WO2015119168A1 - 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2015119168A1
WO2015119168A1 PCT/JP2015/053140 JP2015053140W WO2015119168A1 WO 2015119168 A1 WO2015119168 A1 WO 2015119168A1 JP 2015053140 W JP2015053140 W JP 2015053140W WO 2015119168 A1 WO2015119168 A1 WO 2015119168A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
formula
aligning agent
polyamic acid
Prior art date
Application number
PCT/JP2015/053140
Other languages
English (en)
French (fr)
Inventor
謙治 坂本
幸司 巴
加名子 鈴木
夏樹 佐藤
尚宏 野田
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to KR1020167021210A priority Critical patent/KR102331107B1/ko
Priority to CN201580007563.6A priority patent/CN105980918B/zh
Priority to JP2015561016A priority patent/JP6524918B2/ja
Publication of WO2015119168A1 publication Critical patent/WO2015119168A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a liquid crystal aligning agent containing a polyamic acid ester, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element.
  • liquid crystal display elements have been widely used as display units for personal computers, mobile phones, television receivers, etc.
  • driving methods include vertical electric field methods such as TN method and VA method, IPS method, and FFS method.
  • a lateral electric field method such as (Fringe Field Switching) is known.
  • the lateral electric field method in which an electrode is formed only on one side of the substrate and an electric field is applied in a direction parallel to the substrate is compared with a conventional vertical electric field method in which a liquid crystal is driven by applying a voltage to the electrodes formed on the upper and lower substrates.
  • a liquid crystal display element having a wide viewing angle characteristic and capable of high-quality display.
  • a method for aligning liquid crystals in a certain direction there is a method of forming a polymer film such as polyimide on a substrate and rubbing the surface with a cloth, so-called rubbing treatment, which has been widely used industrially. .
  • a liquid crystal alignment film containing a tertiary amine having a specific structure in addition to polyamic acid or imide group-containing polyamic acid as a liquid crystal alignment film having a short time until an afterimage generated by a direct current voltage disappears for example, Patent Document 1
  • a liquid crystal aligning agent containing a soluble polyimide using a specific diamine compound having a pyridine skeleton as a raw material for example, see Patent Document 2
  • a backlight having a large amount of light is sometimes used in a liquid crystal display element in order to obtain high brightness, and stability of a high voltage holding ratio against light from the backlight is required. That is, it is required that the voltage holding ratio does not easily decrease even after being exposed to the backlight for a long time.
  • the voltage holding ratio of the liquid crystal display element is greatly reduced when impurities are mixed in the liquid crystal in accordance with the recent rapid response of the liquid crystal.
  • stability of liquid crystal alignment is also important. If the alignment stability is poor, the liquid crystal does not return to the initial state when the liquid crystal is driven for a long time, which causes a decrease in contrast, an afterimage or a burn-in.
  • the present invention has been made in view of the above circumstances, and originally has a high liquid crystal orientation, but a high voltage even when long-term backlight irradiation is performed or impurities are mixed into the liquid crystal. It aims at providing the liquid crystal aligning agent for obtaining the liquid crystal display element which can maintain a retention, the liquid crystal aligning film obtained from this liquid crystal aligning agent, and a liquid crystal display element.
  • a liquid crystal aligning agent comprising a polyamic acid ester having a repeating unit represented by the following formula (1) and an organic solvent.
  • X is a tetravalent organic group
  • Y is a divalent organic group
  • R is an alkyl group having 1 to 5 carbon atoms
  • a 1 and A 2 are each independently A hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10 carbon atoms, wherein at least part of Y is a divalent organic group represented by the following formula (2): is there.
  • D is a divalent group having 1 to 20 carbon atoms selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic ring, and these have a substituent.
  • m is 1 or 0.
  • the divalent organic group represented by the formula (2) in the formula (1) is such that D in the formula (2) is a divalent chain or cyclic alkylene group having 1 to 20 carbon atoms. Item 3.
  • Y in formula (1) is composed of Y-7, Y-21, Y-28, Y-71, Y-72, and Y-119 together with the divalent organic group represented by formula (2).
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms, and one of them is a hydrogen atom.
  • the organic solvent is N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, and 3-methoxy-N, N-dimethylpropanamide or
  • a liquid crystal alignment film obtained by applying the liquid crystal aligning agent according to any one of claims 1 to 8 to a substrate and baking at 150 to 300 ° C. 10.
  • a liquid crystal display element comprising the liquid crystal alignment film according to claim 9.
  • the liquid crystal display element according to claim 10 wherein liquid crystal molecules aligned in parallel with the substrate are driven by a lateral electric field.
  • the liquid crystal alignment film obtained from the liquid crystal alignment agent of the present invention has a high voltage even when a long-term backlight irradiation is performed or impurities are mixed into the liquid crystal in a liquid crystal display device having the liquid crystal alignment film.
  • the retention rate can be maintained and the liquid crystal orientation is high.
  • the liquid crystal aligning agent of this invention contains the polyamic acid ester which has a repeating unit represented by the said Formula (1).
  • X is a tetravalent organic group
  • Y is a divalent organic group.
  • R is an alkyl group having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms.
  • a 1 and A 2 each independently represent a hydrogen atom or an optionally substituted carbon atom having 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms.
  • At least a part of Y is a divalent organic group represented by the above formula (2).
  • This polyamic acid ester may be a polyamic acid ester in which R, A 1 , A 2 , X and Y are each one, that is, a polyamic acid ester consisting only of repeating units having the same structure, and R, A 1 , A 2 , X And a plurality of types of Y, that is, polyamic acid esters containing several types of repeating units having different structures.
  • R, A 1 , A 2 , X and Y are each one, that is, a polyamic acid ester consisting only of repeating units having the same structure, and R, A 1 , A 2 , X And a plurality of types of Y, that is, polyamic acid esters containing several types of repeating units having different structures.
  • Y is a divalent organic group represented by the above formula (2) is included.
  • D is a divalent group having 1 to 20, preferably 1 to 5 carbon atoms selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic ring. These may have a substituent.
  • m is 1 or 0.
  • the structure of the above formula (2) indicates that two benzene ring portions are bonded to NA 1 or NA 2 of the formula (1), respectively.
  • the bonding position to NA 1 or NA 2 on this benzene ring is not particularly limited, but from the viewpoint of synthesis difficulty and availability of raw materials, the amide bond that leads to D in formula (2) is the standard.
  • the position of meta or para is preferable, and the position of para is particularly preferable from the viewpoint of liquid crystal orientation.
  • the hydrogen atom of the benzene ring in Formula (2) may be substituted with a fluorine atom, a methyl group, a trifluoromethyl group, a cyano group, or a methoxy group.
  • Various ones are selected depending on the availability of raw materials, but unsubstituted ones are preferred.
  • D in the formula (2) is a divalent group having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms selected from a saturated hydrocarbon group, an unsaturated hydrocarbon group, an aromatic hydrocarbon group, and a heterocyclic ring. These may have a substituent. From the viewpoint of electrical characteristics and solubility, a divalent hydrocarbon group is preferable, and a linear alkylene group or a cyclic alkylene group is particularly preferable. This hydrocarbon group may have an unsaturated bond, and the hydrogen atom may be substituted with a carboxylic acid group or a fluorine atom. Further, from the viewpoint of liquid crystal orientation and electrical characteristics, a divalent aromatic hydrocarbon group, a heterocyclic ring, and the like are preferable. From the viewpoint of liquid crystal orientation, it is preferable that D has no substituent, but from the viewpoint of solubility, it is preferable that D be substituted with a carboxylic acid group or a fluorine atom.
  • the proportion of Y being a divalent organic group represented by the formula (2) is the divalent organic group in which all Y are represented by the formula (2).
  • a structure other than the divalent organic group represented by the formula (2) is included as Y in the formula (1). Is preferred. In this case, if a preferable ratio of the divalent organic group represented by the formula (2) is shown, the formula for the entire Y in the repeating unit represented by the formula (1) contained in the liquid crystal aligning agent of the present invention.
  • the divalent organic group represented by (2) is 1 to 99 mol%, preferably 1 to 50 mol%, more preferably 5 to 30 mol%, still more preferably 5 to 20 mol%. .
  • the total is meant.
  • Y other than the divalent organic group represented by the formula (2) is not particularly limited, and preferred specific examples thereof include the following Y-1 to Y-100. Two or more kinds of these Y may be mixed.
  • Y is Y-7, Y-21, Y-22, Y— 23, Y-25, Y-26, Y-27, Y-43, Y-44, Y-45, Y-46, Y-48, Y-63, Y-71, Y-73, Y-74, Y-75, Y-98, Y-99, and Y-100 are more preferable.
  • a structure having a long-chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination thereof in the side chain into the polyamic acid ester.
  • Y-76, Y-77, Y-78, Y-79, Y-80, Y-81, Y-82, Y-83, Y-84, Y-85, Y-86, Y-87 Y-88, Y-89, Y-90, Y-91, Y-92, Y-93, Y-94, Y-95, Y-96, or Y-97 are more preferable.
  • Arbitrary pretilt angles can be expressed by setting these structures to preferably 1 to 50 mol% with respect to the entire Y.
  • Y-101 to Y-118 are more preferable, and Y-111, Y-114, Y-115, Y-116 is particularly preferred.
  • Y of the structure other than the formula (2) as described above is preferably 50 to 99 mol%, more preferably 70 to 95 mol%, still more preferably 80 to 95 mol% of the whole Y of the formula (1). .
  • X is a tetravalent organic group, and the structure thereof is not particularly limited, and two or more kinds of structures may be mixed. If a specific example of X is specifically shown, the following X-1 to X-46 can be mentioned. Among these, X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16, X-19, X-21, X-25, X-26, X-27, X-28, X-32, X-46 and the like are preferable.
  • X-1, X-2, X-3, X-4, X-5, X-6, X-8, X-16 having an aliphatic structure X-25 or X-46 is preferred, and X-1 or X-2 is particularly preferred.
  • R is an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 2 carbon atoms, and more preferably a methyl group.
  • a 1 and A 2 are each independently a hydrogen atom or an optionally substituted alkyl group, alkenyl group or alkynyl group having 1 to 10, preferably 1 to 3 carbon atoms. It is a group.
  • alkyl group for A 1 and A 2 examples include methyl group, ethyl group, propyl group, butyl group, t-butyl group, hexyl group, octyl group, decyl group, cyclopentyl group, cyclohexyl group and the like.
  • alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
  • alkynyl group examples include those obtained by replacing one or more CH2-CH2 structures present in the alkyl group with a C ⁇ C structure, and more specifically, an ethynyl group, a 1-propynyl group, a 2-propynyl group. Group and the like.
  • the above alkyl group, alkenyl group, and alkynyl group may have a substituent as long as the whole has 1 to 10 carbon atoms, preferably 1 to 3 carbon atoms, and further form a ring structure with the substituent. May be.
  • the formation of a ring structure by a substituent means that the substituents or a substituent and a part of the mother skeleton (that is, atoms constituting A 1 and A 2 ) are bonded to form a ring structure.
  • substituents examples include halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
  • halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • aryl group that is a substituent examples include a phenyl group. This aryl group may be further substituted with the other substituent described above.
  • the organooxy group that is a substituent can have a structure represented by OR.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organooxy group include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
  • organothio group which is a substituent
  • R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
  • the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
  • the acyl group as a substituent can have a structure represented by —C (O) —R.
  • R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
  • Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
  • ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • thioester group which is a substituent
  • a structure represented by —C (S) OR— or —OC (S) —R can be shown.
  • R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
  • the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
  • the structure represented by can be shown.
  • the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
  • Examples of the substituent for substituting the hydrogen atom of R include an aryl group.
  • Examples of the aryl group as the substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
  • substituent alkyl group examples include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
  • alkenyl group as a substituent examples include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
  • alkynyl group as the substituent examples include the same alkynyl group as described above. This alkynyl group may be further substituted with the other substituent described above.
  • a 1 and A 2 a hydrogen atom or a carbon atom which may have a substituent is 1 to The alkyl group of 5 is more preferable, and a hydrogen atom, a methyl group, or an ethyl group is particularly preferable.
  • the polyamic acid ester contained in the liquid crystal aligning agent of the present invention is preferably a polymer having a site capable of imidation reaction shown below by heating, that is, a polyimide precursor capable of obtaining a polyimide, In that sense, at least one of A 1 and A 2 is preferably a hydrogen atom.
  • the polyamic acid ester used in the present invention can be synthesized by the following methods (1) to (3).
  • the polyamic acid ester can be synthesized by esterifying the polyamic acid.
  • Polyamic acid can be synthesized by reaction of tetracarboxylic dianhydride and diamine. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination. May be.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight body is easily obtained.
  • the polyamic acid thus obtained can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
  • the polyamic acid and the esterifying agent are preferably used in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 It can be synthesized by reacting for ⁇ 4 hours.
  • the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
  • the concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from dicarboxylic acid diester dichloride and diamine. Specifically, dicarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 moles relative to the dicarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight.
  • the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyamic acid ester can be synthesized by polycondensation of a dicarboxylic acid diester and a diamine. Specifically, dicarboxylic acid diester and diamine are reacted in the presence of a condensing agent, a base and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, diphenyl (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate and the like can be used.
  • the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the dicarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol with respect to the diamine component from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
  • the high molecular weight polyamic acid ester is obtained, and therefore the synthesis method (3) is particularly preferable.
  • the solution of the polyamic acid ester obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • a poor solvent is not specifically limited, Water, methanol, isopropyl alcohol, ethanol, hexane, butyl cellosolve, acetone, toluene, etc. are mentioned.
  • the liquid crystal aligning agent of this invention has the form of the solution in which the polyamic acid ester (henceforth a specific polymer) which has a repeating unit represented by above-described Formula (1) was melt
  • the molecular weight of the specific polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight (Mw), more preferably 5,000 to 300,000, and further preferably 8,000 to 100,000. .
  • the number average molecular weight (Mn) is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 4,000 to 50,000. .
  • the organic solvent contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as the specific polymer is uniformly dissolved.
  • Specific examples thereof include N, N-dimethylformamide, N, N-diethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methylcaprolactam, Examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the organic solvent contained in the liquid crystal aligning agent of the present invention includes a solvent for improving the coating film uniformity when the liquid crystal aligning agent is applied to the substrate. You may contain.
  • a solvent having a surface tension lower than that of the organic solvent is generally used.
  • ethyl cellosolve examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2 -Propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2-acetate, propylene glycol-1-monoethyl ether-2-acetate, butyl cellosolve acetate, di Propylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, lactic acid Isoamyl ester, and the like. Two types of
  • the liquid crystal aligning agent of the present invention may contain a polymer other than the specific polymer and various additives in addition to the above components as long as the effects of the present invention are not impaired.
  • the polymer other than the specific polymer examples include polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, polyamide, polysiloxane, and acrylic polymer.
  • polyamic acid is useful because it improves the relaxation rate of the residual charges accumulated by driving the liquid crystal display element.
  • the liquid crystal aligning agent of the present invention contains a polymer other than the specific polymer
  • the ratio of the specific polymer to the entire polymer contained in the liquid crystal aligning agent is preferably 5 to 95% by mass.
  • the ratio of the specific polymer to the total amount of the specific polymer and the polyamic acid is preferably 5 to 60% by mass, more preferably 5 to 40% by mass.
  • the concentration of the polymer in the liquid crystal aligning agent of the present invention can be appropriately changed depending on the setting of the thickness of the coating film to be formed, but it is single weight% from the viewpoint of forming a uniform and defect-free coating film. From the viewpoint of storage stability of the solution, it is preferably 10% by weight or less.
  • Various additives to be included in the liquid crystal alignment agent include dielectrics or conductive materials for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, and the purpose of improving the adhesion between the liquid crystal alignment film and the substrate.
  • dielectrics or conductive materials for the purpose of changing electrical properties such as dielectric constant and conductivity of the liquid crystal alignment film, and the purpose of improving the adhesion between the liquid crystal alignment film and the substrate.
  • Silane coupling agents, crosslinkable compounds for the purpose of increasing the hardness and density of the liquid crystal alignment film, and also for the purpose of efficiently promoting imidization by heating the polyimide precursor when the coating film is baked And an imidization accelerator.
  • the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
  • the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an electrode or the like is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
  • Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method.
  • Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention.
  • drying is performed at 50 ° C. to 120 ° C. for 1 minute to 10 minutes, and then baking is performed at 150 ° C. to 300 ° C. for 5 minutes to 120 minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
  • Examples of methods for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
  • the photo-alignment treatment method there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases. Can be mentioned.
  • the radiation ultraviolet rays and visible rays having a wavelength of 100 nm to 800 nm can be used.
  • liquid crystal display elements such as VA, TN, STN, TFT, and lateral electric field type, It can be used as a liquid crystal alignment film for ferroelectric and antiferroelectric liquid crystal display elements.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by a known method after obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the above-described method and performing alignment treatment by rubbing treatment or the like. is there.
  • a method for producing a liquid crystal cell of a liquid crystal display element is not particularly limited.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably 1 to 30 ⁇ m, more preferably 1 to 30 ⁇ m, with the liquid crystal alignment film surface inside.
  • a method is generally used in which a spacer of 2 to 10 ⁇ m is placed, and the periphery is fixed with a sealant, and liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • DA-1 bis (4-aminophenoxy) methane
  • DA-2 N- (4-aminophenyl) -N-methylbenzene-1,4-diamine
  • DA-3 1,3-bis (4-aminophenethyl)
  • Urea DA-4 N1, N4-bis [(2-tert-butoxycarbonylamino) -4-nitrophenyl] adipamide
  • DA-5 4,4′-diaminodiphenylamine DA-6: 3,5-diaminobenzoic acid
  • N1, N4-bis [(2-tert-butoxycarbonylamino) -4-nitrophenyl] adipamide and palladium carbon 5 wt% were added to a 300 mL four-necked flask equipped with a three-way cock and a stirrer. 5 g was measured, 250 ml of DMF was added, vacuum degassing and hydrogen substitution were performed, and the reaction was allowed to proceed at room temperature for 48 hours.
  • the measuring method of the viscosity of a polymer solution and the molecular weight of a polymer is shown.
  • the viscosity of the polyamic acid solution or the polyamic acid ester solution is an E-type viscometer TVE-22H (manufactured by Toki Sangyo Co., Ltd.), sample volume 1.1 mL, cone rotor TE-1 (1 ° 34 ′, R24 ), Measured at a temperature of 25 ° C.
  • Example 1 4.10 g of the polyamic acid ester powder (PAE-a1) obtained in Synthesis Example 1 was placed in a 100 mL Erlenmeyer flask containing a stirring bar, 64.2 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 18 hours. Subsequently, 22.8 g of BCS was added and stirred for 2 hours to obtain a liquid crystal aligning agent (A-1) which is a polyamic acid ester solution having a solid content concentration of 4.40% by mass.
  • A-1 liquid crystal aligning agent
  • Example 2 3.81 g of the polyamic acid ester powder (PAE-a2) obtained in Synthesis Example 2 was placed in a 100 mL Erlenmeyer flask containing a stirring bar, 59.7 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 18 hours. Subsequently, 21.2 g of BCS was added and stirred for 2 hours to obtain a liquid crystal aligning agent (A-2) which is a polyamic acid ester solution having a solid content concentration of 4.41% by mass.
  • A-2 liquid crystal aligning agent
  • Example 3 4.21 g of the polyamic acid ester powder (PAE-a3) obtained in Synthesis Example 3 was placed in a 100 mL Erlenmeyer flask containing a stirring bar, 66.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 18 hours. Subsequently, 23.4 g of BCS was added and stirred for 2 hours to obtain a liquid crystal aligning agent (A-3) which is a polyamic acid ester solution having a solid content concentration of 4.45% by mass.
  • PAE-a3 polyamic acid ester powder obtained in Synthesis Example 3 was placed in a 100 mL Erlenmeyer flask containing a stirring bar, 66.0 g of NMP was added, and the mixture was dissolved by stirring at room temperature for 18 hours. Subsequently, 23.4 g of BCS was added and stirred for 2 hours to obtain a liquid crystal aligning agent (A-3) which is a polyamic acid ester solution having a solid content concentration of
  • the polyamic acid had a number average molecular weight of 13,700 and a weight average molecular weight of 32,300. NMP and BCS were added to this polyamic acid solution so that the polyamic acid was 6% by mass, NMP was 69% by mass, and BCS was 25% by mass to prepare a polyamic acid solution (D).
  • Example 4 After adding NMP to the polyamic acid ester powder (PAE-a1) obtained in Synthesis Example 1 and stirring and dissolving at 50 ° C. for 30 hr, NMP and BCS were added, and the polyamic acid ester was 6% by mass. NMP was prepared at 69% by mass and BCS was prepared at 25% by mass. 6.10 g of this polyamic acid ester solution and 14.0 g of the polyamic acid solution (D) prepared in Synthesis Example 6 were placed in an Erlenmeyer flask containing a stirrer and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (A- 4) was obtained.
  • A- 4 liquid crystal aligning agent
  • Example 5 After adding NMP to the polyamic acid ester powder (PAE-a2) obtained in Synthesis Example 2 and stirring and dissolving at 50 ° C. for 30 hours, NMP and BCS were added, and the polyamic acid ester was 6% by mass. NMP was prepared at 69% by mass and BCS was prepared at 25% by mass.
  • the polyamic acid ester solution (6.00 g) and the polyamic acid solution (D) (13.9 g) prepared in Synthesis Example 6 were placed in an Erlenmeyer flask containing a stirrer and stirred at room temperature for 3 hours to obtain a liquid crystal aligning agent (A -5) was obtained.
  • the backlight resistance of the voltage holding ratio was evaluated as follows. (Production of liquid crystal cell for measuring voltage holding ratio) After filtering the liquid crystal aligning agent through a 1.0 ⁇ m filter, a substrate with an electrode (a glass substrate with a size of 30 mm wide ⁇ 40 mm long and 1.1 mm thick. The electrode is a rectangle 10 mm wide ⁇ 40 mm long, It was applied by spin coating to a 35 nm thick ITO electrode). After drying on a hot plate at 50 ° C. for 5 minutes, baking was performed in an IR oven at 230 ° C. for 20 minutes to form a coating film having a thickness of 100 nm to obtain a substrate with a liquid crystal alignment film.
  • This liquid crystal alignment film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 1000 rpm, moving speed: 20 mm / sec, indentation length: 0.4 mm), and then irradiated with ultrasonic waves in pure water for 1 minute. After washing and removing water droplets by air blow, drying was performed at 80 ° C. for 15 minutes to obtain a substrate with a liquid crystal alignment film.
  • a voltage of 1V is applied to this liquid crystal cell at a temperature of 60 ° C. for 60 ⁇ sec, the voltage after 100 msec is measured, and the voltage holding ratio is defined as the voltage holding ratio. Impurity contamination resistance was evaluated. In other words, the smaller the difference between the voltage holding ratio of a liquid crystal cell injected with normal liquid crystal (liquid crystal to which polyethylene glycol is not added) and the voltage holding ratio of a liquid crystal cell injected with impurity mixed liquid crystal, the liquid crystal impurity mixing resistance is. It is good.
  • the liquid crystal alignment was evaluated as follows. (Preparation of substrate with electrode for FFS method)
  • substrate with the electrode for FFS systems was prepared.
  • the substrate is a glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • An IZO electrode constituting the counter electrode is formed on the entire surface as a first layer on the substrate.
  • a SiN (silicon nitride) film formed by a CVD method is formed as a second layer on the first IZO electrode.
  • the second layer SiN film has a thickness of 500 nm and functions as an interlayer insulating film.
  • a comb-like pixel electrode formed by patterning an IZO film as the third layer is arranged to form two pixels, a first pixel and a second pixel. ing.
  • the size of each pixel is 10 mm long and about 5 mm wide.
  • the first-layer counter electrode and the third-layer pixel electrode are electrically insulated by the action of the second-layer SiN film.
  • the pixel electrode of the third layer has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • each pixel Since the pixel electrode forming each pixel is formed by arranging a plurality of bent-shaped electrode elements in the central portion, the shape of each pixel is not rectangular, but in the central portion like the electrode elements. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and the pixel in the second region of the pixel.
  • the electrode elements of the electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • the liquid crystal aligning agent was filtered with a 1.0 ⁇ m filter, and then applied to the substrate with the FFS mode electrode by spin coating. After drying on a hot plate at 100 ° C. for 100 seconds, baking was performed in a hot air circulation oven at 230 ° C. for 20 minutes to obtain a polyimide film having a thickness of 60 nm.
  • This polyimide film is rubbed with a rayon cloth (roller diameter: 120 mm, roller rotation speed: 500 rpm, moving speed: 30 mm / sec, indentation length: 0.3 mm, rubbing direction: inclined by 10 ° with respect to the third layer IZO comb-teeth electrode And then washed by irradiating with ultrasonic waves for 1 minute in a 3/7 mixed solvent of isopropyl alcohol and pure water, removing water droplets by air blow, and then drying at 80 ° C. for 15 minutes. A substrate with an alignment film was obtained.
  • a polyimide film is formed in the same manner as described above on a glass substrate having a columnar spacer having a height of 4 ⁇ m and ITO on the back surface, and an alignment process is performed in the same manner as described above.
  • the obtained substrate with a liquid crystal alignment film was obtained.
  • the above two substrates with a liquid crystal alignment film are made into one set, and a sealing agent is printed in a form leaving a liquid crystal injection port on the substrate, and the liquid crystal alignment film surface faces the rubbing direction antiparallel with the other substrate. Then, the sealing agent was cured to produce an empty cell having a cell gap of 4 ⁇ m.
  • Liquid crystal ZLI-4792 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an FFS liquid crystal cell. Thereafter, the obtained liquid crystal cell was heated at 110 ° C. for 30 minutes and left at 23 ° C. overnight to obtain a liquid crystal cell for evaluating liquid crystal alignment.
  • the rotation angle when the liquid crystal cell was rotated from the angle at which the second area of the first pixel became darkest to the angle at which the first area became darkest was calculated as an angle ⁇ .
  • the second region and the first region were compared, and a similar angle ⁇ was calculated.
  • the average value of the angle ⁇ values of the first pixel and the second pixel was calculated as the angle ⁇ of the liquid crystal cell, and the liquid crystal orientation was evaluated based on the magnitude of the value. That is, if the value of the angle ⁇ is small, the liquid crystal alignment is good.
  • Table 1 summarizes the evaluation results of the backlight resistance of the voltage holding ratio of the liquid crystal cells produced using the liquid crystal aligning agents obtained in Examples 1 to 5 and Comparative Example 3.
  • Table 2 summarizes the results of evaluating the liquid crystal impurity mixing resistance of the voltage holding ratio and the liquid crystal orientation of the liquid crystal cells prepared using the liquid crystal aligning agents obtained in Examples 1 to 3 and Comparative Examples 1 and 2. Show.
  • LC1 is a voltage holding ratio of a liquid crystal cell in which normal liquid crystal is injected
  • LC2 is a voltage holding ratio of a liquid crystal cell in which impurity mixed liquid crystal is injected.
  • the liquid crystal alignment film produced by using the liquid crystal aligning agent of the present invention is particularly useful in an IPS drive type or FFS drive type liquid crystal display element, and the liquid crystal display element of the present invention is a multi-function mobile phone (smart phone). ), Tablet personal computers, liquid crystal televisions and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 長期のバックライト照射や液晶中へ不純物が混入しても高い電圧保持率を有する液晶配向膜が得られる液晶配向剤を提供する。 式(1)の繰り返し単位を有するポリアミック酸エステルと有機溶媒とを含有する液晶配向剤。式(1)(Xは4価の有機基であり、Yは2価の有機基であり、Rは炭素数1~5のアルキル基であり、A、Aは、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基であり、Yの少なくとも一部は式(2)の2価の有機基である。)式(2)(Dは、2価の炭素数1~20の飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基又は複素環を表し、Dは置換基を有していてもよい。またmは、1又は0である。)

Description

液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
 本発明は、ポリアミック酸エステルを含有する液晶配向剤、該液晶配向剤から得られる液晶配向膜及び液晶表示素子に関する。
 液晶表示素子は、従来から、パソコン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられており、駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式(Fringe Field Switching)等の横電界方式が知られている。
 一般に、基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、高品位な表示が可能な液晶表示素子として知られている。液晶を一定方向に配向させるための手法として、基板上にポリイミドなどの高分子膜を形成し、この表面を布で擦る、いわゆるラビング処理を行う方法があり、工業的にも広く用いられてきた。
 従来からの課題としては電圧保持率や、アクティブマトリクス構造由来で印加される直流電圧成分による電荷の蓄積が挙げられる。液晶表示素子内に電荷が蓄積されると、液晶配向の乱れや、残像として表示に影響を与え、液晶表示素子の表示品位を著しく低下させる。あるいは、電荷が蓄積された状態で駆動した場合、駆動直後において、液晶分子の制御が正常に行われずにフリッカ(ちらつき)等を生じてしまう。
 ポリイミド系の液晶配向膜においては、上記のような要求にこたえるために、種々の提案がなされてきている。例えば、直流電圧によって発生する残像が消えるまでの時間の短い液晶配向膜として、ポリアミド酸やイミド基含有ポリアミド酸に加えて、特定構造の3級アミンを含有する液晶配向剤を使用したもの(例えば、特許文献1参照)や、ピリジン骨格などを有する特定ジアミン化合物を原料に使用した可溶性ポリイミドを含有する液晶配向剤を使用したもの(例えば、特許文献2参照)などが提案されている。
特開平9-316200号公報 特開平10-104633号公報
 最近では、高精細化に伴って従来よりも高い表示品位が求められており、電圧保持率や電荷の蓄積の問題がより顕著に現れるようになってきた。特に横電界方式の液晶表示素子は基板内に形成される電極部分が少ないために、液晶配向膜の電圧保持率が弱いと液晶に十分な電圧がかからず表示コントラストが低下してしまう。加えて、縦電界方式と比較して画素電極と共通電極との距離が近いため、配向膜や液晶層に強い電界が作用してしまい、これらの不都合が顕著になりやすいという問題点がある。さらに近年は、液晶表示素子において、高輝度を得るために光量の大きいバックライトを使用する場合があり、バックライトからの光りに対する高い電圧保持率の安定性が要求されている。即ちバックライトに長時間曝された後であっても、電圧保持率が低下しにくいことが求められている。
 また、近年の液晶の高速応答化に伴い、不純物が液晶中に混入した場合に、液晶表示素子の電圧保持率が大きく低下してしまうことも分かっている。さらに、IPS方式やFFS駆動方式などの液晶分子を横電界で駆動させる方式においては、液晶配向の安定性も重要となる。配向の安定性に乏しいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラストの低下や残像又は焼き付きの原因となる。
 本発明は、上記の事情を鑑みてなされたものであって、本来、液晶配向性が高いが、長期のバックライト照射が行われたり、液晶中への不純物の混入などが起こっても高い電圧保持率を維持できる液晶表示素子を得るための液晶配向剤、該液晶配向剤から得られる液晶配向膜、及び液晶表示素子を提供することを目的とする。
 本発明は、上記の課題を達成するべく鋭意研究を進めたところ、下記の要旨を有する本発明に到達したものである。 1.下記式(1)で表される繰り返し単位を有するポリアミック酸エステルと、有機溶媒とを含有することを特徴とする液晶配向剤。
Figure JPOXMLDOC01-appb-C000004

(式(1)において、Xは4価の有機基であり、Yは2価の有機基であり、Rは炭素数1~5のアルキル基であり、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基であり、Yの少なくとも一部は下記式(2)で表される2価の有機基である。)
Figure JPOXMLDOC01-appb-C000005

(式(2)中、Dは飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、複素環から選ばれる炭素数1~20の2価の基であり、これらは置換基を有していてもよく、mは、1又は0である。)
2.式(1)中のYの全体に対して、式(2)で表される2価の有機基が、1~99モル%含まれる、請求項1に記載の液晶配向剤。
3.式(1)中の式(2)で表される2価の有機基が、式(2)中のDが、炭素数1~20の2価の鎖状若しくは環状のアルキレン基である、請求項1又は2に記載の液晶配向剤。
4.式(1)中のYが、式(2)で表される2価の有機基とともに、Y-7、Y-21、Y-28、Y-71、Y-72、及びY-119からなる群から選ばれる少なくとも1種の基である、請求項1~3のいずれか1項に記載の液晶配向剤。
5.A及びAは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基であり、かつそのどちらか一方は水素原子である、請求項1~3のいずれか1項に記載の液晶配向剤。
6.式(1)中のXが、下記式で表される構造からなる群から選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の液晶配向剤。
Figure JPOXMLDOC01-appb-C000006
7.前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、及び3-メトキシ-N,N-ジメチルプロパンアミドからなる群から選ばれる1種又は2種以上である、請求項1~6のいずれか1項に記載の液晶配向剤。
8.前記ポリアミック酸エステルとともに他の重合体が含有されるが、前記ポリアミック酸エステルが全重合体の5~95質量%含有される、請求項1~7のいずれか1項に記載の液晶配向剤。
9.請求項1~8のいずれか1項に記載の液晶配向剤を基板に塗布し、150~300℃で焼成して得られる、液晶配向膜。
10.請求項9に記載の液晶配向膜を有する、液晶表示素子。
11.基板に対して平行配向している液晶分子を横電界で駆動させる請求項10に記載の液晶表示素子。
 本発明の液晶配向剤から得られる液晶配向膜は、該当液晶配向膜を具備する液晶表示素子において、長期のバックライト照射が行われたり、液晶中への不純物の混入などが起こっても高い電圧保持率を維持でき、且つ液晶配向性が高い。
<ポリアミック酸エステル>
 本発明の液晶配向剤は、上記式(1)で表される繰り返し単位を有するポリアミック酸エステルを含有する。
 上記式(1)中、Xは4価の有機基であり、Yは2価の有機基である。Rは炭素数が1~5、好ましくは1~3のアルキル基である。A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい炭素数1~10、好ましくは1~3
 を有するアルキル基、アルケニル基若しくはアルキニル基である。また、Yの少なくとも一部は、上記式(2)で表される2価の有機基である。)
 このポリアミック酸エステルは、上記のR、A、A、X及びYがそれぞれ1種、即ち同一構造の繰り返し単位のみからなるポリアミック酸エステルでもよく、また、R、A、A、X及びYがそれぞれ複数種存在する、即ち異なる構造の繰り返し単位を何種類か含有するポリアミック酸エステルでもよい。ただし、Yが上記式(2)で表される2価の有機基である単位を少なくとも1種は含むことが必要である。
 上記式(2)中、Dは飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、複素環から選ばれる炭素数1~20、好ましくは1~5を有する2価の基であり、これらは置換基を有していてもよい。mは、1又は0である。
 上記式(2)の構造は、2つあるベンゼン環の部分でそれぞれ式(1)のN-A又はN-Aに結合していることを表している。このベンゼン環上のN-A又はN-Aへの結合位置は特に限定されないが、合成難易度や原料の入手性の観点では、式(2)中のDへと繋がるアミド結合を基準として、それぞれメタ又はパラの位置が好ましく、液晶配向性の観点ではパラの位置が特に好ましい。また、式(2)中のベンゼン環の水素原子は、フッ素原子、メチル基、トリフルオロメチル基、シアノ基、又は、メトキシ基で置換されていてもよい。原料の入手性などにより種々選択されるが、未置換のものが好ましい。
 式(2)中のDは、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、及び複素環から選ばれる炭素数1~20、好ましくは1~5の2価の基であり、これらは置換基を有していてもよい。電気特性や溶解性の観点では2価の炭化水素基などが好ましく、直鎖アルキレン基や環状アルキレン基などが特に好ましい。この炭化水素基は不飽和結合を有していても良く、さらには、水素原子がカルボン酸基やフッ素原子などで置換されていても良い。また、液晶配向性や電気特性の観点では、2価の芳香族炭化水素基や複素環などが好ましい。液晶配向性の観点からはDは置換基を有さないほうが好ましいが、溶解性の観点では、水素原子がカルボン酸基やフッ素原子などで置換されているものが好ましい。
 前記式(1)で表される繰り返し単位において、Yが式(2)で表される2価の有機基である割合は、全てのYが式(2)で表される2価の有機基であっても構わないが、本発明の液晶配向膜に更なる特性を付与する為に、式(2)で表される2価の有機基以外の構造を式(1)のYとして含むことは好ましい。この際の式(2)で表される2価の有機基の好ましい割合を示すならば、本発明の液晶配向剤に含まれる式(1)で表される繰り返し単位におけるY全体に対して式(2)で表される2価の有機基が1~99モル%であり、好ましくは1~50モル%であり、より好ましくは5~30モル%、さらに好ましくは5~20モル%である。なお、式(2)で表される2価の有機基が複数種含まれる場合はその合計を意味する。
 式(2)で表される2価の有機基以外のYの構造は特に限定されるものではないが、その好ましい具体例を示すならば、下記のY-1~Y-100が挙げられる。これらのYは2種類以上混在していても構わない。
 このようなYのうち、液晶配向性をさらに高めるために、直線性の高い構造をポリアミック酸エステルに導入することは好ましく、Yとしては、Y-7、Y-21、Y-22、Y-23、Y-25、Y-26、Y-27、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-73、Y-74、Y-75、Y-98、Y-99,Y-100がより好ましい。
 また、プレチルト角を高くしたい場合は、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有する構造をポリアミック酸エステルに導入することが好ましく、Yとしては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、又はY-97がより好ましい。これらの構造を、Y全体に対して、好ましくは1~50モル%とすることにより、任意のプレチルト角を発現することができる。一方、直流電圧により液晶表示素子内に蓄積する残留電荷の緩和が早い液晶配向膜を得るためには、Y-101~Y-118がより好ましく、Y-111、Y-114,Y-115,Y-116が特に好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記のような式(2)以外の構造のYは、式(1)のY全体の50~99モル%が好ましく、より好ましくは70~95モル%、さらに好ましくは80~95モル%である。
 前記式(1)において、Xは4価の有機基でありその構造は特に限定されるものではなく、2種類以上の構造が混在していてもよい。Xの具体例をあえて示すならば、以下に示すX-1~X-46が挙げられる。なかでも、原料モノマーの入手性から、X-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-19、X-21、X-25、X-26、X-27、X-28、X-32、X-46などは好ましい。より高い透過率の液晶配向膜を得るためには、脂肪族構造を有するX-1、X-2、X-3、X-4、X-5、X-6、X-8、X-16、X-25、又はX-46が好ましく、X-1、又はX-2が特に好ましい。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
 前記式(1)において、Rは、炭素数1~5のアルキル基であり、好ましくは炭素数1~2のアルキル基、さらに好ましくはメチル基である。
 前記式(1)において、A及びAはそれぞれ独立して水素原子、又は置換基を有してもよい、炭素数が1~10、好ましくは1~3のアルキル基、アルケニル基若しくはアルキニル基である。
 A及びAの上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH2-CH2構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
 上記のアルキル基、アルケニル基や、アルキニル基は、全体として炭素数が1~10、好ましくは1~3であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部(すなわちAやAを構成する原子)とが結合して環構造となることを意味する。
 この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
 置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
 置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
 置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
 置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
 置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるリン酸エステル基としては、-OP(O)-(OR)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
 置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。Rの水素原子を置換する置換基としては、アリール基が挙げられる。この置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
 置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
 一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、A及びAとしては、水素原子又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
 また、本発明の液晶配向剤が含有するポリアミック酸エステルは、加熱することによって下記に示すイミド化反応が可能な部位を有するポリマー、即ちポリイミドを得ることができるポリイミド前駆体であることが好ましく、その意味ではA及びAのいずれか少なくとも一方は水素原子であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
(Rは、式(1)におけるRと同じである。)
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、ポリアミック酸をエステル化することによって合成することができる。
 ポリアミック酸は、テトラカルボン酸二無水物とジアミンとの反応によって合成することができる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。上記の反応に用いる有機溶媒は、モノマー及びポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。ポリマーの濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。このようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
 ポリアミック酸をエステル化するには、ポリアミック酸とエステル化剤を、好ましくは有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
 上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)ジカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、ジカルボン酸ジエステルジクロリドとジアミンから合成することができる。
具体的には、ジカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
 上記の反応に用いる溶媒は、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、ジカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
(3)ジカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、ジカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、ジカルボン酸ジエステルとジアミンを縮合剤、塩基、有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナートなどが使用できる。縮合剤の添加量は、ジカルボン酸ジエステルに対して2~3倍モルであることが好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましい。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(3)の合成法が特に好ましい。
 以上のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、イソプロピルアルコール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
<液晶配向剤>
 本発明の液晶配向剤は、前記した式(1)で表される繰り返し単位を有するポリアミック酸エステル(以下、特定重合体ともいう)が有機溶媒中に溶解された溶液の形態を有する。特定重合体の分子量は、重量平均分子量(Mw)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、8,000~100,000である。また、数平均分子量(Mn)は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、4,000~50,000である。
 本発明の液晶配向剤に含有される有機溶媒は、特定重合体が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では特定重合体を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明の液晶配向剤に含有される有機溶媒は、、特定重合体を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例を挙げるならば、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種類上を併用してもよい。
 本発明の液晶配向剤には、上記の成分の他、本発明の効果が損なわれない範囲であれば、特定重合体以外の重合体や種々の添加剤を含有していても良い。
 特定重合体以外の重合体としては、ポリアミック酸やポリアミック酸エステルなどのポリイミド前駆体、ポリイミド、ポリアミド、ポリシロキサン、アクリル重合体などを挙げることができる。特にポリアミック酸は、液晶表示素子の駆動によって蓄積する残留電荷の、緩和速度を向上させるので有用である。本発明の液晶配向剤に特定重合体以外の重合体を含有させる場合、液晶配向剤に含まれる重合体全体に対する特定重合体の割合としては5~95質量%であることが好ましい。残留電荷の緩和速度を向上させる目的でポリアミック酸を含有させる場合は、特定重合体とポリアミック酸の合計量に対する特定重合体の割合が5~60質量%であることが好ましく、より好ましくは5~40質量%である。
 本発明の液晶配向剤における重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1重重量%以上であることが好ましく、溶液の保存安定性の点からは10重量%以下とすることが好ましい。
 液晶配向剤に含有させる種々の添加剤としては、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリイミド前駆体の加熱によるイミド化を効率よく進行させる目的のイミド化促進剤などが挙げられる。
<液晶配向膜>
 本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のための電極等が形成された基板を用いることがプロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
 本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分乾燥させ、その後150℃~300℃で5分~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
 得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線及び可視光線を用いることができる。
 上記のようにして本発明の液晶配向剤から得られた液晶配向膜は、優れた特性を有しているので、VA、TN、STN、TFT、横電界型等の液晶表示素子、更には、強誘電性及び反強誘電性の液晶表示素子用の液晶配向膜として用いることができる。
<液晶表示素子>
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向剤から液晶配向膜付き基板を得、ラビング処理などにより配向処理を行った後、既知の方法により、液晶表示素子としたものである。
 液晶表示素の液晶セルの製造方法は特に限定されないが、一例を挙げるならば、液晶配向膜が形成された1対の基板を液晶配向膜面を内側にして、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで設置した後、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
 以下に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれらに限定されるものではない。
本実施例で使用する略号の説明
<有機溶媒>
NMP: N-メチル-2-ピロリドン
BCS: ブチルセロソルブ
<テトラカルボン酸誘導体>
TC-1 :2,4-ビス(メトキシカルボニル)シクロブタン-1,3-ジカルボン酸
TC-2 :3,3’,4,4’-ビフェニルテトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000026
<ジアミン>
DA-1 :ビス(4-アミノフェノキシ)メタン
DA-2 :N-(4-アミノフェニル)-N-メチルベンゼン-1,4-ジアミン
DA-3 :1,3-ビス(4-アミノフェネチル)ウレア
DA-4 :N1,N4-ビス[(2-tert―ブトキシカルボニルアミノ)-4-ニトロフェニル]アジパミド
DA-5 :4,4’-ジアミノジフェニルアミン
DA-6 :3,5-ジアミノ安息香酸
Figure JPOXMLDOC01-appb-C000027

<縮合剤>
DBOP:ジフェニル(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホナート
Figure JPOXMLDOC01-appb-C000028
<DA-4の合成>
 本実施例で用いたジアミンDA-4は以下のようにして合成した。
Figure JPOXMLDOC01-appb-C000029
 500mL四口フラスコに2-tertブトキシカルボニルアミノ-4-ニトロアニリンを20.0g(78.97mmol)、ピリジンを15.6g(197.43mmol)測り取り、脱水THF300mlとDMF100mlとの混合溶媒に溶解させ、氷浴中10℃以下を保ちながら、窒素雰囲気下でアジポイルクロリド6.5g(35.54mmol)のTHF溶液(20wt%)を滴下漏斗を用いてゆっくり滴下し、24時間攪拌反応させた。反応が進行するにつれて固体が析出してきた。反応終了後、反応溶液に純水300mlを加えしばらく攪拌し、1Lのメタノールに反応溶液を注ぎしばらく攪拌した。固体を濾過し、更にメタノール500mlで数回洗浄することで白灰色の固体19.5g(収率:89%)を得た。得られた固体はN1,N4-ビス[(2-tert―ブトキシカルボニルアミノ)-4-ニトロフェニル]アジパミドであった。
 その後、三方コックと攪拌子を備えた300mL四口フラスコにN1,N4-ビス[(2-tert―ブトキシカルボニルアミノ)-4-ニトロフェニル]アジパミド15.0gとパラジウムカーボン(5wt%)を1.5g計り取り、DMFを250ml加え、減圧脱気及び水素置換を行い、室温で48時間反応させた。
 反応終了後、PTFE(ポリテトラフルオロエチレン)製のメンブランフィルターにてパラジウムカーボンを除去し、濾液を10℃以下に冷やしたメタノール500mlに注ぎ、しばらく攪拌することで固体が析出した。得られた固体を回収し、メタノールで洗浄した後、酢酸エチルとn-ヘキサンの混合溶媒で洗浄し、60℃で真空乾燥させることにより、目的のジアミンである薄灰色の固体12.2g(収率:90%)を得た。得られた固体は[DA-4]であった。その構造は、分子内水素原子の核磁気共鳴スペクトルであるH-NMRスペクトルにて確認した。測定データを以下に示す。
H NMR (400 MHz,[D]-DMSO)δ:9.19(s、2H)、7.97(s、2H)、7.00(d-d、2H)、6.83(d、2H)、6.33(d-d、2H)、5.04(s-br、4H)、2,50(m、4H)、1.44(m、4H)、1.48(s、18H)
 以下に、重合体溶液の粘度及び重合体の分子量の測定方法を示す。
[粘度]
 合成例において、ポリアミック酸溶液又はポリアミック酸エステル溶液の粘度はE型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)、温度25℃で測定した。
[分子量]
 ポリアミック酸及びポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として、Mn及びMwを算出した。
GPC装置:(株)Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
 流速:1.0ml/分
 検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(Mw:約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルを別々に測定。
(合成例1)
 撹拌子を入れた四つ口フラスコにテトラカルボン酸誘導体TC-1を4.94g(19.0mmol)投入した後、NMP95.0gを加えて撹拌して溶解させた。次いで、トリエチルアミンを6.07g(60.0mmol)、及びジアミンDA-1を3.45g(15.0mmol)、ジアミンDA-3を0.895g(3mmol)、ジアミンDA-4を1.11g(1.50mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、縮合剤DBOPを16.1g(42.0mmol)添加し、更にNMPを16.8g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は43.4mPa・sであった。
 このポリミック酸エステル溶液をメタノール866g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、特定重合体であるポリアミック酸エステルの粉末(PAE-a1)を得た。このポリアミック酸エステルの分子量はMn=13,612、Mw=31,063であった。
(合成例2)
 撹拌子を入れた四つ口フラスコにテトラカルボン酸誘導体TC-1を4.94g(19.0mmol)投入した後、NMP101.4gを加えて撹拌して溶解させた。次いで、トリエチルアミンを6.07g(60.0mmol)、及びジアミンDA-1を2.99g(13.0mmol)、ジアミンDA-3を0.90g(3.00mmol)、ジアミンDA-4を2.23g(4.00mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、縮合剤DBOPを16.1g(42.0mmol)添加し、更にNMPを16.8g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は41.5mPa・sであった。
 このポリミック酸エステル溶液をメタノール915g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、特定重合体であるポリアミック酸エステルの粉末(PAE-a2)を得た。このポリアミック酸エステルの分子量はMn=14,618、Mw=33,564であった。
(合成例3)
 撹拌子を入れた四つ口フラスコにテトラカルボン酸誘導体TC-1を106.5g(0.41mol)投入した後、NMP2120gを加えて撹拌して溶解させた。次いで、トリエチルアミンを133.6g(1.32mol)、及びジアミンDA-1を45.59g(0.20mol)、ジアミンDA-2を28.15g(0.13mol)、ジアミンDA-3を19.69g(0.07mol)、ジアミンDA-4を24.49g(0.044mol)を加えて撹拌して溶解させた。
 この溶液を撹拌しながら、縮合剤DBOPを313.7g(0.82mol)添加し、更にNMPを291.2g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は36.5mPa・sであった。
 このポリミック酸エステル溶液をメタノール915g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、特定重合体であるポリアミック酸エステルの粉末(PAE-a3)を得た。このポリアミック酸エステルの分子量はMn=13,113、Mw=30,067であった。
(合成例4)
 撹拌子を入れた四つ口フラスコにテトラカルボン酸誘導体TC-1を2.55g(9.80mmol)投入した後、NMP45.0gを加えて撹拌して溶解させた。次いで、トリエチルアミンを2.13g(21.0mmol)、及びジアミンDA-1を1.96g(8.50mmol)、ジアミンDA-3を0.45g(1.50mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、縮合剤DBOPを8.05g(21.0mmol)添加し、更にNMPを7.94g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は50.0mPa・sであった。
 このポリミック酸エステル溶液をメタノール408g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、特定重合体ではないポリアミック酸エステルの粉末(PAE-b1)を得た。このポリアミック酸エステルの分子量はMn=12,542、Mw=35,098であった。
(合成例5)
 撹拌子を入れた四つ口フラスコにテトラカルボン酸誘導体TC-1を8.28g(31.8mmol)投入した後、NMP45.0gを加えて撹拌して溶解させた。次いで、トリエチルアミンを2.13g(21.0mmol)、及びジアミンDA-1を4.24g(18.4mmol)、ジアミンDA-2を2.14g(10.0mmol)、ジアミンDA-3を1.50g(5.00mmol)加えて撹拌して溶解させた。
 この溶液を撹拌しながら、縮合剤DBOPを25.69g(67.0mmol)添加し、更にNMPを18.78g加え、室温で12時間撹拌してポリアミック酸エステルの溶液を得た。このポリミック酸エステル溶液の温度25℃における粘度は55.1mPa・sであった。
 このポリミック酸エステル溶液をメタノール1215g中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄した後に温度100℃で減圧乾燥し、特定重合体ではないポリアミック酸エステルの粉末(PAE-b2)を得た。このポリアミック酸エステルの分子量はMn=14,132、Mw=34,191であった。
(実施例1)
 合成例1で得たポリアミック酸エステルの粉末(PAE-a1)4.10gを撹拌子の入った100mL三角フラスコに取り、NMP64.2gを加え、室温で18時間撹拌して溶解させた。続いて、BCS22.8gを加え、2時間撹拌して固形分濃度4.40質量%のポリアミック酸エステル溶液である液晶配向剤(A-1)を得た。
(実施例2)
 合成例2で得たポリアミック酸エステルの粉末(PAE-a2)3.81gを撹拌子の入った100mL三角フラスコに取り、NMP59.7gを加え、室温で18時間撹拌して溶解させた。続いて、BCS21.2gを加え、2時間撹拌して固形分濃度4.41質量%のポリアミック酸エステル溶液である液晶配向剤(A-2)を得た。
(実施例3)
 合成例3で得たポリアミック酸エステルの粉末(PAE-a3)4.21gを撹拌子の入った100mL三角フラスコに取り、NMP66.0gを加え、室温で18時間撹拌して溶解させた。続いて、BCS23.4gを加え、2時間撹拌して固形分濃度4.45質量%のポリアミック酸エステル溶液である液晶配向剤(A-3)を得た。
(比較例1)
 合成例4で得たポリアミック酸エステルの粉末(PAE-b1)1.77gを撹拌子の入った100mL三角フラスコに取り、NMP27.7gを加え、室温で18時間撹拌して溶解させた。続いて、BCS9.85gを加え、2時間撹拌して固形分濃度4.34質量%のポリアミック酸エステル溶液である液晶配向剤(B-1)を得た。
(比較例2)
 合成例5で得たポリアミック酸エステルの粉末(PAE-b2)3.87gを撹拌子の入った100mL三角フラスコに取り、NMP60.6gを加え、室温で18時間撹拌して溶解させた。続いて、BCS21.5gを加え、2時間撹拌して固形分濃度4.30質量%のポリアミック酸エステル溶液である液晶配向剤(B-2)を得た。
(合成例6)
 撹拌子を入れた四つ口フラスコにジアミンDA-5を3.98g(20.0mmol)、ジアミンDA-6を0.76g(5.00mmol)を投入した後、NMP54.5gを加えて撹拌し溶解させた。次いで、テトラカルボン酸誘導体TC-2を6.84g(23.3mmol)を添加し、NMPを30.4g加えて40℃で15時間反応させポリアミック酸の溶液を得た。このポリアミック酸の溶液の温度25℃における粘度は570mPa・sであった。また、このポリアミック酸の数平均分子量は13,700、重量平均分子量は32,300であった。
 このポリアミック酸の溶液に、ポリアミック酸が6質量%、NMPが69質量%、BCSが25質量%になるよう、NMP、BCSを加え、ポリアミック酸溶液(D)を調製した。
(実施例4)
 合成例1で得られたポリアミック酸エステルの粉末(PAE-a1)にNMPを加えて、50℃にて30hr攪拌して溶解させた後、NMP、BCSを加え、ポリアミック酸エステルが6質量%、NMPが69質量%、BCSが25質量%になるよう調製した。このポリアミック酸エステル溶液6.10gと合成例6で調製したポリアミック酸溶液(D)14.0gとを攪拌子の入った三角フラスコに入れて、室温で3時間攪拌し、液晶配向剤(A-4)を得た。
(実施例5)
 合成例2で得られたポリアミック酸エステルの粉末(PAE-a2)にNMPを加えて、50℃にて30hr攪拌して溶解させた後、NMP、BCSを加え、ポリアミック酸エステルが6質量%、NMPが69質量%、BCSが25質量%になるよう調製した。このポリアミック酸エステル溶液6.00gと合成例6で調製したポリアミック酸溶液(D)13.9gとを、攪拌子の入った三角フラスコに入れて、室温で3時間攪拌し、液晶配向剤(A-5)を得た。
(比較例3)
 合成例4で得られたポリアミック酸エステルの粉末(PAE-b1)にNMPを加えて、50℃にて30hr攪拌して溶解させた後、NMP、BCSを加え、ポリアミック酸エステルが6質量%、NMPが69質量%、BCSが25質量%になるよう調製した。このポリアミック酸エステル溶液6.00gと合成例6で調製したポリアミック酸溶液(D)14.0gとを、攪拌子の入った三角フラスコに入れて、室温で3時間攪拌し、液晶配向剤(B-3)を得た。
[電圧保持率のバックライト耐性の評価]
 電圧保持率のバックライト耐性は以下のようにして評価した。
(電圧保持率測定用液晶セルの作製)
 液晶配向剤を1.0μmのフィルターで濾過した後、電極付き基板(横30mm×縦40mmの大きさで、厚さが1.1mmのガラス基板。電極は幅10mm×長さ40mmの矩形で、厚さ35nmのITO電極)に、スピンコート塗布にて塗布した。50℃のホットプレート上で5分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
 上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板をラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶ZLI-4792(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、23℃で一晩放置し、電圧保持率測定用液晶セルを得た。
(バックライト耐性の評価)
 上記の電圧保持率測定用液晶セルに60℃の温度下で1Vの電圧を60μsec印加し、100msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率として算出した。これを初期の電圧保持率とする。
 次いでバックライト耐性試験として、この液晶セルを、温度70℃、LED光源(1000cd)の下で72時間放置した。この液晶セルの電圧保持率を上記と同様に測定した。これを耐性試験後の電圧保持率とする。
 電圧保持率のバックライト耐性は、以上のようにして測定された電圧保持率の大小で評価した。即ち初期の電圧保持率と比較して耐性試験後の電圧保持率の変化量が少なければ、バックライト耐性は良好である。
[電圧保持率の液晶不純物混入耐性の評価]
 電圧保持率の液晶不純物混入耐性の評価は以下のようにして評価した。
 液晶ZLI-4792(メルク社製)にポリエチレングリコール(和光純薬工業社製:和光1級品 平均分子量:360~400)を500ppmとなるように添加し、24時間室温で放置し、不純物混入液晶とした。
 空セルに注入する液晶として上記の不純物混入液晶を用いた以外は、前記と同様にして電圧保持率測定用液晶セルを作製した。この液晶セルに60℃の温度下で1Vの電圧を60μsec印加し、100msec後の電圧を測定して、電圧がどのくらい保持できているかを電圧保持率とし、その値の大小で電圧保持率の液晶不純物混入耐性を評価した。即ち通常の液晶(ポリエチレングリコールを添加していない液晶)を注入した液晶セルの電圧保持率と、不純物混入液晶を注入した液晶セルの電圧保持率とで、その差が少ないほど液晶不純物混入耐性は良好である。
[液晶配向性の評価]
 液晶配向性の評価は、以下のようにして評価した。
(FFS方式用電極付き基板の準備)
 FFS方式用電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成するIZO電極が全面に形成されている。第1層目のIZO電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてIZO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
 第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
 各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
(液晶配向性評価用液晶セルの作製)
 液晶配向剤を1.0μmのフィルターで濾過した後、上記のFFS方式用電極付き基板にスピンコート塗布にて塗布した。100℃のホットプレート上で100秒間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚60nmのポリイミド膜を得た。このポリイミド膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:500rpm、移動速度:30mm/sec、押し込み長:0.3mm、ラビング方向:3層目IZO櫛歯電極に対して10°傾いた方向)した後、イソプロピルアルコールと純水の3/7混合溶媒中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥して液晶配向膜付き基板を得た。
 また、対向基板として、高さ4μmの柱状スペーサーを有し、裏面にITOが形成されているガラス基板にも、上記と同様にしてポリイミド膜を形成し、上記と同様の手順で配向処理が施された液晶配向膜付き基板を得た。
 上記2枚の液晶配向膜付き基板を1組とし、基板上に液晶注入口を残した形でシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合いラビング方向が逆平行になるようにして張り合わせた後、シール剤を硬化させてセルギャップが4μmの空セルを作製した。
 この空セルに減圧注入法によって、液晶ZLI-4792(メルク社製)を注入し、注入口を封止して、FFS方式の液晶セルを得た。その後、得られた液晶セルを110℃で30分加熱し、23℃で一晩放置し液晶配向性評価用の液晶セルを得た。
(液晶配向性の評価)
 上記の液晶配向性評価用液晶セルを、60℃の恒温環境下、周波数30Hzで相対透過率が100%となる交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度を角度△として算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度△を算出した。そして、第1画素と第2画素の角度△値の平均値を液晶セルの角度△として算出し、その値の大小で液晶配向性を評価した。即ちこの角度△の値が小さければ、液晶配向性は良好である。
 以下の表1に実施例1~5及び比較例3で得られた液晶配向剤を用いて作製した液晶セルの、電圧保持率のバックライト耐性の評価結果をまとめて示す。
Figure JPOXMLDOC01-appb-T000030
 以下の表2に実施例1~3及び比較例1~2で得られた液晶配向剤を用いて作製した液晶セルの、電圧保持率の液晶不純物混入耐性と液晶配向性の評価結果をまとめて示す。なお、表中、LC1は通常の液晶を注入した液晶セルの電圧保持率、LC2は不純物混入液晶を注入した液晶セルの電圧保持率である。
Figure JPOXMLDOC01-appb-T000031
 本発明の液晶配向剤を用いて作製された液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において特に有用であり、また、本発明の液晶表示素子は、多機能携帯電話(スマートフォン)、タブレット型パーソナルコンピューター、液晶テレビジョンなどで特に有用である。
 なお、2014年2月5日に出願された日本特許出願2014-020435号の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  下記式(1)で表される繰り返し単位を有するポリアミック酸エステルと、有機溶媒とを含有することを特徴とする液晶配向剤。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、Xは4価の有機基であり、Yは2価の有機基であり、Rは炭素数1~5のアルキル基であり、A及びAは、それぞれ独立して、水素原子、又は置換基を有してもよい、炭素数1~10のアルキル基、アルケニル基若しくはアルキニル基であり、Yの少なくとも一部は下記式(2)で表される2価の有機基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Dは、飽和炭化水素基、不飽和炭化水素基、芳香族炭化水素基、及び複素環からなる群から選ばれる炭素数1~20の2価の基であり、これらは置換基を有していてもよい。mは、1又は0である。)
  2.  式(1)中のYの全体に対して、式(2)で表される2価の有機基が、1~99モル%含まれる、請求項1に記載の液晶配向剤。
  3.  式(1)中の式(2)で表される2価の有機基が、式(2)中のDが、炭素数1~20の2価の鎖状若しくは環状のアルキレン基である、請求項1又は2に記載の液晶配向剤。
  4.  式(1)中のYが、式(2)で表される2価の有機基とともに、Y-7、Y-21、Y-28、Y-71、Y-72、及びY-119からなる群から選ばれる少なくとも1種の基である、請求項1~3のいずれか1項に記載の液晶配向剤。
  5.  A及びAは、それぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基であり、かつそのどちらか一方は水素原子である、請求項1~3のいずれか1項に記載の液晶配向剤。
  6.  式(1)中のXが、下記式で表される構造からなる群から選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の液晶配向剤。
    Figure JPOXMLDOC01-appb-C000003
  7.  前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、及び3-メトキシ-N,N-ジメチルプロパンアミドからなる群から選ばれる1種又は2種以上である、請求項1~6のいずれか1項に記載の液晶配向剤。
  8.  前記ポリアミック酸エステルとともに他の重合体が含有されるが、前記ポリアミック酸エステルが全重合体の5~95質量%含有する、請求項1~7のいずれか1項に記載の液晶配向剤。
  9.  請求項1~8のいずれか1項に記載の液晶配向剤を基板に塗布し、150~300℃で焼成して得られる、液晶配向膜。
  10.  請求項9に記載の液晶配向膜を有する、液晶表示素子。
  11.  基板に対して平行配向している液晶分子を横電界で駆動させる請求項10に記載の液晶表示素子。
PCT/JP2015/053140 2014-02-05 2015-02-04 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 WO2015119168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167021210A KR102331107B1 (ko) 2014-02-05 2015-02-04 액정 배향제, 액정 배향막, 및 그것을 사용한 액정 표시 소자
CN201580007563.6A CN105980918B (zh) 2014-02-05 2015-02-04 液晶取向剂、液晶取向膜和使用了其的液晶表示元件
JP2015561016A JP6524918B2 (ja) 2014-02-05 2015-02-04 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020435 2014-02-05
JP2014-020435 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015119168A1 true WO2015119168A1 (ja) 2015-08-13

Family

ID=53777970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053140 WO2015119168A1 (ja) 2014-02-05 2015-02-04 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP6524918B2 (ja)
KR (1) KR102331107B1 (ja)
CN (1) CN105980918B (ja)
TW (1) TWI668247B (ja)
WO (1) WO2015119168A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200136002A (ko) 2018-04-09 2020-12-04 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043326A1 (ja) * 2016-08-30 2018-03-08 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115228A1 (ja) * 2012-02-01 2013-08-08 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2014104015A1 (ja) * 2012-12-25 2014-07-03 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613421B2 (ja) 1996-05-31 2005-01-26 Jsr株式会社 液晶配向剤
JP3650982B2 (ja) 1996-10-02 2005-05-25 Jsr株式会社 液晶配向剤および液晶表示素子
CN102893208B (zh) * 2010-03-15 2015-07-08 日产化学工业株式会社 含有聚酰胺酸酯和聚酰胺酸的液晶取向剂以及液晶取向膜
WO2011115080A1 (ja) * 2010-03-15 2011-09-22 日産化学工業株式会社 ポリアミック酸エステル液晶配向剤及びそれを用いた液晶配向膜
JP5708636B2 (ja) * 2010-03-15 2015-04-30 日産化学工業株式会社 末端を修飾したポリアミック酸エステル含有液晶配向剤、及び液晶配向膜
CN103154808B (zh) * 2010-06-30 2015-08-19 日产化学工业株式会社 液晶取向处理剂、液晶取向膜及使用该液晶取向膜的液晶显示元件
KR101444190B1 (ko) * 2011-12-19 2014-09-26 제일모직 주식회사 액정 배향제, 이를 이용한 액정 배향막 및 상기 액정 배향막을 포함하는 액정표시소자

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115228A1 (ja) * 2012-02-01 2013-08-08 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2014104015A1 (ja) * 2012-12-25 2014-07-03 日産化学工業株式会社 新規ジアミン、重合体、液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200136002A (ko) 2018-04-09 2020-12-04 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자

Also Published As

Publication number Publication date
KR20160118257A (ko) 2016-10-11
JPWO2015119168A1 (ja) 2017-03-23
TWI668247B (zh) 2019-08-11
CN105980918B (zh) 2019-06-14
KR102331107B1 (ko) 2021-11-24
TW201538570A (zh) 2015-10-16
CN105980918A (zh) 2016-09-28
JP6524918B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
KR102344228B1 (ko) 신규 액정 배향제, 디아민, 및 폴리이미드 전구체
JP6056752B2 (ja) 液晶配向剤及びそれを用いた液晶配向膜
JP6798592B2 (ja) 液晶配向剤として有用なポリイミドのための原料ジアミン化合物
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2013018904A1 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
WO2018117240A1 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
KR101610562B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
KR102009543B1 (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
WO2015141598A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6460342B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JP6558543B2 (ja) 液晶配向剤及びそれを用いた液晶表示素子
JP6524918B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2014148440A1 (ja) 横電界駆動用の液晶配向処理剤
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561016

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746022

Country of ref document: EP

Kind code of ref document: A1