3)で表される構造単位を含むポリイミド前駆体、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種であると好ましい。偏光照射の後の加熱工程において、重合体中に自由回転部位が多い事でより高秩序に再配向するという点で、ポリイミド前駆体がより好ましい。
Figure JPOXMLDOC01-appb-C000009
 
 上記式(3)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Y11は式(1)のジアミンに由来する2価の有機基であり、R11は水素原子又は炭素数1~5のアルキル基である。R11は、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましく、水素原子がより好ましい。
 <特定構造を有するジアミン>
 本発明の液晶配向剤は、テトラカルボン酸二無水物成分と下記式(1)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(A)と、テトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(B)と有機溶剤とを含有する液晶配向剤である。
Figure JPOXMLDOC01-appb-C000010
 
 (式(1)中、Xは-(CH)n-を表し、nは-(CH)-の個数を表す8または9の自然数であり、任意の-(CH)-はそれぞれ独立に、-O-、-S-、-COO-、-OCO-、-CONH-及び-NHCO-から選ばれる基に、これらの基が隣り合わない条件で置き換わっていてもよく、R及びRはそれぞれ独立に1価の有機基であり、p1及びp2はそれぞれ独立に0~4の整数である。)
 ここにおける1価の有機基としては、炭素数が1~10、好ましくは1~3を有する、アルキル基、アルケニル基、アルコキシ基、フルオロアルキル基、フルオロアルケニル基、若しくはフルオロアルコキシ基が挙げられる。なかでも、1価の有機基としては、メチル基が好ましい。
 また、Xの原子数のうち、主鎖の長さに関与する炭素原子と酸素原子と硫黄原子と窒素原子の原子数の合計が偶数である場合、得られる重合体の直線性が高くなる結果、ラビング後または偏光紫外線照射の後の加熱工程において、より高秩序に再配向することで、高い配向制御能が付与された液晶配向膜を得ることができるため好ましい。なお、主鎖の長さに関与する炭素原子と酸素原子と硫黄原子と窒素原子の原子数の合計とは、主鎖のメチレン1つあたりの数を1、エーテル結合1つあたりの数を1、スルフィド結合1つあたりの数を1、エステル結合1つあたりの数を2、アミド結合1つあたりの数を2とした場合の合計のことである。
 Xにおける任意の-(CH)-は、水素結合力が弱い方が、より高秩序に再配向するという点で、-O-、-S-、-COO-、-OCO-のいずれかに置き換わるのが好ましく、-O-が特に好ましい。
p1およびp2としては、立体障害が少ないことでフェニル基同士が重なり易く、より高秩序に再配向するという点で0が好ましい。
 上記式(1)のジアミンの-(CH)n-において、nが8以上である場合、重合体(B)とブレンドした液晶配向剤を基板上に塗付した場合、配向規制力の高い重合体(A)が上層、すなわち、基板側ではない界面への移行性が高く、従って、配向性の向上に寄与する。また、nが10以上の場合、重合体(A)そのものの配向規制力が大きく低下する。したがって、nが8または9でないと、本発明の効果が得られない。これらジアミンの具体例としては以下が例示出来るが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000011
 
Figure JPOXMLDOC01-appb-C000012
 
 ここで、上記式においてrが6であるか、tが2または4の場合、得られる重合体の直線性が高くなる結果、偏光照射の後の加熱工程において、より高秩序に再配向することで、高い配向制御能が付与された液晶配向膜を得ることができる。
 <テトラカルボン酸二無水物>
 Xはテトラカルボン酸誘導体に由来する4価の有機基であり、その構造は特に限定されるものではない。また、ポリイミド前駆体中のXは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Xの具体例をあえて示すならば、国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
 以下に、好ましいXの構造を示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000013
 
 これらのうち、光反応性、液晶の配向性及び電圧保持率の観点から、(A-1)(A-2)が好ましい。
 <重合体(その他の構造単位)>
 式(3)で表される構造単位を含むポリイミド前駆体は、本発明の効果を損なわない範囲において、下記式(4)で表される構造単位、及びそのイミド化物であるポリイミドから選ばれる少なくとも1種を含んでいても良い。
Figure JPOXMLDOC01-appb-C000014
 
 式(4)において、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Y12はジアミンに由来する2価の有機基であり、R12は、前記式(3)のR11の定義と同じであり、R22は水素原子又は炭素数1~4のアルキル基を表す。また、2つあるR22の少なくとも一方は水素原子であることが好ましい。
 Xとしては、上記国際公開公報2015/119168の13項~14項に掲載される、式(X-1)~(X-46)の構造などが挙げられ、また、上記(A-1)~(A-21)の構造が挙げられる。
 Y12はジアミンに由来する二価の有機基であり、その構造は特に限定されない。また、Y12は重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に1種類であってもよく、2種類以上が混在していても良い。
 Y12の具体例をあえて示すならば、国際公開公報2015/119168の4項に掲載される式(2)の構造、及び、8項~12項に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6項に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8項に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8項に掲載される式(3)の構造;日本国公開特許公報2012-173514の8項に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9項に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
 好ましいY12の構造としては、下記式(5)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 
 式(5)中、R32は単結合又は2価の有機基であり、単結合が好ましい。
 R33は-(CH-で表される構造である。nは2~10の整数であり、3~7が好ましい。また、任意の-CH-はそれぞれ隣り合わない条件でエーテル、エステル、アミド、ウレア、カルバメート結合に置き換えられても良い。
 R34は単結合又は2価の有機基である。
 ベンゼン環上の任意の水素原子は1価の有機基で置き換えられても良く、フッ素原子又はメチル基が好ましい。
 式(5)で表される構造としては、具体的には以下のような構造が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
 
Figure JPOXMLDOC01-appb-C000018
 
 式(3)で表される構造単位を含むポリイミド前駆体が、式(4)で表される構造単位を同時に含む場合、式(3)で表される構造単位は、式(3)と式(4)の合計に対して30モル%~100モル%であることが好ましく、より好ましくは50モル%~100モル%であり、特に好ましくは70モル%~100モル%である。
<(B)成分の重合体>
 本発明の液晶配向剤に用いられる(B)成分はテトラカルボン酸二無水物成分と上記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体である。
 <テトラカルボン酸二無水物成分>
 本発明の(B)成分の製造に用いられるテトラカルボン酸二無水物としては、下記式(6)で表されるテトラカルボン酸二無水物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
 
 式中、Xとしては、(A)成分のところで記載した前記(A-1)~(A-21)から選ばれる構造が挙げられる。また、(B)成分の製造において、用いるテトラカルボン酸二無水物成分は1種類でも、2種類以上でもよい。
 <ジアミン成分>
 本発明の液晶配向剤の製造に用いられるジアミン成分は、上記式(2)のジアミンを含有する。式(2)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、B及びBとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 式(2)におけるYの構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有していれば、その構造は特に限定されるものではない。あえて、その具体例を挙げるとするならば、下記式(YD-1)~(YD-5)で表されるアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 
 式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。
 式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。
 式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレン又は窒素原子含有複素環を含む炭素数12~18の2価の有機基であり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。
式 (YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。
 式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。
 式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)のA、A、A、及びAの炭素数3~15の窒素原子含有複素環としては、公知の構造であれば、特に限定されるものではない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン、カルバゾールが挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、ピロール、及びピリジンがより好ましい。
 さらに、式(2)におけるYの具体例としては、下記式(YD-6)~(YD-43)で表される窒素原子を有する2価の有機基が挙げられ、交流駆動による電荷蓄積を抑制して、かつ蓄積電荷の緩和を早くできることから、式(YD-14)、(YD-18)、(YD-19)、(YD-20)、(YD-21)、(YD-23)~(YD-30)及び(YD-40)~(YD-43)がより好ましく、(YD-14)、(YD-18)、(YD-23)、(YD-25)及び(YD-40)~(YD-43)が特に好ましい。
Figure JPOXMLDOC01-appb-C000021
 
 式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)及び(YD-22)中、jは0から3の整数である。
Figure JPOXMLDOC01-appb-C000022
 
 式(YD-25)、(YD-26)、(YD-29)及び(YD-30)中、jは0から3の整数である。
Figure JPOXMLDOC01-appb-C000023
 
 式(YD-41)、(YD-42)及び(YD-43)中、jは0から3の整数である。
 本発明のポリアミック酸及びポリアミック酸のイミド化重合体における式(2)で表されるジアミンの割合は、全ジアミン1モルに対して、10~100モル%であることが好ましく、より好ましくは30~100モル%、さらに好ましくは50~100モル%である。
 本発明の(B)成分であるポリアミック酸及びポリアミック酸のイミド化重合体における式(2)で表されるジアミンは、単独で用いても、複数を併用してもよいが、その場合も、式(2)で表されるジアミンは、合計として上記の好ましい量を用いることが好ましい。
 本発明の液晶配向剤に含有される(B)成分であるポリアミック酸及びポリアミック酸のイミド化重合体は、上記式(2)で表されるジアミン以外に、下記式(7)で表されるジアミンを用いてもよい。下記式(7)におけるYは、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。あえて、その具体例を示すならば、下記の(Y-1)~(Y-75)が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
 本発明の液晶配向剤に含有される(B)成分であるポリアミック酸及びポリアミック酸のイミド化重合体において、式(7)で表されるジアミンの割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(7)で表されるジアミンの割合は、全ジアミン1モルに対して、0~90モル%が好ましく、より好ましくは0~50モル%、さらに好ましくは0~20モル%である。
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸エステルを合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1- 
エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<ポリアミック酸の合成>
 特定重合体(A)又は特定重合体(B)を、テトラカルボン酸二無水物とジアミンとの反応により得る場合には、有機溶媒中でテトラカルボン酸二無水物とジアミンとを混合して反応させる方法が簡便である。
 上記反応の際に用いられる有機溶媒は、生成したポリアミック酸が溶解するものであれば特に限定されないが、あえてその具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン等を挙げることができる。これらは単独でも、また混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で混合させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物成分をそのまま、または有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、本発明においてはこれらのいずれの方法であっても良い。また、テトラカルボン酸二無水物成分またはジアミン成分が複数種の化合物からなる場合は、これら複数種の成分をあらかじめ混合した状態で反応させても良く、個別に順次反応させても良い。
 テトラカルボン酸二無水物成分とジアミン成分を有機溶剤中で反応させる際の温度は、通常0~150℃、好ましくは5~100℃、より好ましくは10~80℃である。温度が高い方が重合反応は早く終了するが、高すぎると高分子量の重合体が得られない場合がある。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、好ましくは1~50重量%、より好ましくは5~30重量%である。反応初期は高濃度で行い、その後、有機溶媒を追加しても構わない。
 ポリアミック酸の重合反応に用いるテトラカルボン酸二無水物成分とジアミン成分の比率は、モル比で1:0.8~1.2であることが好ましい。また、ジアミン成分を過剰にして得られたポリアミック酸は、溶液の着色が大きくなる場合があるので、溶液の着色が気になる場合は1:0.8~1とすれば良い。通常の重縮合反応と同様に、このモル比が1:1に近いほど得られるポリアミック酸の分子量は大きくなる。ポリアミック酸の分子量は、小さすぎるとそこから得られる塗膜の強度が不十分となる場合があり、逆にポリアミック酸の分子量が大きすぎると、そこから製造される液晶配向処理剤の粘度が高くなり過ぎて、塗膜形成時の作業性、塗膜の均一性が悪くなる場合がある。従って、本発明の液晶配向剤に用いるポリアミック酸は還元粘度(濃度0.5dl/g、NMP中30℃)で0.1~2.0が好ましく、より好ましくは0.2~1.5である。
 ポリアミック酸の重合に用いた溶媒を本発明の液晶配向剤中に含有させたくない場合や、反応溶液中に未反応のモノマー成分や不純物が存在する場合には、この沈殿回収および精製を行う。その方法は、ポリアミック酸溶液を攪拌している貧溶媒に投入し、沈殿回収することが好ましい。ポリアミック酸の沈殿回収に用いる貧溶媒としては特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼンなどが例示できる。貧溶媒に投入することにより沈殿したポリアミック酸は濾過・洗浄して回収した後、常圧あるいは減圧下で、常温あるいは加熱乾燥してパウダーとすることが出来る。このパウダーを更に良溶媒に溶解して、再沈殿する操作を2~10回繰り返すと、ポリアミック酸を精製することもできる。一度の沈殿回収操作では不純物が除ききれないときは、この精製工程を行うことが好ましい。この際の貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20℃~140℃、好ましくは0℃~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミック酸基の1~50モル倍、好ましくは3~30モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
 本発明に用いる(A)成分及び(B)成分であるポリイミド前駆体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
 本発明に用いる(A)成分及び(B)成分であるポリイミドとしては、前記のポリイミド前駆体を閉環させて得られるポリイミドが挙げられる。このポリイミドにおいては、アミド酸基の閉環率(イミド化率ともいう)は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
<液晶配向剤>
 本発明の液晶配向剤は、液晶配向膜を形成するのに用いる組成物であり、上記式(1)で表される構造を有する特定重合体(A)と、上記式(2)の構造を含有する特定重合体(B)とを含有するものであり、本発明の液晶配向剤に含有される特定重合体(A)と特定重合体(B)は、それぞれ1種類であっても、2種類以上であっても良い。また、特定重合体に加えて、その他の重合体、即ち式(1)で表される2価の基も、式(2)で表される2価の基も有さない重合体を含有していてもよい。当該その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレンまたはその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に占める特定重合体の割合は5質量%以上であることが好ましく、その一例として5~95質量%が挙げられる。
 液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
 また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
 例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒などを挙げることができる。
Figure JPOXMLDOC01-appb-C000029
 
 式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
 なかでも好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
 その他、本発明の液晶配向剤には、基板に対する塗膜の密着性を向上させるために、シランカップリング剤などの添加剤を加えてもよく、また、他の樹脂成分を添加してもよい。
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物やエポキシ基含有化合物が挙げられ、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
 また、本発明の液晶配向剤には、膜の機械的強度を上げるために以下のような添加物を添加してもよい。
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
 これらの添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。
<液晶配向膜>
 本発明の液晶配向膜は、前記液晶配向剤から得られるものである。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
 液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板とともに、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウェハなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
 液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
 液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。
 焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
 本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
<液晶表示素子>
 本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
 次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、さらに液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。
 または、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
 上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサを散布するか、シール材にスペーサを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。
 上記の液晶材料としては、ネマチック液晶及びスメクチック液晶を挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
 なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、特開2015-135393号公報)の17頁の段落0074~19頁の段落0081などに開示されている。
<液晶配向膜を有する基板の製造方法>及び<液晶表示素子の製造方法>
 本発明の液晶配向膜を有する基板の製造方法の一例として、横電界駆動型液晶表示素子用液晶配向膜の製造方法を以下に示す。
 [I] テトラカルボン酸二無水物成分と上記式(1)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(A)と、テトラカルボン酸二無水物成分と上記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(B)とを含む液晶配向剤を、横電界駆動用の導電膜を有する基板上に塗布したあと、乾燥して塗膜を形成する工程;
 [II] [I]で得られた塗膜に偏光した紫外線を照射する工程;及び
 [III] [II]で得られた塗膜を加熱する工程;
を有する。
 上記工程により、配向制御能が付与された横電界駆動型液晶表示素子用液晶配向膜を得ることができ、該液晶配向膜を有する基板を得ることができる。
 また、上記得られた基板(第1の基板)の他に、第2の基板を準備することにより、横電界駆動型液晶表示素子を得ることができる。
 第2の基板は、横電界駆動用の導電膜を有する基板に代わって、横電界駆動用の導電膜を有しない基板を用いる以外、上記工程[I]~[III](横電界駆動用の導電膜を有しない基板を用いるため、便宜上、本願において、工程[I’]~[III’]と略記する場合がある)を用いることにより、配向制御能が付与された液晶配向膜を有する第2の基板を得ることができる。
 横電界駆動型液晶表示素子の製造方法は、
 [IV] 上記で得られた第1及び第2の基板を、液晶を介して第1及び第2の基板の液晶配向膜が相対するように、対向配置して液晶表示素子を得る工程;
を有する。これにより横電界駆動型液晶表示素子を得ることができる。
 以下、本発明の製造方法の有する[I]~[III]、および[IV]の各工程について説明する。
<工程[I]>
 工程[I]では、横電界駆動用の導電膜を有する基板上に、感光性の主鎖型高分子及び有機溶媒を含有する重合体組成物を塗布したあと乾燥して塗膜を形成する。本発明における感光性の主鎖型高分子は、特定重合体(A)である。
<基板>
 基板については、特に限定はされないが、製造される液晶表示素子が透過型である場合、透明性の高い基板が用いられることが好ましい。その場合、特に限定はされず、ガラス基板、またはアクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができる。
 また、反射型の液晶表示素子への適用を考慮し、シリコンウェハなどの不透明な基板も使用できる。
 <横電界駆動用の導電膜>
 基板は、横電界駆動用の導電膜を有する。
 該導電膜として、液晶表示素子が透過型である場合、ITO(Indium Tin Oxide:酸化インジウムスズ)、IZO(Indium Zinc Oxide:酸化インジウム亜鉛)などを挙げることができるが、これらに限定されない。
 また、反射型の液晶表示素子の場合、導電膜として、アルミなどの光を反射する材料などを挙げることができるがこれらに限定されない。
 基板に導電膜を形成する方法は、従来公知の手法を用いることができる。
 上述した重合体組成物を横電界駆動用の導電膜を有する基板上に塗布する方法は特に限定されない。
 塗布方法は、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷またはインクジェット法などで行う方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法(回転塗布法)またはスプレー法などがあり、目的に応じてこれらを用いてもよい。
 横電界駆動用の導電膜を有する基板上に重合体組成物を塗布した後は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段により30~150℃、好ましくは70~110℃で溶媒を蒸発させて塗膜を得ることができる。乾燥温度が低すぎる場合、溶剤の乾燥が不十分となる傾向があり、また加熱温度が高すぎると、熱イミド化が進行する結果、偏光露光によって光分解反応が過剰に進行してしまい、この場合自己組織化による一方向への再配向が困難になり、配向安定性を損なうことがある。従って、このときの乾燥温度は、液晶配向安定性の観点から特定重合体の熱イミド化が実質的に進行しない温度であることが好ましい。
 塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5nm~300nm、より好ましくは10nm~150nmである。
 尚、[I]工程の後、続く[II]工程の前に塗膜の形成された基板を室温にまで冷却する工程を設けることも可能である。
<工程[II]>
 工程[II]では、工程[I]で得られた塗膜に偏光した紫外線を照射する。塗膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線としては、波長100nm~400nmの範囲の紫外線を使用することができる。好ましくは、使用する塗膜の種類によりフィルター等を介して最適な波長を選択する。そして、例えば、選択的に光分解反応を誘起できるように、波長240nm~400nmの範囲の紫外線を選択して使用することができる。紫外線としては、例えば、高圧水銀灯又はメタルハライドランプから放射される光を用いることができる。
 偏光した紫外線の照射量は、使用する塗膜に依存する。照射量は、該塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAの最大値(以下、ΔAmaxとも称する)を実現する偏光紫外線の量の1%~70%の範囲内とすることが好ましく、1%~50%の範囲内とすることがより好ましい。
<工程[III]>
 工程[III]では、工程[II]で偏光した紫外線の照射された塗膜を加熱する。加熱により、塗膜に配向制御能を付与することができる。
 加熱は、ホットプレート、熱循環型オーブンまたはIR(赤外線)型オーブンなどの加熱手段を用いることができる。加熱温度は、使用する塗膜で良好な液晶配向安定性及び電気特性を発現させる温度を考慮して決めることができる。
 加熱温度は、主鎖型高分子が良好な液晶配向安定性を発現する温度範囲内であることが好ましい。加熱温度が低すぎる場合、熱による異方性の増幅効果や熱イミド化が不十分となる傾向があり、また加熱温度が温度範囲よりも高すぎると、偏光露光によって付与された異方性が消失してしまう傾向があり、この場合自己組織化によって一方向に再配向することが困難になることがある。
 加熱後に形成される塗膜の厚みは、工程[I]で記した同じ理由から、好ましくは5nm~300nm、より好ましくは50nm~150nmであるのがよい。
 以上の工程を有することにより、本発明の製造方法では、高効率な、塗膜への異方性の導入を実現することができる。そして、高効率に液晶配向膜付基板を製造することができる。
<工程[IV]>
 [IV]工程は、[III]で得られた、横電界駆動用の導電膜上に液晶配向膜を有する基板(第1の基板)と、同様に上記[I’]~[III’]で得られた、導電膜を有しない液晶配向膜付基板(第2の基板)とを、液晶を介して、双方の液晶配向膜が相対するように対向配置して、公知の方法で液晶セルを作製し、横電界駆動型液晶表示素子を作製する工程である。なお、工程[I’]~[III’]は、工程[I]において、横電界駆動用の導電膜を有する基板の代わりに、該横電界駆動用導電膜を有しない基板を用いた以外、工程[I]~[III]と同様に行うことができる。工程[I]~[III]と工程[I’]~[III’]との相違点は、上述した導電膜の有無だけであるため、工程[I’]~[III’]の説明を省略する。
 液晶セル又は液晶表示素子の作製の一例を挙げるならば、上述の第1及び第2の基板を用意し、片方の基板の液晶配向膜上にスペーサを散布し、液晶配向膜面が内側になるようにして、もう片方の基板を貼り合わせ、液晶を減圧注入して封止する方法、または、スペーサを散布した液晶配向膜面に液晶を滴下した後に、基板を貼り合わせて封止を行う方法、等を例示することができる。このとき、片側の基板には横電界駆動用の櫛歯のような構造の電極を有する基板を用いることが好ましい。このときのスペーサの径は、好ましくは1μm~30μm、より好ましくは2μm~10μmである。このスペーサ径が、液晶層を挟持する一対の基板間距離、すなわち、液晶層の厚みを決めることになる。
 本発明の塗膜付基板の製造方法は、重合体組成物を基板上に塗布し塗膜を形成した後、偏光した紫外線を照射する。次いで、加熱を行うことにより主鎖型高分子膜への高効率な異方性の導入を実現し、液晶の配向制御能を備えた液晶配向膜付基板を製造する。
 本発明に用いる塗膜では、主鎖の光反応に基づく自己組織化によって誘起される分子再配向の原理を利用して、塗膜への高効率な異方性の導入を実現する。本発明の製造方法では、主鎖型高分子に光反応性基として光分解性基を有する構造の場合、主鎖型高分子を用いて基板上に塗膜を形成した後、偏光した紫外線を照射し、次いで、加熱を行った後、液晶表示素子を作成する。
 したがって、本発明の方法に用いる塗膜は、塗膜への偏光した紫外線の照射と加熱処理を順次行うことにより、高効率に異方性が導入され、配向制御能に優れた液晶配向膜とすることができる。
 そして、本発明の方法に用いる塗膜では、塗膜への偏光した紫外線の照射量と、加熱処理における加熱温度を最適化する。それにより高効率な、塗膜への異方性の導入を実現することができる。
 本発明に用いられる塗膜への高効率な異方性の導入に最適な偏光紫外線の照射量は、その塗膜において感光性基が光分解反応する量を最適にする偏光紫外線の照射量に対応する。本発明に用いられる塗膜に対して偏光した紫外線を照射した結果、光分解反応する感光性基が少ないと、十分な光反応量とならない。その場合、その後に加熱しても十分な自己組織化は進行しない。
 したがって、本発明に用いられる塗膜において、偏光紫外線の照射によって感光性基が光分解反応する最適な量は、その高分子膜の0.1モル%~90モル%にすることが好ましく、0.1モル%~80モル%にすることがより好ましい。光反応する感光性基の量をこのような範囲にすることにより、その後の加熱処理での自己組織化が効率良く進み、膜中での高効率な異方性の形成が可能となる。
 本発明の方法に用いる塗膜では、偏光した紫外線の照射量の最適化により、高分子膜の主鎖における、感光性基の光分解反応の量を最適化する。そして、その後の加熱処理と併せて、高効率な、本発明に用いられる塗膜への異方性の導入を実現する。その場合、好適な偏光紫外線の量については、本発明に用いられる塗膜の紫外吸収の評価に基づいて行うことが可能である。
 すなわち、本発明に用いられる塗膜について、偏光紫外線照射後の、偏光した紫外線の偏光方向と平行な方向の紫外線吸収と、垂直な方向の紫外線吸収とをそれぞれ測定する。紫外吸収の測定結果から、その塗膜における、偏光した紫外線の偏光方向と平行な方向の紫外線吸光度と垂直な方向の紫外線吸光度との差であるΔAを評価する。そして、本発明に用いられる塗膜において実現されるΔAの最大値(ΔAmax)とそれを実現する偏光紫外線の照射量を求める。本発明の製造方法では、このΔAmaxを実現する偏光紫外線照射量を基準として、液晶配向膜の製造において照射する、好ましい量の偏光した紫外線量を決めることができる。
 以上より、本発明の製造方法では、塗膜への高効率な異方性の導入を実現するため、その主鎖型高分子が液晶配向安定性を与える温度範囲を基準として、上述したような好適な加熱温度を定めるのがよい。したがって、例えば、本発明に用いられる主鎖型高分子が液晶配向安定性を与える温度範囲が、使用する塗膜で良好な液晶配向安定性及び電気特性を発現させる温度を考慮して決めることができ、従来のポリイミドなどからなる液晶配向膜に準じた温度範囲で設定できる。すなわち偏光紫外線照射後の加熱の温度は150℃~300℃とすることが好ましく、180℃~250℃とすることがより望ましい。こうすることにより、本発明に用いられる塗膜において、より大きな異方性が付与されることになる。
 こうすることにより、本発明によって提供される液晶表示素子は光や熱などの外部ストレスに対して高い信頼性を示すことになる。
 以上のようにして、本発明の重合体を用いて製造された横電界駆動型液晶表示素子用基板又は該基板を有する横電界駆動型液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。また、本発明の方法によって製造された液晶配向膜は、優れた液晶配向安定性と信頼性を有することから、液晶を用いた可変位相器にも利用することができ、この可変位相器は、例えば共振周波数を可変できるアンテナなどに好適に利用できる。
 以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
 なお、化合物、溶媒の略号は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
DA-1:下記構造式(DA-1)で表される化合物
DA-2:下記構造式(DA-2)で表される化合物
DA-3:下記構造式(DA-3)で表される化合物
DA-4:下記構造式(DA-4)で表される化合物
DA-5:下記構造式(DA-5)で表される化合物
DA-6:下記構造式(DA-6)で表される化合物
DA-7:下記構造式(DA-7)で表される化合物
DA-8:下記構造式(DA-8)で表される化合物
CA-1:下記構造式(CA-1)で表される化合物
CA-2:下記構造式(CA-2)で表される化合物
CA-3:下記構造式(CA-3)で表される化合物
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
<粘度の測定>
 合成例において、重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
<合成例1>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-1を3.91g(13.0mmol)量り取り、NMPを25.7g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を1.76g(8.97mmol)添加し、窒素雰囲気下23℃で3時間撹拌した後に、CA-2を0.81g(3.25mmol)添加し、さらにNMPを11.0g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は571mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに12.1g分取し、NMPを16.1g、およびBCSを12.1g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-1)を得た。
<合成例2>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-2を2.79g(14.0mmol)、DA-3を1.47g(6.00mmol)量り取り、NMPを50.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を5.59g(19.0mmol)添加し、さらにNMPを21.7g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は480mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに14.5g分取し、NMPを12.6g、およびBCSを11.6g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-2)を得た。
<合成例3>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-2を1.59g(8.00mmol)、DA-4を0.40g(2.00mmol)量り取り、NMPを24.0g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を1.81g(9.25mmol)添加し、さらにNMPを10.3g加え、窒素雰囲気下23℃で4時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は134mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに17.7g分取し、NMPを9.83g、およびBCSを11.8g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-3)を得た。
<合成例4>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-5を1.49g(7.00mmol)、DA-3を0.73g(3.00mmol)量り取り、NMPを25.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を2.80g(9.50mmol)添加し、さらにNMPを11.0g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は432mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに14.7g分取し、NMPを12.7g、およびBCSを11.8g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-4)を得た。
<合成例5>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-2を0.80g(4.0mmol)、DA-3を0.73g(3.00mmol)、DA-6を1.18g(3.00mmol)量り取り、NMPを28.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-3を2.80g(9.50mmol)添加し、さらにNMPを12.1g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は512mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに14.5g分取し、NMPを12.6g、およびBCSを11.6g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-5)を得た。
<比較合成例1>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-7を3.54g(13.0mmol)量り取り、NMPを24.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を1.76g(8.97mmol)添加し、窒素雰囲気下23℃で3時間撹拌した後に、CA-2を0.81g(3.25mmol)添加し、さらにNMPを10.4g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は627mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに11.9g分取し、NMPを15.9g、およびBCSを11.9g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-a)を得た。
<比較合成例2>
 撹拌装置及び窒素導入管付きの100mLの四つ口フラスコに、DA-8を4.27g(13.0mmol)量り取り、NMPを27.1g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を1.76g(8.97mmol)添加し、窒素雰囲気下23℃で3時間撹拌した後に、CA-2を0.81g(3.25mmol)添加し、さらにNMPを11.6g加え、窒素雰囲気下50℃で20時間撹拌してポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は483mPa・sであった。
 このポリアミック酸の溶液を撹拌子の入った100mL三角フラスコに12.2g分取し、NMPを16.3g、およびBCSを12.2g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(PAA-b)を得た。
<実施例1>
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリイミドの溶液(PAA-1)を4.03g、合成例2で得られたポリアミック酸溶液(PAA-2)を6.05g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。
<実施例2>
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリイミドの溶液(PAA-1)を4.01g、合成例3で得られたポリアミック酸溶液(PAA-3)を6.02g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
<実施例3>
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリイミドの溶液(PAA-1)を4.04g、合成例4で得られたポリアミック酸溶液(PAA-4)を6.07g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
<実施例4>
 撹拌子を入れた50mL三角フラスコに、合成例1で得られたポリイミドの溶液(PAA-1)を4.03g、合成例5で得られたポリアミック酸溶液(PAA-5)を6.04g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-4)を得た。
<比較例1>
 合成例1で得られたポリイミドの溶液(PAA-1)を液晶配向剤(B-1)とした。
<比較例2>
 撹拌子を入れた50mL三角フラスコに、比較合成例1で得られたポリイミドの溶液(PAA-a)を4.03g、合成例2で得られたポリアミック酸溶液(PAA-2)を6.05g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-2)を得た。
<比較例3>
 撹拌子を入れた50mL三角フラスコに、比較合成例2で得られたポリイミドの溶液(PAA-b)を4.00g、合成例2で得られたポリアミック酸溶液(PAA-2)を6.00g量り取り、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-3)を得た。
<液晶配向性、及び蓄積電荷の緩和特性評価用液晶セルの作製>
 以下に、液晶配向性、及び蓄積電荷の緩和特性を評価するための液晶セルの作製方法を示す。
 FFS方式の液晶表示素子の構成を備えた液晶セルを作製した。初めに、電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、IZO電極を全面に形成した。第1層目の対向電極の上には、第2層目として、CVD法により成膜したSiN(窒化珪素)膜を形成した。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、IZO膜をパターニングして形成した櫛歯状の画素電極を配置し、第1画素及び第2画素の2つの画素を形成した。各画素のサイズは、縦10mm、横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。
 第3層目の画素電極は、特開2014-77845(日本国公開特許公報)に記載の図と同様、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極を、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成したため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の、くの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する偏光紫外線の偏光面を基板に投影した線分の方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成し、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成した。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成した。
 次に、実施例1~4および比較例1~3で得られた液晶配向剤を、1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。次いで、70℃に設定したホットプレート上で90秒間乾燥させた。次いで、ウシオ電機(株)製露光装置:APL-L050121S1S-APW01を用いて、基板に対して鉛直方向から、波長選択フィルターおよび偏光板を介して紫外線の直線偏光を照射した。このとき、偏光紫外線の偏光面を基板に投影した線分の方向が、3層目IZO櫛歯電極に対して10°傾いた方向となるように偏光面方向を設定した。次いで、230℃に設定したIR(赤外線)型オーブンで30分間焼成を行い、配向処理が施された膜厚100nmのポリイミド液晶配向膜付き基板を得た。また、対向基板として、裏面にITO電極が形成されている、高さ4μmの柱状スペーサを有するガラス基板にも、上記と同様にして配向処理が施されたポリイミド液晶配向膜付き基板を得た。これら2枚の液晶配向膜付き基板を1組とし、片方の基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、偏光紫外線の偏光面を基板に投影した線分の方向が平行になるようにして張り合わせて圧着した。その後、シール剤を硬化させて、セルギャップが4μmの空セルを作製した。この空セルに減圧注入法によって、液晶MLC-7026-100(メルク社製ネガ液晶)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを120℃で30分間加熱し、23℃で一晩放置してから、液晶配向性及び蓄積電荷の緩和特性の評価に使用した。
<液晶配向性の評価>
 上記液晶セルを用い、70℃の恒温環境下、周波数30Hzで16VPPの交流電圧を96時間印加した。その後、液晶セルの画素電極と対向電極との間を短絡させた状態にし、そのまま23℃で一晩放置した。
 放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度Δとして算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度Δを算出した。そして、第1画素と第2画素の角度Δ値の平均値を液晶セルの角度Δとして算出した。この液晶セルの角度Δの値が1.0°未満の場合には「良好」、角度Δの値が1.0°以上の場合には「不良」と定義し評価した。
<蓄積電荷の緩和特性の評価>
 上記液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。
 次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV-T特性(電圧-透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。この交流電圧は電圧に対する輝度の変化が大きい領域に相当するため、輝度を介して蓄積電荷を評価するのに都合がよい。
 次に、23℃の温度下において相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、なおかつ周波数30Hzの矩形波のみを30分間印加した。
蓄積した電荷の緩和が速いほど、直流電圧を重畳したときの液晶セルへの電荷蓄積も速いことから、蓄積電荷の緩和特性は、直流電圧を重畳した直後の相対透過率が30%以上の状態から、30分後の相対透過率がどの程度まで低下したのかで評価した。すなわち、直流電圧重畳30分後の相対透過率が28%未満まで低下した場合には「良好」、相対透過率が28%以上だった場合には「不良」と定義して評価を行った。
<電圧保持率評価用液晶セルの作製>
 ITO電極付きガラス基板を用い、シール剤の印刷前に、片方の基板上の液晶配向膜面に4μmのビーズスペーサを散布したこと以外は、上記液晶配向性、及び蓄積電荷の緩和特性評価用液晶セルの作製と同じ手順で、電圧保持率測定用の液晶セルを作製した。
<電圧保持率の評価>
 上記液晶セルを用いて、電圧保持率の評価を行った。具体的には、上記の手法で得られた液晶セルに、70℃の温度下で2VPPの交流電圧を60μ秒間印加し、167ミリ秒後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(VHRともいう)として計算した。なお、測定は、電圧保持率測定装置(VHR-1、東陽テクニカ社製)を使用し、Voltage:±1V、Pulse Width:60μs、Flame Period:167msの設定で行った。この液晶セルの電圧保持率の値が95%以上の場合には「良好」、電圧保持率の値が95%未満の場合には「不良」と定義し評価した。
<実施例5>
 実施例1で得られた液晶配向剤(A-1)を用いて、上記記載のように2種類の液晶セルを作製した。偏光紫外線の照射は、高圧水銀灯を用いて、波長選択フィルター:240LCF、および254nmタイプの偏光板を介して行った。偏光紫外線の照射量は、ウシオ電機(株)製照度計UVD-S254SBを用いて光量を測定し、波長254nmで600~1800mJ/cmの範囲でそれぞれ変更して実施することにより、偏光紫外線照射量が異なる3個以上の液晶セルを作製した。
 これらの液晶セルについて、液晶配向性を評価した結果、角度Δが最良だった偏光紫外線照射量は1500mJ/cmであり、角度Δは0.56°であり良好であった。
 また、液晶配向性の評価の前に予め評価しておいた同じ偏光紫外線照射量の蓄積電荷の緩和特性は、直流電圧重畳30分後の相対透過率が26.0%であり良好であった。
 また、同じ偏光紫外線照射量で作製した液晶セルについて電圧保持率を評価した結果、電圧保持率は96.8%であり良好であった。
<実施例6~8>
 実施例2~4で得られた液晶配向剤を用いた以外は、実施例5と同様の方法で、液晶配向性、蓄積電荷の緩和特性、および電圧保持率を評価した。
<比較例4~6>
 比較例1~3で得られた液晶配向剤を用いた以外は、実施例5と同様の方法で、液晶配向性、蓄積電荷の緩和特性、および電圧保持率を評価した。
 表1に、実施例1~4および比較例1~3で得られた液晶配向剤を用いた際の、角度Δが最良だった偏光紫外線照射量、液晶配向性の評価の結果、蓄積電荷の緩和特性の評価の結果、および電圧保持率の評価の結果を示す。
Figure JPOXMLDOC01-appb-T000034
 
 表1に示すように、実施例5~8においては、交流駆動前後の配向方位角の差である角度Δは1.0°未満で良好であると同時に、蓄積電荷の緩和特性を示す直流電圧重畳30分後の相対透過率は28.0%未満で良好であり、電圧保持率も95%以上で良好な特性を示し、いずれも良好な残像特性であることから、液晶表示素子の表示品質向上に優れる。一方、比較例4~6においては、角度Δ、直流電圧重畳30分後の相対透過率、および電圧保持率の全てが良好な結果にはならなかった。
 このように本発明の方法によって製造された液晶表示素子は、非常に優れた残像特性を示すことが確認された。
 本発明の組成物を用いて製造された横電界駆動型液晶表示素子用基板又は該基板を有する横電界駆動型液晶表示素子は、信頼性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用できる。また、本発明の方法によって製造された液晶配向膜は、優れた液晶配向安定性と信頼性を有することから、液晶を用いた可変位相器にも利用することができ、この可変位相器は、例えば共振周波数を可変できるアンテナなどに好適に利用できる。
 


 

Claims (7)

  1.  テトラカルボン酸二無水物成分と下記式(1)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(A)と、
     テトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体(B)と
    を含む、液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
     
    Figure JPOXMLDOC01-appb-C000002
     
     式(1)中、Xは-(CH)n-を表し、nは-(CH)-の個数を表す8または9の自然数であり、任意の-(CH)-はそれぞれ独立に、-O-、-S-、-COO-、-OCO-、-CONH-及び-NHCO-から選ばれる基に、これらの基が隣り合わない条件で置き換わっていてもよく、R及びRはそれぞれ独立に1価の有機基であり、p1及びp2はそれぞれ独立に0~4の整数である。
     式(2)中、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B、Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
  2.  式(2)中のYが、下記式(YD-1)~(YD-5)の構造から選ばれる少なくとも1種類である、請求項1に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
     
     (式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレン又は窒素原子含有複素環を含む炭素数12~18の2価の有機基であり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである)。
  3.  式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA、A、A、及びAが、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン、及びカルバゾールからなる群から選ばれる少なくとも1種類である、請求項1または請求項2に記載の液晶配向剤。
  4.  式(2)におけるYが、下記式(YD-6)~(YD-22)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、請求項1~3のいずれか一項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000004
     
     (式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)及び(YD-22)中、jは0から3の整数である)。
  5.  式(2)におけるYが、上記記式(YD-14)、(YD-18)、(YD-21)及び(YD-22)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類であることを特徴とする、請求項1~4のいずれか一項に記載の液晶配向剤。
  6.  請求項1~5のいずれか一項に記載の液晶配向剤を用いて得られる、液晶配向膜。
  7.  請求項6に記載の液晶配向膜を具備する、液晶表示素子。
     


     
PCT/JP2018/006889 2017-02-27 2018-02-26 液晶配向剤、液晶配向膜及び液晶表示素子 WO2018155674A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197027959A KR102521136B1 (ko) 2017-02-27 2018-02-26 액정 배향제, 액정 배향막 및 액정 표시 소자
JP2019501856A JP7131538B2 (ja) 2017-02-27 2018-02-26 液晶配向剤、液晶配向膜及び液晶表示素子
CN201880026895.2A CN110546559B (zh) 2017-02-27 2018-02-26 液晶取向剂、液晶取向膜及液晶表示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-035100 2017-02-27
JP2017035100 2017-02-27

Publications (1)

Publication Number Publication Date
WO2018155674A1 true WO2018155674A1 (ja) 2018-08-30

Family

ID=63253997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006889 WO2018155674A1 (ja) 2017-02-27 2018-02-26 液晶配向剤、液晶配向膜及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP7131538B2 (ja)
KR (1) KR102521136B1 (ja)
CN (1) CN110546559B (ja)
TW (1) TWI772371B (ja)
WO (1) WO2018155674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014467A1 (ja) * 2020-07-17 2022-01-20 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
KR20230038513A (ko) * 2020-07-17 2023-03-20 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242526A (ja) * 2012-04-26 2013-12-05 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2017203980A (ja) * 2016-05-06 2017-11-16 Jnc株式会社 液晶表示素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101026662B1 (ko) 2002-08-29 2011-04-04 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제 및 그것을 사용한 액정 표시 소자
CN100394278C (zh) 2002-12-11 2008-06-11 日产化学工业株式会社 液晶定向剂及使用了该液晶定向剂的液晶显示元件
KR101610558B1 (ko) 2011-07-12 2016-04-07 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
JPWO2015050133A1 (ja) * 2013-10-01 2017-03-09 日産化学工業株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2015050135A1 (ja) * 2013-10-01 2015-04-09 日産化学工業株式会社 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
KR102275484B1 (ko) * 2013-10-23 2021-07-08 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
JP6716966B2 (ja) * 2015-03-11 2020-07-01 Jnc株式会社 液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013242526A (ja) * 2012-04-26 2013-12-05 Jnc Corp 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子
JP2017203980A (ja) * 2016-05-06 2017-11-16 Jnc株式会社 液晶表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11687002B2 (en) 2020-07-30 2023-06-27 Lg Chem, Ltd. Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device

Also Published As

Publication number Publication date
TW201840718A (zh) 2018-11-16
JPWO2018155674A1 (ja) 2019-12-19
JP7131538B2 (ja) 2022-09-06
CN110546559B (zh) 2022-04-12
KR20190117735A (ko) 2019-10-16
TWI772371B (zh) 2022-08-01
KR102521136B1 (ko) 2023-04-12
CN110546559A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
JP6852771B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP7107220B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013157586A1 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2020100918A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7099327B2 (ja) 液晶配向剤及び液晶配向膜の製造方法
WO2014084364A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP7131538B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2017126627A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2019044795A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018051956A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7351295B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP7243628B2 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2017217413A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018225811A1 (ja) 液晶配向剤、液晶配向膜および液晶表示素子
WO2018092759A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2020184373A1 (ja) 機能性高分子膜形成用塗布液及び機能性高分子膜
JP7089227B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2020166623A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2020171128A1 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JPWO2018066607A1 (ja) ジアミン、重合体、液晶配向剤、液晶配向膜及び液晶表示素子
JP7302744B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2021065934A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
WO2019181878A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2020218331A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18758468

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197027959

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18758468

Country of ref document: EP

Kind code of ref document: A1