WO2015050135A1 - 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 - Google Patents

横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2015050135A1
WO2015050135A1 PCT/JP2014/076156 JP2014076156W WO2015050135A1 WO 2015050135 A1 WO2015050135 A1 WO 2015050135A1 JP 2014076156 W JP2014076156 W JP 2014076156W WO 2015050135 A1 WO2015050135 A1 WO 2015050135A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
carbon atoms
aligning agent
Prior art date
Application number
PCT/JP2014/076156
Other languages
English (en)
French (fr)
Inventor
直樹 作本
加名子 鈴木
大輝 山極
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020167011017A priority Critical patent/KR102266365B1/ko
Priority to JP2015540509A priority patent/JP6558245B2/ja
Priority to CN201480054697.9A priority patent/CN105593754B/zh
Publication of WO2015050135A1 publication Critical patent/WO2015050135A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal aligning agent, a liquid crystal alignment film, and a liquid crystal display element using the liquid crystal aligning agent, which are used in a lateral electric field driving type liquid crystal display element driven by applying a parallel electric field to a substrate.
  • liquid crystal devices have been widely used as display units for personal computers, mobile phones, television receivers, and the like.
  • the liquid crystal device includes, for example, a liquid crystal layer sandwiched between an element substrate and a color filter substrate, a pixel electrode and a common electrode that apply an electric field to the liquid crystal layer, an alignment film that controls the alignment of liquid crystal molecules in the liquid crystal layer, and a pixel A thin film transistor (TFT) for switching an electric signal supplied to the electrode is provided.
  • TFT thin film transistor
  • Liquid crystal molecule driving methods include vertical electric field methods such as TN (TwistedTNematic) method and VA (Vertical Alignment) method, IPS (In-Place-Switching) method, and fringe field switching (hereinafter FFS) method.
  • An electric field method is known.
  • the lateral electric field method in which an electrode is formed only on one side of a substrate and an electric field is applied in a direction parallel to the substrate is compared with a conventional vertical electric field method in which a liquid crystal is driven by applying a voltage to electrodes formed on upper and lower substrates. It is known as a liquid crystal display element having a wide viewing angle characteristic and capable of high-quality display.
  • the horizontal electric field type liquid crystal cell has excellent viewing angle characteristics, since there are few electrode portions formed in the substrate, a sufficient voltage is not applied to the liquid crystal if the liquid crystal alignment film has a low voltage holding ratio. Display contrast is lowered.
  • static electricity is likely to be accumulated in the liquid crystal cell, and charges are accumulated in the liquid crystal cell even when an asymmetric voltage generated by driving is applied, and these accumulated charges are displayed as disturbances in the orientation of the liquid crystal, or afterimages or image sticking. This will affect the display quality of the liquid crystal element.
  • flicker flicker
  • the horizontal electric field method since the distance between the pixel electrode and the common electrode is shorter than that in the vertical electric field method, a strong electric field acts on the alignment film and the liquid crystal layer, and this inconvenience is likely to be remarkable. there were.
  • the stability of the liquid crystal alignment is also important. If the alignment stability is low, the liquid crystal does not return to the initial state when the liquid crystal is driven for a long time, resulting in a decrease in contrast and burn-in.
  • the present invention relates to a liquid crystal display device capable of reducing charge accumulation due to asymmetry of alternating current flow generated in an IPS drive type or FFS drive type liquid crystal display element, and obtaining a liquid crystal alignment film that quickly relaxes residual charge accumulated by a DC voltage.
  • An object is to provide an alignment agent.
  • the present inventors have found that a tetracarboxylic acid containing 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, a diamine having a specific structure,
  • a polyamic acid obtained by reacting a polyamic acid and an imidized polymer of polyamic acid By using at least one selected from the group consisting of a polyamic acid obtained by reacting a polyamic acid and an imidized polymer of polyamic acid, the liquid crystal display element of an IPS driving method or an FFS driving method is caused to be asymmetrical in alternating current flow.
  • the present inventors have found that a liquid crystal alignment film can be obtained in which charge accumulation is reduced and residual charges accumulated by a DC voltage can be relaxed quickly.
  • the present invention is based on the above findings and has the following gist.
  • a polyamic acid obtained by reacting a tetracarboxylic dianhydride component containing a tetracarboxylic dianhydride of the following formula (A) with a diamine component containing a diamine represented by the following formula (B), and the polyamic acid
  • a liquid crystal aligning agent comprising at least one polymer selected from the group consisting of an imidized polymer and an organic solvent.
  • Y 1 is a divalent organic group having at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring
  • B 1 and B 2 are: Each independently represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, or an alkynyl group having 1 to 10 carbon atoms, and these groups may have a substituent. .
  • liquid crystal aligning agent according to 1, wherein 10 to 100 mol% in the tetracarboxylic dianhydride component is the tetracarboxylic dianhydride of the formula (A). 3. 3. The liquid crystal aligning agent according to 1 or 2, wherein 10 to 100 mol% in the diamine component is the diamine of the formula (B). 4). The liquid crystal according to any one of 1 to 3, wherein Y 1 in the formula (B) is at least one selected from the group consisting of groups having the structures of the following formulas (YD-1) to (YD-5) Alignment agent.
  • a 1 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • Z 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 prime groups which may have a substituent. is there.
  • W 1 is a hydrocarbon group having 1 to 10 carbon atoms
  • a 2 is a monovalent organic group having 3 to 15 carbon atoms having a nitrogen atom-containing heterocyclic ring, or 1 carbon atom A disubstituted amino group substituted with an aliphatic group of ⁇ 6.
  • W 2 is a divalent organic group having 6 to 15 carbon atoms and 1 to 2 benzene rings
  • W 3 is alkylene or biphenylene having 2 to 5 carbon atoms
  • Z 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a benzene ring
  • a is an integer of 0 to 1.
  • a 3 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms.
  • a 4 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • W 5 is an alkylene having 2 to 5 carbon atoms.
  • a 1 , A 2 , A 3 , and A 4 described in formulas (YD-1), (YD-2), (YD-4), and (YD-5) are each independently pyrrolidine, pyrrole
  • Y 1 in the formula (B) is at least one selected from the group consisting of divalent organic groups having the structures of the following formulas (YD-6) to (YD-21): Liquid crystal aligning agent as described in.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention can suppress charge accumulation due to asymmetry of alternating current driving, and can be used as a liquid crystal display element because the residual charge accumulated by direct current voltage is quickly relaxed.
  • the liquid crystal aligning agent of this invention makes the carboxylic acid component containing the tetracarboxylic dianhydride represented by the following formula (A) react, and the diamine component containing the diamine represented by the following formula (B). It contains at least one polymer selected from the group consisting of the polyamic acid obtained and an imidized polymer of the polyamic acid, and an organic solvent.
  • Y 1 is a divalent organic group having at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring
  • B 1 and B 2 are each independently And a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, or an alkynyl group having 1 to 10 carbon atoms, and these groups may have a substituent.
  • the tetracarboxylic dianhydride component used in the production of the liquid crystal aligning agent of the present invention contains the tetracarboxylic dianhydride of the above formula (A). If the ratio of the tetracarboxylic dianhydride represented by the formula (A) is too small, the effect of the present invention cannot be obtained.
  • the ratio of the tetracarboxylic dianhydride represented by the formula (A) is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, more preferably 1 mol relative to 1 mol of all tetracarboxylic dianhydrides. Preferably, it is 50 to 100 mol%.
  • a tetracarboxylic dianhydride represented by the following formula (1) is used in addition to the tetracarboxylic dianhydride represented by the above formula (A). May be.
  • X is a tetravalent organic group, and its structure is not particularly limited. Specific examples include groups having the structures of the following formulas (X-1) to (X-42).
  • R 3 to R 6 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group, more preferably a hydrogen atom or a methyl group.
  • the tetracarboxylic dianhydride is preferably at least one tetracarboxylic dianhydride selected from the group consisting of a structure represented by the following formula (2).
  • X 1 is at least one selected from the group consisting of structures represented by Formulas (X-1) to (X-14) above.)
  • a structure consisting only of an aliphatic group such as (X-1) to (X-7) and (X-11) is preferable.
  • X 1 is more preferably the following formula (X1-1) or (X1-2).
  • the proportion of the tetracarboxylic dianhydride represented by the formula (1) is preferably 0 to 90 mol%, more preferably 0 to 70 mol%, based on 1 mol of all tetracarboxylic dianhydrides. More preferably, it is 0 to 50 mol%.
  • the diamine component used for production of the liquid crystal aligning agent of the present invention contains the diamine of the above formula (B).
  • Y 1 is a divalent organic group having at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring
  • B 1 and B 2 are each independently And a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, or an alkynyl group having 1 to 10 carbon atoms, and these groups may have a substituent.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, and a cyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures. Specific examples include an ethynyl group, a 1-propynyl group, and a 2-propynyl group.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as it has 1 to 10 carbon atoms as a whole, and may further form a ring structure by the substituent.
  • forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
  • substituents include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls. Group, alkenyl group, alkynyl group and the like.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • a phenyl group is mentioned as an aryl group which is a substituent.
  • the aryl group may be further substituted with the other substituent described above.
  • the organooxy group which is a substituent can have a structure represented by OR.
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • alkyloxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • the organothio group as a substituent can have a structure represented by —S—R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylthio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the alkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the alkyl groups, alkenyl groups, and aryl groups described above. These Rs may be further substituted with the substituent described above. Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • the amide group as a substituent includes —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , or —NRC (O) R.
  • R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the aryl group as a substituent include the same aryl groups as described above.
  • the aryl group may be further substituted with the other substituent described above.
  • Examples of the alkyl group as a substituent include the same alkyl groups as described above.
  • the alkyl group may be further substituted with the other substituent described above.
  • Examples of the alkenyl group as a substituent include the same alkenyl groups as described above.
  • the alkenyl group may be further substituted with the other substituent described above.
  • Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above.
  • the alkynyl group may be further substituted with the other substituent described above.
  • a hydrogen atom or a carbon atom that may have a substituent is 1
  • An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • the structure of Y 1 in the formula (B) is not particularly limited as long as it has at least one structure selected from the group consisting of an amino group, an imino group, and a nitrogen-containing heterocyclic ring. Absent. Specific examples include divalent organic compounds having at least one structure selected from the group consisting of amino groups, imino groups, and nitrogen-containing heterocycles represented by the following formulas (YD-1) to (YD-5). Groups.
  • a 1 is a nitrogen atom-containing heterocyclic ring having 3 to 15 carbon atoms
  • Z 1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent. is there.
  • W 1 is a hydrocarbon group having 1 to 10 carbon atoms
  • a 2 is a monovalent organic group having 3 to 15 carbon atoms having a nitrogen atom-containing heterocyclic ring, or 1 carbon atom A disubstituted amino group substituted with an aliphatic group of ⁇ 6.
  • W 2 is a divalent organic group having 6 to 15 carbon atoms and 1 to 2 benzene rings
  • W 3 is alkylene or biphenylene having 2 to 5 carbon atoms
  • Z 2 is a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or a benzene ring
  • a is an integer of 0 to 1.
  • a 3 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms.
  • a 4 is a nitrogen atom-containing heterocycle having 3 to 15 carbon atoms
  • W 5 is an alkylene having 2 to 5 carbon atoms.
  • it is not particularly limited.
  • pyrrolidine, pyrrole, imidazole, pyrazole, oxazole, thiazole, piperidine, piperazine, pyridine, pyrazine, indole, benzimidazole, quinoline, isoquinoline, etc. are mentioned, piperazine, piperidine, indole, benzimidazole, imidazole, carbazole, or pyridine Is more preferable.
  • Y 1 in the formula (B) include divalent organic groups having nitrogen atoms represented by the following formulas (YD-6) to (YD-21), and charge accumulation by AC driving Can be suppressed, the formulas (YD-14) to (YD-21) are more preferable, and (YD-14) or (YD-18) is particularly preferable.
  • j is an integer of 0 to 3.
  • h is an integer of 1 to 3.
  • the ratio of the diamine represented by the formula (B) in the polyamic acid and the imidized polymer of the polyamic acid of the present invention is preferably 10 to 100 mol%, more preferably 30%, based on 1 mol of the total diamine. To 100 mol%, more preferably 50 to 100 mol%.
  • the polyamic acid contained in the liquid crystal aligning agent of the present invention may use a diamine represented by the following formula (3) in addition to the diamine represented by the above formula (B).
  • Y 2 in the following formula (3) is a divalent organic group, and the structure thereof is not particularly limited, and two or more kinds may be mixed. Specific examples include the following (Y-1) to (Y-102).
  • a diamine having high linearity is preferable in order to obtain good liquid crystal alignment
  • Y- 2 is preferably Y-7, Y-21, Y-22, Y-23, Y-25, Y-26. Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y-75, Y-98, Y More preferred are diamines of ⁇ 99, Y-100, Y-101, or Y-102.
  • the proportion of the diamine represented by the formula (3) is preferably from 0 to 90 mol%, more preferably from 0 to 70 mol%, still more preferably from 0 to 50 mol%, based on 1 mol of all diamines.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer, and these may be used alone or in combination of two or more. May be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating a polymer by pouring it into a poor solvent while thoroughly stirring the reaction solution. In addition, by performing precipitation several times, washing with a poor solvent, and then drying at normal temperature or heat, a purified polyamic acid powder can be obtained.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid.
  • the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among these, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to mol of the polyamic acid group. 30 moles.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the obtained imidized polymer is recovered by the means described below, and redissolved in an organic solvent. It is preferable to use a liquid crystal aligning agent.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is carried out several times, washed with a poor solvent, and then dried at room temperature or by heating to obtain a purified polymer powder.
  • the poor solvent examples include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent.
  • the molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the polymer concentration of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed. From the viewpoint of forming a uniform and defect-free coating film, The content is preferably at least 10% by mass, and is preferably 10% by mass or less from the viewpoint of storage stability of the solution. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent used for this invention will not be specifically limited if a polymer component melt
  • N-dimethylformamide N, N-diethylformamide, N, N-dimethylacetamide
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • N-methylcaprolactam examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent used for this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the purpose is to change the electrical properties such as the dielectric constant and conductivity of the polymer other than the polymer and the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • an imidization accelerator for the purpose of efficiently progressing imidization of the polyamic acid may be added.
  • the liquid crystal alignment film of the invention is a film obtained by applying the liquid crystal alignment agent to a substrate, drying and baking.
  • the substrate to which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a plastic substrate such as a glass substrate, a silicon nitride substrate, an acrylic substrate, or a polycarbonate substrate can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used as the electrode.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • the organic solvent is dried at 50 to 120 ° C. for 1 to 10 minutes and then baked at 150 to 300 ° C. for 5 to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the photo-alignment treatment method the surface of the coating film is irradiated with radiation deflected in a certain direction, and in some cases, a heat treatment is performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 nm to 400 nm are preferable, and those having a wavelength of 200 nm to 400 nm are particularly preferable.
  • radiation may be irradiated while heating the coated substrate at 50 to 250 ° C.
  • Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
  • the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
  • the film irradiated with polarized radiation as described above may then be contact-treated with a solvent containing at least one selected from the group consisting of water and organic solvents.
  • the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves a decomposition product generated by light irradiation.
  • Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, cyclohexyl acetate and the like. Two or more of these solvents may be used in combination.
  • At least one selected from the group consisting of water, 2-propanol, 1-methoxy-2-propanol and ethyl lactate is more preferable.
  • 1-methoxy-2-propanol or ethyl lactate is particularly preferred.
  • the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is a treatment such that the film and the liquid are preferably sufficiently in contact with each other, such as immersion treatment or spraying treatment.
  • a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably at 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying, or both May be performed.
  • the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
  • the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of the present invention may not be obtained, and if it is too long, the molecular chain may be decomposed, and therefore it is preferably 10 seconds to 30 minutes, and preferably 1 to 10 minutes. More preferred.
  • the liquid crystal alignment film of the present invention is suitable as a liquid crystal alignment film of a transverse electric field type liquid crystal display element such as an IPS mode or a fringe field switching (hereinafter referred to as FFS) mode, and as a liquid crystal alignment film of an FFS mode liquid crystal display element, It is particularly useful.
  • a transverse electric field type liquid crystal display element such as an IPS mode or a fringe field switching (hereinafter referred to as FFS) mode
  • FFS fringe field switching
  • a liquid crystal cell is prepared by a known method, and the liquid crystal cell is used. It is a liquid crystal display element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • TFT Thin Film Transistor
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • the liquid crystal material either a positive liquid crystal material or a negative liquid crystal material may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • Viscosity measurement The viscosity of the polyamic acid ester and the polyamic acid solution was measured using an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), a sample amount of 1.1 mL (milliliter), and a cone rotor TE-1 (1 ° 34 ′, R24). The temperature was measured at 25 ° C.
  • Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, and 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak) manufactured by Polymer Laboratory Top molecular weight (Mp) about 12,000, 4,000, and 1,000).
  • Mw weight average molecular weight
  • Mp Polyethylene glycol
  • Mp Polymer Laboratory Top molecular weight
  • a liquid crystal cell having a configuration of a fringe field switching (hereinafter referred to as FFS) mode liquid crystal display element is manufactured.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • an ITO electrode having a solid pattern, which forms a counter electrode as a first layer, is formed.
  • a SiN (silicon nitride) film formed by CVD (chemical vapor deposition) is formed as the second layer.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an ITO film is arranged as a third layer on the second SiN film to form two pixels, a first pixel and a second pixel. is doing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of electrode elements having a dogleg shape whose central portion is bent.
  • the width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m. Since the pixel electrode forming each pixel is configured by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but the central portion is similar to the electrode element. It has a shape similar to that of a bold-faced koji that bends at Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side.
  • the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the rubbing direction of the liquid crystal alignment film to be described later is used as a reference, in the first region of the pixel, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise), and in the second region of the pixel The electrode elements of the pixel electrode are formed at an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the prepared substrate with electrodes and a glass substrate having a columnar spacer with a height of 4 ⁇ m on which an ITO film is formed on the back surface was applied by spin coating. After drying on an 80 ° C. hot plate for 5 minutes, baking was carried out in a hot air circulating oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm. This coating surface was subjected to alignment treatment such as rubbing and polarized ultraviolet irradiation to obtain a substrate with a liquid crystal alignment film.
  • the two substrates are combined as a set, a sealing agent is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction becomes 0 °, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • PAA-5 polyamic acid solution
  • the viscosity of this polyamic acid solution at a temperature of 25 ° C. was 132 mPa ⁇ s.
  • Example 1 In a 100 mL Erlenmeyer flask containing a stir bar, 16.2 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 was collected, 13.0 g of NMP, and 0 of 3-glycidoxypropyltriethoxysilane were added. 0.02 g and 9.73 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-1).
  • Example 2 In a 100 mL Erlenmeyer flask containing a stir bar, 16.6 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 was fractioned, 11.0 g of NMP, and 0 of 3-glycidoxypropyltriethoxysilane. 0.02 g and 9.20 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-2).
  • PAA-2 polyamic acid solution obtained in Synthesis Example 2
  • Example 3 In a 100 mL Erlenmeyer flask containing a stir bar, 18.0 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 was collected, 12.0 g of NMP, and 0 of 3-glycidoxypropyltriethoxysilane. 0.02 g and 10.0 g of BCS were added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-3).
  • PAA-3 polyamic acid solution obtained in Synthesis Example 3
  • Example 4 After the liquid crystal aligning agent (A-1) obtained in Example 1 is filtered through a 1.0 ⁇ m filter, an ITO electrode having a film thickness of 50 nm is used as the first layer, and an insulating film is used as the second layer.
  • a glass substrate on which an FFS driving electrode having a comb-like ITO electrode (electrode width: 3 ⁇ m, electrode interval: 6 ⁇ m, electrode height: 50 nm) as a third layer is formed of silicon nitride having a thickness of 500 nm On top, it was applied by spin coating.
  • a coating film was similarly formed on a glass substrate having a columnar spacer with a height of 4 ⁇ m on which no electrode was formed as the counter substrate, and an orientation treatment was performed.
  • the two substrates are combined as a set, a sealing agent is printed on the substrate, and the other substrate is bonded so that the liquid crystal alignment film surfaces face each other and the alignment direction becomes 0 °, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • ⁇ T of AC drive 0 minutes, 5 minutes, 10 minutes, and 20 minutes is 9.0%, 2.5%, 0.5%, and 0%.
  • the change amount of the maximum offset voltage after 30 minutes drive was 20 mV or less, which was favorable.
  • Example 5 An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that the liquid crystal aligning agent (A-2) obtained in Example 2 was used.
  • ⁇ T of AC drive 0 minutes, 5 minutes, 10 minutes, and 20 minutes is 9.0%, 2.5%, 0.5%, and 0%.
  • the change amount of the maximum offset voltage after 30 minutes drive was 20 mV or less, which was favorable.
  • Example 6 An FFS drive liquid crystal cell was produced in the same manner as in Example 4 except that the liquid crystal aligning agent (A-3) obtained in Example 3 was used.
  • ⁇ T of AC drive 0 minutes, 5 minutes, 10 minutes, and 20 minutes is 9.0%, 2.5%, 0.5%, and 0%.
  • the change amount of the maximum offset voltage after 30 minutes drive was 20 mV or less, which was favorable.
  • the liquid crystal alignment film obtained from the liquid crystal aligning agent of the present invention reduces charge accumulation due to asymmetry of alternating current drive and quickly relaxes residual charge accumulated by direct current voltage. It is particularly useful as a liquid crystal alignment film for driving type liquid crystal display elements and liquid crystal televisions. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2013-206729 filed on October 1, 2013 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

 横電界駆動方式の液晶表示素子において発生する交流流動の非対称化による電荷蓄積を低減し、且つ、直流電圧により蓄積した残留電荷の緩和が早い液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子を提供する。 下記式(A)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸と、下記式(B)で表されるジアミンを含むジアミンとを反応させて得られる、ポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする液晶配向剤。 (式(B)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B~Bは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。)

Description

横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
 本発明は、基板に対して平行な電界を印加して駆動する横電界駆動方式の液晶表示素子に用いられる液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。
 従来から液晶装置は、パーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。
 液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In-Place-Switching)方式、フリンジフィールドスイッチング(以下、FFS)方式等の横電界方式が知られている。一般に、基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、高品位な表示が可能な液晶表示素子として知られている。
 しかしながら、横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、液晶配向膜の電圧保持率が弱いと液晶に十分な電圧がかからず表示コントラストが低下してしまう。また、静電気が液晶セル内に蓄積されやすく、駆動によって生じる非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶の配向の乱れ、あるいは残像や焼き付きとして表示に影響を与え、液晶素子の表示品位を著しく低下させる。このような状態で、再度通電した場合、初期段階において、液晶分子の制御が良好に行われずにフリッカ(ちらつき)等を生じてしまう。特に、横電界方式では、縦電界方式よりも画素電極と共通電極との距離が近いため、配向膜や液晶層に強い電界が作用してしまい、このような不都合が顕著となりやすいという問題点があった。
 更に、IPS方式やFFS駆動方式など、基板に対して水平配向している液晶分子を横電解で駆動させる方式においては、液晶配向の安定性も重要となる。配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラストの低下や焼き付きの原因となる。
 上記の交流駆動の非対称化による電荷の蓄積を解決する手法として、電極上の形成された第1配向膜と、その表面に形成されたピロメリット酸二無水物とジアミンとから形成された重合体であり、且つ、第1配向膜よりも抵抗が低い第2配向膜とからなる液晶配向膜を有する液晶表示装置において、交流駆動の非対称化による電荷蓄積を抑制し、且つ、蓄積した電荷の緩和を早くすることができることが報告されている(特許文献1)。
日本特開2013-167782号公報
 本発明者らが検討した結果、IPS駆動方式やFFS駆動方式の液晶表示素子において、発生する交流駆動の非対称化による電荷蓄積の抑制と、直流電圧により蓄積した残留電荷の早い緩和とを、1種類のポリイミド前駆体、又は該ポリイミド前駆体のイミド化重合体からなる液晶配向膜で両立させることは困難であることがわかった。具体的には、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜は、交流駆動の非対称化による電荷蓄積が大きくなることがわかった。
 本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において、発生する交流流動の非対称化による電荷蓄積を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜が得られる液晶配向剤を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、3,3’,4,4’-ビフェニルテトラカルボン酸ニ無水物を含むテトラカルボン酸と、特定構造を有するジアミンとを反応させて得られるポリアミック酸及びポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種を用いることにより、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流流動の非対称化による電荷蓄積を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜が得られることを見出し、本発明を完成させた。
 本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.下記式(A)のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(B)で表されるジアミンを含むジアミン成分とを反応させて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000004
(式(B)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B、及びBは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。)
2.前記テトラカルボン酸二無水物成分中の10~100モル%が、式(A)のテトラカルボン酸二無水物である、前記1に記載の液晶配向剤。
3.前記ジアミン成分中の10~100モル%が、式(B)のジアミンである、前記1又は2に記載の液晶配向剤。
4.式(B)中のYが、下記式(YD-1)~(YD-5)の構造の基からなら群から選ばれる少なくとも1種類である、前記1~3のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000005
(式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい素数1~20の炭化水素基である。
式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1~6の脂肪族基で置換されたジ置換アミノ基である。
式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1~2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。
式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。
式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。)
5.式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA、A、A、及びAは、それぞれ独立して、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、及びイソキノリンからなる群から選ばれる少なくとも1種類である、前記1~4のいずれかに記載の液晶配向剤。
6.式(B)におけるYが、下記式(YD-6)~(YD-21)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、前記1~5のいずれかに記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
(式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)中、jは1~3の整数である。)
7.式(B)におけるYが、上記記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、前記1~6のいずれかに記載の液晶配向剤。
8.前記1~7のいずれかに記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
9.前記8に記載の液晶配向膜を具備する液晶表示素子。
 本発明の液晶配向剤から得られる液晶配向膜は、交流駆動の非対称化による電荷蓄積を抑制することができ、直流電圧により蓄積した残留電荷の緩和が早く、液晶表示素子として利用可能である。
<ポリアミック酸及び該ポリアミック酸のイミド化重合体>
 本発明の液晶配向剤は、下記式(A)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸成分と、下記式(B)で表されるジアミンを含むジアミン成分とを反応させて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000007
 式(B)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B~Bは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。
<テトラカルボン酸二無水物成分>
 本発明の液晶配向剤の製造に用いられるテトラカルボン酸二無水物成分は、上記式(A)のテトラカルボン酸二無水物を含有する。式(A)で表されるテトラカルボン酸二無水物の割合は、少なすぎると、本発明の効果が得られない。式(A)で表されるテトラカルボン酸二無水物の割合は、全テトラカルボン酸二無水物1モルに対して、10~100モル%が好ましく、より好ましくは、30~100モル%、さらに好ましくは、50~100モル%である。
 本発明の液晶配向剤に含有されるポリアミック酸としては、上記式(A)で表されるテトラカルボン酸二無水物以外に、下記式(1)で表されるテトラカルボン酸二無水物を用いてもよい。
Figure JPOXMLDOC01-appb-C000008
 式(1)において、Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-1)~(X-42)の構造の基が挙げられる。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式(X-1)において、R~Rは、それぞれ独立して、水素原子、炭素数1~6のアルキル基、又はフェニル基であり、水素原子、又はメチル基がより好ましい。
 化合物の入手性の観点から、テトラカルボン酸二無水物としては、下記式(2)で表される構造からなる群から選ばれる少なくとも1種類のテトラカルボン酸二無水物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式(2)において、Xは上記式(X-1)~(X-14)で表される構造からなる群から選ばれる少なくとも1種である。)
 得られる液晶配向膜の信頼性をさらに高めることができるため、(X-1)~(X-7)及び(X-11)のような脂肪族基のみからなる構造が好ましく、(X-1)で表される構造がより好ましい。更に、良好な液晶配向性を示すため、Xの構造としては、下記式(X1-1)又は(X1-2)がさらに好ましい。
Figure JPOXMLDOC01-appb-C000014
 式(1)で表されるテトラカルボン酸二無水物の割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(1)で表されるテトラカルボン酸二無水物の割合は、全テトラカルボン酸二無水物1モルに対して、0~90モル%が好ましく、より好ましくは0~70モル%、さらに好ましくは0~50モル%である。
<ジアミン成分>
 本発明の液晶配向剤の製造に用いられるジアミン成分は、上記式(B)のジアミンを含有する。式(B)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B及びBは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。
 アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられる。具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。
 アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられる。具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 上記のアルキル基、アルケニル基、及びアルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
 置換基の例としては、ハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基等を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。アリール基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。Rとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、-C(O)NHR、-NHC(O)R、-C(O)N(R)、又は-NRC(O)Rで表される構造を示すことができる。Rは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには、前述した置換基がさらに置換していてもよい。
 置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。アリール基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。アルキル基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。アルケニル基には、前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。アルキニル基には、前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、B及びBとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 式(B)におけるYの構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有していれば、その構造は特に限定されるものではない。具体例としては、下記式(YD-1)~(YD-5)で表されるアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。
 式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1~6の脂肪族基で置換されたジ置換アミノ基である。
 式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1~2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。
 式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。
 式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。
 式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)のA、A、A、及びAの炭素数3~15の窒素原子含有複素環としては、公知の構造であれば、特に限定されるものではない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン等が挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、又はピリジンがより好ましい。
 さらに、式(B)におけるYの具体例としては、下記式(YD-6)~(YD-21)で表される窒素原子を有する2価の有機基が挙がられ、交流駆動による電荷蓄積を抑制できることから、式(YD-14)~(YD-21)がより好ましく、(YD-14)又は(YD-18)が特に好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(YD-14)及び(YD-21)中、jは0~3の整数である。式(YD-17)中、hは1~3の整数である。
 本発明のポリアミック酸及びポリアミック酸のイミド化重合体における式(B)で表されるジアミンの割合は、全ジアミン1モルに対して、10~100モル%であることが好ましく、より好ましくは30~100モル%、さらに好ましくは50~100モル%である。
 本発明の液晶配向剤に含有されるポリアミック酸は、上記式(B)で表されるジアミン以外に、下記式(3)で表されるジアミンを用いてもよい。下記式(3)におけるYは、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。具体例を示すならば、下記の(Y-1)~(Y-102)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンが好ましく、Yとしては、Y-7、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-73、Y-74、Y-75、Y-98、Y-99,Y-100、Y-101、又はY-102のジアミンがより好ましい。
 式(3)で表されるジアミンの割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。式(3)で表されるジアミンの割合は、全ジアミン1モルに対して、0~90モル%が好ましく、より好ましくは0~70モル%、さらに好ましくは0~50モル%である。
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性から、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に、触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。
 塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量は、ポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量は、ポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製された重合体の粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
<液晶配向剤>
 本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明に用いられる液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには、塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的の、イミド化促進剤等を添加しても良い。
<液晶配向膜の製造方法>
 発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができる。液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の観点からは好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50~120℃で1分~10分乾燥させ、その後、150~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
 光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
 上記のように偏光された放射線を照射した膜は、次いで、水及び有機溶媒からなる群から選ばれる少なくとも1種類を含む溶媒で接触処理してもよい。
 接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種上を併用してもよい。
 汎用性や安全性の観点から、水、2-プロパンール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。1-メトキシ-2-プロパノール又は乳酸エチルが特に好ましい。
 本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は、常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて、超音波などの接触を高める手段を施すことができる。
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってもよい。
 さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。
 加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
 加熱する時間は、短すぎると本発明の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1~10分がより好ましい。
 本発明の液晶配向膜は、IPS方式、フリンジフィールドスイッチング(以下、FFS)方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、FFS方式の液晶表示素子の液晶配向膜として、特に有用である。
<液晶表示素子>
 本発明の液晶表示素子は、本発明の製造方法によって、液晶配向剤から形成される液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。
 次に、一方の基板に他方の基板を、互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料としては、ポジ型液晶材料及びネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
 この液晶表示素子は、液晶配向膜として、本発明の製造方法により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
 以下に、実施例等を挙げて、本発明を更に具体的に説明する。なお、本発明は、これらの実施例に限定されるものではない。実施例などで用いた有機溶媒等の略号は、以下のとおりである。
NMP: N-メチル-2-ピロリドン
GBL: γ-ブチロラクトン
BCS: ブチルセロソルブ
酸二無水物(A):下記式(A)で表される化合物
DA-1:下記式(DA-1)で表される化合物
DA-2:下記式(DA-2)で表される化合物
DA-3:下記式(DA-3)で表される化合物
Figure JPOXMLDOC01-appb-C000028
 以下に、粘度測定、分子量測定、液晶セルの作製、並びに長期交流駆動による電荷蓄積値評価及び電荷蓄積値評価の方法を示す。
[粘度測定]
 ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量測定]
 ポリアミック酸エステルの分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置(昭和電工社製、Shodex GP-101)によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、及び30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、及び1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、及び1,000の4種類を混合したサンプルと、150,000、30,000、及び4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
[液晶セルの作製]
 フリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)モード液晶表示素子の構成を備えた液晶セルを作製する。
 初めに電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には、第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には、第2層目として、CVD(chemical vapor deposition)法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、ITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により、電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を、複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を、複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
 次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と、裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射などの配向処理を施し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
[交流駆動の非対称化による電荷蓄積値評価]
 作製した液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でLEDバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。
 次に、この液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が50%となる交流電圧を駆動電圧として算出した。
 なお、LED光が液晶セルに当たらないよう遮光した。さらに、液晶セルに周波数1kHzで20mVの矩形波を30分間印加した。
 その後、LED点灯と同時に相対透過率が50%となる交流駆動を行い、点灯直後のV-F(電圧-フリッカ曲線)カーブを測定し、交流駆動の非対称化による電荷蓄積を打ち消すオフセット電圧値を算出した。その後、1分毎に最小オフセット電圧値変化量を測定し、点灯直後から30分までに変化した際の最大電圧値を算出した。その際、最大オフセット電圧の変化量が、20mVを超える場合「不良」と定義し、評価した。また最大オフセット電圧の変化量が、20mVを越えない場合には、「良好」と定義し、評価した。
[電荷緩和特性]
 作製した液晶セルを光源上に置き、45℃の温度下でのV-T特性(電圧-透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での液晶セルの透過率(Ta)を測定した。その後、45℃の温度下で、±1.5V/60Hzの矩形波10分間印加した後、直流2Vを重畳し、120分間駆動させた。直流電圧を切り、再び±1.5V/60Hzの矩形波のみで、0分、5分、10分、及び20分駆動させた時の液晶セルの透過率(Tb)をそれぞれ測定し、各時間での透過率(Tb)と初期の透過率(Ta)の差(ΔT)から、液晶表示素子内に残留した電圧により生じた透過率の差を算出した。
(合成例1)
 撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、4,4’-ジアミノジフェニルアミンを2.40g(12.0mmol)量り取り、NMPを29.8g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を3.41g(11.6mmol)添加し、更にNMPを12.8g加え、窒素雰囲気下、23℃で25時間撹拌して、ポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の温度25℃における粘度は、550mPa・sであった。また、このポリアミック酸の分子量は、Mn=15076、Mw=35742であった。
(合成例2)
 撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、DA-1を2.21g(9.60mmol)量り取り、NMPを65.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.47g(8.40mmol)添加し、窒素雰囲気下、23℃で4時間撹拌した。その後、4,4’-ジアミノジフェニルアミンを2.87g(14.4mmol)添加し、溶解するのを確認した後に、1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.80g(14.3mmol)加えた。さらに、NMPを27.95g加えて、30時間撹拌して、ポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の温度25℃における粘度は、118mPa・sであった。また、このポリアミック酸の分子量は、Mn=15591、Mw=36804であった。
(合成例3)
 撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、DA-2を2.35g(9.60mmol)量り取り、NMPを65.9g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.47g(8.40mmol)添加し、窒素雰囲気下、23℃で2時間撹拌した。その後、4,4’-ジアミノジフェニルアミンを2.87g(14.4mmol)添加し、溶解するのを確認した後に、1,2,3,4-シクロブタンテトラカルボン酸二無水物を2.78g(14.2mmol)加えた。さらに、NMPを28.2g加えて、4時間撹拌してポリアミック酸溶液(PAA-3)を得た。このポリアミック酸溶液の温度25℃における粘度は、122mPa・sであった。また、このポリアミック酸の分子量は、Mn=11511、Mw=29470であった。
(比較合成例1)
 撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、DA-3を5.97g(20.0mmol)量り取り、NMPを59.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を5.59g(19.0mmol)添加し、更にNMPを25.4g加え、窒素雰囲気下、23℃で20時間撹拌してポリアミック酸溶液(PAA-4)を得た。このポリアミック酸溶液の温度25℃における粘度は、230mPa・sであった。また、このポリアミック酸の分子量は、Mn=11541、Mw=22939であった。
(比較合成例2)
 撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、4,4’-ジアミノジフェニルアミンを3.83g(19.0mmol)、及び4,4’-ジアミノジフェニルメタンを0.95g(5.0mmol)量り取り、NMPを57.2g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、1,2,3,4-シクロブタンテトラカルボン酸二無水物を4.31g(22.0mmol)添加し、更に、NMPを24.5g加え、窒素雰囲気下、23℃で3時間撹拌してポリアミック酸溶液(PAA-5)を得た。このポリアミック酸溶液の温度25℃における粘度は、132mPa・sであった。また、このポリアミック酸の分子量は、Mn=11700、Mw=25900であった。
(実施例1)
 撹拌子の入った100mL三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA-1)を16.2g分取し、NMPを13.0g、3-グリシドキシプロピルトリエトキシシランを0.02g、及びBCSを9.73g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。
(実施例2)
 撹拌子の入った100mL三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA-2)を16.6g分取し、NMPを11.0g、3-グリシドキシプロピルトリエトキシシランを0.02g、及びBCSを9.20g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
(実施例3)
 撹拌子の入った100mL三角フラスコに、合成例3で得られたポリアミック酸溶液(PAA-3)を18.0g分取し、NMPを12.0g、3-グリシドキシプロピルトリエトキシシランを0.02g、及びBCSを10.0g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
(比較例1)
 撹拌子の入った100mL三角フラスコに、比較合成例1で得られたポリアミック酸溶液(PAA-4)を16.6g分取し、NMPを13.2g、3-グリシドキシプロピルトリエトキシシランを0.02g、及びBCSを9.93g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-1)を得た。
(比較例2)
 撹拌子の入った100mL三角フラスコに、比較合成例2で得られたポリアミック酸溶液(PAA-5)を16.5g分取し、NMPを13.2g、3-グリシドキシプロピルトリエトキシシランを0.02g、及びBCSを9.81g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-2)を得た。
(実施例4)
 実施例1で得られた液晶配向剤(A-1)を、1.0μmのフィルターで濾過した後、第1層目として膜厚50nmのITO電極を、第2層目として、絶縁膜である膜厚500nmの窒化ケイ素を、第3層目として櫛歯形状のITO電極(電極幅:3μm、電極間隔:6μm、電極高さ:50nm)を有する、FFS駆動用電極が形成されているガラス基板上に、スピンコート塗布にて塗布した。その後、80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に、ローラー回転数1000rpm、ステージ移動速度20mm/s、ラビング布押し込み圧0.4mmの条件でラビング処理を施し、液晶配向膜付き基板を得た。また、対向基板として、電極が形成されていない、高さ4μmの柱状スペーサーを有するガラス基板上にも、同様に塗膜を形成させ、配向処理を施した。
 上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い、配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。
 このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、及び20分のΔTは、それぞれ9.0%、2.5%、0.5%、及び0%であった。
 また、交流駆動の非対称化による電荷蓄積値評価を実施した結果、30分駆動での最大オフセット電圧の変化量が20mV以下であり、良好であった。
(実施例5)
 実施例2で得られた液晶配向剤(A-2)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、及び20分のΔTは、それぞれ9.0%、2.5%、0.5%、及び0%であった。
 また、交流駆動の非対称化による電荷蓄積値評価を実施した結果、30分駆動での最大オフセット電圧の変化量が20mV以下であり、良好であった。
(実施例6)
 実施例3で得られた液晶配向剤(A-3)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、及び20分のΔTは、それぞれ9.0%、2.5%、0.5%、及び0%であった。
 また、交流駆動の非対称化による電荷蓄積値評価を実施した結果、30分駆動での最大オフセット電圧の変化量が20mV以下であり、良好であった。
(比較例3)
 比較例1で得られた液晶配向剤(B-1)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、及び20分のΔTは、それぞれ11.0%、3.5%、1.0%、及び0%であった。
 また、交流駆動の非対称化による電荷蓄積値評価を実施した結果、30分駆動での最大オフセット電圧の変化量が20mV以上であり、不良であった。
(比較例4)
 比較例2で得られた液晶配向剤(B-2)を用いた以外は、実施例4と同様の方法でFFS駆動液晶セルを作製した。このFFS駆動液晶セルについて、電荷緩和特性を評価した結果、交流駆動0分、5分、10分、及び20分のΔTは、それぞれ7.0%、3.5%、1.5%、及び0%であった。
 また、交流駆動の非対称化による電荷蓄積値評価を実施した結果、30分駆動での最大オフセット電圧の変化量が20mV以上であり、不良であった。
Figure JPOXMLDOC01-appb-T000029
 本発明の液晶配向剤から得られる液晶配向膜は、交流駆動の非対称化による電荷蓄積を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早いため、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2013年10月1日に出願された日本特許出願2013-206729号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  下記式(A)のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(B)で表されるジアミンを含むジアミン成分とを反応させて得られる、ポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(B)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B1、及びBは、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、又は炭素数1~10のアルキニル基であり、これらの基は置換基を有してもよい。)
  2.  前記テトラカルボン酸二無水物成分中の10~100モル%が、式(A)のテトラカルボン酸二無水物である、請求項1に記載の液晶配向剤。
  3.  前記ジアミン成分中の10~100モル%が、式(B)のジアミンである、請求項1又は2に記載の液晶配向剤。
  4.  式(B)中のYが、下記式(YD-1)~(YD-5)の構造の基からなら群から選ばれる少なくとも1種類である、請求項1~3のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい素数1~20の炭化水素基である。
    式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1~6の脂肪族基で置換されたジ置換アミノ基である。
    式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1~2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。
    式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。
    式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。)
  5.  式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA、A、A、及びAは、それぞれ独立して、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、及びイソキノリンからなる群から選ばれる少なくとも1種類である、請求項1~4のいずれか1項に記載の液晶配向剤。
  6.  式(B)におけるYが、下記式(YD-6)~(YD-21)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)中、jは1~3の整数である。)
  7.  式(B)におけるYが、上記記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  請求項1~7のいずれか1項に記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
  9.  請求項8に記載の液晶配向膜を具備する液晶表示素子。 
PCT/JP2014/076156 2013-10-01 2014-09-30 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 WO2015050135A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167011017A KR102266365B1 (ko) 2013-10-01 2014-09-30 횡전계 구동 방식용 액정 배향제, 액정 배향막, 및 그것을 사용한 액정 표시 소자
JP2015540509A JP6558245B2 (ja) 2013-10-01 2014-09-30 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
CN201480054697.9A CN105593754B (zh) 2013-10-01 2014-09-30 横向电场驱动方式用的液晶取向剂、液晶取向膜和使用了其的液晶表示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-206729 2013-10-01
JP2013206729 2013-10-01

Publications (1)

Publication Number Publication Date
WO2015050135A1 true WO2015050135A1 (ja) 2015-04-09

Family

ID=52778723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076156 WO2015050135A1 (ja) 2013-10-01 2014-09-30 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP6558245B2 (ja)
KR (1) KR102266365B1 (ja)
CN (1) CN105593754B (ja)
TW (1) TWI704168B (ja)
WO (1) WO2015050135A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615144A (zh) * 2015-05-29 2018-01-19 夏普株式会社 液晶显示装置以及取向膜
US20190093016A1 (en) * 2017-09-22 2019-03-28 Sharp Kabushiki Kaisha Liquid crystal cell and liquid crystal display
KR20200039671A (ko) 2017-08-10 2020-04-16 제이엔씨 주식회사 액정 배향제, 액정 배향막 및 이를 이용한 액정 표시 소자
KR20210097710A (ko) 2018-12-04 2021-08-09 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20210132029A (ko) 2019-02-27 2021-11-03 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
KR20220151604A (ko) 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
KR20220151603A (ko) 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089231B2 (ja) * 2016-09-29 2022-06-22 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
WO2018062437A1 (ja) * 2016-09-29 2018-04-05 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
CN109804305A (zh) * 2016-10-04 2019-05-24 Jsr株式会社 液晶装置及其制造方法
JP7131538B2 (ja) * 2017-02-27 2022-09-06 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN113423763B (zh) * 2019-02-13 2023-10-03 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
CN111574467B (zh) * 2020-06-12 2021-11-30 江苏三月科技股份有限公司 一种多胺基化合物及其制备方法与应用
CN115343886B (zh) * 2022-10-18 2023-01-10 广州华星光电半导体显示技术有限公司 一种液晶配向层及其制备方法、液晶显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971669A (ja) * 1995-06-27 1997-03-18 Toray Ind Inc フィルム及びフィルムロールとその製造方法及び磁気記録媒体
JP2010156953A (ja) * 2008-12-01 2010-07-15 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
JP2010266477A (ja) * 2009-05-12 2010-11-25 Jsr Corp 液晶配向剤および液晶表示素子
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021076A1 (ja) * 2002-08-29 2004-03-11 Nissan Chemical Industries, Ltd. 液晶配向剤およびそれを用いた液晶表示素子
CN101925850B (zh) * 2008-01-25 2012-06-06 日产化学工业株式会社 液晶取向剂、液晶取向膜及液晶显示元件
JP5625384B2 (ja) * 2010-02-25 2014-11-19 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子
JP5961880B2 (ja) 2012-02-16 2016-08-03 株式会社ジャパンディスプレイ 液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971669A (ja) * 1995-06-27 1997-03-18 Toray Ind Inc フィルム及びフィルムロールとその製造方法及び磁気記録媒体
JP2010156953A (ja) * 2008-12-01 2010-07-15 Chisso Corp 液晶配向剤、液晶配向膜及び液晶表示素子
JP2010266477A (ja) * 2009-05-12 2010-11-25 Jsr Corp 液晶配向剤および液晶表示素子
WO2011115118A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル含有液晶配向剤、及び液晶配向膜

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615144A (zh) * 2015-05-29 2018-01-19 夏普株式会社 液晶显示装置以及取向膜
KR20200039671A (ko) 2017-08-10 2020-04-16 제이엔씨 주식회사 액정 배향제, 액정 배향막 및 이를 이용한 액정 표시 소자
US20190093016A1 (en) * 2017-09-22 2019-03-28 Sharp Kabushiki Kaisha Liquid crystal cell and liquid crystal display
CN109541855A (zh) * 2017-09-22 2019-03-29 夏普株式会社 液晶单元及液晶显示装置
US10907101B2 (en) 2017-09-22 2021-02-02 Sharp Kabushiki Kaisha Liquid crystal cell and liquid crystal display
CN109541855B (zh) * 2017-09-22 2021-11-30 夏普株式会社 液晶单元及液晶显示装置
KR20210097710A (ko) 2018-12-04 2021-08-09 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR20210132029A (ko) 2019-02-27 2021-11-03 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
KR20220151604A (ko) 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막, 및 액정 표시 소자
KR20220151603A (ko) 2020-03-06 2022-11-15 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자

Also Published As

Publication number Publication date
TW201522423A (zh) 2015-06-16
KR20160067132A (ko) 2016-06-13
JPWO2015050135A1 (ja) 2017-03-09
JP6558245B2 (ja) 2019-08-14
CN105593754A (zh) 2016-05-18
CN105593754B (zh) 2020-01-03
TWI704168B (zh) 2020-09-11
KR102266365B1 (ko) 2021-06-16

Similar Documents

Publication Publication Date Title
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6627772B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
WO2015072554A1 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2015050133A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JPWO2015152174A1 (ja) ポリアミック酸エステル−ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
WO2013054858A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
KR101610562B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI597305B (zh) A method of manufacturing a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display element
WO2018117239A1 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
KR102206414B1 (ko) 횡전계 구동용의 액정 배향 처리제
WO2015119168A1 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14850291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015540509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167011017

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14850291

Country of ref document: EP

Kind code of ref document: A1