JP2017203980A - 液晶表示素子 - Google Patents
液晶表示素子 Download PDFInfo
- Publication number
- JP2017203980A JP2017203980A JP2017085385A JP2017085385A JP2017203980A JP 2017203980 A JP2017203980 A JP 2017203980A JP 2017085385 A JP2017085385 A JP 2017085385A JP 2017085385 A JP2017085385 A JP 2017085385A JP 2017203980 A JP2017203980 A JP 2017203980A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- polymer
- formula
- crystal display
- photoreactive structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133711—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
- G02F1/133723—Polyimide, polyamide-imide
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Liquid Crystal (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
【課題】長時間強い光に晒されても表示品位が低下しない液晶表示素子を提供すること。そのような表示素子を提供し得る液晶配向剤さらには液晶配向膜を提供すること。【解決手段】対向面にそれぞれ配向膜を有する一対の基板の間に液晶を挟持してなる液晶表示素子において、前記配向膜は、光反応性構造を有さないポリマー(A)および光反応性構造を有するポリマー(B)を含む光配向用液晶配向剤によって形成され、前記ポリマー(A)は前記配向膜の液晶側に偏析し、ポリマー(B)は前記配向膜の基板側に偏析していることを特徴とする液晶表示素子。【選択図】なし
Description
本発明は、光配向法に用いる光配向用液晶配向剤、およびそれを用いた光配向膜、液晶表示素子に関する。
パソコンのモニター、液晶テレビ、ビデオカメラのビューファインダー、投写型ディスプレイ等の様々な表示装置、さらには、光プリンターヘッド、光フーリエ変換素子、ライトバルブ等のオプトエレクトロニクス関連素子等、今日製品化されて一般に流通している液晶表示素子は、ネマティック液晶を用いた表示素子が主流である。ネマティック液晶表示素子の表示方式は、TN(Twisted Nematic)モード、STN(Super Twisted Nematic)モードがよく知られている。近年、これらのモードの問題点の1つである視野角の狭さを改善するために、光学補償フィルムを用いたTN型液晶表示素子、垂直配向と突起構造物の技術を併用したMVA(Multi-domain Vertical Alignment)モード、あるいは横電界方式のIPS(In-Plane Switching)モード、FFS(Fringe Field Switching)モード等が提案され、実用化されている。
液晶表示素子の技術の発展は、単にこれらの駆動方式や素子構造の改良のみならず、素子に使用される構成部材の改良によっても達成されている。液晶表示素子に使用される構成部材のなかでも、特に液晶配向膜は表示品位に係わる重要な材料の1つであり、液晶表示素子の高品質化に伴い、配向膜の性能を向上させる事が重要になってきている。
液晶配向膜は、液晶配向剤を用いて形成される。現在、主として用いられている液晶配向剤は、ポリアミック酸または可溶性のポリイミドを有機溶剤に溶解させた溶液(ワニス)である。この溶液を基板に塗布した後、加熱等の手段により成膜してポリイミド系液晶配向膜を形成する。製膜後、必要に応じ前述の表示モードに適する配向処理が施される。
工業的には、簡便で大面積の高速処理が可能なラビング法が、配向処理法として広く用いられている。ラビング法は、ナイロン、レイヨン、ポリエステル等の繊維を植毛した布を用いて液晶配向膜の表面を一方向に擦る処理であり、これによって液晶分子の一様な配向を得ることが可能になる。しかし、ラビング法による発塵、静電気の発生等の問題点が指摘されており、近年ラビング法に代わる配向処理法の開発が盛んに行われている。
ラビング法に代わる配向処理法として注目されているのが、光を照射して配向処理を施す光配向処理法である。光配向処理法には光分解法、光異性化法、光二量化法、光架橋法等多くの配向機構が提案されている(例えば、非特許文献1、特許文献1および2を参照。)。光配向法はラビング法に比べて配向の均一性が高く、また非接触の配向処理法であるため膜に傷が付かず、発塵や静電気等の液晶表示素子の表示不良を発生させる原因を低減できる等の利点がある。
配向処理法によらず、液晶配向膜には種々の特性が要求される。その1つにフリッカの低減が挙げられる。通常液晶表示素子は、フリッカと呼ばれるチラつきを軽減するために、共通電極電位を調整し、正極性時と負極性時の液晶への印加電圧が等しくなるように調節されている。しかしながら、長時間の駆動によりバックライトの光が長時間液晶配向膜に当たると、その体積抵抗値が下がり、それに伴って電圧保持率が下がることにより、フリッカが生じる事が問題となっている(例えば、特許文献3を参照。)。
紫外線等の照射によってポリマーの特定部位が化学変化を起こす光配向法の場合、従来のラビング処理による液晶配向膜と比較して一般に電気特性に劣る傾向があった。そのため、ポリアミック酸構造中に光異性化や光二量化などを起こす光反応性基を有する液晶配向膜(以降、光配向膜と称することがある)および液晶表示素子において、様々な検討が行われてきた(例えば、特許文献3〜6を参照。)。中でも、特許文献5では、光配向膜に、光反応構造を含むポリマーと光反応構造を含まないポリマーを併用することで、良好な配向性および電気特性と高い透過率を両立させた。
しかしながら、特許文献5に記された光配向膜は、光反応構造を含むポリマーが膜の液晶側に偏在し、光反応構造を含まないポリマーが膜の基板側に偏在している。そのため、長期間バックライトの照射を受けることで、配向膜と液晶層の界面で、液晶分子による配向分極やイオン性不純物によって形成された電気二重層による逆電場などに起因する電荷減衰が生じ易くなり、結果的に、長期に渡って良好な電圧保持率を維持することが困難になることが考えられる。
一方、特許文献4は配向膜を積層構造とし、液晶側の配向膜に基板側の配向膜が有する液晶配向特性を転写するという技術を開示した。特許文献4は光配向膜表面の膜劣化に起因する電圧保持率低下、コントラストの低下等表示不良の抑制を目的としており、下層の光配向膜を形成後、その表面に上層膜を形成し、下層膜をコートすることで問題を解決できるとしている。しかしながら、この方法は液晶配向膜を形成する工程が単純に倍になるという、プロセス上の問題を有している。
近年、液晶表示素子においては、表示品位の向上や、屋外での使用を考慮し、光源となるバックライトの輝度を以前のものよりも高くする用途もあり、長時間強い光に晒されても表示品位が低下しない液晶表示素子が求められている。前述の技術を以ってしても、この要求を満たす光配向用液晶配向剤を提供することは難しい。
液晶、第3巻、第4号、262ページ、1999年
本発明の課題は、長時間強い光に晒されても表示品位が低下しない液晶表示素子を提供することであり、そして、そのような表示素子を提供し得る液晶配向剤さらには液晶配向膜を提供することである。
本願発明者らは上記課題を解決するために鋭意検討した結果、少なくとも2種のポリマーを含む光配光膜において、基板側に偏在するポリマーの構成単位が光反応性構造を有し、液晶側に偏在するポリマーの構成単位は光反応性構造を有さない構成にすることにより、均一な配向性を維持しつつ、長時間の使用でも電圧保持率が低下しない液晶表示素子を提供できることを見出し、本発明を完成させた。
本発明は以下からなる。
[1] 対向面にそれぞれ配向膜を有する一対の基板の間に液晶を挟持してなる液晶表示素子において、
前記配向膜は、光反応性構造を有さないポリマー(A)および光反応性構造を有するポリマー(B)を含む光配向用液晶配向剤によって形成され、
前記ポリマー(A)は前記配向膜の液晶側に偏析し、ポリマー(B)は前記配向膜の基板側に偏析していることを特徴とする液晶表示素子。
[1] 対向面にそれぞれ配向膜を有する一対の基板の間に液晶を挟持してなる液晶表示素子において、
前記配向膜は、光反応性構造を有さないポリマー(A)および光反応性構造を有するポリマー(B)を含む光配向用液晶配向剤によって形成され、
前記ポリマー(A)は前記配向膜の液晶側に偏析し、ポリマー(B)は前記配向膜の基板側に偏析していることを特徴とする液晶表示素子。
[2] 光反応性構造を有さないポリマー(A)の表面エネルギーは、光反応性構造を有するポリマー(B)の表面エネルギーよりも小さく、かつ、両表面エネルギーの差は、2mJ/m2以上である、[1]項に記載の液晶表示素子。
[3] 光反応性構造を有さないポリマー(A)の表面エネルギーは、40〜50mJ/m2であり、光反応性構造を有するポリマー(B)の表面エネルギーは、45〜55mJ/m2である、[2]項に記載の液晶表示素子。
[4] 前記液晶配向膜は、ポリマーの全重量において光反応性構造を有さないポリマー(A)を20〜80重量%、光反応性構造を有するポリマー(B)を80〜20重量%含有する液晶配向剤により形成される、[1]項に記載の液晶表示素子。
[5] 光反応性構造を有さないポリマー(A)と光反応性構造を有するポリマー(B)は共にポリアミック酸またはその誘導体である、[1]項に記載の液晶表示素子。
[6] 光反応性構造を有するポリマー(B)は、光異性化、光二量化、光分解、光フリース転位(光による芳香族エステルから芳香族ヒドロキシケトンへの転位反応)から選ばれる少なくとも1つの光反応性構造を有するポリマーである、[1]項に記載の液晶表示素子。
[7] 光反応性構造を有するポリマー(B)は、光異性化構造を有するポリマーである、[6]項に記載の液晶表示素子。
[8] 光反応性構造を有するポリマー(B)は、式(II)〜式(VI)で表される光反応性構造を有する化合物の少なくとも1つを原料モノマーの1つに用いた反応物であるポリアミック酸またはその誘導体である、[6]項に記載の液晶表示素子。
式(II)〜(V)において、R2およびR3は−NH2を有する1価の有機基または−CO−O−CO−を有する1価の有機基であり;
式(IV)において、R4は2価の有機基であり;そして、
式(VI)において、R5は−NH2または−CO−O−CO−を有する芳香環である。
式(IV)において、R4は2価の有機基であり;そして、
式(VI)において、R5は−NH2または−CO−O−CO−を有する芳香環である。
[9] 光反応性構造を有するポリマー(B)は、光反応性構造を有する化合物として、式(V−2−1)で表されるジアミンを原料モノマーの1つに用いた反応物であるポリアミック酸またはその誘導体である、[8]項に記載の液晶表示素子。
本発明の光配向用液晶配向剤によって形成された光配向用液晶配向膜を有する液晶表示素子は、基板側に偏在するポリマーの構成単位に光反応性構造を含み、液晶側に偏在するポリマーの構成単位に光反応性構造を含まないため、配向膜と液晶層の界面で、液晶分子による配向分極やイオン性不純物によって形成された電気二重層による逆電場などに起因する電荷減衰を生じず、長時間の使用においても電圧保持率が低下せず、強い光に晒されても高い表示品位を維持することができる。
本発明の光配向用液晶配向剤は、テトラカルボン酸二無水物およびその誘導体から選ばれる少なくとも1つとジアミンとの反応生成物である、ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドからなる群より選ばれる少なくとも1つである、光反応性構造を有さないポリマー(A)と、光反応性構造を有するポリマー(B)を含有する。
前記ポリアミック酸、ポリアミック酸エステルおよびこれらをイミド化して得られるポリイミドとは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。ポリアミック酸エステルは、前述のポリアミック酸と水酸基含有化合物、ハロゲン化物、エポキシ基含有化合物等とを反応させることにより合成する方法や、酸二無水物から誘導されるテトラカルボン酸ジエステルもしくはテトラカルボン酸ジエステルジクロライドとジアミンとを反応させることにより合成する方法により、合成することができる。酸二無水物から誘導されるテトラカルボン酸ジエステルは例えば、酸二無水物を2当量のアルコールと反応させ開環させて得ることができ、テトラカルボン酸ジエステルジクロライドは、テトラカルボン酸ジエステルを2当量の塩素化剤(例えば塩化チオニルなど)と反応させることで得ることができる。なお、ポリアミック酸エステルは、アミック酸エステル構造のみを有していてもよく、アミック酸構造とアミック酸エステル構造とが併存する部分エステル化物であってもよい。
2つのポリマーを含む液晶配向剤を用いて薄膜を形成する過程で、2つのポリマーの表面エネルギーの差に基づく相互作用により、表面エネルギーが小さいポリマーは上層(液晶側)に、表面エネルギーの大きいポリマーは下層(基板側)に分離することが知られている。
そこで光反応性構造を有さないポリマー(A)の表面エネルギーを、光反応性構造を有するポリマー(B)の表面エネルギーよりも小さく制御することによって、両ポリマーの混合物を含有する液晶配向剤を基板に塗布し、予備乾燥を行う過程で、形成されたポリマー薄膜の上層(液晶側)にポリマー(A)を、下層(基板側)にポリマー(B)を偏析させることができると考えられる。このため、液晶側の配向膜表面は光反応性構造を有さないポリマー(A)の存在が支配的となり、配向膜と液晶層の界面での電荷減衰を抑制し、電圧保持率の低下を防ぐことができる。
その際、光反応性構造を有するポリマー(B)の表面エネルギーは、光反応性構造を有さないポリマー(A)の表面エネルギーよりも2mJ/m2以上大きいことが好ましく、ポリマー(A)の表面エネルギーは40〜45mJ/m2、ポリマー(B)の表面エネルギーは45〜50mJ/m2であることが好ましい。
上記の配向膜中でポリマー(A)が膜の上層に偏在している状態は、例えば、形成した膜の表面エネルギーを測定し、ポリマー(A)のみを含有する液晶配向剤によって形成された膜の表面エネルギーの値と同じか、それに近い値であることによって確認することができる。
光反応性構造について詳細に説明する。本発明において、光反応性構造とは、例えば、紫外線照射で異性化を起こす光異性化構造、結合が開裂する光分解構造、二量化を起こす光二量化構造のことを意味する。紫外線照射で光反応を起こす構造を有する原料モノマーを適宜使用することができる。
前記光異性化構造を有するモノマーとしては、光異性化構造を有するテトラカルボン酸二無水物または光異性化構造を有するジアミンが挙げられ、感光性が良好な下記式(II)〜式(VI)で表される化合物の群から選ばれる少なくとも1つであることが好ましく、式(V)で表される化合物がより好ましい。
式(II)〜(V)において、R2およびR3は−NH2を有する1価の有機基または−CO−O−CO−を有する1価の有機基であり、式(IV)においてR4は2価の有機基であり、式(VI)においてR5は−NH2もしくは−CO−O−CO−を有する芳香環である。
光異性化構造は、本発明におけるポリアミック酸またはその誘導体の主鎖もしくは側鎖のどちらに組み込んでもよいが、主鎖に組み込むことにより、横電界方式の液晶表示素子に好適に用いることができる。
前記光異性化構造を有する材料としては、下記式(II−1)、(II−2)、(III−1)、(III−2)、(IV−1)〜(IV−3)、(V−1)〜(V−3)、(VI−1)、および(VI−2)で表される化合物の群から選ばれる少なくとも1つを好適に用いることができる。
上記各式において、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(IV−3)において、rは1から10の整数である。式(V−2)において、R6は独立して−CH3、−OCH3、−CF3、または−COOCH3であり、aは0〜2の整数である。式(V−3)において、環Aおよび環Bはそれぞれ独立して、単環式炭化水素、縮合多環式炭化水素および複素環から選ばれる少なくとも1つであり、R11は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH3)CO−、または−CON(CH3)−であり、R12は、炭素数1〜20の直鎖アルキレン、−COO−、−OCO−、−NHCO−、−CONH−、−N(CH3)CO−、または−CON(CH3)−であり、R11およびR12において、直鎖アルキレンの−CH2−の1つまたは2つは−O−で置換されてもよく、R7〜R10は、それぞれ独立して、−F、−CH3、−OCH3、−CF3、または−OHであり、そして、b〜eは、それぞれ独立して、0〜4の整数である。
上記式(V−1)、(V−2)および(VI−2)で表される化合物はその感光性の点から特に好適に用いることができる。式(V−2)および(VI−2)においては、アミノ基の結合位置がパラ位の化合物を、さらに式(V−2)においては、a=0の化合物を、その配向性の点からより好適に用いることができる。式(IV−3)で表される化合物は、感光性を発現する以外の目的で使用することもできる。
上記式(II−1)〜(VI−2)に示す紫外線照射で異性化を起こし得る構造を持つ酸二無水物もしくはジアミンは下記式(II−1−1)〜(VI−2−3)で具体的に表すことができる。なお、下記式(IV−3−1)において、rは1から10の整数である。
これらの中でも式(V−1−1)〜式(V−3−8)で表される化合物を使用することで、紫外線照射に対してより感度の高い光配向用液晶配向剤を得ることができる。式(V−1−1)、式(V−2−1)、式(V−2−4)〜式(V−2−11)および式(V−3−1)〜式(V−3−8)で表される化合物を使用することで、液晶分子をより一様に配向させることができる光配向用液晶配向剤を得ることができる。式(V−2−4)〜式(V−3−8)で表される化合物を使用することで、形成される配向膜がより着色の少なくできる光配向用液晶配向剤を得ることができる。
前記光分解構造を有するモノマーとしては、下記式(PA−1)〜式(PA−6)で表される化合物が挙げられる。
式(PA−3)〜式(PA−6)において、R11は独立して、炭素数1〜5のアルキル基である。
これらの中でも、式(PA−1)、式(PA−2)および式(PA−5)が好適に用いられる。
式(PA−1)〜(PA−6)で表される化合物は、光異性化反応に基づく液晶配向能を利用した液晶配向剤、光二量化に基づく液晶配向能を利用した液晶配向剤の材料として用いる場合は、上記の光反応性構造を有さないテトラカルボン酸二無水物として用いられる。
前記光二量化構造を有するモノマーとしては、下記式(PDI−9)〜式(PDI−13)で表されるジアミン化合物が挙げられる。
式(PDI−12)において、R12は炭素数1〜10のアルキルまたはアルコキシであり、アルキルまたはアルコキシの少なくとも1つの水素はフッ素に置き換えられていてもよい。
これらの中でも、式(PDI−9)および式(PDI−11)で表されるジアミンを好適に用いることができる。
光反応性構造を有さない(非感光性)テトラカルボン酸二無水物および光反応性構造を有する(感光性)テトラカルボン酸二無水物を併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するテトラカルボン酸二無水物の全量に対して、感光性テトラカルボン酸二無水物は30〜100モル%が好ましく、50〜100モル%が特に好ましい。また、光に対する感度、電気特性、残像特性等、前述した諸般の特性を改善するために感光性テトラカルボン酸二無水物を2つ以上併用してもよい。
光反応性構造を有さない(非感光性)のジアミンおよび光反応性構造を有する(感光性)ジアミンを併用する態様においては、配向膜の光に対する感度の低下を防ぐために、本発明のポリアミック酸またはその誘導体を製造する際の原料として使用するジアミンの全量に対して、感光性ジアミンは20〜100モル%が好ましく、50〜100モル%が特に好ましい。また、光に対する感度、残像特性等、前述した諸般の特性を改善するために感光性ジアミンを2つ以上併用してもよい。前記のごとく、本発明の態様にはテトラカルボン酸二無水物の全量が非感光性テトラカルボン酸二無水物で占められる場合が含まれるが、その場合でもジアミンの全量の最低20モル%が感光性ジアミンであることが求められる。
光に対する感度、残像特性等、前述した諸般の特性を改善するために、感光性テトラカルボン酸二無水物および感光性ジアミンを併用してもよく、それぞれを2つ以上併用してもよい。
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する非感光性テトラカルボン酸二無水物は、ポリマー(A)の表面エネルギーがポリマー(B)の表面エネルギーよりも大きくならない範囲において、公知の非感光性テトラカルボン酸二無水物から制限されることなく選択することができる。このような非感光性テトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。
非感光性テトラカルボン酸二無水物の例としては、以下が挙げられる。
式(AN−1−2)および式(AN−4−17)において、mは1〜12の整数である。
液晶表示素子の透過率を向上させることを重視する場合には、式(AN−1−1)、式(AN−1−2)、式(AN−3−1)、式(AN−4−17)、式(AN−4−30)、式(AN−5−1)、式(AN−7−2)、式(AN−10−1)、式(AN−16−3)、式(AN−16−4)、および式(PA−1)で表される化合物が好ましく、中でも式(AN−1−2)においては、m=4または8が好ましく、式(AN−4−17)においては、m=4、または8が好ましく、m=8がより好ましい。
液晶表示素子のVHRを向上させることを重視する場合には、式(AN−1−1)、式(AN−1−2)、式(AN−3−1)、式(AN−4−17)、式(AN−4−30)、式(AN−7−2)、式(AN−10−1)、式(AN−16−3)、式(AN−16−4)、および式(PA−1)で表される化合物が好ましく、式(AN−1−2)においては、m=4または8が好ましく、式(AN−4−17)においては、m=4、または8が好ましく、m=8がより好ましい。
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、式(AN−1−13)、式(AN−3−2)、式(AN−4−21)、式(AN−4−29)、および式(AN−11−3)で表される化合物が好ましい。
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドから選択される少なくとも1つを含有する光配向用液晶配向剤を製造する為に使用する、非感光性ジアミンは、ポリマー(A)の表面エネルギーがポリマー(B)の表面エネルギーよりも大きくならない範囲において、公知の非感光性ジアミンから制限されることなく選択することができる。非感光性ジアミンの例としては、以下が挙げられる。
式(DI−5−12)において、mは1〜12の整数であり;
式(DI−5−1)において、mは1〜12の整数であり;
式(DI−5−30)において、kは1〜5の整数であり;
式(DI−5−13)、および式(DI−7−3)において、mは1〜12の整数であり;
式(DI−7−3)において、nはそれぞれ独立して1または2であり;
式(DI−36−13)において、R44は−NHBocまたは−N(Boc)2であり、mは1〜12の整数であり、そして、Bocはt−ブトキシカルボニル基である。
式(DI−5−1)において、mは1〜12の整数であり;
式(DI−5−30)において、kは1〜5の整数であり;
式(DI−5−13)、および式(DI−7−3)において、mは1〜12の整数であり;
式(DI−7−3)において、nはそれぞれ独立して1または2であり;
式(DI−36−13)において、R44は−NHBocまたは−N(Boc)2であり、mは1〜12の整数であり、そして、Bocはt−ブトキシカルボニル基である。
ポリマー(A)とポリマー(B)の表面エネルギーを制御するに当たっては、それぞれのポリマーの原料モノマーに含まれる、アルキレンを有するモノマーのアルキレンの炭素数の違いを利用することができる。具体的にはポリマー(A)の原料モノマー中のアルキレンを有するモノマーのアルキレンの炭素数を、ポリマー(B)の原料モノマー中のアルキレンを有するモノマーのアルキレンの炭素数よりも大きくすることで、ポリマー(A)の表面エネルギーをポリマー(B)の表面エネルギーよりも小さく制御することができる。
表面エネルギーを制御するためのアルキレンを有するモノマーは、公知のアルキレンを有するテトラカルボン酸二無水物およびアルキレンを有するジアミンから適宜選ぶことができる。
前記アルキレンを有するテトラカルボン酸二無水物としては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(IV−3−1)、式(AN−1−2)および式(AN−4−17)で表されるテトラカルボン酸二無水物を使用することができる。前記アルキレンを有するジアミンとしては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(DI−1)、式(DI−5−1)、式(DI−5−12)、(DI−5−30)で表されるジアミンを使用することができる。
これらの化合物は自身が有するアルキレンをポリマーの主鎖にもたらす。前記に例示した以外にも、ポリマーにアルキレンを有する側鎖をもたらす、化合物の側方位にアルキルまたはアルキレンを介した置換基を有するモノマーも、本発明の効果が十分に得られる範囲で、ポリマーの表面エネルギーを調整する目的で使用することができる。
ポリマー(A)とポリマー(B)の配向膜中での偏析を促進するためには、ポリマー(A)においては炭素数4以上のアルキレンを含むことが好ましい。ポリマー(B)においては、アルキレンを含む必要はないが、液晶配向性をよくするためには、前記の式(IV−3−1)(r=2〜4)、式(AN−1−2)または式(AN−4−17)で表されるテトラカルボン酸二無水物由来の構成単位を含むことが好ましい。
表面エネルギーの制御によるポリマーの偏析と良好な液晶配向性を確保し、さらには電気特性等、液晶表示素子の表示品位を向上させるためには、ポリマー(A)にはm=4〜12である式(AN−4−17)で表されるテトラカルボン酸二無水物由来の構成単位の少なくとも1つを含むことがより好ましく、m=8〜12である式(AN−4−17)で表されるテトラカルボン酸二無水物由来の構成単位の少なくとも1つを含むことがさらに好ましい。ポリマー(B)には式(AN−4−5)で表されるテトラカルボン酸二無水物由来の構成単位、およびm=1〜4である式(AN−4−17)で表されるテトラカルボン酸二無水物由来の構成単位から選ばれる少なくとも1つを含むことがより好ましい。
透過率を向上させることを重視する場合には、式(DI−1)、式(DI−2−1)、式(DI−5−1)、式(DI−5−5)、および式(DI−7−3)で表されるジアミンを用いるのが好ましく、式(DI−2−1)で表される化合物がより好ましい。式(DI−5−1)においては、m=2、4または6が好ましく、m=4がより好ましい。式(DI−7−3)においては、m=2または3、n=1または2が好ましく、m=3、n=1がより好ましい。
液晶表示素子のVHRを向上させることを重視する場合には、式(DI−2−1)、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−4−15)、式(DI−5−1)、式(DI−5−28)、式(DI−5−30)、式(DI−13−1)、および式(DI−31−56)で表される化合物を用いるのが好ましく、式(DI−2−1)、式(DI−5−1)、および式(DI−13−1)で表されるジアミンがより好ましい。式(DI−5−1)においては、m=1が好ましい。式(DI−5−30)においては、k=2が好ましい。
液晶配向膜の体積抵抗値を低下させることにより、配向膜中の残留電荷(残留DC)の緩和速度を向上させることが、焼き付きを防ぐ方法の1つとして有効である。この目的を重視する場合には、式(DI−4−1)、式(DI−4−2)、式(DI−4−10)、式(DI−4−15)、式(DI−5−1)、式(DI−5−12)、式(DI−5−13)、式(DI−5−28)、式(DI−16−1)および式(DI−36−13)で表される化合物を用いるのが好ましく、式(DI−4−1)、式(DI−5−1)、および式(DI−5−13)で表される化合物がより好ましい。式(DI−5−1)において、m=2、4または6が好ましく、m=4がより好ましい。式(DI−5−12)においては、m=2〜6が好ましく、m=5がより好ましい。式(DI−5−13)においては、m=1または2が好ましく、m=1がより好ましい。
各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。このため、このような置き換えによって、得られる重合体(ポリアミック酸、ポリアミック酸エステルもしくはポリイミド)の分子量を容易に制御することができ、例えば本発明の効果が損なわれることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、1種でも2種以上でもよい。前記モノアミンとしては、例えばアニリン、4−ヒドロキシアニリン、シクロヘキシルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、およびn−エイコシルアミンが挙げられる。
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損なわれることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。
本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミドは、上記の酸無水物の混合物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。
良好な光配向性を示すために、本発明の光配向用液晶配向剤中のポリマー(B)の含有量は、含まれるポリマー全量を100としたとき20重量%以上であることが必要であり、50重量%以上であることが好ましく、60重量%以上であることがより好ましい。ただし、ここで述べるポリマー(B)の好ましい含有量は1つの指針であり、原料に用いるテトラカルボン酸二無水物またはジアミンの組み合わせによって変動することがある。
本発明の光配向用液晶配向剤は、本発明のポリアミック酸、ポリアミック酸エステルおよびポリイミド以外の他の成分をさらに含有していてもよい。他の成分は、1種であっても2種以上であってもよい。他の成分として、例えば後述する化合物などが挙げられる。
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種で用いてもよいし、2種以上を併用してもよい。アルケニル置換ナジイミド化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。好ましいアルケニル置換ナジイミド化合物には、特開2013−242526等に開示されているアルケニル置換ナジイミド化合物が挙げられる。
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる目的から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。なお、ラジカル重合性不飽和二重結合を有する化合物にはアルケニル置換ナジイミド化合物は含まれない。ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して1〜100重量%であることが好ましく、1〜70重量%であることがより好ましく、1〜50重量%であることがさらに好ましい。
なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像の発生を抑制するために、ラジカル重合性不飽和二重結合を有する化合物/アルケニル置換ナジイミド化合物が重量比で0.1〜10であることが好ましく、0.5〜5であることがより好ましい。
好ましいラジカル重合性不飽和二重結合を有する化合物には、特開2013−242526等に開示されているラジカル重合性不飽和二重結合を有する化合物が挙げられる。
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサジン化合物をさらに含有していてもよい。オキサジン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサジン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。好ましいオキサジン化合物には、特開2013−242526等に開示されているオキサジン化合物が挙げられる。
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、オキサゾリン化合物をさらに含有していてもよい。オキサゾリン化合物はオキサゾリン構造を有する化合物である。オキサゾリン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。オキサゾリン化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。または、オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが、上記の目的から好ましい。
オキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1種だけ有していてもよいし、2種以上有していてもよい。またオキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン構造を側鎖に有する重合体であってもよいし、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよいし、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する2種以上のモノマーの共重合体であってもよいし、オキサゾリン構造を側鎖に有する2種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。
好ましいオキサゾリン化合物としては、例えば2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)が挙げられる。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも挙げられる。これらのうち、より好ましくは、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼンが挙げられる。
例えば、本発明の液晶配向剤は、液晶表示素子における電気特性を長期に安定させる目的から、エポキシ化合物をさらに含有していてもよい。エポキシ化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。エポキシ化合物の含有量は、上記の目的から、ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
以下にエポキシ化合物について具体的に説明する。エポキシ化合物としては、分子内にエポキシ環を1つまたは2つ以上有する種々の化合物が挙げられる。
分子内にエポキシ環を1つ有する化合物としては、例えばフェニルグリシジルエーテル、ブチルグリシジルエーテル、3,3,3−トリフルオロメチルプロピレンオキシド、スチレンオキシド、ヘキサフルオロプロピレンオキシド、シクロヘキセンオキシド、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−グリシジルフタルイミド、(ノナフルオロ−N−ブチル)エポキシド、パーフルオロエチルグリシジルエーテル、エピクロロヒドリン、エピブロモヒドリン、N,N−ジグリシジルアニリン、および3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパンが挙げられる。
分子内にエポキシ環を2つ有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、セロキサイド8000(商品名、(株)ダイセル製)、および3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランが挙げられる。
分子内にエポキシ環を3つ有する化合物としては、例えば2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(商品名「テクモアVG3101L」、(三井化学(株)製))が挙げられる。
分子内にエポキシ環を4つ有する化合物としては、例えば1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、および3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシランが挙げられる。
上記の他、分子内にエポキシ環を有する化合物の例として、エポキシ環を有するオリゴマーや重合体も挙げられる。エポキシ環を有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
エポキシ環を有するモノマーと共重合を行う他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロロメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドが挙げられる。
エポキシ環を有するモノマーの重合体の好ましい具体例としては、ポリグリシジルメタクリレート等が挙げられる。また、エポキシ環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
これらの具体例の中でも、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、セロキサイド8000(商品名、(株)ダイセル製)、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。
より体系的には、エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。なお、エポキシ化合物はエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。
エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。
グリシジルエーテルとしては、例えばビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物が挙げられる。
グリシジルエステルとしては、例えばジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が挙げられる。
グリシジルアミンとしては、例えばポリグリシジルアミン化合物およびグリシジルアミン型エポキシ樹脂が挙げられる。
エポキシ基含有アクリル系化合物としては、例えばオキシラニルを有するモノマーの単独重合体および共重合体が挙げられる。
グリシジルアミドとしては、例えばグリシジルアミド型エポキシ化合物が挙げられる。
鎖状脂肪族型エポキシ化合物としては、例えばアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
環状脂肪族型エポキシ化合物としては、例えばシクロアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
ビスフェノールA型エポキシ化合物としては、例えばjER828、jER1001、jER1002、jER1003、jER1004、jER1007、jER1010(いずれも商品名、三菱化学(株)製)、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれも商品名、DIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも商品名、三井化学(社)製)が挙げられる。
ビスフェノールF型エポキシ化合物としては、例えばjER806、jER807、jER4004P(いずれも商品名、三菱化学(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも商品名、東都化成(株)製)、DER−354(商品名、The Dow Chemical Company製)、エピクロン830、およびエピクロン835(いずれも商品名、DIC(株)製)が挙げられる。
ビスフェノール型エポキシ化合物としては、例えば2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
水素化ビスフェノール−A型エポキシ化合物としては、例えばサントートST−3000(商品名、東都化成(株)製)、リカレジンHBE−100(商品名、新日本理化(株)製)、およびデナコールEX−252(商品名、ナガセケムテックス(株)製)が挙げられる。
水素化ビスフェノール型エポキシ化合物としては、例えば水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
臭素化ビスフェノール−A型エポキシ化合物としては、例えばjER5050、jER5051(いずれも商品名、三菱化学(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも商品名、東都化成(株)製)、DER−530、DER−538(いずれも商品名、The Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれも商品名、DIC(株)製)が挙げられる。
フェノールノボラック型エポキシ化合物としては、例えばjER152、jER154(いずれも商品名、三菱化学(株)製)、YDPN−638(商品名、東都化成社製)、DEN431、DEN438(いずれも商品名、The Dow Chemical Company製)、エピクロンN−770(商品名、DIC(株)製)、EPPN−201、およびEPPN−202(いずれも商品名、日本化薬(株)製)が挙げられる。
クレゾールノボラック型エポキシ化合物としては、例えばjER180S75(商品名、三菱化学(株)製)、YDCN−701、YDCN−702(いずれも商品名、東都化成社製)、エピクロンN−665、エピクロンN−695(いずれも商品名、DIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも商品名、日本化薬(株)製)が挙げられる。
ビスフェノールAノボラック型エポキシ化合物としては、例えばjER157S70(商品名、三菱化学(株)製)、およびエピクロンN−880(商品名、DIC(株)製)が挙げられる。
ナフタレン骨格含有エポキシ化合物としては、例えばエピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれも商品名、DIC(株)製)、およびNC−7000(商品名、日本化薬社製)が挙げられる。
芳香族ポリグリシジルエーテル化合物としては、例えばハイドロキノンジグリシジルエーテル(下記式EP−1)、カテコールジグリシジルエーテル(下記式EP−2)、レゾルシノールジグリシジルエーテル(下記式EP−3)、2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(下記式EP−4)、トリス(4−グリシジルオキシフェニル)メタン(下記式EP−5)、jER1031S、jER1032H60(いずれも商品名、三菱化学(株)製)、TACTIX−742(商品名、The Dow Chemical Company製)、デナコールEX−201(商品名、ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも商品名、日本化薬(株)製)、テクモアVG3101L(商品名、三井化学(株)製)、下記式EP−6で表される化合物、および下記式EP−7で表される化合物が挙げられる。
ジシクロペンタジエンフェノール型エポキシ化合物としては、例えばTACTIX−556(商品名、The Dow Chemical Company製)、およびエピクロンHP−7200(商品名、DIC(株)製)が挙げられる。
脂環式ジグリシジルエーテル化合物としては、例えばシクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(商品名、新日本理化(株)製)が挙げられる。
脂肪族ポリグリシジルエーテル化合物としては、例えばエチレングリコールジグリシジルエーテル(下記式EP−8)、ジエチレングリコールジグリシジルエーテル(下記式EP−9)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式EP−10)、トリプロピレングリコールジグリシジルエーテル(下記式EP−11)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式EP−12)、1,4−ブタンジオールジグリシジルエーテル(下記式EP−13)、1,6−ヘキサンジオールジグリシジルエーテル(下記式EP−14)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式EP−15)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれも商品名、ナガセケムテックス(株)製)、DD−503(商品名、(株)ADEKA製)、リカレジンW−100(商品名、新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式EP−16)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。
ポリサルファイド型ジグリシジルエーテル化合物としては、例えばFLDP−50、およびFLDP−60(いずれも商品名、東レチオコール(株)製)が挙げられる。
ビフェノール型エポキシ化合物としては、例えばYX−4000、YL−6121H(いずれも商品名、三菱化学(株)製)、NC−3000P、およびNC−3000S(いずれも商品名、日本化薬(株)製)が挙げられる。
ジグリシジルエステル化合物としては、例えばジグリシジルテレフタレート(下記式EP−17)、ジグリシジルフタレート(下記式EP−18)、ビス(2−メチルオキシラニルメチル)フタレート(下記式EP−19)、ジグリシジルヘキサヒドロフタレート(下記式EP−20)、下記式EP−21で表される化合物、下記式EP−22で表される化合物、および下記式EP−23で表される化合物が挙げられる。
グリシジルエステルエポキシ化合物としては、例えばjER871、jER872(いずれも商品名、三菱化学(株)製)、エピクロン200、エピクロン400(いずれも商品名、DIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれも商品名、ナガセケムテックス(株)製)が挙げられる。
ポリグリシジルアミン化合物としては、例えばN,N−ジグリシジルアニリン(下記式EP−24)、N,N−ジグリシジル−o−トルイジン(下記式EP−25)、N,N−ジグリシジル−m−トルイジン(下記式EP−26)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式EP−27)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式EP−28)、N,N,O−トリグリシジル−p−アミノフェノール(下記式EP−29)、N,N,O−トリグリシジル−m−アミノフェノール(下記式EP−30)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン(下記式EP−31)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(商品名、三菱ガス化学(株)製)、下記式EP−32)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(商品名、三菱ガス化学(株)製)、下記式EP−33)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式EP−34)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−35)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式EP−36)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−37)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式EP−38)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式EP−39)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式EP−40)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式EP−41)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式EP−42)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式EP−43)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−44)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式EP−45)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式EP−46)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式EP−47)、下記式EP−48で表される化合物、および下記式EP−49で表される化合物が挙げられる。
オキシラニルを有するモノマーの単独重合体としては、例えばポリグリシジルメタクリレートが挙げられる。オキシラニルを有するモノマーの共重合体としては、例えばN−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
オキシラニルを有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
オキシラニルを有するモノマーの共重合体におけるオキシラニルを有するモノマー以外の他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロロメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。
グリシジルイソシアヌレートとしては、例えば1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−50)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式EP−51)、およびグリシジルイソシアヌレート型エポキシ樹脂が挙げられる。
鎖状脂肪族型エポキシ化合物としては、例えばエポキシ化ポリブタジエン、およびエポリードPB3600(商品名、(株)ダイセル製)が挙げられる。
環状脂肪族型エポキシ化合物としては、例えば3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート(セロキサイド2021((株)ダイセル製)、下記式EP−52)、2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式EP−53)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式EP−54)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000(商品名、(株)ダイセル製)、下記式EP−55)、下記式EP−56で表される化合物、セロキサイド8000(商品名、(株)ダイセル製、下記式EP−57)、CY−175、CY−177、CY−179(いずれも商品名、The Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150(商品名、(株)ダイセル製)、および環状脂肪族型エポキシ樹脂が挙げられる。
エポキシ化合物は、ポリグリシジルアミン化合物、ビスフェノールAノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、および環状脂肪族型エポキシ化合物の一以上であることが好ましく、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N,N,O−トリグリシジル−p−アミノフェノール、ビスフェノールAノボラック型エポキシ化合物、およびクレゾールノボラック型エポキシ化合物の1つ以上であることがより好ましい。
また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えば、1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。
シランカップリング剤としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンが挙げられる。好ましいシランカップリング剤は3−アミノプロピルトリエトキシシランである。
イミド化触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類が挙げられる。前記イミド化触媒は、N,N−ジメチルアニリン、o−,m−,p−ヒドロキシアニリン、o−,m−,p−ヒドロキシピリジン、およびイソキノリンから選ばれる1種または2種以上であることが好ましい。
シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総重量の0〜20重量%であり、0.1〜10重量%であることが好ましい。
イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5当量であり、0.05〜3当量であることが好ましい。
その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総重量の0〜100重量%であり、0.1〜50重量%であることが好ましい。
本発明のポリアミック酸またはその誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはその誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比0.9〜1.1程度)とすることが好ましい。
本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、7,000〜500,000であることが好ましく、10,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液による前記ポリアミック酸またはその誘導体の分解物の有機溶剤による抽出物をGC、HPLCまたはGC−MSで分析することにより、使用されているモノマーを確認することができる。
また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。
溶剤としては、前記ポリアミック酸またはその誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。
ポリアミック酸またはその誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンが挙げられる。
塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。
これらの中で、前記溶剤は、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、およびジプロピレングリコールモノメチルエーテルが特に好ましい。
本発明の配向剤中のポリアミック酸の濃度は0.1〜40重量%であることが好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。
本発明の配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1〜30重量%、より好ましくは1〜10重量%である。
本発明の液晶配向剤の粘度は、塗布する方法、ポリアミック酸またはその誘導体の濃度、使用するポリアミック酸またはその誘導体の種類、溶剤の種類と割合によって好ましい範囲が異なる。例えば、印刷機による塗布の場合は5〜100mPa・s(より好ましくは10〜80mPa・s)である。5mPa・sより小さいと十分な膜厚を得ることが難しくなり、100mPa・sを超えると印刷ムラが大きくなることがある。スピンコートによる塗布の場合は5〜200mPa・s(より好ましくは10〜100mPa・s)が適している。インクジェット塗布装置を用いて塗布する場合は5〜50mPa・s(より好ましくは5〜20mPa・s)が適している。液晶配向剤の粘度は回転粘度測定法により測定され、例えば回転粘度計(東機産業製TVE−20L型)を用いて測定(測定温度:25℃)される。
本発明の液晶配向膜について、詳細に説明する。本発明の液晶配向膜は、前述した本発明の液晶配向剤の塗膜を加熱することによって形成される膜である。本発明の液晶配向膜は、液晶配向剤から液晶配向膜を作製する通常の方法によって得ることができる。例えば本発明の液晶配向膜は、本発明の液晶配向剤の塗膜を形成する工程と、加熱乾燥する工程と、加熱焼成する工程を経ることによって得ることができる。本発明の液晶配向膜については、必要に応じて後述の通り、塗膜工程、加熱乾燥工程の後に光を照射して、または加熱焼成工程の後に光を照射して異方性を付与してもよい。
塗膜は、通常の液晶配向膜の作製と同様に、液晶表示素子における基板に本発明の液晶配向剤を塗布することによって形成することができる。基板には、ITO(IndiumTinOxide)、IZO(In2O3−ZnO)、IGZO(In−Ga−ZnO4)電極等の電極やカラーフィルタ等が設けられていてもよいガラス製の基板が挙げられる。
液晶配向剤を基板に塗布する方法としてはスピンナー法、印刷法、ディッピング法、滴下法、インクジェット法等が一般に知られている。これらの方法は本発明においても同様に適用可能である。
前記加熱乾燥工程は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。加熱乾燥工程は溶剤の蒸発が可能な範囲内の温度で実施することが好ましく、加熱焼成工程における温度に対して比較的低い温度で実施することがより好ましい。具体的には加熱乾燥温度は30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。
前記加熱焼成工程は、前記ポリアミック酸またはその誘導体が脱水・閉環反応を呈するのに必要な条件で行うことができる。前記塗膜の焼成は、オーブンまたは赤外炉の中で加熱処理する方法、ホットプレート上で加熱処理する方法等が一般に知られている。これらの方法も本発明において同様に適用可能である。一般に100〜300℃程度の温度で1分間〜3時間行うことが好ましく、120〜280℃がより好ましく、150〜250℃がさらに好ましい。
光配向法による本発明の液晶配向膜の形成方法について、詳細に説明する。光配向法を用いた本発明の液晶配向膜は、塗膜を加熱乾燥した後、放射線の直線偏光または無偏光を照射することにより、塗膜に異方性を付与し、その膜を加熱焼成することにより形成することができる。または、塗膜を加熱乾燥し、加熱焼成した後に、放射線の直線偏光または無偏光を照射することにより形成する事ができる。配向性の点から、放射線の照射工程は加熱焼成工程前に行うのが好ましい。
さらに、液晶配向膜の液晶配向能を上げるために、塗膜を加熱しながら放射線の直線偏光または無偏光を照射することもできる。放射線の照射は、塗膜を加熱乾燥する工程、または加熱焼成する工程で行ってもよく、加熱乾燥工程と加熱焼成工程の間に行ってもよい。該工程における加熱乾燥温度は、30℃〜150℃の範囲であること、さらには50℃〜120℃の範囲であることが好ましい。また該工程における加熱焼成温度は、30℃〜300℃の範囲であること、さらには50℃〜250℃の範囲であることが好ましい。
放射線としては、例えば150〜800nmの波長の光を含む紫外線または可視光を用いることができるが、300〜400nmの光を含む紫外線が好ましい。また、直線偏光または無偏光を用いることができる。これらの光は、前記塗膜に液晶配向能を付与することができる光であれば特に限定されないが、液晶に対して強い配向規制力を発現させたい場合、直線偏光が好ましい。
本発明の液晶配向膜は、低エネルギーの光照射でも高い液晶配向能を示すことができる。前記放射線照射工程における直線偏光の照射量は0.05〜20J/cm2であることが好ましく、0.5〜10J/cm2がより好ましい。また直線偏光の波長は200〜400nmであることが好ましく、光反応性構造として光異性化構造を使用する場合には300〜400nmであることがより好ましく、光反応性構造として光分解構造および光二量化構造を使用する場合には200〜300nmであることがより好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間短縮の観点から好ましい。また、本発明の液晶配向膜は、直線偏光を照射することにより、直線偏光の偏光方向に対して垂直な方向に液晶を配向させることができる。
プレチルト角を発現させたい場合に前記膜に照射する光は、前述同様直線偏光であっても無偏光であってもよい。プレチルト角を発現させたい場合に前記膜に照射される光の照射量は0.05〜20J/cm2であることが好ましく、0.5〜10J/cm2が特に好ましく、その波長は250〜400nmであることが好ましく、300〜380nmが特に好ましい。プレチルト角を発現させたい場合に前記膜に照射する光の前記膜表面に対する照射角度は特に限定されないが、30〜60度であることが配向処理時間短縮の観点から好ましい。
放射線の直線偏光または無偏光を照射する工程に使用する光源には、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、Deep UVランプ、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ、キセノンランプ、水銀キセノンランプ、エキシマランプ、KrFエキシマレーザー、蛍光ランプ、LEDランプ、ナトリウムランプ、マイクロウェーブ励起無電極ランプ、などを制限なく用いることができる。
本発明の液晶配向膜は、前述した工程以外の他の工程をさらに含む方法によって好適に得られる。例えば、本発明の液晶配向膜は焼成または放射線照射後の膜を洗浄液で洗浄する工程は必須としないが、他の工程の都合で洗浄工程を設けることができる。
洗浄液による洗浄方法としては、ブラッシング、ジェットスプレー、蒸気洗浄または超音波洗浄等が挙げられる。これらの方法は単独で行ってもよいし、併用してもよい。洗浄液としては純水または、メチルアルコール、エチルアルコール、イソプロピルアルコール等の各種アルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン等のハロゲン系溶剤、アセトン、メチルエチルケトン等のケトン類を用いることができるが、これらに限定されるものではない。もちろん、これらの洗浄液は十分に精製された不純物の少ないものが用いられる。このような洗浄方法は、本発明の液晶配向膜の形成における前記洗浄工程にも適用することができる。
本発明の液晶配向膜の液晶配向能を高めるために、加熱焼成工程の前後、または、偏光または無偏光の放射線照射の前後に、熱や光によるアニール処理を用いることができる。該アニール処理において、アニール温度が30〜180℃、好ましくは50〜150℃であり、時間は1分〜2時間が好ましい。また、アニール処理に使用するアニール光には、UVランプ、蛍光ランプ、LEDランプなどが挙げられる。光の照射量は0.3〜10J/cm2であることが好ましい。
本発明の液晶配向膜の膜厚は、特に限定されないが、10〜300nmであることが好ましく、30〜150nmであることがより好ましい。本発明の液晶配向膜の膜厚は、段差計やエリプソメータ等の公知の膜厚測定装置によって測定することができる。
本発明の液晶配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005−275364等に記載の偏光IRを用いた方法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーを用いた方法によっても評価することができる。詳しくは、分光エリプソメータによって液晶配向膜のリタデーション値を測定することができる。膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち、大きなリタデーション値を持つものは、大きな配向度を持ち、液晶配向膜として使用した場合、より大きな異方性を持つ配向膜が液晶組成物に対し大きな配向規制力を持つと考えられる。
本発明の液晶配向膜は横電界方式の液晶表示素子に好適に用いることができる。横電界方式の液晶表示素子に用いる場合、Pt角が小さいほど、また液晶配向能が高いほど暗状態での黒表示レベルは高くなり、コントラストが向上する。Pt角は0.1°以下が好ましい。
本発明の液晶配向膜は、液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。
本発明の液晶表示素子について、詳細に説明する。本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。
前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。
液晶組成物には、特に制限はなく、誘電率異方性が正または負の各種の液晶組成物を用いることができる。誘電率異方性が正の好ましい液晶組成物には、特許3086228、特許2635435、特表平5−501735、特開平8−157826、特開平8−231960、特開平9−241644(EP885272A1)、特開平9−302346(EP806466A1)、特開平8−199168(EP722998A1)、特開平9−235552、特開平9−255956、特開平9−241643(EP885271A1)、特開平10−204016(EP844229A1)、特開平10−204436、特開平10−231482、特開2000−087040、特開2001−48822等に開示されている液晶組成物が挙げられる。
前記負の誘電率異方性を有する液晶組成物の好ましい例として、特開昭57−114532、特開平2−4725、特開平4−224885、特開平8−40953、特開平8−104869、特開平10−168076、特開平10−168453、特開平10−236989、特開平10−236990、特開平10−236992、特開平10−236993、特開平10−236994、特開平10−237000、特開平10−237004、特開平10−237024、特開平10−237035、特開平10−237075、特開平10−237076、特開平10−237448(EP967261A1)、特開平10−287874、特開平10−287875、特開平10−291945、特開平11−029581、特開平11−080049、特開2000−256307、特開2001−019965、特開2001−072626、特開2001−192657、特開2010−037428、国際公開2011/024666、国際公開2010/072370、特表2010−537010、特開2012−077201、特開2009−084362等に開示されている液晶組成物が挙げられる。
誘電率異方性が正または負の液晶組成物に1種以上の光学活性化合物を添加して使用することも何ら差し支えない。
また例えば、本発明の素子に用いる液晶組成物は、例えば配向性を向上させる観点から、添加物をさらに添加してもよい。このような添加物は、光重合性モノマー、光学活性な化合物、酸化防止剤、紫外線吸収剤、色素、消泡剤、重合開始剤、重合禁止剤などである。
以下、本発明を実施例により説明する。なお、実施例において用いる評価法および化合物は次の通りである。
1.重量平均分子量(Mw)
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
2.表面エネルギー
配向膜の表面エネルギーの測定は表面エネルギーの極性成分、分散成分が既知である2つの液体を用いてその接触角を測定し算出した。接触角の値は以下のような式から表面エネルギーと関係づけられる。固体表面(固体の表面エネルギーをγSとする)に表面エネルギーγLを持つ液体が接触角θで平衡になっている場合を示す。この系では、Youngの式が成立する。
γS = γSL + γLcosθ (1)
ここで、γSLは固体と液体の間に働くエネルギーで界面の相互作用力と関係がある。付着の仕事は、
Wa = γS + γL − γSL (2)
で表され、(1)式と組み合わせると、
Wa = γL(1+cosθ) (3)
となる。ここで、Fowkesらの考えに基づいて、表面エネルギーを分散成分(γD)と極性成分(γP)に分けると、
γ = γD + γP (4)
となる。ここで、表面エネルギーの分散成分は分散成分、極性成分は極性成分とのみ相互作用すると仮定すると、
Wa =2×(γS DγL D)1/2+2×(γS PγL P)1/2 (5)
となり、(3)、(5)式より、
γL(1+cosθ)=2×(γS DγL D)1/2+2×(γS PγL P)1/2 (6)
が求められる。これから、表面エネルギーの分散成分、極性成分が既知である液体2種類を用いて、接触角を測定すれば基板の表面エネルギーの分散成分、極性成分を算出することができる。
配向膜の表面エネルギーの測定は表面エネルギーの極性成分、分散成分が既知である2つの液体を用いてその接触角を測定し算出した。接触角の値は以下のような式から表面エネルギーと関係づけられる。固体表面(固体の表面エネルギーをγSとする)に表面エネルギーγLを持つ液体が接触角θで平衡になっている場合を示す。この系では、Youngの式が成立する。
γS = γSL + γLcosθ (1)
ここで、γSLは固体と液体の間に働くエネルギーで界面の相互作用力と関係がある。付着の仕事は、
Wa = γS + γL − γSL (2)
で表され、(1)式と組み合わせると、
Wa = γL(1+cosθ) (3)
となる。ここで、Fowkesらの考えに基づいて、表面エネルギーを分散成分(γD)と極性成分(γP)に分けると、
γ = γD + γP (4)
となる。ここで、表面エネルギーの分散成分は分散成分、極性成分は極性成分とのみ相互作用すると仮定すると、
Wa =2×(γS DγL D)1/2+2×(γS PγL P)1/2 (5)
となり、(3)、(5)式より、
γL(1+cosθ)=2×(γS DγL D)1/2+2×(γS PγL P)1/2 (6)
が求められる。これから、表面エネルギーの分散成分、極性成分が既知である液体2種類を用いて、接触角を測定すれば基板の表面エネルギーの分散成分、極性成分を算出することができる。
以下の例においては、表面エネルギーの値が既知である純水(H2O)およびエチレングリコール(EG)を用いて表面エネルギーを求めた。なお、使用した表面エネルギーの分散成分、極性成分の値は以下の通りである。
γL D γL P γL
H2O 22.0 50.2 72.2 (mJm−2)
EG 29.3 19.0 48.3 (mJm−2)
γL D γL P γL
H2O 22.0 50.2 72.2 (mJm−2)
EG 29.3 19.0 48.3 (mJm−2)
3.電圧保持率
「水嶋他、第14回液晶討論会予稿集 p78(1988)」に記載の方法で行った。測定は、波高±5Vの矩形波をセルに印加して行った。測定は60℃で行った。この値は、印加した電圧がフレーム周期後どの程度保持されているかを示す指標であり、この値が100%ならば全ての電荷が保持されていることを示す。ポジ型液晶を搭載したセルでは99.0%以上、ネガ型液晶を搭載したセルでは97.5%以上であれば表示品位が良好な液晶表示素子となる。
「水嶋他、第14回液晶討論会予稿集 p78(1988)」に記載の方法で行った。測定は、波高±5Vの矩形波をセルに印加して行った。測定は60℃で行った。この値は、印加した電圧がフレーム周期後どの程度保持されているかを示す指標であり、この値が100%ならば全ての電荷が保持されていることを示す。ポジ型液晶を搭載したセルでは99.0%以上、ネガ型液晶を搭載したセルでは97.5%以上であれば表示品位が良好な液晶表示素子となる。
<テトラカルボン酸二無水物>
<ジアミン>
<溶剤>
NMP: N−メチル−2−ピロリドン
BC : ブチルセロソルブ(エチレングリコールモノブチルエーテル)
GBL: γ−ブチロラクトン
NMP: N−メチル−2−ピロリドン
BC : ブチルセロソルブ(エチレングリコールモノブチルエーテル)
GBL: γ−ブチロラクトン
[合成例1]ワニスの合成およびワニスの表面エネルギー測定
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(DI−13−1(APDA))で表される化合物2.3862g、N−メチル−2−ピロリドンを54.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−4−17(m=8)(BSPA8))で表される化合物3.6138gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン10.0gおよびブチルセロソルブ30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ14,000であり樹脂分濃度が6重量%であるワニスA1を得た。
攪拌翼、窒素導入管を装着した100mL3つ口フラスコに、式(DI−13−1(APDA))で表される化合物2.3862g、N−メチル−2−ピロリドンを54.0g加えた。その溶液を氷冷させ液温を5℃とした後、式(AN−4−17(m=8)(BSPA8))で表される化合物3.6138gを加え、12時間室温で攪拌させた。そこにγ−ブチロラクトン10.0gおよびブチルセロソルブ30.0gを加え、溶質のポリマーの重量平均分子量が所望する重量平均分子量になるまで、その溶液を60℃で加熱攪拌し、溶質の重量平均分子量がおおよそ14,000であり樹脂分濃度が6重量%であるワニスA1を得た。
このワニスをスピンナー法によりガラス基板に塗布し、塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させて製膜した。この基板を用いて表面エネルギーを測定したところ、表面エネルギーは45.6mJ/m2であった。
[合成例2〜39]
テトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠して、ポリマー固形分濃度が6重量%のワニスA2〜A18、ワニスB1〜B21を調製した。重量平均分子量は、光反応性構造を有する原料を使用するポリマーはおおよそ11,000から20,000、光反応性構造を有する原料を使用しないポリマーは45,000から50,000に調製した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの表面エネルギーおよび重量平均分子量を表1〜4に示す。合成例1も表1に再掲する。
テトラカルボン酸二無水物およびジアミンを変更した以外は、合成例1に準拠して、ポリマー固形分濃度が6重量%のワニスA2〜A18、ワニスB1〜B21を調製した。重量平均分子量は、光反応性構造を有する原料を使用するポリマーはおおよそ11,000から20,000、光反応性構造を有する原料を使用しないポリマーは45,000から50,000に調製した。使用したテトラカルボン酸二無水物およびジアミンと、得られたポリマーの表面エネルギーおよび重量平均分子量を表1〜4に示す。合成例1も表1に再掲する。
[実施例1]配向剤の調製、電気特性測定用セルの作成および電気特性測定
攪拌翼、窒素導入管を装着した50mLナスフラスコにワニスA1を4.0g、ワニスB1を6.0g秤取り、そこにN−メチル−2−ピロリドン5.0gおよびブチルセロソルブ5.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の配向剤1を得た。この配向剤をIPS電極付きガラス基板およびカラムスペーサー付きガラス基板にスピンナー法により塗布した(2,000rpm、15秒)。塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させた後、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S365)を用いて光量を測定し、波長365nmで1.3±0.1J/cm2になるよう、露光時間を調整した。230℃にて20分間焼成処理を行い、膜厚およそ100nmの膜を形成した。次いで、これらの配向膜が形成された基板2枚を、配向膜が形成されている面を対向させ、かつ、対向する配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの配向膜に照射された直線偏光の偏光方向が平行になるようにした。これらのセルにネガ型液晶組成物Aを注入し、セル厚7μmの液晶セル(液晶表示素子)を作製した。
攪拌翼、窒素導入管を装着した50mLナスフラスコにワニスA1を4.0g、ワニスB1を6.0g秤取り、そこにN−メチル−2−ピロリドン5.0gおよびブチルセロソルブ5.0gを加え室温で1時間攪拌し樹脂分濃度3重量%の配向剤1を得た。この配向剤をIPS電極付きガラス基板およびカラムスペーサー付きガラス基板にスピンナー法により塗布した(2,000rpm、15秒)。塗布後、基板を80℃で3分間加熱し、溶剤を蒸発させた後、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器:UVD−S365)を用いて光量を測定し、波長365nmで1.3±0.1J/cm2になるよう、露光時間を調整した。230℃にて20分間焼成処理を行い、膜厚およそ100nmの膜を形成した。次いで、これらの配向膜が形成された基板2枚を、配向膜が形成されている面を対向させ、かつ、対向する配向膜の間に液晶組成物を注入するための空隙を設けて貼り合わせた。この時、それぞれの配向膜に照射された直線偏光の偏光方向が平行になるようにした。これらのセルにネガ型液晶組成物Aを注入し、セル厚7μmの液晶セル(液晶表示素子)を作製した。
<ネガ型液晶組成物A>
物性値:NI 75.7℃; Δε −4.1; Δn 0.101; η 14.5mPa・s.
この液晶セルの電圧保持率は5V−30Hzで99.4%であった。このセルを点灯させたバックライト試験機(富士フィルム(株)製、FujiCOLOR LED Viewer Pro HR−2;輝度2,700cd/m2)の上に1,000時間載せ、信頼性試験を行った。信頼性試験後の液晶セルの電圧保持率は99.1%であった。
[実施例2〜20、21〜29]
使用するワニスを変更した以外は、実施例1に準拠して、液晶セルを作製し、電圧保持率の測定および信頼性試験を行った。測定結果を実施例1と併せて表5に示す。
使用するワニスを変更した以外は、実施例1に準拠して、液晶セルを作製し、電圧保持率の測定および信頼性試験を行った。測定結果を実施例1と併せて表5に示す。
実施例1〜29のすべてのセルにおいて、電圧保持率は初期値、信頼性試験後の値共に良好な結果が得られた。ここで初期値とは、セル作製後、上記バックライト試験機に載せずに測定した結果である。
[比較例1〜8]
使用するワニスを変更した以外は、実施例1に記載の方法に準拠して液晶セルを作製し、電圧保持率の測定および信頼性試験を行った。測定結果を表6に示す。
使用するワニスを変更した以外は、実施例1に記載の方法に準拠して液晶セルを作製し、電圧保持率の測定および信頼性試験を行った。測定結果を表6に示す。
比較例1〜8のすべてのセルにおいて、電圧保持率は特に信頼性試験後の値が大きく低下する結果が得られた。
<コントラスト測定>
実施例1および実施例2で作成したセルのコントラストを、輝度計(YOKOGAWA 3298F)を用いて評価を行った。クロスニコル状態の偏光顕微鏡下に液晶表示素子を配置し、最小となる輝度を黒輝度として測定した。次に素子に任意の矩形波電圧を印加し、最大となる輝度を白輝度として測定した。この白輝度/黒輝度の値をコントラストとした。その結果、実施例1のコントラストは3500、実施例2のコントラストは3000となった。コントラストは配向性の高さと比例しており、コントラストが高いほど配向膜の液晶配向性が高いと言える。通常、コントラストが2500以上であれば配向性は良好と判断でき、実施例1、2ともに配向性は良好であった。
実施例1および実施例2で作成したセルのコントラストを、輝度計(YOKOGAWA 3298F)を用いて評価を行った。クロスニコル状態の偏光顕微鏡下に液晶表示素子を配置し、最小となる輝度を黒輝度として測定した。次に素子に任意の矩形波電圧を印加し、最大となる輝度を白輝度として測定した。この白輝度/黒輝度の値をコントラストとした。その結果、実施例1のコントラストは3500、実施例2のコントラストは3000となった。コントラストは配向性の高さと比例しており、コントラストが高いほど配向膜の液晶配向性が高いと言える。通常、コントラストが2500以上であれば配向性は良好と判断でき、実施例1、2ともに配向性は良好であった。
本発明の配向剤を使用することで、電圧保持率の信頼性が高く、配向性が良好な液晶素子が得られる。光反応性構造を有さないポリマー(A)の表面エネルギーが、光反応性構造を有するポリマー(B)の表面エネルギーより2mJ/m2以上小さいという条件を満たす範囲で、ポリマー(B)にフレキシブル性の高い構造を選択することで、さらに表示品位が良好な液晶素子を得ることが可能である。
本発明の光配向用液晶配向剤を使用すれば、長時間の使用においても高い電圧保持率および耐光性を維持し、表示品位の高い液晶表示素子を提供することができる。本発明の光配向用液晶配向剤は横電界型液晶表示素子に好適に適用することができる。
Claims (9)
- 対向面にそれぞれ配向膜を有する一対の基板の間に液晶を挟持してなる液晶表示素子において、
前記配向膜は、光反応性構造を有さないポリマー(A)および光反応性構造を有するポリマー(B)を含む光配向用液晶配向剤によって形成され、
前記ポリマー(A)は前記配向膜の液晶側に偏析し、ポリマー(B)は前記配向膜の基板側に偏析していることを特徴とする液晶表示素子。 - 光反応性構造を有さないポリマー(A)の表面エネルギーは、光反応性構造を有するポリマー(B)の表面エネルギーよりも小さく、かつ、両表面エネルギーの差は、2mJ/m2以上である、請求項1に記載の液晶表示素子。
- 光反応性構造を有さないポリマー(A)の表面エネルギーは、40〜50mJ/m2であり、光反応性構造を有するポリマー(B)の表面エネルギーは、45〜55mJ/m2である、請求項2に記載の液晶表示素子。
- 前記液晶配向膜は、ポリマーの全重量において光反応性構造を有さないポリマー(A)を20〜80重量%、光反応性構造を有するポリマー(B)を80〜20重量%含有する液晶配向剤により形成される、請求項1に記載の液晶表示素子。
- 光反応性構造を有さないポリマー(A)と光反応性構造を有するポリマー(B)は共にポリアミック酸またはその誘導体である、請求項1に記載の液晶表示素子。
- 光反応性構造を有するポリマー(B)は、光異性化、光二量化、光分解、光フリース転位から選ばれる少なくとも1つの光反応性構造を有するポリマーである、請求項1に記載の液晶表示素子。
- 光反応性構造を有するポリマー(B)は、光異性化構造を有するポリマーである、請求項6に記載の液晶表示素子。
- 光反応性構造を有するポリマー(B)は、式(II)〜式(VI)で表される光反応性構造を有する化合物の少なくとも1つを原料モノマーの1つに用いた反応物であるポリアミック酸またはその誘導体である、請求項6に記載の液晶表示素子。
式(IV)において、R4は2価の有機基であり;そして、
式(VI)において、R5は−NH2または−CO−O−CO−を有する芳香環である。 - 光反応性構造を有するポリマー(B)は、光反応性構造を有する化合物として、式(V−2−1)で表されるジアミンを原料モノマーの1つに用いた反応物であるポリアミック酸またはその誘導体である、請求項8に記載の液晶表示素子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016093024 | 2016-05-06 | ||
JP2016093024 | 2016-05-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017203980A true JP2017203980A (ja) | 2017-11-16 |
Family
ID=60304783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017085385A Pending JP2017203980A (ja) | 2016-05-06 | 2017-04-24 | 液晶表示素子 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2017203980A (ja) |
KR (1) | KR20170125704A (ja) |
CN (1) | CN107367868A (ja) |
TW (1) | TW201740165A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155674A1 (ja) * | 2017-02-27 | 2018-08-30 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
WO2023074534A1 (ja) * | 2021-10-27 | 2023-05-04 | 三井化学株式会社 | ポリアミド酸ワニス、ポリイミド組成物および接着剤 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI791853B (zh) * | 2018-07-03 | 2023-02-11 | 日商Dic股份有限公司 | 基板及液晶顯示元件 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101153975A (zh) * | 2006-09-29 | 2008-04-02 | 台湾薄膜电晶体液晶显示器产业协会 | 液晶显示面板及此液晶显示面板的制造方法 |
TWI403808B (zh) * | 2009-10-27 | 2013-08-01 | Taiwan Tft Lcd Ass | 液晶顯示面板的製造方法 |
US20150015826A1 (en) * | 2012-01-06 | 2015-01-15 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for manufacturing same |
JP6090570B2 (ja) * | 2012-04-26 | 2017-03-08 | Jnc株式会社 | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 |
KR20160047029A (ko) * | 2014-10-21 | 2016-05-02 | 삼성디스플레이 주식회사 | 배향막 및 이를 포함하는 액정 표시 장치 |
-
2017
- 2017-03-31 KR KR1020170042047A patent/KR20170125704A/ko unknown
- 2017-04-14 TW TW106112574A patent/TW201740165A/zh unknown
- 2017-04-14 CN CN201710247386.XA patent/CN107367868A/zh not_active Withdrawn
- 2017-04-24 JP JP2017085385A patent/JP2017203980A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018155674A1 (ja) * | 2017-02-27 | 2018-08-30 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JPWO2018155674A1 (ja) * | 2017-02-27 | 2019-12-19 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
JP7131538B2 (ja) | 2017-02-27 | 2022-09-06 | 日産化学株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
WO2023074534A1 (ja) * | 2021-10-27 | 2023-05-04 | 三井化学株式会社 | ポリアミド酸ワニス、ポリイミド組成物および接着剤 |
Also Published As
Publication number | Publication date |
---|---|
TW201740165A (zh) | 2017-11-16 |
KR20170125704A (ko) | 2017-11-15 |
CN107367868A (zh) | 2017-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6213281B2 (ja) | 感光性ジアミン、液晶配向剤および液晶表示素子 | |
JP6308282B2 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
TWI700312B (zh) | 用以形成光配向用液晶配向膜的液晶配向劑、液晶配向膜及使用其的液晶顯示元件 | |
JP6057070B2 (ja) | 液晶配向剤、およびこれを用いた液晶表示素子 | |
JP6090570B2 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP6421545B2 (ja) | ポリアミック酸またはその誘導体を含む液晶配向剤、液晶配向膜および液晶表示素子 | |
JP6720661B2 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP6565730B2 (ja) | ジアミン、ポリアミック酸またはその誘導体、液晶配向剤、液晶配向膜および液晶表示素子 | |
JP6252009B2 (ja) | 新規ジアミン、これを用いたポリマー、液晶配向剤、液晶配向膜、および液晶表示素子 | |
JP2016170409A (ja) | 液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP6627595B2 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2013235130A (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP6589657B2 (ja) | 液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
WO2013157463A1 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2018010108A (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2017088801A (ja) | ジアミン、ポリアミック酸またはその誘導体、液晶配向剤、液晶配向膜および液晶表示素子 | |
JP2016041683A (ja) | トリアゾール含有テトラカルボン酸二無水物、液晶配向剤、液晶配向膜、および液晶表示素子 | |
JP6561624B2 (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2017203980A (ja) | 液晶表示素子 | |
JP2018101122A (ja) | 光配向用液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2017146597A (ja) | 液晶配向膜を形成するための液晶配向剤、液晶配向膜およびこれを用いた液晶表示素子 | |
JP2020008867A (ja) | テトラカルボン酸二無水物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200915 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210330 |