JP6627772B2 - 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 - Google Patents

液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
JP6627772B2
JP6627772B2 JP2016555212A JP2016555212A JP6627772B2 JP 6627772 B2 JP6627772 B2 JP 6627772B2 JP 2016555212 A JP2016555212 A JP 2016555212A JP 2016555212 A JP2016555212 A JP 2016555212A JP 6627772 B2 JP6627772 B2 JP 6627772B2
Authority
JP
Japan
Prior art keywords
liquid crystal
formula
group
carbon atoms
crystal alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016555212A
Other languages
English (en)
Other versions
JPWO2016063834A1 (ja
Inventor
夏樹 佐藤
夏樹 佐藤
加名子 鈴木
加名子 鈴木
謙治 坂本
謙治 坂本
石川 和典
和典 石川
幸司 巴
幸司 巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2016063834A1 publication Critical patent/JPWO2016063834A1/ja
Application granted granted Critical
Publication of JP6627772B2 publication Critical patent/JP6627772B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、基板に対して平行な電界を印加して駆動する横電界駆動方式の液晶表示素子に用いられる液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。
従来から液晶装置は、パソコン、携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN(Twisted Nematic)方式、VA(Vertical Alignment)方式等の縦電界方式や、IPS(In Plane Switching)方式、FFS(フリンジフィールドスイッチング)方式等の横電界方式が知られている。一般に、基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、高品位な表示が可能な液晶表示素子として知られている。
しかし、横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、液晶配向膜の電圧保持率が弱いと、液晶に十分な電圧がかからず表示コントラストが低下してしまう。また、静電気が液晶セル内に蓄積されやすく、駆動によって生じる非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶の配向の乱れ、あるいは残像や焼き付きとして表示に影響を与え、液晶素子の表示品位を著しく低下させる。このような状態で、再度通電した場合、初期段階において、液晶分子の制御が良好に行われずにフリッカ(ちらつき)等を生じてしまう。特に、横電界方式では、縦電界方式よりも画素電極と共通電極との距離が近いため、配向膜や液晶層に強い電界が作用してしまい、このような不都合が顕著となりやすいという問題点があった。
さらには、IPS方式やFFS駆動方式など、基板に対して水平配向している液晶分子を横電解で駆動させる方式においては、液晶配向の安定性も重要となる。配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラストの低下や焼き付きの原因となる。
上記の交流駆動の非対称化による電荷の蓄積を解決する手法として、電極上の形成された第1配向膜と、その表面に形成されたピロメリット酸二無水物とジアミンからなる重合体であり、且つ、第1配向膜よりも抵抗が低い第2配向膜とからなる液晶配向膜を有する液晶表示装置が提案され、交流駆動の非対称化による電荷蓄積を抑制し、且つ、蓄積した電荷の緩和を早くすることができることが報告されている(特許文献1)。
日本特開2013−167782号公報
しかし、近年の液晶表示素子の高精細化に伴い、上記要求のレベルがより高くなっている。また、IPS方式やFFS駆動方式など、基板に対して平行配向している液晶分子を横電界で駆動させる方式においては、厳しい環境下における液晶配向の安定性、電気的な信頼性も重要となる。これらの要求の全てを、高いレベルで満足させることの出来る液晶配向剤が求められている。
本発明は、IPS駆動方式やFFS駆動方式の液晶表示素子において、特に重要な種々の特性、即ち、高い液晶配向性及び高い電圧保持率を有し、更に、直流電圧により蓄積した残留電荷の緩和が早く、高コントラスト化を可能にする液晶配向膜が得られる液晶配向剤を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討を行った結果、上記特性を高いレベルで満足させることが可能な液晶配向剤を見出し、本発明を完成させた。
かくして、本発明は、下記式(A)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(B)で表されるジアミンを含むジアミン成分とを重縮合反応させて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と、下記式(C)で表される化合物とを含有することを特徴とする液晶配向剤にある。
Figure 0006627772
(式(B)中、mは1〜5の整数である。)
Figure 0006627772
(式(C)中、Xは炭素数1〜20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2〜6の整数であり、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基、又は炭素数2〜4のアルキニル基であり、R及びRのうち少なくとも1つはヒドロキシ基で置換された炭化水素基を表す。)
本発明の液晶配向剤から得られる液晶配向膜を用いることによって、IPS駆動方式やFFS駆動方式の液晶表示素子において、特に重要な種々の特性、即ち、高い液晶配向性及び高い電圧保持率を有し、更に、直流電圧により蓄積した残留電荷の緩和が早く、高コントラストな液晶表示素子が得られる。
本発明の液晶配向剤により、何故に前記のような結果が得られるかについては、必ずしも明らかではないが、ほぼ次のように推定される。
本発明の液晶配向剤から得られる液晶配向膜は、これを構成するポリマー主鎖が、ラビング処理により、十分に延伸しうる柔軟な構造と液晶分子と十分に相互作用しうる芳香族官能基を主鎖に有するため、高い液晶配向性を有する。また、式(C)で表される化合物が、ポリマー中のカルボキシル基と焼成時に反応し、これにより耐熱性が向上し、焼成時に液晶配向膜から発生する分解物の量が抑制されるため、高い電圧保持率を有する。更に、式(C)で表される化合物とポリマーのカルボキシ基との反応により、ポリマー中に架橋構造が形成されることにより膜硬度が向上し、ラビング処理時のラビング布の影響も受けにくくなるため、かかる液晶配向膜を用いた液晶表示素子では、ラビングによるコントラストの低下を抑制できる。また、本発明の液晶配向膜は、π電子共役系が拡張している構造をポリマー主鎖に有することから、体積抵抗値が低く、これにより直流電圧により蓄積した残留電荷の緩和が早いと考えられる。
<ポリアミック酸及び該ポリアミック酸のイミド化重合体>
本発明の液晶配向剤は、下記式(A)のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(B)で表されるジアミンを含むジアミン成分とを重縮合反応させて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と、下記式(C)に示す化合物とを含有する。
Figure 0006627772
式(B)において、mは1〜5、好ましくは1〜3の整数である。
Figure 0006627772
式中、Xは炭素数1〜20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、好ましくは炭素数1〜5の脂肪族炭化水素基である。nは2〜6、好ましくは3〜4の整数である。R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基、又は炭素数2〜4のアルキニル基からなる炭化水素基であり、好ましくは置換基を有してもよい炭素数1〜4のアルキル基である。そして、R及びRのうち少なくとも1方は、ヒドロキシ基で置換された炭化水素基を表し、好ましくはヒドロキシエチル基である。
<テトラカルボン酸二無水物成分>
本発明の液晶配向剤の製造に用いられるテトラカルボン酸二無水物成分は、上記式(A)で表されるテトラカルボン酸二無水物を含有する。式(A)で表されるテトラカルボン酸二無水物の割合は、全テトラカルボン酸二無水物1モルに対して、20〜80モル%であり、30〜70モル%が好ましく、より好ましくは、40〜60モル%、さらに好ましくは、40〜50モル%である。
<その他のテトラカルボン酸二無水物>
本発明の液晶配向剤の製造に用いられるテトラカルボン酸二無水物成分は、上記式(A)で表されるテトラカルボン酸二無水物以外に、下記式(1)で表されるテトラカルボン酸二無水物を含有してもよい。
Figure 0006627772
式(1)において、Xは4価の有機基であり、その構造は特に限定されない。具体例を挙げるならば、下記式(X−1)〜(X−42)の構造が挙げられる。
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
式(X−1)において、R〜Rは、それぞれ独立して水素原子、炭素数1〜6のアルキル基、又はフェニル基であり、水素原子、又はメチル基がより好ましい。
テトラカルボン酸二無水物としては、なかでも、化合物の入手性の観点から、下記式(2)で表される構造からなる群から選ばれる少なくとも1種のテトラカルボン酸二無水物であることが好ましい。
Figure 0006627772
(式(2)中、Xは上記式(X−1)〜(X−14)で表される構造からなる群から選ばれる少なくとも1種である。)
得られる液晶配向膜の信頼性をさらに高めることができるため、(X−1)〜(X−7)、又は(X−11)のような脂肪族基のみからなる構造が好ましく、(X−1)で表される構造がより好ましい。更に、良好な液晶配向性を示すため、Xとしては、下記式(X1−1)又は(X1−2)が特に好ましい。
Figure 0006627772
式(1)で表されるテトラカルボン酸二無水物の割合は、全テトラカルボン酸二無水物1モルに対して、30〜70モル%が好ましく、より好ましくは40〜60モル%、さらに好ましくは50〜60モル%である。
<ジアミン成分>
本発明で用いられるジアミン成分は、上記式(B)で表わされるジアミンを含有する。式(B)中、mは1〜5の整数であるが、1〜3の整数が好ましい。
前記ジアミン成分には、式(B)のジアミンの他、下記式(YD−1)〜(YD−5)の構造からなる群から選ばれる少なくとも1種のジアミンを含有することが好ましい。
Figure 0006627772
式(YD−1)中、Aは炭素数3〜15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1〜20の炭化水素基である。
式(YD−2)中、Wは、炭素数1〜10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3〜15の1価の有機基、又は炭素数1〜6の脂肪族基で置換されたジ置換アミノ基である。
式(YD−3)中、Wは炭素数6〜15で、且つベンゼン環を1又は2個有する2価の有機基であり、Wは炭素数2〜5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1〜5のアルキル基、又はベンゼン環であり、aは0〜1の整数である。
式(YD−4)中、Aは炭素数3〜15の窒素原子含有複素環である。
式(YD−5)中、Aは炭素数3〜15の窒素原子含有複素環であり、Wは炭素数2〜5のアルキレンである。
式(YD−1)、(YD−2)、(YD−4)、及び(YD−5)中のA、A、A、及びAの炭素数3〜15の窒素原子含有複素環は、特に限定されるものではない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン等が挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、又はピリジンがより好ましい。
具体例としては、下記式(YD−6)〜(YD−21)で表される窒素原子を有する2価の有機基が挙がられる。交流駆動による電荷蓄積を抑制できることから、式(YD−14)〜式(YD−21)がより好ましく、(YD−14)又は(YD−18)が特に好ましい。
Figure 0006627772
式(YD−14)及び(YD−21)中、jは0〜3の整数であり、0〜1が好ましい。
式(YD−17)中、hは1〜3の整数であり、2〜3が好ましい。
本発明のポリアミック酸及びポリアミック酸のイミド化重合体における、上記式(YD−1)〜(YD−5)の構造からなる群から選ばれる少なくとも1種のジアミンの割合は、全ジアミン1モルに対して、10〜80モル%が好ましく、より好ましくは20〜60モル%、さらに好ましくは30〜50モル%である。
<その他のジアミン>
本発明の液晶配向剤に含有されるポリアミック酸は、上記式(B)で表されるジアミン、上記式(YD−1)〜(YD−5)からなる群から選ばれる少なくとも1種のジアミン以外に、下記式(3)で表されるジアミンを用いてもよい。下記式(3)におけるYは、2価の有機基であり、その構造は限定されるものではなく、2種以上が混在していてもよい。その具体例を示すならば、下記の(Y−1)〜(Y−102)が挙げられる。
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
Figure 0006627772
なかでも、良好な液晶配向性を得るためには、直線性の高いジアミンが好ましく、Yとしては、Y−7、Y−21〜Y−23、Y−25〜Y−27、Y−43〜Y−46、Y−48、Y−63、Y−71、Y−73〜Y−75、Y−98〜Y−101、又はY−102がより好ましい。
式(3)で表されるジアミンの割合は、全ジアミン1モルに対して、0〜40モル%が好ましく、より好ましくは0〜25モル%、さらに好ましくは0〜15モル%である。
<式(C)で表される化合物>
本発明の液晶配向剤には、下記式(C)で表される化合物(以下、特定化合物ともいう。)を含有する。
Figure 0006627772
上記式(C)中、Xは炭素数1〜20の脂肪族炭化水素基、又は芳香族炭化水素基を含むn価の有機基であり、nは2〜6の整数であり、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基、又は炭素数2〜4のアルキニル基からなる炭化水素基であり、R及びRのうち少なくとも1方はヒドロキシ基で置換された炭化水素基を表す。
その中でも、式(C)におけるX中のカルボニル基に直接結合する原子は、芳香環を形成していない炭素原子であることが液晶配向性の観点から好ましい。
式(C)中、nは2〜6の整数を表す。溶解性の観点から、nは2〜4が好ましい。
式(C)中、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基、又は炭素数2〜4のアルキニル基からなる炭化水素基であり、R及びRのうち少なくとも1方は、ヒドロキシ基で置換された炭化水素基を表す。中でも、R及びRのうち少なくとも1方が、下記式(3)で表される構造であることが反応性の観点から好ましく、下記式(4)で表される構造であることがさらに好ましい。
Figure 0006627772
式(3)中、R〜Rは、それぞれ独立に、水素原子、炭化水素基、又は、ヒドロキシ基で置換された炭化水素基のいずれかを表す。
Figure 0006627772
上記特定化合物の好ましい具体的な例としては、例えば、下記の化合物(C−1)が挙げられる。
Figure 0006627772
液晶配向剤中の特定化合物の含有量は、多すぎると液晶配向性やプレチルト角に影響を与え、少なすぎると本発明の効果が得られない。そのため、特定化合物の含有量は、液晶配向剤中の(A)成分の重合体に対して、0.1〜20質量%が好ましく、1〜10質量%がより好ましい。
<ポリアミック酸の製造方法>
本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により製造することができる。具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で、−20〜150℃、好ましくは0〜50℃において、30分〜24時間、好ましくは1〜12時間反応させることによって製造できる。
上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性から、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、γ−ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
反応系における重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1〜30質量%が好ましく、5〜20質量%がより好ましい。
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで、精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2−プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2−プロパノールなどが好ましい。
<ポリイミドの製造方法>
本発明に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。
ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に、触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
化学的イミド化は、イミド化させたい重合体を、有機溶媒中において、塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは、反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。
イミド化反応を行うときの温度は、−20〜140℃、好ましくは0〜100℃であり、反応時間は1〜100時間で行うことができる。塩基性触媒の量は、ポリアミック酸基の0.5〜30倍モル、好ましくは2〜20倍モルであり、酸無水物の量は、ポリアミック酸基の1〜50倍モル、好ましくは3〜30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製された重合体の粉末を得ることができる。
前記貧溶媒は、特に限定されないが、メタノール、2−プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2−プロパノール、アセトンなどが好ましい。
<液晶配向剤>
本発明の液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000〜500,000が好ましく、より好ましくは5,000〜300,000であり、さらに好ましくは、10,000〜100,000である。また、数平均分子量は、好ましくは、1,000〜250,000であり、より好ましくは、2,500〜150,000であり、さらに好ましくは、5,000〜50,000である。
本発明の液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上が好ましく、溶液の保存安定性の点からは10質量%以下が好ましい。特に好ましい重合体の濃度は、2〜8質量%である。
液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−メチルカプロラクタム、2−ピロリドン、N−ビニル−2−ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ−ブチロラクトン、1,3−ジメチル−イミダゾリジノン、3−メトキシ−N,N−ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
本発明の液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール、1−ブトキシ−2−プロパノール、1−フェノキシ−2−プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール−1−モノメチルエーテル−2−アセテート、プロピレングリコール−1−モノエチルエーテル−2−アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2−(2−エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n−プロピルエステル、乳酸n−ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。
本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、本発明のポリイミド前駆体及びポリイミドの重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜の製造方法>
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥し、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることが、プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極は、アルミニウム等の光を反射する材料も使用できる。
本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、好ましくは、50〜120℃で1〜10分乾燥させ、その後、好ましくは150〜300℃5〜120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5〜300nm、好ましくは10〜200nmである。
得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
液晶配向膜に対するラビング処理には、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロン等が挙げられる。
光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によっては、さらに150〜250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100〜800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100〜400nmの波長を有する紫外線が好ましく、200〜400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50〜250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1〜10,000mJ/cmが好ましく、100〜5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
上記で、偏光された放射線を照射した膜は、次いで、水及び有機溶媒からなる群から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
接触処理に使用する溶媒は、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン、1−メトキシ−2−プロパノール、1−メトキシ−2−プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種上を併用してもよい。
汎用性や安全性の観点から、上記溶媒としては、水、2−プロパンール、1−メトキシ−2−プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。1−メトキシ−2−プロパノール又は乳酸エチルが特に好ましい。
本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、好ましくは、膜と液とが十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒〜1時間、より好ましくは1〜30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10〜80℃、より好ましくは20〜50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってもよい。
さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に、150℃以上で加熱してもよい。
加熱の温度としては、150〜300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180〜250℃がより好ましく、200〜230℃が特に好ましい。
加熱する時間は、短すぎると本発明の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒〜30分が好ましく、1〜10分がより好ましい。
本発明の液晶配向膜は、IPS駆動方式、FFS駆動方式等の横電界方式の液晶表示素子の液晶配向膜として好適であり、FFS駆動方式の液晶表示素子の液晶配向膜として、特に有用である。
<液晶表示素子>
本発明の液晶表示素子は、本発明の液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して得られる。
液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分に、TFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子でもよい。
まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えば、ITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル−ゲル法によって形成されたSiO−TiOからなる膜とすることができる。
次に、各基板の上に、本発明の液晶配向膜を形成する。
次に、一方の基板に他方の基板を、互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。液晶材料としては、ポジ型液晶材料及びネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。この液晶表示素子は、液晶配向膜として本発明により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
以下に本発明について、実施例等を挙げて具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。以下で使用する略号は次のとおりである。
NMP: N−メチル−2−ピロリドン
GBL: γ−ブチロラクトン
BCS: ブチルセロソルブ
酸二無水物(A):下記式(A)のテトラカルボン酸二無水物。
酸二無水物(B):下記式(B)のテトラカルボン酸二無水物。
酸二無水物(C):下記式(C)のテトラカルボン酸二無水物。
DA−1:下記式(DA−1)のジアミン
DA−2:下記式(DA−2)のジアミン
特定化合物A:下記の化合物(Primid XL552、エムスケミー社製)
Figure 0006627772
以下に、各種特性の測定方法を示す。
[粘度]
E型粘度計TVE−22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE−1(1°34’、R24)、温度25℃で測定した。
[分子量]
GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC−101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N−ジメチルホルムアミド(添加剤として、臭化リチウム−水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o−リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
[液晶セルの作製]
FFSモード液晶表示素子の構成を備えた液晶セルを作製する。
用意した電極付きのガラス基板(縦30mm×横50mm×厚さ0.7mm)の上には、第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には、第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目として、ITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素及び第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
第3層目の画素電極は、中央部分が屈曲した、くの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲した、くの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字の「く」の字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では、画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では、画素電極の電極要素が−10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が、互いに逆方向となるように構成されている。
次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射などの配向処理を施し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
[液晶配向性の評価]
上記作製法で得られた液晶セルを60℃の恒温環境下、周波数30Hzで相対透過率が100%となる交流電圧を168時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に一日放置した。放置の後、液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。そして、第1画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで、液晶セルを回転させたときの回転角度を角度△として算出した。第2画素でも同様に、第2領域と第1領域とを比較し、同様の角度△を算出した。そして、第1画素と第2画素の角度△値の平均値を液晶セルの角度△として算出し、その値の大小で液晶配向性を評価した。即ちこの角度△の値が小さければ、液晶配向性は良好である。
[電圧保持率(VHR)(バックライトエージング耐性(電圧保持率1))の評価]
用意した電極付きガラス基板(縦30mm×横50mm×厚さ0.7mm)の上には、膜厚35nmのITO電極が形成されており、電極は縦40mm、横10mmのストライプパターンである。次に、液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板に、スピンコート塗布にて塗布した。50℃のホットプレート上で5分間乾燥させた後、230℃のIR式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させて液晶配向膜付き基板を得た。この液晶配向膜をレーヨン布でラビング(ローラー直径:120mm、ローラー回転数:1000rpm、移動速度:20mm/sec、押し込み長:0.4mm)した後、純水中にて1分間超音波照射をして洗浄を行い、エアブローにて水滴を除去した後、80℃で15分間乾燥し、液晶配向膜付き基板を得た。
上記の液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に、4μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を、ラビング方向が逆方向、かつ膜面が向き合うようにして張り合わせた。その後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC−2041(メルク社製)を注入し、注入口を封止して液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、23℃で一晩放置し、VHR測定セルを得た。次いで、本セルを70℃オーブン中にてLED光源(1000cd)下で72時間エージングを行った。
72時間のバックライトエージング後、本セルに60℃の温度下で、1Vの電圧を60μsec印加し、100msec後の電圧を測定して、電圧がどのくらい保持できているかをVHRとし、その値の大小でVHRバックライトエージング耐性を評価した。即ち、このVHRの値が大きければ、VHRバックライトエージング耐性は良好である。
[黒レベル評価]
上記(液晶セルの作製)と同様にして作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態でバックライトを点灯させておき、透過光の輝度が最も小さくなるように、液晶セルの配置角度を調整した。その液晶セルを、浜松ホトニクス社製のデジタルCCDカメラ「C8800−21C」を用いて観察を行い、撮り込んだ画像を同社の解析ソフト「ExDcam Image capture Software」を用いて輝度の数値化を行った。この液晶セルの輝度値が500〜600であれば「良好」、それ以上は「不良」とした。
[蓄積電荷の緩和特性]
上記(液晶セルの作製)と同様にして作製した液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように液晶セルの角度を調節した。
次に、この液晶セルに周波数30Hzの矩形波を印加しながら、23℃の温度下でのV−T特性(電圧−透過率特性)を測定し、相対透過率が23%となる交流電圧を算出した。次に、相対透過率が23%となる交流電圧で、かつ周波数30Hzの矩形波を5分間印加した後、+1.0Vの直流電圧を重畳し30分間駆動させた。その後、直流電圧を切り、再び相対透過率が23%となる交流電圧で、かつ周波数30Hzの矩形波のみを20分間印加した。
蓄積した電荷の緩和が速いほど、直流電圧を重畳したときの液晶セルへの電荷蓄積も速いことから、蓄積電荷の緩和特性は、直流電圧を重畳した直後の相対透過率が30%以上の状態から30分が経過するまでに、相対透過率が28%未満に低下した場合は、「良好」と定義して評価した。直流電圧を重畳してから30分が経過しても、相対透過率が
28%未満に低下しなかった場合は、「不良」と定義して評価した。
(合成例1)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を79.4g(0.33mol)量りとり、また、DA−2を64.8g(0.33mol)量りとり、NMPを911g、及びGBLを911g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を65.0g(0.33mol)添加し、2時間室温で攪拌した後、酸二無水物(A)を86.1g(0.29mol)加えて、更に、NMPを390g、及びGBLを390g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−1)を得た。このポリアミック酸溶液の温度25℃における粘度は215mPa・sであった。このポリアミック酸のMnは15,773、Mwは31,242であった。
(合成例2)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を95.3g(0.39mol)量りとり、またDA−2を51.8g(0.26mol)量りとり、NMPを939g、及びGBLを939g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を65.0g(0.33mol)添加し、2時間室温で攪拌した後、酸二無水物(A)を86.1g(0.29mol)加えて、更に、NMPを402g、及びGBLを402g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−2)を得た。このポリアミック酸溶液の温度25℃における粘度は221mPa・sであった。このポリアミック酸のMnは14,773、Mwは32,212であった。
(合成例3)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を79.4g(0.33mol)量りとり、またDA−2を64.8g(0.33mol)量りとり、NMPを859g、及びGBLを859g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を65.0g(0.33mol)添加し、2時間室温で攪拌した後、酸二無水物(B)を63.8g(0.29mol)加えて、更に、NMPを369g、及びGBLを369g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−3)を得た。このポリアミック酸溶液の温度25℃における粘度は207mPa・sであった。このポリアミック酸のMnは13,853、Mwは28,251であった。
(合成例4)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を79.4g(0.33mol)量りとり、またDA−2を64.8g(0.33mol)量りとり、NMPを839g、及びGBLを839g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を122.3g(0.62mol)添加し、更に、NMPを360g、及びGBLを360g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−4)を得た。このポリアミック酸溶液の温度25℃における粘度は212mPa・sであった。このポリアミック酸のMnは14,255、Mwは28,373であった。
(合成例5)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−2を129.5g(0.65mol)量りとり、NMPを884g、及びGBLを884g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を65.0g(0.33mol)添加し、2時間室温で攪拌した後、酸二無水物(A)を86.1g(0.29mol)加えて、更に、NMPを379g、及びGBLを379g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−5)を得た。このポリアミック酸溶液の温度25℃における粘度は225mPa・sであった。このポリアミック酸のMnは12,799、Mwは33,192であった。
(合成例6)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を91.6g(0.38mol)量りとり、またDA−2を74.7g(0.38mol)量りとり、NMPを661g、及びGBLを661g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を67.7g(0.35mol)添加し、2時間室温で攪拌した後、酸二無水物(A)を99.3g(0.34mol)加えて、更に、NMPを283g、及びGBLを283g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−6)を得た。このポリアミック酸溶液の温度25℃における粘度は583mPa・sであった。このポリアミック酸のMnは11,141、Mwは21,889であった。
(合成例7)
撹拌装置付きの3Lの四つ口フラスコを窒素雰囲気とし、DA−1を73.3g(0.30mol)量りとり、またDA−2を59.8g(0.30mol)量りとり、NMPを674g、及びGBLを674g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を50.0g(0.26mol)添加し、2時間室温で攪拌した後、酸二無水物(A)を79.4g(0.27mol)加えて、更に、NMPを288g、及びGBLを288g加え、窒素雰囲気下、40℃で30時間撹拌して、ポリアミック酸溶液(PAA−7)を得た。このポリアミック酸溶液の温度25℃における粘度は117mPa・sであった。このポリアミック酸のMnは8,953、Mwは19,521であった。
(実施例1)
撹拌子の入った5L三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA−1)を1861g分取し、NMPを578g、3−グリシドキシプロピルトリエトキシシランを1.8g、特定化合物Aを5.4g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A−1)を得た。
(実施例2)
撹拌子の入った5L三角フラスコに、合成例2で得られたポリアミック酸溶液(PAA−2)を1861g分取し、NMPを578g、3−グリシドキシプロピルトリエトキシシランを1.8g、特定化合物Aを5.4g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A−2)を得た。
(実施例3)
撹拌子の入った3L三角フラスコに、合成例6で得られたポリアミック酸溶液(PAA−6)を371g分取し、NMPを84.6g、3−グリシドキシプロピルトリエトキシシランを0.53g、特定化合物Aを1.6g、GBLを201g、及びBCSを165g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A−3)を得た。
(実施例4)
撹拌子の入った2L三角フラスコに、合成例7で得られたポリアミック酸溶液(PAA−7)を213g分取し、NMPを101g、3−グリシドキシプロピルトリエトキシシランを0.25g、特定化合物Aを0.74g、GBLを146g、及びBCSを109g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A−4)を得た。
(比較例1)
撹拌子の入った5L三角フラスコに、合成例3で得られたポリアミック酸溶液(PAA−3)を1861g分取し、NMPを578g、3−グリシドキシプロピルトリエトキシシランを1.8g、特定化合物Aを5.4g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B−1)を得た。
(比較例2)
撹拌子の入った5L三角フラスコに、合成例4で得られたポリアミック酸溶液(PAA−4)を1861g分取し、NMPを578g、3−グリシドキシプロピルトリエトキシシランを1.8g、特定化合物Aを5.4g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B−2)を得た。
(比較例3)
撹拌子の入った5L三角フラスコに、合成例5で得られたポリアミック酸溶液(PAA−5)を1861g分取し、NMPを578g、3−グリシドキシプロピルトリエトキシシランを1.8g、特定化合物Aを5.4g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B−3)を得た。
(比較例4)
撹拌子の入った5L三角フラスコに、合成例1で得られたポリアミック酸溶液(PAA−1)を1861g分取し、NMPを583g、3−グリシドキシプロピルトリエトキシシランを1.8g、GBLを122g、及びBCSを642g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B−4)を得た。
Figure 0006627772
本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
なお、2014年10月20日に出願された日本特許出願2014−213835号、及び2015年2月20日に出願された日本特許出願2015−032093号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1. 下記式(A)のテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(B)で表されるジアミンを含むジアミン成分とを重縮合反応させて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体からなる群から選ばれる少なくとも1種の重合体と、下記式(C)で表わされる化合物とを含有することを特徴とする液晶配向剤。
    Figure 0006627772
    (式(B)中、mは1〜5の整数である。)
    Figure 0006627772
    (式(C)中、Xは炭素数1〜20の脂肪族炭化水素基を含むn価の有機基であり、nは2〜6の整数であり、R及びRは、それぞれ独立に、水素原子、又は置換基を有してもよい炭素数1〜4のアルキル基、炭素数2〜4のアルケニル基、又は炭素数2〜4のアルキニル基からなる炭化水素基であり、R及びRのうち少なくとも1方は、ヒドロキシ基で置換された炭化水素基である。)
  2. 前記テトラカルボン酸二無水物成分中の20〜80モル%が、式(A)のテトラカルボン酸二無水物である、請求項1に記載の液晶配向剤。
  3. 前記ジアミン成分中の20〜80モル%が、式(B)のジアミンである、請求項1又は2に記載の液晶配向剤。
  4. 前記ジアミン成分が、下記式(YD−1)〜(YD−5)の構造からなる群から選ばれる少なくとも1種のジアミンを含有する、請求項1〜3のいずれか1項に記載の液晶配向剤。
    Figure 0006627772

    (式(YD−1)中、Aは炭素数3〜15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい素数1〜20の炭化水素基である。式(YD−2)中、Wは、炭素数1〜10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3〜15の1価の有機基、又は炭素数1〜6の脂肪族基で置換されたジ置換アミノ基である。式(YD−3)中、Wは炭素数6〜15で、且つベンゼン環を1又は2個有する2価の有機基であり、Wは炭素数2〜5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1〜5のアルキル基、又はベンゼン環であり、aは0〜1の整数である。式(YD−4)中、Aは炭素数3〜15の窒素原子含有複素環である。式(YD−5)中、Aは炭素数3〜15の窒素原子含有複素環であり、Wは炭素数2〜5のアルキレンである。)
  5. 前記ジアミン成分が、下記式(YD−6)〜(YD−21)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種を含有する、請求項1〜4のいずれか1項に記載の液晶配向剤。
    Figure 0006627772
    (式(YD−17)中、hは1〜3の整数であり、式(YD−14)及び(YD−21)中、jは1〜3の整数である。)
  6. 上記式(C)で表される化合物を、(A)成分の重合体に対して、0.1〜20質量%含有する、請求項1〜5のいずれか1項に記載の液晶配向剤。
  7. 上記式(C)で表される化合物が、下記式(C−1)で表される化合物である、請求項1〜6のいずれか1項に記載の液晶配向剤。
    Figure 0006627772
  8. 請求項1〜7のいずれか1項に記載の液晶配向剤を塗布し、焼成して得られる液晶配向膜。
  9. 請求項8に記載の液晶配向膜を具備する液晶表示素子。
  10. IPS駆動方式又はFFS駆動方式である請求項9に記載の液晶表示素子。
JP2016555212A 2014-10-20 2015-10-19 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子 Active JP6627772B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014213835 2014-10-20
JP2014213835 2014-10-20
JP2015032093 2015-02-20
JP2015032093 2015-02-20
PCT/JP2015/079449 WO2016063834A1 (ja) 2014-10-20 2015-10-19 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Publications (2)

Publication Number Publication Date
JPWO2016063834A1 JPWO2016063834A1 (ja) 2017-07-27
JP6627772B2 true JP6627772B2 (ja) 2020-01-08

Family

ID=55760869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016555212A Active JP6627772B2 (ja) 2014-10-20 2015-10-19 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP6627772B2 (ja)
KR (1) KR102420194B1 (ja)
CN (1) CN107077032B (ja)
TW (1) TWI699386B (ja)
WO (1) WO2016063834A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018051923A1 (ja) * 2016-09-13 2018-03-22 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN113805386A (zh) * 2016-09-29 2021-12-17 日产化学株式会社 液晶取向剂、液晶取向膜和液晶表示元件
JP7259328B2 (ja) * 2016-11-18 2023-04-18 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7188381B2 (ja) * 2017-03-31 2022-12-13 日産化学株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JP7276666B2 (ja) * 2017-10-26 2023-05-18 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2019198671A1 (ja) 2018-04-09 2019-10-17 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
KR20210126572A (ko) 2019-02-13 2021-10-20 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
CN113711117A (zh) 2019-03-29 2021-11-26 日产化学株式会社 液晶取向剂、液晶取向膜、液晶显示元件以及二胺
WO2020218331A1 (ja) 2019-04-24 2020-10-29 日産化学株式会社 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
CN114080443B (zh) 2019-07-08 2024-04-26 日产化学株式会社 液晶取向剂、液晶取向膜以及使用了该液晶取向膜的液晶显示元件
JP2024070838A (ja) 2022-11-11 2024-05-23 日産化学株式会社 液晶配向剤、液晶配向膜及び液晶表示素子

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9824818D0 (en) * 1998-11-12 1999-01-06 Zeneca Ltd Composition,process and use
GB9922136D0 (en) * 1999-09-20 1999-11-17 Avecia Ltd Compounds, compositions and use
US6562420B2 (en) * 2001-07-31 2003-05-13 Industrial Technology Research Institute Liquid crystal aligning film
JP5273357B2 (ja) * 2007-07-06 2013-08-28 Jsr株式会社 液晶配向剤および液晶表示素子
WO2009066947A2 (en) * 2007-11-23 2009-05-28 Lg Chem, Ltd. Polymerizable liquid crystal composition, homeotropic alignment liquid crystal film made from the compostion and method for preparing the same
JP5839200B2 (ja) * 2010-08-31 2016-01-06 日産化学工業株式会社 ジアミン
KR20120091886A (ko) * 2011-02-10 2012-08-20 삼성전자주식회사 액정 표시 장치
JP2012197268A (ja) * 2011-03-04 2012-10-18 Toyo Ink Sc Holdings Co Ltd β−ヒドロキシアルキルアミドおよび架橋性組成物
WO2012121179A1 (ja) * 2011-03-04 2012-09-13 東洋インキScホールディングス株式会社 β-ヒドロキシアルキルアミド及び樹脂組成物
JP5817972B2 (ja) * 2011-06-30 2015-11-18 Jnc株式会社 ポリアミック酸、およびこれを用いた液晶配向剤、液晶配向膜、液晶表示素子
KR101962497B1 (ko) * 2011-09-30 2019-07-18 닛산 가가쿠 가부시키가이샤 액정 배향 처리제, 액정 배향막 및 액정 표시 소자
JP5961880B2 (ja) 2012-02-16 2016-08-03 株式会社ジャパンディスプレイ 液晶表示装置
CN104395820B (zh) * 2012-04-18 2017-07-11 日产化学工业株式会社 光取向法用的液晶取向剂、液晶取向膜和液晶显示元件
JP6520716B2 (ja) * 2013-11-15 2019-05-29 日産化学株式会社 液晶配向剤及びそれを用いた液晶表示素子

Also Published As

Publication number Publication date
JPWO2016063834A1 (ja) 2017-07-27
TW201629124A (zh) 2016-08-16
TWI699386B (zh) 2020-07-21
CN107077032A (zh) 2017-08-18
KR20170071513A (ko) 2017-06-23
KR102420194B1 (ko) 2022-07-12
CN107077032B (zh) 2021-04-16
WO2016063834A1 (ja) 2016-04-28

Similar Documents

Publication Publication Date Title
JP6627772B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP6558245B2 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
KR102172129B1 (ko) 액정 배향제, 액정 배향막 및 그것을 사용한 액정 표시 소자
TWI602852B (zh) Optical alignment method with the liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display components
TWI598668B (zh) A method of manufacturing a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display element
TW201831658A (zh) 液晶配向劑、液晶配向膜、及液晶顯示元件
CN110325903B (zh) 液晶取向膜的制造方法、液晶取向膜和液晶表示元件
TWI597305B (zh) A method of manufacturing a liquid crystal alignment film, a liquid crystal alignment film, and a liquid crystal display element
JPWO2019106952A1 (ja) 液晶配向剤、液晶配向膜及び液晶素子
JP2019101196A (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2018051923A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
CN111602088B (zh) 液晶取向剂、液晶取向膜及使用其的液晶表示元件
JP2019101195A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2019181878A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R151 Written notification of patent or utility model registration

Ref document number: 6627772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151