WO2003074593A1 - Moulage d'acide polyactique et procede de production associe - Google Patents

Moulage d'acide polyactique et procede de production associe Download PDF

Info

Publication number
WO2003074593A1
WO2003074593A1 PCT/JP2003/002607 JP0302607W WO03074593A1 WO 2003074593 A1 WO2003074593 A1 WO 2003074593A1 JP 0302607 W JP0302607 W JP 0302607W WO 03074593 A1 WO03074593 A1 WO 03074593A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
sheet
mass
heat
molding
Prior art date
Application number
PCT/JP2003/002607
Other languages
English (en)
French (fr)
Inventor
Hiroshi Nishimura
Masanobu Hioki
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Priority to AU2003213398A priority Critical patent/AU2003213398A1/en
Priority to EP03708499A priority patent/EP1484356B1/en
Priority to US10/505,311 priority patent/US7854880B2/en
Priority to KR1020047013862A priority patent/KR100942443B1/ko
Publication of WO2003074593A1 publication Critical patent/WO2003074593A1/ja
Priority to HK05110420A priority patent/HK1078601A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/002Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/006Using vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/007Using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/10Forming by pressure difference, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/20Carboxylic acid amides

Definitions

  • the present invention relates to a polylactic acid-based molded article and a method for producing the same.
  • biodegradable polymers that can be decomposed by microorganisms have attracted attention as social demands for environmental protection have increased.
  • specific examples of biodegradable polymers include aliphatic polyesters such as polybutylene succinate, polycaprolactone, and polylactic acid, and fatty acids such as terephthalic acid / 1,4-butanediol / adipic acid copolymer.
  • melt-moldable polyesters such as aromatic mono-aromatic copolymer polyesters.
  • polylactic acid which is widely distributed in nature and is harmless to animals, plants and humans, has a melting point of 140-175 ° C and has sufficient heat resistance, and is relatively It is expected to be an inexpensive thermoplastic thermoplastic biodegradable resin.
  • JP-A-8_1933165 can be prepared by adding talc, silica, calcium lactate, etc. as a nucleating agent to a lactic acid-based polymer and performing injection molding, blow molding, compression molding, etc.
  • a method for obtaining a compact has been proposed.
  • this method does not perform heat treatment Therefore, there is a problem that the crystallization is insufficient and the productivity is poor because the crystallization speed of the polymer is low.
  • JP-A-4-2022456 has an injection molding cycle time by increasing the crystallization rate by adding polydalicholic acid and its derivatives as a nucleating agent to poly-L-lactide and the like.
  • a method has been proposed for shortening the length and improving the mechanical properties of the compact.
  • JP-A-8-1933165 mentioned above was intended to produce a molded article by injection molding according to the method described in JP-A-4-2-250456. — It states that a molded body could not be obtained under the condition that the mold temperature was equal to or higher than Tg as disclosed in A—4—2 2 0 4 5 6.
  • the wax used as a crystal nucleating agent generally has poor compatibility with polylactic acid and bleeds out, it can be added only in a small amount and is insufficient for forming crystal nuclei.
  • JP—A—9—2 5 3 4 5 is a method of imparting heat resistance and impact resistance without using a nucleating agent by stretching an unstretched sheet 1.5 to 5 times. Techniques for improving the degree of crystal orientation and the degree of crystallinity have been disclosed. However, in this method, the obtained sheet is a stretched sheet. Therefore, if the stretched sheet is formed and processed to obtain a molded product, the sheet is further stretched. However, once stretched sheets are inferior in stretchability, they are unsuitable for deep drawing and the like, and there is a problem that their use is necessarily limited. Disclosure of the invention
  • An object of the present invention is to solve such a problem and to obtain a polylactic acid-based molded article having excellent heat resistance and impact resistance and capable of being molded with high productivity.
  • a polylactic acid-based molded article which is formed from a sheet made of a resin composition containing a resin component mainly composed of polylactic acid and a nucleating agent.
  • the polylactic acid has an optical purity of 90% or more and a residual lactide amount of 0.1 to 0.6% by mass, and the nucleating agent is contained in the resin composition in a range of 1 to 25% by mass.
  • the molded body is generated by the absolute value of the heat of crystal fusion ⁇ when measured by a differential scanning calorimeter under the heating condition of 20 ° CZ and the crystallization during the heating.
  • the difference (I ⁇ m I — I ⁇ c I) from the absolute value of the heat of crystallization ⁇ c is more than 25 J / g, the crystallinity by X-ray measurement is more than 35%,
  • the crystallization rate at 130 ° C is 0.05 min 1 or more.
  • polylactic acid is known as a material having an extremely low crystallization rate.
  • the crystallization of polylactic acid itself is controlled by regulating the optical purity of polylactic acid and the amount of residual lactide. (Crystallisation rate), and by adding an appropriate amount of a crystal nucleating agent to increase the crystallinity of polylactic acid after molding, it is possible to obtain a molded article having excellent heat resistance. .
  • the nucleating agent is preferably talc with an average particle size of 0.1 to 10 ⁇ m.
  • a dispersant for a nucleating agent is included, and the dispersant is a fatty acid. It is preferably an amide.
  • the fatty acid amide is at least one of erlic acid amide, stearic acid amide, oleic acid amide, ethylene bisstearic acid amide, ethylene bis oleic acid amide, and ethylene bis lauric acid amide. It is preferred that
  • the polylactic acid-based molded article of the present invention is preferably formed by any one of vacuum forming, pressure forming, vacuum forming, and press forming.
  • a first method for producing a polylactic acid-based molded article molded from a resin composition containing a resin component mainly composed of polylactic acid and a nucleating agent is as follows.
  • the sheet is extruded and heat-treated at a temperature of 110 to 150 ° C for 1 to 30 seconds, followed by forming.
  • a second polylactic acid-based molded article formed from a resin composition containing a resin component mainly composed of polylactic acid and a nucleating agent is used.
  • the production method is a resin comprising: an optical purity of polylactic acid of 90% or more, a residual lactide amount of 0.1 to 0.6% by mass, and a content of the crystal nucleating agent in a range of 1 to 25% by mass.
  • the composition is extruded in the form of a sheet, and the obtained sheet is molded and simultaneously heat-treated at a temperature of 110 to 150 for 1 to 30 seconds.
  • the polylactic acid-based molded article of the first aspect of the present invention by forming a molded body composed of a sheet in which a predetermined amount of a crystal nucleating agent is blended with a specific polylactic acid, the crystallization speed of the resin composition can be accelerated,
  • a molded article excellent in heat resistance having a crystallization rate at 30 ° C. of 0.05 min 1 or more can be obtained.
  • a sheet is formed from a resin composition in which a predetermined amount of a crystal nucleating agent is blended with a specific polylactic acid.
  • the polylactic acid-based molded article of the present invention can be easily realized by subjecting the sheet to heat treatment under specific conditions before or at the same time as the sheet is molded.
  • the obtained polylactic acid-based molded article can be used suitably for containers requiring heat resistance, for example, tableware applications such as lunch trays, bowls, dishes, cups, etc. Since it is not deformed even in, it can be applied to various uses such as lids ⁇ building materials, boards, stationery, cases, carrier tapes, pre-cards, IC cards and other cards, FRP, and various containers. In addition, since it is mainly composed of biodegradable polylactic acid, it does not accumulate in the natural environment even when discarded after use, reducing the environmental burden on the natural environment and wild animals.
  • the polylactic acid-based molded article of the second aspect of the present invention which is molded from a sheet made of a resin composition containing a resin component mainly composed of polylactic acid, has a crystal with an optical purity of 95% or more.
  • the crystallization index which is the difference between the absolute value of the heat of crystal fusion ⁇ measured by a scanning calorimeter and the absolute value of the heat of crystallization heat ⁇ c, is (
  • the polylactic acid-based molded article of the present invention is preferably obtained by subjecting a sheet to any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming.
  • the method for producing a polylactic acid-based molded article of the second aspect of the present invention which is molded from a sheet made of a resin composition containing a resin component mainly composed of polylactic acid, has an optical purity of 95% or more.
  • the resin composition After extruding the resin composition blended so that the mixing ratio of 3 to 80/20% by mass and (C) is 1 to 30% by mass with respect to the total amount of the composition, the resin composition is made into a sheet shape. Processing temperature 110 to 150 ° C and processing time 1 to
  • Heat treatment is performed in 30 seconds and molding is performed.
  • the sheet is heat-treated and then formed by any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming. Further, according to the present invention, it is preferable that the sheet is subjected to heat treatment in a molding die at the same time as being formed by any one of vacuum forming, pressure forming, vacuum forming, and press forming.
  • the polylactic acid-based molded article of the second aspect of the present invention the polylactic acid whose optical purity is strictly adjusted and the aromatic / aliphatic polyester or fatty acid having a glass transition temperature of 0 ° C or lower are used.
  • a group of polyesters and talc are mixed in a predetermined mixing range to form a sheet, and the sheet is formed by a general forming method represented by vacuum forming, for example, in a mold before or during forming.
  • the thermal properties of the biodegradable container obtained by heat treatment under the given conditions are (IAH m I-i ⁇ He I) ⁇ SSJZ g and the crystallization rate is 0 ⁇ 0 10 min -1 or more, and the falling ball height per 500 m thickness is 20 cm or more, and heat resistance and impact resistance that can withstand hot water that was impossible with the conventional molded body made of polylactic acid It is possible to have both properties.
  • Such a polylactic acid-based molded article of the present invention can be suitably used for containers requiring heat resistance and impact resistance, for example, trays for lunch boxes, bowls, dishes, cups, etc. Since it does not deform during transportation or during transportation, it can be applied to various uses such as lids, construction materials, boards, stationery, cases, carrier tapes, prepaid cards, IC cards and other cards, and FRP.
  • the polylactic acid-based molded article of the first aspect of the present invention contains a resin component mainly composed of a specific polylactic acid and a crystal nucleating agent blended in a specific ratio. It must be formed of a sheet made of a resin composition having the same.
  • the polylactic acid-based molded article of the second aspect of the present invention is obtained by mixing a specific polylactic acid with a specific aliphatic monoaromatic polyester or an aliphatic polyester in a specific ratio, and further comprising a crystal nucleating agent.
  • a specific polylactic acid with a specific aliphatic monoaromatic polyester or an aliphatic polyester in a specific ratio
  • a crystal nucleating agent Must be formed of a sheet made of a resin composition mixed at a specific ratio.
  • the crystalline polylactic acid resin used in the present invention must have an optical purity of 90% or more (first aspect) or 95% or more (second aspect).
  • L-lactic acid is produced industrially in large quantities at low cost
  • L-polylactic acid (PLLA) derived from L-lactic acid is generally used for polylactic acid.
  • the crystallinity of polylactic acid changes depending on the content of L-lactic acid or D-lactic acid. For example, when the optical purity L of a lactic acid monomer is defined by the following formula 1, the larger the L, the higher the optical purity Indeed, the crystallinity increases.
  • M (L) is mol% of L-lactic acid unit to all lactic acid units constituting polylactic acid resin
  • M (D) mol% of D-lactic acid unit to all lactic acid units constituting polylactic acid resin
  • an optical purity of 90% or more in the first aspect corresponds to, for example, a D-form content in polylactic acid of 5 mol% or less.
  • polylactic acid examples include poly L-lactic acid, poly DL-lactic acid which is a copolymer of L-lactic acid and D-lactic acid, or a mixture thereof.
  • the upper limit of the optical purity of PLLA used industrially is around 98%. Therefore, this is the most highly crystalline composition practically among polylactic acids.
  • PLLA has a relatively low crystallization rate and extremely high supercooling during the cooling crystallization process.
  • the first aspect of the present invention requires a polylactic acid resin having an optical purity of 90% or more as described above, and preferably 96% or more. Further, in the second aspect of the present invention, it is necessary that the polylactic acid resin has an optical purity of 95% or more as described above, and preferably 96% or more.
  • Polylactic acid resin reduces the crystallinity of polylactic acid itself, resulting in talc as a crystal nucleating agent. Even if it is added or heat-treated, it does not crystallize sufficiently and the required heat resistance cannot be obtained.
  • polylactic acid is a polymer having a relatively high molecular weight.
  • the weight average molecular weight is 100,000 or more, preferably 150,000 to 300,000. It is better to use coalescence. More preferably, it is 160,000 to 200,000.
  • Polylactic acid has a weight average molecular weight of 150,000 If it is less than this, the melt viscosity is too low, and the obtained sheet has poor mechanical properties. If the weight average molecular weight exceeds 300,000, the melt viscosity becomes too high and melt extrusion becomes difficult.
  • lactide present in polylactic acid resin can promote hydrolysis of polylactic acid if its amount is too large, but low molecular weight lactide crystallizes more than high molecular weight polylactic acid.
  • the crystallization of lactide is an initiator and promotes the crystallization of polylactic acid. Therefore, defining an appropriate amount of lactide contained in polylactic acid is an effective item for the purpose of promoting crystallization and imparting heat resistance. That is, according to the first aspect of the present invention, the amount of residual lactide needs to be in the range of 0.1 to 0.6% by mass with respect to the whole of the resin. It is preferably in the range of 4% by mass.
  • the amount of residual lactide is preferably in the range of 0.1 to 0.6% by mass based on the whole resin, and the amount of residual lactide is 0.1 to 0.4% by mass. More preferably, the amount is in the range of%. If the amount of residual lactide is less than 0.1% by mass, the amount of the initiator for promoting the crystallization of polylactic acid is too small to use. On the other hand, when the content exceeds 0.6% by mass, the effect of accelerating hydrolysis is enhanced.
  • an aromatic compound having a glass transition temperature of 0 ° C. or less is required.
  • Aliphatic / aliphatic copolyesters or aliphatic polyesters are essential as constituents.
  • This aromatic / aliphatic copolymerized polyester or aliphatic polyester has a glass transition temperature of 0 ° C. or less, and therefore has flexibility even at room temperature.
  • Such components are dispersed in the polylactic acid resin. This has the function of absorbing external impacts, similar to the case of dispersing rubber. That is, it contributes to the improvement of impact properties.
  • Specific examples of the component include an aromatic / aliphatic copolymer polyester which is a copolymer polyester having at least an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and an aliphatic diol as constituent components.
  • an aliphatic polyester composed of at least an aliphatic dicarboxylic acid and an aliphatic diol is exemplified.
  • an aliphatic polyester obtained by ring-opening polymerization of a cyclic monomer, ⁇ -one-prolactone may be used.
  • Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sedinic acid, dodecandioic acid and the like.
  • Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid.
  • Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
  • the component (II) is obtained by selecting at least one or more of the above-mentioned constituent components and subjecting them to polycondensation. If necessary, structural jump-up and long-chain branching can be provided by using isocyanates, acid anhydrides, epoxies, and organic peroxides.
  • a crystalline polylactic acid-based resin having an optical purity of 95% or more is used as the component (II), and an aromatic / aliphatic copolymer polyester having a glass transition temperature of 0 ° C or less is used.
  • the crystal nucleating agent must be contained in the resin composition in the range of 1 to 25% by mass. If the amount of the nucleating agent is less than 1% by mass, the effect as a nucleating agent cannot be sufficiently exhibited, and if the amount of the nucleating agent exceeds 25% by mass, the content of the nucleating agent is reduced. The physical properties are adversely affected, for example, the molded product becomes brittle due to too much. Therefore, the amount of the crystal nucleating agent is preferably in the range of 1 to 20% by mass, more preferably in the range of 1 to 15% by mass, in the resin composition.
  • the average particle size of the nucleating agent is preferably in the range of 0.1 to 10 zm. If the average particle diameter is less than 0.1 l ⁇ m, poor dispersion and secondary aggregation occur, and the effect as a nucleating agent cannot be sufficiently obtained.If the average particle diameter exceeds 10 m, the sheet is formed. In this case, the physical properties of the sheet are adversely affected, and as a result, the physical properties of the molded body are adversely affected.
  • the crystal nucleating agent is not particularly limited, but layered silicates such as talc, smectite, vermiculite, and swelling fluoromica can be used. Among them, talc is most suitable for polylactic acid.
  • talc is preferable because it is very inexpensive and because it is an inorganic substance existing in the natural world, it is industrially advantageous and does not impose a load on the global environment.
  • the presence of talc as a crystal nucleating agent is essential.
  • Talc as a crystal nucleating agent in the second aspect of the present invention has an average particle size of 1 to 8 mm, preferably 1 to 5 m.
  • talc is not only the most suitable as a nucleating agent because it is the inorganic substance with the highest crystallization efficiency for polylactic acid, but also very inexpensive and present in nature Since it is an inorganic substance, it is industrially advantageous and does not impose a burden on the global environment. If the average particle size of the talc is less than 1 m, poor dispersion and secondary agglomeration occur, and the effect as a crystal nucleating agent cannot be sufficiently exerted, so that the heat resistance of the obtained molded body is insufficient. . When the average particle size exceeds 8 zm, talc acts as a crystal nucleating agent and becomes a defect in the molded product, and thus has an adverse effect on the physical properties and surface condition of the obtained molded product.
  • the content of talc is from 1 to 30% by mass, preferably from 5 to 20% by mass, more preferably from 10 to 15% by mass, based on the total amount of the composition. If the content is less than 1% by mass, the content is too small and only a small amount of crystal nuclei is generated, and the effect as a crystal nucleating agent cannot be sufficiently exerted. Becomes insufficient in heat resistance. If the content exceeds 30% by mass, the content becomes too large, which adversely affects the physical properties such as the brittleness of the molded product.
  • a dispersant may be used in the resin composition forming the sheet in order to efficiently disperse the nucleating agent.
  • the dispersant preferably has excellent compatibility with polylactic acid and excellent wettability with the crystal nucleating agent.
  • examples of such substances include fatty acid amides such as erlic acid amide, stearic acid amide, oleic acid amide, ethylene bisstearic acid amide, ethylene benzoyl amide, and ethylene bis lauric acid amide. It is important to select at least one type from among them in order to efficiently increase the crystallinity of the polylactic acid-based molded article.
  • a crosslinking agent such as an organic peroxide and a crosslinking assistant are optionally used together to form an extremely mild crosslinking in the resin composition. Can also be applied.
  • cross-linking agent examples include n-butyl-4,4-bis-t-butylpropyloxyvalerate, dicumyl peroxide, di-butyl butoxide, and di-hexyl peroxide.
  • Organic peroxides such as 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-t-butylperoxyhexine-13
  • Polycarboxylic acids such as sulfonic acid, maleic anhydride, trimethyladipic acid, trimellitic anhydride, 1,2,3,4-butanetetracarboxylic acid, lithium formate, sodium methoxide, potassium propionate, magnesium ethoxy
  • Metal complexes such as amides, bisphenol A-type diglycidyl ether, 1,6-hexanediolididaricidyl ether, trimethylolpropane toridaricidyl ether Le, epoxid
  • crosslinking aid examples include trimethacrylate, glycidyl acrylate, normal butyl methacrylate, hydroxypropyl pill monomethacrylate, and polyethylene glycol monomethacrylate.
  • the polylactic acid-based molded article of the first aspect of the present invention is a resin composition containing a tree component mainly composed of a specific polylactic acid and a crystal nucleating agent blended in a specific ratio. It must be formed of a sheet consisting of As described above, the polylactic acid-based molded article of the second aspect of the present invention is obtained by mixing a specific polylactic acid with a specific aliphatic monoaromatic polyester or an aliphatic polyester in a specific ratio. Therefore, the nucleating agent must be formed in a sheet made of a resin composition in which a specific ratio is blended.
  • the optical purity of polylactic acid, the amount of residual lactide, the average particle size of the crystal nucleating agent (talc), and the addition thereof must be set so that the crystallinity by X-ray measurement is 35% or more. In addition to optimizing the amounts, it is necessary to carry out a heat treatment described later.
  • the optical purity should be 90% or more and the residual lactide amount should be 0.1 to 0.6% by mass.
  • a sheet in which a nucleating agent having an average particle diameter of 0.1 to 10 m was mixed in an amount of 1 to 30% by mass with respect to the total amount of the composition was formed. Heat treatment at a temperature of 0 to 150 ° C for 1 to 30 seconds is required.
  • the polylactic acid is sufficient for the molded article to have heat resistance in the first aspect. It can be said that it has been crystallized. Therefore, at least one of the conditions is not satisfied in the first party In this case, since the polylactic acid is not sufficiently crystallized to form a molded body, the obtained molded body has poor heat resistance.
  • heat treatment is an essential condition in the production of the molded body.
  • polylactic acid is known as a material with a very low crystallization rate. Therefore, it is necessary to provide a crystallization rate that can be applied to an industrial molding cycle.
  • it molded article of the second Aspect is 1 3 0 crystallization rate of ° C shall be 0. 0 1 0 it is necessary min _ 1 or more, 0. Is 0 1 5 min one 1 or more Is preferred.
  • the crystallization rate at 130 ° C is less than 0.01 O min- 1 , the crystallization rate will be low, making it unsuitable for normal molding cycles, and insufficient crystallization, resulting in poor heat resistance. It will be inferior.
  • the crystallization rate at 130 ° C in order for the crystallization rate at 130 ° C to be 0.010 min- 1 or more, optimization of the optical purity of the polylactic acid used and talc After optimizing the average particle size and the mixing ratio of the aromatic and aliphatic copolyesters or the mixing ratio of the aliphatic polyester and polylactic acid, the processing temperature was adjusted as described later. It is necessary to perform heat treatment at 110 to 150 ° C and a treatment time of 1 to 30 seconds.
  • the polylactic acid-based molded article of aspect 2 of the present invention needs to have a falling ball impact of not less than 20 cm in height of 500 cm.
  • the falling ball height for a thickness of 500 zm refers to a box-shaped compact formed of a sheet having a thickness of 500 im.
  • the iron ball of 300 is dropped several times from different heights every 5 cm, it is set as [(1 in 2 times) (The height of the cracks at the rate of times) — 5] cm.
  • the falling ball height for a thickness of 500 m is less than 20 cm, there is a possibility that cracks may occur or cracks may occur, for example, when an external impact is applied during transportation of the molded body. Therefore, it is preferable that the falling ball height for a thickness of 500 m is 30 cm or more.
  • an aromatic / aliphatic copolymer or aliphatic polyester having a glass transition temperature of 0 ° C or less is required. It is necessary to mix 3% by mass or more with crystalline polylactic acid resin having an optical purity of 95% or more.
  • the molecular weight retention refers to the weight-average molecular weight (M w) before leaving the molded body after the accelerated decomposition test in which it is left in a constant temperature and humidity chamber at 50 ° C and 90% RH for 30 days. It means the percentage value of the value divided by the weight average molecular weight.
  • M w weight-average molecular weight
  • the decomposition of a biodegradable polylactic acid-based resin product does not proceed as much as possible during storage or use of sheets or molded articles, whereas it is preferable to decompose immediately after use.
  • the molecular weight retention is preferably 60% or more, more preferably 70% or more, under the conditions of the above-mentioned accelerated decomposition test.
  • a molecular weight retention of less than 60% is not preferred because it means that the decomposition rate is high, and decomposition may proceed during storage in a warehouse or the like, making it impossible to endure actual use.
  • a plasticizer and purple Addition of external line inhibitors, light stabilizers, anti-fog agents, anti-fog agents, anti-static agents, flame retardants, anti-coloring agents, anti-oxidants, fillers, pigments, etc. as long as the properties of the resin composition are not impaired May be.
  • a polylactic acid resin having an optical purity of 90% or more and a residual lactide amount of 0.1 to 0.6% by mass, a crystal nucleating agent, and a dispersing agent, if necessary, are mixed and melted.
  • the method of forming the sheet is not particularly limited, and examples thereof include a T-die method, an inflation method, and a calendar method. Of these, the T-die method, in which the mixture is melt-kneaded using a T-die and extruded, is preferred.
  • the raw material is supplied to an extruder hopper of a single-screw extruder or a twin-screw extruder; the extruder has a cylinder temperature of, for example, 180 to 230 ° C. Die temperature: heated to 200 to 230 ° C; melt-kneaded and extruded; cooled by a cast roll set to a temperature range of 30 to 50 ° C, thickness 150 to 500 An unstretched sheet of about m is obtained.
  • the thickness of the unstretched sheet is not particularly limited, and may be appropriately set depending on the use, required performance, price, and the like.
  • the obtained sheet is formed into a molded article by molding.
  • a polylactic acid-based resin composition having a specific composition but also a sheet is used. It is necessary to improve the crystallinity of polylactic acid after forming by performing heat treatment under specific conditions before forming or at the same time as forming the sheet.
  • the temperature at the time of the heat treatment needs to be substantially in the range of 110 to 150 ° C., which is the temperature at which polylactic acid is most easily crystallized.
  • Heat treatment If the heating temperature is lower than 11 ° C, the crystallization of polylactic acid will not proceed sufficiently. If the heat treatment temperature exceeds 150 ° C, the crystallization rate of polylactic acid will be extremely slow, and The crystals melt as they approach the melting point of lactic acid, resulting in insufficient crystallization. Accordingly, the heat treatment temperature is more preferably in the range of 125 to 150 ° C, and particularly preferably in the range of 125 to 144 ° C.
  • the heat treatment time must be within the range of 1 to 30 seconds, which is substantially applicable to the production cycle and can be crystallized without any excess or shortage. If the heat treatment time is less than 1 second, the time required for polylactic acid to crystallize will be insufficient, and if the heat treatment time exceeds 30 seconds, it will not be suitable for a substantial production cycle, and industrial problems will occur . Therefore, the heat treatment time is more preferably in the range of 3 to 30 seconds, and particularly preferably in the range of 3 to 20 seconds.
  • the sheet forming method is not particularly limited, but any one of vacuum forming, pressure forming, vacuum pressure forming, and press forming is suitable.
  • the absolute value of the heat of crystal fusion AHm measured by a differential scanning calorimeter and the heat of heat is 25 J / g or more
  • the crystallinity in X-ray measurement is 35% or more
  • the crystallization speed at 130 ° C is 0.05 min _ 1 or more
  • a method for producing the polylactic acid-based molded article of the second embodiment 1 of the present invention will be described.
  • a dispersing agent is blended in a predetermined amount.
  • the whole amount may be compounded in advance using a twin-screw kneading extruder, or only (A) and (C) may be compounded and (B) may be dry blended. All may be dry blended.
  • the thickness of the sheet can be appropriately selected depending on the purpose of use, but is usually preferably from 200 to 750 m.
  • the unstretched sheet is heat-treated continuously or in a separate step under the following conditions, and thereafter, any one of press molding, vacuum molding, pressure forming, or vacuum pressure forming is selected to obtain a desired molded product. .
  • the unstretched sheet is formed by selecting any one of the above-mentioned forming methods, the sheet may be formed while being heat-treated in a mold.
  • the conditions for performing the heat treatment after optimizing the resin, crystal nucleating agent, and the like as described above are as follows: a treatment temperature of 110 to 150 ° C. and a treatment time of 1 to 30 ° C. It is necessary to carry out in seconds.
  • the above-mentioned processing temperature of 110 to 150 ° C. is a temperature at which polylactic acid is substantially most easily crystallized.
  • the processing time of 1 to 30 seconds is a time that can be substantially applied to a production cycle and can be crystallized without excess or shortage. If the treatment temperature is lower than 110 ° C., crystallization does not proceed sufficiently. On the other hand, if it exceeds 150 X, the crystallization speed becomes extremely slow, resulting in insufficient crystallization. If the processing time is less than 1 second, If the required time is not enough, and if it exceeds 30 seconds, it is not suitable for a substantial molding cycle and industrial production will be defective.
  • Example 1 second If the required time is not enough, and if it exceeds 30 seconds, it
  • the molded article to be measured was powdered, measured by a WAXD reflection powder method using an X-ray diffractometer (Rigaku Denki Kogyo Co., Ltd., RAD-rB), and determined from the integrated intensity ratio by the multiple peak separation method.
  • the temperature was raised at 500 ° C / min from 20 ° C to 200 ° C, held for 5 minutes, and further reduced to 130 ° C. It was quenched at 00 ° C / min and then measured until crystallization was completed. Thereafter, the value obtained by multiplying the reciprocal of the time until the crystallization fraction reaches 0.5 by the crystallization fraction 0.5 was defined as the crystallization rate.
  • the weight average molecular weight (Mw) of the sample after standing for 30 days in a thermo-hygrostat at 50 ° C and 90% RH was determined by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the polylactic acid in the THF solution was measured using a Styrage 1 HR column, an Ultrastyrage 1 column, and a refractometer as a detector, and the retention was calculated by the following equation.
  • Mw retention (%) (Mw after 30 days / Mw before standing) X 100 This molecular weight retention is an index of hydrolysis, and the lower the molecular weight retention, the more the hydrolysis proceeds. It can be said that there is.
  • the heat-treated box-shaped compact formed of a 500-m-thick sheet was placed in a prone state, placed horizontally with its bottom face up, and 300 g of iron balls placed on it. Dropping was performed vertically from different pits every 5 cm, and the impact resistance was evaluated with the falling ball height being (the height at which cracks occurred once every two times-5) cm.
  • Polylactic acid having an optical purity of 97.6%, a residual lactide content of 0.2% by mass, and a weight average molecular weight of 200,000 (manufactured by Doichi Co., Ltd .: 84% by mass, as a crystal nucleating agent, 15% by mass of Lux (MW HS-T, manufactured by Hayashi Kasei Co., Ltd.) with an average particle size of 2.75 zm, and L-acid amide ( Using Nippon Yushi Co., Ltd., Alflow P10) 1 mass%, melt kneading using a twin-screw kneading extruder (Nippon Steel Works, Model No.
  • extrusion temperature 230 ° C A polylactic acid compound raw material was prepared at. Then, the polylactic acid compound raw material was melt-extruded at an extrusion temperature of 2 15 using a single screw extruder with a screw diameter of 90 mm equipped with a T die having a width of 100 mm. An unstretched sheet having a thickness of 350 im was obtained by bringing the sheet into close contact with the casting port. A single-shot indirect heating vacuum forming machine and an aluminum mold (CT Delican 15-11) are applied to the obtained sheet, and the vacuum forming is used to form a 150 mm long, 110 mm wide, 110 mm deep A container as a 20 mm molded body was prepared. During the vacuum forming, a heat treatment was performed for 5 seconds with the temperature inside the mold at 140 ° C.
  • Table 1 shows the physical properties and the like of the obtained molded body.
  • Polylactic acid having an optical purity of 92.0%, a residual lactide amount of 0.2% by mass, and a weight-average molecular weight of 190,000 (manufactured by Cargill Dow, Inc .: Nayiyax) was used. Otherwise, an unstretched sheet was formed in the same manner as in Example 1, and a container as a molded article was obtained. During vacuum molding, the temperature in the mold was set to 125 ° C, and heat treatment was performed for 15 seconds. Table 1 shows the physical properties and the like of the obtained molded body.
  • Polylactic acid having an optical purity of 97.8%, a residual lactide amount of 0.4% by mass, and a weight average molecular weight of 200,000 (manufactured by Cargill Dow, Inc .: Nayti-Ix) was used. Other than that, a container as a molded body was produced in the same manner as in Example 1.
  • Table 1 shows the physical properties and the like of the obtained molded body.
  • the content of talc as a nucleating agent was set to 1% by mass. Otherwise, in the same manner as in Example 1, a container as a molded body was obtained.
  • Table 1 shows the physical properties and the like of the obtained molded body.
  • Table 1 shows the temperature in the mold and the heat treatment time for heat treatment performed simultaneously during vacuum forming. Otherwise, in the same manner as in Example 1, a container as a molded body was obtained.
  • Table 1 shows the physical properties and the like of the obtained molded body.
  • the unstretched sheet is previously subjected to a heat treatment at 140 ° C for 7 seconds, and after this heat treatment, the temperature in the mold is set to 125 ° C and the processing time is set to 1 second. Empty molding was performed. Other than that, a container as a molded body was obtained in the same manner as in Example 1.
  • Table 1 shows the physical properties and the like of the obtained molded body.
  • Each of the containers as molded articles obtained in Examples 1 to 6 uses polylactic acid having a D-form content and a residual lactide amount within the range of the present invention, and the compounding ratio of the crystal nucleating agent is the same as that of the present invention.
  • a sheet was formed using the resin composition falling within the range described above, and the sheet was subjected to a molding process and, at the same time, a heat treatment was performed at a temperature and time within the range of the present invention. It was excellent in heat resistance.
  • Example 7 was obtained because the sheet before the forming process was subjected to a heat treatment at a temperature and time within the range of the present invention, and then subjected to vacuum forming instead of performing the forming process on the sheet and simultaneously performing the heat treatment.
  • the molded product had good crystallinity and excellent heat resistance. Comparative Example 1
  • Table 1 shows the physical properties of the obtained container.
  • the amount of talc added as a crystal nucleating agent was set to 40% by mass, which was larger than the range of the present invention. Otherwise, in the same manner as in Example 1, a container as a molded body was obtained.
  • Table 1 shows the physical properties of the obtained container.
  • Table 1 shows the physical properties of the obtained container.
  • Polylactic acid having an optical purity of 97.6%, a residual lactide amount of more than the range of the present invention of 1.0% by mass, and a weight-average molecular weight of 200,000 was used.
  • a container as a molded body was produced in the same manner as in Example 1.
  • Table 1 shows the physical properties of the obtained container.
  • the heat treatment temperature was set at 110 ° C. lower than the range of the present invention, and the heat treatment time was set at 60 seconds longer than the range of the present invention. Otherwise, in the same manner as in Example 1, a container as a molded body was produced.
  • Table 1 shows the physical properties of the obtained container.
  • Comparative Example 1 since no nucleating agent was added to the resin composition forming the sheet, the crystallization rate could not be accelerated, and the productivity was poor. Further, the obtained container was insufficiently crystallized, so that it was deformed instantly when hot water was poured, and had poor heat resistance.
  • Comparative Example 2 since the added amount of the crystal nucleating agent was too large, the prepared sheet was brittle, and cracks were liable to occur during the sheet forming process and the obtained container. Moreover, the obtained container did not have heat resistance enough to withstand actual use.
  • Comparative Example 3 since the optical purity of the polylactic acid was lower than the range of the present invention, the crystallinity of the polylactic acid was lowered, and the crystallization of the polylactic acid was performed even when a nucleating agent was added or the heat treatment conditions were set to an appropriate range. As a result, the molded product was fused to the mold, resulting in poor productivity. Also, Due to insufficient crystallinity, the obtained container had poor heat resistance.
  • Comparative Example 4 Although the amount of residual lactide of the polylactic acid was larger than the range of the present invention, crystallization was promoted, but hydrolysis and thermal decomposition with lactide were apparent as the molecular weight retention rate was low. Therefore, the molded article was very brittle and had problems in practical use.
  • talc having an average particle size of 2.75 m (manufactured by Hayashi Kasei Co., Ltd .: MW HS-T) was further blended in an amount of 10% by mass based on the total amount of the composition.
  • the mixture was melt-kneaded using a twin-screw kneading extruder (manufactured by Nippon Steel Works, Model No. 440;), and a polylactic acid compound raw material was prepared at an extrusion temperature of 230 ° C.
  • this polylactic acid compound raw material was melt-extruded at an extrusion temperature of 2150 ° C using a single screw extruder with a screw diameter of 90 mm equipped with a T-die having a width of 1000 mm, and 40 ° C.
  • An unstretched sheet having a thickness of 500 urn was formed using a cast roll set at C. This sheet was vacuum-formed to a height of 150 mm, a width of 110 mm, and a depth of 20 mm using a single-shot indirect heating vacuum forming machine and a CT Delican 15-1-1 (made of aluminum). Thus, a container as a molded body was produced.
  • heat treatment was performed by setting the inside of the mold to 140 ° C. and a holding time of 5 seconds.
  • Table 2 shows the physical properties of the obtained molded body.
  • Table 2 shows the physical properties of the obtained molded body.
  • Table 2 shows the physical properties of the obtained molded body.
  • Talc (C) was mixed at 15% by mass with respect to the total amount of the composition. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained. ,
  • Table 2 shows the physical properties of the obtained molded body.
  • Talc (C) having an average particle size of 4.1 (MICRON WHITE # 500 A manufactured by Hayashi Kasei Co., Ltd.) was used. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • Aliphatic polyester (B) having a glass transition temperature of 0 ° C. or lower (glass transition temperature—30 ° C., manufactured by Showa Polymer: Pionore 3001) was used. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • the heat treatment conditions in the mold were changed to a temperature of 150 ° (: and a holding time of 3 seconds. Otherwise, the unstretched sheet and the A container was obtained as a vacuum-formed molded body.
  • Table 2 shows the physical properties of the obtained molded body.
  • Crystalline polylactic acid (A) / Aromatic / aliphatic copolymerized polyester having a glass transition temperature of 0 or less (B) 95Z5% by mass. Further, as shown in Table 2, the heat treatment temperature conditions in the mold were changed to a temperature of 130 ° C. and a holding time of 20 seconds. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • Example 8 The sheet obtained in the same manner as in Example 8 was subjected to a heat treatment at 140 ° (for 10 seconds). Thereafter, a single-shot indirect heating vacuum forming machine and a mold CT Delican 15- were used. Using 1 (aluminum), a container was formed as a compact by vacuum forming to 150 mm in length, 110 mm in width, and 20 mm in depth. The inside was set to 125 ° C and the molding cycle was set to 1 second. Table 2 shows the physical properties of the obtained molded body.
  • Example 8 Did not use talc. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a molded article obtained by vacuum molding were obtained. Table 2 shows the physical properties of the obtained molded body.
  • the talc content was changed to 40% by weight. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • polylactic acid (A) polylactic acid (optical purity: 80.0%, residual lactide amount: 0.5% by mass, weight average molecular weight: 200,000, manufactured by Cargill Dow: Neyerworks) was used. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • Example 8 The same crystalline polylactic acid (A) and talc (C) as in Example 8 were used without using the polyester (B) having a glass transition temperature of 0 or less. Otherwise, in the same manner as in Example 8, an unstretched sheet and a container as a vacuum-formed molded body were obtained.
  • Table 2 shows the physical properties of the obtained molded body.
  • Table 2 shows the physical properties of the obtained molded body.
  • Example 8 An unstretched sheet prepared in the same manner as in Example 8 was applied with a molding machine similar to that in Example 8, and the heat treatment conditions were changed, and the sheet was heat-treated at 160 ° C for 5 seconds. Next, a container as a molded body was obtained in the same manner as in Example 8.
  • Table 2 shows the physical properties of the obtained molded body.
  • Example 8 The same molding machine as in Example 8 was applied to the unstretched sheet produced in the same manner as in Example 8, but the heat treatment conditions were changed and heat treatment was performed at 100 ° C. for 1 minute in a mold. Next, a container as a molded body was obtained in the same manner as in Example 8.
  • Table 2 shows the physical properties of the obtained molded body.
  • the containers as molded articles obtained in Examples 8 to 15 did not deform at all even when hot water was poured, and were excellent in heat resistance. The impact resistance was also excellent.
  • Example 16 also uses polylactic acid whose optical purity is within the range of the present invention, and the mixing ratio of the aromatic / aliphatic copolymer polyester having a glass transition temperature of o ° C or lower and talc is within the range of the present invention. Since a sheet is formed using a certain resin composition, and the sheet is subjected to a heat treatment at a temperature and a time within the range of the present invention, the sheet is formed. The heat resistance was excellent. In Comparative Example 6, since no talc was used, the crystallization of the heat-treated container was insufficient, and the container was instantaneously deformed when the hot water was poured. In Comparative Example 7, since the amount of talc added was too large, the container itself was brittle, and cracking of the container during or after molding was observed.
  • Comparative Example 9 as in Examples 1 to 7, the polyester (B) having a glass transition temperature of 0 ° C. or lower was not used, so that the falling ball height was low, and compared with the molded articles of Examples 8 to 16. However, the impact resistance was not sufficient.
  • Comparative Example 10 was excellent in impact resistance because the blending amount of the polyester (B) having a glass transition temperature of 0 ° C. or less was too large, but the crystallization speed was remarkably slow, which required a molding cycle time. This was a problem from the viewpoint of industrial production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

明 細 書
ポリ乳酸系成形体およびその製造方法 技術分野
本発明はポリ乳酸系成形体およびその製造方法に関する。 背景技術
近年、 環境保全に関する社会的要求の高まりに伴い、 微生物など により分解される生分解性ポリマーが注目されている。 生分解性ポ リマ一の具体例としては、 ポリブチレンサクシネート、 ポリ力プロ ラク トン、 ポリ乳酸などの脂肪族ポリエステルや、 テレフタル酸/ 1, 4ブタンジオール/アジピン酸の共重合体などの脂肪族一芳香 族共重合ポリエステル等のような、 溶融成形可能なポリエステルが 挙げられる。. これらの脂肪族ポリエステルの中でも、 自然界に広く 分布し、 動植物や人畜に対して無害なポリ乳酸は、 融点が 1 4 0〜 1 7 5 °Cであり十分な耐熱性を有するとともに、 比較的安価な熱可 塑性の生分解性樹脂として期待されている。
しかし、 ポリ乳酸を単にシートや容器などに成形した場合は、 成 形時の熱履歴によりポリ乳酸の結晶がほぼ完全に融解してしまい、 その結果、 得られた成形体は耐熱性に劣るものとなる。
そこでポリ乳酸に耐熱性を付与する試みが多数報告されている。 例えば、 J P— A— 8 _ 1 9 3 1 6 5には、 乳酸系ポリマーに結晶 核剤としてタルク、 シリカ、 乳酸カルシウムなどを添加して、 射出 成形、 ブロー成形、 圧縮成形などを行うことにより成形体を得る方 法が提案されている。 しかしこの方法では、 熱処理を施していない ために結晶化が不十分である上にポリマーの結晶化速度が遅いため 生産性に劣るという問題がある。 また、 J P— A— 4— 2 2 0 4 5 6には、 ポリ Lーラクチドなどに結晶核剤としてポリダリコール酸 およびその誘導体を加えることで、 結晶化速度を上昇させることに より射出成形のサイクル時間を短縮するとともに、 成形体の機械的 特性を向上させる方法が提案されている。
しかし、 上記 J P— A— 8— 1 9 3 1 6 5には、 前記 J P— A— 4 - 2 2 0 4 5 6に記載の方法によって射出成形により成形体を作 製しょうとしたが、 J P— A— 4— 2 2 0 4 5 6に開示されている ような金型温度が T g以上の条件では、 成形体が得られなかった旨 が記載されている。
J P— A— 1 1一 1 0 6 6 2 8には、 結晶核剤および結晶化促進 剤としてワックスを用い、 成形体を結晶化温度で熱処理する方法、 あるいは成形体を結晶化温度に設定した金型内で一定時間保持する 方法が開示されている。 しかし、 結晶核剤として使用されるヮック スは、 一般にポリ乳酸との相容性が悪くブリードアウトしてくるた め、 少量しか添加できず、 結晶核の形成には不十分である。
J P— A— 9— 2 5 3 4 5には、 結晶核剤を使用せずに耐熱性と 耐衝撃性を付与する方法として、 未延伸シートを 1. 5〜 5倍に延 伸することによって結晶配向度と結晶化度を向上させる技術が開示 されている。 しかし、 この方法では得られたシートは延伸シートと なるため、 成形体を得るために延伸シートを成形加工すると、 この シートをさらに延伸することになる。 ところが、 一度延伸されたシ 一トは延伸性に劣るため深絞り成形などには不向きであり、 必然的 にその用途が限定されるという問題がある。 発明の開示
本発明は、 このような問題点を解決して、 耐熱性および耐衝撃性 にすぐれ、 しかも生産性良く成形可能なポリ乳酸系成形体を得るこ とを目的とする。
この目的を達成するため、 ポリ乳酸を主体とする樹脂成分と結晶 核剤とを含む樹脂組成物からなるシートにて成形された本発明の第 1のァスぺク トのポリ乳酸系成形体は、 前記ポリ乳酸は光学純度が 9 0 %以上であるとともに残留ラクチド量が 0. 1〜 0. 6質量% であり、 前記結晶核剤は 1〜 2 5質量%の範囲で樹脂組成物中に含 まれており、 前記成形体は、 2 0 °CZ分の昇温条件で示差走査型熱 量計にて測定したときの結晶融解熱量 ΔΗπιの絶対値と昇温中の結 晶化により発生する昇温結晶化熱量 ΔΗ cの絶対値との差 ( I ΔΗ m I — I ΔΗ c I ) が 2 5 J /g以上であり、 X線測定による結晶 化度が 3 5 %以上であり、 1 3 0 °Cでの結晶化速度が 0. 0 5 m i n 1以上である。
このようなものによれば、 ポリ乳酸は結晶化速度の極めて遅い素 材として知られているが、 上記のようにポリ乳酸の光学純度と残留 ラクチド量とを規制してポリ乳酸自体の結晶化 (結晶化速度) を促 進するとともに、 適切な量の結晶核剤を添加することで成形後のポ リ乳酸の結晶化度を高めることによって、 耐熱性に優れた成形体を 得ることができる。
本発明によれば、 結晶核剤は、 平均粒径 0. l〜 1 0 ^mのタル クであるのが好適である。
本発明によれば、 結晶核剤の分散剤を含み、 前記分散剤が脂肪酸 アミ ドであるのが好適である。
この脂肪酸アミ ドは、 エル力酸アミ ド、 ステアリン酸アミ ド、 ォ レイン酸アミ ド、 エチレンビスステアリン酸アミ ド、 エチレンビス ォレイン酸アミ ド、 エチレンビスラウリル酸アミ ドのうちの少なく とも 1種であるのが好適である。
本発明のポリ乳酸系成形体は、 真空成形、 圧空成形、 真空圧空成 形、 プレス成形のうちのいずれかの成形加工により成形されている のが好適である。
本発明の第 1のアスペク トにおける、 ポリ乳酸を主体とする樹脂 成分と結晶核剤とを含む樹脂組成物からなるシ一トにて成形された ポリ乳酸系成形体の第 1の製造方法は、 ポリ乳酸の光学純度が 9 0 %以上であるとともに残留ラクチド量が 0 . 1〜 0 . 6質量%で あり、 前記結晶核剤を 1〜 2 5質量%の範囲で含有する樹脂組成物 をシート状に押し出し、 得られたシー卜を 1 1 0〜 1 5 0 °Cの温度 で 1〜 3 0秒間熱処理し、 その後に成形加工する。
本発明の第 1のァスぺク トにおける、 ポリ乳酸を主体とする樹脂 成分と結晶核剤とを含む樹脂組成物からなるシ一トにて成形された ポリ乳酸系成形体の第 2の製造方法は、 ポリ乳酸の光学純度が 9 0 %以上であるとともに残留ラクチド量が 0 . 1〜 0 . 6質量%で あり、 前記結晶核剤を 1〜 2 5質量%の範囲で含有する樹脂組成物 をシート状に押し出し、 得られたシートを成形加工するとともに、 その際に同時に 1 1 0〜 1 5 0 の温度で 1〜 3 0秒間熱処理する。 本発明によれば、 真空成形、 圧空成形、 真空圧空成形、 プレス成 形のうちのいずれかにより成形加工するのが好適である。
したがって本発明の第 1のァスぺク 卜のポリ乳酸系成形体によれ ば、 特定のポリ乳酸に結晶核剤を所定量だけ配合したシートからな る成形体とすることで、樹脂組成物の結晶化速度の促進が実現でき、
2 0 °C /分の昇温条件で示差走査型熱量計にて測定したときの結晶 融解熱量 Δ H mの絶対値と昇温中の結晶化により発生する昇温結晶 化熱量 ΔΗ cの絶対値との差 ( | ΔΗπι | — | AH c | ) が 2 5 J Zg以上であり、 X線測定による結晶化度が 3 5 %以上であり、 1
3 0 °Cでの結晶化速度が 0. 0 5 m i n 1以上である耐熱性に優 れた成形体とすることができる。
また、 本発明の第 1のァスぺク トのポリ乳酸系成形体の製造方法 によれば、 特定のポリ乳酸に結晶核剤を所定量だけ配合した樹脂組 成物にてシー卜を形成し、 シートを成形加工する前あるいは成形加 ェと同時に特定の条件下で熱処理を施すことで、 本発明のポリ乳酸 系成形体を容易に実現できる。
得られたポリ乳酸系成形体は、 耐熱性が必要とされる容器、 例え ば、 弁当用 トレー、 どんぶり、 皿、 コップなどの食器用途に好適に 使用できる他、 夏季の倉庫保管中や運搬中においても変形しないた め、 蓋材ゃ建材、 ボード、 文具、 ケース、 キャリアテープ、 プリべ イ ドカード、 I Cカードなどのカード類、 F R P、各種容器など様々 な用途にも適用できる。 また、 生分解性を有するポリ乳酸を主体と するため、 使用後に廃棄された場合でも自然環境下に蓄積すること がなく、 自然環境や野生動物に対する環境負荷を軽減できる。
ポリ乳酸を主体とする樹脂成分を含む樹脂組成物からなるシ一ト にて成形された本発明の第 2のァスぺク トのポリ乳酸系成形体は、 光学純度 9 5 %以上の結晶性ポリ乳酸樹脂 (A) と、 ガラス転移温 度が 0 °C以下の芳香族 ·脂肪族共重合ポリエステルあるいは脂肪族 ポリエステル (B) と、 平均粒径 1〜 8 ^mのタルク (C) とを構 成成分とし、 (A) と (B) との混合比が (A) / (B) = 9 7 / 3〜 8 0ノ 2 0質量%であり、 かつ (C) の混合比が組成物全体量 に対して 1〜 3 0質量%であるシートからなり、 2 0 °C/m i nの 昇温条件で示差走査型熱量計にて測定した際の結晶融解熱量 ΔΗπι の絶対値と昇温結晶化熱量 ΔΗ cの絶対値との差である結晶化指標 が ( | AHm l — I ΔΗ c | ) ≥2 5 J /gであり、 1 3 0ででの 結晶化速度が 0. 0 1 0 m i n _ 1以上であり、 厚み 5 0 0 ^ mに ついての落球高さが 2 0 c m以上の落球衝撃性を有する。
本発明のポリ乳酸系成形体は、 シートに、 真空成形、 圧空成形、 真空圧空成形、 プレス成形のいずれかを施して得られたものである のが好適である。
ポリ乳酸を主体とする樹脂成分を含む樹脂組成物からなるシート にて成形された本発明の第 2のァスぺク 卜のポリ乳酸系成形体の製 造方法は、 光学純度 9 5 %以上の結晶性ポリ乳酸系樹脂 (A) と、 ガラス転移温度が 0 °C以下の芳香族 ·脂肪族共重合ポリエステルあ るいは脂肪族ポリエステル (B) と、 平均粒径 1〜 8 mのタルク (C) とを、 (A) と (B) との混合比が (A) / (B) - 9 7
3〜 8 0 / 2 0質量%、 (C) の混合比が組成物全体量に対して 1 〜 3 0質量%となるよう配合した樹脂組成物を押し出し成形により シ一卜状にした後、 処理温度 1 1 0〜 1 5 0 °Cおよび処理時間 1〜
3 0秒にて熱処理するとともに成形を行う。
本発明によれば、 シートを熱処理し、 その後に真空成形、 圧空成 形、 真空圧空成形、 プレス成形のいずれか一つにより成形するのが 好適である。 また本発明によれば、 シートを真空成形、 圧空成形、 真空圧空成 形、 プレス成形のいずれか一つにより成形しながら、 同時に成形金 型内で熱処理を施すのが好適である。
したがって本発明の第 2のァスぺク トのポリ乳酸系成形体によれ ば、 光学純度を厳密に調整したポリ乳酸とガラス転移温度が 0 °C以 下の芳香族 · 脂肪族ポリエステルあるいは脂肪族ポリエステルとタ ルクとを所定の混合範囲としてシート状物を形成し、 このシート状 物を真空成形に代表される一般的な成形法によって成形するに際し, たとえば成形前あるいは成形中の金型内で所定の条件にて熱処理す ると、 得られる生分解性の容器の熱的性質は、 ( I A H m I — i △ H e I ) ^ S S J Z gとなり、 結晶化速度が 0 · 0 1 0 m i n - 1 以上となり、 かつ、 厚み 5 0 0 m当たりの落球高さが 2 0 c m以 上となって、 従来のポリ乳酸による成形体では不可能であった熱湯 にも耐えうる耐熱性と耐衝撃性を兼ね備えたものとすることができ る。
このような本発明のポリ乳酸系成形体は、 耐熱性と耐衝撃性が必 要とされる容器、 例えば弁当用 トレー、 どんぶり、 皿、 コップなど に好適に使用できる他に、 夏季の倉庫保管中や運搬中においても変 形しないため、 蓋材ゃ建材、 ボード、 文具、 ケース、 キャリアテー プ、 プリペイ ドカード、 I Cカードなどのカード類、 F R Pなど様々 な用途にも適用できる。 発明を実施するための形態
本発明の第 1のァスぺク 卜のポリ乳酸系成形体は、 特定のポリ乳 酸を主体とする樹脂成分と特定の割合で配合された結晶核剤とを含 有する樹脂組成物からなるシートにて形成される必要がある。
本発明の第 2のアスペク トのポリ乳酸系成形体は、 特定のポリ乳 酸と特定の脂肪族一芳香族ポリエステルあるいは脂肪族ポリエステ ルとが特定の割合で配合されたうえで、 結晶核剤が特定の割合で配 合された樹脂組成物からなるシ一トにて形成される必要がある。 本発明において用いられる結晶性ポリ乳酸樹脂は、 光学純度が 9 0 %以上 (第 1のアスペク ト) または 9 5 %以上 (第 2のァスぺク ト) であることが必要である。
ポリ乳酸のモノマーには 2種の光学活性体、 すなわち D—乳酸お よび L一乳酸が存在する。 現在、 工業的に大量かつ安価に生産され ているのは L一乳酸であり、 ポリ乳酸においても L一乳酸に由来す る L一ポリ乳酸 (P L LA) が一般的に用いられている。 ポリ乳酸 の結晶性は L一乳酸または D—乳酸の含有率により変化し、例えば、 乳酸モノマ一の光学純度 Lを下記の式 1 として規定した場合、 Lが 大きいほど、 すなわち、光学純度が高くなるほど結晶性が増加する。
光学純度 = I M (L) -M (D) I… (式 1 )
ただし、 M (L) はポリ乳酸樹脂を構成する全乳酸単位に対する L 一乳酸単位のモル%、 M (D) はポリ乳酸樹脂を構成する全乳酸単 位に対する D—乳酸単位のモル%であって、 M (L) +M (D) = 1 0 0である。
具体的に説明すると、 第 1のアスペク トにおいて光学純度が 9 0 %以上であることは、 たとえばポリ乳酸中の D体含有率が 5モ ル%以下であることに該当する。 このようなポリ乳酸としては、 ポ リ L—乳酸、 L一乳酸と D—乳酸の共重合体であるポリ D L—乳酸、 またはこれらの混合体を挙げることができる。 一般に、 光学純度 1 0 0 %、 例えば 1 0 0 % L —乳酸成分からな るモノマーより P L L Aを重合した場合でも、 重合やその後の溶融 成形における熱履歴により部分的にモノマーのラセミ化が起こるた め、 工業的に利用される P L L Aの光学純度は 9 8 %近辺が上限で あるといわれている。 したがって、 これがポリ乳酸のなかで実用的 には最も高結晶性の組成である。 しかしながらこのような高純度の L 一乳酸成分からなる P L L Aにおいても、 その結晶化速度は比較 的遅く、 冷却結晶化過程における過冷却性が非常に高い。
一方、 最終的に得られるポリ乳酸系成形体に耐熱性を付与するに は、 ポリ乳酸自体の結晶化 (結晶化速度) を促進させることに加え、 成形後のポリ乳酸の結晶化度を向上させる必要がある。 このために はポリ乳酸自体が高結晶性と成り得る能力を有していることが必要 である。 そのためには、 本発明の第 1のアスペク トにおいては上記 のように光学純度が 9 0 %以上のポリ乳酸樹脂であることが必要で、 好ましくは 9 6 %以上である。 また本発明の第 2のアスペク トにお いては上記のように光学純度が 9 5 %以上のポリ乳酸樹脂であるこ とが必要で、 好ましくは 9 6 %以上である。 光学純度が 9 0 %未満 (第 1のアスペク ト) または 9 5 %未満 (第 2のアスペク ト) ©ポ リ乳酸樹脂では、 ポリ乳酸自体の結晶性が低下し、 結晶核剤として のタルクの添加を行ったり熱処理を施したりしても十分に結晶化せ ず所要の耐熱性が得られない。
特に実質的な強度や耐久性を得るためには、 ポリ乳酸として、 比 較的高分子量の重合体、目安としては重量平均分子量が 1 0万以上、 好ましくは 1 5万〜 3 0万の重合体を用いることが良い。 より好ま しくは 1 6万〜 2 0万である。 ポリ乳酸の重量平均分子量が 1 5万 未満であると溶融粘度が低くすぎて、 得られたシー卜は機械的特性 に劣るものになり、 重量平均分子量が 3 0万を超えると溶融粘度が 高くなりすぎて溶融押出が困難となる。
一般にポリ乳酸樹脂に存在するラクチドは、 量が多すぎるとポリ 乳酸の加水分解を促進する結果となることが知られているが、 低分 子量のラクチドは高分子量のポリ乳酸よりも結晶化しやすく、 この ラクチドの結晶化が起爆剤となってポリ乳酸の結晶化を促進する。 そこで、 ポリ乳酸に含まれるラクチドを適当量に規定することは、 結晶化の促進と耐熱性付与という目的には有効な項目となる。 つま り、 本発明の第 1のアスペク トによれば、 残留ラクチド量は樹脂の 全体に対して 0 . 1〜 0 . 6質量%の範囲にあることが必要で、 0 . :!〜 0 . 4質量%の範囲にあることが好ましい。 また、 本発明の第 2のアスペク トによれば、.残留ラクチド量は樹脂の全体に対して 0 . 1〜 0 . 6質量%の範囲にあることが好ましく、 0 . 1〜 0 . 4質 量%の範囲にあることがより好ましい。 残留ラクチド量が 0 . 1質 量%未満では、 ポリ乳酸の結晶化を促進する起爆剤としては量が少 なすぎて用を足しにくくなる。 また、 0 . 6質量%を超えると、 加 水分解を促進する作用が強まる。
本発明の第 2のァスぺク 卜にもとづき、 ポリ乳酸系成形体の耐熱 性のみならず耐衝撃性をも格段に向上させるためには、 0 °C以下の ガラス転移温度を有する、 芳香族 ·脂肪族共重合ポリエステルある いは脂肪族ポリエステルが、 構成成分として必須である。
この芳香族 · 脂肪族共重合ポリエステルあるいは脂肪族ポリエス テルは、 ガラス転移温度が 0 °c以下であるため、 常温においても柔 軟性を有している。 このような成分がポリ乳酸樹脂中に分散するこ とは、 ゴムを分散させる場合と同様に外部衝撃を吸収する働きがあ る。 すなわち、 衝撃性の改善に寄与するものである。 この成分の具 体例としては、 構成成分として少なくとも脂肪族ジカルボン酸、 芳 香族ジカルボン酸、 および脂肪族ジオールを有する共重合ポリエス テルである芳香族 ·脂肪族共重合ポリエステルが挙げられる。 ある いは、 少なくとも脂肪族ジカルボン酸、 脂肪族ジオールからなる脂 肪族ポリエステルが挙げられる。 あるいは、 環状モノマーである ε 一力プロラク トンの開環重合により得られる脂肪族ポリエステルが 挙げられる。
脂肪族ジカルボン酸としては、 コハク酸、 アジピン酸、 スベリン 酸、 セ Λシン酸、 ドデカン二酸などが挙げられる。 芳香族ジカルポ ン酸としては、 テレフタール酸、 イソフタ一ル酸、 ナフタレンジ力 ルボン酸などが挙げられる。 脂肪族ジオールとしては、 エチレング リコール、 プロピレングリコール、 1 , 4一ブタンジオール、 1, 4 _シクロへキサンジメタノールなどが挙げられる。 そして ( Β ) 成分は、 上記各構成成分を少なく とも 1種以上選択し、 重縮合して 得られる。 必要に応じて、 イソシァネートや酸無水物、 エポキシ化 合物、 有機過酸化物などを用いて、 構造上ジャンプアップおよび長 鎖分岐をもたせることもできる。
本発明の第 2のアスペク トにおいては、 光学純度 9 5 %以上の結 晶性ポリ乳酸系樹脂を (Α) 成分とし、 またガラス転移温度が 0 °C 以下の芳香族 · 脂肪族共重合ポリエステルあるいは脂肪族ポリエス テルを (B) 成分としたときに、 これら (A) 成分と (B) 成分の 混合比が (A) / (B) = 9 7 / 3〜 8 0 / 2 0質量%であること が必要であり、 好ましくは (A) / (B) = 9 7 / 3〜 8 5 / 1 5 質量%であり、 さらに好ましくは (A ) / ( B ) = 9 5 / 5〜 8 5 / 1 5質量%である。 (B )成分の混合比が 3質量%未満であると、 外部衝撃を吸収しきれず耐衝撃性に劣ったものとなる。 一方、 (B ) 成分の混合比が 2 0質量%を超えると、 耐衝撃性は著しく改善され るものの、 ポリ乳酸自体の結晶化を妨げる結果となり、 耐熱性に劣 ることになる。 かつ、 同時に結晶化速度自体も遅くなるため、 実生 産における成形サイクルに時間を要し、 生産性に劣ってしまうこと になる。
なお、 本発明の第 1のアスペク トにおいても、 必要に応じて、 脂 肪族ポリエステル、 脂肪族一芳香族共重合ポリエステル、 ポリエス テルカーボネー卜などの他の樹脂成分を、 ポリ乳酸の特性を損なわ ない範囲において含有していても良い。
本発明の第 1のァスぺク 卜においては、 樹脂組成物中において結 晶核剤が 1〜 2 5質量%の範囲で含有されている必要がある。 結晶 核剤の添加量が 1質量%未満であると、 結晶核剤としての効果を十 分発揮できなくなり、 結晶核剤の添加量が 2 5質量%を超えると、 結晶核剤の含有量が多くなりすぎて成形品が脆くなるなど物性に悪 影響を与えてしまう。 従って、 結晶核剤の添加量は樹脂組成物中に 1〜 2 0質量%の範囲であることが好ましく、 1〜 1 5質量%の範 囲であることがより好ましい。
結晶核剤の平均粒径は、 0 . 1〜 1 0 z mの範囲にあることが好 ましい。 平均粒径が 0 . l ^ m未満であると、 分散不良や二次凝集 を生じて結晶核剤としての効果が十分に得られなくなり、 平均粒径 が 1 0 mを超えると、 シート化した際にシー卜の物性に悪影響を 与え、 結果的に成形体の物性に悪影響を及ぼすこととなる。 結晶核剤は特に限定されるものではないが、 タルク、 スメク夕ィ 卜、 バーミキユライ ト、 膨潤性フッ素雲母など 代表される層状珪 酸塩などが使用でき、 中でもタルクは、 ポリ乳酸に対して最も結晶 化効率の高い無機物質であることから結晶核剤として好適に使用で きる。 また、 タルクは非常に安価で、 しかも自然界に存在する無機 物質であるため、 工業的にも有利で地球環境にも負荷を与えないた め好ましい。
本発明の第 2のアスペク トにおいては、結晶化を促進させるため、 上述のようにポリ乳酸樹脂自体を最適化することに加え、 結晶核剤 としてのタルクの存在が必須である。
本発明の第 2のアスペク トにおける結晶核剤としてのタルクは、 平均粒径が 1〜 8 ΠΊであり、 好ましくは 1〜 5 mである。 数あ る結晶核剤の内、 タルクは、 ポリ乳酸に対して最も結晶化効率の高 い無機物質であることから結晶核剤として最適であるだけでなく、 非常に安価で、 また自然界に存在する無機物質であるため工業的に も有利であり、 しかも地球環境に負荷を与えない。 このタルクの平 均粒径が 1 m未満であると、 分散不良や二次凝集を生じ結晶核剤 としての効果を十分に発揮できず、 このため得られる成形体の耐熱 性が不十分となる。 平均粒径が 8 z mを超えると、 タルクは結晶核 剤として作用する以外に成形体における欠点となり、 このため得ら れる成形体の物性や表面状態に悪影響を及ぼす。
タルクの含有量は組成物全量に対し、 1〜 3 0質量%でぁり、 好 ましくは 5〜 2 0質量%、 さらに好ましくは 1 0〜 1 5質量%であ る。 1質量%未満では、 含有量が少なすぎて結晶核が少量しか生成 せず、 結晶核剤としての効果を十分発揮できず、 したがって成形体 の耐熱性が不十分となる。 3 0質量%を超えると、 含有量が多くな りすぎて、 成形体が脆くなるなど物性に悪影響を及ぼす。
シートを形成する樹脂組成物には、 結晶核剤を効率よく分散させ るために、 分散剤を使用してもよい。 分散剤としては、 ポリ乳酸と の相溶性に優れ、 結晶核剤との濡れ性にも優れていることが好まし い。 このような物質としては、 エル力酸アミ ド、 ステアリン酸アミ ド、 ォレイン酸アミ ド、 エチレンビスステアリン酸アミ ド、 ェチレ ンビスォレイン酸アミ ド、 エチレンビスラウリル酸アミ ドなどの脂 肪酸アミ ドの中から少なくとも 1種類を選択することが、 ポリ乳酸 系成形体の結晶性を効率よく高める上で重要である。
本発明においては、 結晶核剤による結晶化速度をより促進するた めに、 必要に応じて有機過酸化物などの架橋剤および架橋助剤を併 用して、 樹脂組成物に極軽度の架橋を施すことも可能である。
架橋剤の具体例としては、 n —プチル— 4, 4 一ビス一 t —ブチ ルパ一ォキシバリレート、 ジクミルパーオキサイ ド、 ジ一 t ーブチ ルパ一オキサイ ド、 ジー t 一へキシルパーオキサイ ド、 2 , 5—ジ メチルー 2, 5—ジ ( t -ブチルパ一ォキシ) へキサン、 2 , 5— ジメ.チルー 2 , 5— t 一ブチルパーォキシへキシン一 3などの有機 過酸化物、 無水フ夕ル酸、 無水マレイン酸、 トリメチルアジピン酸、 無水トリメリッ ト酸、 1 , 2 , 3, 4—ブタンテトラカルボン酸な どの多価カルボン酸、 蟻酸リチウム、 ナトリウムメ トキシド、、 プ ロピオン酸カリウム、 マグネシウムエトキシドなどの金属錯体、 ビ スフエノール A型ジグリシジルエーテル、 1 , 6—へキサンジォ一 ルジダリシジルエーテル、 トリメチロールプロパントリダリシジル エーテル、 テレフタル酸ジグリシジルエステル、 などのエポキシ化 合物、 ジイソシァネート、 トリイソシァネート、 へキサメチレンジ イソシァネート、 2, 4 _ トリ レンジイソシァネート、 2, 6— ト リ レンジイソシァネー卜、 キシリ レンジイソシァネート、 ジフエ二 ルメタンジィソシァネートなどのィソシァネート化合物などが挙げ られる。
架橋助剤の具体例としては、 トリメタクリ レー ト、 グリシジル タクリ レート、 ノルマルーブチルメタクリ レート、 ヒ ドロキシプ口 ピルモノメタクリ レート、 ポリエチレングリコールモノメタクリ レ 一トなどが挙げられる。
本発明の第 1のアスペク トのポリ乳酸系成形体は、 上述のように 特定のポリ乳酸を主体とする樹^成分と特定の割合で配合された結 晶核剤とを含有する樹脂組成物からなるシートにて形成される必要 がある。 本発明の第 2のアスペク トのポリ乳酸系成形体は、 上述の ように、 特定のポリ乳酸と特定の脂肪族一芳香族ポリエステルある いは脂肪族ポリエステルとが特定の割合で配合されたうえで、 結晶 核剤が特定の割合で配合された樹脂組成物からなるシートにて形成 される必要がある。
いずれのァスぺク トの成形体であっても、 結晶化指標としての、 2 0 °C/m i nの昇温条件で示差走査型熱量計にて測定した際の結 晶融解熱量 AHmの絶対値と昇温結晶化熱量 ΔΗ cの絶対値との差 が .( | ΔΗπι I一 I ΔΗ c | ) ≥ 2 5 J Zgとなることが必要であ る。 好ましくは、 ( | ΔΗπι | — | ΔΗ ο | ) ≥2 9 J /gである。 このように ( | AHm | — | z H c | ) ≥ 2 5 J Z gとするために は、 上述のように使用するポリ乳酸の光学純度、 残留ラクチド量、 結晶核剤 (タルク) の平均粒径およびその添加量を各々最適化する とともに、 後述する熱処理を実施することが必要である。
( | ΔΗπι I一 I ΔΗ c | ) が 2 5 J /g未満である場合は、 十 分に結晶化されておらず、 例えば成形した容器に熱湯 ( 9 0 °C) を 注いだ場合に通常のポリ乳酸から得られる容器では容器が熱変形し てしまい耐熱性が不十分である。 しかし、 2 5 J g以上ではその ような現象は生じない。
本発明の第 1のアスペク トのポリ乳酸系成形体においては、 上記 のように ( | ΔΗΓΠ | — | ΔΗ。 | ) ≥ 2 5 】ノ となることに加 えて、 同時に、 X線測定による結晶化度が 3 5 %以上であり、 かつ 1 3 0 °Cでの結晶化速度が 0. 0 5 m i n _ 1以上であることが必 要である。
X線測定による結晶化度が 3 5 %以上であるようにするためには, 上述のように使用するポリ乳酸の光学純度、 残留ラクチド量、 結晶 核剤 (タルク) の平均粒径およびその添加量を各々最適化するとと もに、 後述する熱処理を実施することが必要である。
1 3 0 °Cでの結晶化速度が 0. 0 5 m i n— 1以上であるように するためには、 光学純度が 9 0 %以上かつ残留ラクチド量が 0. 1 〜 0. 6質量%の結晶性ポリ乳酸を用いるとともに、 これに平均粒 径が 0. 1〜 1 0 mの結晶核剤を組成物全量に対し 1〜 3 0質 量%混合したシートを形成し、 このシートを 1 1 0〜 1 5 0 °Cの温 度で 1〜 3 0秒間熱処理することが必要である。
第 1のアスペク トによれば、 上記の 3つの条件をすベて満たす場 合にのみ、 成形体が第 1のァスぺク 卜における耐熱性を有するに必 要なだけ、 ポリ乳酸が十分に結晶化されているといえる。 従って、 第 1のァスぺ々 トにおいて少なくともいずれかの条件を満たさない 場合には、 ポリ乳酸が十分に結晶化されずに成形体となっているた め、 得られた成形体は耐熱性に劣るものとなる。
本発明の第 2 'のァスぺク 卜において、 成形体の製造に際しては、 熱処理が必須条件となる。 ところが、 工業的には熱処理に長時間か けることは不可能である。 一方、 ポリ乳酸は結晶化速度の極めて遅 い素材として知られている。 したがって、 工業的な成形サイクルに 適応できるだけの結晶化速度を付与することが必要となる。 第 2の ァスぺク 卜では、 ポリ乳酸の組成や結晶核剤や熱処理条件を細部ま で最適化したことにより、 所要の成形体を工業的に生産が可能とな る。 第 2のアスペク トの成形体は、 1 3 0 °Cでの結晶化速度が 0 . 0 1 0 m i n _ 1以上であることが必要であり、 0 . 0 1 5 m i n一 1以上であることが好ましい。 1 3 0 °Cでの結晶化速度が 0 . 0 1 O m i n— 1未満であると、 結晶化速度が遅く通常の成形サイクル に不適な他、 結晶化が不十分となって、 耐熱性に劣ったものとなる。 この第 2のアスペク トにおいて、 1 3 0 °Cでの結晶化速度が 0 . 0 1 0 m i n— 1以上であるようにするためには、 使用するポリ乳酸 の光学純度の最適化と、 タルクの平均粒径や混合比の最適化と、 芳 香族 · 脂肪族共重合ポリエステルあるいは脂肪族ポリエステルとポ リ乳酸との混合比の最適化とを行ったうえで、 後述のように処理温 度 1 1 0〜 1 5 0 °C、 処理時間 1〜 3 0秒の熱処理を行うことが必 要である。
本発明の題 2のアスペク トのポリ乳酸系成形体においては、 厚み 5 0 0 x mについての落球高さが 2 0 c m以上の落球衝撃性を有し ていることが必要である。 ここで厚み 5 0 0 z mについての落球高 さとは、 厚み 5 0 0 i mのシートにて形成された箱状の成形体を伏 せた状態とすることでその底部を上面にして水平に設置し、 これに 3 0 0 の鉄球を 5 c mごとの異なる高さから複数回落下させた場 合に、 [ ( 2回に 1回の割合で割れた高さ) — 5 ] c mをいう。
厚み 5 0 0 mについての落球高さが 2 0 c m未満であると、 成 形体の運搬時に外部衝撃が加えられた場合などにおいて、 割れが生 じたりヒビが入ったりする可能性がある。 よって、 厚み 5 0 0 m についての落球高さが 3 0 c m以上であるのが好ましい。
厚み 5 0 0 /z mについての落球高さが 2 0 c m以上の落球衝撃性 を有するようにするためには、 ガラス転移温度が 0 °C以下の芳香 族 · 脂肪族共重合ポリエステルあるいは脂肪族ポリエステルを、 光 学純度 9 5 %以上の結晶性ポリ乳酸樹脂に対し 3質量%以上混合さ せることが必要である。
次に本発明の成形体の分子量保持率について説明する。 ここで、 分子量保持率とは、 成形体を 5 0 °C、 9 0 % R Hの恒温恒湿機内に 3 0 日間放置する分解加速試験の後の重量平均分子量 (M w ) を放 置前の重量平均分子量で除した値の百分率値のことをいう。 生分解 性を有するポリ乳酸系樹脂製品は、 通常、 シートや成形品の保管あ るいは使用中には分解が極力進行せず、 これに対し使用後は速やか に分解することが好ましい。 このため、 上記の分解加速試験の条件 下において分子量保持率が 6 0 %以上であることが好ましく、 7 0 %以上であることがさらに好ましい。 分子量保持率が 6 0 %未満 であることは、 分解速度が速いことを意味し、 倉庫保管中等におい て分解が進んで、 実使用に耐えられないおそれがあるため、 好まし くない。
成形体を形成する樹脂組成物中には、 必要に応じて、 可塑剤、 紫 外線防止剤、 光安定剤、 防曇剤、 防霧剤、 帯電防止剤、 難燃剤、 着 色防止剤、 酸化防止剤、 充填材、 顔料などを樹脂組成物の特性を損 なわない範囲で添加してもよい。
次に、 本発明の第 1のアスペク トのポリ乳酸系成形体の製造方法 について説明する。
まず、 光学純度 9 0 %以上であり残留ラクチド量が 0 . 1〜 0 . 6質量%のポリ乳酸樹脂と、 結晶核剤と、 必要に応じて分散剤とを 混合し、 これを溶融したうえでシート化する。 シート化の方法は、 特に限定されるものではなく、 例えば、 Tダイ法、 インフレーショ ン法、 カレンダ一法等が挙げられる。 なかでも、 Tダイを用いて溶 融混練して押出す Tダイ法が好ましい。 Tダイ法により製造する場 合には、 たとえば、 原料を 1軸押出機あるいは 2軸押出機の押出機 ホッパーに供給し ; 押出機を例えば、 シリンダー温度 1 8 0〜 2 3 0 °C、 Tダイ温度 2 0 0〜 2 3 0 °Cに加熱し;溶融混練して押出し ; 3 0〜 5 0 °Cの温度範囲に設定されたキャストロールにて冷却し、 厚み 1 5 0〜 5 0 0 m程度の未延伸シートを得る。 この未延伸シ ートの厚みは、 特に限定されるものではなく、 用途や要求性能や価 格等によつて適宜設定すればよい。
得られたシートは成形加工により成形体となるが、 上述の所要の 熱特性を有する成形体を得るためには、 特定の組成を有するポリ乳 酸系樹脂組成物を用いるだけでなく、 シートを成形加工する前、 あ るいはシートを成形加工する際に同時に、 特定条件下での熱処理を 施して成形後のポリ乳酸の結晶化度を向上させる必要がある。
具体的には、 熱処理時の温度を、 実質的に最もポリ乳酸が結晶化 し易い温度である 1 1 0〜 1 5 0 °Cの範囲とする必要がある。 熱処 理温度が 1 1 o°c未満であるとポリ乳酸の十分結晶化が進行しなく なり、 熱処理温度が 1 5 0 °Cを超えるとポリ乳酸の結晶化速度が極 端に遅くなるとともに、 ポリ乳酸の融点に近づくため結晶が融解し てしまい、 結果的に結晶化が不十分となる。 従って、 熱処理温度は 1 2 5〜 1 5 0 °Cの範囲であることがより好ましく、 1 2 5〜 1 4 5 °Cの範囲であることが特に好ましい。
また、 熱処理時間は実質的に生産サイクルに適用可能でしかも過 不足無く結晶化できる時間である 1〜 3 0秒の範囲とする必要があ る。 熱処理時間が 1秒未満であるとポリ乳酸が結晶化に要する時間 が足りなくなり、 熱処理時間が 3 0秒を超えると実質的な生産サイ クルに適応しなくなり、 工業的に不具合が生じることとなる。 従つ て、 熱処理時間は 3〜 3 0秒の範囲であることがより好ましく、 3 〜 2 0秒の範囲であることがとくに好ましい。
シートの成形加工方法は、 特に限定されるものではないが、 真空 成形、 圧空成形、 真空圧空成形、 プレス成形のうちのいずれかの成 形加工方法が好適である。
このようなポリ乳酸系成形体の製造方法によると、 2 0 °CZ分の 昇温条件で示差走査型熱量計にて測定した結晶融解熱量 AHmの絶 対値と昇温結晶化熱量 ΔΗ cの絶対値との差が 2 5 J /g以上であ り、 X線測定における結晶化度が 3 5 %以上であり、 1 3 0 °Cでの 結晶化速度が 0. 0 5 m i n _ 1以上と、 本発明の第 1のァスぺク 卜にもとづき熱特性を有する耐熱性に優れた成形体を、 実生産の生 産サイクルで工業的に成形できる。
次に、 本発明の第 2のァスぺク 1、のポリ乳酸系成形体の製造方法 について説明する。 まず、 光学純度 9 5 %以上のポリ乳酸樹脂 (A ) と、 ガラス転移 温度が 0 °C以下の芳香族 · 脂肪族共重合ポリエステルあるいは脂肪 族ポリエステル (B ) と、 タルク (C ) および必要に応じて分散剤 とを、 所定量にて配合する。 この場合、 予め 2軸混練押し出し機に て全量コンパウンドしてもよく、 (A ) と (C ) のみコンパウンド し ( B ) をドライブレンドしてもよい。 また、 全てドライブレンド してもよい。 その後、 Tダイを装備した 1軸押し出し機あるいは 2 軸押し出し機にて溶融混練してその Tダイより押し出し、 3 0〜 5 0 °cの温度範囲に設定されたキャス トロールにて未延伸シートを成 形する。 シートの厚みは、 使用目的により適宜選択できるが、 通常 は 2 0 0〜 7 5 0 mが好ましい。
次に、 連続あるいは別工程にて上記未延伸シートを下記の条件で 熱処理し、 その後に、 プレス成形、 真空成形、 圧空成形あるいは真 空圧空成形のいずれかを選択して目的の成形物を得る。 あるいは、 未延伸シートを上記成形法のいずれかを選択して成形する際、 金型 内で熱処理しながら成形してもよい。 '
本発明において、 上述の如く樹脂、 結晶核剤など細部にまで最適 化を施したうえで熱処理を実施する場合の条件として、 処理温度 1 1 0〜 1 5 0 °Cおよび処理時間 1〜 3 0秒にて実施することが必要 である。 上記の処理温度 1 1 0〜 1 5 0 °Cは、 実質的に最もポリ乳 酸が結晶化し易い温度である。 また、 処理時間 1〜 3 0秒は、 実質 的に生産サイクルに適用可能でしかも過不足無く結晶化できる時間 である。 処理温度が 1 1 0 °C未満では結晶化が十分に進行せず、 反 対に 1 5 0 Xを超えると結晶化速度が極端に遅くなり結果的に結晶 化が不十分となってしまう。 また処理時間が 1秒未満では結晶化に 要する時間が足りず、 3 0秒を超えると実質的な成形サイクルに適 応せず工業的な生産には不具合が生じる。 実施例
次に、 本発明の実施例を、 比較例とともに説明する。
以下の実施例、 比較例における各種物性値の測定は以下のとおり である。
( 1 ) 結晶融解熱量 ΔΗπιと昇温結晶化熱量 ΔΗ c
パーキンエルマ一社製 P y r i s 1 D S C を用い、 成形品の うちの 1 0 m gを試験試料とし、 昇温速度 2 0 °C/m i nにて昇温 した際、 発熱側に現れるピークの合計熱量を昇温結晶化熱量 ΔΗ c とし、 吸熱側に現れるピークの合計熱量を結晶融解熱量 ΔΗπιとし た。
( 2 ) X線測定による結晶化度
測定対象の成形品を粉末化して、 X線回折装置 (理学電気工業社 製、 RAD— r B) を用いて WAXD反射粉末法により測定し、 多 重ピーク分離法による積分強度比より求めた。
( 3 ) 結晶化速度
パーキンエルマ一社製 P y r i s 1 D S C を用い、 2 0 °Cか ら 2 0 0 °Cまで 5 0 0 °C/m i nで昇温後、 5分間保持し、 さらに 1 3 0 °Cまで— 5 0 0 °C/m i nで急冷し、 その後に結晶化が終了 するまで測定した。 その後、 結晶化分率が 0. 5になるまでの時間 の逆数に結晶化分率 0. 5を乗した値を結晶化速度とした。
( 4 ) 耐熱性
単発間接加熱真空成型機および金型 C Tデリカン 1 5— 1 1 (ァ ルミ製) を用いて、 シートから縦 1 5 0 mm、 横 1 1 0 mm、 深さ 2 0 mmの容器を成形し、 この容器に 9 0 °Cの熱湯を注ぎ、 5分後 に容器の変形を目視にて観察し、 全く変形がない場合を耐熱性良好 として〇で評価し、 少しでも変形が認められた場合を耐熱性やや不 良として で評価し、 著しく変形した場合を耐熱性不良として Xで 評価した。
( 5 ) 分子量保持率
試料を 5 0 °C、 9 0 %RHの恒温恒湿機内に 3 0 日間放置した後 の重量平均分子量 (Mw) を、 ゲルパーミエ一シヨンクロマトグラ フィー ( G P C ) 法により、 ポリスチレンを標準物質として、 TH F溶液中のポリ乳酸を S t y r a g e 1 HRカラムと U l t r a s t y r a g e 1 カラム、 および検出器として屈折率計を用いて測 定し、 下記式により保持率を計算した。
Mw保持率 (%) = ( 3 0 日後の Mw/放置前の Mw) X 1 0 0 この分子量保持率は、 加水分解の指標となるものであり、 分子量 保持率が低い程加水分解が進んでいるといえるものである。
( 6 ) 耐衝撃性
厚み 5 0 0 mのシートにて形成された熱処理後の箱状の成形体 を伏せた状態とすることでその底部を上面にして水平に設置し、 こ れに 3 0 0 gの鉄球を 5 c mごとの異なる窩さから垂直に落下させ、 ( 2回に 1回の割合で割れが生じたときの高さ一 5 ) c mを落球高 さとして、 耐衝撃性の評価を行った。
実施例 1
光学純度が 9 7. 6 %、 残留ラクチド量が 0. 2質量%、 重量平 均分子量 2 0万のポリ乳酸 (力一ギル ' ダウ社製 : ネィチヤ一ヮー クス) 8 4質量%と、 結晶核剤として平均粒径が 2. 7 5 zmの夕 ルク (林化成社製、 MW HS -T) 1 5質量%と、 分散剤として エル力酸アミ ド (日本油脂社製、 アルフロー P 1 0 ) 1質量%とを 用い、 2軸混練押出機 (日本製鋼所社製、 型番 Τ Ε Χ 44 α) を用 いて溶融混練し、 押出温度 2 3 0 °Cにてポリ乳酸コンパウンド原料 を作製した。 次いで、 このポリ乳酸コンパウンド原料を幅 1 0 0 0 mmの Tダイを装着したスクリユー径 9 0 mmの単軸押出機を用い. 押出温度 2 1 5 にて溶融押出し、 4 0 °Cに設定されたキャス ト口 —ルに密着させて厚み 3 5 0 imの未延伸シートを得た。 得られた シートに単発間接加熱真空成形機とアルミ製の金型 (CTデリカン 1 5 - 1 1 ) とを適用して、 真空成形により、 縦 1 5 0 mm、 横 1 1 0 mm、 深さ 2 0 mmの成形体としての容器を作製した。 なお、 真空成形時に金型内温度を 1 4 0 °Cとして、 5秒間の熱処理を施し た。
得られた成形体の物性などを表 1 に示す。
実施例 実施例 実施例 実施例 実施例 実施例 実施例 比較例 比較例 比較例 比較例 比較例
1 2 3 4 5 6 7 1 2 3 4 5 ポリ 光学純度 (%) 97.6 92.0 97.8 97.6 97.6 97.6 97.6 97.6 97.6 80.0 97.6 97.6 乳酸 残留ラクチト'(質量%) 0.2 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1.0 0.2 タルク 含有量 (質量%) 15 15 15 1 15 15 15 0 40 15 15 15
平均粒径( m) 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 2.75 熱処理温度 C) 140 125 140 140 145 130 140 140 140 140 140 110 熱処理時間 (秒) 5 15 5 5 3 20 7 5 5 5 5 60 t
1 ΔΗπι Ι - 1 A Hc l 33.7 31.7 36.0 26.0 29.5 27.0 34.0 8.2 21.3 0 35.5 11.2
結晶化度 (%) 42 40 43 35 38 36 43 4 29 0 43 15 結晶化速度 (min— 3 ) 0.085 0.055 0.095 0.100 0.085 0.085 0.085 0.005 0.040 0 0.100 0.085
耐熱性 〇 〇 〇 〇 〇 〇 〇 X Δ X 〇 X 分子量保持率 (%) 82 80 85 85 78 75 82 35 80 25 10 35
実施例 2
光学純度が 9 2 . 0 %、 残留ラクチド量が 0 . 2質量%、 重量平 均分子量が 1 9万のポリ乳酸 (カーギル · ダウ社製 : ネイチヤーヮ 一クス) を用いた。 そしてそれ以外は実施例 1 と同様にして未延伸 シートを形成し、 さらに成形体としての容器を得た。 なお、 真空成 形時に金型内温度を 1 2 5 °Cとして、 1 5秒間の熱処理を施した。 得られた成形体の物性などを表 1に示す。
実施例 3
光学純度が 9 7 . 8 %、 残留ラクチド量が 0 . 4質量%、 重量平 均分子量が 2 0万のポリ乳酸 (カーギル · ダウ社製 : ネイチヤーヮ 一クス) を用いた。 そしてそれ以外は実施例 1 と同様にして、 成形 体としての容器を作製した。
得られた成形体の物性などを表 1に示す。
実施例 4
結晶核剤としてのタルクの含量を 1質量%とした。 そしてそれ以 外は実施例 1 と同様にして、 成形体としての容器を得た。
得られた成形体の物性などを表 1に示す。
実施例 5, 6
真空成形時に同時に行う熱処理のための金型内温度と熱処理時間 とを表 1に示すようにした。 そしてそれ以外は実施例 1 と同様にし て、 成形体としての容器を得た。
得られた成形体の物性などを表 1に示す。
実施例 7
未延伸シー卜にあらかじめ 1 4 0 °Cで 7秒間の熱処理を施し、 こ の熱処理後に金型内温度を 1 2 5 °Cとし、 処理時間を 1秒として真 空成形を行った。 そしてそれ以外は実施例 1 と同様にして、 成形体 としての容器を得た。
得られた成形体の物性などを表 1に示す。
実施例 1〜 6で得られた成形体としての容器は、 いずれも D体含 有率と残留ラクチド量が本発明の範囲内であるポリ乳酸を用い、 結 晶核剤の配合割合が本発明の範囲内である樹脂組成物を用いてシ一 トを形成し、 このシ一卜に成形加工を行うと同時に本発明の範囲内 の温度および時間で熱処理が施されていたため、 結晶性が良く、 耐 熱性に優れたものであった。 実施例 7は、 シートに成形加工を行う と同時に熱処理を行う代りに、 成形加工の前のシートに本発明の範 囲内の温度および時間で熱処理を施した後に真空成形を行ったため, 得られた成形体は結晶性が良く、 耐熱性に優れたものであった。 比較例 1
結晶核剤としてのタルクを添加しなかった。 そしてそれ以外は実 施例 1 と同様にして、 成形体としての容器を得た。
得られた容器の物性などを表 1に示す。
比較例 2
結晶核剤としてのタルクの添加量を本発明の範囲よりも多く 4 0 質量%とした。 そしてそれ以外は実施例 1 と同様にして、 成形体と しての容器を得た。
得られた容器の物性などを表 1に示す。
比較例 3
光学純度が本発明の範囲よりも低く 8 0 . 0 %であり、 残留ラク チド量が 0 . 2質量%であり、 重量平均分子量が 2 0万のポリ乳酸 (力一ギル . ダウ社製 : ネイチヤーワークス) を用いた。 そしてそ れ以外は実施例 1 と同様にして、 成形体しての容器を得た。
得られた容器の物性などを表 1に示す。
比較例 4
光学純度が 9 7 . 6 %であり、 残留ラクチド量が本発明の範囲よ りも多く 1 . 0質量%であり、 重量平均分子量が 2 0万のポリ乳酸 (カーギル · ダウ社製 : ネイチヤーワークス) を用いた。 そしてそ れ以外は実施例 1 と同様にして、 成形体としての容器を作製した。
得られた容器の'物性などを表 1 に示す。
比較例 5
熱処理温度を本発明の範囲よりも低く 1 1 0 °cとし、 熱処理時間 を本発明の範囲よりも長く 6 0秒とした。 そしてそれ以外は実施例 1 と同様にして、 成形体としての容器を作製した。
得られた容器の物性などを表 1に示す。
比較例 1は、 シ一トを形成する樹脂組成物に結晶核剤を添加しな かったため、 結晶化速度の促進が図れず、 生産性に劣るものであつ た。 また、 得られた容器は、 結晶化が不十分なため、 熱湯を注ぐと 一瞬で変形してしまい、 耐熱性に劣るものであった。
比較例 2は、 結晶核剤の添加量が多すぎたため、 作製したシート が脆くなり、 シー卜の成形加工中や得られた容器に割れが生じやす いものであった。 また、 得られた容器は、 実使用に耐え得るだけの 耐熱性を有するものではなかった。
比較例 3は、 ポリ乳酸の光学純度が本発明の範囲よりも低かった ため、 ポリ乳酸の結晶性が低くなり、 結晶核剤を添加したり熱処理 条件を適切な範囲としてもポリ乳酸の結晶化を促進できず、 成形体 は得られるものの金型に融着して生産性に劣るものとなった。また、 結晶性が不十分であったため、 得られた容器は耐熱性に劣るもので あった。
比較例 4は、 ポリ乳酸の残留ラクチド量が本発明の範囲よりも多 かったため、 結晶化は促進されるものの、 分子量保持率が低いこと からも明らかなようにラクチドによる加水分解と熱分解とが促進さ れ、 このため成形品は非常に脆いものであって、 実使用上問題があ つた。
比較例 5は、 熱処理温度が本発明の範囲よりも低かったため、 熱 処理時間を本発明の範囲よりも長く したものの結晶化が不十分であ り、 耐熱性に劣るものであった。
実施例 8
結晶性ポリ乳酸 (A) (光学純度 9 7. 2 %、 残留ラクチド量 0. 2質量%、 重量平均分子量 2 0万、 カーギル · ダウ社製 : ネィチヤ ーヮ一クス) と、 ガラス転移温度 0 °C以下の芳香族 ·脂肪族共重合 ポリエステル (B) (ガラス転移温度— 3 0 ° B A S F社製 : ェ コフレックス F) とを、 (A) / ( B ) = 9 0 / 1 0質量%の割合 で配合し、 さらに、 平均粒径 2. 7 5 mのタルク (林化成社製 : MW H S - T) を組成物全体量に対し 1 0質量%配合した。 そし て、 2軸混練押出機 (日本製鋼所社製、 型番 ΤΕ Χ 44 0;) を用い て溶融混練し、 押出温度 2 3 0 °Cにてポリ乳酸コンパウンド原料を 作製した。
次いで、 このポリ乳酸コンパゥンド原料を、 幅 1 0 0 0 mmの T ダイを装着したスクリユー径 9 0 mmの単軸押出機を用いて、 押出 温度 2 1 5 °Cにて溶融押出し、 4 0 °Cに設定されたキャス トロール にて厚み 5 0 0 urnの未延伸シ一トを成形した。 さらに、 単発間接加熱真空成型機および金型 CTデリカン 1 5— 1 1 (アルミ製) を用いて、 このシートを縦 1 5 0 mm、 横 1 1 0 mm、 深さ 2 0 mmに真空成形して、 成形体としての容器を作製し た。 この真空成形の際に、 金型内を 1 4 0 °C、 保持時間 5秒とする ことで、 熱処理を施した。
得られた成形体の諸物性を表 2に示す。
表 2
Figure imgf000032_0001
B 1 :芳香族 ·脂肪族共重合ポリエステル
B 2 :脂肪族ポリエステル
実施例 9
結晶性ポリ乳酸 (A) としてポリ乳酸 (光学純度 9 6. 0 %、 残 留ラクチド量 = 0. 4質量%、 重量平均分子量 1 9万、 カーギル ' ダウ社製: ネイチヤーワークス) を用いた。 そして、 それ以外は実 施例 8と同様にして、 未延伸シートおよび真空成形した成形体とし ての容器を得た。 この真空成形の際に、 金型内を 1 2 0 ° (:、 保持時 間 1 5秒にて熱処理した。
得られた成形体の諸物性を表 2に示す。
実施例 1 0
結晶性ポリ乳酸 (A) Zガラス転移温度 0 以下の芳香族 · 脂肪 族共重合ポリエステル (B) = 8 5 / 1 5質量%にした。 そして、 それ以外は実施例 8と同様にして、 未延伸シートおよび真空成形し た成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
実施例 1 1
タルク (C) を組成物全体量に対して 1 5質量%混合した。 そし て、 それ以外は実施例 8と同様にして、 未延伸シートおよび真空成 形した成形体としての容器を得た。 ,
得られた成形体の諸物性を表 2に示す。
実施例 1 2
平均粒径 4. 1 のタルク (C) (林化成社製 M I C RON W H I T E # 5 0 0 0 A) を用いた。 そして、 それ以外は実施例 8 と同様にして、 未延伸シー卜および真空成形した成形体としての容 器を得た。
得られた成形体の諸物性を表 2に示す。 実施例 1 3
ガラス転移温度が 0 °C以下の脂肪族ポリエステル (B) (ガラス 転移温度— 3 0 °C、 昭和高分子社製 : ピオノーレ 3 0 0 1 ) を用い た。 そして、 それ以外は実施例 8と同様にして、 未延伸シートおよ び真空成形した成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
実施例 1 4
金型内での熱処理条件を、 表 2に示すように、 温度 1 5 0 ° (:、 保 持時間 3秒と変更した。そして、 それ以外は実施例 8 と同様にして、 未延伸シートおよび真空成形した成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
実施例 1 5
結晶性ポリ乳酸 (A) /ガラス転移温度 0 以下の芳香族,脂肪 族共重合ポリエステル (B) = 9 5 Z 5質量%にした。 また、 金型 内での熱処理温度条件を、 表 2に示すように、 温度 1 3 0 °C、 保持 時間 2 0秒と変更した。そして、 それ以外は実施例 8と同様にして、 未延伸シートおよび真空成形した成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
実施例 1 6
実施例 8 と同様にして得たシート状物に、 1 4 0 ° ( 、 1 0秒間の 熱処理を施した。 そして、 その後に、 単発間接加熱真空成型機およ び金型 C Tデリカン 1 5— 1 1 (アルミ製) を用いて、 縦 1 5 0 m m、 横 1 1 0 mm、 深さ 2 0 mmに真空成形して成形体としての容 器を作製した。 この真空成形の際、 金型内を 1 2 5 °C、 成形サイク ルを 1秒とした。 得られた成形体の諸物性を表 2に示す。
比較例 6
タルクを使用しなかった。 そして、 それ以外は実施例 8 と同様に して、未延伸シートおよび真空成形した成形体としての容器を得た。 得られた成形体の諸物性を表 2に示す。
比較例 7
タルクの含量を 4 0質量%に変更した。 そして、 それ以外は実施 例 8と同様にして、 未延伸シートおよび真空成形した成形体として の容器を得た。
得られた成形体の諸物性を表 2に示す。
比較例 8
ポリ乳酸 (A ) としてポリ乳酸 (光学純度 8 0 . 0 %、 残留ラク チド量 = 0 . 5質量%、 重量平均分子量 2 0万、 カーギル · ダウ社 製 : ネイチヤーワークス) を用いた。 そして、 それ以外は実施例 8 と同様にして、 未延伸シー卜および真空成形した成形体としての容 器を得た。
得られた成形体の諸物性を表 2に示す。
比較例 9
ガラス転移温度 0 以下のポリエステル (B ) を使用せず、 実施 例 8と同様の結晶性ポリ乳酸 (A ) とタルク (C ) のみを用いた。 そして、 それ以外は実施例 8と同様にして、 未延伸シートおよび真 空成形した成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
比較例 1 0
結晶性ポリ乳酸 (A ) とガラス転移温度 0 °C以下の芳香族 · 脂肪 族共重合ポリエステル (B ) との混合比を (A ) / ( B ) = 7 0 / 3 0質量%にした。 そして、 それ以外は実施例 8 と同様にして、 未 延伸シートおよび真空成形した成形体としての容器を得た。
得られた成形体の諸物性を表 2に示す。
比較例 1 1
実施例 8と同様にして作製した未延伸シートに実施例 8 と同様の 成型機を適用した力 その熱処理条件を変更して、金型内で 1 6 0 °C , 5秒間熱処理した。 次いで、 実施例 8と同様にして成形体としての 容器を得た。
得られた成形体の諸物性を表 2に示す。
比較例 1 2
実施例 8と同様にして作製した未延伸シートに実施例 8 と同様の 成型機を適用したが、その熱処理条件を変更して、金型内で 1 0 0 °C、 1分間熱処理した。 次いで、 実施例 8と同様にして成形体としての 容器を得た。
得られた成形体の諸物性を表 2に示す。
実施例 8〜 1 5で得られた成形体としての容器は、 熱湯を注いで も全く変形せず、 耐熱性に優れたものであった。 また耐衝撃性も優 れていた。
実施例 1 6も、光学純度が本発明の範囲内であるポリ乳酸を用い、 ガラス転移温度が o °c以下の芳香族 ·脂肪族共重合ポリエステルと タルクの混合割合が本発明の範囲内である樹脂組成物を用いてシー トを成形し、 そのシートを本発明の範囲内の温度および時間で熱処 理を施した後に成形したものであるため、 得られた成形体は結晶性 が良く、 耐熱性に優れたものであった。 比較例 6は、 タルクを全く使用しなかったため、 熱処理した容器 の結晶化が不十分で、 熱湯を注いだ際に一瞬で変形してしまった。 比較例 7は、 タルクの添加量が多すぎたため、 容器自体が脆く、 成形中あるいは成形後における容器の割れが観察された。
比較例 8は、 ポリ乳酸の光学純度が低かったため、 熱処理や結晶 核剤を添加することにより結晶化を促しても、 ポリ乳酸の結晶化が 不十分で、 耐熱性に劣る容器であった。
比較例 9は、 実施例 1〜 7と同様に、 ガラス転移温度 0 °C以下の ポリエステル (B ) を使用しなかったため、 落球高さが低く、 実施 例 8〜 1 6の成形体に比べて、 耐衝撃性が十分とはいえないもので あった。
比較例 1 0は、 ガラス転移温度 0 °C以下のポリエステル (B ) の 配合量が多過ぎたため、 耐衝撃性に優れるものの、 結晶化速度が著 しく遅く、 このため成型サイクル時間を要することになつて工業的 な生産の観点から問題であった。
比較例 1 1は、 金型内での熱処理温度が 1 6 0 °Cと高く、 ポリ乳 酸の融点付近であったため、 結晶核が融解してしまい、 このため得 られた容器は十分結晶化しておらず、 したがって耐熱性に劣ったも のであった。
比較例 1 2は、 金型内での熱処理時間が 1 0 0 °Cとポリ乳酸分子 が結晶化するに要する温度まで上がっておらず、 処理時間を長くし ても結晶化が不十分であり、 このため I Δ Η πι I — I Δ Η c I が 9 . 0 J / gにしかならず、 耐熱性に劣る容器しか得られなかった。

Claims

請 求 の 範 囲
1. ポリ乳酸を主体とする樹脂成分と結晶核剤とを含む樹脂組成物 からなるシートにて成形されたポリ乳酸系成形体であって、
前記ポリ乳酸は光学純度が 9 0 %以上であるとともに残留ラクチ ド量が 0. 1〜 0. 6質量%であり、
前記結晶核剤は 1〜 2 5質量%の範囲で樹脂組成物中に含まれて おり、
前記成形体は、 2 0 °C/分の昇温条件で示差走査型熱量計にて測 定したときの結晶融解熱量 AHmの絶対値と昇温中の結晶化により 発生する昇温結晶化熱量 ΔΗ cの絶対値との差 ( I ΔΗηι I — I △ H c I )が 2 5 J /g以上であり、 X線測定による結晶化度が 3 5 % 以上であり、 1 3 0 °Cでの結晶化速度が 0. 0 5 m i n 1以上で ある。
2. 請求項 1に記載のポリ乳酸系成形体であって、 結晶核剤は、 平 均粒径 0. l〜 1 0 mのタルクである。
3. 請求項 1または 2に記載のポリ乳酸系成形体であって、 結晶核 剤の分散剤を含み、 前記分散剤が脂肪酸アミ ドである。
4. 請求項 3に記載のポリ乳酸系成形体であって、脂肪酸アミ ドが、 エル力酸アミ ド、 ステアリン酸アミ ド、 ォレイン酸アミ ド、 ェチレ ンビスステアリン酸アミ ド、 エチレンビスォレイン酸アミ ド、 ェチ レンビスラウリル酸アミ ドのうちの少なくとも 1種である。
5 . 請求項 1に記載のポリ乳酸系成形体であって、 真空成形、 圧空 成形、 真空圧空成形、 プレス成形のうちのいずれかの成形加工によ り成形されている。
6 . ポリ乳酸を主体とする樹脂成分と結晶核剤とを含む樹脂組成物 からなるシートにて成形されたポリ乳酸系成形体の製造方法であつ て、
ポリ乳酸の光学純度が 9 0 %以上であるとともに残留ラクチド量 が 0 . 1〜 0 . 6質量%であり、かつ前記結晶核剤を 1〜 2 5質量% の範囲で含有する樹脂組成物を、 シート状に押し出し、
得られたシー卜に 1 1 0〜 1 5 0 °Cの温度で 1〜 3 0秒間熱処理 し、
その後に成形加工する。
7 . ポリ乳酸を主体とする樹脂成分と結晶核剤とを含む樹脂組成物 からなるシートにて成形'されたポリ乳酸系成形体の製造方法であつ て、
ポリ乳酸の光学純度が 9 0 %以上であるとともに残留ラクチド量 が 0 . 1〜 0 . 6質量%であり、かつ前記結晶核剤を 1〜 2 5質量% の範囲で含有する樹脂組成物を、 シート状に押し出し、
得られたシ一トを成形加工するとともに、 その際に同時に 1 1 0 〜 1 5 0 の温度で 1〜 3 0秒間熱処理する。
8 . 請求項 6または 7に記載のポリ乳酸系成形体の製造方法であつ て、 真空成形、 圧空成形、 真空圧空成形、 プレス成形のうちのいずれ かにより成形加工する。
9. ポリ乳酸を主体とする樹脂成分を含む樹脂組成物からなるシー トにて成形されたポリ乳酸系成形体であって、
光学純度 9 5 %以上の結晶性ポリ乳酸樹脂 (A) と、 ガラス転移 温度が 0 °C以下の芳香族 ·脂肪族共重合ポリエステルあるいは脂肪 族ポリエステル (B) と、 平均粒径 1〜 8 mのタルク (C) とを 構成成分とし、 (A) と (B) との混合比が (A) / (B) = 9 7 / 3〜 8 0 2 0質量%であり、 かつ (C) の混合比が組成物全体 量に対して 1〜 3 0質量%であるシートからなり、
2 0 °C/m i nの昇温条件で示差走査型熱量計にて測定した際の 結晶融解熱量 ΔΗπιの絶対値と昇温結晶化熱量 ΔΗ cの絶対値との 差である結晶化指標が ( Ι Δ ΗΠΙ Ι — | Δ Η。 I ) ≥ 2 5 J Z gで あり、
1 3 0 °Cでの結晶化速度が 0. 0 1 0 m i n - 1以上であり、 厚み 5 0 0 mについての落球高さが 2 0 c m以上の落球衝撃性 を有する。
1 0. 請求項 9に記載のポリ乳酸系成形体であって、 シートに、 真 空成形、 圧空成形、 真空圧空成形、 プレス成形のいずれかを施して 得られたものである。
1 1. ポリ乳酸を主体とする樹脂成分を含む樹脂組成物からなるシ ートにて成形されたポリ乳酸系成形体の製造方法であって、 光学純度 9 5 %以上の結晶性ポリ乳酸系樹脂 (A) と、 ガラス転 移温度が 0 X:以下の芳香族 ·脂肪族共重合ポリエステルあるいは脂 肪族ポリエステル (B) と、 平均粒径 1〜 8 imのタルク (C) と を、 (A) と (B) との混合比が (A) / (B) = 9 7 / 3〜 8 0 / 2 0質量%、 ( C ) の混合比が組成物全体量に対して 1〜 3 0質 量%となるよう配合した樹脂組成物を押し出し成形によりシート状 にした後、 処理温度 1 1 0〜 1 5 0 °Cおよび処理時間 1〜 3 0秒に て熱処理するとともに成形を行う。
1 2. 請求項 1 1に記載のポリ乳酸系成形体の製造方法であって、 シー卜を熱処理し、 その後に真空成形、 圧空成形、 真空圧空成形、 プレス成形のいずれか一つにより成形する。
1 3. 請求項 1 1に記載のポリ乳酸系成形体の製造方法であって、 シートを真空成形、 圧空成形、 真空圧空成形、 プレス成形のいずれ か一つにより成形しながら、 同時に成形金型内で熱処理を施す。
PCT/JP2003/002607 2002-03-06 2003-03-05 Moulage d'acide polyactique et procede de production associe WO2003074593A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003213398A AU2003213398A1 (en) 2002-03-06 2003-03-05 Polylactic acid molding and process for producing the same
EP03708499A EP1484356B1 (en) 2002-03-06 2003-03-05 Polylactic acid molding and process for producing the same
US10/505,311 US7854880B2 (en) 2002-03-06 2003-03-05 Polylactic acid molding and process for producing the same
KR1020047013862A KR100942443B1 (ko) 2002-03-06 2003-03-05 폴리락트산계 성형체 및 그 제조방법
HK05110420A HK1078601A1 (en) 2002-03-06 2005-11-18 Polylactic acid molding and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002059603A JP2003253009A (ja) 2002-03-06 2002-03-06 ポリ乳酸系成形体およびその製造方法
JP2002/59603 2002-03-06

Publications (1)

Publication Number Publication Date
WO2003074593A1 true WO2003074593A1 (fr) 2003-09-12

Family

ID=27784758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002607 WO2003074593A1 (fr) 2002-03-06 2003-03-05 Moulage d'acide polyactique et procede de production associe

Country Status (8)

Country Link
US (1) US7854880B2 (ja)
EP (1) EP1484356B1 (ja)
JP (1) JP2003253009A (ja)
KR (1) KR100942443B1 (ja)
CN (1) CN1325543C (ja)
AU (1) AU2003213398A1 (ja)
HK (1) HK1078601A1 (ja)
WO (1) WO2003074593A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431212B2 (en) * 2005-08-31 2013-04-30 Toray Industries, Inc. Laminate sheet of polylactic acid-based resin and thermoformed plastic thereof

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3860495B2 (ja) * 2002-03-22 2006-12-20 吉村化成株式会社 ポリ乳酸系生分解性樹脂シートの熱成形方法
JP4651952B2 (ja) * 2003-02-06 2011-03-16 ユニチカ株式会社 難燃性ポリエステル樹脂組成物、およびそれを成形してなる成形体
JP2005194415A (ja) * 2004-01-08 2005-07-21 Unitika Ltd ポリ乳酸系シートおよびそれからなる成形体
JP4643154B2 (ja) * 2004-02-17 2011-03-02 ユニチカ株式会社 熱可塑性樹脂組成物、およびそれを成形してなる成形体。
US20050250931A1 (en) * 2004-05-05 2005-11-10 Mitsubishi Plastics, Inc. Shredder dust for recycling, molding for shredder dust and a method for recovering lactide from the shredder dust as well as molding formed from the lactide
JPWO2005120978A1 (ja) 2004-06-10 2008-04-10 ユニチカ株式会社 生分解性ガスバリア容器およびその製造方法
JP2006124662A (ja) * 2004-09-29 2006-05-18 Toray Ind Inc 二軸延伸ポリ乳酸フィルムおよびそれからなる成形体、基板
TW200632018A (en) * 2005-01-11 2006-09-16 Asahi Kasei Life & Living Corp Matt film or sheet
WO2006121056A1 (ja) 2005-05-12 2006-11-16 Mitsui Chemicals, Inc. 乳酸系ポリマー組成物、該組成物からなる成形品およびその製造方法
US7635731B2 (en) * 2005-07-28 2009-12-22 Chemtura Corporation Cellulosic-thermoplastic composite and method of making the same
TWI453113B (zh) * 2005-09-27 2014-09-21 Jsp Corp Polylactic acid resin foamed sheet formed body and manufacturing method thereof
TW200742757A (en) * 2006-05-08 2007-11-16 Far Eastern Textile Ltd Polylactic acid composition, transparent heat resistant biodegradable molded article made of the same, and method for making the article
EP2042554A1 (en) * 2006-06-01 2009-04-01 Tohcello Co., Ltd. Moldings of polylactic acid compositions
JP4745135B2 (ja) * 2006-06-01 2011-08-10 ユニチカ株式会社 延伸成形用樹脂組成物、延伸成形容器および延伸成形容器の製造方法
TW200811240A (en) 2006-06-02 2008-03-01 Unitika Ltd Polylactic acid based heat-resistant sheet
CN103122132B (zh) 2006-07-20 2016-03-16 奥巴斯尼茨医学公司 用于医疗器械的可生物吸收聚合物组合物
JP5404040B2 (ja) * 2006-07-26 2014-01-29 三井化学株式会社 ポリ乳酸系樹脂組成物およびその成形体
JP5270822B2 (ja) * 2006-08-03 2013-08-21 三井化学株式会社 熱可塑性樹脂組成物
JP2008037939A (ja) * 2006-08-03 2008-02-21 Mitsui Chemicals Inc 乳酸系樹脂組成物
JP2008037941A (ja) * 2006-08-03 2008-02-21 Mitsui Chemicals Inc 熱可塑性樹脂組成物
US7959942B2 (en) 2006-10-20 2011-06-14 Orbusneich Medical, Inc. Bioabsorbable medical device with coating
CN103212115B (zh) 2006-10-20 2016-09-14 奥巴斯尼茨医学公司 可生物吸收的聚合物组合物和医疗设备
US8673432B2 (en) 2007-03-16 2014-03-18 Toray Industries, Inc. Aliphatic polyester sheet and molded body composed of the same
CN101265355A (zh) * 2007-03-16 2008-09-17 东丽纤维研究所(中国)有限公司 聚乳酸共混物及其成型品
CN101337416B (zh) * 2007-07-02 2010-12-15 黄建铭 耐热性聚乳酸树脂射出成型品的制造方法
TW200942575A (en) * 2008-04-03 2009-10-16 Liang-An Wei Crystallization process method for molding product and molding product produced by the same
CN101554776A (zh) * 2008-04-07 2009-10-14 魏良安 模塑品的结晶加工成型法及由该法所制成的模塑品
KR101260590B1 (ko) * 2008-07-10 2013-05-06 닛본 덴끼 가부시끼가이샤 폴리락트산 수지 조성물 및 폴리락트산 수지 성형체
CN101654563B (zh) * 2008-08-22 2012-08-08 东丽纤维研究所(中国)有限公司 结晶聚合物共混物及其成型制品
WO2010047370A1 (ja) * 2008-10-24 2010-04-29 花王株式会社 樹脂組成物の製造方法
CN102245588B (zh) 2008-12-23 2016-05-04 塞格提斯有限公司 缩酮酰胺化合物、其制备方法及应用
KR101022786B1 (ko) * 2009-03-30 2011-03-17 대상 주식회사 폴리락트산-함유 생분해성 수지 조성물
TWI415894B (zh) * 2009-04-02 2013-11-21 Supla Material Technology Co Ltd Functional resin composition
KR101130919B1 (ko) * 2009-09-29 2012-03-28 도레이첨단소재 주식회사 우수한 내열성과 투명성을 갖는 폴리유산계 다층 시트 및 그 제조 방법
CN102040800B (zh) * 2009-10-22 2012-04-18 张家港柴能生物科技有限公司 应用于制备高耐热聚乳酸的成核剂
CN101831140B (zh) * 2010-03-17 2011-09-07 无锡卡卡生物科技有限公司 用于制备聚乳酸的成核剂及其应用
TWI418575B (zh) 2010-11-01 2013-12-11 Far Eastern New Century Corp Production method of heat-resistant polylactic acid element
DE102010052878B4 (de) * 2010-12-01 2013-10-17 Tecnaro Gesellschaft Zur Industriellen Anwendung Nachwachsender Rohstoffe Mbh Verfahren zur Herstellung von Polymer-Formteilen auf der Basis von Polylactid mit erhöhter Wärmeformbeständigkeit und dessen Verwendung
CN102079853B (zh) * 2010-12-22 2012-07-25 无锡卡卡生物科技有限公司 一种利用二氧化碳制备聚乳酸的成核剂及其应用
JP5999686B2 (ja) * 2012-04-05 2016-09-28 ロンシール工業株式会社 耐熱性ポリ乳酸系成形体、およびその製造方法
TW201428053A (zh) * 2013-01-07 2014-07-16 Yyc Material Technology Co Ltd 生質塑料組成物
KR200468235Y1 (ko) 2013-05-02 2013-07-31 최낙훈 생분해성을 갖는 도로경계석 받침대
CN103467947B (zh) * 2013-09-04 2016-06-29 上海悦萌环保科技有限公司 包含滑石粉成核剂的结晶聚乳酸生物塑料
JP2016023273A (ja) * 2014-07-23 2016-02-08 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
US20220143898A1 (en) * 2019-01-09 2022-05-12 Purac Biochem B.V. Thermoforming of pla-based articles
EP3935102A4 (en) * 2019-05-17 2022-12-21 Northern Technologies International Corporation POLYLACTIDE-BASED MASTERBATCH FOR A COMMERCIALLY FEASIBLE ONE-STEP IN-MOULD ANNEAL INJECTION MOLDING PROCESS
CN110373008B (zh) * 2019-08-01 2021-04-06 中国科学院长春应用化学研究所 一种聚乳酸复合材料及其制备方法
CN114347518B (zh) * 2021-12-31 2023-06-02 漳州杰安塑料有限公司 一种pla吸管结晶工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585747A1 (en) * 1992-08-24 1994-03-09 MITSUI TOATSU CHEMICALS, Inc. Formed product of L-lactic acid base polymer and preparation process of the product
JPH0873628A (ja) * 1994-09-09 1996-03-19 Dainippon Ink & Chem Inc 乳酸系ポリマーから成る耐熱性シート及び成形品の製造方法
JPH0925345A (ja) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd ポリ乳酸系成形体
EP0780428A1 (en) * 1995-12-21 1997-06-25 MITSUI TOATSU CHEMICALS, Inc. Process for preparing formed item of aliphatic polyester and formed item prepared by the process
JPH1036651A (ja) * 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc 乳酸系ポリエステル組成物及びその成形物
JP2002146170A (ja) * 2000-11-17 2002-05-22 Unitika Ltd 結晶性ポリ乳酸樹脂組成物、これを用いたフィルムおよびシート

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3905562B2 (ja) 1992-03-27 2007-04-18 三井化学株式会社 分解性容器
JPH06122148A (ja) * 1992-08-24 1994-05-06 Mitsui Toatsu Chem Inc L−乳酸系ポリマー成形物及びその製造方法
JP3359764B2 (ja) 1993-12-24 2002-12-24 三井化学株式会社 耐熱性乳酸系ポリマー成形物
JP3592799B2 (ja) 1995-07-04 2004-11-24 三菱樹脂株式会社 ポリ乳酸系重合体の成形方法、ポリ乳酸系成形物およびポリ乳酸系成形体
US5766748A (en) * 1995-11-30 1998-06-16 Mitsui Chemicals, Inc. Stretched film of lactic acid-based polymer
JP3549968B2 (ja) 1995-12-11 2004-08-04 三菱樹脂株式会社 延伸ポリ乳酸フィルムあるいはシート
JP3411168B2 (ja) * 1995-12-21 2003-05-26 三井化学株式会社 脂肪族ポリエステル成形体の製造方法及びそれにより製造された成形体
JP3599533B2 (ja) 1996-07-26 2004-12-08 三井化学株式会社 樹脂組成物及びその成形加工品
US5916950A (en) * 1996-07-26 1999-06-29 Mitsui Chemicals, Inc. Resin composition and molded articles thereof
JP3654725B2 (ja) 1996-10-24 2005-06-02 三井化学株式会社 樹脂組成物及びその成形加工品
JPH10151715A (ja) * 1996-11-22 1998-06-09 Dainippon Ink & Chem Inc 熱融着可能な乳酸系ポリマー積層体
US5883199A (en) * 1997-04-03 1999-03-16 University Of Massachusetts Polyactic acid-based blends
JPH11124495A (ja) 1997-10-21 1999-05-11 Mitsubishi Plastics Ind Ltd ポリ乳酸系重合体組成物および成形品
CA2309828C (en) * 1997-11-14 2007-07-03 Mitsubishi Plastics, Inc. Biodegradable film and process for producing the same
WO1999045067A1 (fr) * 1998-03-05 1999-09-10 Mitsui Chemicals, Inc. Composition a base d'acide polylactique et son film
JP2000273207A (ja) 1999-03-19 2000-10-03 Unitika Ltd ポリ乳酸系フィルムおよびその製造方法
JP4530491B2 (ja) * 2000-06-20 2010-08-25 ユニチカ株式会社 生分解性耐熱樹脂組成物およびシート、成形体、発泡体
US6573340B1 (en) * 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials
ITTO20010058A1 (it) * 2001-01-25 2002-07-25 Novamont Spa Miscele ternarie di poliesteri biodegradabili e prodotti da queste ottenuti.
JP4146625B2 (ja) * 2001-07-03 2008-09-10 三菱樹脂株式会社 生分解性軟質フィルム
WO2003016015A1 (en) 2001-08-20 2003-02-27 Cargill Dow Llc Method for producing semicrystalline polylactic acid articles
JP2003068387A (ja) * 2001-08-28 2003-03-07 Sumitomo Wiring Syst Ltd コネクタ
JP2003103628A (ja) * 2001-09-28 2003-04-09 Toyobo Co Ltd 乳酸系ポリエステル二軸延伸フィルムの製造方法
JP4342159B2 (ja) 2002-09-06 2009-10-14 三菱樹脂株式会社 難燃性樹脂組成物及び難燃性成形体
AU2003275580A1 (en) * 2002-10-22 2004-05-13 Mitsubishi Plastics, Inc. Resin composition and molded object formed from the resin composition
WO2005032818A1 (ja) * 2003-10-01 2005-04-14 Mitsubishi Plastics, Inc. 生分解性積層シ−ト

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0585747A1 (en) * 1992-08-24 1994-03-09 MITSUI TOATSU CHEMICALS, Inc. Formed product of L-lactic acid base polymer and preparation process of the product
JPH0873628A (ja) * 1994-09-09 1996-03-19 Dainippon Ink & Chem Inc 乳酸系ポリマーから成る耐熱性シート及び成形品の製造方法
JPH0925345A (ja) * 1995-07-10 1997-01-28 Mitsubishi Plastics Ind Ltd ポリ乳酸系成形体
EP0780428A1 (en) * 1995-12-21 1997-06-25 MITSUI TOATSU CHEMICALS, Inc. Process for preparing formed item of aliphatic polyester and formed item prepared by the process
JPH1036651A (ja) * 1996-05-24 1998-02-10 Dainippon Ink & Chem Inc 乳酸系ポリエステル組成物及びその成形物
JP2002146170A (ja) * 2000-11-17 2002-05-22 Unitika Ltd 結晶性ポリ乳酸樹脂組成物、これを用いたフィルムおよびシート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1484356A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431212B2 (en) * 2005-08-31 2013-04-30 Toray Industries, Inc. Laminate sheet of polylactic acid-based resin and thermoformed plastic thereof

Also Published As

Publication number Publication date
EP1484356B1 (en) 2011-12-28
EP1484356A1 (en) 2004-12-08
US20050165142A1 (en) 2005-07-28
CN1325543C (zh) 2007-07-11
AU2003213398A1 (en) 2003-09-16
EP1484356A4 (en) 2010-06-09
HK1078601A1 (en) 2006-03-17
JP2003253009A (ja) 2003-09-10
CN1639235A (zh) 2005-07-13
KR100942443B1 (ko) 2010-02-17
KR20040097146A (ko) 2004-11-17
US7854880B2 (en) 2010-12-21

Similar Documents

Publication Publication Date Title
WO2003074593A1 (fr) Moulage d'acide polyactique et procede de production associe
KR100981484B1 (ko) 열성형용 폴리락트산계 중합체 조성물, 열성형용폴리락트산계 중합체 시트, 및 이것을 사용한 열성형체
JP5274251B2 (ja) ポリ乳酸系成型品の製造方法
KR101403879B1 (ko) 폴리락트산계 조성물로 이루어지는 성형품
JP4804179B2 (ja) ポリ乳酸系組成物、その組成物からなる成形品
JPWO2006095923A1 (ja) ポリ乳酸系組成物、その組成物からなる成形品
HUT64576A (en) Thermoplastic materials to be produced from lactides and method for it's production, method for producing of degradable polyolefinic - compound, compound for replacing polystyrene, method for producing of degradable, thermoplastic compound
JP2725870B2 (ja) 分解可能なラクチド熱可塑性プラスチック
AU2015257900B2 (en) Injection-moulded article
JP4808367B2 (ja) ポリ乳酸系成形体の製造方法
JP2006212897A (ja) ポリ乳酸系成型品の製造方法
TW200424260A (en) Biodegradable polyester resin composition, method for producing same, foam material and product made from same
JP2011241347A (ja) ポリ乳酸系樹脂組成物、ポリ乳酸系耐熱シートおよび成形体
JP2007069965A (ja) ガスバリア性を有する生分解性樹脂容器
US8182734B1 (en) Thermoformed articles and compositions of poly(hydroxyalkanoic acid) and polyoxymethylene
JP2015113442A (ja) ポリ乳酸系樹脂組成物およびそれからなる成形体
JP2007284595A (ja) 脂肪族ポリエステルフィルム
JP2009013352A (ja) 生分解性ポリエステル組成物
JP3984492B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP4452293B2 (ja) 熱成形用ポリ乳酸系多層シートおよびその成形物
JP2004269606A (ja) 乳酸系樹脂組成物
JP4326828B2 (ja) グリコール酸系共重合体の組成物
JP2005194415A (ja) ポリ乳酸系シートおよびそれからなる成形体
JP3653184B2 (ja) 生分解性射出成形ヘルメット
JPH06122809A (ja) 押出成形用ポリエステル樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10505311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003708499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038051761

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047013862

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047013862

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003708499

Country of ref document: EP