WO2003083494A1 - Test probe alignment apparatus - Google Patents
Test probe alignment apparatus Download PDFInfo
- Publication number
- WO2003083494A1 WO2003083494A1 PCT/US2003/008913 US0308913W WO03083494A1 WO 2003083494 A1 WO2003083494 A1 WO 2003083494A1 US 0308913 W US0308913 W US 0308913W WO 03083494 A1 WO03083494 A1 WO 03083494A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stage
- alignment apparatus
- movement
- rotatable
- probe alignment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2887—Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2831—Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
Definitions
- This application relates to alignment apparatuses for use in testing, drilling, and trimming of printed circuit boards and integrated circuit substrates and, in particular, to an improved alignment apparatus that isolates a rotational positioning mechanism ( ⁇ stage) of the apparatus from the effects of a translating workpiece positioning mechanism (X-Y stage), and vice versa.
- the manufacture of electronic circuits such as printed circuit boards and integrated circuits typically involves inspection and testing of each circuit in an array of circuit patterns formed on a substrate.
- Calibration of circuits may include probing and measurement of electrical characteristics of circuit components during a laser trimming operation that adjusts the electrical characteristics of the circuit.
- the tips of test probes of a probe card must be accurately aligned with contact locations or electrode pads of the circuit.
- Probe alignment systems use mechanical positioning equipment that adjusts the position of the substrate, the probe card, or both, to maintain accurate alignment across the array of circuit patterns.
- FIG. 1 illustrates a prior-art test probing system 10, in which a substrate 12 is supported on a chuck 16 of a motorized workpiece positioning stage 20.
- Positioning stage 20 includes a linear positioning component, X-Y stage 22, supported on a platen 24, for movement in a horizontal plane in orthogonal directions X and Y.
- Positioning stage also includes a rotational positioning component, theta ( ⁇ ) stage 26, supported on the X-Y stage 22 for rotation of the chuck 16 about a vertical Z axis.
- a Cartesian coordinate system frame of reference 30 indicates the directions X, Z, and ⁇ (the Y direction is perpendicular to the view and is not shown in FIG. 1 ).
- a probe card carriage 34 holds a probe card 38 above the positioning stage 20 while a machine vision system 42, including a camera 44, controls the rotational ( ⁇ ) and translational (X-Y) alignment of the substrate 12 to align it with probes 48 of the probe card 38.
- the probe card carriage 34 is supported below a motorized Z stage 50 that is actuated, after alignment of the probe card 38, to move the probe card 38 downwardly along the Z axis to press the probes 48 against the substrate 2 for testing of a circuit formed on the substrate 12.
- a Z-drive mechanism 56 which is supported on a stationary probe base 60, provides driving force for Z stage 50.
- a second rotational positioning stage is provided for aligning the probe card with the X and Y axes of the X-Y stage, thereby enabling probe/substrate alignment to be more accurately maintained across the entire array of circuit patterns of the substrate.
- these prior art mechanisms all include a ⁇ stage tied to the X-Y stage, every adjustment of the ⁇ stage requires a subsequent alignment compensation of the X-Y stage, as explained by Spano et al. at column 4, lines 16-24 of the '191 patent.
- the mass of the ⁇ stage adds to the inertia of the entire workpiece positioning stage.
- the added inertia slows movement in the X and Y directions and raises the center of mass of the workpiece positioning stage, thereby affecting positioning speed and accuracy.
- the ⁇ stage can also be a source of positioning error due to vibration and backlash that are induced in the ⁇ stage mechanism each time the X-Y stage is actuated.
- the coupling of the ⁇ stage with the workpiece positioning stage in conventional test probe alignment systems tends to reduce system throughput.
- Attempts to increase X-Y stage speed by minimizing the mass of the ⁇ stage and reducing the height and/or mass of the chuck tend to increase backlash, decrease stiffness, sacrifice vibration resistance, and increase settling time of the workpiece positioning stage.
- Attempts to increase the resolution and accuracy of the ⁇ stage also tend to increase the mass and height of the workpiece positioning stage. Consequently, designers of prior art systems have been forced to compromise system throughput to improve positioning accuracy, and vice versa.
- the present inventor has recognized a need for an improved test probe alignment apparatus that will facilitate increased test throughput and improved probe alignment accuracy.
- An alignment apparatus is adapted for aligning a set of test probes or other tools with a set of contact areas on a substrate, such as a printed circuit board panel or finished silicon wafer.
- the substrate is supported on a chuck of a workpiece positioning stage for linear movement in an X-Y plane.
- the alignment apparatus also facilitates engagement of the test probes with the contact areas on the substrate after alignment, by driving the test probes in a Z direction.
- the alignment apparatus includes a rotatable stage that is decoupled from the workpiece positioning stage so that the chuck can move in the X-Y plane without moving the rotatable stage, thereby inhibiting vibration in and inertia of the workpiece positioning stage, and improving the speed and accuracy of chuck movements.
- the rotatable stage is driven for rotation about an axis of rotation substantially perpendicular to the plane of movement of the chuck.
- the rotatable stage preferably supports a carriage adapted for mounting a set of probes.
- the carriage rotates in concert with the rotatable stage when the rotatable stage is rotated, to thereby align the set of probes with the contact areas on the substrate.
- the probing stage is driven for linear translation of the carriage relative to the rotatable stage along the axis of rotation of the rotatable stage to thereby engage the probes with the contact areas on the substrate.
- the rotatable stage is decoupled from the workpiece positioning stage, it is less constrained by space and mass limitations than prior art systems. Thus, it can include larger, more massive mechanisms that are more accurate than the ⁇ stages used with workpiece positioning stages of prior-art test systems.
- FIG. 1 is a schematic front elevation of a prior-art test probing system
- FIG. 2 is a schematic front elevation of a test probing system including a test probe alignment apparatus in accordance with simplified first embodiment
- FIG. 3 is a top perspective view showing a test probe alignment apparatus in accordance with a second embodiment, with Z-drive belts of the alignment apparatus omitted for clarity;
- FIG. 4 is a bottom perspective view of the test probe alignment apparatus of FIG. 3;
- FIG. 5 is a top right frontal perspective view of a third embodiment test probe alignment apparatus, with a probe card holder of the probe alignment apparatus omitted;
- FIG. 6 is a top left perspective view of the test probe alignment apparatus of FIG. 5;
- FIG. 7 is a top plan view of the test probe alignment apparatus of FIG. 5;
- FIG. 8 is a right side elevation of the test probe alignment apparatus of FIG. 5;
- FIG. 9 is a front side elevation of the test probe alignment apparatus of FIG. 5; [0023] FIG. 10 is an exploded view of the test probe alignment apparatus of
- FIG. 5 with a left front Z-screw of the alignment apparatus omitted to show detail of a ⁇ stage pedestal of the alignment apparatus;
- FIG. 11 is an enlarged partial top plan view of the test probe alignment apparatus of FIG. 5, showing detail of a ⁇ stage driver mechanism.
- FIG. 2 is a schematic front elevation of a test probing system 100 including a test probe alignment apparatus 108 in accordance with simplified first preferred embodiment.
- test probing system 100 includes a workpiece positioning stage 110 consisting essentially of an X-Y stage 114 that supports a chuck 116 having an upper surface 118.
- the X-Y stage 114 moves over a stationary horizontal platen 124 in orthogonal X and Y directions lying in a substantially horizontal plane (the X direction is indicated by arrow 126 and Cartesian coordinate reference frame 128; the Y direction extends perpendicular to the drawing and is, therefore, not depicted on reference frame 128) in response to • actuation of an X-Y forcer mechanism 130 of X-Y stage 114.
- X-Y stage 114 may be in a stacked configuration, having the X-stage supported on the Y-stage or vice versa; however, X-Y stage preferably includes an X-Y dual axis single plane stepping motor with air bearing.
- X-Y table 114 may include non-orthogonal forcers, so long as they do not cause chuck 116 to rotate.
- Platen 124 may be securely mounted to a frame 132 of test probing system 100, for example.
- Upper surface 118 of chuck 116 is sized to fit a substrate 134 on which one or more circuits are formed. Preferred embodiments are used in connection with testing and/or trimming of circuits on substrates such as printed circuit boards (PCBs), including PCB panels carrying an array of printed circuit boards (not shown).
- PCBs printed circuit boards
- chuck 116 could be sized up to 26 inches wide and 30 inches long, for example, and weigh up to 17 pounds (mass 7.7 kg).
- Embodiments are also contemplated to be scaled down for use in testing smaller substrates, such as miniaturized integrated circuits and wafers having an array of integrated circuit dice formed thereon, in which case chuck 116 and X-Y stage 114 would be sized much smaller than for PCB testing.
- a probe stage 140 includes a stationary base plate 144, which may be securely mounted to frame 132 of test probing system 100 or to another rigid stationary support.
- a ⁇ stage 148 is mounted on base plate 144 and includes a pedestal 150 that driven by a ⁇ drive mechanism 154 of ⁇ stage 148 for rotation about an axis of rotation 156 perpendicular to the X-Y plane in which chuck 116 moves.
- a translating Z stage 160 is supported by pedestal 150 and moves with pedestal 150 in response to actuation of ⁇ drive mechanism 154.
- a carriage 164 is hung from Z stage 160 below pedestal 150 and adapted for mounting a probe card 166 having a set of test probes 167. Probe card 166 is mounted such that probes 167 face chuck 116.
- Carriage 164 rotates in concert with Z stage 160 when ⁇ stage 148 is rotated, to thereby align the set of probes 167 with contact areas (not shown) on substrate 134.
- Z stage 160 preferably extends beyond an upper face 168 of pedestal 150 where Z stage 160 is coupled to a Z-drive mechanism 172 that drives Z stage 160 and carriage 164 for linear translation along Z-axis relative to ⁇ stage 148.
- Driving of Z stage 160 and carriage 164 along the Z-axis causes the tips of test probes 167 to press against the contact areas of substrate 134 for purposes of electrical testing, laser trimming, or any other process involving probing.
- Z stage 160 and/or Z-drive mechanism 172 may be arranged so that Z stage 160 or Z-drive mechanism 172 or both do not rotate together with ⁇ stage 148 and carriage 164. Decoupling of Z stage 160 or Z-drive mechanism from ⁇ stage 148 would require a special rotating- or slide bearing- type coupling to allow carriage 164 to rotate independently of the
- Motion controller 186 includes control software stored in a computer-readable data storage medium, such as computer memory (not shown) of motion controller 186 or a remote data storage device that can be accessed by motion controller 186.
- a computer-readable data storage medium accessible by motion controller 186 is also adapted to store movement vector data representing preprogrammed movements of X-Y stage 114, ⁇ stage 148, and/or Z stage 160.
- a step-and-repeat indexing plan is stored in the data storage medium for positioning substrate 134 to test multiple sets of circuits or dice on substrate 134.
- motion controller 186 uses position information sensed by sensor 180 to adjust the alignment of ⁇ stage 148 and X-Y stage 114 before or during execution of the preprogrammed movements.
- FIGS. 3 and 4 respective top and bottom perspective views show a test probe alignment apparatus 200 in accordance with a second preferred embodiment.
- FIG. 3 omits an X-Y stage and detail of probe cards and probes, which are components well known in the art. The manner of using the X-Y stage and probe cards in conjunction with test probe alignment apparatus 200 will be readily appreciated and understood by anyone of skill in the art.
- Alignment apparatus 200 includes a stationary base plate 204 that is mounted to a frame (not shown) above the X-Y stage (not shown).
- a ⁇ stage 210 includes a ring bearing 214 having a pair of opposing bearing races (not shown), including a first (fixed) bearing race securely attached to base plate 204.
- a pedestal 218 is mounted to a second
- a ⁇ drive mechanism 230 includes a ⁇ drive servo 232 that actuates a linear slide 234 of a taut-band mechanism 236, which is connected to pedestal 218.
- Taut-band mechanism 236 provides highly reliable and precise control for rotation of ⁇ stage 210, while eliminating backlash. Actuation of linear slide 234 causes ⁇ stage
- Test probe alignment apparatus also includes a Z stage 250, comprising a
- Z-stepper motor 254 coupled to Z-pulleys 258 of each of four Z-screws 260a, 260b,
- Non-rotating lead screws 264 of Z-screws 260a-d are threaded into and extend downwardly from Z- pulleys 258 through pedestal 218 so that they telescope in the Z direction in response to actuation of Z-stepper motor 254.
- a carriage 270 is rigidly attached to the ends of lead screws 264 for movement therewith.
- a probe card holder 274 is attached to carriage 270 and includes a pair of opposing card slot rails 278a and
- ⁇ stage 210 and Z stage 250 are also contemplated to be within the scope of the present application.
- a Z-stage could directly connect to pedestal 218 and a lightweight ⁇ stage could be mounted to a working end of the Z-stage.
- FIGS. 5 and 6 are respective top/right frontal perspective and top left perspective views of a third embodiment test probe alignment apparatus 300, with a probe card holder of the probe alignment apparatus omitted for clarity.
- FIG. 7 is a top plan view of test probe alignment apparatus 300.
- FIGS. 8 and 9 are respective right side and front side elevations of test probe alignment apparatus 300.
- FIG. 10 is an exploded view of test probe alignment apparatus 300, with a left front Z-screw
- FIGS. 5-10 many elements are shown with reference numbers that have the same last two digits and the reference numbers shown in of FIGS. 3 and 4 for corresponding components. These elements are listed below by name for reference.
- a set of four Z-drive belts 380 engages Z-pulleys 358 and Z-stepper motor 354 to drive Z-screws 360a-d in response to actuation of Z-stepper motor 254.
- Z-drive belts 380 are preferably endless timing belts, but could be implemented with other types of linkage devices.
- Multiple tensioner idlers 384 are provided for maintaining tension of Z-drive belts 380.
- Z-screws 360a-d are preferably ball screws.
- a set of dust covers 386 is provided to protect the screw portions (not shown) of Z-screws 360a-d.
- a pair adjustable anti- backlash springs 388 is provided for biasing carriage 370 along the Z-axis to eliminate axial play in the ball screws.
- Springs 388 are connected at one end to carriage 370 and their other end to a pair of spring posts 390 mounted on pedestal 318. Springs 388 are preferably in tension to urge carriage 370 toward pedestal
- Spring posts 390 facilitate installation and adjustment of a spring preload of springs 388.
- FIG. 11 is an enlarged partial top plan view of the test probe alignment apparatus 300, showing detail of ⁇ drive mechanism 330.
- taut-band mechanism 336 includes a crossed pair of flexible bands 410 and 412, which are highly inelastic along their lengths. Each of the bands 410 and 412 extend between and are attached at one end to linear slide 334, and at their other end to respective adjustment clamps 418 and 420 (see also FIG. 9). Throughout the range of travel of ⁇ drive mechanism 330, the bands 410 and 412 remain in contact with a curved face of a taut block 430, to which adjustment clamps 418 and 420 are mounted.
- a home switch 440 is provided for re-zeroing taut-band mechanism 336
- the test probe alignment apparatus may include a memory adapted to store an indexing plan corresponding to the circuit array pattern.
- the indexing plan includes a set of movement vectors defining spatial offsets between pairs of circuits in the array pattern and may be preprogrammed in memory for a known array pattern or "taught" or otherwise input to the system when needed.
- a position sensor such as a machine vision system and camera 182 (FIG. 2), is provided for measuring angular misalignment of the array pattern relative to orthogonal axes of the chuck within the plane of movement of the chuck.
- Fiducial marks on the substrate which are typically formed in the same lithography process as the array pattern, facilitate accurate optical measurement by the position sensor.
- the position sensor may also measure the translational misalignment of the array pattern relative to the orthogonal axes.
- motion controller 186 in communication with the memory and the sensor, performs a coordinate transformation on the movement vectors based on the angular misalignment measured by the system.
- Probe alignment apparatuses in accordance with the various embodiments described herein eliminate the need to twice perform the steps of measuring the misalignment and adjusting the position of the substrate (once for angular position adjustment and once for adjusting in the translational position).
- the invention obviates the two stage alignment process of the prior art by using the angular and/or positional offset of the substrate measured by the sensor to compensate in software (with coordinate transformations) for misalignment between the array pattern and the axes of movement of the chuck.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Measuring Leads Or Probes (AREA)
- Tests Of Electronic Circuits (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| AU2003218348A AU2003218348A1 (en) | 2002-03-22 | 2003-03-21 | Test probe alignment apparatus |
| CA002476389A CA2476389A1 (en) | 2002-03-22 | 2003-03-21 | Test probe alignment apparatus |
| KR1020047014885A KR101163972B1 (ko) | 2002-03-22 | 2003-03-21 | 테스트 프로브 정렬 장치, 프로브 정렬 장치, 및 정렬 장치 |
| JP2003580875A JP4803959B2 (ja) | 2002-03-22 | 2003-03-21 | 試験プローブ整列装置 |
| DE10392404T DE10392404T5 (de) | 2002-03-22 | 2003-03-21 | Messkopfausrichtungsvorrichtung |
| GB0416819A GB2400447B (en) | 2002-03-22 | 2003-03-21 | Test probe alignment apparatus |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US36691202P | 2002-03-22 | 2002-03-22 | |
| US60/366,912 | 2002-03-22 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2003083494A1 true WO2003083494A1 (en) | 2003-10-09 |
Family
ID=28675301
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/008913 Ceased WO2003083494A1 (en) | 2002-03-22 | 2003-03-21 | Test probe alignment apparatus |
Country Status (10)
| Country | Link |
|---|---|
| US (1) | US7119566B2 (enExample) |
| JP (1) | JP4803959B2 (enExample) |
| KR (1) | KR101163972B1 (enExample) |
| CN (1) | CN100430735C (enExample) |
| AU (1) | AU2003218348A1 (enExample) |
| CA (1) | CA2476389A1 (enExample) |
| DE (1) | DE10392404T5 (enExample) |
| GB (1) | GB2400447B (enExample) |
| TW (1) | TWI272392B (enExample) |
| WO (1) | WO2003083494A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009043654A1 (de) * | 2007-09-28 | 2009-04-09 | Siemens Aktiengesellschaft | Verfahren zur messnadelüberwachung im prüfbetrieb |
Families Citing this family (118)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050205778A1 (en) * | 2003-10-17 | 2005-09-22 | Gsi Lumonics Corporation | Laser trim motion, calibration, imaging, and fixturing techniques |
| WO2006072192A1 (en) * | 2005-01-10 | 2006-07-13 | Sae Magnetics (H.K.) Ltd. | Short-tail head gimbal assembly testing fixture |
| US7891936B2 (en) | 2005-03-30 | 2011-02-22 | Brooks Automation, Inc. | High speed substrate aligner apparatus |
| US8545165B2 (en) * | 2005-03-30 | 2013-10-01 | Brooks Automation, Inc. | High speed substrate aligner apparatus |
| JP4529135B2 (ja) * | 2005-04-11 | 2010-08-25 | 富士機械製造株式会社 | 対回路基板作業システム |
| KR100734751B1 (ko) * | 2005-04-28 | 2007-07-03 | 에버테크노 주식회사 | 소형 편광필름 검사용 지그 |
| US7471094B2 (en) * | 2005-06-24 | 2008-12-30 | Formfactor, Inc. | Method and apparatus for adjusting a multi-substrate probe structure |
| US7355422B2 (en) * | 2005-09-17 | 2008-04-08 | Touchdown Technologies, Inc. | Optically enhanced probe alignment |
| US7362116B1 (en) * | 2005-11-09 | 2008-04-22 | Electroglas, Inc. | Method for probing impact sensitive and thin layered substrate |
| US7365553B2 (en) * | 2005-12-22 | 2008-04-29 | Touchdown Technologies, Inc. | Probe card assembly |
| US7368929B2 (en) * | 2006-01-18 | 2008-05-06 | Electroglas, Inc. | Methods and apparatuses for improved positioning in a probing system |
| US7583098B2 (en) * | 2006-02-08 | 2009-09-01 | Sv Probe Pte. Ltd. | Automated probe card planarization and alignment methods and tools |
| US7514942B2 (en) * | 2006-09-27 | 2009-04-07 | Intel Corporation | Probe based patterning of microelectronic and micromechanical devices |
| US8436636B2 (en) * | 2006-10-10 | 2013-05-07 | Apple Inc. | Methods and apparatuses for testing circuit boards |
| US8362793B2 (en) * | 2006-11-07 | 2013-01-29 | Apple Inc. | Circuit boards including removable test point portions and configurable testing platforms |
| US7764079B1 (en) * | 2007-01-31 | 2010-07-27 | SemiProbe LLC | Modular probe system |
| MY172746A (en) * | 2007-02-23 | 2019-12-11 | Intest Corp | Test head manipulator |
| US7965091B2 (en) * | 2007-04-30 | 2011-06-21 | Electro Scientific Industries, Inc. | Test plate for electronic handler |
| US7557594B2 (en) * | 2007-08-14 | 2009-07-07 | Electro Scientific Industries, Inc. | Automated contact alignment tool |
| CN101424870B (zh) * | 2007-10-31 | 2011-09-28 | 鸿富锦精密工业(深圳)有限公司 | 镜座测试装置及测试方法 |
| US7924037B2 (en) * | 2007-12-07 | 2011-04-12 | Ricoh Company, Ltd. | Inspection apparatus comprising means for removing flux |
| US7791361B2 (en) * | 2007-12-10 | 2010-09-07 | Touchdown Technologies, Inc. | Planarizing probe card |
| CN101464474B (zh) * | 2007-12-20 | 2012-03-21 | 和舰科技(苏州)有限公司 | 一种可旋转探针卡的半导体测量探针台 |
| US7609078B2 (en) * | 2007-12-21 | 2009-10-27 | Electro Scientific Industries, Inc. | Contact alignment verification/adjustment fixture |
| US7888949B2 (en) * | 2008-03-21 | 2011-02-15 | Electro Scientific Industries, Inc. | Electrical tester setup and calibration device |
| US8024060B2 (en) * | 2008-06-16 | 2011-09-20 | Electro Scientific Industries, Inc. | Method for defining safe zones in laser machining systems |
| TWI402932B (zh) * | 2009-05-27 | 2013-07-21 | Star Techn Inc | 具有多軸載台之半導體元件測試裝置 |
| US9449883B2 (en) * | 2009-06-05 | 2016-09-20 | Renesas Electronics Corporation | Semiconductor device and method for manufacturing the same |
| CN101852612B (zh) * | 2010-03-25 | 2012-07-04 | 西北工业大学 | 一种慢波结构和扰动杆的对中装置 |
| TWI507692B (zh) | 2010-04-23 | 2015-11-11 | Rudolph Technologies Inc | 具有可垂直移動總成之檢查裝置 |
| US9684052B2 (en) | 2010-04-23 | 2017-06-20 | Rudolph Technologies, Inc. | Method of measuring and assessing a probe card with an inspection device |
| JP5517350B2 (ja) * | 2010-06-15 | 2014-06-11 | 東京エレクトロン株式会社 | 載置台駆動装置 |
| US7986157B1 (en) * | 2010-09-02 | 2011-07-26 | Star Technologies Inc. | High speed probing apparatus for semiconductor devices and probe stage for the same |
| US8838408B2 (en) * | 2010-11-11 | 2014-09-16 | Optimal Plus Ltd | Misalignment indication decision system and method |
| KR101129195B1 (ko) * | 2010-12-20 | 2012-03-27 | 주식회사 탑 엔지니어링 | 어레이 테스트 장치 |
| CN102175264B (zh) * | 2011-01-23 | 2012-11-14 | 浙江大学 | 一种测量光纤陀螺带宽的方法 |
| DE102011102791A1 (de) * | 2011-05-27 | 2012-11-29 | Feinmetall Gmbh | Federkontaktstiftanordnung |
| KR101223584B1 (ko) * | 2011-06-01 | 2013-01-17 | 에이엘티 세미콘(주) | 프로브 카드의 정렬 장치 |
| CN102590566B (zh) * | 2012-03-16 | 2014-06-04 | 苏州工业园区世纪福科技有限公司 | 一种电子产品测试夹具的自动对准方法 |
| WO2014009542A2 (de) * | 2012-07-12 | 2014-01-16 | Konrad Gmbh | Vorrichtung zum herstellen und/oder bearbeiten eines werkstücks |
| CN102778591A (zh) * | 2012-07-20 | 2012-11-14 | 昆山迈致治具科技有限公司 | Pcb电压测量治具 |
| CN102967806B (zh) * | 2012-11-09 | 2016-04-13 | 昆山迈致治具科技有限公司 | 测高压治具 |
| CN103018505A (zh) * | 2012-12-04 | 2013-04-03 | 无锡圆方半导体测试有限公司 | 一种探针修正装置 |
| US20140184003A1 (en) * | 2012-12-31 | 2014-07-03 | Cascade Microtech, Inc. | Systems and methods for rotational alignment of a device under test |
| CN103091521B (zh) * | 2013-01-08 | 2015-07-15 | 上海交通大学 | 一种探针和引脚自动对准的方法及其探针台测试系统 |
| US9335345B1 (en) * | 2013-03-18 | 2016-05-10 | Christos Tsironis | Method for planarity alignment of waveguide wafer probes |
| US9322843B1 (en) * | 2013-03-19 | 2016-04-26 | Christos Tsironis | Method for planarity alignment of wafer probes |
| KR101332588B1 (ko) * | 2013-06-25 | 2013-11-25 | 주식회사 프로이천 | 필름타입 프로브카드 |
| EP3027365B1 (en) * | 2013-08-01 | 2018-05-23 | Hysitron, Inc. | Instrument changing assembly and methods for the same |
| TWI497090B (zh) * | 2013-09-05 | 2015-08-21 | Chroma Ate Inc | With the coaxial drive pick and place the detection machine |
| JP6084140B2 (ja) * | 2013-09-06 | 2017-02-22 | ヤマハファインテック株式会社 | 電気検査装置 |
| TWI522628B (zh) * | 2013-12-13 | 2016-02-21 | Mpi Corp | Electrical detection device |
| KR101503289B1 (ko) * | 2013-12-27 | 2015-03-18 | 주식회사 이레테크 | 전자파 테스트용 지지장치 |
| TW201903418A (zh) * | 2013-12-31 | 2019-01-16 | 美商色拉頓系統公司 | 用於測試一受試裝置之探針設備、經結構設計以在用於測試一受試裝置之一探針設備中使用之探針心及用於將一探針心閂至一裝置之方法 |
| US10281518B2 (en) * | 2014-02-25 | 2019-05-07 | Formfactor Beaverton, Inc. | Systems and methods for on-wafer dynamic testing of electronic devices |
| KR101438098B1 (ko) * | 2014-03-20 | 2014-09-12 | 피앤티솔루션 주식회사 | 연성 인쇄회로기판의 프로브카드 얼라인장치 |
| KR101934880B1 (ko) * | 2014-05-15 | 2019-01-03 | 삼성전자주식회사 | 탐침 장치 및 그 운용 방법 |
| WO2015188093A1 (en) * | 2014-06-06 | 2015-12-10 | Rudolph Technologies, Inc. | Method of measuring and assessing a probe card with an inspection device |
| KR101598596B1 (ko) * | 2014-07-24 | 2016-03-14 | (주) 루켄테크놀러지스 | 전자 디바이스의 검사장치 |
| TW201617631A (zh) * | 2014-11-10 | 2016-05-16 | Tian Zheng Internat Prec Machinery Co Ltd | 自動化層測設備 |
| CN105319402B (zh) * | 2015-01-13 | 2018-03-09 | 湘潭大学 | 一种检测金属材料损伤的微电阻测量夹具装置及使用方法 |
| US10168287B2 (en) * | 2015-06-12 | 2019-01-01 | The Boeing Company | Automated detection of fatigue cracks around fasteners using millimeter waveguide probe |
| WO2017014060A1 (ja) * | 2015-07-23 | 2017-01-26 | 株式会社東京精密 | プローバ及びプローブコンタクト方法 |
| DE102015113046A1 (de) * | 2015-08-07 | 2017-02-09 | Xcerra Corp. | Positioniereinrichtung für einen Paralleltester zum Testen von Leiterplatten und Paralleltester zum Testen von Leiterplatten |
| KR101588856B1 (ko) * | 2015-09-04 | 2016-01-27 | 주식회사 디이엔티 | 액정표시패널 검사장치의 프로브 유닛 위치 조절장치 |
| KR101738257B1 (ko) * | 2015-09-11 | 2017-05-30 | 안동대학교 산학협력단 | 프로브 회전형 원자현미경의 프로브 정렬도 측정 방법 |
| CN105223389B (zh) * | 2015-09-28 | 2018-02-02 | 大族激光科技产业集团股份有限公司 | 一种飞针测试机的对位方法 |
| TWI616664B (zh) * | 2016-03-23 | 2018-03-01 | 創意電子股份有限公司 | 使用探針卡之方法、系統及其探針卡裝置 |
| CN106249081A (zh) * | 2016-08-29 | 2016-12-21 | 芜湖创易科技有限公司 | 一种电子产品检测系统 |
| CN106569476B (zh) * | 2016-10-20 | 2019-01-11 | 西安坤蓝电子技术有限公司 | 一种天线轴系固有频率及控制系统带宽的自我检测方法 |
| CN108122795A (zh) * | 2016-11-28 | 2018-06-05 | 深圳市微凡半导体有限公司 | Cmos摄像头晶圆单颗电性和功能检测装置及方法 |
| TWI630391B (zh) * | 2016-12-28 | 2018-07-21 | 東捷科技股份有限公司 | Jig with retractable probe |
| CN106839937B (zh) * | 2017-01-23 | 2019-08-06 | 安徽三安光电有限公司 | 一种晶片厚度测量装置及其测量方法 |
| JP6671310B2 (ja) * | 2017-03-13 | 2020-03-25 | 株式会社Screenホールディングス | ワーク保持装置、検査装置およびワーク位置補正方法 |
| KR101917161B1 (ko) * | 2017-03-20 | 2019-01-25 | 양윤재 | 평판 디스플레이용 전기적 특성 시험 장치의 헤드부 프로브 카드 회전 및 이송 장치 |
| CN107192353B (zh) * | 2017-06-08 | 2019-07-30 | 京东方科技集团股份有限公司 | 台阶仪及探针检测装置 |
| TWI645194B (zh) * | 2017-07-12 | 2018-12-21 | 萬潤科技股份有限公司 | 探針模組、探針裝置及使用該探針裝置之電子元件檢測方法及設備 |
| US10527649B2 (en) | 2017-07-14 | 2020-01-07 | International Business Machines Corporation | Probe card alignment |
| US10345136B2 (en) | 2017-07-14 | 2019-07-09 | International Business Machines Corporation | Adjustable load transmitter |
| CN107389983B (zh) * | 2017-07-31 | 2020-05-12 | 京东方科技集团股份有限公司 | 定位装置及显示模组的电学检测系统 |
| CN107578733A (zh) * | 2017-08-22 | 2018-01-12 | 武汉华星光电半导体显示技术有限公司 | 一种点亮治具及装置 |
| US10761145B2 (en) | 2017-08-22 | 2020-09-01 | Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. | Illuminating fixture and device |
| US11712836B2 (en) * | 2017-10-09 | 2023-08-01 | Ascent Auto Interior, Llc | Automated wrapping system |
| CN108535622A (zh) * | 2018-04-28 | 2018-09-14 | 德淮半导体有限公司 | 晶圆测试装置、系统及方法 |
| CN109031095B (zh) * | 2018-07-23 | 2025-04-01 | 清华大学 | 用于植入式医疗仪器电路板自动测试的探针接触式工装 |
| JP7182951B2 (ja) * | 2018-08-27 | 2022-12-05 | 株式会社日本マイクロニクス | 検査装置及び検査方法 |
| DE102018121911A1 (de) * | 2018-09-07 | 2020-03-12 | Formfactor Gmbh | Verfahren zur Positionierung von Testsubstrat, Sonden und Inspektionseinheit relativ zueinander und Prober zu dessen Ausführung |
| KR102581387B1 (ko) * | 2018-09-11 | 2023-09-21 | 삼성전자주식회사 | 프로브 및 이를 포함하는 프로브 카드 |
| CN111239448B (zh) * | 2018-11-28 | 2024-05-03 | 长鑫存储技术有限公司 | 测试机以及用于校准探针卡与待测器件的方法 |
| WO2020108352A1 (en) * | 2018-11-28 | 2020-06-04 | Changxin Memory Technologies, Inc. | Tester and method for calibrating probe card and device under testing (dut) |
| CN109782103B (zh) * | 2019-03-11 | 2021-07-30 | 镇江宏祥自动化科技有限公司 | 探针与电子器件引脚的对准方法及系统 |
| CN110187259A (zh) * | 2019-06-10 | 2019-08-30 | 德淮半导体有限公司 | 一种防止晶圆测试中针痕偏移的调整系统以及调整方法 |
| US11637030B2 (en) * | 2019-06-18 | 2023-04-25 | Kla Corporation | Multi-stage, multi-zone substrate positioning systems |
| TWI692644B (zh) * | 2019-06-18 | 2020-05-01 | 旺矽科技股份有限公司 | 電子元件針測裝置 |
| JP7371885B2 (ja) * | 2019-07-08 | 2023-10-31 | ヤマハファインテック株式会社 | 電気検査装置及び保持ユニット |
| US10867822B1 (en) * | 2019-07-26 | 2020-12-15 | Yaskawa America, Inc. | Wafer pre-alignment apparatus and method |
| KR102353209B1 (ko) * | 2020-01-22 | 2022-01-24 | 주식회사 탑 엔지니어링 | 프로브 장치 |
| CN111243976A (zh) * | 2020-03-17 | 2020-06-05 | 南京中电熊猫平板显示科技有限公司 | 一种检测修补设备和方法 |
| KR102261798B1 (ko) * | 2020-04-03 | 2021-06-07 | (주)화이컴 | 프로브 카드 제조용 지그, 이를 포함하는 프로브 정렬 시스템 및 이를 이용하여 제조된 프로브 카드 |
| TWI821750B (zh) * | 2020-10-07 | 2023-11-11 | 台灣愛司帝科技股份有限公司 | 電子元件量測設備、電子元件量測方法及發光二極體的製造方法 |
| CN115406887B (zh) * | 2021-05-28 | 2025-10-28 | 长鑫存储技术有限公司 | 微光探测装置和半导体设备 |
| CN114740237B (zh) * | 2021-08-09 | 2025-01-28 | 苏州联讯仪器股份有限公司 | 测试用探针结构 |
| TWI847139B (zh) * | 2022-03-09 | 2024-07-01 | 南亞科技股份有限公司 | 具有軌道的探針裝置 |
| US11668745B1 (en) * | 2022-03-09 | 2023-06-06 | Nanya Technology Corporation | Probe apparatus having a track and wafer inspection method using the same |
| US11747394B1 (en) * | 2022-03-09 | 2023-09-05 | Nanya Technology Corporation | Probe apparatus with a track |
| KR102646590B1 (ko) * | 2022-04-05 | 2024-03-13 | 주식회사 아이에스시 | 프로브 카드 고정장치 |
| US11940486B2 (en) | 2022-06-01 | 2024-03-26 | Nanya Technology Corporation | Probe station capable of maintaining stable and accurate contact to device under test |
| CN114994508A (zh) * | 2022-06-13 | 2022-09-02 | 深圳米飞泰克科技股份有限公司 | 一种基板测试系统和基板测试方法 |
| TWI825798B (zh) * | 2022-06-22 | 2023-12-11 | 吳俊杰 | 彈性探針及電路測試裝置 |
| CN115265623A (zh) * | 2022-08-08 | 2022-11-01 | 上海泽丰半导体科技有限公司 | 一种存储针卡定位装置及定位系统 |
| CN116296230B (zh) * | 2022-12-16 | 2025-12-19 | 西北工业大学 | 一种三维复杂流场九孔探针的高精度校准机构 |
| TWI858524B (zh) * | 2023-01-19 | 2024-10-11 | 旺矽科技股份有限公司 | 電路板檢測設備 |
| CN116643147B (zh) * | 2023-05-26 | 2024-05-07 | 深圳市奇易创新科技有限公司 | 一种移动电源电芯电路板焊接检测机 |
| CN116500424B (zh) * | 2023-06-27 | 2024-03-29 | 深圳市克洛诺斯科技有限公司 | 一种pcb检测装置 |
| US20250258219A1 (en) * | 2024-02-13 | 2025-08-14 | Teradyne, Inc. | Aligning connectors in a test system |
| JP2025136108A (ja) * | 2024-03-06 | 2025-09-19 | 株式会社 東京ウエルズ | ステージユニット及び処理システム |
| JP2025136117A (ja) * | 2024-03-06 | 2025-09-19 | 株式会社 東京ウエルズ | ステージユニット及び処理システム |
| CN118466471B (zh) * | 2024-07-11 | 2024-10-01 | 西安交通大学城市学院 | 一种电气控制板测试架 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4677474A (en) * | 1984-07-02 | 1987-06-30 | Canon Kabushiki Kaisha | Wafer prober |
| US4786867A (en) * | 1986-09-02 | 1988-11-22 | Canon Kabushiki Kaisha | Wafer prober |
| US5982166A (en) * | 1997-01-27 | 1999-11-09 | Motorola, Inc. | Method for measuring a characteristic of a semiconductor wafer using cylindrical control |
| US5994909A (en) * | 1997-08-25 | 1999-11-30 | Lucas; Brian K. | Robotic twin probe for measurement on printed circuit boards and electrical and electronic assemblies |
| US6166552A (en) * | 1996-06-10 | 2000-12-26 | Motorola Inc. | Method and apparatus for testing a semiconductor wafer |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2275291A (en) * | 1939-04-04 | 1942-03-03 | Rudolph F Bannow | Machine tool operating at universal angles in overall locations |
| US3899634A (en) | 1971-05-26 | 1975-08-12 | Western Electric Co | Video controlled positioning method and apparatus |
| US4266191A (en) | 1979-04-18 | 1981-05-05 | Spano John D | Test probe alignment apparatus |
| JPS61181143A (ja) * | 1985-02-06 | 1986-08-13 | Matsushita Electric Ind Co Ltd | プロ−ブマニユピレ−タ |
| JPS61283138A (ja) * | 1985-06-07 | 1986-12-13 | Canon Inc | プロ−バ |
| US4864227A (en) | 1987-02-27 | 1989-09-05 | Canon Kabushiki Kaisha | Wafer prober |
| JPH0719811B2 (ja) * | 1987-03-31 | 1995-03-06 | 東京エレクトロン株式会社 | プロ−ブ装置によるウエハの検査方法 |
| JPS63260146A (ja) * | 1987-04-17 | 1988-10-27 | Nippon Maikuronikusu:Kk | 半導体ウエハ測定装置 |
| JPS6486531A (en) * | 1987-09-29 | 1989-03-31 | Canon Kk | Prober |
| JPH0194631A (ja) * | 1987-10-06 | 1989-04-13 | Canon Inc | ウエハプローバ |
| JP2533178B2 (ja) * | 1988-12-20 | 1996-09-11 | 富士通株式会社 | テスタヘッド搭載スタンド |
| JP2735859B2 (ja) * | 1989-02-10 | 1998-04-02 | 東京エレクトロン株式会社 | プローバ及びプロービング方法 |
| JPH0328909A (ja) * | 1989-06-26 | 1991-02-07 | Tokyo Electron Ltd | 移動誤差補正方法 |
| JPH04129044A (ja) * | 1990-09-19 | 1992-04-30 | Canon Inc | 情報読取り及び/又は入力装置 |
| JPH04312939A (ja) * | 1990-12-28 | 1992-11-04 | Tokyo Electron Ltd | プローブ装置 |
| JPH0621166A (ja) * | 1992-06-30 | 1994-01-28 | Mitsubishi Electric Corp | ウエハプローバ |
| JP2963603B2 (ja) | 1993-05-31 | 1999-10-18 | 東京エレクトロン株式会社 | プローブ装置のアライメント方法 |
| US5642056A (en) | 1993-12-22 | 1997-06-24 | Tokyo Electron Limited | Probe apparatus for correcting the probe card posture before testing |
| US5528158A (en) | 1994-04-11 | 1996-06-18 | Xandex, Inc. | Probe card changer system and method |
| US5656942A (en) | 1995-07-21 | 1997-08-12 | Electroglas, Inc. | Prober and tester with contact interface for integrated circuits-containing wafer held docked in a vertical plane |
| US5731708A (en) * | 1995-10-31 | 1998-03-24 | Hughes Aircraft Company | Unpackaged semiconductor testing using an improved probe and precision X-Y table |
| US6002426A (en) | 1997-07-02 | 1999-12-14 | Cerprobe Corporation | Inverted alignment station and method for calibrating needles of probe card for probe testing of integrated circuits |
| EP0962777A3 (en) * | 1998-06-02 | 2002-12-11 | Nihon Densan Read Kabushiki Kaisha, (Nidec-Read Corporation) | Printed circuit board testing apparatus |
| JP2000077488A (ja) * | 1998-08-31 | 2000-03-14 | Nec Kyushu Ltd | プローブ装置 |
-
2003
- 2003-03-21 US US10/393,955 patent/US7119566B2/en not_active Expired - Lifetime
- 2003-03-21 GB GB0416819A patent/GB2400447B/en not_active Expired - Fee Related
- 2003-03-21 JP JP2003580875A patent/JP4803959B2/ja not_active Expired - Fee Related
- 2003-03-21 DE DE10392404T patent/DE10392404T5/de not_active Withdrawn
- 2003-03-21 WO PCT/US2003/008913 patent/WO2003083494A1/en not_active Ceased
- 2003-03-21 TW TW092106285A patent/TWI272392B/zh active
- 2003-03-21 CN CNB038047314A patent/CN100430735C/zh not_active Expired - Fee Related
- 2003-03-21 CA CA002476389A patent/CA2476389A1/en not_active Abandoned
- 2003-03-21 AU AU2003218348A patent/AU2003218348A1/en not_active Abandoned
- 2003-03-21 KR KR1020047014885A patent/KR101163972B1/ko not_active Expired - Lifetime
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4677474A (en) * | 1984-07-02 | 1987-06-30 | Canon Kabushiki Kaisha | Wafer prober |
| US4786867A (en) * | 1986-09-02 | 1988-11-22 | Canon Kabushiki Kaisha | Wafer prober |
| US6166552A (en) * | 1996-06-10 | 2000-12-26 | Motorola Inc. | Method and apparatus for testing a semiconductor wafer |
| US5982166A (en) * | 1997-01-27 | 1999-11-09 | Motorola, Inc. | Method for measuring a characteristic of a semiconductor wafer using cylindrical control |
| US5994909A (en) * | 1997-08-25 | 1999-11-30 | Lucas; Brian K. | Robotic twin probe for measurement on printed circuit boards and electrical and electronic assemblies |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2009043654A1 (de) * | 2007-09-28 | 2009-04-09 | Siemens Aktiengesellschaft | Verfahren zur messnadelüberwachung im prüfbetrieb |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20040105785A (ko) | 2004-12-16 |
| TWI272392B (en) | 2007-02-01 |
| TW200304545A (en) | 2003-10-01 |
| GB2400447B (en) | 2005-10-12 |
| DE10392404T5 (de) | 2005-04-14 |
| US20030178988A1 (en) | 2003-09-25 |
| JP4803959B2 (ja) | 2011-10-26 |
| GB2400447A (en) | 2004-10-13 |
| US7119566B2 (en) | 2006-10-10 |
| CA2476389A1 (en) | 2003-10-09 |
| KR101163972B1 (ko) | 2012-07-09 |
| CN100430735C (zh) | 2008-11-05 |
| AU2003218348A1 (en) | 2003-10-13 |
| GB0416819D0 (en) | 2004-09-01 |
| CN1639577A (zh) | 2005-07-13 |
| JP2005521066A (ja) | 2005-07-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7119566B2 (en) | Test probe alignment apparatus | |
| US4896869A (en) | Moving table apparatus | |
| US5410259A (en) | Probing device setting a probe card parallel | |
| KR100248569B1 (ko) | 프로우브장치 | |
| US6307389B1 (en) | Test device for flat electronic assemblies | |
| US20180217200A1 (en) | Positioning device for a parallel tester for testing printed circuit boards and parallel tester for testing printed circuit boards | |
| US11313902B2 (en) | Modular rail systems, rail systems, mechanisms, and equipment for devices under test | |
| US20040100297A1 (en) | Semiconductor device inspection apparatus and inspection method | |
| US5982182A (en) | Interface apparatus for automatic test equipment with positioning modules incorporating kinematic surfaces | |
| US20060001416A1 (en) | Test head positioner system | |
| US6161294A (en) | Overhead scanning profiler | |
| JP2004128384A (ja) | 部品実装装置および部品実装方法 | |
| JP2957048B2 (ja) | プローブ装置 | |
| JP3275544B2 (ja) | ステージ装置 | |
| JP2602303B2 (ja) | 移動テーブル装置 | |
| JP3853402B2 (ja) | チップボンディング装置 | |
| JP3368192B2 (ja) | プリント基板検査装置 | |
| JPH0513997A (ja) | ダイスボンダーヘツド装置 | |
| CN217540233U (zh) | 一种高精度视觉定位装置 | |
| JP2009082838A (ja) | ヘッド取付装置、ヘッド取付方法、基板加工装置、ヘッド位置決め方法 | |
| JPH02210276A (ja) | プローバ及びプロービング方法 | |
| JP2568104B2 (ja) | プロービング方法及びプロービング装置 | |
| WO2025089111A1 (ja) | 移動装置、検査装置、および移動方法 | |
| KR20230013354A (ko) | 프로브 카드 매뉴얼 얼라인 장치 | |
| JPH0669293A (ja) | 半導体検査装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| ENP | Entry into the national phase |
Ref document number: 0416819 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20030321 |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2476389 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003580875 Country of ref document: JP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 20038047314 Country of ref document: CN |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 1020047014885 Country of ref document: KR |
|
| WWP | Wipo information: published in national office |
Ref document number: 1020047014885 Country of ref document: KR |
|
| 122 | Ep: pct application non-entry in european phase |