WO2017217413A1 - 液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents
液晶配向剤、液晶配向膜及び液晶表示素子 Download PDFInfo
- Publication number
- WO2017217413A1 WO2017217413A1 PCT/JP2017/021836 JP2017021836W WO2017217413A1 WO 2017217413 A1 WO2017217413 A1 WO 2017217413A1 JP 2017021836 W JP2017021836 W JP 2017021836W WO 2017217413 A1 WO2017217413 A1 WO 2017217413A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- carbon atoms
- aligning agent
- crystal aligning
- Prior art date
Links
- 0 *c1ccccc1 Chemical compound *c1ccccc1 0.000 description 2
- YGYCECQIOXZODZ-UHFFFAOYSA-N O=C(C(C1C2C(O3)=O)C2C3=O)OC1=O Chemical compound O=C(C(C1C2C(O3)=O)C2C3=O)OC1=O YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 1
- ILOCNLYUKFZVBP-UHFFFAOYSA-N O=C(C(CC12)C(C(C3)C(O4)=O)C1C3C4=O)OC2=O Chemical compound O=C(C(CC12)C(C(C3)C(O4)=O)C1C3C4=O)OC2=O ILOCNLYUKFZVBP-UHFFFAOYSA-N 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N O=C(c(c1c2)cc(C(O3)=O)c2C3=O)OC1=O Chemical compound O=C(c(c1c2)cc(C(O3)=O)c2C3=O)OC1=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
Definitions
- the present invention relates to a liquid crystal aligning agent used for manufacturing a liquid crystal display element, a liquid crystal aligning film obtained from the liquid crystal aligning agent, and a liquid crystal display element using the liquid crystal aligning film.
- the liquid crystal display element is known as a light, thin and low power display device.
- high-definition liquid crystal display elements for smartphones and tablet terminals which have rapidly expanded their market share, have made remarkable developments that require high display quality.
- a liquid crystal display element is configured by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
- An organic film made of an organic material is used as a liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates. in use. That is, in the liquid crystal display element, the liquid crystal alignment film is formed on a surface in contact with the liquid crystal of the substrate sandwiching the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates.
- the pretilt angle of the liquid crystal can be controlled by the liquid crystal alignment film, and a method of increasing the pretilt angle by mainly selecting a polyimide structure (see Patent Document 1) and a method of decreasing the pretilt angle (Patent Document) 2) is known.
- a liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate are responded by an electric field includes a step of irradiating ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process.
- a photopolymerizable compound is added in advance to a liquid crystal composition, and a polyimide-based vertical alignment film is used to irradiate ultraviolet rays while applying a voltage to a liquid crystal cell.
- a PSA (Polymer Sustained Alignment) type element that increases the response speed of liquid crystal is known (see Patent Document 3 and Non-Patent Document 1).
- narrowed frames In recent years, in mobile devices such as smartphones and mobile phones, so-called narrowed frames have been used in which the width of a sealing agent used for bonding between substrates of liquid crystal display elements is made narrower than before in order to secure as large a display surface as possible. It is requested. Along with the narrowing of the frame of the panel, the application position of the sealant used for manufacturing the liquid crystal display element is applied to the position in contact with the end of the liquid crystal alignment film or the upper part of the liquid crystal alignment film.
- polyimide since polyimide has no or few polar groups, there is a problem that a covalent bond is not formed between the sealing agent and the liquid crystal alignment film surface, resulting in insufficient adhesion between the substrates.
- a liquid crystal aligning agent comprising the following component (A), component (B), and an organic solvent can achieve the above-described problem.
- the present invention has been reached.
- Component a polymer having the ability to form a polymer film and align liquid crystals by alignment treatment
- Component a compound having an aliphatic skeleton and having three or more epoxy groups
- the above-mentioned problems can be achieved without deteriorating the liquid crystal alignment property and electrical characteristics. That is, by using the liquid crystal aligning agent of the present invention, the liquid crystal that can enhance the adhesion between the sealing agent and the liquid crystal aligning film and suppress the occurrence of display unevenness near the frame of the liquid crystal display element under high temperature and high humidity conditions. An alignment film is obtained. For this reason, the liquid crystal display element having this liquid crystal alignment film can solve the display unevenness near the frame by enhancing the adhesion between the sealing agent and the liquid crystal alignment film, has a large screen and high definition, and is particularly a liquid crystal for mobile devices. It can be suitably used for a display.
- the polymer which is the component (A) contained in the liquid crystal aligning agent of the present invention is not particularly limited as long as it has a capability of forming a polymer film and aligning liquid crystals by alignment treatment.
- polyamic acid and polyamic acid ester hereinafter, both are also referred to as polyimide precursor
- polyimide polyimide
- polyurea polysiloxane
- polyamide polyamideimide
- (meth) acrylate etc.
- polyimide precursor polyimide which is a polyimide precursor and / or imidized polyimide precursor is preferable.
- the polyimide precursor which is a polymer preferably used for the liquid crystal aligning agent of this invention has a structural unit represented by following formula (1).
- X 1 is a tetravalent organic group
- Y 1 is a divalent organic group.
- R 1 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
- a 1 and A 2 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may have a substituent.
- alkyl group for R 1 examples include methyl group, ethyl group, propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, and n-pentyl group.
- Etc. From the viewpoint of ease of imidization by heating, R 1 is preferably a hydrogen atom or a methyl group.
- X 1 is a tetravalent organic group derived from a tetracarboxylic acid derivative, and its structure is not particularly limited. Two or more kinds of X 1 may be mixed in the polyimide precursor. Specific examples of X 1 include the structures of the following formulas (X-1) to (X-44).
- R 8 to R 11 in the formula (X-1) are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group, or phenyl. It is a group.
- R 8 to R 11 have a bulky structure, the liquid crystal orientation may be lowered, so a hydrogen atom, a methyl group, or an ethyl group is more preferable, and a hydrogen atom or a methyl group is particularly preferable.
- X 1 preferably contains a structure selected from (X-1) to (X-14) from the viewpoint of availability of monomers. Since the reliability of the obtained liquid crystal alignment film can be further improved, the structure of X 1 is preferably an alicyclic structure such as (X-1) to (X-7) and (X-10), The structure represented by X-1) is more preferable. Further, in order to show good liquid crystal alignment, the structure of X 1 is more preferably the following formula (X1-1) or (X1-2).
- a preferable ratio of the structure selected from the above (X-1) to (X-44) is 20 mol% or more, more preferably 60 mol% or more, further preferably 80 mol% or more of the entire X 1.
- a 1 and A 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms which may have a substituent, or an alkyl group having 2 to 10 carbon atoms which may have a substituent. Or an alkynyl group having 2 to 10 carbon atoms which may have a substituent.
- alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a decyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
- alkenyl group examples include those obtained by replacing one or more CH—CH structures present in the above alkyl group with C ⁇ C structures, and more specifically, vinyl groups, allyl groups, 1-propenyl groups.
- Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
- the above alkyl group, alkenyl group, and alkynyl group may have a substituent, and may further form a ring structure by the substituent.
- forming a ring structure with a substituent means that the substituents or a substituent and a part of the mother skeleton are bonded to form a ring structure.
- substituents are halogen groups, hydroxyl groups, thiol groups, nitro groups, aryl groups, organooxy groups, organothio groups, organosilyl groups, acyl groups, ester groups, thioester groups, phosphate ester groups, amide groups, alkyls.
- halogen group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- a phenyl group is mentioned as an aryl group which is a substituent. This aryl group may be further substituted with the other substituent described above.
- the organooxy group which is a substituent can have a structure represented by OR.
- the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
- organooxy group examples include methoxy group, ethoxy group, propyloxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group and the like.
- organothio group which is a substituent
- R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
- Specific examples of the organothio group include a methylthio group, an ethylthio group, a propylthio group, a butylthio group, a pentylthio group, a hexylthio group, a heptylthio group, and an octylthio group.
- the organosilyl group as a substituent can have a structure represented by —Si— (R) 3 .
- the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
- Specific examples of the organosilyl group include a trimethylsilyl group, a triethylsilyl group, a tripropylsilyl group, a tributylsilyl group, a tripentylsilyl group, a trihexylsilyl group, a pentyldimethylsilyl group, and a hexyldimethylsilyl group.
- the acyl group as a substituent can have a structure represented by —C (O) —R.
- R include the above-described alkyl group, alkenyl group, and aryl group. These Rs may be further substituted with the substituent described above.
- Specific examples of the acyl group include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, benzoyl group and the like.
- As the ester group which is a substituent a structure represented by —C (O) O—R or —OC (O) —R can be shown. Examples of R include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
- the thioester group which is a substituent can have a structure represented by —C (S) O—R or —OC (S) —R.
- R examples include the aforementioned alkyl group, alkenyl group, alkynyl group, aryl group, and the like. These Rs may be further substituted with the substituent described above.
- the phosphate group which is a substituent can have a structure represented by —OP (O) — (OR) 2 .
- the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
- Examples of the substituent amide group include —C (O) NH 2 , —C (O) NHR, —NHC (O) R, —C (O) N (R) 2 , —NRC (O) R.
- the structure represented by can be shown.
- the R may be the same or different, and examples thereof include the alkyl group, alkenyl group, alkynyl group, and aryl group described above. These Rs may be further substituted with the substituent described above.
- Examples of the aryl group as a substituent include the same aryl groups as described above. This aryl group may be further substituted with the other substituent described above.
- Examples of the alkyl group as a substituent include the same alkyl groups as described above. This alkyl group may be further substituted with the other substituent described above.
- Examples of the alkenyl group as a substituent include the same alkenyl groups as described above. This alkenyl group may be further substituted with the other substituent described above.
- Examples of the alkynyl group that is a substituent include the same alkynyl groups as described above. This alkynyl group may be further substituted with the other substituent described above.
- a hydrogen atom or a carbon atom that may have a substituent is 1
- An alkyl group of 1 to 5 is more preferable, and a hydrogen atom, a methyl group or an ethyl group is particularly preferable.
- Y 1 is a divalent organic group derived from diamine, and its structure is not particularly limited.
- the diamine is represented by the following formula, and the following Y-1 to Y-194 may be mentioned as specific examples of the structure of Y 1 .
- n is an integer of 1 to 6.
- Boc in the above formula represents a tert-butoxycarbonyl group.
- n and n are each independently an integer of 1 to 11
- m + n is an integer of 2 to 12
- J is an integer from 0 to 3.
- Y 1 is more preferably at least one selected from the structures represented by the following formulas (5) and (6) from the viewpoint of the liquid crystal alignment property and the pretilt angle of the obtained liquid crystal alignment film.
- R 12 is a single bond or a divalent organic group having 1 to 30 carbon atoms
- R 13 is a hydrogen atom, a halogen atom or a monovalent organic group having 1 to 30 carbon atoms
- a is R is an integer of 1 to 4, and when a is 2 or more, R 12 and R 13 may be the same or different from each other.
- R 14 in the formula (6) is a single bond, —O—, —S—, —NR 15 —, an amide bond, an ester bond, a urea bond, or a divalent organic group having 1 to 40 carbon atoms; 15 is a hydrogen atom or a methyl group.
- Formula (5) and Formula (6) include the following structures.
- High structural linearity since it is possible to improve the alignment of the liquid crystal when the liquid crystal alignment film, as Y 1 is, Y-7, Y-21 , Y-22, Y-23, Y-25, Y-43, Y-44, Y-45, Y-46, Y-48, Y-54, Y-62, Y-63, Y-64, Y-65, Y-66, Y-67, or Y -160 is more preferred.
- the proportion of the above structure that can enhance the liquid crystal orientation is preferably 20 mol% or more of Y 1 as a whole, more preferably 60 mol% or more, and further preferably 80 mol% or more.
- Y 1 has a long chain alkyl group, an aromatic ring, an aliphatic ring, a steroid skeleton, or a combination of these in the side chain. It is preferable. Such Y 1 is preferably Y-170 to Y-191. In addition, a structure in which the side chain moiety in formula (5) is replaced by the following formula [III-1] or [III-2] is also preferable.
- X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO -Represents.
- X 2 represents a single bond or (CH 2 ) b — (b is an integer of 1 to 15).
- X 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or —OCO—.
- X 4 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring, and a heterocyclic ring, and an arbitrary hydrogen atom of these cyclic groups is an alkyl group having 1 to 3 carbon atoms or an alkoxyl group having 1 to 3 carbon atoms.
- Group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom, and X 4 may have 17 to 51 carbon atoms having a steroid skeleton. It may be a divalent organic group selected from organic groups.
- X 5 represents a divalent cyclic group selected from a benzene ring, a cyclohexane ring and a heterocyclic ring, and an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms or an alkoxyl having 1 to 3 carbon atoms.
- n represents an integer of 0 to 4.
- X 6 represents an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 18 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
- X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O, from the viewpoint of availability of raw materials and ease of synthesis.
- — Or —COO— is preferable, and more preferable is a single bond, — (CH 2 ) a — (a is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
- X 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10).
- X 3 is a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, or —COO—, among these, from the viewpoint of ease of synthesis. And more preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or —COO—.
- X 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
- X 5 is preferably a benzene ring or a cyclohexane ring.
- n is preferably 0 to 3 and more preferably 0 to 2 in view of availability of raw materials and ease of synthesis.
- X 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
- the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 carbon atoms having a steroid skeleton.
- the organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as the organic group having 17 to 51 carbon atoms having a steroid skeleton.
- (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred.
- Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
- X 7 is a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO—, —COO— or —OCO— is represented.
- X 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms.
- X 7 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or —COO—, and more preferably a single bond, —O—, — CONH- or -COO-.
- X 8 is preferably an alkyl group having 8 to 18 carbon atoms.
- the side chain for vertically aligning the liquid crystal it is preferable to use a structure represented by the formula [III-1] from the viewpoint that a high and stable vertical alignment of the liquid crystal can be obtained.
- the ability of a polymer having side chains for vertically aligning liquid crystals to align liquid crystals vertically varies depending on the structure of the side chains for vertically aligning liquid crystals, but in general, the side chains for vertically aligning liquid crystals. As the amount increases, the ability to align the liquid crystal vertically increases, and as the amount decreases, it decreases. Moreover, when it has a cyclic structure, compared with what does not have a cyclic structure, there exists a tendency for the capability to orientate a liquid crystal vertically.
- the proportion of the above structure for increasing the pretilt angle is preferably 1 to 30 mol%, more preferably 1 to 20 mol% of the entire Y 1 .
- the polymer contained in the liquid crystal aligning agent of the present invention may have a photoreactive side chain.
- the photoreactive side chain may be possessed by a specific polymer or may be possessed by a “polyimide precursor and / or imidized product thereof” which is a polymer other than the specific polymer.
- a diamine having a photoreactive side chain is preferably used as a part of the diamine component.
- the diamine having a photoreactive side chain include, but are not limited to, a diamine having a side chain represented by Formula [VIII] or Formula [IX].
- R 8 , R 9 and R 10 in formula [VIII] are as follows. That is, R 8 is a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ). —, —CON (CH 3 ) —, or —N (CH 3 ) CO— is represented.
- R 8 is preferably a single bond, —O—, —COO—, —NHCO—, or —CONH—.
- R 9 represents a single bond or an alkylene group having 1 to 20 carbon atoms which may be substituted with a fluorine atom, and —CH 2 — in the alkylene group is optionally substituted with —CF 2 — or —CH ⁇ CH—. If any of the following groups are not adjacent to each other, these groups may be substituted; —O—, —COO—, —OCO—, —NHCO—, —CONH—, — NH-, divalent carbocyclic or heterocyclic ring. Specific examples of the divalent carbocycle or heterocycle include, but are not limited to, the following.
- R 9 can be formed by a general organic synthetic method, but a single bond or an alkylene group having 1 to 12 carbon atoms is preferable from the viewpoint of ease of synthesis.
- R 10 represents a photoreactive group selected from the following formulae.
- R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
- Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—.
- Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group.
- Y 2 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
- Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
- Y 4 represents a cinnamoyl group.
- Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group.
- —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
- Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
- X 9 and X 10 are each independently a single bond, a bonding group that is —O—, —COO—, —NHCO—, or —NH—, and Y may be substituted with a fluorine atom Represents an alkylene group having 1 to 20 carbon atoms.
- examples of the photoreactive side chain include a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula.
- Y 1 to Y 6 are the same as defined above.
- the diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
- the diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
- the diamine having a photoreactive side chain include a diamine having a side chain having a site having a radical generating structure that is decomposed by ultraviolet irradiation to generate radicals.
- Ar, R 1 , R 2 , T 1 , T 2 , S and Q have the following definitions. That is, Ar represents an aromatic hydrocarbon group selected from phenylene, naphthylene, and biphenylene, in which an organic group may be substituted, and a hydrogen atom may be substituted with a halogen atom.
- R 1 and R 2 are each independently an alkyl or alkoxy group having 1 to 10 carbon atoms.
- T 1 and T 2 are each independently a single bond or —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ).
- S is a single bond, unsubstituted or an alkylene group having 1 to 20 carbon atoms substituted by a fluorine atom.
- the alkylene group —CH 2 — or —CF 2 — may be optionally replaced with —CH ⁇ CH—, and when any of the following groups is not adjacent to each other, these groups are replaced with these groups: -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, a divalent carbocycle, and a divalent heterocycle.
- Q is a structure selected from the following (in the structural formula, R represents water, an elementary atom, or an alkyl group having 1 to 4 carbon atoms, and R 3 represents —CH 2 —, —NR—, —O—, or —S Represents-).
- Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays. Therefore, when the wavelength is increased, a structure having a long conjugate length such as naphthylene or biphenylene is preferable.
- Ar may be substituted with a substituent, and the substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group.
- R 1 and R 2 are each independently an alkyl group having 1 to 10 carbon atoms, an alkoxy group, a benzyl group, or a phenethyl group. In the case of an alkyl group or an alkoxy group, R 1 and R 2 are May be formed.
- Q is preferably an electron donating organic group, and the above group is preferable.
- Q is an amino derivative
- the diaminobenzene in the formula (1) may have any structure of o-phenylenediamine, m-phenylenediamine, or p-phenylenediamine. However, in terms of reactivity with acid dianhydride, m-phenylenediamine, or p-Phenylenediamine is preferred.
- n is an integer of 2 to 8.
- polyimide precursor used in the present invention examples include polyamic acid and polyamic acid ester obtained from a reaction between a diamine component and a tetracarboxylic acid dihydrate component.
- the component (B) contained in the liquid crystal aligning agent of the present invention is a compound having an aliphatic skeleton and having three or more epoxy groups.
- a compound is not particularly limited as long as it has an aliphatic skeleton and has three or more epoxy groups, but from the viewpoint of availability and the like, a compound represented by the following formula is preferable. .
- m is each independently an integer of 1 to 10
- n is an integer of 1 to 10, preferably 1 to 5
- R is a carbon number of 1 to 7, preferably 2 to 6.
- An alkyl group, p, q and r are each independently an integer of 1 to 8, preferably 1 to 6; Preferable specific examples include the compounds exemplified below.
- the polyamic acid which is a polyimide precursor used in the present invention is produced by the following method. Specifically, the diamine component and the tetracarboxylic dianhydride component are -20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 in the presence of an organic solvent. It can be synthesized by reacting for a time.
- the reaction between the diamine component and the tetracarboxylic dianhydride component is usually carried out in an organic solvent.
- the organic solvent used at that time is not particularly limited as long as the produced polyimide precursor is dissolved. Although the specific example of the organic solvent used for reaction below is given, it is not limited to these examples. Examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl-imidazolidinone. It is done.
- the solubility of the polyimide precursor is high, it is represented by methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the following formulas [D-1] to [D-3].
- An organic solvent can be used.
- D 1 represents an alkyl group having 1 to 3 carbon atoms
- D 2 represents an alkyl group having 1 to 3 carbon atoms
- D 3 represents an alkyl group having 1 to 4 carbon atoms.
- the concentration of the polyamic acid polymer in the reaction system is preferably from 1 to 30% by mass, and more preferably from 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
- the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
- a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
- the polyamic acid ester which is a polyimide precursor used in the present invention can be produced by the following production method (1), (2) or (3).
- polyamic acid ester can be manufactured by esterifying the polyamic acid manufactured as mentioned above. Specifically, the polyamic acid and the esterifying agent are reacted in the presence of an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be manufactured.
- the esterifying agent is preferably one that can be easily removed by purification, and N, N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
- the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents per 1 mol of the polyamic acid repeating unit.
- organic solvent examples include N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone or ⁇ -butyrolactone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide or 1,3-dimethyl- Examples include imidazolidinone.
- solvent solubility of the polyimide precursor is high, methyl ethyl ketone, cyclohexanone, cyclopentanone, 4-hydroxy-4-methyl-2-pentanone, or the above formulas [D-1] to [D-3]
- the indicated solvents can be used.
- solvents may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use it for the said solvent in the range which the produced
- the solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, or ⁇ -butyrolactone in view of polymer solubility. These may be used alone or in combination of two or more. Good.
- the concentration at the time of production is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
- the polyamic acid ester can be manufactured from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be produced by reacting.
- pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
- the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
- the solvent used in the above reaction is preferably N-methyl-2-pyrrolidone or ⁇ -butyrolactone in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
- the polymer concentration at the time of production is preferably 1 to 30% by mass, more preferably 5 to 20% by mass, from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
- the solvent used for the production of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
- Polyamic acid ester can be manufactured by polycondensing tetracarboxylic-acid diester and diamine. Specifically, tetracarboxylic acid diester and diamine in the presence of a condensing agent, a base, and an organic solvent at 0 ° C. to 150 ° C., preferably 0 ° C. to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 It can manufacture by making it react for time.
- condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
- Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
- the addition amount of the condensing agent is preferably 2 to 3 times the molar amount of the tetracarboxylic acid diester.
- tertiary amines such as pyridine and triethylamine can be used.
- the amount of the base added is preferably 2 to 4 times the mol of the diamine component from the viewpoint that it can be easily removed and a high molecular weight product can be easily obtained.
- the reaction proceeds efficiently by adding Lewis acid as an additive.
- Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
- the addition amount of the Lewis acid is preferably 0 to 1.0 times mol with respect to the diamine component.
- the production method (1) or (2) is particularly preferable.
- the polymer solution can be precipitated by injecting the polyamic acid ester solution obtained as described above into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
- a poor solvent is not specifically limited, Water, methanol, ethanol, hexane, butyl cellosolve, acetone, toluene etc. are mentioned.
- the polyimide used in the present invention can be produced by imidizing the aforementioned polyamic acid ester or polyamic acid.
- chemical imidization in which a basic catalyst is added to a polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
- Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
- Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
- a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
- the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
- the amount of the basic catalyst is 0.5 to 30 moles, preferably 2 to 20 moles, of the amic acid ester group.
- the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time. Since the added catalyst or the like remains in the solution after the imidation reaction, the obtained imidized polymer is recovered by the means described below, redissolved in an organic solvent, and the liquid crystal alignment according to the present invention. It is preferable to use an agent.
- Chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction with a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is unlikely to decrease during the imidization process. Chemical imidation can be performed by stirring the polyamic acid to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride. As an organic solvent, the solvent used at the time of the polymerization reaction mentioned above can be used.
- Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
- the temperature during the imidation reaction is ⁇ 20 ° C. to 140 ° C., preferably 0 ° C. to 100 ° C., and the reaction time can be 1 to 100 hours.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amic acid group. Is double.
- the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
- the liquid crystal aligning agent of the present invention is preferable.
- the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while stirring well. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
- the poor solvent is not particularly limited, and examples thereof include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, and benzene.
- the liquid crystal aligning agent of this invention has the form of the solution in which the said (A) component and (B) component were melt
- the molecular weight of the polymer of component (A) is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, still more preferably 10,000 to 100,000. is there.
- the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
- content of the said (A) component in the liquid crystal aligning agent of this invention can be suitably changed with the setting of the thickness of the coating film to form, from the point of forming a uniform and defect-free coating film.
- the content is preferably 1% by weight or more, and preferably 10% by weight or less from the viewpoint of storage stability of the solution. Of these, 2 to 8% by weight is preferable, and 3 to 7% by weight is particularly preferable.
- content of the said (B) component in the liquid crystal aligning agent of this invention is 100 weight part (A) component (A) contained in a liquid crystal aligning agent from the reason of coexistence with liquid crystal aligning property, storage stability, etc.
- PHR is preferably from 1 to 30 parts by weight, particularly preferably from 3 to 15 parts by weight.
- the organic solvent contained in the liquid crystal aligning agent of this invention will not be specifically limited if the said (A) component and (B) component melt
- N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, and ⁇ -butyrolactone are preferably used.
- the content of the organic solvent contained in the liquid crystal aligning agent of the present invention is preferably 50 to 99% by weight, particularly preferably 80 to 99% by weight, from the viewpoints of storage stability and coating properties.
- the liquid crystal aligning agent of the present invention uses a solvent (also referred to as a poor solvent) that improves the coating properties and surface smoothness of the liquid crystal aligning film when the liquid crystal aligning agent is applied.
- a solvent also referred to as a poor solvent
- it can be used.
- a poor solvent is given to the following, it is not limited to these examples.
- ethanol isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 3-methyl-2-butanol, neopentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 2-methyl-2-pentanol, 2-ethyl-1-butanol, 1-heptanol 2-heptanol, 3-heptanol, 1-octanol, 2-octanol, 2-ethyl-1-hexanol, cyclohexanol, 1-methylcyclohexanol, 2-methylcyclohexanol, 3-methylcyclohexanol, 1,2- Ethane All, 1,2-propanediol, 1,3-propan
- 1-hexanol, cyclohexanol, 1,2-ethanediol, 1,2-propanediol, propylene glycol monobutyl ether, ethylene glycol monobutyl ether or dipropylene glycol dimethyl ether is preferably used.
- These poor solvents are preferably 1 to 80% by mass of the whole solvent contained in the liquid crystal aligning agent. Of these, 10 to 80% by mass is preferable. More preferred is 20 to 70% by mass.
- the polymer other than the component (A) in addition to the above, as long as the effects of the present invention are not impaired, the polymer other than the component (A), the electrical properties such as the dielectric constant and conductivity of the liquid crystal aligning film, etc.
- an imidization accelerator for the purpose of efficiently progressing imidization by heating of the polyimide precursor may be added.
- additives may be added to the liquid crystal aligning agent of the present invention in order to increase the mechanical strength of the liquid crystal aligning film.
- the above-mentioned additive is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. If the amount is less than 0.1 parts by mass, the effect cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal is lowered, so 0.5 to 20 parts by mass is more preferable.
- the liquid crystal alignment film of the present invention is a film obtained by applying the liquid crystal aligning agent to a substrate, drying and baking.
- the substrate on which the liquid crystal aligning agent of the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, an acrylic substrate, a polycarbonate substrate such as a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like is formed.
- an opaque material such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light, such as aluminum, can also be used.
- Examples of the method for applying the liquid crystal aligning agent of the present invention include a spin coating method, a printing method, and an ink jet method. Arbitrary temperature and time can be selected for the drying and baking steps after applying the liquid crystal aligning agent of the present invention. Usually, in order to sufficiently remove the organic solvent contained, drying is performed at 50 to 120 ° C. for 1 to 10 minutes, and then baking is performed at 150 to 300 ° C. for 5 to 120 minutes.
- the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is 5 to 300 nm, preferably 10 to 200 nm.
- Examples of a method for aligning the obtained liquid crystal alignment film include a rubbing method and a photo-alignment processing method.
- the rubbing process can be performed using an existing rubbing apparatus.
- Examples of the material of the rubbing cloth at this time include cotton, nylon, and rayon.
- As the conditions for rubbing treatment generally, conditions of a rotational speed of 300 to 2000 rpm, a feed speed of 5 to 100 mm / s, and an indentation amount of 0.1 to 1.0 mm are used. Thereafter, the residue generated by rubbing is removed by ultrasonic cleaning using pure water or alcohol.
- the photo-alignment treatment method there is a method of imparting liquid crystal alignment ability by irradiating the coating film surface with radiation deflected in a certain direction, and further subjecting to a temperature of 150 to 250 ° C. in some cases.
- the radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used. Among these, ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
- radiation may be irradiated while heating the coated substrate at 50 to 250 ° C. Dose of the radiation is preferably 1 ⁇ 10,000mJ / cm 2, particularly preferably 100 ⁇ 5,000mJ / cm 2.
- the liquid crystal alignment film produced as described above can stably align liquid crystal molecules in a certain direction.
- the film irradiated with polarized radiation may then be contact-treated with a solvent containing at least one selected from water and an organic solvent.
- the solvent used for the contact treatment is not particularly limited as long as it is a solvent that dissolves decomposition products generated by light irradiation.
- Specific examples include water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, 1-methoxy-2-propanol, 1-methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, 3- Examples include methyl methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate. Two or more of these solvents may be used in combination.
- the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is a treatment such that the film and the liquid are preferably sufficiently in contact with each other, such as immersion treatment or spraying treatment. Done.
- a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
- the contact treatment may be performed at normal temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
- a means for enhancing contact such as ultrasonic waves can be applied as necessary.
- rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or drying, or both May be done.
- the film subjected to the contact treatment with the solvent may be heated at 150 ° C. or higher for the purpose of drying the solvent and reorienting the molecular chains in the film.
- the heating temperature is preferably 150 to 300 ° C. A higher temperature promotes reorientation of molecular chains. However, if the temperature is too high, molecular chains may be decomposed. Therefore, the heating temperature is more preferably 180 to 250 ° C., and particularly preferably 200 to 230 ° C. If the heating time is too short, the effect of reorientation of the molecular chain may not be obtained, and if it is too long, the molecular chain may be decomposed, and is preferably 10 seconds to 30 minutes. More preferred is ⁇ 10 minutes.
- the liquid crystal display element of this invention comprises the liquid crystal aligning film obtained by the manufacturing method of the said liquid crystal aligning film.
- a liquid crystal cell is produced by a known method, and a liquid crystal cell is used.
- This is a display element.
- a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
- a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
- These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
- an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
- the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
- the liquid crystal alignment film of the present invention is formed on each substrate.
- the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
- a spacer is usually mixed in the sealing material.
- spacers for controlling the substrate gap are also sprayed on the in-plane portion where no sealing material is provided. A part of the sealing material is provided with an opening that can be filled with liquid crystal from the outside.
- a liquid crystal material is injected into a space surrounded by two substrates and the sealing material through an opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
- a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
- a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
- the sealant for example, a resin that is cured by ultraviolet irradiation or heating having a reactive group such as an epoxy group, an acryloyl group, a methacryloyl group, a hydroxyl group, an allyl group, or an acetyl group is used.
- a cured resin system having reactive groups of both an epoxy group and a (meth) acryloyl group.
- an inorganic filler may be blended for the purpose of improving adhesiveness and moisture resistance.
- the inorganic filler that can be used is not particularly limited. Specifically, spherical silica, fused silica, crystalline silica, titanium oxide, titanium black, silicon carbide, silicon nitride, boron nitride, calcium carbonate, magnesium carbonate, barium sulfate, Calcium sulfate, mica, talc, clay, alumina, magnesium oxide, zirconium oxide, aluminum hydroxide, calcium silicate, aluminum silicate, lithium aluminum silicate, zirconium silicate, barium titanate, glass fiber, carbon fiber, molybdenum disulfide, asbestos, etc.
- Two or more of the above inorganic fillers may be mixed and used.
- a liquid crystal display element When manufacturing a PSA type liquid crystal display composition, a liquid crystal display element can be manufactured by the following procedure.
- a liquid crystal alignment film is formed by applying a liquid crystal aligning agent on two substrates and firing, and two substrates are disposed so that the liquid crystal alignment films face each other, and a liquid crystal is disposed between the two substrates.
- a liquid crystal layer is provided in contact with the liquid crystal alignment film, and ultraviolet light is applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polymerizable compound in the liquid crystal layer is irradiated with light.
- a PSA liquid crystal display element that exhibits a desired tilt angle can be obtained.
- the use of the liquid crystal aligning agent having the photoreactive side chain structure described in this specification can more efficiently fix the alignment of the liquid crystal and The liquid crystal display element is remarkably excellent in speed.
- a line / slit electrode pattern of 1 to 10 ⁇ m is formed on one side substrate, and a structure in which no slit pattern or special pattern is formed on the opposite substrate is also operable.
- the liquid crystal display element having this structure can simplify the manufacturing process and obtain a high transmittance.
- the liquid crystal material constituting the vertical alignment type liquid crystal layer is not particularly limited.
- mainly negative type liquid crystal such as MLC-6608 or MLC-6609 manufactured by Merck & Co., Inc. can be used.
- a liquid crystal containing a polymerizable compound represented by the following formula for example, MLC-3023 manufactured by Merck can be used.
- the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field.
- the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
- the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
- NMP N-methyl-2-pyrrolidone
- BCS Butyl cellosolve
- DC-1 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride
- DC-2 1,2,3,4 Cyclobutane tetracarboxylic dianhydride
- DC-3 bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
- DC-4 pyromellitic anhydride
- DA-1 p-phenylenediamine
- DA-2 1,2-bis (4-aminophenoxy) ethane
- DA-3 1,3-bis (4-aminophenoxy) propane
- DA-4 1-tert-butoxycarbonyl-1,3-bis (4-aminophenethyl) urea
- DA-5 4- (2-methylaminoethyl) aniline
- DA-6 1,3-bis (4- Aminophenethyl) urea
- DA-7 4,4′-diaminodiphenylamine
- DA-8 3,5-diaminobenzoic acid
- DA-9 3,5-diamino-N- (pyridin-3-ylmethyl) benzamide
- DA-10 Compound DA-11 of the following formula DA-10: Compound of the following formula DA-11n
- Boc represents a t-butoxycarbonyl group.
- Example preparation Each liquid crystal aligning agent of the Example and comparative example which are described later was apply
- Two substrates obtained were prepared, a 4 ⁇ m bead spacer was applied on the liquid crystal alignment film surface of one substrate, and a sealant (XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.) was dropped. Next, bonding was performed so that the liquid crystal alignment film surface of the other substrate was inside, and the overlapping width of the substrates was 1 cm. At that time, the dropping amount of the sealing agent was adjusted so that the diameter of the sealing agent after bonding was 3 mm. The two bonded substrates were fixed with a clip, and then thermally cured at 150 ° C. for 1 hour to prepare samples for Examples and Comparative Examples for adhesion evaluation.
- a sealant XN-1500T manufactured by Kyoritsu Chemical Co., Ltd.
- DA-1 was 0.908 g (8.40 mmol)
- DA-2 was 1.37 g (5.60 mmol)
- DA-3 was 2.17 g ( 8.40 mmol) and 2.23 g (5.60 mmol) of DA-4 were weighed, 76.8 g of NMP was added, and the mixture was stirred and dissolved while feeding nitrogen.
- Table 1 shows the raw material composition of the polyimide polymer in Synthesis Examples 1 to 4.
- liquid crystal aligning agent Using the polyimide polymers obtained in Synthesis Examples 1 to 4, liquid crystal aligning agents of Examples 1 to 6 and Comparative Examples 1 to 7 were prepared as follows. The summary of the liquid crystal aligning agents of these Examples 1 to 6 and Comparative Examples 1 to 7 and the results of adhesion evaluation are summarized in Table 2, Table 3, and Table 4 to be described later.
- Example 1 To a 20 ml sample tube containing a stir bar, 3.66 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.79 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 were obtained. Weighing, 3.00 g of NMP, 0.85 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.24 g of NMP solution containing 10% by mass of AD-1, and 4.4 g of BCS. 57 g was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-1).
- Example 2 To a 20 ml sample tube containing a stir bar, 3.66 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.77 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 were used. Weighing, 2.83 g of NMP, 0.81 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.42 g of NMP solution containing 10% by mass of AD-1, and 4.4 g of BCS. 55 g was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-2).
- Example 3 In a 50 ml sample tube containing a stir bar, 4.54 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 and 5.40 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 were used. Weighing, 5.80 g of NMP, 1.35 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.41 g of NMP solution containing 10% by mass of AD-1, and 7. 50 g was added, and the mixture was stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-3).
- Example 4 In a 50 ml sample tube containing a stir bar, 4.54 g of the polyamic acid solution (PAA-2) obtained in Synthesis Example 2 and 5.40 g of the polyamic acid solution (PAA-4) obtained in Synthesis Example 4 were used. Weighing, 5.54 g of NMP, 1.35 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.68 g of NMP solution containing 10% by mass of AD-1, and 7. 50 g was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-4).
- Example 5 To a 20 ml sample tube containing a stir bar, 3.68 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.78 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 were used. Weighing, 2.95 g of NMP, 0.87 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.24 g of NMP solution containing 10% by mass of AD-3, and 4.4 g of BCS. 52 g was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-5).
- Example 6 To a 20 ml sample tube containing a stir bar, 3.68 g of the polyamic acid solution (PAA-1) obtained in Synthesis Example 1 and 2.80 g of the polyamic acid solution (PAA-3) obtained in Synthesis Example 3 were used. Weighing out, 2.84 g of NMP, 0.81 g of NMP solution containing 1% by mass of 3-glycidoxypropyltriethoxysilane, 0.41 g of NMP solution containing 10% by mass of AD-3, and 4.3 g of BCS. 48 g was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-6).
- NMP (18.0 g) was added to the obtained polyimide powder A (2.0 g), and dissolved by stirring at 70 ° C. for 12 hours.
- BCS (13.3 g) was added to this solution, and SPI-1 was obtained by stirring at room temperature for 2 hours.
- NMP (18.0 g) was added to the obtained polyimide powder B (2.0 g), and dissolved by stirring at 70 ° C. for 12 hours.
- BCS (13.3 g) was added to this solution, and SPI-2 was obtained by stirring at room temperature for 2 hours.
- a summary of the polyimide polymer of the present invention is shown in Table 5.
- Example 7 Into a 20 ml sample tube containing a stir bar, 5.00 g of the polyimide solution (SPI-1) obtained in Synthesis Example 5 and 5.00 g of the polyimide solution (SPI-2) obtained in Synthesis Example 6 were added. 0.06 g of No. 3 was added and stirred with a magnetic stirrer for 2 hours to obtain a liquid crystal aligning agent (A-7).
- Example 7 The summary of the liquid crystal aligning agents of Example 7 and Comparative Examples 8 and 9 is shown in Table 7 below, and the results of adhesion evaluation for the liquid crystal aligning agents of Example 7 and Comparative Examples 8 and 9 Are summarized in Table 7 below.
- These adhesion evaluation procedures were as described above except that during the preparation of samples for adhesion evaluation, each liquid crystal alignment agent was applied and drying on the hot plate was performed at 80 ° C. instead of 70 ° C. It is.
- liquid crystal aligning agent of the present invention By using the liquid crystal aligning agent of the present invention, it is possible to obtain a liquid crystal alignment film having excellent liquid crystal alignment and further high seal adhesion, and thus various liquid crystal display elements, particularly mobile devices, that require high display quality. It can be suitably used for.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Nonlinear Science (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
このようなVA方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くするPSA(Polymer Sustained Alignment)方式素子が知られている(特許文献3、非特許文献1参照)。
(A)成分:高分子膜を形成し、配向処理により液晶を配向させる能力を有する重合体
(B)成分:脂肪族骨格を有し、エポキシ基を3つ以上有する化合物
本発明の液晶配向剤に含まれる(A)成分である重合体は、高分子膜を形成し、配向処理により液晶を配向させる能力を持つものであれば、その構造は特に限定されない。例えば、ポリアミック酸及びポリアミック酸エステル(以下、2つを併せてポリイミド前駆体とも称する)、前記ポリイミド前駆体のイミド化物であるポリイミド、ポリウレア、ポリシロキサン、ポリアミド、ポリアミドイミド、(メタ)アクリレート等が挙げられる。その中でも、ポリイミド前駆体及び/又はポリイミド前駆体のイミド化物であるポリイミドが好ましい。
R1における上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、R1は、水素原子、又はメチル基が好ましい。
得られる液晶配向膜の信頼性をさらに高められることから、X1の構造は、(X-1)~(X-7)及び(X-10)のような、脂環式構造が好ましく、(X-1)で表される構造がより好ましい。更に、良好な液晶配向性を示すため、X1の構造としては、下記式(X1-1)又は(X1-2)がさらに好ましい。
式(1)において、A1及びA2はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基である。
この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。オルガノオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
式(1)において、Y1はジアミン由来の2価の有機基であり、その構造は特に限定されない。ジアミンは下記の式で表され、Y1の構造の具体例を示すならば、下記のY-1~Y-194が挙げられる。
直線性の高い構造は、液晶配向膜としたときに液晶の配向性を高めることができるため、Y1としては、Y-7、Y-21、Y-22、Y-23、Y-25、Y-43、Y-44、Y-45、Y-46、Y-48、Y-54、Y-62、Y-63、Y-64、Y-65、Y-66、Y-67、又はY-160がさらに好ましい。液晶配向性を高めることができる上記構造の割合としては、Y1全体の20モル%以上が好ましく、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。
また、式(5)において、側鎖部分が下記式[III-1]または[III-2]で置き換えられた構造も好ましい。
なお、液晶を垂直に配向させる側鎖を有する重合体が液晶を垂直に配向させる能力は、液晶を垂直に配向させる側鎖の構造によって異なるが、一般的に、液晶を垂直に配向させる側鎖の量が多くなると液晶を垂直に配向させる能力は上がり、少なくなると下がる。また、環状構造を有すると、環状構造を有さないものと比較して、液晶を垂直に配向させる能力が高い傾向がある。
プレチルト角を高くしたい場合の上記構造の割合としては、Y1全体の1~30モル%が好ましく、1~20モル%がより好ましい。
また、式(5)において、側鎖部分が下記式[VIII]または[IX]で置き換えられた構造も好ましい。
本発明の液晶配向剤に含有される重合体は、光反応性の側鎖を有していてもよい。
該光反応性の側鎖は、特定重合体が有していても、特定重合体以外の重合体である「ポリイミド前駆体及び/又はそのイミド化物であるポリイミド」が有していてもよい。
<光反応性側鎖を含有するジアミン>
光反応性を有する側鎖を特定重合体及び/又は特定重合体以外の重合体に導入するには、光反応性の側鎖を有するジアミンをジアミン成分の一部に用いるのがよい。光反応性の側鎖を有するジアミンとしては、式[VIII]、又は式[IX]で表される側鎖を有するジアミンを挙げることができるがこれらに限定されない。
すなわち、R8は、単結合、-CH2-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-を表す。特に、R8は、単結合、-O-、-COO-、-NHCO-、又は-CONH-であるのが好ましい。
R9は、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表し、アルキレン基の-CH2-は-CF2-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは複素環。
なお、上記二価の炭素環若しくは複素環は、具体的には以下のものを例示することができるが、これらに限定されない。
R10は、下記式から選択される光反応性基を表す。
即ち、Y1は-CH2-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。
Y2は、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Y2は、次の基が互いに隣り合わない場合、-CH2-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
Y3は、-CH2-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。
Y4はシンナモイル基を表す。Y5は単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。
Y5は、次の基が互いに隣り合わない場合、-CH2-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。
Y6はアクリル基又はメタクリル基である光重合性基を示す。
上記光反応性の側鎖を有するジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性、液晶表示素子とした際の液晶の応答速度などに応じて、1種類又は2種類以上を混合して使用できる。
また、光反応性の側鎖を有するジアミンとしては、紫外線照射により分解しラジカルが発生するラジカル発生構造を有する部位を側鎖に有するジアミンも挙げられる。
即ち、Arはフェニレン、ナフチレン、及びビフェニレンから選ばれる芳香族炭化水素基を示し、それらには有機基が置換していても良く、水素原子はハロゲン原子に置換していても良い。
R1、R2はそれぞれ独立して炭素原子数1~10のアルキル基もしくはアルコキシ基である。
T1、T2はそれぞれ独立して、単結合又は-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、-N(CH3)CO-の結合基である。
Sは単結合もしくは非置換もしくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基。ただしアルキレン基の-CH2-または-CF2-は-CH=CH-で任意に置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環、二価の複素環。
Qは下記から選ばれる構造(構造式中、Rは水、素原子又は炭素原子数1~4のアルキル基を表し、R3は-CH2-、-NR-、-O-、又は-S-を表す。)を表す。
また、R1、R2は、それぞれ独立して炭素原子数1~10のアルキル基、アルコキシ基、ベンジル基、又はフェネチル基であり、アルキル基やアルコキシ基の場合、R1、R2で環を形成していてもよい。
Qがアミノ誘導体の場合、ポリイミドの前駆体であるポリアミック酸の重合の際に、発生するカルボン酸基とアミノ基が塩を形成するなどの不具合が生じる可能性があるため、より好ましくはヒドロキシル基又はアルコキシル基である。
式(1)におけるジアミノベンゼンは、o-フェニレンジアミン、m-フェニレンジアミン、又はp-フェニレンジアミンのいずれの構造でもよいが、酸二無水物との反応性の点では、m-フェニレンジアミン、又はp-フェニレンジアミンが好ましい。
本発明の液晶配向剤に含有される(B)成分は、脂肪族骨格を有し、かつエポキシ基を3つ以上有する化合物である。かかる化合物としては、脂肪族骨格を有し、かつエポキシ基を3つ以上有していれば、その他の構造は特に限定されないが、入手性等の観点から、下記式で表される化合物が好ましい。
好ましい具体例として、以下に例示するような化合物が挙げられる。
本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下の方法により製造される。具体的には、ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、ポリマーを析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。
具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製法が特に好ましい。
本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
化学的イミド化は、イミド化させたいポリアミック酸を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。
前記貧溶媒は、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
本発明の液晶配向剤は、前記(A)成分、及び(B)成分が有機溶媒中に溶解された溶液の形態を有する。(A)成分の重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
また、本発明の液晶配向剤における前記(B)成分の含有量は、液晶配向性や保存安定性などとの両立の理由から、液晶配向剤に含まれる前記(A)成分の100重量部(PHR)に対して、1~30重量部が好ましく、3~15重量部が特に好ましい。
本発明の液晶配向剤に含有される有機溶媒の含有量は、保存安定性や塗布性などの観点から、50~99重量%が好ましく、80~99重量%が特に好ましい。
これら貧溶媒は、液晶配向剤に含まれる溶媒全体の1~80質量%であることが好ましい。なかでも、10~80質量%が好ましい。より好ましいのは20~70質量%である。
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
上記で、偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。
加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
本発明の液晶表示素子は、前記液晶配向膜の製造方法によって得られた液晶配向膜を具備する。本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)等のスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
次に、各基板の上に、本発明の液晶配向膜を形成する。次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設け、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射し、液晶層中の重合性化合物を光重合させることで、所望のチルト角を発現したPSA方式の液晶表示素子とすることができる。
NMP:N-メチル-2-ピロリドン、BCS:ブチルセロソルブ
DC-1:1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-2:1,2,3,4-シクロブタンテトラカルボン酸二無水物
DC-3:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、
DC-4:ピロメリット酸無水物、
DA-1:p-フェニレンジアミン、
DA-2:1,2-ビス(4-アミノフェノキシ)エタン
DA-3:1,3-ビス(4-アミノフェノキシ)プロパン
DA-6:1,3-ビス(4-アミノフェネチル)ウレア
DA-7:4,4’-ジアミノジフェニルアミン
DA-8:3,5-ジアミノ安息香酸
DA-9:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
DA-10:下記式DA-10の化合物
DA-11:下記式DA-11n化合物
なお、以下の化学式において、Bocはt-ブトキシカルボニル基を表す。
<粘度>
ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
[サンプル作製]
縦30mm×横40mmのITO基板に、スピンコート塗布にて後記する実施例及び比較例の各液晶配向剤を塗布した。次いで、80℃のホットプレート上で2分間乾燥させた後、230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面に偏光板を介して254nmの紫外線を150mJ/cm2照射した後、230℃の熱風循環式オーブンで30分間焼成を行い、液晶配向膜付き基板を得た。
上記実施例及び比較例の各サンプル基板を島津製作所社製の卓上形精密万能試験機AGS-X 500Nにて、上下基板の端の部分を固定した後、基板中央部の上部から押し込みを行い、剥離する際の力(N)を測定した。実施例及び比較例の結果を表3及び表4にまとめて示す。
撹拌装置付き及び窒素導入管付きの100mL四つ口フラスコに、DA-1を0.908g(8.40mmol)、DA-2を1.37g(5.60mmol)、DA-3を2.17g(8.40mmol)、及びDA-4を2.23g(5.60mmol)量り取り、NMPを76.8g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDC-1を5.99g(26.7mmol)添加し、さらにNMPを16.1g加え、室温で24時間撹拌してポリアミック酸の溶液(PAA-1、粘度:397mPa・s)を得た。
撹拌装置付き及び窒素導入管付きの1000mL四つ口フラスコに、DA-1を9.77g(90mmol)、DA-2を21.99g(90mmol)、DA-3を15.50g(60mmol)、及びDA-4を23.91g(60mmol)量り取り、NMPを891.10g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながらDC-1を64.56g(288mmol)添加し、さらにNMPを99.0g加え、室温で24時間撹拌してポリアミック酸の溶液(PAA-2、粘度:435mPa・s)を得た。
撹拌装置付き及び窒素導入管付きの500mL四つ口フラスコに、DA-5を9.01g(60.0mmol)、及びDA-6を26.8g(89.8mmol)量り取り、NMPを290g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらDC-2を27.9g(142mmol)添加し、NMPを71.4g加えて23℃で2時間撹拌してポリアミック酸の溶液(PAA-3)を得た。このポリアミック酸の溶液の温度25℃における粘度は750mPa・sであった。
撹拌装置付き及び窒素導入管付きの15L四つ口フラスコに、DA-6を238.7g(800mmol)、及びDA―7を637.6g(3200mmol)量り取り、NMPを8175.5g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を水冷下で撹拌しながらDC-2を176.5g(900mmol)、DC-3を750.6g(3000mmol)添加し、NMPを2043.9g加えて23℃で2時間撹拌してポリアミック酸の溶液(PAA-4、粘度:1499mPa・s)を得た。
上記合成例1~4で得られたポリイミド系重合体を使用し、それぞれ、次のようにして実施例1~6及び比較例1~7の液晶配向剤を調製した。
これらの実施例1~6及び比較例1~7の液晶配向剤の概要、密着性評価の結果を、後記する表2、表3、及び表4にまとめて示す。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.66g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.79g量り取り、NMPを3.00g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.85g、AD-1を10質量%含むNMP溶液を0.24g、及びBCSを4.57g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.66g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.77g量り取り、NMPを2.83g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.81g、AD-1を10質量%含むNMP溶液を0.42g、及びBCSを4.55g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
撹拌子の入った50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を4.54g、及び合成例4で得られたポリアミック酸溶液(PAA-4)を5.40g量り取り、NMPを5.80g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.35g、AD-1を10質量%含むNMP溶液を0.41g、及びBCSを7.50g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
撹拌子の入った50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を4.54g、及び合成例4で得られたポリアミック酸溶液(PAA-4)を5.40g量り取り、NMPを5.54g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.35g、AD-1を10質量%含むNMP溶液を0.68g、及びBCSを7.50g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-4)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.68g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.78g量り取り、NMPを2.95g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.87g、AD-3を10質量%含むNMP溶液を0.24g、及びBCSを4.52g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-5)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.68g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.80g量り取り、NMPを2.84g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.81g、AD-3を10質量%含むNMP溶液を0.41g、及びBCSを4.48g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-6)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.69g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.78g量り取り、NMPを3.22g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.81g、及びBCSを4.50g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-1)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.67g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.79g量り取り、NMPを2.99g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.83g、AD-2を10質量%含むNMP溶液を0.23g、及びBCSを4.49g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-2)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.66g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.79g量り取り、NMPを2.86g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.80g、AD-2を10質量%含むNMP溶液を0.40g、及びBCSを4.53g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-3)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.68g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.78g量り取り、NMPを2.98g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.84g、AD-4を10質量%含むNMP溶液を0.26g、及びBCSを4.49g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-4)を得た。
撹拌子の入った20mlサンプル管に、合成例1で得られたポリアミック酸溶液(PAA-1)を3.69g、及び合成例3で得られたポリアミック酸溶液(PAA-3)を2.79g量り取り、NMPを2.82g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を0.81g、AD-4を10質量%含むNMP溶液を0.42g、及びBCSを4.48g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-5)を得た。
撹拌子の入った50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を4.54g、及び合成例4で得られたポリアミック酸溶液(PAA-4)を5.40g量り取り、NMPを5.80g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.35g、AD-4を10質量%含むNMP溶液を0.405g、及びBCSを7.50g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-6)を得た。
撹拌子の入った50mlサンプル管に、合成例2で得られたポリアミック酸溶液(PAA-2)を4.54g、及び合成例4で得られたポリアミック酸溶液(PAA-4)を5.40g量り取り、NMPを5.54g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.35g、AD-4を10質量%含むNMP溶液を0.675g、及びBCSを7.50g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-7)を得た。
DC-3(5.00g、20mmol)、DA-8(3.04g、20mmol)、DA-10(6.95g、16mmol)、DA-11(1.32g、4mmol)をNMP(65.3g)中で溶解し、60℃で3時間反応させたのち、DC-2(3.77g、19.2mmol)とNMP(15.1g)を加え、40℃で4時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(20g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.03g)、およびピリジン(1.25g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(234g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Aを得た。このポリイミドのイミド化率は74%であり、数平均分子量は16000、重量平均分子量は48000であった。
得られたポリイミド粉末A(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することによりSPI-1を得た。
DC-3(5.00g、20mmol)、DA-9(7.75g、32mmol)、DA-10(4.48g、8mmol)をNMP(64.9g)中で溶解し、60℃で3時間反応させたのち、DC-2(2.31g、11.8mmol)とNMP(9.3g)を加え、23℃で1時間反応させ、その後DC-4(1.74g、8mmol)とNMP(7.0g)を加え、23℃で6時間反応させ、ポリアミック酸溶液を得た。
このポリアミック酸溶液(20g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(4.02g)、およびピリジン(1.25g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(234g)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末Bを得た。このポリイミドのイミド化率は74%であり、数平均分子量は16000、重量平均分子量は48000であった。
得られたポリイミド粉末B(2.0g)にNMP(18.0g)を加え、70℃にて12時間攪拌して溶解させた。この溶液にBCS(13.3g)を加え、室温で2時間攪拌することによりSPI-2を得た。
本発明のポリイミド系重合体の概要を表5に示す。
撹拌子の入った20mlサンプル管に、合成例5で得られたポリイミド溶液(SPI-1)を5.00g、合成例6で得られたポリイミド溶液(SPI-2)を5.00g、AD-3を0.06g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-7)を得た。
撹拌子の入った20mlサンプル管に、合成例5で得られたポリイミド溶液(SPI-1)を5.00g、合成例6で得られたポリイミド溶液(SPI-2)を5.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-8)を得た。
撹拌子の入った20mlサンプル管に、合成例5で得られたポリイミド溶液(SPI-1)を5.00g、合成例6で得られたポリイミド溶液(SPI-2)を5.00g、AD-4を0.06g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(B-9)を得た。
なお、これらの密着性評価の手順は、密着性評価のサンプル作製中、各液晶配向剤を塗布し後のホットプレート上の乾燥は、70℃の代わりに80℃にしたほかは、上記したとおりである。
Claims (13)
- 下記の(A)成分、(B)成分及び有機溶剤を含有することを特徴とする液晶配向剤。
(A)成分:高分子膜を形成し、配向処理により液晶を配向させる能力を有する重合体
(B)成分:脂肪族骨格を有し、かつエポキシ基を3つ以上有する化合物 - 前記有機溶媒が、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、及び4-ヒドロキシ-4-メチル-2-ペンタノンからなる群から選ばれる少なくとも1種である、請求項1~8のいずれか1項に記載の液晶配向剤。
- 前記有機溶媒が、更に、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、及びジプロピレングリコールジメチルエーテルからなる群から選ばれる少なくとも1種の貧溶媒を含む、請求項1~9のいずれか1項に記載の液晶配向剤。
- 前記(A)成分を2~8重量%含み、前記(B)成分を液晶配向剤に含まれる樹脂固形分量に対して1~30重量%含み、かる前記有機溶媒を50~99重量%含む、請求項1~10のいずれか1項に記載の液晶配向剤。
- 請求項1~11のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
- 請求項12に記載の液晶配向膜を具備する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780049760.3A CN109564369B (zh) | 2016-06-14 | 2017-06-13 | 液晶取向剂、液晶取向膜和液晶表示元件 |
JP2018523936A JP7131384B2 (ja) | 2016-06-14 | 2017-06-13 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
KR1020197000598A KR102469383B1 (ko) | 2016-06-14 | 2017-06-13 | 액정 배향제, 액정 배향막 및 액정 표시 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-118282 | 2016-06-14 | ||
JP2016118282 | 2016-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017217413A1 true WO2017217413A1 (ja) | 2017-12-21 |
Family
ID=60663702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/021836 WO2017217413A1 (ja) | 2016-06-14 | 2017-06-13 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7131384B2 (ja) |
KR (1) | KR102469383B1 (ja) |
CN (1) | CN109564369B (ja) |
TW (1) | TWI813541B (ja) |
WO (1) | WO2017217413A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181496A1 (ja) * | 2017-03-30 | 2020-02-06 | 日産化学株式会社 | 剥離層形成用組成物及び剥離層 |
WO2022014470A1 (ja) * | 2020-07-17 | 2022-01-20 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
JPWO2022014467A1 (ja) * | 2020-07-17 | 2022-01-20 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007139949A (ja) * | 2005-11-16 | 2007-06-07 | Hitachi Cable Ltd | 液晶配向剤 |
JP2007241249A (ja) * | 2006-02-07 | 2007-09-20 | Jsr Corp | 垂直配向型液晶配向剤、および垂直配向型液晶表示素子 |
US20150062513A1 (en) * | 2013-08-28 | 2015-03-05 | Samsung Display Co., Ltd. | Liquid crystal aligning agent and liquid crystal display device |
JP2015228034A (ja) * | 2009-09-18 | 2015-12-17 | Jnc株式会社 | 液晶表示素子 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4085206B2 (ja) | 1996-02-15 | 2008-05-14 | 日産化学工業株式会社 | ジアミノベンゼン誘導体及びそれを用いたポリイミド並びに液晶配向膜 |
JP3169062B2 (ja) | 1996-07-11 | 2001-05-21 | 日産化学工業株式会社 | 液晶セル用配向処理剤 |
JP4175826B2 (ja) | 2002-04-16 | 2008-11-05 | シャープ株式会社 | 液晶表示装置 |
JP5041123B2 (ja) * | 2005-07-12 | 2012-10-03 | Jsr株式会社 | 垂直液晶配向剤 |
JP5145660B2 (ja) * | 2005-10-18 | 2013-02-20 | Dic株式会社 | 光配向膜用組成物、光配向膜の製造方法、及びこれを用いた光学異方体、光学素子、その製造方法 |
CN105359033B (zh) * | 2013-05-01 | 2018-03-27 | 日产化学工业株式会社 | 液晶取向处理剂、液晶取向膜和液晶表示元件 |
-
2017
- 2017-06-13 CN CN201780049760.3A patent/CN109564369B/zh active Active
- 2017-06-13 JP JP2018523936A patent/JP7131384B2/ja active Active
- 2017-06-13 KR KR1020197000598A patent/KR102469383B1/ko active IP Right Grant
- 2017-06-13 WO PCT/JP2017/021836 patent/WO2017217413A1/ja active Application Filing
- 2017-06-14 TW TW106119849A patent/TWI813541B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007139949A (ja) * | 2005-11-16 | 2007-06-07 | Hitachi Cable Ltd | 液晶配向剤 |
JP2007241249A (ja) * | 2006-02-07 | 2007-09-20 | Jsr Corp | 垂直配向型液晶配向剤、および垂直配向型液晶表示素子 |
JP2015228034A (ja) * | 2009-09-18 | 2015-12-17 | Jnc株式会社 | 液晶表示素子 |
US20150062513A1 (en) * | 2013-08-28 | 2015-03-05 | Samsung Display Co., Ltd. | Liquid crystal aligning agent and liquid crystal display device |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018181496A1 (ja) * | 2017-03-30 | 2020-02-06 | 日産化学株式会社 | 剥離層形成用組成物及び剥離層 |
JP7092114B2 (ja) | 2017-03-30 | 2022-06-28 | 日産化学株式会社 | 剥離層形成用組成物及び剥離層 |
WO2022014470A1 (ja) * | 2020-07-17 | 2022-01-20 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
JPWO2022014470A1 (ja) * | 2020-07-17 | 2022-01-20 | ||
JPWO2022014467A1 (ja) * | 2020-07-17 | 2022-01-20 | ||
WO2022014467A1 (ja) * | 2020-07-17 | 2022-01-20 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
CN116234856A (zh) * | 2020-07-17 | 2023-06-06 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
CN116234857A (zh) * | 2020-07-17 | 2023-06-06 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
JP7302744B2 (ja) | 2020-07-17 | 2023-07-04 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
JP7311047B2 (ja) | 2020-07-17 | 2023-07-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜、及び液晶表示素子 |
CN116234856B (zh) * | 2020-07-17 | 2024-04-09 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
CN116234857B (zh) * | 2020-07-17 | 2024-04-26 | 日产化学株式会社 | 液晶取向剂、液晶取向膜以及液晶显示元件 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2017217413A1 (ja) | 2019-07-11 |
KR20190019127A (ko) | 2019-02-26 |
CN109564369B (zh) | 2022-08-26 |
JP7131384B2 (ja) | 2022-09-06 |
CN109564369A (zh) | 2019-04-02 |
TW201811869A (zh) | 2018-04-01 |
TWI813541B (zh) | 2023-09-01 |
KR102469383B1 (ko) | 2022-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6711443B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶配向素子 | |
JP6852771B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6520716B2 (ja) | 液晶配向剤及びそれを用いた液晶表示素子 | |
KR102241786B1 (ko) | 열 탈리성기를 갖는 폴리이미드 전구체 및/또는 폴리이미드를 함유하는 액정 배향제 | |
JP6919574B2 (ja) | 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子 | |
JP7259328B2 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
WO2015060366A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
WO2013039168A1 (ja) | 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 | |
WO2018062440A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
WO2018062438A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
JP7131384B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
WO2018062437A1 (ja) | 液晶配向剤、液晶配向膜、及び液晶表示素子 | |
KR102586311B1 (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 | |
JP7392655B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
KR102719144B1 (ko) | 액정 배향제, 액정 배향막 및 액정 표시 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17813309 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018523936 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197000598 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17813309 Country of ref document: EP Kind code of ref document: A1 |