本発明で用いる用語について説明する。式(I−1)で表される化合物を化合物(I−1)と記述することがある。他の式で表される化合物についても同様に略記することがある。化学構造式を定義する際に用いる「任意の」は、位置だけでなく個数についても任意であることを示す。化学構造式において、文字(例えばA)を六角形で囲った基は環構造の基(環A)であることを意味する。
本発明の液晶配向剤は、テトラカルボン酸二無水物とジアミンとの反応生成物であるポリアミック酸またはその誘導体を含有する。前記ポリアミック酸の誘導体とは、溶剤を含有する後述する液晶配向剤としたときに溶剤に溶解する成分であり、その液晶配向剤を後述する液晶配向膜としたときに、ポリイミドを主成分とする液晶配向膜を形成することができる成分である。このようなポリアミック酸の誘導体としては、例えば可溶性ポリイミド、ポリアミック酸エステル、およびポリアミック酸アミド等が挙げられ、より具体的には1)ポリアミック酸の全てのアミノとカルボキシルとが脱水閉環反応したポリイミド、2)部分的に脱水閉環反応した部分ポリイミド、3)ポリアミック酸のカルボキシルがエステルに変換されたポリアミック酸エステル、4)テトラカルボン酸二無水物化合物に含まれる酸二無水物の一部を有機ジカルボン酸に置き換えて反応させて得られたポリアミック酸−ポリアミド共重合体、さらに5)該ポリアミック酸−ポリアミド共重合体の一部もしくは全部を脱水閉環反応させたポリアミドイミドが挙げられる。
本発明の液晶配向剤を基板に塗付し、予備加熱によって乾燥させた後、偏光板を介して紫外線の直線偏光を照射すると、偏光方向に概ね平行しているポリマー主鎖の、上記式(1)で表されるジアミンに由来する構成単位のシンナミド基が光異性化または光二量化を起こす。偏光方向に概ね平行しているポリマーの主鎖が選択的に光異性化または光二量化されることによって、膜を形成しているポリマーの主鎖は、照射した紫外線の偏光方向に対して概ね直角方向に向いた成分が支配的になる。そのため、基板を加熱してポリアミック酸を脱水・閉環させてポリイミド膜とした後、この基板を用いて組み立てたセルに注入された液晶組成物の液晶分子は、照射した紫外線の偏光方向に対して直角の方向に長軸を揃えて配向する。膜に紫外線の直線偏光を照射する工程は、ポリイミド化のための加熱工程の前でもよく、加熱してポリイミド化した後であってもよい。
本発明のジアミンは式(1)で表される。式(1)のジアミンはシンナミド基を2つ、分子内に有する。ここで、シンナミド基とは式(C)をいう。
以下の説明では、式(1)で表されるジアミンをジアミン(1)で示すことがある。ジアミン(1)は以下に示す方法で容易に合成できる。すなわち、オーガニックシンセシス(Organic Synthesis, Jphn Wiley & Sons, Inc)、オーガニック・リアクションズ(Organic Reactions, Jphn Wiley & Sons, Inc)、コンプリヘンシブ・オーガニック・シンセシス(Comprehensive Organic Synthesis, Pergamon Press)、新実験化学講座(丸善)などに記載されている方法を参照し、これらを適切に組み合わせることによって、出発物に目的の末端基、環および結合基を導入することができる。なお、以下に示すスキームにおいて、記号およびベンゼン環への置換基の結合位置は、式(1)における定義の通りである。
<カルボン酸クロライドの合成>
式(S−1)で表されるカルボン酸と塩化チオニルを、N,N−ジメチルホルムアミド(DMF)中、トルエン中で加熱還流されることにより、式(S−2)で表されるカルボン酸クロライドが得られる。
<アミドの合成>
前記の化合物(S−2)と化合物(S−3)をトリエチルアミン存在下、N,N−ジメチルホルムアミド(DMF)、またはN−メチル−2−ピロリドン(NMP)中で、室温で反応させることにより、式(S−4)で表されるアミドが得られる。
化合物(S−4)をパラジウム カーボンの存在下で水素と反応させるか、または鉄の存在下塩酸で処理するか、塩化チオニル存在下、ジメチルスルホキシド(DMSO)またはエタノール中で加熱還流することにより、ニトロ基を還元してジアミン(1)とすることができる。
式(1)において、X1およびX2は独立して単結合または炭素数1〜20のアルキレンであり、このアルキレンの任意の−CH2−は−O−、−S−、−OCO−、または−COO−で置き換えられてもよい。
配向性の高い配向膜を得るためには、前記のX1およびX2は独立して単結合または炭素数1〜8のアルキレンが好ましく、このアルキレンの任意の−CH2−は−O−、−S−、−OCO−、または−COO−で置き換えられてもよく、そしてこのアルキレンの任意の水素はフッ素で置き換えられてもよい。このうち単結合、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレンおよびヘプチレンがより好ましい。
次に示す式(1−a)〜式(1−i)は式(1)をより具体化した例である。
液晶表示素子の配向性を向上させることを重視する場合には、上記のジアミンのうち、式(1−a)、(1−b)、(1−d)および(1−e)で表される化合物が特に好ましい。
式(1)で表されるジアミンは1つの化合物を単独で用いてもよく、2つ以上を混合して用いてもよい。式(1)で表されるジアミンはその他のジアミンと混合して用いてもよい。この際のジアミンの混合物中の式(1)で表されるジアミンは10重量%以上の割合で用いられ、50重量%以上であることが好ましく、80重量%以上であるとより好ましい。
本発明のポリアミック酸およびその誘導体を製造する為に使用するテトラカルボン酸二無水物について説明する。本発明に使用されるテトラカルボン酸二無水物は、公知のテトラカルボン酸二無水物から制限されることなく選択することができる。このようなテトラカルボン酸二無水物は、芳香環に直接ジカルボン酸無水物が結合した芳香族系(複素芳香環系を含む)、および芳香環に直接ジカルボン酸無水物が結合していない脂肪族系(複素環系を含む)の何れの群に属するものであってもよい。
このようなテトラカルボン酸二無水物の好適な例としては、原料入手の容易さや、ポリマー重合時の容易さ、膜の電気特性の点から、式(AN−I)〜(AN−VII)で表されるテトラカルボン酸二無水物が挙げられる。
式(AN−I)、(AN−IV)および(AN−V)において、Xは独立して単結合または−CH
2−であり、式(AN−II)において、Gは単結合、炭素数1〜20のアルキレン、−CO−、−O−、−S−、−SO
2−、−C(CH
3)
2−、または−C(CF
3)
2−であり、式(AN−II)〜(AN−IV)において、Yは独立して下記の3価の基の群から選ばれる1つであり、結合手は任意の炭素に連結しており、この基の任意の水素はメチル、エチルまたはフェニルで置き換えられてもよく、
式(AN−III)〜(AN−V)において、環Aは炭素数3〜10の単環式炭化水素の基または炭素数6〜30の縮合多環式炭化水素の基であり、この基の任意の水素はメチル、エチルまたはフェニルで置き換えられていてもよく、環に掛かっている結合手は環を構成する任意の炭素に連結しており、2本の結合手が同一の炭素に連結してもよく、式(AN−VI)において、X
10は炭素数2〜6のアルキレンであり、Meはメチルであり、そして、Phはフェニルであり、式(AN−VII)において、G
10は独立して−O−、−COO−または−OCO−であり、rは独立して0または1である。
さらに詳しくは以下の式(AN−1)〜(AN−16−14)の式で表されるテトラカルボン酸二無水物が挙げられる。
式(AN−1)において、G
11は単結合、炭素数1〜12のアルキレン、1,4−フェニレン、または1,4−シクロヘキシレンである。X
11は独立して単結合または−CH
2−である。G
12は独立してCHまたはNである。G
12がCHであるとき、CHの水素は−CH
3に置き換えられてもよい。G
12がNであるとき、G
11が単結合および−CH
2−であることはなく、X
11は単結合であることはない。そしてR
11は−Hまたは−CH
3である。式(AN−1)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−1−2)および(AN−1−14)において、mは1〜12の整数である。
式(AN−2)において、R
12は独立して−H、−CH
3、−CH
2CH
3、またはフェニルである。式(AN−2)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−3)において、環A
11はシクロヘキサン環もしくはベンゼン環である。式(AN−3)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−4)において、G
13は単結合、−CH
2−、−CH
2CH
2−、−O−、−S−、−C(CH
3)
2−、−SO
2−、−CO−または−C(CF
3)
2−である。環A
11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。G
13は環A
11の任意の位置に結合してよい。式(AN−4)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−4−17)において、mは1〜12の整数である。
式(AN−5)において、R
11は−H、または−CH
3である。ベンゼン環を構成する炭素原子に結合位置が固定されていないR
11は、ベンゼン環における結合位置が任意であることを示す。式(AN−5)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−6)において、X
11は独立して単結合または−CH
2−である。X
12は−CH
2−、−CH
2CH
2−または−CH=CH−である。nは1または2である。式(AN−6)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−7)において、X
11は単結合または−CH
2−である。式(AN−7)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−8)において、X
11は単結合または−CH
2−である。R
12は−H、−CH
3、−CH
2CH
3、またはフェニルであり、環A
12はシクロヘキサン環もしくはシクロヘキセン環である。式(AN−8)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−9)において、rはそれぞれ独立して0または1である。式(AN−9)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−10)は下記のテトラカルボン酸二無水物である。
式(AN−11)において、環A
11は独立してシクロヘキサン環またはベンゼン環である。式(AN−11)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−12)において、環A
11はそれぞれ独立してシクロヘキサン環またはベンゼン環である。式(AN−12)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−13)において、X
13は炭素数2〜6のアルキレンである。式(AN−13)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−14)において、G
14は独立して−O−、−COO−または−OCO−であり、rは独立して0または1である。式(AN−14)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
式(AN−15)において、wは1〜10の整数である。式(AN−15)で表されるテトラカルボン酸二無水物の例としては、下記の式で表される化合物を挙げることができる。
上記以外のテトラカルボン酸二無水物として、下記の化合物が挙げられる。
液晶表示素子の配向性を向上させることを重視する場合には、上記の酸無水物のうち、式(AN−1−1)、(AN−2−1)、(AN−3−1)、(AN−3−2)、(AN−4−5)、(AN−4−17)、(AN−4−21)、(AN−7−2)、(AN−10)、および(AN−11−3)で表される化合物が特に好ましい。式(AN−4−17)において、mは1〜12の整数である。
本発明のポリアミック酸およびその誘導体を製造する為に使用するシンナミド基を2つ、分子内に有するジアミン以外の、その他のジアミンについて説明する。ジアミン化合物はその構造によって2種類に分けることができる。即ち、2つのアミノ基を結ぶ骨格を主鎖として見たときに、主鎖から分岐する基、即ち側鎖基を有するジアミンと側鎖基を持たないジアミンである。この側鎖基はプレチルト角を大きくする効果を有する基である。このような効果を有する側鎖基は炭素数3以上の基である必要があり、具体的な例として炭素数3以上のアルキル、炭素数3以上のアルコキシ、炭素数3以上のアルコキシアルキル、およびステロイド骨格を有する基を挙げることができる。1つ以上の環を有する基であって、その末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシおよび炭素数2以上のアルコキシアルキルのいずれか1つを有する基も側鎖基としての効果を有する。以下の説明では、このような側鎖基を有するジアミンを側鎖型ジアミンと称することがある。そして、このような側鎖基を持たないジアミンを非側鎖型ジアミンと称することがある。
非側鎖型ジアミンと側鎖型ジアミンを適切に使い分けることにより、それぞれに必要なプレチルト角に対応することができる。側鎖型ジアミンは、本発明の特性を損なわない程度に併用するのが好ましい。また側鎖型ジアミンおよび非側鎖型ジアミンについて、液晶に対する垂直配向性、電圧保持率、焼き付き特性および配向性を向上させる目的で取捨選択して使用することが好ましい。
非側鎖型ジアミンについて説明する。
既知の側鎖を有さないジアミンとしては、以下の式(DI−1)〜(DI−12)のジアミンを挙げることができる。
上記の式(DI−1)〜(DI−7)において、mは1〜12の整数である。G
21は独立して単結合、−O−、−S−、−S−S−、−SO
2−、−CO−、−CONH−、−NHCO−、−C(CH
3)
2−、−C(CF
3)
2−、−(CH
2)
m'−、−O−(CH
2)
m'−O−、または−S−(CH
2)
m'−S−であり、m’は独立して1〜12の整数である。G
22は独立して単結合、−O−、−S−、−CO−、−C(CH
3)
2−、−C(CF
3)
2−、または炭素数1〜10のアルキレンである。各式中のシクロヘキサン環およびベンゼン環の任意の−Hは、−F、−CH
3、−OH、−CF
3またはベンジルで置き換えられてもよく、加えて式(DI−4)においては、下記式(DI−4−a)〜(DI−4−c)で置き換えられていてもよい。環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。そして、シクロヘキサン環またはベンゼン環への−NH
2の結合位置は、G
21またはG
22の結合位置を除く任意の位置である。
式(DI−4−a)〜(DI−4−c)において、R
20は独立して−Hまたは−CH
3である。
式(DI−8)において、R
21およびR
22は独立して炭素数1〜3のアルキルまたはフェニルであり、G
23は独立して炭素数1〜6のアルキレン、フェニレンまたはアルキル置換されたフェニレンであり、wは1〜10の整数である。
式(DI−9)において、R
23は独立して炭素数1〜3のアルキルであり、pは独立して0〜3の整数であり、qは0〜4の整数である。
式(DI−10)において、R
24は−H、炭素数1〜4のアルキル、フェニル、またはベンジルである。
式(DI−11)において、G
24は−CH
2−または−NH−である。
式(DI−12)において、G
25は単結合、炭素数2〜6のアルキレンまたは1,4−フェニレンであり、rは0または1である。そして、環を構成する炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。
式(DI−9)、式(DI−11)および式(DI−12)において、ベンゼン環に結合する−NH
2の結合位置は、任意の位置である。
上記式(DI−1)〜(DI−12)の側鎖を有さないジアミンとして、以下の式(DI−1−1)〜(DI−12−1)の具体例を挙げることができる。
式(DI−1)〜(DI−3)で表されるジアミンの例を以下に示す。
式(DI−4)で表されるジアミンの例を以下に示す。
式(DI−5)で表されるジアミンの例を以下に示す。
式(DI−5−1)において、mは1〜12の整数である。
式(DI−5−12)および式(DI−5−13)において、mは1〜12の整数である。
式(DI−5−16)において、vは1〜6の整数である。
式(DI−5−30)において、kは1〜5の整数である。
式(DI−6)で表されるジアミンの例を以下に示す。
式(DI−7)で表されるジアミンの例を以下に示す。
式(DI−7−3)および(DI−7−4)において、mは1〜12の整数であり、nは独立して1または2である。
式(DI−8)で表されるジアミンの例を以下に示す。
式(DI−9)で表されるジアミンの例を以下に示す。
式(DI−10)で表されるジアミンの例を以下に示す。
式(DI−11)で表されるジアミンの例を以下に示す。
式(DI−12)で表されるジアミンの例を以下に示す。
このような非側鎖型ジアミンは液晶表示素子のイオン密度を低下させる等、電気特性を改善する効果がある。本発明の液晶配向剤に用いられるポリアミック酸またはポリイミドを製造する為に使用するジアミンとして非側鎖型ジアミンを用いる場合、ジアミン総量に占めるその割合を0〜95モル%とすることが好ましく、0〜90モル%とすることがより好ましい。
側鎖型ジアミンについて説明する。
側鎖型ジアミンの側鎖基としては、以下の基をあげることができる。
側鎖基としてまず、アルキル、アルキルオキシ、アルキルオキシアルキル、アルキルカルボニル、アルキルカルボニルオキシ、アルキルオキシカルボニル、アルキルアミノカルボニル、アルケニル、アルケニルオキシ、アルケニルカルボニル、アルケニルカルボニルオキシ、アルケニルオキシカルボニル、アルケニルアミノカルボニル、アルキニル、アルキニルオキシ、アルキニルカルボニル、アルキニルカルボニルオキシ、アルキニルオキシカルボニル、アルキニルアミノカルボニル等を挙げることができる。これらの基におけるアルキル、アルケニルおよびアルキニルは、いずれも炭素数3以上の基である。但し、アルキルオキシアルキルにおいては、基全体で炭素数3以上であればよい。これらの基は直鎖状であっても分岐鎖状であってもよい。
次に、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のアルコキシまたは炭素数2以上のアルコキシアルキルを有することを条件に、フェニル、フェニルアルキル、フェニルアルキルオキシ、フェニルオキシ、フェニルカルボニル、フェニルカルボニルオキシ、フェニルオキシカルボニル、フェニルアミノカルボニル、フェニルシクロヘキシルオキシ、炭素数3以上のシクロアルキル、シクロヘキシルアルキル、シクロヘキシルオキシ、シクロヘキシルオキシカルボニル、シクロヘキシルフェニル、シクロヘキシルフェニルアルキル、シクロヘキシルフェニルオキシ、ビス(シクロヘキシル)オキシ、ビス(シクロヘキシル)アルキル、ビス(シクロヘキシル)フェニル、ビス(シクロヘキシル)フェニルアルキル、ビス(シクロヘキシル)オキシカルボニル、ビス(シクロヘキシル)フェニルオキシカルボニル、およびシクロヘキシルビス(フェニル)オキシカルボニル等の環構造の基を挙げることができる。
さらに、2個以上のベンゼン環を有する基、2個以上のシクロヘキサン環を有する基、またはベンゼン環およびシクロヘキサン環で構成される2環以上の基であって、結合基が独立して単結合、−O−、−COO−、−OCO−、−CONH−もしくは炭素数1〜3のアルキレンであり、末端の環が置換基として炭素数1以上のアルキル、炭素数1以上のフッ素置換アルキル、炭素数1以上のアルコキシ、または炭素数2以上のアルコキシアルキルを有する環集合基を挙げることができる。ステロイド骨格を有する基も側鎖基として有効である。
側鎖を有するジアミンとしては、以下の式(DI−13)〜(DI−17)で表される化合物を挙げることができる。
式(DI−13)において、G
26は単結合、−O−、−COO−、−OCO−、−CO−、−CONH−、−CH
2O−、−OCH
2−、−CF
2O−、−OCF
2−、または−(CH
2)
m'−であり、m’は1〜12の整数である。G
26の好ましい例は単結合、−O−、−COO−、−OCO−、−CH
2O−、および炭素数1〜3のアルキレンであり、特に好ましい例は単結合、−O−、−COO−、−OCO−、−CH
2O−、−CH
2−および−CH
2CH
2−である。R
25は炭素数3〜30のアルキル、フェニル、ステロイド骨格を有する基、または下記の式(DI−13−a)で表される基である。このアルキルにおいて、任意の−Hは−Fで置き換えられてもよく、そして任意の−CH
2−は−O−、−CH=CH−または−C≡C−で置き換えられていてもよい。このフェニルの−Hは、−F、−CH
3、−OCH
3、−OCH
2F、−OCHF
2、−OCF3、炭素数3〜30のアルキルまたは炭素数3〜30のアルコキシで置き換えられていてもよく、このシクロヘキシルの−Hは炭素数3〜30のアルキルまたは炭素数3〜30のアルコキシで置き換えられていてもよい。ベンゼン環に結合する−NH
2の結合位置はその環において任意の位置であることを示すが、その結合位置はメタまたはパラであることが好ましい。即ち、基「R
25−G
26−」の結合位置を1位としたとき、2つの結合位置は3位と5位、または2位と5位であることが好ましい。
式(DI−13−a)において、G
27、G
28およびG
29は結合基であり、これらは独立して単結合、または炭素数1〜12のアルキレンであり、このアルキレンの1以上の−CH
2−は−O−、−COO−、−OCO−、−CONH−、−CH=CH−で置き換えられていてもよい。環B
21、環B
22、環B
23および環B
24は独立して1,4−フェニレン、1,4−シクロへキシレン、1,3−ジオキサン−2,5−ジイル、ピリミジン−2,5−ジイル、ピリジン−2,5−ジイル、ナフタレン−1,5−ジイル、ナフタレン−2,7−ジイルまたはアントラセン−9,10−ジイルであり、環B
21、環B
22、環B
23および環B
24において、任意の−Hは−Fまたは−CH
3で置き換えられてもよく、s、tおよびuは独立して0〜2の整数であって、これらの合計は1〜5であり、s、tまたはuが2であるとき、各々の括弧内の2つの結合基は同じであっても異なってもよく、そして、2つの環は同じであっても異なっていてもよい。R
26は−F、−OH、炭素数1〜30のアルキル、炭素数1〜30のフッ素置換アルキル、炭素数1〜30のアルコキシ、−CN、−OCH
2F、−OCHF
2、または−OCF
3であり、この炭素数1〜30のアルキルの任意の−CH
2−は下記式(DI−13−b)で表される2価の基で置き換えられていてもよい。
式(DI−13−b)において、R
27およびR
28は独立して炭素数1〜3のアルキルであり、vは1〜6の整数である。R
26の好ましい例は炭素数1〜30のアルキルおよび炭素数1〜30のアルコキシである。
式(DI−14)および式(DI−15)において、G
30は独立して単結合、−CO−または−CH
2−であり、R
29は独立して−Hまたは−CH
3であり、R
30は−H、炭素数1〜20のアルキル、または炭素数2〜20のアルケニルである。式(DI−15)におけるベンゼン環の1つの−Hは、炭素数1〜20のアルキルまたはフェニルで置き換えられてもよい。そして、環を構成するいずれかの炭素原子に結合位置が固定されていない基は、その環における結合位置が任意であることを示す。式(DI−14)における2つの基「−フェニレン−G
30−O−」の一方はステロイド核の3位に結合し、もう一方はステロイド核の6位に結合していることが好ましい。式(DI−15)における2つの基「−フェニレン−G
30−O−」のベンゼン環への結合位置は、ステロイド核の結合位置に対して、それぞれメタ位またはパラ位であることが好ましい。式(DI−14)および式(DI−15)において、ベンゼン環に結合する−NH
2はその環における結合位置が任意であることを示す。
式(DI−16)および式(DI−17)において、G
31は独立して−O−または炭素数1〜6のアルキレンであり、G
32は単結合または炭素数1〜3のアルキレンである。R
31は−Hまたは炭素数1〜20のアルキルであり、このアルキルの任意の−CH
2−は、−O−、−CH=CH−または−C≡C−で置き換えられてもよい。R
32は炭素数6〜22のアルキルであり、R
33は−Hまたは炭素数1〜22のアルキルである。環B
25は1,4−フェニレンまたは1,4−シクロヘキシレンであり、rは0または1である。そしてベンゼン環に結合する−NH
2はその環における結合位置が任意であることを示すが、独立してG
31の結合位置に対してメタ位またはパラ位であることが好ましい。
側鎖型ジアミンの具体例を以下に例示する。
上記式(DI−13)〜(DI−17)の側鎖を有するジアミン化合物として、下記の式(DI−13−1)〜(DI−17−3)で表される化合物を挙げることができる。
式(DI−13)で表される化合物の例を以下に示す。
式(DI−13−1)〜(DI−13−11)において、R
34は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数5〜25のアルキルまたは炭素数5〜25のアルコキシである。R
35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり、好ましくは炭素数3〜25のアルキルまたは炭素数3〜25のアルコキシである。
式(DI−13−12)〜(DI−13−17)において、R
36は炭素数4〜30のアルキルであり、好ましくは炭素数6〜25のアルキルである。R
37は炭素数6〜30のアルキルであり、好ましくは炭素数8〜25のアルキルである。
式(DI−13−18)〜(DI−13−43)において、R
38は炭素数1〜20のアルキルまたは炭素数1〜20のアルコキシであり、好ましくは炭素数3〜20のアルキルまたは炭素数3〜20のアルコキシである。R
39は−H、−F、炭素数1〜30のアルキル、炭素数1〜30のアルコキシ、−CN、−OCH
2F、−OCHF
2または−OCF
3であり、好ましくは炭素数3〜25のアルキル、または炭素数3〜25のアルコキシである。そしてG
33は炭素数1〜20のアルキレンである。
式(DI−14)で表される化合物の例を以下に示す。
式(DI−15)で表される化合物の例を以下に示す。
式(DI−16)で表される化合物の例を以下に示す。
式(DI−16−1)〜(DI−16−12)において、R
40は−Hまたは炭素数1〜20のアルキル、好ましくは−Hまたは炭素数1〜10のアルキルであり、そしてR
41は−Hまたは炭素数1〜12のアルキルである。
式(DI−17)で表される化合物の例を以下に示す。
式(DI−17−1)〜(DI−17−3)において、R
37は炭素数6〜30のアルキルであり、R
41は−Hまたは炭素数1〜12のアルキルである。
本発明におけるその他のジアミンとしては、前述した式(DI−1−1)〜(DI−17−3)で表されるジアミン以外のジアミンも用いることができる。このようなその他のジアミンとしては、例えば、式(DI−13−1)〜(DI−17−3)以外の側鎖構造を有するジアミンや感光性ジアミンが挙げられる。
感光性ジアミン以外のその他のジアミンとしては、例えば下記式(DI−18−1)〜(DI−18−8)で表される化合物が挙げられる。
式(DI−18−1)〜(DI−18−8)中、R
42はそれぞれ独立して炭素数3〜30のアルキル基を表す。
本発明の液晶配向剤を用いる液晶表示素子が大きなプレチルト角を必要とする場合、特に2度以上のプレチルト角を発現させるためには、本発明の液晶配向剤に用いるポリアミック酸およびその誘導体の製造に際して、側鎖型ジアミンのジアミン総量に占める割合を5〜70モル%とすることが好ましく、10〜50モル%とすることがより好ましい。
上記のジアミンの具体例のうち、液晶の配向性をさらに向上させることを重視する場合には、その他のジアミンが、以下の式(DI−4−1)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−13)、(DI−5−22)、(DI−5−28)、(DI−5−30)、(DI−7−3)、(DI−9−1)、(DI−13−4)、(DI−13−5)、(DI−13−47)、(DI−16−1)、(DI−16−2)または(DI−16−4)で表されるジアミンが好ましい。または(DI−4−1)、(DI−5−1)、(DI−5−5)、(DI−5−9)、(DI−5−12)、(DI−5−13)、(DI−5−22)、(DI−7−3)および(DI−9−1)、で表されるジアミンがさらに好ましい。
式(DI−5−1)、式(DI−5−12)、(DI−5−13)および(DI−7−3)において、mは1〜12の整数であり;
式(DI−5−30)において、kは1〜5の整数であり;
式(DI−7−3)において、nは1または2あり;
式(DI−13−4)および(DI−13−5)において、R
35は炭素数1〜30のアルキルまたは炭素数1〜30のアルコキシであり;
式(DI−16−1)および(DI−16−2)において、R
40は−Hまたは炭素数1〜20のアルキルであり;
式(DI−16−4)において、R
41は−Hまたは炭素数1〜12のアルキルである。
その他のジアミンは、本発明の液晶配向剤におけるポリアミック酸を構成するジアミンにおいて、本発明の効果が損なわれない程度の範囲で用いることができる。
その他のジアミンは、各ジアミンにおいて、ジアミンに対するモノアミンの比率が40モル%以下の範囲で、ジアミンの一部がモノアミンに置き換えられていてもよい。このような置き換えは、ポリアミック酸を生成する際の重合反応のターミネーションを起こすことができ、それ以上の重合反応の進行を抑えることができる。このため、このような置き換えによって、得られる重合体(ポリアミック酸またはその誘導体)の分子量を容易に制御することができ、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノアミンに置き換えられるジアミンは、本発明の効果が損なわれなければ、一種でも二種以上でもよい。前記モノアミンとしては、例えばアニリン、4−ヒドロキシアニリン、シクロヘキシルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、n−ヘプチルアミン、n−オクチルアミン、n−ノニルアミン、n−デシルアミン、n−ウンデシルアミン、n−ドデシルアミン、n−トリデシルアミン、n−テトラデシルアミン、n−ペンタデシルアミン、n−ヘキサデシルアミン、n−ヘプタデシルアミン、n−オクタデシルアミン、およびn−エイコシルアミンが挙げられる。
本発明の液晶配向剤に用いるポリアミック酸は、上記の酸無水物の混合物とジアミンを溶剤中で反応させることによって得られる。この合成反応においては、原料の選択以外に特別な条件は必要でなく、通常のポリアミック酸合成における条件をそのまま適用することができる。使用する溶剤については後述する。
本発明の液晶配向剤は、ポリアミック酸またはその誘導体以外の他の成分をさらに含有していてもよい。他の成分は、1種であっても2種以上であってもよい。
本発明のポリアミック酸またはその誘導体は、そのモノマーにモノイソシアネート化合物をさらに含んでいてもよい。モノイソシアネート化合物をモノマーに含むことによって、得られるポリアミック酸またはその誘導体の末端が修飾され、分子量が調節される。この末端修飾型のポリアミック酸またはその誘導体を用いることにより、例えば本発明の効果が損われることなく液晶配向剤の塗布特性を改善することができる。モノマー中のモノイソシアネート化合物の含有量は、モノマー中のジアミンおよびテトラカルボン酸二無水物の総量に対して1〜10モル%であることが、前記の観点から好ましい。前記モノイソシアネート化合物としては、例えばフェニルイソシアネート、およびナフチルイソシアネートが挙げられる。
本発明のポリアミック酸またはその誘導体は、ポリイミドの膜の形成に用いられる公知のポリアミック酸またはその誘導体と同様に製造することができる。テトラカルボン酸二無水物の総仕込み量は、ジアミンの総モル数とほぼ等モル(モル比0.9〜1.1程度)とすることが好ましい。
本発明のポリアミック酸またはその誘導体の分子量は、ポリスチレン換算の重量平均分子量(Mw)で、10,000〜500,000であることが好ましく、20,000〜200,000であることがより好ましい。前記ポリアミック酸またはその誘導体の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法による測定から求めることができる。
本発明のポリアミック酸またはその誘導体は、多量の貧溶剤で沈殿させて得られる固形分をIR、NMRで分析することによりその存在を確認することができる。またKOHやNaOH等の強アルカリの水溶液による前記ポリアミック酸またはその誘導体の分解物の有機溶剤による抽出物をGC、HPLCもしくはGC−MSで分析することにより、使用されているモノマーを確認することができる。
例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる観点から、アルケニル置換ナジイミド化合物をさらに含有していてもよい。アルケニル置換ナジイミド化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。アルケニル置換ナジイミド化合物の含有量は、上記の観点から、液晶配向剤中のポリアミック酸またはその誘導体に対する重量比で0.01〜1.00であることが好ましく、0.01〜0.70であることがより好ましく、0.01〜0.50であることがさらに好ましい。
アルケニル置換ナジイミド化合物は、本発明で用いられるポリアミック酸またはその誘導体を溶解する溶剤に溶解させることができる化合物であることが好ましい。このようなアルケニル置換ナジイミド化合物の例は、下記式(Ina)で表される化合物が挙げられる。
式(Ina)中、L1およびL2は、それぞれ独立して水素、炭素数1〜12のアルキル、炭素数3〜6のアルケニル、炭素数5〜8のシクロアルキル、アリールまたはベンジルであり、nは1または2である。
n=1のとき、Wは炭素数1〜12のアルキル、炭素数2〜6のアルケニル、炭素数5〜8のシクロアルキル、炭素数6〜12のアリール、ベンジル、−Z1−(O)q−(Z2O)r−Z3−H(Z1、Z2およびZ3は独立して炭素数2〜6のアルキレンであり、qは0または1であり、そしてrは1〜30の整数である。)で表される基、−(Z4)s−B−Z5−H(Z4およびZ5は独立して炭素数1〜4のアルキレンまたは炭素数5〜8のシクロアルキレンであり、Bはフェニレンであり、そしてsは0または1である。)で表される基、−B−T−B−H(Bはフェニレンであり、そしてTは−CH2−、−C(CH3)2−、−O−、−CO−、−S−またはSO2−である。)で表される基、またはこれらの基の1〜3個の水素が水酸基で置換された基を表す。
このとき、好ましいWは、炭素数1〜8のアルキル、炭素数3〜4のアルケニル、シクロヘキシル、フェニル、ベンジル、炭素数4〜10のポリ(エチレンオキシ)エチル、フェニルオキシフェニル、フェニルメチルフェニル、フェニルイソプロピリデンフェニル、およびこれらの基の1個または2個の水素が水酸基で置き換えられた基である。
式(Ina)においてn=2のとき、Wは炭素数2〜20のアルキレン、炭素数5〜8のシクロアルキレン、炭素数6〜12のアリーレン、−Z1−O−(Z2O)r−Z3−(Z1〜Z3、およびrの意味は前記の通りである。)で表される基、−Z4−B−Z5−(Z4、Z5およびBの意味は前記の通りである。)で表される基、−B−(O−B)s−T−(B−O)s−B−(Bはフェニレンを表し、Tは炭素数1〜3のアルキレン、−O−またはSO2−であり、sは0または1である。)で表される基、またはこれらの基の1〜3個の水素が水酸基で置き換えられた基である。
このとき、好ましいWは炭素数2〜12のアルキレン、シクロヘキシレン、フェニレン、トリレン、キシリレン、−C3H6−O−(Z2−O)r−O−C3H6−(Z2は炭素数2〜6のアルキレンであり、rは1または2である。)で表される基、−B−T−B−(Bはフェニレンを表し、そしてTは−CH2−、−O−またはSO2−を表す。)で表される基、−B−O−B−C3H6−B−O−B−(Bはフェニレンである。)で表される基、およびこれらの基の1個または2個の水素が水酸基で置き換えられた基である。
このようなアルケニル置換ナジイミド化合物は、例えば特許第2729565号公報に記載されているように、アルケニル置換ナジック酸無水物誘導体とジアミンとを80〜220℃の温度で0.5〜20時間保持することにより合成して得られる化合物や市販されている化合物を用いることができる。アルケニル置換ナジイミド化合物の具体例として、以下に示す化合物が挙げられる。
N−メチル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−メチル−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−エチルヘキシル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2−エチルヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−アリル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−イソプロペニル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−シクロヘキシル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−フェニル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−フェニル−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−ベンジル−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−ヒドロキシエチル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,2−ジメチル−3−ヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2,3−ジヒドロキシプロピル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシ−1−プロペニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシシクロヘキシル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−(4−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−ヒドロキシフェニル)−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(3−ヒドロキシフェニル)−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(p−ヒドロキシベンジル)−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、
N−{2−(2−ヒドロキシエトキシ)エチル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{2−(2−ヒドロキシエトキシ)エチル}−メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−〔2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル〕−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−アリル(メチル)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−{4−(4−ヒドロキシフェニルイソプロピリデン)フェニル}−メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、およびこれらのオリゴマー、
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
1,2−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、1,2−ビス{3’−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エタン、ビス〔2’−{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、ビス〔2’−{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}エチル〕エーテル、1,4−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、1,4−ビス{3’−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}ブタン、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、1,6−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3−ヒドロキシ−ヘキサン、1,12−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−3,6−ジヒドロキシ−ドデカン、1,3−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−シクロヘキサン、1,5−ビス{3’−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)プロポキシ}−3−ヒドロキシ−ペンタン、1,4−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−ベンゼン、
1,4−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2,5−ジヒドロキシ−ベンゼン、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2−ヒドロキシ)キシリレン−ビス(アリルメチルシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−(2−ヒドロキシ)キシリレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−(2,3−ジヒドロキシ)キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェノキシ}フェニル〕プロパン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−2−ヒドロキシ−フェニル}メタン、ビス{3−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−4−ヒドロキシ−フェニル}エーテル、ビス{3−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)−5−ヒドロキシ−フェニル}スルホン、1,1,1−トリ{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)}フェノキシメチルプロパン、N,N’,N”−トリ(エチレンメタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)イソシアヌレート、およびこれらのオリゴマー等。
さらに、本発明に用いられるアルケニル置換ナジイミド化合物は、非対称なアルキレン・フェニレン基を含む下記式で表される化合物でもよい。
アルケニル置換ナジイミド化合物のうち、好ましい化合物を次に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、
ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}エーテル、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}スルホン。
更に好ましいアルケニル置換ナジイミド化合物を次に示す。
N,N’−エチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−エチレン−ビス(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−トリメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ヘキサメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−ドデカメチレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−シクロヘキシレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
N,N’−p−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−フェニレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−{(1−メチル)−2,4−フェニレン}−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−p−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、N,N’−m−キシリレン−ビス(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、
2,2−ビス〔4−{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、2,2−ビス〔4−{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェノキシ}フェニル〕プロパン、ビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(アリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、ビス{4−(メタリルメチルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン。
そして、特に好ましいアルケニル置換ナジイミド化合物として、次に示す式(Ina−1)で示されるビス{4−(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)フェニル}メタン、式(Ina−2)で示されるN,N’−m−キシリレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)、および式(Ina−3)で示されるN,N’−ヘキサメチレン−ビス(アリルビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド)が挙げられる。
また例えば、本発明の液晶配向剤は、液晶表示素子の電気特性を長期に安定させる観点から、ラジカル重合性不飽和二重結合を有する化合物をさらに含有していてもよい。ラジカル重合性不飽和二重結合を有する化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。なお、前記ラジカル重合性不飽和二重結合を有する化合物には前記アルケニル置換ナジイミド化合物は含まれない。前記ラジカル重合性不飽和二重結合を有する化合物の含有量は、上記の観点から、ポリアミック酸またはその誘導体に対する重量比で0.01〜1.00であることが好ましく、0.01〜0.70であることがより好ましく、0.01〜0.50であることがさらに好ましい。
なお、アルケニル置換ナジイミド化合物に対するラジカル重合性不飽和二重結合を有する化合物の比率は、液晶表示素子のイオン密度を低減し、イオン密度の経時的な増加を抑制し、さらに残像を抑制する観点から、重量比で0.1〜10であること好ましく、0.5〜5であることがより好ましい。
ラジカル重合性不飽和二重結合を有する化合物としては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミド等の(メタ)アクリル酸誘導体、およびビスマレイミドが挙げられる。前記ラジカル重合性不飽和二重結合を有する化合物は、ラジカル重合性不飽和二重結合を2つ以上有する(メタ)アクリル酸誘導体であることがより好ましい。
(メタ)アクリル酸エステルの具体例としては、例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−メチルシクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸ジシクロペンタニルオキシエチル、(メタ)アクリル酸イソボロニル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル。(メタ)アクリル酸2−ヒドロキシエチル、および(メタ)アクリル酸2−ヒドロキシプロピルが挙げられる。
2官能(メタ)アクリル酸エステルの具体例としては、例えばエチレンビスアクリレート、東亜合成化学工業(株)の製品であるアロニックスM−210、アロニックスM−240およびアロニックスM−6200、日本化薬(株)の製品であるKAYARAD HDDA、KAYARAD HX−220、KAYARAD R−604およびKAYARAD R−684、大阪有機化学工業(株)の製品であるV260、V312およびV335HP、並びに共栄社油脂化学工業(株)の製品であるライトアクリレートBA−4EA、ライトアクリレートBP−4PAおよびライトアクリレートBP−2PAが挙げられる。
3官能以上の多官能(メタ)アクリル酸エステルの具体例としては、例えば4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)、東亜合成化学工業(株)の製品であるアロニックスM−400、アロニックスM−405、アロニックスM−450、アロニックスM−7100、アロニックスM−8030、アロニックスM−8060、日本化薬(株)の製品であるKAYARAD TMPTA、KAYARAD DPCA−20、KAYARAD DPCA−30、KAYARAD DPCA−60、KAYARAD DPCA−120、および大阪有機化学工業(株)の製品であるVGPTが挙げられる。
(メタ)アクリル酸アミド誘導体の具体例としては、例えばN−イソプロピルアクリルアミド、N−イソプロピルメタクリルアミド、N−n−プロピルアクリルアミド、N−n−プロピルメタクリルアミド、N−シクロプロピルアクリルアミド、N−シクロプロピルメタクリルアミド、N−エトキシエチルアクリルアミド、N−エトキシエチルメタクリルアミド、N−テトラヒドロフルフリルアクリルアミド、N−テトラヒドロフルフリルメタクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリジン、N−アクリロイルピロリディン、N,N’−メチレンビスアクリルアミド、N,N’−エチレンビスアクリルアミド、N,N’−ジヒドロキシエチレンビスアクリルアミド、N−(4−ヒドロキシフェニル)メタクリルアミド、N−フェニルメタクリルアミド、N−ブチルメタクリルアミド、N−(iso−ブトキシメチル)メタクリルアミド、N−[2−(N,N−ジメチルアミノ)エチル]メタクリルアミド、N,N−ジメチルメタクリルアミド、N−[3−(ジメチルアミノ)プロピル]メタクリルアミド、N−(メトキシメチル)メタクリルアミド、N−(ヒドロキシメチル)―2−メタクリルアミド、N−ベンジル−2−メタクリルアミド、およびN,N’−メチレンビスメタクリルアミドが挙げられる。
上記の(メタ)アクリル酸誘導体のうち、N,N’−メチレンビスアクリルアミド、N,N’−ジヒドロキシエチレン−ビスアクリルアミド、エチレンビスアクリレート、および4,4’−メチレンビス(N,N―ジヒドロキシエチレンアクリレートアニリン)が特に好ましい。
ビスマレイミドとしては、例えばケイ・アイ化成(株)製のBMI−70およびBMI−80、並びに大和化成工業(株)製のBMI−1000、BMI−3000、BMI−4000、BMI−5000およびBMI−7000が挙げられる。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、オキサジン化合物をさらに含有していてもよい。前記オキサジン化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。前記オキサジン化合物の含有量は、上記の観点から、前記ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
オキサジン化合物は、ポリアミック酸またはその誘導体を溶解させる溶媒に可溶であり、加えて、開環重合性を有するオキサジン化合物が好ましい。
またオキサジン化合物におけるオキサジン構造の数は、特に限定されない。
オキサジンの構造には種々の構造が知られている。本発明では、オキサジンの構造は特に限定されないが、前記オキサジン化合物におけるオキサジン構造には、ベンゾオキサジンやナフトオキサジン等の、縮合多環芳香族基を含む芳香族基を有するオキサジンの構造が挙げられる。
オキサジン化合物としては、例えば下記式(a)〜(f)に示す化合物が挙げられる。なお下記式において、環の中心に向けて表示されている結合は、環を構成しかつ置換基の結合が可能ないずれかの炭素に結合していることを示す。
式(a)〜(c)において、R1およびR2は炭素数1〜30の有機基である。また式(a)〜(f)において、R3からR6は水素または炭素数1〜6の炭化水素基を表す。また式(c)、(d)および(f)中、Xは、単結合、−O−、−S−、−S−S−、−SO2−、−CO−、−CONH−、−NHCO−、−C(CH3)2−、−C(CF3)2−、−(CH2)m−、−O−(CH2)m−O−、−S−(CH2)m−S−である。ここでmは1〜6の整数である。また前記式(e)および(f)中、Yは独立して、単結合、−O−、−S−、−CO−、−C(CH3)2−、−C(CF3)2−または炭素数1〜3のアルキレンである。そして、式(a)〜(f)におけるベンゼン環、ナフタレン環に結合している水素は、独立して−F、−CH3、−OH、−COOH、−SO3H、−PO3H2と置き換えられていてもよい。
また、オキサジン化合物には、オキサジン構造を側鎖に有するオリゴマーやポリマー、オキサジン構造を主鎖中に有するオリゴマーやポリマーが含まれる。
式(a)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(b)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(c)で表されるオキサジン化合物としては、下記式(c’)で表されるオキサジン化合物が挙げられる。
式(c’)中、R
1およびR
2は炭素数1〜30の有機基、R
3からR
6は水素または炭素数1〜6の炭化水素基、Xは単結合、−CH
2−、−C(CH
3)
2−、−CO−、−O−、−SO
2−またはC(CF
3)
2−を表す。
前記式(c’)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
上記式中、R
1は炭素数1〜30のアルキルが好ましく、炭素数1〜20のアルキルがさらに好ましい。
式(d)で表されるオキサジン化合物しては、例えば以下のオキサジン化合物が挙げられる。
式(e)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
式(f)で表されるオキサジン化合物としては、例えば以下のオキサジン化合物が挙げられる。
これらのうち、より好ましくは、式(b−1)、式(c−1)、式(c−3)、式(c−5)、式(c−7)、式(c−9)、式(d−1)〜式(d−6)、式(e−3)、式(e−4)、式(f−2)〜式(f−4)で表されるオキサジン化合物が挙げられる。
前記のオキサジン化合物は、国際公開2004/009708号パンフレット、特開平11−12258号公報、特開2004−352670号公報に記載の方法と同様の方法で製造することができる。
例えば式(a)で表されるオキサジン化合物は、フェノール化合物と1級アミンとアルデヒドとを反応させることによって得られる(国際公開2004/009708号パンフレット参照)。
また、式(b)で表されるオキサジン化合物は、1級アミンをホルムアルデヒドへ徐々に加える方法により反応させたのち、ナフトール系水酸基を有する化合物を加えて反応させることによって得られる(国際公開2004/009708号パンフレット参照)。
また、式(c)で表されるオキサジン化合物は、有機溶媒中でフェノール化合物1モル、そのフェノール性水酸基1個に対し少なくとも2モル以上のアルデヒド、および1モルの一級アミンを、2級脂肪族アミン、3級脂肪族アミンまたは塩基性含窒素複素環化合物の存在下で反応させることによって得られる(国際公開2004/009708号パンフレットおよび特開平11−12258号公報参照)。
また、式(d)〜(f)で表されるオキサジン化合物は、4,4’−ジアミノジフェニルメタン等の、複数のベンゼン環とそれらを結合する有機基とを有するジアミン、ホルマリン等のアルデヒド、およびフェノールを、n−ブタノール中、90℃以上の温度で脱水縮合反応させることにより得られる(特開2004−352670号公報参照)。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、オキサゾリン化合物をさらに含有していてもよい。前記オキサゾリン化合物はオキサゾリン構造を有する化合物である。前記オキサゾリン化合物は一種の化合物であってもよいし、二種以上の化合物であってもよい。前記オキサゾリン化合物の含有量は、上記の観点から、前記ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることが好ましい。または、前記オキサゾリン化合物の含有量は、オキサゾリン化合物中のオキサゾリン構造をオキサゾリンに換算したときに、前記ポリアミック酸またはその誘導体に対して0.1〜40重量%であることが、上記の観点から好ましい。
オキサゾリン化合物は、1つの化合物中にオキサゾリン構造を1種だけ有していてもよいし、2種以上有していてもよい。また前記オキサゾリン化合物は、1つの化合物中に前記オキサゾリン構造を1個有していればよいが、2個以上有することが好ましい。またオキサゾリン化合物は、オキサゾリン環構造を側鎖に有する重合体であってもよいし、共重合体であってもよい。オキサゾリン構造を側鎖に有する重合体は、オキサゾリン構造を側鎖に有するモノマーの単独重合体であってもよいし、オキサゾリン構造を側鎖に有するモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。オキサゾリン構造を側鎖に有する共重合体は、オキサゾリン構造を側鎖に有する2種以上のモノマーの共重合体であってもよいし、オキサゾリン構造を側鎖に有する2種以上のモノマーとオキサゾリン構造を有しないモノマーとの共重合体であってもよい。
オキサゾリン構造は、オキサゾリン構造中の酸素および窒素の一方または両方とポリアミック酸のカルボニル基とが反応し得るようにオキサゾリン化合物中に存在する構造であることが好ましい。
オキサゾリン化合物としては、例えば2,2’−ビス(2−オキサゾリン)、1,2,4−トリス−(2−オキサゾリニル−2)−ベンゼン、4−フラン−2−イルメチレン−2−フェニル−4H−オキサゾール−5−オン、1,4−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、1,3−ビス(4,5−ジヒドロ−2−オキサゾリル)ベンゼン、2,3−ビス(4−イソプロペニル−2−オキサゾリン−2−イル)ブタン、2,2’−ビス−4−ベンジル−2−オキサゾリン、2,6−ビス(イソプロピル−2−オキサゾリン−2−イル)ピリジン、2,2’−イソプロピリデンビス(4−tert−ブチル−2−オキサゾリン)、2,2’−イソプロピリデンビス(4−フェニル−2−オキサゾリン)、2,2’−メチレンビス(4−tert−ブチル−2−オキサゾリン)、および2,2’−メチレンビス(4−フェニル−2−オキサゾリン)が挙げられる。これらの他、エポクロス(商品名、(株)日本触媒製)のようなオキサゾリルを有するポリマーやオリゴマーも挙げられる。
より好ましいオキサゾリン化合物としては、例えば2,2’―ビス(2−オキサゾリン)および1,3−ビス(4,5―ジヒドロ−2−オキサゾリル)ベンゼンが挙げられる。
また例えば、本発明の液晶配向剤は、液晶表示素子における電気特性の長期安定性の観点から、エポキシ化合物をさらに含有していてもよい。前記エポキシ化合物は1種の化合物であってもよいし、2種以上の化合物であってもよい。前記エポキシ化合物の含有量は、上記の観点から、前記ポリアミック酸またはその誘導体に対して0.1〜50重量%であることが好ましく、1〜40重量%であることがより好ましく、1〜20重量%であることがさらに好ましい。
エポキシ化合物としては、分子内にエポキシ環を1つまたは2つ以上有する種々の化合物が挙げられる。分子内にエポキシ環を1つ有する化合物としては、例えばフェニルグリシジルエーテル、ブチルグリシジルエーテル、3,3,3−トリフルオロメチルプロピレンオキシド、スチレンオキシド、ヘキサフルオロプロピレンオキシド、シクロヘキセンオキシド、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、N−グリシジルフタルイミド、(ノナフルオロ−N−ブチル)エポキシド、パーフルオロエチルグリシジルエーテル、エピクロロヒドリン、エピブロモヒドリン、N,N−ジグリシジルアニリン、および3−[2−(パーフルオロヘキシル)エトキシ]−1,2−エポキシプロパンが挙げられる。
分子内にエポキシ環を2つ有する化合物としては、例えばエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2−ジブロモネオペンチルグリコールジグリシジルエーテル、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレートおよび3−(N,N−ジグリシジル)アミノプロピルトリメトキシシランが挙げられる。
分子内にエポキシ環を3つ有する化合物としては、例えば2−[4−(2,3−エポキシプロポキシ)フェニル]−2−[4−[1,1−ビス[4−([2,3−エポキシプロポキシ]フェニル)]エチル]フェニル]プロパン(商品名「テクモアVG3101L」、(三井化学(株)製)が挙げられる。
分子内にエポキシ環を4つ有する化合物としては、例えば1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、および3−(N−アリル−N−グリシジル)アミノプロピルトリメトキシシランが挙げられる。
上記の他、分子内にエポキシ環を有する化合物の例として、エポキシ環を有するオリゴマーや重合体も挙げられる。エポキシ環を有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
エポキシ環を有するモノマーと共重合を行う他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミドおよびN−フェニルマレイミドが挙げられる。
エポキシ環を有するモノマーの重合体の好ましい具体例としては、ポリグリシジルメタクリレート等が挙げられる。また、エポキシ環を有するモノマーと他のモノマーとの共重合体の好ましい具体例としては、N−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
これら例の中でも、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルメタン、商品名「テクモアVG3101L」、3,4−エポキシシクロヘキセニルメチル−3’,4’−エポキシシクロヘキセンカルボキシレート、N−フェニルマレイミド−グリシジルメタクリレート共重合体、および2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランが特に好ましい。
より体系的には、前記エポキシ化合物としては、例えばグリシジルエーテル、グリシジルエステル、グリシジルアミン、エポキシ基含有アクリル系樹脂、グリシジルアミド、グリシジルイソシアヌレート、鎖状脂肪族型エポキシ化合物、および環状脂肪族型エポキシ化合物が挙げられる。なお、エポキシ化合物はエポキシ基を有する化合物を意味し、エポキシ樹脂はエポキシ基を有する樹脂を意味する。
グリシジルエーテルとしては、例えばビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、ビスフェノール型エポキシ化合物、水素化ビスフェノール−A型エポキシ化合物、水素化ビスフェノール−F型エポキシ化合物、水素化ビスフェノール−S型エポキシ化合物、水素化ビスフェノール型エポキシ化合物、臭素化ビスフェノール−A型エポキシ化合物、臭素化ビスフェノール−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、臭素化フェノールノボラック型エポキシ化合物、臭素化クレゾールノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、ナフタレン骨格含有エポキシ化合物、芳香族ポリグリシジルエーテル化合物、ジシクロペンタジエンフェノール型エポキシ化合物、脂環式ジグリシジルエーテル化合物、脂肪族ポリグリシジルエーテル化合物、ポリサルファイド型ジグリシジルエーテル化合物、およびビフェノール型エポキシ化合物が挙げられる。
グリシジルエステルとしては、例えばジグリシジルエステル化合物およびグリシジルエステルエポキシ化合物が挙げられる。
グリシジルアミンとしては、例えばポリグリシジルアミン化合物が挙げられる。
エポキシ基含有アクリル系化合物としては、例えばオキシラニルを有するモノマーの単独重合体および共重合体が挙げられる。
グリシジルアミドとしては、例えばグリシジルアミド型エポキシ化合物が挙げられる。
鎖状脂肪族型エポキシ化合物としては、例えばアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
環状脂肪族型エポキシ化合物としては、例えばシクロアルケン化合物の炭素−炭素二重結合を酸化して得られる、エポキシ基を含有する化合物が挙げられる。
ビスフェノールA型エポキシ化合物としては、例えば828、1001、1002、1003、1004、1007、1010(いずれもジャパンエポキシレジン製(現在は三菱化学(株)のjERシリーズの製品として入手できる/以下同じ))、エポトートYD−128(東都化成(株)製)、DER−331、DER−332、DER−324(いずれもThe Dow Chemical Company製)、エピクロン840、エピクロン850、エピクロン1050(いずれもDIC(株)製)、エポミックR−140、エポミックR−301、およびエポミックR−304(いずれも三井化学(株)製)が挙げられる。
ビスフェノールF型エポキシ化合物としては、例えば806、807、4004P(いずれもジャパンエポキシレジン(株)製)、エポトートYDF−170、エポトートYDF−175S、エポトートYDF−2001(いずれも東都化成(株)製)、DER−354(The Dow Chemical Company製)、エピクロン830、およびエピクロン835(いずれもDIC(株)製)が挙げられる。
ビスフェノール型エポキシ化合物としては、例えば2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
水素化ビスフェノール−A型エポキシ化合物としては、例えばサントートST−3000(東都化成社製)、リカレジンHBE−100(新日本理化製)、およびデナコールEX−252(ナガセケムテックス社製)が挙げられる。
水素化ビスフェノール型エポキシ化合物としては、例えば水素化2,2−ビス(4−ヒドロキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパンのエポキシ化物が挙げられる。
臭素化ビスフェノール−A型エポキシ化合物としては、例えば5050、5051(いずれもジャパンエポキシレジン(株)製)、エポトートYDB−360、エポトートYDB−400(いずれも東都化成(株)製)、DER−530、DER−538(いずれもThe Dow Chemical Company製)、エピクロン152、およびエピクロン153(いずれもDIC(株)製)が挙げられる。
フェノールノボラック型エポキシ化合物としては、例えば152、154(いずれもジャパンエポキシレジン製)、YDPN−638(東都化成(株)製)、DEN431、DEN438(いずれもThe Dow Chemical Company製)、エピクロンN−770(DIC(株)製)、EPPN−201、およびEPPN−202(いずれも日本化薬(株)製)が挙げられる。
クレゾールノボラック型エポキシ化合物としては、例えば180S75(ジャパンエポキシレジン(株)製)、YDCN−701、YDCN−702(いずれも東都化成(株)製)、エピクロンN−665、エピクロンN−695(いずれもDIC(株)製)、EOCN−102S、EOCN−103S、EOCN−104S、EOCN−1020、EOCN−1025、およびEOCN−1027(いずれも日本化薬(株)製)が挙げられる。
ビスフェノールAノボラック型エポキシ化合物としては、例えば157S70(ジャパンエポキシレジン(株)製)、およびエピクロンN−880(DIC(株)製)が挙げられる。
ナフタレン骨格含有エポキシ化合物としては、例えばエピクロンHP−4032、エピクロンHP−4700、エピクロンHP−4770(いずれもDIC(株)製)、およびNC−7000(日本化薬(株)製)が挙げられる。
芳香族ポリグリシジルエーテル化合物としては、例えばハイドロキノンジグリシジルエーテル(下記式E101)、カテコールジグリシジルエーテル(下記式E102)レゾルシノールジグリシジルエーテル(下記式E103)、トリス(4−グリシジルオキシフェニル)メタン(下記式E105)、1031S、1032H60(いずれもジャパンエポキシレジン(株)製)、TACTIX−742(The Dow Chemical Company製)、デナコールEX−201(ナガセケムテックス(株)製)、DPPN−503、DPPN−502H、DPPN−501H、NC6000(いずれも日本化薬(株)製)、テクモアVG3101L(三井化学(株)製)、下記式E106で表される化合物、および下記式E107で表される化合物が挙げられる。
ジシクロペンタジエンフェノール型エポキシ化合物としては、例えばTACTIX−556(The Dow Chemical Company製)、およびエピクロンHP−7200(DIC(株)製)が挙げられる。
脂環式ジグリシジルエーテル化合物としては、例えばシクロヘキサンジメタノールジグリシジルエーテル化合物、およびリカレジンDME−100(新日本理化(株)製)が挙げられる。
脂肪族ポリグリシジルエーテル化合物としては、例えばエチレングリコールジグリシジルエーテル(下記式E108)、ジエチレングリコールジグリシジルエーテル(下記式E109)、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル(下記式E110)、トリプロピレングリコールジグリシジルエーテル(下記式E111)、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル(下記式E112)、1,4−ブタンジオールジグリシジルエーテル(下記式E113)、1,6−ヘキサンジオールジグリシジルエーテル(下記式E114)、ジブロモネオペンチルグリコールジグリシジルエーテル(下記式E115)、デナコールEX−810、デナコールEX−851、デナコールEX−8301、デナコールEX−911、デナコールEX−920、デナコールEX−931、デナコールEX−211、デナコールEX−212、デナコールEX−313(いずれもナガセケムテックス(株)製)、DD−503((株)ADEKA製)、リカレジンW−100(新日本理化(株)製)、1,3,5,6−テトラグリシジル−2,4−ヘキサンジオール(下記式E116)、グリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、デナコールEX−313、デナコールEX−611、デナコールEX−321、およびデナコールEX−411(いずれもナガセケムテックス(株)製)が挙げられる。
ポリサルファイド型ジグリシジルエーテル化合物としては、例えばFLDP−50、およびFLDP−60(いずれも東レチオコール(株)製)が挙げられる。
ビフェノール型エポキシ化合物としては、例えばYX−4000、YL−6121H(いずれもジャパンエポキシレジン(株)製)、NC−3000P、およびNC−3000S(いずれも日本化薬(株)製)が挙げられる。
ジグリシジルエステル化合物としては、例えばジグリシジルテレフタレート(下記式117)、ジグリシジルフタレート(下記式E118)、ビス(2−メチルオキシラニルメチル)フタレート(下記式E119)、下記式E121で表される化合物、下記式E122で表される化合物、および下記式E123で表される化合物が挙げられる。
グリシジルエステルエポキシ化合物としては、例えば871、872(いずれもジャパンエポキシレジン(株)製)、エピクロン200、エピクロン400(いずれもDIC(株)製)、デナコールEX−711、およびデナコールEX−721(いずれもナガセケムテックス(株)製)が挙げられる。
ポリグリシジルアミン化合物としては、例えばN,N−ジグリシジルアニリン(下記式E124)、N,N−ジグリシジル−o−トルイジン(下記式E125)、N,N−ジグリシジル−m−トルイジン(下記式E126)、N,N−ジグリシジル−2,4,6−トリブロモアニリン(下記式E127)、3−(N,N−ジグリシジル)アミノプロピルトリメトキシシラン(下記式E128)、N,N,O−トリグリシジル−p−アミノフェノール(下記式E129)、N,N,O−トリグリシジル−m−アミノフェノール(下記式E130)、N,N,N’,N’−テトラグリシジル−m−キシリレンジアミン(TETRAD−X(三菱ガス化学(株)製)、下記式E132)、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(TETRAD−C(三菱ガス化学(株)製)、下記式E133)、1,4−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン(下記式E134)、1,3−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式E135)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン(下記式E136)、1,3−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式E137)、1,4−ビス(N,N−ジグリシジルアミノ)ベンゼン(下記式E138)、2,6−ビス(N,N−ジグリシジルアミノメチル)ビシクロ[2.2.1]ヘプタン(下記式E139)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジシクロヘキシルメタン(下記式E140)、2,2’−ジメチル−(N,N,N’,N’−テトラグリシジル)−4,4’−ジアミノビフェニル(下記式E141)、N,N,N’,N’−テトラグリシジル−4,4’−ジアミノジフェニルエーテル(下記式E142)、1,3,5−トリス(4−(N,N−ジグリシジル)アミノフェノキシ)ベンゼン(下記式E143)、2,4,4’−トリス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式E144)、トリス(4−(N,N−ジグリシジル)アミノフェニル)メタン(下記式E145)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ビフェニル(下記式E146)、3,4,3’,4’−テトラキス(N,N−ジグリシジルアミノ)ジフェニルエーテル(下記式E147)、下記式E148で表される化合物、および下記式E149で表される化合物が挙げられる。
オキシラニルを有するモノマーの単独重合体としては、例えばポリグリシジルメタクリレートが挙げられる。前記オキシラニルを有するモノマーの共重合体としては、例えばN−フェニルマレイミド−グリシジルメタクリレート共重合体、N−シクロヘキシルマレイミド−グリシジルメタクリレート共重合体、ベンジルメタクリレート−グリシジルメタクリレート共重合体、ブチルメタクリレート−グリシジルメタクリレート共重合体、2−ヒドロキシエチルメタクリレート−グリシジルメタクリレート共重合体、(3−エチル−3−オキセタニル)メチルメタクリレート−グリシジルメタクリレート共重合体、およびスチレン−グリシジルメタクリレート共重合体が挙げられる。
オキシラニルを有するモノマーとしては、例えばグリシジル(メタ)アクリレート、3,4−エポキシシクロヘキシル(メタ)アクリレート、およびメチルグリシジル(メタ)アクリレートが挙げられる。
オキシラニルを有するモノマーの共重合体における前記オキシラニルを有するモノマー以外の他のモノマーとしては、例えば(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、スチレン、メチルスチレン、クロルメチルスチレン、(3−エチル−3−オキセタニル)メチル(メタ)アクリレート、N−シクロヘキシルマレイミド、およびN−フェニルマレイミドが挙げられる。
グリシジルイソシアヌレートとしては、例えば1,3,5−トリグリシジル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式E150)、1,3−ジグリシジル−5−アリル−1,3,5−トリアジン−2,4,6−(1H,3H,5H)−トリオン(下記式E151)、およびグリシジルイソシアヌレート型エポキシ樹脂が挙げられる。
鎖状脂肪族型エポキシ化合物としては、例えばエポキシ化ポリブタジエン、およびエポリードPB3600((株)ダイセル製)が挙げられる。
環状脂肪族型エポキシ化合物としては、例えば2−メチル−3,4−エポキシシクロヘキシルメチル−2’−メチル−3’,4’−エポキシシクロヘキシルカルボキシレート(下記式E153)、2,3−エポキシシクロペンタン−2’,3’−エポキシシクロペンタンエーテル(下記式E154)、ε−カプロラクトン変性3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキレート、1,2:8,9−ジエポキシリモネン(セロキサイド3000((株)ダイセル製)、3,4−エポキシシクロヘキセニルメチル−3’,4'−エポキシシクロヘキセンカルボキシレート(セロキサイド2021P((株)ダイセル製)、下記式E155)、下記式E156で表される化合物、CY−175、CY−177、CY−179(いずれもThe Ciba-Geigy Chemical Corp.製(ハンツマン・ジャパン(株)から入手できる。))、EHPD−3150((株)ダイセル製)、および環状脂肪族型エポキシ樹脂が挙げられる。
また例えば、本発明の液晶配向剤は各種添加剤をさらに含有していてもよい。各種添加剤としては、例えばポリアミック酸およびその誘導体以外の高分子化合物、および低分子化合物が挙げられ、それぞれの目的に応じて選択して使用することができる。
例えば、前記高分子化合物としては、有機溶媒に可溶性の高分子化合物が挙げられる。このような高分子化合物を本発明の液晶配向剤に添加することは、形成される液晶配向膜の電気特性や配向性を制御する観点から好ましい。該高分子化合物としては、例えばポリアミド、ポリウレタン、ポリウレア、ポリエステル、ポリエポキサイド、ポリエステルポリオール、シリコーン変性ポリウレタン、およびシリコーン変性ポリエステルが挙げられる。
また、前記低分子化合物としては、例えば1)塗布性の向上を望むときにはかかる目的に沿った界面活性剤、2)帯電防止の向上を必要とするときは帯電防止剤、3)基板との密着性の向上を望むときにはシランカップリング剤やチタン系のカップリング剤、また、4)低温でイミド化を進行させる場合はイミド化触媒、が挙げられる。
シランカップリング剤としては、例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−(2−アミノエチル)−3−アミノプロピルメチルトリメトキシシラン、パラアミノフェニルトリメトキシシラン、パラアミノフェニルトリエトキシシラン、メタアミノフェニルトリメトキシシラン、メタアミノフェニルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−クロロプロピルメチルジメトキシシラン、3−クロロプロピルトリメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロピルアミン、およびN,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミンが挙げられる。好ましいシランカップリング剤は3−アミノプロピルトリエトキシシランである。
イミド化触媒としては、例えばトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の脂肪族アミン類;N,N−ジメチルアニリン、N,N−ジエチルアニリン、メチル置換アニリン、ヒドロキシ置換アニリン等の芳香族アミン類;ピリジン、メチル置換ピリジン、ヒドロキシ置換ピリジン、キノリン、メチル置換キノリン、ヒドロキシ置換キノリン、イソキノリン、メチル置換イソキノリン、ヒドロキシ置換イソキノリン、イミダゾール、メチル置換イミダゾール、ヒドロキシ置換イミダゾール等の環式アミン類が挙げられる。前記イミド化触媒は、N,N−ジメチルアニリン、o−, m−, p−ヒドロキシアニリン、o−, m−, p−ヒドロキシピリジン、およびイソキノリンから選ばれる一種または二種以上であることが好ましい。
シランカップリング剤の添加量は、通常、ポリアミック酸またはその誘導体の総重量の0〜20重量%であり、0.1〜10重量%であることが好ましい。
イミド化触媒の添加量は、通常、ポリアミック酸またはその誘導体のカルボニル基に対して0.01〜5等量であり、0.05〜3等量であることが好ましい。
その他の添加剤の添加量は、その用途に応じて異なるが、通常、ポリアミック酸またはその誘導体の総重量の0〜100重量%であり、0.1〜50重量%であることが好ましい。
また例えば、本発明の液晶配向剤は、本発明の効果が損なわれない範囲(好ましくは前記ポリアミック酸またはその誘導体の20重量%以内の量)で、アクリル酸ポリマー、アクリレートポリマー、および、テトラカルボン酸二無水物、ジカルボン酸またはその誘導体とジアミンとの反応生成物であるポリアミドイミド等の他のポリマー成分をさらに含有していてもよい。
また例えば、本発明の液晶配向剤は、液晶配向剤の塗布性や前記ポリアミック酸またはその誘導体の濃度の調整の観点から、溶剤をさらに含有していてもよい。前記溶剤は、高分子成分を溶解する能力を持った溶剤であれば格別制限なく適用可能である。前記溶剤は、ポリアミック酸、可溶性ポリイミド等の高分子成分の製造工程や用途面で通常使用されている溶剤を広く含み、使用目的に応じて、適宜選択できる。前記溶剤は1種でも2種以上の混合溶剤であってもよい。
溶剤としては、前記ポリアミック酸またはその誘導体の親溶剤や、塗布性改善を目的とした他の溶剤が挙げられる。
ポリアミック酸またはその誘導体に対し親溶剤である非プロトン性極性有機溶剤としては、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、N−メチルカプロラクタム、N−メチルプロピオンアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジエチルホルムアミド、ジエチルアセトアミド、γ−ブチロラクトン等のラクトンが挙げられる。
塗布性改善等を目的とした他の溶剤の例としては、乳酸アルキル、3−メチル−3−メトキシブタノール、テトラリン、イソホロン、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル、ジエチレングリコールモノエチルエーテル等のジエチレングリコールモノアルキルエーテル、エチレングリコールモノアルキルまたはフェニルアセテート、トリエチレングリコールモノアルキルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル、マロン酸ジエチル等のマロン酸ジアルキル、ジプロピレングリコールモノメチルエーテル等のジプロピレングリコールモノアルキルエーテル、これらアセテート類等のエステル化合物が挙げられる。
これらの中で、前記溶剤は、N−メチル−2−ピロリドン、ジメチルイミダゾリジノン、γ−ブチロラクトン、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、およびジプロピレングリコールモノメチルエーテルが特に好ましい。
本発明の配向剤中のポリアミック酸の濃度は0.1〜40重量%であることが好ましい。この配向剤を基板に塗布するときには、膜厚の調整のために、含有されているポリアミック酸を予め溶剤により希釈する操作が必要とされることがある。
本発明配向剤における固形分濃度は特に限定されるものではなく、下記の種々の塗布法に合わせ最適な値を選べばよい。通常、塗布時のムラやピンホール等を抑えるため、ワニス重量に対し、好ましくは0.1〜30重量%、より好ましくは1〜10重量%である。
本発明の配向膜は、上記の配向剤を基板に塗布して得られる膜にラビングまたは光照射により膜によって異方性を付与し、その後膜の液晶温度範囲まで加熱して膜の異方性を増大させることにより得られる。
このとき十分な配向性を発現する観点から、以下の手順で製造されることが好ましい。
(1)前記ワニスを刷毛塗り法、浸漬法、スピンナー法、スプレー法、印刷法等により基板上に塗布する。
(2)基板上に形成された膜を50〜120℃、好ましくは80〜100℃で加熱し、溶剤を蒸発させる。
(3)光を前記膜に照射して前記膜中のポリアミック酸を配向させる。
(4)ポリアミック酸を配向させた前記膜を150〜300℃、好ましくは180〜250℃で加熱しイミド化する。
すなわち、本発明の光配向用液晶配向膜は、本発明の液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、その膜を加熱焼成する工程と、膜に偏光紫外線を照射する工程とを経て形成されるものである。または、本発明の光配向用液晶配向膜は、液晶配向剤を基板に塗布する工程と、配向剤を塗布した基板を加熱乾燥する工程と、膜に偏光紫外線を照射する工程と、次いでその膜を加熱焼成する工程を経て形成されるものである。ここで、膜に偏光紫外線を照射する工程は、ポリイミド化のための膜を加熱焼成する工程の後でも前でもいずれであってもよい。加熱焼成の後に偏光紫外線を照射するのがより好ましい。
なお、配向膜を用いた液晶表示素子において所定のプレチルト角を発現させたい場合、光を照射する際に基板に対し任意の角度から直線偏光を照射する方法や、基板に対し垂直方向からの直線偏光照射と任意の角度からの無偏光照射とを組み合わせる方法で行うことができる。
本発明の配向膜の製造において、前記ポリアミック酸の配向には直線偏光が用いられる。ポリアミック酸主鎖は、直線偏光の照射によって、直線偏光の偏光方向に対して垂直な方向に配向する。前記直線偏光は、前記膜中のポリアミック酸を配向させることができる光であれば特に限定されない。本発明の配向膜は低エネルギーの光照射によって膜を配向することができる。そこで前記ポリアミック酸の光配向処理における直線偏光の照射量は0.3〜10J/cm2であることが好ましい。また直線偏光の波長は300〜400nmであることが好ましい。直線偏光の膜表面に対する照射角度は特に限定されないが、液晶に対する強い配向規制力を発現させたい場合、膜表面に対してなるべく垂直であることが配向処理時間短縮の観点から好ましい。
また本発明の配向膜の製造において、プレチルト角を発現させたい場合に前記膜に照射される光は、偏光であっても無偏光であってもよい。プレチルト角を発現させたい場合に前記膜に照射される光の照射量は0.3〜10J/cm2であることが好ましく、その波長は200〜400nmであることが好ましい。プレチルト角を発現させたい場合に前記膜に照射される光の前記膜表面に対する照射角度は特に限定されないが、30〜60度であることが配向処理時間短縮の観点から好ましい。
本発明の配向膜は特に大きな配向の異方性を持つことを特徴とする。このような異方性の大きさは特開2005−275364等に記載の偏光IRを用いた方法で評価する事ができる。また以下の実施例に示すようにエリプソメトリーを用いた方法によっても評価することができる。本発明の配向膜を液晶組成物用配向膜として使用した場合、より大きな膜の異方性を持つ材料が液晶組成物に対し大きな配向規制力を持つと考えられる。
本発明の配向膜は、液晶ディスプレイ用の液晶組成物の配向用途以外に、光学補償材やその他すべての液晶材料の配向制御に用いることができる。また本発明の配向膜は大きな異方性を有するので、単独で光学補償材用途に使用することができる。
本発明は、対向配置されている一対の基板と、前記一対の基板それぞれの対向している面の一方または両方に形成されている電極と、前記一対の基板それぞれの対向している面に形成された液晶配向膜と、前記一対の基板間に形成された液晶層とを有する液晶表示素子において、前記液晶配向膜が本発明の配向膜である液晶表示素子を提供する。
前記電極は、基板の一面に形成される電極であれば特に限定されない。このような電極には、例えばITOや金属の蒸着膜等が挙げられる。また電極は、基板の一方の面の全面に形成されていてもよいし、例えばパターン化されている所望の形状に形成されていてもよい。電極の前記所望の形状には、例えば櫛型またはジグザグ構造等が挙げられる。電極は、一対の基板のうちの一方の基板に形成されていてもよいし、両方の基板に形成されていてもよい。電極の形成の形態は液晶表示素子の種類に応じて異なり、例えばIPS型液晶表示素子の場合は前記一対の基板の一方に電極が配置され、その他の液晶表示素子の場合は前記一対の基板の双方に電極が配置される。前記基板または電極の上に前記液晶配向膜が形成される。
前記液晶層は、液晶配向膜が形成された面が対向している前記一対の基板によって液晶組成物が挟持される形で形成される。液晶層の形成では、微粒子や樹脂シート等の、前記一対の基板の間に介在して適当な間隔を形成するスペーサを必要に応じて用いることができる。前記液晶組成物には、特に限定されず公知の液晶組成物を用いることができる。
本発明の配向膜は、液晶配向膜として液晶表示素子を形成したときに、公知の全ての液晶組成物に対してその特性を改善できるが、前述した方法によって製造された本発明の配向膜は、特に、ラビング処理の行いにくい大画面ディスプレイの配向欠陥改善に効果が大きい。このような大画面ディスプレイはTFTにより駆動制御されている。またこのようなTFT型液晶表示素子に使用される液晶組成物は、特許第3086228号公報、特許2635435号公報、特表平5−501735号公報、および特開平9−255956号公報に記載されている。したがって本発明の配向膜は、これらに記載された液晶組成物と組み合わせて用いるのが好ましい。
以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。実施例における液晶表示素子の評価法は次の通りである。
<重量平均分子量(Mw)>
ポリアミック酸の重量平均分子量は、2695セパレーションモジュール・2414示差屈折計(Waters製)を用いてGPC法により測定し、ポリスチレン換算することにより求めた。得られたポリアミック酸をリン酸−DMF混合溶液(リン酸/DMF=0.6/100:重量比)で、ポリアミック酸濃度が約2重量%になるように希釈した。カラムはHSPgel RT MB−M(Waters製)を使用し、前記混合溶液を展開剤として、カラム温度50℃、流速0.40mL/minの条件で測定を行った。標準ポリスチレンは東ソー(株)製TSK標準ポリスチレンを用いた。
<配向膜のリタデーションおよび膜厚測定>
分光エリプソメータM−2000U(J.A.Woollam Co. Inc.製)を使用して求めた。本実施例の場合、膜のリタデーション値はポリマー主鎖の配向度に比例して大きくなる。すなわち大きなリタデーション値を持つものは、大きな配向度を持つ。
実施例において用いる溶剤と添加剤は次の通りである。
<溶剤>
N−メチル−2−ピロリドン:NMP
ブチルセロソルブ(エチレングリコールモノブチルエーテル):BC
ジメチル ホルムアミド:DMF
ジメチルスルホキシド:DMSO
<1.ジアミンの合成>
<化合物(1-a)の合成>
[合成例1]
ナスフラスコにp−キシレンジアミン(0.82g:6mmol)とDMF(90mL)を入れ、滴下漏斗を取り付けて、トリエチルアミン(3.64g:36mmol)を加えた後、氷浴中で15分間攪拌した。その後、4−ニトロシンナモイル クロライド(3.17g:15mmol)をDMF(90mL)に溶解した溶液を滴下漏斗にてゆっくり滴下した。その後、室温に戻しながら3時間攪拌した。反応終了後、析出した固体を桐山漏斗で濾別し、乾燥させた。得られた固体を100℃のDMSOに溶解させ、冷水で再沈殿してN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(4−ニトロフェニル)アクリルアミド)を得た。(収量:2.60g、収率:89%)
得られたN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(4−ニトロフェニル)アクリルアミド)(1.46g:3mmol)をDMSO(180mL)に溶かし、これに、水(50mL)に塩化スズ(7.5g)を溶解した溶液を加え、70℃で15時間攪拌した。反応後、反応溶液を冷水に滴下し、析出した固体を桐山漏斗で濾別して粗結晶を得た。得られた粗結晶をDMSOに溶解し、冷水で再沈殿することによりN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(4−アミノフェニル)アクリルアミド)を得た。(収量:0.86g、収率:53%)
1H NMR (ppm):8.52(t、amide、2H)、7.28(d、−CH=、2H)、7.22(m、arm H・=CH−CO−、10H)、6.56(d、arm H、4H)、5.51(s、−NH2、4H)、4.36(d、−CH2−、4H)
<化合物(1-b)の合成>
[合成例2]
ナスフラスコにp−キシレンジアミン(2.45g:18mmol)と脱水NMP(50mL)を入れ、滴下漏斗を取り付けて、トリエチルアミン(8.29g:82mmol)を加えた後、氷浴中で15分間攪拌した。その後、m−ニトロシンナモイル クロライド(8.45g:40mmol)を脱水NMP(50mL)に溶解した溶液を滴下漏斗にてゆっくり滴下した。その後、室温に戻しながら3時間攪拌した。反応終了後、析出した固体を桐山漏斗で濾別し、乾燥させた。得られた固体を100℃のDMSOに溶解させ、冷水で再沈殿してN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(3−ニトロフェニル)アクリルアミド)を得た。(収量:2.28g、収率:26%)
塩化スズ(1.25g)にエタノール(10mL)を加え、攪拌した後、得られたN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(3−ニトロフェニル)アクリルアミド)(0.40g:0.83mmol)を入れ、還流状態で15時間攪拌した。反応後、反応溶液を1mol/Lの水酸化ナトリウム溶液(50mL)に滴下し、粗結晶を得た。得られた粗結晶をメタノールに溶解し、水で再沈殿することによりN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(3−アミノフェニル)アクリルアミド)を得た。(収量:0.26g、収率:74%)
1H NMR (ppm):8.59(t、amide、2H)、7.29(d、−CH=、2H)、7.25(s、arm H、4H)、7.04(t、arm H、2H)、6.69(m、arm H、4H)、6.53(m、arm H、=CH−CO−、4H)、5.20(s、−NH2、4H)、4.36(d、−CH2−、4H)
<化合物(1-d)の合成>
[合成例3]
ナスフラスコにm−キシレンジアミン(0.82g:6mmol)とDMF(90mL)を入れ、滴下漏斗を取り付けて、トリエチルアミン(3.64g:36mmol)を加えた後、氷浴中で15分間攪拌した。その後、4−ニトロシンナモイル クロライド(3.17g:15mmol)をDMF(90mL)に溶解した溶液を滴下漏斗にてゆっくり滴下した。その後、室温に戻しながら4時間攪拌した。反応終了後、析出した固体を桐山漏斗で濾別し、乾燥させた。得られた固体を100℃のDMSOに溶解させ、冷水で再沈殿してN,N’−(1,3−フェニェンビス(メチレン))ビス(3−(4−ニトロフェニル)アクリルアミド)を得た。(収量:5.56g、収率:81%)
得られたN,N’−(1,3−フェニェンビス(メチレン))ビス(3−(4−ニトロフェニル)アクリルアミド)(1.46g:3mmol)をDMSO(180mL)に溶かし、これに、水(50mL)に塩化スズ(7.5g)を溶解した溶液を加え、70℃で12時間攪拌した。反応後、反応溶液を1mol/Lの水酸化ナトリウム溶液(800mL)に滴下し、粗結晶を得た。得られた粗結晶をメタノールに溶解し、水で再沈殿することによりN,N’−(1,3−フェニェンビス(メチレン))ビス(3−(4−アミノフェニル)アクリルアミド)を得た。(収量:0.56g、収率:44%)
1H NMR (ppm):8.38(t、amide、2H)、7.24(m、ar mH、10H)、6.56(d、arm H、4H)、6.34(d、−CH=、2H )、5.57(s、−NH2、4H)、4.36(d、−CH2−、4H)
<化合物(1-e)の合成>
[合成例4]
ナスフラスコにm−キシレンジアミン(2.59g:19mmol)とDMF(100mL)を入れ、滴下漏斗を取り付けて、トリエチルアミン(8.29g:82mmol)を加えた後、氷浴中で15分間攪拌した。その後、m−ニトロシンナモイル クロライド(8.46g:40mmol)をDMF(200mL)に溶解した溶液を滴下漏斗にてゆっくり滴下した。その後、室温に戻しながら4時間攪拌した。反応終了後、溶液をそのまま冷水に滴下し、析出した固体を桐山漏斗で濾別し、乾燥させた。得られた固体をDMSOに溶解させ、冷水で再沈殿してN,N’−(1,3−フェニェンビス(メチレン))ビス(3−(3−ニトロフェニル)アクリルアミド)を得た。(収量:7.39g、収率:80%)
得られたN,N’−(1,−フェニェンビス(メチレン))ビス(3−(3−ニトロフェニル)アクリルアミド)(2.92g:6mmol)をDMSO(180mL)に溶かし、これに、水(180mL)に塩化スズ(30g)を溶解した溶液を加え、70℃で12時間攪拌した。反応後、反応溶液を1mol/Lの水酸化ナトリウム溶液(800mL)に滴下し、粗結晶を得た。得られた粗結晶をメタノールに溶解し、水で再沈殿することによりN,N’−(1,4−フェニェンビス(メチレン))ビス(3−(3−アミノフェニル)アクリルアミド)を得た。(収量:1.79g、収率:70%)
1H NMR (ppm):8.61(t、amide、2H)、7.19(m、−CH=・arm H、6H)、7.04(t、arm H、2H)、6.69(m、arm H・=CH−CO−、4H)、6.55(m、arm H、4H)、5.18(s、−NH2、4H)、4.38(d、−CH2−、4H)
<2.ポリアミック酸の合成>
[合成例5]
温度計、攪拌機、原料投入仕込み口および窒素ガス導入口を備えた50mLの褐色四つ口フラスコにジアミン(1−a)0.68gおよび脱水NMP10.3gを入れ、乾燥窒素気流下攪拌溶解した。次いで酸二無水物(AN−3−2)0.34gおよび脱水NMP10.3gを入れ、室温で24時間攪拌を続け、ポリマー固形分濃度が5重量%のポリアミック酸溶液を得た。このポリアミック酸溶液をPA1とする。PA1に含まれるポリアミック酸の重量平均分子量は87,000であった。
[合成例6〜35]
表1−1、表1−2に示したようにテトラカルボン酸二無水物およびジアミンを変更した以外は、合成例5に準拠してポリマー固形分濃度が5重量%のポリアミック酸溶液(PA2)〜(PA31)を調製した。合成例5の結果を含めて、得られたポリアミック酸の重量平均分子量の測定結果を表1−1、表1−2にまとめた。
<3.リタデーション測定用基板の作製方法>
[実施例1]
合成例5で調製したポリマー固形分濃度5重量%のポリアミック酸溶液(PA1)に、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。液晶配向剤をガラス基板にスピンナーにて塗布した。なお、以降の実施例、比較例をも含めて、液晶配向剤の粘度に応じてスピンナーの回転速度を調整し、配向膜が下記の膜厚になるようにした。塗膜後70℃にて80秒間加熱乾燥した後、230℃にて15分間加熱処理して、膜厚100±10nmの配向膜を形成した。次いで、ウシオ電機(株)製マルチライトML−501C/Bを用い、基板に対して鉛直方向から、偏光板を介して紫外線の直線偏光を照射した。この時の露光エネルギーは、ウシオ電機(株)製紫外線積算光量計UIT−150(受光器UVD-S313)を用いて光量を測定し、波長313nmで3.0±0.1J/cm2になるよう、露光時間を調整した。紫外線の照射は、装置全体を紫外線防止フィルムで覆い、室温、空気中で行った。得られた基板のリタデーションを測定したところ、0.23nmであった。
[実施例2〜28]
ポリマー固形分濃度6重量%のポリアミック酸溶液PA2〜PA28それぞれに、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法でリタデーション測定用基板を作製し、リタデーションを測定した。
[比較例1〜3]
合成例33〜35で調製したポリマー固形分濃度6重量%のポリアミック酸溶液(PA29〜31)に、NMP/BC=1/1(重量比)の混合溶剤を加え、ポリマー固形分濃度4重量%に希釈して液晶配向剤とした。得られた液晶配向剤を用いて、実施例1に準じた方法でリタデーション測定用基板を作製し、リタデーションを測定した。実施例1〜28の結果と合わせて表2にまとめた。
実施例1〜28および比較例1〜3との比較により、本発明のジアミンは配向膜のリタデーションを向上させ、液晶への高い配向性を付与するのに非常に有用であることが分かる。