WO1996031306A1 - Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery - Google Patents

Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery Download PDF

Info

Publication number
WO1996031306A1
WO1996031306A1 PCT/JP1996/000911 JP9600911W WO9631306A1 WO 1996031306 A1 WO1996031306 A1 WO 1996031306A1 JP 9600911 W JP9600911 W JP 9600911W WO 9631306 A1 WO9631306 A1 WO 9631306A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous metal
porous
porosity
metal
electrode
Prior art date
Application number
PCT/JP1996/000911
Other languages
English (en)
French (fr)
Inventor
Kouji Hoshino
Yoshitaka Mayuzumi
Tohru Kohno
Norikazu Komada
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP26493095A external-priority patent/JP3417164B2/ja
Priority claimed from JP24989995A external-priority patent/JP3535282B2/ja
Priority claimed from JP7310439A external-priority patent/JPH08291304A/ja
Priority claimed from JP7310438A external-priority patent/JPH09143511A/ja
Priority claimed from JP7310440A external-priority patent/JPH09147847A/ja
Priority claimed from JP7311744A external-priority patent/JPH08333605A/ja
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to DE69619179T priority Critical patent/DE69619179T2/de
Priority to US08/737,931 priority patent/US5848351A/en
Priority to EP96907766A priority patent/EP0764489B1/en
Publication of WO1996031306A1 publication Critical patent/WO1996031306A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2027Metallic material
    • B01D39/2051Metallic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • B22F2003/1131Foaming in a liquid suspension and decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12021All metal or with adjacent metals having metal particles having composition or density gradient or differential porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12042Porous component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component

Definitions

  • Porous metal body having a large specific surface area and method for producing the same, and porous metal plate material and negative electrode of Allinium secondary battery
  • the present invention relates to a porous metal body having a large specific surface roughness, a method for producing the same, a porous metal plate material, and an electrode for a secondary battery such as a nickel-cadmium battery or a nickel-hydrogen battery. is there.
  • Background art a nickel-cadmium battery or a nickel-hydrogen battery.
  • a porous metal body having a three-dimensional reticulated skeleton and having pores formed between the skeletons has been generally used as a structural member of various mechanical devices.
  • porous metal body for example, as described in Japanese Patent Application Laid-Open No. 5-67663, a burnout hole is formed inside a skeleton obtained by applying a coating to a resin having a sponge surface and then firing the resin.
  • the porous metal body which has it is known.
  • This porous metal has a specific surface area of 5 to 75 cm / c and a porosity of 92 to 97%.
  • the porous metal body be made more porous and the specific surface area be increased.
  • alkaline secondary batteries such as nickel-cadmium batteries and nickel-hydrogen batteries
  • the pond of the pond is composed of a sponge-like porous metal substrate having pores composed of three-dimensionally connected skeletons made of Ni metal connected continuously in a mesh-like manner. It is manufactured by kneading with a viscous aqueous solution containing ⁇ 2% CMC (carboxymethylcellulose) and PTFE (polytetrafluoroethylene), impregnating the paste, drying, and rolling.
  • CMC carboxymethylcellulose
  • PTFE polytetrafluoroethylene
  • the sponge-like porous metal substrate composed of a void portion and a skeleton portion for producing an electrode of this conventional Al-Lini battery is obtained by burning Ni urethane on urethane foam and then burning the urethane foam.
  • Can be The sponge-like porous metal substrate obtained by burning this urethane foam has burned holes in which urethane is burned out in the sperton, and usually has an average pore diameter of 400 to 600 m and a porosity of: 93-97%, specific surface contact: 40 cm 2 Z cm 3 .
  • nickel hydroxide batteries use nickel hydroxide powder as the positive electrode active material and hydroxide power powder as the negative electrode active material, while nickel-hydrogen frost ponds use the positive electrode.
  • Nickel hydroxide powder is used as the active material, and hydrogen storage alloy powder is used as the negative electrode active material.
  • the swelling of the positive electrode means that when charge and discharge are repeated, the nickel hydroxide of the positive electrode active material K is charged: / 3-N i OH OH, and discharged: / 3-N i (OH) 2
  • micropores called mesopores are formed on the surface of the positive electrode active material powder, and the electrolytic solution penetrates the mesopores by capillary action, and the electrolytic solution flows into the positive electrode. Become unevenly distributed, electrical angle in the separator? What happens when the liquid level is low It is.
  • the present inventors have conducted research to develop a porous metal body having a specific surface ⁇ larger than that of the above-mentioned conventional porous metal body.
  • in% by weight % indicates weight
  • Water-soluble resin mixture 0.5-20%,
  • Average particle size 0.5 to 500 c / m metal powder: 5 to 80%
  • a plasticizer consisting of one or more of polyhydric alcohols, fats, ethers, and esters: 0.1 to 15%,
  • a porous metal body is obtained in which a skeleton having a foamed three-dimensional network structure is formed of a powder metal sintered body.
  • the skeleton itself is porous, and unlike the porous metal body described in the conventional example, there is no burnout hole inside the skeleton, and the powdered metal sintered body constituting the skeleton is one. It has a high porosity of 0-60%. Thus, despite the overall porosity of 8 0-9 9%, specific surface edges it is very large, with a specific surface area of, for example, 3 0 0 ⁇ 1 1 0 0 0 c m- 2 Bruno cm 3 That is the result of the research.
  • the present invention has been made based on the above research results, and has a three-dimensional net-like sgerton structure in which the entire inside is made of a powdered metal sintered body having a porosity of 10 to 60%. And a porous metal body having a large specific surface area, characterized in that the total porosity is 80 to 99%.
  • the method for producing a porous metal body of the present invention includes: a slurry preparation step of preparing an expandable slurry containing metal powder; a forming step of forming the expandable slurry; and a drying step of drying the formed body. And a firing step of firing the dried molded body.
  • a porous molded body is formed from the foamable slurry, for example, by extruding a reinforcing plate such as a wire mesh together with the foaming slurry, a porous K metal plate material reinforced with the reinforcing plate can be obtained.
  • the porous metal sheet material has excellent strength and a large surface area.
  • the present inventors have conducted research to extend the life of alkaline rechargeable batteries that are used repeatedly by repeatedly charging and discharging compresses. It has been found that the use of the porous metal body for an electrode of a secondary battery can extend the life of the secondary battery.
  • the skeleton part 2 of the sponge-like porous metal substrate composed of the pore part 1 and the skeleton part 2 has fine pores 11 finer than the pore diameter of the pore part 1. It is composed of a microporous sintered metal, and the sgelton portion 2 composed of the microporous sintered metal is provided with an electrolytic solution holding performance. The electrolyte consumed by the increase in the surface area is previously stored in the skeleton part 2 composed of the fine porous sintered metal of the sponge-like porous metal substrate.
  • micropores 11 are held by capillary force, and when the amount of lysate is insufficient, the lysate of the micropores 1 1 in the skeleton part 2 oozes out as appropriate, thereby causing the electrolyte in the separation to dry up. Can be prevented.
  • the active material is packed into both the pores 1 and the fine pores 11 of the sponge-like porous metal substrate to produce an electrode, the active material content is higher than in the past, and the electrode is uniformly dispersed.
  • this electrode it is possible to manufacture a secondary battery having a larger capacity than before.
  • the skeleton is A secondary battery characterized in that it has fine pores having an average micropore diameter of 0.5 to 20 m, and the whole inside is made of a powdered metal sintered body having a porosity of 10 to 60%.
  • the electrodes have special features.
  • the average micropore diameter of the skeleton portion of the sponge-like porous metal substrate constituting the compressing electrode of the secondary battery of the present invention is less than 0.5 m, the capillary force becomes too large, and the electrolytic solution holding capacity becomes too large. Liquid seepage worsens.
  • the average micropore diameter exceeds 20 ⁇ m the electrolyte solution holding capacity is insufficient, and the strength of the sponge-like porous metal substrate is insufficient.
  • the porosity of the microporous sintered metal in the skeleton portion is less than 10%, the retention S of the electrolyte is insufficient, while if it exceeds 60%, the sponge-like porous metal substrate has Lack of strength.
  • the average fine pore diameter of the skeleton part of the sponge-like porous metal substrate in which the skeleton part of the electrode of the secondary battery of the present invention is composed of microporous sintered metal is 0.5 to 20. um (—preferably 1 to 5 m), and porosity of 10 to 60 (more preferably 15 to 35%).
  • FIG. 1 is a schematic explanatory view of a skeleton constituting a porous S-metal body of the present invention
  • FIG. 2 is a schematic perspective view and an enlarged cross-sectional view of a main part showing an example of a porous metal sheet of the present invention
  • FIG. 3 is a schematic perspective view and an enlarged cross-sectional view of an essential part showing an example of an embodiment of a perforated K metal sheet material of the present invention.
  • FIG. 4 is a schematic perspective view and an enlarged cross-sectional view of an essential part showing an example of an embodiment of the porous S metal material of the present invention.
  • FIG. 5 is a schematic perspective view and an enlarged cross-sectional view showing an example of an embodiment of the porous S metal plate material of the present invention
  • FIG. 6 is an explanatory view showing a cross-sectional structure of an electrode of the secondary battery of the present invention
  • FIG. 7 is a schematic explanatory view of a skeleton constituting a conventional porous metal body
  • FIG. 9A is a micrograph showing a cross section of a skeleton part of a porous S-metal body according to the present invention
  • FIG. 9B is a micrograph showing a cross section of a skeleton portion of a porous metal body according to a specific drawing example
  • FIG. 10A is a micrograph showing the appearance of the skeleton of the porous K-metal body according to the present invention.
  • FIG. 10B is a photomicrograph showing the appearance of the skeleton part of the porous metal body according to the comparative example.
  • the porous metal body of the present invention can be manufactured by a foaming slurry preparation step, a molding step, a drying step, a degreasing step, a sintering step, and the like.
  • the foamable slurry is prepared by preparing a slurry containing, for example, a metal powder, a water-soluble resin binder, a foaming agent, a surfactant, and water.
  • the kind of the metal powder is not limited, and all metals and alloys to be sintered such as nickel, copper, iron, sus, chromium, cobalt, gold, silver and the like can be used.
  • Nickel is generally used when producing electrodes for Allinium secondary batteries.
  • the average particle size of the gold powder is 500 m or less, particularly preferably 0.5 to 100 m.
  • the porosity of the skeleton that constitutes the porous metal body can be adjusted mainly by the average particle size of the metal powder.
  • the blending amount of the metal powder in the slurry is preferably in the range of 5 to 80% (% by weight, the same applies hereinafter) and preferably in the range of 30 to 80%.
  • the water-soluble resin binder has a function of maintaining the shape of the porous molded body when the slurry is dried. It also functions as a slurry viscosity modifier.
  • the water-soluble resin binder include methylcellulose, hydroxypropylmethylcellulose, hydroxyshethylcellulose, carboxymethylcellulose ammonium, ethylcellulose, polyvinyl alcohol and the like.
  • the compounding amount of the water-soluble resin binder is preferably 0.5 to 20%, particularly preferably 2 to 10%. If the amount is less than 0.5%, the strength of the dried molded article is low, which may hinder handling.On the other hand, if the amount is more than 20%, the viscosity becomes too high and molding becomes difficult. May be.
  • the foaming agent only needs to be able to generate gas to form bubbles, and a compound that decomposes at a certain temperature to generate gas, a volatile organic solvent, and the like can be selected.
  • the volatile organic solvent include a hydrocarbon organic solvent having 5 to 8 carbon atoms. Such organic solvents are liquid at room temperature, are volatile, form micelles in the slurry by the action of a surfactant, and vaporize at room temperature or under heating to form fine bubbles.
  • the hydrocarbon organic solvent having 5 to 8 carbon atoms include pentane, neopentane, hexane, isohexane, isoheptane, benzene, octane, and toluene.
  • the compounding amount of the foaming agent is preferably in the range of 0.05 to 10%, particularly preferably 0.5 to 5%. If the amount is less than 0.05%, the generation of bubbles may be insufficient and the porosity may not be increased.On the other hand, if the amount is more than 10%, the micelles may have a large diameter. As a result, the diameter of the bubbles formed in the compact also increases, and the strength of the resulting compact and sintered compact may decrease.
  • a method of intensely mixing gas such as air is used. It is also possible to adjust the foaming slurry.
  • Surfactants have the effect of stabilizing the foaming state and forming micelles of the foaming agent.
  • the blending amount of the surfactant is preferably in the range of 0.05 to 5%, particularly preferably 0.5 to 3%. If the amount is less than 0.05%, the formation of micelles becomes stable, and it may be difficult to keep fine bubbles. On the other hand, if the amount is more than 5%, no further effect may be seen. .
  • the foamable slurry according to the present invention may contain, in addition to the above components, a plasticizer, a combustor for promoting pore formation, and the like.
  • the plasticizer is used to impart plasticity to the molded product.
  • Polyhydric alcohols such as ethylene glycol, polyethylene glycol and glycerin, oils and fats such as sardine oil, rapeseed oil, olive oil, and ethers such as petroleum ether And esters such as getyl phthalate, dibutyl phthalate, getyl hexyl phthalate, dioctyl phthalate, sorbitan monooleate, sorbitan trioleate, sorbitan palmitate, sorbitan stearate, etc.
  • the blending amount of the plasticizer is preferably in the range of 0.1 to 15%, particularly preferably 2 to 10%. If the amount is less than 0.1%, the plasticizing action may be insufficient, while if it is more than 15%, the strength of the molded article may be insufficient.
  • the combustible agent for promoting the formation of pores is intended to promote the formation of pores by disappearing during firing of the dried molded article. Therefore, it is possible to select a material that maintains its shape such as powder or fiber and disappears during firing. Specifically, a powdery material having a length of about 0.1 to 200, a length of 200 m or less, preferably a fiber having a length of about 30 to 120 m is preferable. Examples of the material include pulp, cotton, lint, corn starch, carboxymethyl cellulose, water-insoluble cellulose fibers, polyvinyl butyral resin, polyvinyl resin, acryl resin, polyethylene resin, and the like.
  • the foamable slurry according to the present invention can be obtained by mixing the above components.
  • the mixing order is not limited, but foaming is limited as much as possible during mixing.
  • the blowing agent is preferably mixed last.
  • the foamable slurry thus prepared is molded.
  • a reinforcing plate such as a plate, preferably a plate having a thickness of about 0.6 to 20 mm, a perforated plate, or preferably a mesh of 20 to 200 mesh.
  • this reinforcing plate is formed, for example, by applying foaming slurry to both sides of the reinforcing plate or extruding the formed plate together with the formed plate. It is also possible to obtain a porous metal plate material located at the portion.
  • two or more reinforcing plates can be provided inside the molded body at a predetermined interval, or a porous metal plate material having a reinforcing plate provided on one or both sides of the molded body can be used.
  • the foaming agent is sufficiently foamed, and the molded body is dried.
  • foaming and drying can be performed at room temperature to 110 ° C. in order to sufficiently foam.
  • one or both sides of the molded body immediately after molding are heated at 150 to 300 with a far-infrared heating device, for example, the vicinity of the surface of the molded body irradiated with far-infrared rays is quickly dried and bubbles Since the expansion growth is suppressed, it is also possible to obtain a compact having a small pore size on the surface side and a large pore size on the internal side. When such a pore surface is provided, the strength is improved.
  • the plate thickness is preferably about 0.4 to 20 mm.
  • the foaming temperature is preferably 15 to 65 ° C, and particularly preferably 28 to 40 ° C.
  • the firing step is preferably a two-step process.
  • the first step is the step of volatilizing organic substances (such as binders), and the second step is the step of sintering the metal powder. In addition, these steps can be integrated.
  • baking can be performed at a temperature of about 300 to 700 ° C. for 10 to 60 minutes in an air atmosphere or a reducing gas atmosphere such as hydrogen gas.
  • a reducing atmosphere such as an ammonia decomposition gas, a hydrogen gas, or in a vacuum, and further in an atmosphere of air. It is preferable to bake at a temperature of about 140 ° C. for 20 to 120 minutes.
  • a sponge-like porous metal body having a large surface roughness and a three-dimensional net-like skeleton structure can be obtained.
  • the skeleton itself is porous S.
  • the porosity of the skeleton itself is between 10 and 60%. Therefore, the surface area is very large, for example, the BET specific surface area is in the range of 300 to 1100 cm 2 , cm 3 .
  • the porous metal body becomes longer or thinner, if the porous metal body has a specific surface area of more than 100 cm 2 cm 3 , it may be deformed during handling due to insufficient strength.
  • the total specific surface area of the porous K-metal body should be about 300 to 100 cm 2 Z cm 3 because it is easy to cause cracking, chipping and breaking. desirable.
  • the porous poor metal body obtained by the method of the present invention has the above-mentioned characteristics, for example, an active material K holding material for an electrode of an alkaline battery, a water electrolysis electrode, a kerosene injection member for petroleum heating equipment, a magnetic shield packing, an explosive Combustion equipment such as gas expansion materials for air cushions, sound absorbing materials, water electrolysis filters for purifiers, electrostatic filters for air purifiers, oil mist filters for engine exhaust gas, oil stoves, etc.
  • Deodorizing catalyst, high-temperature exhaust dust filter, composite material (CRM) with aluminum filled in pores with high pressure It has useful applications such as base materials, industrial catalysts and carriers.
  • the life of the secondary battery can be extended.
  • the sponge-like porous metal substrate in which the skeleton part constituting the negative electrode of the Allinium secondary battery of the present invention is made of a finely porous sintered metal Ni is usually used, but it is particularly limited to Ni.
  • the composition may be any metal or alloy having excellent corrosion resistance and conductivity.
  • the porosity of the entire sponge-like metal substrate in which the skeleton part constituting the hull of the secondary pack of the present invention is made of fine porous sintered metal has a porosity of 80 to 99% (-layer preferable). is 9 5-99%), specific surface ridge is 3 0 0 ⁇ 1 0 0 0 cm 2 Bruno cm 3 (- J1 preferably is preferably 4 00 ⁇ 8 0 0 cm 2 Zc m 3).
  • the sponge-like porous metal substrate has a specific surface area of, for example, 300 to 100 cn ⁇ Zc. m 3 , which is much better than the specific surface area of a conventional sponge-like porous metal substrate made of foamed nickel, which is at most 40 cn ⁇ Zcm 3 .
  • the average pore diameter of the pores of the sponge-like porous metal substrate is 60 to 700 m, which is almost the same as the conventional one, but the activity contained in the electrode of the alkaline secondary battery of the present invention.
  • the content of the substance is 75-85 mgZcm 3 , which is much better than that of the active material contained in the electrodes of the conventional Al-Lini battery, which is at most 65 mgZcm 3 at the most. .
  • porous metal body of the present invention will be specifically described with reference to examples.
  • Toluene (A-8) was used.
  • Hydroxypropyl methylcellulose also B-2, the same applies hereinafter
  • viroxyshethyl methylcellulose B-3
  • Polyvinyl alcohol (B-6) was used.
  • these various mixed raw materials are injected into a stone * mold having a plurality of minute through holes in the cavity surface to form a molded body, and the molded body is filled with vacancies under the conditions shown in Table 3.4.
  • the porous metal body i to 16 of the present invention having a diameter of 50 mm ⁇ ⁇ X and a length of 100 mm is obtained. Each was manufactured.
  • Ni was deposited on one side (inner side) of a commercially available polyurethane foam to a thickness of 0.5 m to impart conductivity to the polyurethane foam. It was crushed in an aqueous solution of nickel sulfate, and subjected to Ni electric plating at a current density of i AZ dm ' 2 as a cathode, and flattened on the surface of the through-hole of the polyurethane foam. Uniform thickness: 75 m Ni layer is formed, and then heated in a hydrogen stream under the conditions of temperature: 110 and 0.5 hours to burn the polyurethane foam. Thus, a conventional porous metal body having a size of 50 mm0 ⁇ length: 100 mm was also manufactured.
  • the total porosity was measured by using an image analyzer, and the total specific surface area was measured by the BET method.
  • a skeleton (sgerton) porosity is included in the total porosity.
  • the porous metal bodies 1 to 16 of the present invention all have a skeleton constituting the porous metal sinter as shown in FIG. Since the perforated metal sintered body has a high porosity of 10 to 60%, its skeleton is lower than that of the conventional porous metal body (specifically drawn 1) consisting of a hollow perforated non-porous K as shown in Fig. 7. It is evident that it has a very large specific surface.
  • FIG. 9A shows a micrograph of the cross-sectional structure of Sgerton of the porous metal body 1 of the present invention.
  • FIG. 1OA shows a micrograph showing the appearance of the skeleton of the porous metal body 1 of the present invention.
  • the magnification in FIG. 9A is 400 times, and the magnification in FIG. 10A is 300 times.
  • the entire inside of the skeleton is formed of a powdered metal sintered body, and a solid, poorly porous skeleton that is not a hollow structure is obtained. can get.
  • the porous metal body of the present invention since the porous metal body of the present invention has an extremely large specific surface area, the porous metal body exhibits excellent performance when applied as a structural member to various types of machinery, thereby improving the performance of various types of machinery. In addition, it is possible to respond satisfactorily to high output and light weight.
  • Ratio J 1 Ratio J 1
  • FIG. 9B shows the cross-sectional shape of the skeleton.
  • Figure 10B shows the appearance of the skeleton. Note that the magnification in FIG. 9B is 400 ⁇ and the magnification in FIG. 10B is 200 ⁇ .
  • the porous metal body obtained by the method according to this comparative example has a skeleton that is not solid but hollow and has no porosity on the surface.
  • the total specific surface area and total porosity were determined in the same manner as in Example 1.
  • this porous metal body had a specific surface area of 41 cm 2 / cm porosity.
  • each of these various mixtures 2a to 2p is applied to a predetermined thickness on a carrier sheet by a known doctor blade method to form a sheet, and one side of the sheet is heated with a far-infrared ray.
  • the surface temperature of the heater of the device is a predetermined temperature in the range of 150 to 300 ° C
  • irradiation is performed for a predetermined time in the range of 30 to 300 seconds, and then the device is empty under the conditions shown in Table 8.
  • porous metal sheet materials 17 to 32 of the present invention each having a pore surface layer on one side were produced.
  • a thickness of 0.5 m is vapor-deposited on one side of a commercially available polyurethane foam material to impart conductivity to the polyurethane foam, and in this state, nickel sulfate is added. It was immersed in an aqueous solution and subjected to a Ni electric plating process at a current density of 0.5 A / dm 2 as a cathode. The Ni foam S having a thickness of 50 jtm is formed, and then heated in a hydrogen stream at a temperature of 110 ° C. for 0.5 hours to burn the polyurethane foam. Thus, a conventional porous metal plate having a thickness of 1.6 mm was manufactured.
  • the total porosity of the porous metal sheet materials 17 to 32 of the present invention obtained as a result and the conventional porous metal sheet material was measured together with an image analyzer, and the overall ratio was determined by the BET method.
  • the surface area is measured, and the porosity of the skeleton constituting the porous metal sheet, the thickness of the pore surface layer, and the diameter of the pore formed by the skeleton in the pore surface layer and the center of the plate material are measured. Then two. The results of these measurements are shown in Table 9 as the average value of 30 measurement points.
  • the porous metal sheet materials 17 to 32 of the present invention are each composed of a skeleton of a perforated gold-sintered body as shown in FIG. 1, and the skeleton is 30 to Since it has a high porosity of 60%, it is apparent that the skeleton has a remarkably large specific surface area as compared with a conventional porous metal plate made of a nonporous metal body as shown in FIG.
  • the porous metal sheet material of the present invention has an extremely large specific surface area and the strength is secured by the pore surface layer, and therefore, it is applied to structural members of various mechanical devices. As a result, it is possible to exhibit excellent performance and sufficiently satisfy the demands for higher performance and higher output of various types of machinery.
  • metal powders various metal powders having the average particle S and composition shown in Tables 10 and 11, and as organic solvents, neopentane (A-1), hexane (A-2), and isohexane ( A—3), heptane (A—4), isoheptane (A—5), benzene (A—6), octane (A—7), and toluene (A—8).
  • water-soluble resin binders include methylcellulose (B-1), hydroxypropylmethylcellulose (B-2), hydroxyethyl methylcellulose (B-3), carboxymethylcellulose Ammonium (B-4), ethyl cellulose (B-5), and polyvinyl alcohol (B-6), as plasticizers, polyethylene glycol (C-11), olive oil (C-12), petroleum Ether (C-1 3 ), Di-N-butyl phthalate (C-14), and sorbitan monoolate (C-15) were prepared, respectively, and were mixed with water in the composition shown in Tables 10 and 11 under ordinary conditions. By mixing, mixtures 3a to 3p were respectively prepared.
  • each of these various mixtures 3a to 3p is applied to a predetermined thickness on a carrier sheet by a known doctor blade method to form a sheet, and a far-infrared heating device is provided on one surface of the sheet.
  • a far-infrared heating device is provided on one surface of the sheet.
  • the surface temperature of the heater is within the range of 150 to 300 ° C and within the range of K
  • irradiation is performed for a predetermined time within the range of 30 to 300 seconds.
  • the pores are formed under the conditions described above, and degreasing is performed in air, at a temperature of 500 ° C. for 2 minutes, and then sintering is performed under the same conditions as shown in Table 12.
  • the porous metal plate materials 33 to 48 of the present invention each having the thickness shown in (1) and having a pore surface (S) on one surface were produced.
  • Ni is vapor-deposited on one side of a commercially available polyurethane foam plate at a thickness of 0.5 m to impart conductivity to the polyurethane foam.
  • a Ni electroplating process with a current density of 0.5 A / dm 2 as a cathode, forming an Ni plating with an average thickness of 50 m on the through-hole surface of the polyurethane foam.
  • this is heated in a stream of hydrogen at a temperature of 110 to 500 ° C. for 0.5 hours to burn the polyurethane foam, whereby a conventional porous metal plate having a thickness of 1.6 mm is obtained.
  • the overall porosity of the resulting porous metal sheet 33-48 of the present invention and the conventional porous metal sheet obtained was measured using an image analyzer, and the overall specific surface was determined by the BET method.
  • the porosity of the skeleton constituting the porous metal plate, the thickness of the pore surface layer, and the diameter of the pore formed by the skeleton at the pore surface and the center of the plate were measured. The results of these measurements are shown in Table 13 as the average value of 30 measurement points.
  • the porous metal sheet materials 33 to 48 of the present invention are all composed of skeletons of perforated metal sintered bodies as shown in FIGS. 1 and 2, and Since the sgerton has a high porosity of 10 to 60%, the skelton has a significantly larger specific surface area than a conventional porous K metal plate material made of a nonporous metal body as shown in FIG. It is clear to have.
  • the porous g-metal sheet material of the present invention has an extremely large specific surface area and the strength is secured by reaching the surface of the pores. Therefore, it is excellent when applied to the structural members of various mechanical devices. Demonstrates Performance 3 to improve the performance of various machinery and equipment
  • porous metal sheet reinforced with the sheet metal reinforcing material of the present invention will be specifically described with reference to examples.
  • metal powders various metal powders having the average particle S and the composition shown in Tables 14 and 15, and as organic solvents, neopentane (A-1), hexane (A-2), and isohexane ( A—3), heptane (A—4), isoheptane (A—5), benzene (A—6), octane (A—7), and toluene (A—8).
  • water-soluble binders such as methylcellulose (B-1), hydroxypropylmethylcellulose (B-2), hydroxyethylmethylcellulose (B-3), Carboxymethylcellulose ammonium (B-4), ethylcellulose (B-5), and polyvinyl alcohol (B-6), polyethylene glycol (C-1), and olive oil (C-1) as plasticizers 2)
  • Petroleum ether (C— 3), di-N-butyl phthalate (C-14), and sorbitan monooleate (C-15) were prepared, and these were blended in water with the composition shown in Tables 14 and 15, and Mixtures A to P were respectively prepared by mixing under the conditions.
  • sheet metal reinforcing materials A to E having the materials, thicknesses (mesh), and shapes shown in Table 16 were prepared as the sheet metal reinforcing materials.
  • each of the above mixtures 4a to 4p is charged into a container, and Sheet metal with combinations shown in Tables 17 and 18)! Any of the reinforcing materials A to E was immersed, and the sheet metal reinforcing material was drawn out through a slit having a predetermined width provided in the container, and the plate metal reinforcing material was positioned at the center in the thickness direction.
  • a sheet-like molded body is formed, and the ⁇ -shaped molded body is subjected to a pore forming treatment under the same conditions as shown in Tables 17 and 18, and then held in air at a temperature of 500 ° C. for 2 hours.
  • Ni was deposited on one side (inner side) of a commercially available polyurethane foam with a thickness of 0.5 m to impart conductivity to the polyurethane foam.
  • the Ni film having an average thickness of 75 m was formed on the surface of the through-hole of the polyurethane foam.
  • Kki This is then heated in a stream of hydrogen in a stream of hydrogen at a temperature of 110 to 0.5 hours to burn the polyurethane foam, thereby burning the polyurethane foam with a thickness of 3 mm. Plate material was manufactured.
  • the porous K-metal material of the present invention has an extremely large specific surface ridge and the strength is ensured by the plate-shaped metal reinforcing material. As a result, it is possible to exhibit excellent performance and sufficiently satisfy the high performance and high output of various mechanical devices.
  • Example 5
  • plate-shaped metal reinforcing materials A to E having the materials, thicknesses (meshes), and shapes shown in Table 22 were prepared as ⁇ -shaped metal reinforcing materials. Then, each of the above-mentioned mixtures A to P was charged into a container, and one of the plate-like metal reinforcing materials a to e was immersed in the same combination shown in Tables 23 and 24. The plate-shaped metal reinforcing material is drawn out through a slit having a predetermined width provided in the above-mentioned shape, and a plate-shaped molded body in which the plate-shaped metal reinforcing material is located in the center in the thickness direction is formed.
  • Pore formation, degreasing, and sintering are performed under the conditions shown in Tables 23 and 24, and the thickness shown in Table 25 is obtained.
  • the porous metal sheet materials 65 to 80 of the present invention each having any of the structures shown in the cross-sectional views were produced. ⁇ '
  • Ni was vapor-deposited on one side (inner side) of a commercially available polyurethane foam with a thickness of 0.5 m to impart conductivity to the polyurethane foam. It was immersed in an aqueous solution of nickel sulfate, and subjected to a Ni electric plating treatment at a current density of 1 A / dm 2 as a cathode. The Ni film having an average thickness of about 5 m was formed on the surface of the through-hole of the polyurethane foam. A tack layer is formed, which is then heated in a stream of hydrogen at a temperature of 110 to 0.5 hours for 0.5 hours to burn the polyurethane foam to form a conventional porous metal having a thickness of 3 mm. Plate material was manufactured.
  • the total porosity of the porous metal S material of the present invention 65-80 obtained as a result and the conventional porous metal material was measured together with an image analyzer.
  • the overall specific surface ⁇ was measured by the BET method, and the porosity of the skeleton of the porous metal sintered body constituting the porous metal main body was also measured. The results of these measurements are shown in Table 25 as the average value of 30 measurement points.
  • Shape B Cu 0.3 mm Hole diameter: 1 Perforated plate with holes of »101 formed with 1.8 mm bitches W Gold
  • the porous metal plate materials 65 to 80 according to the present invention have a porous metal body having a skeleton of a perforated metal sintered body as shown in FIG. Since the skeleton has a high porosity of 10 to 60%, the sgelton has a conventional porous metal plate made of a nonporous metal body as shown in FIG. 7 (Comparative Example 1). It is evident that it has a remarkably large specific surface area in comparison with ()).
  • the porous metal sheet material of the present invention has an extremely large specific surface ⁇ and the strength is ensured by the plate-shaped metal reinforcing material. It exhibits excellent performance and can sufficiently respond to the high performance and high output of various mechanical devices.
  • Average particle size 9; um pure Ni powder, water-soluble methylcellulose, glycerin, surfactant, hexane, and water are mixed into the composition shown in Table 26 to form a slurry, which is then thickened by the doctor blade method.
  • heater temperature 15 moisture is dried to produce a green sea Bok in 0 far-infrared dryer set at hand, then the air green sea Bok, 5 0 0 3 after removal by Nda treatment and held 1 hour C Sponge having a skeleton part made of microporous sintered metal, sintered in a mixed gas atmosphere of H 2 and N 2 (5 to 95%) at the temperature and time shown in Table 26.
  • Porous metal substrates 6a to 6j were produced.
  • the average micropore diameter and porosity of the sponge portion of the obtained sponge-like porous K metal substrates 6a to 6j, and the porosity and specific surface area of the whole sponge-like porous metal substrate were measured. It is shown in Figure 6.
  • the average micropore diameter and porosity of the Sgerton part were measured by image analysis of the cross section of the sample, and the porosity of the entire sponge-like porous K-metal substrate was determined from the dimensions and weight of the sample.
  • the specific surface area of the entire substrate was measured by the BET method and converted to a numerical value per volume (the BET method provides a specific surface area value per weight). — 3 ⁇ 42 G
  • the mixture was made into a paste by mixing at a ratio of 1 and this paste mixture was applied to the sponge-like porous gold substrate 6a to 6j in Table 26 and allowed to penetrate.
  • the temperature was kept at 105 ° C for 2 hours and dried and then pressed and rolled to a thickness of 0.5 mm, and then cut into 10 cm x 4 cm, which was used in the present invention.
  • a positive electrode of Oshiike (hereinafter referred to as the electrode of the present invention) 81 to 90 was manufactured.
  • the average pores S and porosity of the skeleton portion of the electrodes 81 to 90 of the obtained electrodes 81 to 90 were measured. The results are shown in Table 27.
  • Electrodes of the present invention 81 to 90 and the conventional electrode were used as positive electrodes, the terminals were spot-welded at predetermined positions, and wound through a known force-doped negative electrode and a known separator.
  • AA-size secondary nickel-rechargeable ponds of AA size were manufactured by sealing the cans together with the 5% aqueous hydroxide aqueous compress solution.
  • initial activation was performed by repeating charging and discharging under the conditions of 10 hours and 2 hours of discharging five times, and then charging for 5 hours
  • the life test was performed by repeating the complete charge and discharge under the condition of 2 hours discharge 20,000 times. In this life test, the life test of each battery
  • the average pore diameter was 500 m and the thickness of the Ni was 20 mm.
  • the urethane component was burned by holding at 950 ° C. for 1 hour to produce a conventional porous metal substrate.
  • Table 26 shows the overall porosity and specific surface thickness of the conventional porous metal substrate thus obtained.
  • a positive electrode of a conventional alkaline battery (hereinafter, referred to as a conventional electrode) was manufactured in the same manner as in Example 6, and a powder of N 2 hydroxide powder was prepared.
  • the filling amount was measured, and the results are shown in Table 2-4.
  • FIG. 8 shows a cross-sectional structure of the electrode according to this example of the ratio drawing. As shown in FIG. 8, in a sponge-like porous metal substrate having a pore portion 1 formed by connecting a skeleton portion 2 made of Ni metal continuously and three-dimensionally in a mesh shape, The active material is full.
  • Table 28 shows the results of electrode life tests and the like performed in the same manner as in Example 6.
  • Example 6 and Comparative Example 2
  • the nickel-rechargeable lithium secondary batteries 81 to 90 incorporating the electrodes 81 1 to 90 of the present invention are nickel-powered secondary batteries 91 to 90 incorporating conventional electrodes. Compared to (Comparative Example 2), it is clear that the number of life is larger and the life is longer.
  • the electrodes 81 to 90 of the present invention were assembled into a nickel-reactive dommium secondary battery, and a life test was performed.
  • the electrodes 8 1 to 90 of the present invention consisting of 6 j were incorporated into a nickel-hydrogen secondary battery to perform a life test, and the life was prolonged. Further, the sponge-like porous metal substrate 6 a to 6 j shown in Table 26 was replaced with nickel. It was found that long life can be achieved even when used for the negative electrode of a low-power secondary battery or the negative electrode of a nickel-hydrogen secondary battery.
  • the negative electrode is in contact with the can of the sealed alkaline secondary battery, and if the electrolyte is fixed due to corrosion of the can and becomes insufficient, the fineness of the skeleton part of the sponge-like porous K-metal substrate used for the negative electrode is reduced. The electrolyte retained in the holes will seep out and replenish the electrolyte, extending the life of the battery.
  • the fine porous skeleton portion of the sponge-like porous K metal substrate used for the positive electrode is used for swelling.
  • the electrolyte solution leaks out and prevents the solution from dying, thus extending the battery life.
  • the sponge-finished porous metal substrates 6a to 6j shown in Table 26 were immersed in a saturated nickel nitrate aqueous solution at a temperature of 25 for 10 minutes, taken out, and dried at a temperature of 110 ° C. Hold for 30 minutes in the machine to dry, then immerse it in a 25% aqueous hydroxide solution at 50 ° C for 10 minutes, take out it, wash with water, and heat it at 110 ° C. By holding for 30 minutes in a drier and drying, nickel hydroxide was converted and filled into the pores and the skeletons of the sponge-like porous metal substrates a to j.
  • Nickel hydroxide was filled in the fine vacancies of the spongeton portions of the sponge-like porous metal substrates 6a to 6j that had been subjected to such treatment, but the large vacancies of the sponge-like porous metal substrates 6a to 6j Since the nickel hydroxide film was formed only on the inner wall of the battery and the pits were not sufficiently filled, the pores were filled with nickel hydroxide by performing the following treatment. Positive electrodes (hereinafter, referred to as electrodes of the present invention) 92 to 101 were produced.
  • a paste-like mixture obtained by mixing at a ratio of 1 is applied and infiltrated, kept in the air at a temperature of 105: 2 hours, dried, and then pressed and rolled. Thickness: 0.5 mm, and then cut into 10 cm x 4 cm to produce electrodes 92 to 101 of the present invention.
  • the filling amount of the hydroxide hydroxide Ni powder contained in the thus-obtained water poles 92 to 101 of the present invention was measured, and the results are shown in Table 29.
  • a conventional alkaline secondary compress is also manufactured using the conventional foamed nickel shown in Table 26, and a positive electrode (hereinafter referred to as the conventional) is produced. i Measure the filling amount of the powder and
  • the electrodes of the present invention 92 to 01 and the conventional electrode were used as positive electrodes, and the terminals were spot-welded at predetermined positions, and then turned through a known negative electrode and a known separator to obtain a 35% hydroxylating power AA-sized nickel-aluminum secondary humidifier was manufactured by sealing the can with the aqueous electrolyte.
  • initial activation was performed by repeating charging and discharging under the conditions of charging for 10 hours and discharging for 2 hours 5 times, and then charging for 5 hours.
  • Complete charge / discharge under the conditions of time discharge was repeated 500 times, and the first, second, and 500th discharge capacities were measured, and the results are shown in Table 19. Indicated.
  • the electrodes 92 to 101 of the present invention have a larger amount of hydroxyl hydroxide Ni than the conventional electrodes, and the electrodes 92 to 101 of the present invention have a larger filling amount. It can be seen that the nickel-powered dominium secondary battery incorporating the Ni-based battery has a higher capacity than the nickel-powered secondary battery incorporating the conventional electrode.
  • a capacity test was performed by assembling the electrodes 92 to 01 of the present invention into a nickel-powered dome secondary battery, but the sponge-like porous metal substrate shown in Table 29 was used.
  • the electrodes 92 to 101 of the present invention consisting of a to j were incorporated into a nickel-hydrogen secondary battery to increase the capacity, and the sponge-like porous K-metal substrates a to j in Table 29 were replaced with non-nickel hydroxide. It was found that high capacity could be achieved even when the active material K was filled.
  • the active material K filling amount in the electrode can be increased, and the excellent effect that the capacity of the battery can be promoted can be promoted. To bring. Table 2 9

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Powder Metallurgy (AREA)

Description

明細:
大きな比表面穣を有する多孔質金属体及びその製造方法、 並びに多孔質金属 板材及びアル力リニ次電池の ¾極
技術分野 この発明は、 大きな比表面擯を有する多孔質金属体及びその製造方法、 並びに 多孔質金属板材、 及びニッケル—カ ドミウム電池、 ニッケル一水素 ¾池などのァ ルカリニ次電池の電極に関するものである。 背景技術
従来より、 一般に各種機械装置の構造部材として、 三次元網伏スケルトンを有 し、 このスケルトン間に空孔が形成された多孔質金属体が用いられている。 例え ばアルカリ 2次 ϋ池の電極の活物質保持材、 水 ¾解電極、 石油暖房機器の灯油噴 化部材、 磁気シールドパッキン、 爆薬を使用するエアクッショ ンの気体膨脹锾 衝材、 吸音材、 並びに浄化器の水電解フィルター、 空気清浄機の静電フィルター 、 エンジン排気ガスのオイルミストフィルター、 および高温排気集塵フィルター などの各種フィルターなどに用いられている。
この多孔質金属体として、 例えば特開平 5— 6 7 6 3号公報に記載されるよう に、 例えばスポンジ伏の樹脂にメ ツキを施し、 その後焼成することにより得られ るスケルトン内部に焼失孔を有する多孔質金属体が知られている。 この多孔質金 厲体は、 比表面積: 5〜7 5 c m / c 気孔率: 9 2 ~ 9 7 %である。
しかしながら、 近年の各種機械装置の高性能化および高出力化、 さらに g量化 の面から、 多孔質金属体にもより一段の多孔質化、 並びに比表面積の増大が望ま れている。
一方、 ニッケル—カ ドミウム電池、 ニッケル一水素電池などのアルカリ二次電 池の霍極は、 N i金属からなるスケルトン部分が網目伏に連続的に三次元的につ ながって構成した空孔部分を有するスポンジ状多孔質金属基体に、 活物質扮末を 1 ~ 2 %の C M C (カルボキシメチルセルロース) および P T F E (ポリテトラ フルォロェチレン) を含む粘性水溶液と混練してペース 卜伏としたものを含浸さ せ、 乾燥後、 圧延して製造される。
この従来のアル力リニ次電池の電極を製造するための空孔部分とスケル卜ン部 分からなるスポンジ状多孔質金属基体は、 発泡ウレタンに N i メ ツキしたのち、 発泡ウレタンを燃焼させて得られる。 この発泡ウレタンを燃焼させて得られたス ポンジ状多孔質金属基体は、 そのスゲルト ンにウレタンが焼失した焼失孔を有し 、 通常、 平均孔径: 4 0 0〜 6 0 0 m、 気孔率: 9 3 ~ 9 7 %、 比表面接: 4 0 c m 2 Z c m 3を有する。
アルカリ二次霍池のうち、 ニッケル一力 ドミ ゥム電池では正極活物質として水 酸化ニッケル粉が、 負極活物質として水酸化力 ドミ ゥム粉が使用され、 一方、 二 ッケルー水素霜池では正極活物質として水酸化ニッケル粉が、 負極活物質として 水素吸蔵合金粉末が使用されている。
スポンジ状多孔質金属基体の空孔部分に活物質を充¾した従来の電極を内蔵し た密閉型アルカリ二次罨池に充放電を繰り返すと、 その特性は次第に劣化し、 そ の充放電使用寿命は 5 0 0 ~ 1 0 0 0回が限度であった。 この密閉型アル力リニ 次電池の劣化の原因は、 セパレータ中の霍解液枯渴による内部抵抗の上昇による ものであり、 この鸳解液の枯渴は、 合金腐食による電解液の固定化、 および正極 の膨潤に伴う電解液分布の変化などによって引き起こされると言われている。 合金腐食とは、 電池の缶などの金属部材の腐食、 およびニッケル -水素電池の 場合には水素吸蔵合金の腐食などであり、 腐食によつて電解 Kの一部が腐食生成 物となつて固定化し電解液量そのものが減少する現象である。
また、 正極の膨潤とは、 充放電を繰り返すと、 正極活物 Kの水酸化ニッケルが 充電時: /3 - N i 〇 O H、 放電時: /3 - N i ( O H ) 2の結晶構造変化を経てァ 一 N i 0 O Hが生成するが、 その際に正極活物質粉末表面にメソ孔と呼ばれる微 細孔が形成され、 毛細管現象によってメソ孔に電解液が浸透し、 電解液が正極に 偏在するようになり、 セパレータ中の電角?液が减少することによって起こるもの である。
このように、 従来のアルカリ二次電池の寿命は不十分であり、 より長寿命のァ ルカリニ次電池が要望されていた。
また、 電極を内蔵した密閉型アルカリ二次電池は、 電極に含有する活物質の量 が多いほど容量は大きくなることは知られているが、 従来の N i金厲からなるス ゲルトン部分が網目伏に連統的に三次元的につながって桷成した空孔部分を有す るスポンジ状多孔質金属基体電極では、 スケル卜ン内部に残る焼失孔がクローズ ドポアであり、 その部分には活物質が充旗されないので、 活物質の含有量に限界 があり、 なお一 多量の活物質を含んだ電極が求められている。 発明の開示
そこで、 本発明者等は、 上述のような観点から、 上記の従来多孔質金属体に比 してより大きな比表面橫を有する多孔質金属体を開発すべく研究を行なった桔果 、 原料として、 例えば、 重量%で (以下、 %は重 i%を示す)
炭素数 5〜 8の非水溶性炭化水素系有機溶剤: 0 . 0 5〜 1 0 %、
界面活性剤: 0 . 0 5〜5 %、
水溶性榭脂桔合剤: 0 . 5〜2 0 %、
平均粒径: 0 . 5 ~ 5 0 0 c/ mの金属粉: 5〜8 0 %、
必要に応じて、 多価アルコール、 油脂、 エーテル、 およびエステルのうちの 1 種または 2種以上からなる可塑剤: 0 . 1〜 1 5 %、
水:残り、
からなる配合組成を有する発泡性スラリ一を調製する。 この発泡性スラリーから 、 例えば公知のドクターブレード法やスリ ップキャス ト法などの方法で所定形状 の成形体を成形し、 この成形体を 5て以上の温度に保持すると、 上記非水溶性炭 化水素系有機溶剤は水よりも大きい蒸気圧を有するので、 これが気化し、 ガスと なって成形体から蒸発することから、 成形体内には微細にして整寸の気泡が多数 発生した多孔質成形体が形成される。 この多孔質成形体は、 上記水溶性樹脂結合 剤によってハンドリ ング可能な強度をもち、 また上記可塑剤によって可塑性も具 備する。 この状態の前記多孔質成形体を焼結すると、 金属粉末同士が焼結し、 図 1の概略説明図で示されるような発泡状の三次元網状構造を有するスケル卜ンが 粉末金属焼結体で構成された多孔質金属体が得られる。
この結果の多孔質金属体は、 スケルトン自体が多孔性で、 従来例で説明した多 孔質金属体と異なり、 スケルトン内部に焼失孔を有さず、 スケルトンを構成する 粉末金属焼结体が 1 0〜6 0 %の高い気孔率をもつ。 このため、 8 0〜9 9 %の 全体気孔率であるにもかかわらず、 比表面稜は非常に大きく、 例えば 3 0 0〜 1 1 0 0 0 c m-2ノ c m 3の比表面積をもつようになるという研究結果を得たので ある。
この発明は、 上記の研究結果にもとづいてなされたものであって、 内部全体が 1 0〜6 0 %め気孔率を有する粉末金属燒桔体で構成される三次元網状スゲルト ン構造を有し、 かつ全体の気孔率が 8 0〜9 9 %であることを特徴とする大きな 比表面積を有する多孔質金属体に特徴を有するものである。
また、 本発明の多孔質金属体の製造方法は、 金属粉末を含む発泡性スラリーを 調製するスラリー調製工程と、 該発泡性スラ リーを成形する成形工程と、 成形体 を乾燥する乾燥工程と、 乾燥した成形体を焼成する焼成工程とを有することに特 徴を有するものである。
上記発泡性スラリ一から多孔質成形体を成形する際に、 例えば金網などの補強 板を発泡性スラリーと共に押し出すことにより、 補強板で補強された多孔 K金属 板材を得ることができる。 この多孔質金属板材は、 強度に優れ、 表面積が大きい また、 本発明者らは、 充放罨を繰り返して使用するアルカ リ二次電池の寿命を 従来よりも一層延ばすべく研究を行った結果、 上記多孔質金属体を二次電池の電 極に用いることにより、 二次電池を長寿命化できることを知見した。
即ち、 図 6に示すように、 空孔部分 1 とスケルトン部分 2からなるスポンジ状 多孔質金属基体のスケル卜ン部分 2を、 空孔部分 1の孔径よりも微細な微細空孔 1 1を有する微細多孔質焼結金属で構成し、 この微細多孔質焼結金属で構成され たスゲルトン部分 2に電解液保持性能を持たせ、 前述の正極活物 K粉末表面にメ ソ孔が形成されて比表面積が増加することによって消費される電解液をあらかじ めスポンジ状多孔質金属基体の微細多孔質焼結金属からなるスケル卜ン部分 2の 微細空孔 1 1に毛細管力により保持させておき、 霍解液が不足するとスケルトン 部分 2の微細空孔 1 1の霍解液が適宜染み出し、 それによつてセパレー中の電解 液の枯渴を防止できる。
—方、 スポンジ状多孔質金属基体の空孔部分 1および微細空孔 1 1の双方に活 物質を充塊して電極を製造すると、 従来よりも活物質の含有量が多く均一分散し た電極を得ることができ、 この電極を組み込むことにより従来よりも大容量のァ ルカリニ次電池を製造することができる。
この発明は、 かかる知見にもとづいて成されたものであって、
三次元網状スケルトン部分と該スゲル卜ン間に存する空孔部分とからなるスポ ンジ状多孔質金属基体の空孔部分に活物質が充壙された二次電池の電極において 前記スケルト ン部分は、 平均微細孔径が 0 . 5〜2 0 mの微細空孔を有し、 内部全体が気孔率 1 0〜6 0 %である粉末金属燒桔体から構成されることを特徴 とする二次電池の電極に特徽を有するものである。
この発明の二次電池の罨極を構成するスポンジ状多孔質金属基体のスケルトン 部分の平均微細孔径が 0 . 5 m未満では、 毛細管力が大きくなり過ぎて電解液 保持能力が大きくなり過ぎ、 電解液の染み出しが悪くなる。 一方、 平均微細孔径 が 2 0 ;u mを越えると、 電解液保持能力が不足すると共に、 スポンジ状多孔質金 属基体としての強度が不足する。 また、 スケルトン部分の微細多孔質焼锆金属の 気孔率が 1 0 %未満では電解液の含有保持 Sが不十分であり、 一方、 6 0 %を越 えると、 スポンジ状多孔質金属基体としての強度が不足する。
したがって、 この発明のアル力リ二次電池の電極のスケルトン部分を微钿多孔 質焼結金属で構成したスポンジ状多孔質金属基体のスケル卜ン部分の平均微細孔 径は 0 . 5〜2 0 ;u m (—層好ましくは、 1 ~ 5 m ) 、 気孔率は 1 0〜 6 0 (一層好ましく は、 1 5〜 3 5 % ) に定めた。 図面の簡単な説明 以下、 本発明を添付図面に基づき具体的に説明する。
0 ― 図 1は、 本発明の多孔 S金属体を構成するスケルトンの概略説明図、 図 2は、 本発明の多孔質金厲板材の一例を示す概略斜視図および要部拡大断面 図、
図 3は、 本発明多孔 K金厲板材の実施構造の一例を示す概略斜視図および要部 拡大断面図、
図 4は、 本発明多孔 S金厲扳材の実施構造の一例を示す概略斜視図および要部 拡大断面図、
図 5は、 本発明多孔 S金属板材の実施構造の一例を示す概略斜視図および要部 拡大断面図、
図 6は、 この発明めアル力リ二次電池の電極の断面構造を示す説明図、 図 7は、 従来の多孔質金属体を構成するスケルトンの概略説明図、 図 8は、 従来のアル力リニ次電池の電極の断面構造を示す説明図、 図 9 Aは本発明に係る多孔 S金属体のスケル卜ン部分の横断面を示す顳微鏡写 真、
図 9 Bは比絞例に係る多孔質金属体のスケルトン部分の横断面を示す顕微镜写 真、
図 1 0 Aは本発明に係る多孔 K金厲体のスケルトン部分の外観を示す顕微鏡写 首、
図 1 0 Bは比絞例に係る多孔質金厲体のスケル卜ン部分の外観を示す顕微鏡写 真である。 発明を実施するための最良の態様
本発明の多孔質金属体は、 発泡性スラリー調製工程、 成形工程、 乾燥工程、 脱 脂工程、 焼結工程等により製造することができる。
まず、 発泡性スラ リーの調製は、 例えば金属粉末、 水溶性樹脂結合剤、 発泡剤 、 界面活性剤、 水等を含有するスラリーを調製する。 ここで、 金属粉末の種類に は限定はなく、 例えばニッケル、 銅、 鉄、 s u s、 クロム、 コバルト、 金、 銀等 の焼結する金属及び合金全てが使用可能である。 アル力リニ次電池の電極を製造 する場合は、 ニッケルが一般的である。 金厲粉末の粒径は、 平均粒 ¾が 5 0 0 m以下、 特に 0 . 5〜 1 0 0 mの iS囲が好ましい。 本発明の多孔質金属体にお いて、 これを構成するスケルト ン自体の気孔率は、 主として金属粉末の平均粒径 によって調製することができる。 平均粒径が 0 . 5 mより小さいと、 気孔率が 小さくなる場合があり、 一方、 平均粒径が 5 O O tf mより大きいと、 できあがる 多孔質焼結金属板の強度が弱くなりすぎる場合がある。 金属粉末のスラリ一中に おける配合量は、 5〜8 0 % (重量%、 以下同様) 、 持に 3 0〜8 0 %の範囲が 望ましい。
水溶性樹脂結合剤は、 スラリ一を乾燥させたときに多孔質成形体の形状を保持 させる働きを有する。 また、 スラ リーの粘度調整剤としても機能する。 水溶性樹 脂桔合剤としては、 メチルセルロース、 ヒ ドロキシプロビルメチルセルロース、 ヒ ドロキシェチルセルロース、 カルボキシメチルセルロースアンモニゥ厶、 ェチ ルセルロース、 ポリ ビニルアルコール等を例示することができる。 水溶性樹脂結 合剤の配合量は、 0 . 5 ~ 2 0 %、 特に 2〜 1 0 %の範囲が好ましい。 0 . 5 % より配合量が少ないと、 乾燥成形体の強度が弱く、 ハン ドリ ングに差し支える場 合があり、 一方、 2 0 %より多いと、 粘度が高くなりすぎて成形が困難になる場 合がある。
発泡剤は、 ガスを発生して気泡を形成することができればよく、 一定の温度で 分解してガスを発生する化合物や、 揮発性の有機溶剤などを選択することができ る。 揮発性の有機溶^としては、 例えば炭素数 5〜 8の炭化水素系有機溶剤を挙 げることができる。 このような有機溶剤は常温で液体であり、 揮発性で、 スラリ 一中においては界面活性剤の作用でミセルを形成し、 常温又は加熱下で気化して 微細な気泡を形成する。 炭素数 5〜 8の炭化水素系有機溶剤としては、 ^えばぺ ンタン、 ネオペンタン、 へキサン、 イソへキサン、 イソヘプタン、 ベンゼン、 ォ クタン、 トルエン等を挙げることができる。 発泡剤の配合量は、 0 . 0 5〜1 0 %、 特に 0 . 5〜 5 %の範囲が好ましい。 0 . 0 5 %より少ない配合量では、 気 泡の発生が不十分になり、 気孔率が高くならない場合があり、 一方、 1 0 %より 配合量を多くすると、 ミセルが大径化し、 これに伴い成形体中に形成される気泡 も大径化するため、 得られる成形体及び焼結体の強度が低下する場合がある。 な お、 発泡剤を使用する代わりに、 空気などの気体を激しく混合させる方法によつ て、 発泡性スラ リーを調整することも可能である。
界面活性剤は、 発泡伏態を安定化し、 発泡剤のミセルを形成する作用があり、 アルキルベンゼンスルホン酸塩、 α—才レフイ ンスルホン酸塩、 アルキル硫酸ェ ステル塩、 アルキルエーテル硫酸エステル塩、 アルカンスルホン酸塩等のァニォ ン系界面活性剤、 ポリエチレングリコール誘導体、 多価アルコール誘導体等の非 イオン系界面活性剤等を例示することができる。 界面活性剤の配合量は、 0 . 0 5〜5 %、 特に 0 . 5〜 3 %の範囲が好ましい。 0 . 0 5 %より配合量が少ない とミセルの形成が 安定となり、 微細な気泡を保つことが困難になる場合があり 、 一方、 5 %より多いとそれ以上の効果が見られない場合がある。
本発明にかかる発泡性スラリーには、 以上の成分以外に、 可塑剤、 気孔形成促 進用可燃剤等を配合することができる。 可塑剤は、 成形体に可塑性を付与するた めのもので、 エチレングリ コール、 ポリエチレングリ コール、 グリセリ ンなどの 多価アルコール、 鰯油、 菜種油、 ォリーブ油などの油脂、 石油エーテル等のエー テル類、 フタル酸ジェチル、 フタル酸ジ Νプチル、 フタル酸ジェチルへキシル、 フタル酸ジォクチル、 ソルビタンモノォレー ト、 ソルビタン ト リオレエー ト、 ソ ルビ夕ンパルミテー ト、 ソルビタンステアレー 卜などのエステル類等を例示する ことができる。 可塑剤の配合量は、 0 . 1 ~ 1 5 %、 特に 2〜 1 0 %の範囲が好 ましい。 配合量が 0 . 1 %より少ないと、 可塑作用が不十分になる場合があり、 一方、 1 5 %より多いと、 成形体の強度が不十分になる場合がある。
また、 気孔形成促進用可燃剤は、 乾燥成形体の焼成時に、 消失させることによ つて、 気孔の形成を促進するためのものである。 従って、 粉末、 繊維状などの形 状を保ち、 焼成時に消失するものを選定することができる。 具体的には、 0 . 1 〜2 0 0 程度の粉末状のもの、 長さが 2 0 0 m以下、 好ましく は 3 0 ~ 1 2 0 m程度の繊維状のものがよい。 材料としては、 パルプ、 綿、 糸くず、 コー ンスターチ、 カルボキシメチルセルローズ、 非水溶性セルロース繊維、 ポリ ビニ ルブチラル樹脂、 ポリ ビニル樹脂、 アク リル樹脂、 ポリエチレン樹脂などを 示 することができる。
本発明にかかる発泡性スラリ一は、 上記成分を混合することによって得ること ができる。 この場合、 混合順序に制限はないが、 混合中はできる限り発泡を制限 するために、 発泡剤は最後に混合することが好ましい。
次に、 このように調製した発泡性スラリーを成形する。 成形方法には、 特に制 限はないが、 ドクターブレード法やスリ ップキャスト法、 塗布法等が適している この場合、 ステンレススチール、 金、 ニッケル、 銅等の金属、 セラミ ック、 力 一ボン等で構成される、 望ましくは厚さが 0 . 6〜2 0 m m程度の板材、 穴あき 板材、 望ましくは 2 0〜2 0 0メ ッシュの網状体等の補強板を用いて補強するこ ともできる。 この補強板は、 図 3〜図 5に示すように、 例えば補強板の両面に発 泡性スラリーを塗布したり、 成形体とともに押し出したりして成形し、 補強板が 成形体の厚さ方向中央部に位置するような多孔質金属板材を得ることもできる。 また、 成形体内部に所定間隔を持って 2枚以上の補強板を内設させることもでき 、 あるいは成形体の片面又は両面に補強板が設けられた多孔質金属板材とするこ ともできる。
次に、 発泡,乾燥 (気泡形成) 工程により、 発泡剤を十分に発泡させると共に 、 成形体を乾燥させる。 この場合、 十分に発泡させるために、 室温〜 1 1 0 °Cで 発泡、 乾燥させることができる。 また、 成形直後の成形体の片面又は両面を例え ば遠赤外線加熱装置で 1 5 0 ~ 3 0 0てで加熱すると、 遠赤外線が照射された成 形体の表面近傍は速やかに乾燥され、 気泡の拡大成長が抑制されるようになるの で、 表面側の気孔の孔径が小さく、 内部側の気孔の孔径が大きい成形体を得るこ ともできる。 このような細孔表面) §を具備すると、 強度が向上する。 板状成形体 を成形する場合、 板厚は、 0 . 4〜 2 0 m m程度が好ましい。
なお、 発泡と同時に乾燥させると、 成形体表面に亀裂が生じやすいので、 乾燥 工程の前に発泡工程を設けることが好ましい。 発泡中はできる限り乾燥を防止す るため、 高湿度の雰囲気下で行うことが好ましい。 具体的には、 例えばスラ リー 粘性が 3 5 0 0 0 c p s以上の時、 湿度は 6 5 %以上、 好ましくは湿度は 8 0 % 以上である。 湿度が 6 5 %より低いと、 乾燥時に成形体表面に割れが入るおそれ がある。 例えばノルマルへキサンを発泡剤として用いる場台、 発泡温度は 1 5〜 6 5 °C、 特に 2 8〜4 0 °Cの範囲が好ましい。 発泡温度が 1 5 °Cより低いと、 発 泡に例えば 2時間以上かかる場合があり、 6 5 °Cを超えると成形体が発泡しすぎ て成形体が崩壊する場合がある。 発泡時間は、 通常 1 0〜4 5分の範囲である。 焼成工程は、 2段階の工程とすることが好ましい。 第 1段階,は脱脂と呼ばれ、 有機物 (バインダー等) を揮散させる工程であり、 第 2段階は、 金属粉末を焼結 させる工程である。 また、 これらの工程は連統とすることができる。
脱脂工程は、 例えば空気雰囲気下あるいは水素ガスなどの還元ガス雰囲気下で "、 3 0 0〜7 0 0 °C程度の温度で 1 0〜6 0分の時間焼成することができる。 ま た、 焼結工程は、 製造する金属の種類に応じて、 例えばアンモニア分解ガス棼囲 気、 水素ガスのような還元性雰囲気下、 あるいは真空中、 さらには空気中の棼囲 気で、 8 0 0〜 1 4 0 0 °C程度の温度で 2 0〜 1 2 0分間焼成することが好ま しい。
かく して表面擯の大きい、 三次元網状スケルト ン構造を有するスポンジ状の多 孔質金属体を得ることができる。 かかる多孔質金属体は、 三次元網伏スケルトン が金属粉末の焼結体であるので、 スケルト ン自体が多孔 Sである。 スケルトン自 体の気孔率は、 1 0〜6 0 %である。 このため、 表面積が非常に大きく、 例えば B E T比表面積が 3 0 0〜 1 1 0 0 0 c m 2 , c m 3の範囲である。 また、 従来 法に比べ、 発泡体の孔径が非常に小さく、 1 0 0 m未満の孔径を有するものを 容易に得ることもできる。 具体的には、 平均孔径が 6 0〜7 0 0 mの範囲のも ので、 気孔率が 8 0〜9 9容量%のものを製造することができる。
なお、 上記多孔質金属体が長尺化あるいは薄肉化した場合、 多孔質金属体の比 表面積が 1 0 0 0 c m 2 c m 3以上になると、 強度不足が原因で、 取扱いに際 して変形し易すくなったり、 欠けや割れ、 さらに折れなどが発生し易くなるので 、 この場合は多孔 K金属体の全体比表面積を 3 0 0〜 1 0 0 0 c m 2 Z c m 3程 度とするのが望ましい。
本発明方法により得られる多孔貧金属体は、 上記特徴を有するため、 例えばァ ルカリニ次電池の電極の活物 K保持材、 水電解電極、 石油暖房機器の灯油噴 化 部材、 磁気シールドパッキン、 爆薬を使用するエアク ッショ ンの気体膨張锾衝材 、 吸音材、 浄化機の水電解フィ ルター、 空気浄化機の静電フィ ルタ一、 エンジン 排ガスのオイルミス 卜フィルタ一、 石油ス トーブなどの燃焼機器の脱臭触媒、 高 温排気集塵フィ ルター、 アルミニウムを気孔中に高圧充塡した複合材 (C R M ) の基材、 工業用触媒、 坦体等の有用な用途を有する。
本発明の多孔質金属体をアル力リニ次鴛池の電極に用いた場合、 アル力リニ次 電池の長寿命化を図ることができる。
この発明のアル力リニ次電池の ¾極を構成するスケルトン部分が微細多孔質焼 桔金属からなるスポンジ状多孔質金属基体は、 通常、 N iが使用されるが、 特に N iに限定されるものではなく、 耐食性および導電性に優れた金属または合金で あればいかなる組成のものでもよい。 またこの発明のアル力リ二次罨池の霍極を 構成するスケルトン部分が微細多孔質焼結金属からなるスポンジ状多孔 ¾金属基 体全体の気孔率は 8 0〜 9 9 % (—層好ましくは、 9 5〜 99 %) 、 比表面稜は 3 0 0〜 1 0 0 0 cm2ノ cm3 (― J1好ましくは、 4 00〜8 0 0 cm2Zc m3) であることが好ましい。
上記方法によって得られる多孔質金属体でこの発明の二次霉池の電極を構成す れば、 そのスポンジ伏多孔質金属基体は、 比表面積が、 例えば 3 0 0〜1 0 0 0 c n^Zc m3であって、 従来の発泡ニッケルによるスポンジ伏多孔質金属基体 の比表面積がせいぜい 4 0 c n^Zc m3であるに対し、 格段に優れている。 また、 スポンジ状多孔質金属基体の空孔部分の平均空孔径は 6 0〜7 0 0 m を有し、 従来とほぼ同じであるが、 この発明のアルカリ二次電池の電極に含まれ る活物質の含有量は、 7 5〜85 mgZcm3であり、 従来のアル力リニ次電池 の電極に含まれる活物質の含有量はせいぜい 6 5 mgZc m3であるのに比べる と格段に優れている。 実施例 1
つぎに、 この発明の多孔質金属体を実施例により具体的に説明する。
まず、 金属粉として表し 2に示される平均拉 Sおよび組成を有する各種の金 属粉を用いた。 また、 有機溶剤として、
ネオペンタン (以下、 A— 1という) 、
へキサン (同じく A— 2という、 以下同じ) 、
イソへキサン (A— 3 ) 、
ヘプタン (A— 4 ) 、 ィソへプタン (A— 5 ) 、
ベンゼン (A— 6 ) 、
オクタン (A— 7 ) 、 および
トルエン (A— 8 ) を用いた。
界面活性剤として上記の市販の台所用中性合成洗剤、 水溶性樹脂結合剤として 、 メチルセルロース (以下、 B— 1 という) 、
ヒ ドロキシプロピルメチルセルロース (同じく B— 2という、 以下同じ) 、 ヒ ビロキシェチルメチルセルロース ( B— 3 ) 、
カルボキシメチルセルロースアンモニゥ厶 (B— 4 ) 、
ェチルセルロース (B— 5 ) 、 および
ポリ ビニルアルコール (B— 6 ) を用いた。
可塑剤として、
ポリエチレングリコール (以下、 C - 1 という) 、
ォリーブ油 (同じく C一 2という、 以下同じ) 、
石油エーテル (C— 3 ) 、
フタル酸ジ Nブチル ( C一 4 ) 、 および
ソルビタンモノォレー ト ( C一 5 )
をそれぞれ用意した。
これらを表 1 , 2に示される配合組成で水に配合し、 通常の条件で混合するこ とにより混合原料 (発泡性スラリ一) 1 a〜 1 pをそれぞれ調製した。
ついで、 これらの各種の混合原料を、 それぞれキヤビティ面に複数の微小貫通 孔が設けられた石 *型に注入して成形体とし、 この成形体にそれぞれ表 3 . 4に 示される条件で空孔形成 (多孔質成形体形成) 、 脱脂、 および焼結を施すことに より直径: 5 0 ΓΠ ΙΏ Φ X長さ : 1 0 0 m mの寸法をもった本発明多孔質金属体 i 〜 1 6をそれぞれ製造した。
また、 比 ¾の目的で、 市販のポリウレタンフォームの片側面 (内側面) に厚さ : 0 . 5 mの厚さで N i を蒸着して前記ポリウレタンフォームに導電性を付与 し、 この状態で硫酸ニッケル水溶液中に ϊ 潰し、 陰極として i A Z d m '2の電流 密度で N i電気メ ツキ処理を施し、 前記ポリウレタンフオームの貫通孔表面に平 均厚さ : 7 5 mの N i メ ツキ層を形成し、 ついでこれを水素気流中、 温度 : 1 1 0 0てに 0. 5時間保持の条件で加熱して前記ポリウレタンフォームを燃焼さ せることにより同じく直径 50 mm0 X長さ : 1 00 mmの寸法をもった従来 多孔質金属体を製造した。
つぎに、 この結果得られた各種の多孔質金属体について、 画像解折装置を併用 して全体気孔率を測定し、 かつ B ET法にて全体比表面積を測定した。 なお本発 明多孔 K金属体 1〜1 6においては、 前記全体気孔率の中にスケルトン (スゲル トン) の気孔率も含むものである。 これらの測定結果を測定個所: 3 0ケ所の平
3
均値として表 5に示した。
(この頁、 以下余白)
E 合 組 成 (¾量%)
金 JS )
有機 剤 界面活性剂 水 ¾性榭脂桔 平均 te g 組 成
(茧 ffi % )
a 2 N i 6 5 A ( 2 ) B - ( 2 ) :
A ( 1 ) 0 . 5
b C u G 5 2 . 5 ( 3 ) :
A 一 ( 2 )
c 2 0 C u — 2 0 % N i 7 0 A ( 4 ) 0 . 0 6 B - ( 6 )
1 8 5 N i 3 2 - ( 1 ) d
A ( 5 ) : 2 一 ( 2 )
C u 3 2
- ( )
A ( 3 ) 一 ( 2 ) e 4 5 A g 7 5 A ( 2 ) 1 . 5
- ( 3 ) :
A - ( 7 ) 5 . 5
f S U S 4 3 0 3 2 A ( 6 ) 0 . 6 4 . 5 ( 5 ) : s 2 0 A u 7 5 A - ( 8 ) 2 . 5 0 . 5 ( 2 )
0 . 6 W 6 3
h C u A ( 7 ) B— ( 1 ) :
N i
¾ι 成 (質量 )
別 金 m 粉
有機 ¾剤 界面活性剤 水 ¾性樹脂桔合剤 可 塑 剤 水
Έ i 組 成
(. u m ) ( ffi fi % )
1 i 2 N i 6 5 A一 ( 2 ) : 2 1 B一 ( 2 ) : 2 . 7 C一 ( 5 ) 1 残
N i - 1 5 . 5 % A - ( 2 ) 1
1 Q
j 1 U C r - 8 % F e - u I . 5 B一 ( 2 ) : 2 C一 ( 1 ) 2 . 5 fx
0 . 8 % M n A一 ( 3 ) : 0 . 5
A一 ( 1 ) 0 . 5 B一 ( 4 ) ; 2 C一 ( 3 ) 0 . 5
C o - 1 0 % N i
1 k o 1 5 % C r D L Λ一一 ^ ί ) . 4 . 8 し 1 .
m R — > ノ • n q
A一 ( 8 ) 6 . C一 ( 5 ) 0, 6 n W Q B一 ( 1 ) : 0 . 5 一 ( 1 )
1 π
1 ! g C u 4 , A一 ? 1 B一 ( 2 ) 0 . 5 & 原 c一 ( 5 ) 0 . 6
3 C o 0 . 5 B一 ( 3 ) 0 - 5
料 1 m 1 1 3 1 A - ( ) : 0 . 6 0 . 0 6 B一 ( 5 ) : 1 9 c一 ( 2 ) 1 . 5 残
Figure imgf000017_0001
1 8 5 N i 3 2
1 n A一 ( 5 ) : 2 . 1 B一 ( 3 ) : 2 c一 ( 5 ) 6 . 1 残
9 C u 3 2
1 3 5 N i - 2 0 % C r 7 8 Λ一 ( 2 ) : 1 0 . 5 B一 ( 2 ) : 1 . 5 c - ( ) : 1
1 P 1 0 S U S 3 0 4 6 0 A一 ( 4 ) : 2 . 5 1 . 5 B一 ( 2 ) : 2 C一 ( 3 ) 2
表 3
空孔形成条件 脱脂条件 焼桔条件 種 別 混合原料
記号 雰囲気 温度 時間 雰囲気 温度 時間 雰囲気 温度 時間
(° C ) (分) (° C ) (分) (° C ) (分)
1 1 a 6 0 1 2 0 1 1 5 0 6 0
5 0 0
2 1 b 4 5 4 0 3 0 1 0 3 0
本 H 1 2 0 発 3 1 c 3 0 1 5 4 5 0 1 1 5 0
明 湿度 : 空気
多 4 1 d 9 0 % 2 5 3 0 6 0 1 0 0 0 6 0 孔 の空気 5 0 0
5 1 e 5 0 4 0 1 5 空気 9 1 0 3 0 0 金
厲 6 1 f 2 0 3 0 4 5 0 2 4 0 H 7 1 1 9 0 1 2 0 体
7 1 5 0 2 5 5 0 0 3 0 空気 1 0 1 0
6 0
8 1 h 3 5 1 2 0 H , 6 0 0 6 0 H , 1 2 0 0
表 4
空孔形成条件 脱 脂 条 件 焼 桔 条 件 種 別
棼 ffl気 温 時 問 雰 BB気 温 度 時 間 雰囲気 温 度 時閬
(° C ) (分) (° C ) (分) C C ) (分)
9 1 i 1 8 0
4 0 6 0 5 0 0 H , 1 3 0 0
1 0 1 j 湿度 : 3 0
本 9 0 % 1 2 0 発 1 1 1 k の 2 5 1 5 真空 1 3 2 0 明 空気 空気 4 5 0
多 1 2 1 1 5 0 3 0 1 5 H , 1 2 0 0 3 0 孔
1 3 1 m 6 0 6 0 5 5 0 1 2 0 空気 9 2 0 金 1 2 0 m 1 4 1 n A r 5 0 0 1 0 0 1 0 5 0 体 3 0 2 0
1 5 1 o H , 5 5 0 1 2 0 H ,
N 2 1 3 0 0 1 8 0
1 6 1 P 4 0 6 0 空気 4 5 0 3 0
全体比表面 * 全体気孔率 スケル ト ン 全体!:ヒ表面積 全体気孔率 スケル ト ン 別 ( c m ' / c m ) ( % ) 種 別 ( c m ' / c m 3 ノ 、
の チし
( % ) (. % )
1 3 9 0 9 8 . 6 2 2 9 4 2 0 9 6 2 5
6 2 0 9 5 2 5 1 0 6 3 0 9 5 3 3 本 本
3 1 0 9 5 3 1 発 1 1 2 4 0 0 8 2 5 2 明 明
多 4 2 8 0 0 8 2 5 2 多 1 2 5 9 0 » 9 2 1 孔 孔
質 5 3 5 0 9 7 2 1 質 1 3 6 6 0 9 2 2 2 金 金
6 1 1 5 0 8 9 4 1 属 1 2 9 0 0 8 1 5 4 体 体
7 1 2 0 0 8 8 3 3 1 5 7 1 0 9 3 2 3
8 3 1 0 9 7 1 1 1 6 8 8 0 9 2 3 1
従来多孔質
金属体 4 1 9 5
(比 Κ例 1 )
表 5に示される詰果から、 本発明多孔質金属体 1〜 1 6は、 いずれもこれを構 成するスケル卜ンが図 1 に示される通りの有孔金厲焼結体からなり、 かつ前記有 孔金厲焼結体は 1 0〜6 0 %の高い気孔率を有するので、 スケルトンが図 7に示 される通りの多孔 Kでない中空金厲体からなる従来多孔質金属体 (比絞 1 ) に 比して著しく大きい比表面穰をもつことが明らかである。
本発明多孔質金属体 1のスゲルトンの横断面構造の顕微鏡写真を図 9 Aに示す 。 また、 本発明多孔 金属体 1のスケルトンの外観を示す顕微鏡写真を図 1 O A に示す。 なお、 図 9 Aでの ί咅率は 4 0 0倍であり、 図 1 O Aでの倍率は 3 0 0倍 である。
図 9 A , 1 0 Aに示すように、 本発明に係る多孔質金属体では、 スケルトンの 内部全体が粉末金属焼結体で構成され、 中空構造体でない中実で多孔貧のスケル 卜ンが得られる。
上述のように、 この発明の多孔質金属体は、 きわめて大きい比表面積を有する ので、 これの各種機械装置への構造部材としての適用に際してすぐれた性能を発 揮し、 各種機械装置の高性能化および高出力化、 さらに軽量化に十分満足に対応 することができるのである。 比 J 1
スポンジ状の樹脂にメ ツキを施し、 その後焼成することにより、 図 7の概略説 明図で示すように、 スケルトン内部に焼失孔を有する多孔質金属体を得た。 そのスケルトンの横断面形状を図 9 Bに示す。 また、 そのスケルトンの外観を 図 1 0 Bに示す。 なお、 図 9 Bでの倍率は 4 0 0 ίきであり、 図 I 0 Βでの ίき率は 2 0 0倍である。
図 9 Β . 1 0 Bに示すように、 この比铰例に係る方法で得られた多孔 Κ金属体 では、 スケルトンが中実でなく中空であり、 しかも表面に多孔を有さない。 実施例 1 と同様にして、 全体比表面積および全体気孔率を刺定したところ、 表 5に示すように、 この多孔 Κ金属体は、 比表面積: 4 1 c m 2 / c m 気孔率
: 9 5 ?0であつた。 実施例 2
つぎに、 表面の空孔の孔径が内部の空孔の孔径より小さな多孔質金属板材を製 造する例について説明する。
まず、 金属粉として表 6、 了に示される平均拉径および組成を有する各種の金 属粉、 有機溶剤として、 ネオペンタン [A— ( 1 ) ] 、 へキサン [A— ( 2 ) ] 、 イソへキサン [A— ( 3 ) ] 、 ヘプタン [A- ( 4 ) ] 、 イソへブタン [A— ( 5 ) ] 、 ベンゼン [A— ( 6 ) ] 、 オクタン [A— ( 7 ) ] 、 およびトルエン [A - ( 8 ) ] 、 界面活性剤として上記の市販の台所用中性合成洗剤、 水溶性樹 脂桔合剤として、 メチルセルロース [B— ( 1 ) ] 、 ヒ ドロキシプロピルメチル セルロース [B— ( 2 ) ] 、 ヒ ドロキシェチルメチルセルロース [B— ( 3 ) ] 、 カルボキシメチルセルロースアンモニゥム [B— ( 4 ) ] 、 ェチルセルロース [B - ( 5 ) 〕 、 およびポリ ビニルアルコール [B— ( 6 ) ] 、 可塑剤として、 ポリエチレングリコール [C一 ( 1 ) ] 、 ォリーブ油 [C一 ( 2 ) ] 、 石油エー テル [C一 ( 3 ) ] 、 フタル酸ジ Nブチル [C一 ( 4 ) ] 、 およびソルビタンモ ノォレー卜 [C— ( 5 ) ] 、 グリセリ ン [C— ( 6 ) ] をそれぞれ用意し、 これ らを表 6、 7に示される配合組成で水に配合し、 通常の条件で混合することによ り混合物 2 a〜2 pをそれぞれ調製した。
ついで、 これらの各種混合物 2 a〜 2 pをそれぞれ公知のドクターブレー ド法 にてキヤ リァシー 卜上に所定厚さに塗布して板伏成形し、 この板状成形体の片面 に、 遠赤外線加熱装置のヒーターの表面温度を 1 5 0〜3 0 0 °Cの範囲内の所定 温度として、 3 0〜3 0 0秒の範囲内の所定時間照射した後、 表 8に示される条 件で空孔形成を行ない、 空気中、 温度: 5 0 0てに 2時間保持の条件で脱脂処理 し、 引続いて同じく表 8に示される条件で焼結することにより表 9に示される厚 さを有し、 かつ片面に細孔表面層を有する本発明多孔質金属板材 1 7 ~3 2をそ れぞれ製造した。
また、 比^の目的で、 市販のポリウレタンフォーム扳材の片面に厚さ : 0. 5 mの厚さで Ν· i を蒸着して前記ポリウレタンフオームに導電性を付与し、 この 状態で硫酸ニッケル水溶液中に ¾¾し、 陰極として 0. 5 A/dm2の電流密度 で N i電気メ ッキ処理を施し、 前記ポリウレタ ンフオームの貫通孔表面に平均厚 さ : 5 0 jt mの N i メ ツキ Sを形成し、 ついでこれを水素気流中、 温度: 1 1 0 0°Cに 0. 5時間保持の条件で加熱して前記ポリウレタンフォームを燃焼させる ことにより厚さ : 1. 6 mmの従来多孔質金属板材を製造した。
つぎに、 この結果得られた本発明多孔質金属板材 1 7〜3 2、 および従来多孔 質金属板材について、 画像解析装置を併用して全体気孔率を測定し、 かつ B ET 法にて全体比表面積を測定し、 さらに前記多孔貸金厲板材を構成するスケル卜ン の気孔率、 細孔表面層の厚さ、 細孔表面層および板材中心部におけるスケル トン によって形成された空孔の径を測定し 2た。 これらの測定結果を測定個所: 3 0 ケ 所の平均値として表 9に示した。
(この頁、 以下余白)
表 G
配 合 組 成 (質 a % )
II 別 金 厲 粉
有機溶剤 界面活性剤 水 ¾性樹脂 ίき台剤 可塑剤 水 平均拉 2 組 成
m ) (重 ¾ % )
Β ' - 4 : 4
2 a 9 N i 5 0 A - 1 0 . 6 2 . 5 ― 残
Β - 5 : 1
2 b 4 0 C u 5 0 A - 2 : 0 . 5 0 . 0 7 Β - 1 : 5 残
A - G 0 . 5
2 c 4 G 0 C u - 1 0 % N i G 0 4 . 8 Β - 3 : 0 . 8 残
A - 8 : 1
混 2 N i 2 5 Β - 1 : 2
2 d A - 7 0 . 0 7 2 - 残
4 0 C u 2 5 Β - 3 : 2
A - 2 : 5
2 e 2 0 Λ u 7 8 Λ - 4 2 . 5 3 Β - 2 : 7 - 残
A - 7 : 2
t'4
2 f 4 0 A g 7 0 A - 4 : 0 . 4 4 Β - 6 : 2 残
1 1 0 F e 3 7
2 g 3 5 C r 9 A - 5 : 5 2 Β - 4 1 5 残
9 N i 4
1 1 0 F e 3 A - 3 : 0 . 3 Β - 1 : 1 0
2 h 0 . 5 Β - 2 : 4 残
6 5 C o 3 A - 4 0 . 7
Β - 5 : 5
.17—
K 合 組 成 (質 fi% )
金 ί¾ 扮
有機洽剂 界面活性剤 水溶性榭脂拮合剂 可 塑 剤 水 平均拉 ί! 紐 成
( w m ) (重 ffi% )
Λ - 2 : 0 . 2 Β - 1 : 9 . 5
2 i 1 2 S U S 3 1 0 S A 0 Λ - 4 : 0 . 2 C 一 1 残
Β - 3 : 9 . 5
Λ - 7 : 0 . 2
C 一 3
2 j 1 0 8 S U S 3 0 4 4 0 A - 2 : 0 . 8 0 . 0 8 Β - 2
C 一 5
2 k 4 G 0 C u — 1 0 % N i 7 5 Λ - 4 : 3 Β - 1 : 0 . 8 C 一 3 0 . 2 残 台 1 3 N i 2 4 C 一 1
2 ! Λ — 3 Β - 3 : 5 C 一 4
0 . G
C - 5
η C o — 1 0 % N i
2 m 1 5 4 5 Λ — 5 : 0 . 0 8 1 . 5 Β - 4 : 4 C 一 2 : 0 . 1
1 5 % C
C o - 1 0 % N i Β — 2 : 8 C - 2 : 5
2 11 Λ - 4 : 0 . 6 1 . 5 Β - 4 : 0 . 5 残
2 0 C r - 1 5 C 一 3
% W Π - G : 0 . 5
1 1 0 1' e 2 5 Λ 1 : 0 . 3
2 ο 6 5 C o 1 3 13 - 5 : 5 C 一 4 : 1
Λ — G : 0 . 3
1 3 N i 7
2 I) 1 2 N 4 5 Λ — 8 : 0 . 7 0 . G Η - G : 6 C - 5 : 6
空子 牛 焼 桔 条 件
¾合願
(° C) (。 C) 汾)
1 7 2"a 25 1 200
90
1 8 2_b 30 水紫 60
1 000 本 1 9 2 c 1 05 20 発 20 2 d 25 90 1 060 1 20 明 2 1 2 e 5 1 80 1 030 60
窠空
多 22 2 f 900 24 0 孔 23 2 g 1 0 1 20 1 250 30 質 24 2 h アルゴン 1 300 金 25 2 i
30 90 水素 1 250 厲 26 2 j 板 27 2 k 1 0 1 20 1 000
60 材 28 2 1 アルゴン 20 90
1 250
29 2m
1 05 20 真空
30 2 n 1 350
3 1 2 o 1 250
25 90 水素
32 2 P 1 1 00 —表 9
板材中' 1:· スケルトン
種 別 板材厚さ 平 »孔率 全 孔率
(mm) さ 平 L径 (mm) (%) (%) (cm* /cm3 ) mm) unm)
1 7 2. 1 0. 30 0. 1 1 0. 46 4 0 98 4 1 00
1 8 4. 9 0. 5 1 0. 1 1 0. 5 1 35 88 1 700
1 9 42. 1 3. 2 0. 24 0. 92 55 8 1 1 000 本
20 1 0. 8 1. 2 0. 2 1 0. 4 7 49 80 1 1 00 発
2 1 3. 3 0. 22 0. 07 0. 39 33 85 3200 明
22 5. 5 0. 5 1 0. 1 0 0. 40 30 94 2600 多
23 1 8. 1 0. 60 0. 26 0. 6 1 4 1 92 2000 孔
24 1 7. 1 0. 4 1 0. 25 0. 66 34 82 1 700
25 3. 0 0. 45 0. 1 4 0. 5 1 32 87 3800 金
26 9. 5 1. 2 0. 1 1 0. 4 9 45 80 1 500 厲
27 1 6. 9 3. 1 0. 23 0. 97 54 88 1 05 0 板
28 4. 0 0. 9 0. 09 0. 38 36 97 5400 材
29 2. 1 0. 70 0. 09 0. 4 1 39 83 2700
30 1. 6 0. 34 0. 20 0. 39 4 0 86 2900
3 1 9. 0 1. 0 0. 26 0. 7 1 1 88 2200
32 39. 8 2. 2 0. 20 0. 59 32 80 3200 多? LK 1. 6 0. 70 95 5 1 板 W 表 9に示される結果から、 本発明多孔質金属板材 1 7〜 3 2は、 いずれも図 1 に示される通りの有孔金厲焼結体のスケルトンで構成され、 かつ前記スケル 卜 ン は 3 0〜6 0 %の高い気孔率を有するので、 スケルトンが図 7に示される通りの 無孔金属体からなる従来多孔質金属板材に比して著しく大きな比表面積をもつこ とが明らかである。
上述のように、 この発明の多孔質金厲板材は、 きわめて大きい比表面積を有し 、 かつ細孔表面層によって強度も確保されることから、 これの各種機械装置の構 造部材へ'の適用によってすぐれた性能を発揮し、 各種機械装置の高性能化および 高出力化に十分満足に対応することができるのである。
実施例 3
つぎに、 表面の空孔の孔径が内部の空孔の孔径より小さな多孔 S金属板材を製 造する他の例につ 、て説明する。
まず、 金属粉として表 1 0、 1 1 に示される平均粒 Sおよび組成を有する各種 の金属粉、 有機溶剤として、 ネオペンタン (A— 1 ) 、 へキサン (A - 2 ) 、 ィ ソへキサン (A— 3 ) 、 ヘプタン (A— 4 ) 、 イソヘプタン (A— 5 ) 、 ベンゼ ン (A— 6 ) 、 オクタン (A— 7 ) 、 およびトルエン (A— 8 ) 、 界面活性剤と して上記の市販の台所用中性合成洗剤、 水溶性樹脂結合剤として、 メチルセル口 ース (B— 1 ) 、 ヒ ドロキシプロピルメチルセルロース (B— 2 ) 、 ヒ ドロキシ ェチルメチルセルロース ( B— 3 ) 、 カルボキシメチルセルロースアンモニゥ厶 ( B - 4 ) 、 ェチルセルロース ( B— 5 ) 、 およびポリ ビニルアルコール (B - 6 ) 、 可塑剤として、 ポリエチレングリ コール (C 一 1 ) 、 ォリーブ油 (C一 2 ) 、 石油エーテル (C 一 3 ) 、 フタル酸ジ Nブチル (C一 4 ) 、 およびソルビタ ンモノォレー 卜 (C 一 5 ) をそれぞれ用意し、 これらを表 1 0、 1 1に示される 配合組成で水に配合し、 通常の条件で混合することにより混合物 3 a ~ 3 pをそ れぞれ調製した。
ついで、 これらの各種混合物 3 a〜3 pをそれぞれ公知のドクターブレード法 にてキヤ リアシー ト上に所定厚さに塗布して板伏成形し、 この板状成形体の片面 に、 遠赤外線加熱装置のヒーターの表面温度を 1 5 0〜 3 0 0 °Cの K囲内の所定 温度として、 3 0〜3 0 0秒の 囲内の所定時間照射した後、 表 1 2に示される 条件で空孔形成を行ない、 空気中、 温度: 5 0 0てに 2 ¾間保持の条件で脱脂処 理し、 引続いて同じく表 1 2に示される条件で焼結することにより表 1 3に示さ れる厚さを有し、 かつ片面に細孔表面) Sを有する本発明多孔質金属板材 3 3〜4 8をそれぞれ製造した。
また、 比絞の目的で、 市販のポリウレタンフォーム板材の片面に厚さ : 0 . 5 mの厚さで N iを蒸着して前記ポリウレタンフォームに導電性を付与し、 この 状態で硫酸ニッケル水溶液中に浸演し、 陰極として 0 . 5 A / d m 2の電流密度 で N i電気メ ツキ処理を施し、 前記ポリウレタンフォームの貫通孔表面に平均厚 さ : 5 0 mの N i メ ツキ展を形成し、 ついでこれを水素気流中、 温度: 1 1 0 0てに 0 . 5時間保持の条件で加熱して前記ポリウレタンフォームを燃焼させる ことにより厚さ : 1 . 6 m mの従来多孔質金属板材を製造した。
つぎに、 この结果得られた本発明多孔質金属板材 3 3 - 4 8および従来多孔質 金属板材について、 画像解折装置を併用して全体気孔率を測定し、 かつ B E T法 にて全体比表面穣を測定し、 さらに前記多孔質金属板材を構成するスケル卜ンの 気孔率、 細孔表面層の厚さ、 細孔表面 および板材中心部におけるスケルトンに よって形成された気孔の径を測定した。 これらの測定結果を測定個所: 3 0 ケ所 の平均値として表 1 3に示した。
(この頁、 以下余白)
表 1 0
配 合 組 成 (質量%)
種 別 金 属 粉
有機溶剤 界面活性剤 水溶性抝脂桔合剤 可塑剤 水 平均拉径
C u m )
3 a 2 N i 6 5 A - ( 2 ) : 2 1 B一 ( '2 ) : 2 . 7 _ 残
A - ( 1 ) : 0 . 5
3 b 9 C u 6 5 2 . 5 B一 ( 3 ) : 3 一
A - ( 2 ) : 1
3 c 2 0 C u - 2 0 % N i 7 0 A - ( ) : 1 0 . 0 6
m B一, ( 6 ) : 2 残
1 8 5 N ¾ i 3 2 B一 ( 1 ) : 0 . 5
3 d
Λ - ( 5 ) : 2 1 B一 ( 2 ) : 1 一 残
9 C u 3 2
B一 ( 4 ) : 0 . 6
Λ - ( 3 ) : 2 B一 ( 2 ) : 1 - 5
3 e 4 5 A g 7 5 A - ( 2 ) : 1 . 5 1 ― 残
B - ( 3 ) : 2
料 A一 ( 7 ) : 5 . 5
3 f 8 S U S 4 3 0 3 2 A - ( 6 ) : 0 . 6 4 . 5 B一 ( 5 ) : 1 9
3 g 2 0 A u 7 5 A - ( 8 ) : 2 . 5 0 . 5 B一 ( 2 ) : 2
0 . G W G 3
3 h 9 C u 4 A - ( 7 ) : 2 1 B一 ( 1 ) 2 . 5
2 N i 1
表 1 1
IE 組 成 (質 ffl % )
種 m 金 屈 扮
有機溶剤 界面活性剤 水溶性榭脂桔合剤 可 塑 剤 水 平均 ii il 組 成
( m ) (重量%)
3 i 2 N i 6 5 A一 ( 2 ) : 2 1 B一 ( 2 ) : 2 . 7 C一 ( 6 ) 1 残
N i - 1 5 . 5 % A - ( 2 ) : 1
3 j 1 0 C r - 8 % F e - 6 8 1 J B - ( 2 ) : 2 C一 ( 1 ) 2 . 5 残
0 . 8 % M n Λ一 ( 3 ) : 0 . 5
A - ( 1 ) : 0 . 5 B一 ( ) : 2 C一 ( 3 ) 0 . 5
C o - 1 0 % N i
3 k 8 — 1 5 % C r 5 2 A一 ( \ 7, ノ ) - * 2 4 . 8 c ( ) 1 . 4 混 B一 ( 6 ) : 0 . 9
A一 ( 8 ) : 6 . 5 C一 ( 5 ) 0 . 6 口 0 . 6 w G 3 B一 ( 1 ) : 0 . 5 C一 ( 1 ) 0 . 5
3 ! 9 C u 4 . 5 A一 ( 7 ) : 2 1 B 一 ( 2 ) : 0 . 5 残 原 C一 ( 5 ) 0 . 5
3 C o 0 . 5 B一 ( 3 ) : 0 . 5
料 3 m 1 1 Λ g - 7 . 5 % 3 1 Λ一 ( 4 ) : 0 . 6 0 . 0 6 B一 ( 5 ) : 1 9 c - ( 2 ) . 1 i . 5 残
C u
1 8 5 N i 3 2
3 n Λ一 ( 5 ) : 2 1 B一 ( 3 ) 2 C一 ( 5 ) : 6 . 1
9 C u 3 2
3 o 3 5 N i - 2 0 % C r 7 8 Α一 ( 2 ) : 1 0 . 5 B一 ( 2 ) 1 . 5 C一 ( 4 ) : 1
3 P 1 0 S U S 3 0 4 6 0 A一 ( ) : 2 . 5 1 . 5 B一 ( 2 ) 2 C - ( 3 ) : 2
0 9 o d ε 8
0 8 I ο ο ε 1
o ε I \
0 s o ε
0 S 0 1 u £ 9 \
0 Ζ I
Λ Uゥ ο β b 0 9 0 9 LU ζ 9 ο ε 0 0 2 1 * t
Η o ε 0 9 I e \ 八 "? ο τ
0 6 b I 羣 1 9 S ε ε »-
0 Ζ 1
f ε l ^ SI
ο ο ε τ 0 9 0 \
0 8 1 ! ε I l-
0 0 2 1 0 Z I 9 E ε 0
0 9
0 Τ 0 I 9 Z 0 S s ε 6 ε If
0 6 1 0 6 I ΐ o ε 0 Z ί 9 8 ε ο ο ε 0 1 6 0 0 S 3 ε i ε Β
0 9 0 0 0 1 o ε 9 6 ρ ε 9 ε
0 9 1 1 ς I o ε つ ε 9 ε
0 Ζ ΐ *
f i
ο ε ο ι o 9 q ε \ ε
0 t ζ ο ο ε ι 0 9 0 Β ε ε ε
ο 。) (D 。)
Ma «
*f ¾ ¾
Ζ T/XDd 90€I€/96 OfA. 3
Figure imgf000033_0001
CT/JP96/00911
表 1 3に示される結果から、 本発明多孔質金厲板材 3 3〜4 8は、 いずれも図 1、 図 2に示される通りの有孔金属焼結体のスケル ト ンで構成され、 かつ前記ス ゲルトンは 1 0〜 6 0 %の高い気孔率を有するので、 スケル 卜ンが図 7に示され る通りの無孔金属体からなる従来多孔 K金属板材に比して著しく大きな比表面積 をもつことが明らかである。
上述のように、 この発明の多孔 g金属板材は、 きわめて大きい比表面積 有し 、 かつ細孔表面届によって強度も確保されることから、 これの各種機械装置の構 造部材への適用によってすぐれた性能 3を発揮し、 各種機械装置の高性能化および
2
高出力化に十分満足に対応することができるのである。 実施 4
つぎに、 この発明の板状金属補強材で補強した多孔質金厲板材を実施例により 具体的に説明する。
まず、 金属粉として表 1 4、 1 5に示される平均粒 Sおよび組成を有する各種 の金属粉、 有機溶剤として、 ネオペンタン (A— 1 ) 、 へキサン (A— 2 ) 、 ィ ソへキサン (A— 3 ) 、 ヘプタン (A— 4 ) 、 イソヘプタン (A— 5 ) 、 ベンゼ ン (A— 6 ) 、 オクタ ン (A— 7 ) 、 およびトルエン (A— 8 ) 、 界面活性剤と して上記の市販の台所用中性合成洗剤、 水溶性樹½結合剤として、 メチルセル口 ース ( B— 1 ) 、 ヒ ドロキシプロピルメチルセルロース ( B— 2 ) 、 ヒ ドロキシ ェチルメチルセルロース (B— 3 ) 、 カルボキシメチルセルロースアンモニゥ厶 ( B - 4 ) 、 ェチルセルロース ( B— 5 ) 、 およびポリ ビニルアルコール ( B— 6 ) 、 可塑剤と して、 ポリエチレングリ コール (C— 1 ) 、 ォリーブ油 (C一 2 ) 、 石油エーテル (C— 3 ) 、 フタル酸ジ Nブチル (C一 4 ) 、 およびソルビタ ンモノォレ一 卜 (C一 5 ) をそれぞれ用意し、 これらを表 1 4、 1 5に示される 配合組成で水に配合し、 通常の条件で混合することにより混合物 A〜Pをそれぞ れ绸製した。
また、 板状金属補強材として、 それぞれ表 1 6に示される材質、 厚さ (メ ッシ ュ〉 、 および形状の板状金属補強材 A〜Eを用意したつ
ついで、 上記の各種混合物 4 a〜4 pをそれぞれ容器に装入し、 これに同じ く 表 1 7、 1 8に示される組合せで板状金)!補強材 A〜Eのいずれかを浸潰し、 前 記容器に設けられた所定幅のスリ ッ 卜を通して前記板伏金属補強材を引出して厚 さ方向中央部に前記板状金属補強材が位置した板伏成形体を成形し、 前記扳状成 形体に同じく表 1 7、 1 8に示される条件で空孔形成処理を施した後、 空気中、 温度: 5 0 0てに 2時間保持の条件で脱脂処理し、 引続いて同じく表 1 7、 1 8 に示される条件で焼桔することにより表 1 9に示される厚さを有し、 かつ図 3〜 5に概略斜視図および要部拡大断面図で示される構造のうちのいずれかからなる 本発 ϊ月多孔質金属扳材 4 9 - 6 4をそれぞれ製造した。
また、 比絞の目的で、 市販のポリウレタンフォームの片側面 (内側面) に厚さ : 0 . 5 mの厚さで N i を蒸着して前記ポリウレタンフォームに導電性を付与 し、 -この状態で硫酸ニッケル水溶液中に浸演し、 陰極として 1 d m 2の電流 密度で N i電気メ ツキ処理を施し、 前記ポリゥレタンフォームの貫通孔表面に平 均厚さ : 7 5 mの N i メ ッキ)!を形成し、 ついでこれを水素気流中、 温度: 1 1 0 0てに 0 . 5時間保持の条件で加熱して前記ポリウレタンフォームを燃焼さ せることにより厚さ : 3 m mの従来多孔質金厲板材を製造した。
つぎに、 この結果得られた本発明多孔質金厲板材 4 9〜6 4の多孔質金属本体 、 並びに従来多孔質金厲扳材について、 画像解折装置を併用して全体気孔率を測 定し、 かつ B E T法にて全体比表面積を測定し、 さらに前記多孔質金属本体を構 成する多孔 K金属焼結体のスケルトンの気孔率も測定した。 これらの測定结果を 測定 (1所: 3 0 ケ所の平均値として表 1 9に示した。
(この頁、 以下余白)
表 1 4
配 合 組
別 金 粉
有機溶剤 界面活性剤 水溶性榭脂桔合剤 可塑剤 水 平均 w (I 組 成
( « m ) (重量
B - 4 :
4 a 9 N i 5 0 A一 1 : 0 . D 2 . 5 残
B - 5 : 1
4 b 4 0 C u 5 0 A ― 2 : 0 . 5 0 . 0 7 B一 1 : 5 - 残
A一 6 二 0 . 5
4 c 4 6 0 C u - 1 0 % N i 6 0 4 . 8 B - 3 : 0 . 6 残
A一 8 : 1
2 N i 2 5 B一 1 ' 2
4 d A一 7 : 0 . 0 7 2 残
4 0 C u 2 5 B - 3 2
A ― i : 5
4 e 2 0 A u 7 8 A一 : 2 . 5 3 B - 2 7 一 残
A一 7 : 2
4 f 4 0 Λ g 7 0 A一 : 0 . 4 4 B - 6 2 一 残
1 1 0 F e 3 7
4 g 3 5 C r 9 Λ一 5 : 5 2 B ― \ 1 5
9 N i 4
1 1 0 F e 3 A一 3 : 0 . 3 B - 1 1 0
4 0 . 5 B - 2 : 4
G 5 C o 3 A一 : 0 . 7
B - 5 : 5
表 1 5
配 合 組 成 (質量%)
種 别 金 属 粉
有機溶剤 界面活性剤 水溶性榭脂桔合剤 可 塑 剤 水 平均拉 S m 成
( m ) (重量% )
A - 2 : 0 B. - 1 : 9 . 5
4 i 1 2 S U S 3 1 0 S 4 0 A - 4 : 0 C一 1 残
B - 3 : 9 . 5
A - 7 : 0 . 2
C - 3 1 . 5
4 j 1 0 8 S U S 3 0 4 4 0 A - 2 : 0 0 . 0 8 B - 2 : 5 残
C一 5
4 k 4 G 0 C u - 1 0 % N i 7 5 A B - 1 : 0 . 8 C一 3 0 . 2 残
1 3 N i 2 4 C一 1 1 A - 3 . 9 B - 3 : 5 C一 4 残 物 0 . 6 C
C一 5
C o - 1 0 % N i
1 m 1 5 4 5 A - 5 : 0 . 0 8 1 . 5 B - 4 : 4 C - 2 : 0 残
1 5 % C
C o - 1 0 % N i B - 2 : 8 C一 2 : 5
4 n 1 2 A - 4 : 0 . 6 1 . 5 0 . 5 残
2 0 % C 一 1 5
B - 6 : 0 . 5 C - 3 : 5
1 1 0 F e 2 5 A — 1 : 0
4 o
6 5 C o 1 3 . 5 B — 5 : 5 C一 4 残
A - 6 : 0
1 3 N i 7 . 5
4 P 1 2 N i 4 5 A - 8 : 0 . 7 0 . G B - 6 : 6 C - 5 : 6
¾ 1 6
種 別 w 質 厚さ または粒度 形 伏
A N i 4 8 m e s h 線 WS : 0. 5 mmの金網材
状 B C u 0. 3 in m TLS : 1 »i mの孔を 1 . 8 rn mのピッチで形成した孔あき板 W 金
m C N i 0. 1 mm 板材 強 D Λ u 1 0 0 m e s h 線 2材 : 0. 1 m mの金網材
E S U S 3 1 G L 0. 3 mm Bと同 じ
表 1 7
空孔形成条件 焼 ¾ 条 件 種 别 S合原料 板状金属
BC 補強材 i己号 ^囲気 温 度 時 RS1 ?囲気 温 度 時間
(° C ) (分) (° C ) (分)
4 9 4 a A 2 5 1 2 0 0
9 0 水素
5 0 4 b B 3 0 6 0 本 1 0 0 0 発 5 1 4 c B 1 0 5 2 0
明 空気
多 5 2 4 d A 2 5 9 0 1 0 6 0 1 2 0 孔
質 5 3 4 e D 5 1 8 0 真空 1 0 3 0 6 0 金
厲 5 4 4 f D 9 0 0 2 4 0 体
5 5 4 g E 窒素 1 0 1 2 0 1 2 5 0 3 0 水素
5 6 4 h E アルゴン 1 3 0 0 6 0
表 1 8
空孔形成条件 焼 桔 条 件 種 別 混合原料 板状金属
記 号 補強材記号 雰 BB気 温 度 時 雰囲気 温 度 時間
(° C ) (分) (° C ) (分)
5 7 4 i E
3 0 9 0 1 2 5 0
5 8 4 j E 空気
本 水素
発 5 9 4 k B 1 0 1 2 0 1 0 0 0 明
多 6 0 1 A アルゴン 2 0 g 0
孔 1 2 5 0 6 0
6 1 4 m E
金 1 0 5 2 0 真空
m 6 2 4 n E 1 3 5 0 体 空気
6 3 4 o C 1 2 5 0
2 5 9 0 水紫
6 4 4 P C 1 1 0 0
厚さ 全 (*¾孔率 スゲノレトン 種 別 気孔率
(mm) ( c π i"ι2 / c " m1*' (%) (%) Q 2. 2 4200 g 2 A 0
0 u 3 o X 1 800 g o β 8 1 000 g 本
ς 2 1 0500 β 11 4 q 発
J 0 u u w 明
54 V . o 9 7 fl n Q 44 Q n w 多
35 1 0 q ·¾ 1 し
c e
Ό D ク , R 0 1 o π n \l o Q 0 c≠ 0 4 質
57 1 1 0 11 *r o a ( o Q o fl o c 金
58 %/ v v ft 11 1 ς
59 3. 1 1 1 00 87 54 板
60 2. 2 5500 97 36 材
6 1 5. 0 2900 84 39
62 3. 1 3000 88 4 0
63 0. 8 2200 89 4 1
64 0. Θ 3300 80 32 多孔質 3. 0 4 1 95
金属板 W 表 1 9に示される結果から、 本発明多孔質金属板材 4 9〜6 4は、 いずれもこ れを構成する多孔 S金属本体が図 1に示される通りの有孔金) S焼桔体のスケル卜 ンカ、らなり、 かつ前記スケルトンは 3 0〜6 0 %の高い気孔率を有するので、 ス ゲル卜ンが図 7に示される通りの無孔金属体からなる従来多孔質金厲板材に比し て著しく大きな比表面積をもつことが明らかである。
上述のように、 この発明の多孔 K金属扳材は、 きわめて大きい比表面稜を有し 、 かつ板状金属補強材で強度も確保されることから、 これの各種機械装置の構造 部材への適用によってすぐれた性能を発揮し、 各種機械装置の高性能化および高 出力化に十分満足に対応することができるのである。 実施例 5
つぎに、 この発明の板状補強材で補強した多孔質金属板材の他の実施例を説明 する。
まず、 金属粉として表 2 0、 2 1に示される平均粒径および組成を有する各種 の金属粉、 有機溶剤として、 ネオペンタン [A— ( 1 ) ] 、 へキサン [A— ( 2 ) ] 、 イソへキサン [A— ( 3 ) 〕 、 ヘプタン [A— ( 4 ) ] 、 イソヘプタン [ A— ( 5 ) ] 、 ベンゼン 〔A— ( 6) ] 、 オクタン [A— ( 7 ) ] 、 およびトル ェン [A - ( 8 ) ] 、 界面活性剤として上記の市販の台所用中性合成洗剤、 水溶 性樹脂結合剤として、 メチルセルロース [B— ( 1 ) ] 、 ヒ ドロキシプロピルメ チルセルロース [B— ( 2 ) ] 、 ヒ ドロキシェチルメチルセルロース [B— ( 3 ) ] 、 カルボキシメチルセルロースアンモニゥ厶 [B— ( 4 ) ] 、 ェチルセル口 ース [B— ( 5 ) ] 、 およびポリ ビニルアルコール [B— ( 6 ) ] 、 可塑剤とし て、 ポリエチレングリコール [C一 ( 1 ) ] 、 オリ一ブ油 [C一 ( 2 ) ] 、 石油 エーテル [C— ( 3 ) ] 、 フタル酸ジ Nブチル [C一 ( 4 ) ] 、 およびソルビタ ンモノォレー ト [C一 ( 5 ) 〕 、 グリセリ ン [C— ( 6 ) ] 、 をそれぞれ用意し 、 これらを表 2 0、 2 1に示される配合組成で水に配合し、 通常の条件で混合す ることにより混合物 5 a〜 5 pをそれぞれ調製した。
また、 扳状金属補強材として、 それぞれ表 2 2に示される材質、 厚さ (メ ッシ ュ) 、 および形状の板状金属補強材 A〜Eを用意した。 ついで、 上記の各種混合物 A〜Pをそれぞれ容器に装入し、 これに同じく表 2 3、 2 4に示される組合せで板状金属補強材 a〜eのいずれかを浸演し、 前記容 器に設けられた所定幅のスリ ッ 卜を通して前記板状金属補強材を引出して厚さ方 向中央部に前記板状金属補強材が位置した板状成形体を成形し、 前記扳状成形体 に同じく表 2 3、 2 4に示される条件で空孔形成、 脱脂、 および焼結を施すこと により表 2 5に示される厚さを有し、 かつ図 3〜5に概略斜視図および要部拡大 断面図で示される構造のうちのいずれかからなる本発明多孔質金属板材 6 5〜8 0をそれぞれ製造した。 ―'
また、 比絞の目的で、 市販のポリウレタンフォームの片側面 (内側面) に厚さ : 0 . 5 mの厚さで N iを蒸着して前記ポリウレタンフォームに導電性を付与 し、 この状態で硫酸ニッケル水溶液中に浸漬し、 陰極として 1 A / d m 2の電流 密度で N i電気メ ツキ処理を施し、 前記ポリゥレタンフォームの貫通孔表面に平 均厚さ : Ί 5 mの N i メ ツキ層を形成し、 ついでこれを水素気流中、 温度: 1 1 0 0 に 0 . 5時間保持の条件で加熱して前記ポリウレタンフォームを燃焼さ せることにより厚さ : 3 m mの従来多孔質金属板材を製造した。
つぎに、 この結果得られた本発明多孔質金属扳材 6 5〜8 0の多孔 S金属本体 、 並びに従来多孔質金厲扳材について、 画像解折装置を併用して全体気孔率を測 定し、 かつ B E T法にて全体比表面棱を測定し、 さらに前記多孔質金属本体を構 成する多孔質金属焼結体のスケルトンの気孔率も測定した。 これらの測定桔果を 測定個所: 3 0ケ所の平均値として表 2 5に示した。
(この頁、 以下余白)
S2 合 組 成 (質量%)
種 別 金 厲 粉
有機溶剤 界面活性剤 水 ¾性樹 平均 ½ g 組 成
( χ/ mリ (重 S % )
5 a 2 N i 6 5 A ( 2 ) B— ( 2 )
A - ( 1 ) 0 . 5
5 b C u 2 . 5 B - ( 3 )
5 0 A— ( 2 )
5 c 2 0 C u - 2 0 % N i 7 0 A ( ) 0 . 0 6 ( 6 )
1 8 5 N i 3 2 B ( 1 ) 混 5 d A ( 5 ) ( 2 )
C u 3 2
B - ( 4 )
A - ( 3 ) B - ( 2 ) 原 5 e 4 5 A g 7 5 A ( 2 ) 1 . 5
( 3 )
A— ( 7 ) 5 . 5
5 f S U S 4 3 0 3 2 A - ( 6 ) 0 . 6 4 · 5 ( 5 )
5 g 2 0 A u 7 5 A - ( 8 ) 2 . 5 0 . 5 B ( 2 )
0 . 6 W G 3
5 h C u Λ - ( 7 ) ( 1 )
N
. 2 1
E 合 組 成 (質量
if 金 ) S W y(÷*
界面活性剤 水溶性 fil脂桔合剤 · 口了 塑
平均 m 成
( m ) 0/ヽ
5 i L 6 5 A― C 2 : 1 B一 ( 2 ) : 2 . 7 し ― 1
N l - 1 5 . 5 o A一 ( 2 ) : 1
5 j 1 0 C r 一 8 % F e — 6 8 1 . 5 B一 ( 2 ) : 2 し一 ( 1 : 5 残
U . 8 % M n A一 ( 3 : 0 . 3
A一 ( 1 ) : 0 . 5 L一 V 3 ) : 0 . 5
C u - 1 0 % N i B一 ( )' : 2
5 k 8 - 1 5 % C r 5 2 A一 ( 7 ) : 2 4 . 8 C一 ( 4 ) : 1 . 4 残
,昆
A一 ( 8 ) : 6 . 5 Β一 ( D 0 . 9 C一 ( 5 ) : 0 . 6 口 0 . 6 W 6 3 Β一 ( 1 ) 0 . 5 C一 ( 1 ) : 0 . 5
5 1 9 C u 4 . 5 A一 ( 7 ) : 2 1 Β一 ( 2 ) 0 . 5 残 照 し : u . b
3 C o 0 . 5 Β一 ( 3 ) • 0 . 5
料 5 m 1 1 A g— 7 . 5 % 3 1 A一 ( 4 ) : 0 . 6 0 . 0 6 Β - ( 5 ) 1 9 C一 ( 2 ) : 残
C u 1 4 . 5
1 8 5 N i 3 2
5 n A一 ( 5 ) : 2 1 Β一 ( 3 ) 2 C - ( 6 ) : 6 - 1 残
9 C u 3 2
5 o 3 5 N i — 2 0 % C r 7 8 A一 ( 2 ) : 1 0 . 5 Β一 ( 2 ) 1 - 5 C一 ( 4 ) : 1
5 P 1 0 S U S 3 0 4 6 0 A一 ( ) : 2 . 5 1 . 5 Β一 ( 2 ) 2 C一 ( 3 ) : 2 残
表 2 2
極 w n 厚さ または ½度 形 状
A N i 4 8 m e s h 線材 S : 0. 5 m mの金網
状 B C u 0. 3 mm 孔径 : 1 »101の孔を 1 . 8 mmのビツ チで形成した孔あき板 W 金
厲 C N i 0. 1 mm 板材
強 D A u 1 0 0 m e s h 線 S材 : 0. 1 m mの金網材
E S U S 3 1 6 L 0. 3 mm Bと同 じ
¾ 2 3
空孔形成条件 脱 脂 条 件 焼 結 条 件 f'fi 別 ¾合原料 板状金厲
a '7 i 強材記号 測気 温 B# η:ι ^Bfl気 温 度 問 ffl気 S 度 義
(° C ) (分) ( ° C ) (分) ( ° C ) (分)
G 5 5 a Λ ^ 0 G 0 1 3 0 0 2 4 0
5 0 0
6 6 5 b Β 4 5 4 0 3 0 1 0 3 0 本 H 2 1 2 0
G 7 5 c Β 湿度 : 3 0 1 5 4 5 0 1 1 5 0
"J! 9 0 %の 空気
多 G 8 5 (1 A 空気 2 5 3 0 C 0 1 0 0 0 G 0 孔 5 0 0
G 9 5 e D 5 0 4 0 1 5 空気 9 1 0 3 0 0 金
7 0 5 f D 2 0 3 0 4 5 0 2 4 0 H 1 1 9 0 1 2 0 体
7 1 5 g Ι· 5 0 2 5 5 0 0 3 0 空気 1 0 1 0
G 0
7 2 5 !i Ε 3 5 1 2 0 0 0 0 G 0 H 2 1 2 0 0
表 2 4
空孔形成条件 脱 脂 条 件 焼 桔 条 件 極 ? A 板伙金厲
iiti強 M記号 BE気 温 度 B$ r.:i 雰 気 雰囲気 温 度
(° C ) (分) (° C ) (° C )
7 3 5 i E 1 8 0
4 0 6 0 5 0 0 H 2 1 3 0 0
7 4 5 j E 湿度 : 3 0
本 9 0 %の 1 2 0
7 5 5 k B 空気 2 5 1 5 真空 1 3 2 0 明 空気 4 5 0
多 7 G 5 1 Λ 5 0 3 0 1 5 H 1 2 0 0 3 0 孔
n 7 7 5 in E 6 0 6 0 5 5 0 1 2 0 空気 9 2 0 金 1 2 0
7 8 5 E Λ r 5 0 0 1 0 0 1 0 5 0
3 0 2 0
7 9 5 o C II 5 5 0 1 2 0 II
N 2 1 3 0 0 1 8 0
8 0 5 P C 4 0 G 0 空気 4 5 0 3 0
—表 25_
多 孔 H 金 « 本 体 厚さ
種 別 全体 JtSffit スケルトン
nm) 気孔率
(cm2 /cm3 ) (.%) (%)
65 2. 3 390 97 22
66 3. 2 620 95 25
67 6. 6 4 1 0 95 3 1 本
68 4. 0 2800 82 52 発
69 0. 8 350 97 2 1 明
70 0. 9 1 1 50 89 4 1 多
7 1 2. 1 1 200 88 33 し
72 3. 1 3 1 0 97 1 1 質
73 1 0. 4 4 20 96 25 金
74 1 9. 2 630 95 3 3 属
75 3. 4 24 00 82 52 板
76 2. 4 590 92 1 4 材
77 5. 5 660 92 22
78 3. 3 2900 8 1 54
79 0. 9 7 1 0 93 23
80 1. 0 880 92 3 1
Κέ*多孑 LS
板材 3. 0 4 1 95
cmm 1 ) 表 2 5に示される結果から、 本発明多孔質金属板材 6 5〜 8 0は、 いずれもこ れを構成する多孔 ¾金¾本体が図 1に示される通りの有孔金属焼結体のスケル卜 ンからなり、 かつ前記スケルトンは 1 0〜 6 0 %の高い気孔率を有するので、 ス ゲル卜ンが図 7に示される通りの無孔金属体からなる従来多孔質金属板材 (比铰 例 1 ) に比して著しく大きな比表面積をもつことが明らかである。
上述のように、 この発明の多孔質金属板材は、 きわめて大きい比表面撗を有し 、 かつ板状金属補強材で強度も確保されることから、 これの各種機械装置の構造 部材への適用によってすぐれた性能を発揮し、 各種機械装置の高性能化および高 出力化に十分満足に対応することができるのである。 実施例 6
アルカリ二次電池の電極を形成する実施例について説明する。
平均粒径 : 9 ; u mの純 N i粉末、 水溶性メチルセルロース、 グリセリ ン、 界面 活性剤、 へキサン、 および水を表 2 6に示す配合組成に混合してスラ リーとし、 ドクターブレード法により厚さ : 0 . 4 m mに成形し、 ついで温度: 4 0て、 湿 度 : 9 5 %の雰囲気中、 表 2 6に示す時間保持して空孔形成処理を行ったのち、 ヒーター温度: 1 5 0てに設定した遠赤外線乾燥機中で水分を乾燥してグリーン シー 卜を製造し、 ついでグリーンシー卜を空気中、 5 0 0 3Cに 1時間保持して脱 バイ ンダー処理を行った後、 H 2 - N 2 ( 5〜9 5 % ) の混合ガス雰囲気中、 表 2 6に示す温度、 時間に保持して焼結し、 微細多孔質焼結金属からなるスケル卜 ン部分を有するスポンジ状多孔質金属基体 6 a ~ 6 jを製造した。
得られたスポンジ状多孔 K金属基体 6 a ~ 6 j のスゲル トン部分の平均微細孔 径および気孔率、 並びにスポンジ状多孔質金属基体全体の気孔率および比表面積 を測定し、 その結果を表 2 6に示した。
ここでスゲルト ン部分の平均微細孔径および気孔率は試料断面を画像解折して 測定し、 スポンジ状多孔 K金属基体全体の気孔率は試料の寸法および重量から蒯 定し、 スポンジ状多孔質金属基体全体の比表面積は B E T法で測定し、 体積当た り数値に換算した (B E T法では重量当たりの比表面積値が得られる。 ) 。 — ¾2 G
スラリーの 8!合©¾ %) 基 体 の 特 性 値
空価成
m i ) メチル グリセりン 界 30 へキサン 水 処麵 !1 空孔部分の平均 骨格部分の平均 骨格部分の J ¾fgi* セルロース (li r) (° c) (h r) 蘭 Li圣("m) 気孔率(%) (cmJ /cm3 )
G a 7 2. 7 2. 7 5. 5 1. 0 1. 8 2 1 350 1 \ 20 , 2. 0 25. 1 550 G b 7 2. 0 2. 5 4. 5 1. 5 2. 2 1 1 3 5 0 3 3 80 0. G 1 2. 4 4 00
6 c 7 1. 5 3. 0 5. 0 1. 2 2. 5 0. 5 1 30 0 1 2 20 3. 5 3 0. 4 5 2 0 多
孔 6 d 7 3. 2 3. 2 4. 0 1. 2 3. 0 2 1 2 5 0 1 5 5 0 7. G 28. G 4 60 n
金 G e 7 1. 0 2. 5 6. 0 1. 0 2. 5 1 1 200 2 50 0 5. 1 3 1. 5 500
6 f 66. 4 Ί . 4 5. 5 1. 2 2. 7 3 1 1 5 0 2 620 1 0 33. 6 6 90
G g G 8. 5 3. 0 7. 0 5. 0 3. 0 2 1 3 5 0 1 5 20 3. 7 29. 1 4 4 0
0 h G 9. 5 2. 8 5. 5 3. 0 3. 2 1 1 1 2 0 1 C G 0 1 4. 8 4 2. 0 7 1 0 ϋ i 7 3. 2 2. 5 5. 0 2. 0 1. 3 2 1 3 50 5 2 9 0 0. 5 1 0 3 1 0 ϋ j G 8. 5 G. 0 4. 0 1. 0 2. 7 3 1 1 00 1 G 90 1 9. 3 55 1 000
A G 0 4 0
Figure imgf000051_0001
次に、 平均粒径: 1 0 / mの水酸化' N i粉末、 平均粒径 : 1 8 mの水酸化 C 0粉末、 カルボキシメチルセルロース、 テフロン粉末、 および水を重 S比で 1 0 0 : 5 : 0. 5 : 4 : 4 1の割合で混合してペースト状とし、 このペース ト伏混 合物を表 2 6のスポンジ状多孔質金厲基体 6 a〜6 j に塗布して浸透させ、 大気 中、 温度: 1 0 5 °Cに 2時間保持して乾煥した後、 プレス圧延して厚さ : 0. 5 mmとし、 ついで 1 0 cmx 4 cmに切り出して、 本発明アル力リニ次鴛池の正 極電極 (以下、 本発明電極という) 8 1〜90を製造した。 得られた本発明電極 8 1〜 9 0の水酸化 N i粉末の充填童、 スケル 卜ン部分の平均微細孔 Sおよび気 孔率を測定し、 その結果を表 2 7に示した。
(この頁、 以下余白)
7
多孔質 水酸化 N i 電 Sの骨格部分 <fの骨格 種 別 金 ¾¾体 粉の充 里 の平均 1¾細孔 部分の気孔率
( g ) ( m ), (%) 本 8 1 6 a 2 . 5 3 2 . 0 2 5 . 1 発 8 2 6 b 2 . 5 3 0 . 6 1 2 . 明 8 3 u c i . D a Q n
J . D U . 4 m 8 4 6 d 2 . 5 9 7 . G 2 8 . 6
8 5 6 e 2 . 6 0 5 . 1 3 1 . 5
8 6 6 f 2 . 6 1 1 0 . 3 3 3 . 6
8 7 6 g 2 . 6 0 3 . 7 2 9 . 1
8 8 G h 2 . G 0 1 . 8 4 2 . 0
8 9 G i 2 . 5 1 0 . 5 1 0 . 0
9 0 6 j 2 . 5 9 1 9 . 3 5 5 . 0 従来電極 従来多孔 K 2 . 5 5
(比 ti例 2 ) 金屈基体
これら本発明電極 8 1〜 9 0および従来電極を正極とし、 所定の位置に端子を スポッ 卜溶接し、 公知の力 ドミ ゥ厶負極と公知のセパレータを介して倦卷し、 3
5 %水酸化力リゥム水溶液罨解液とともに封缶して単三型サイズのニッケル一力 ドミ ゥム二次 ¾池を製造した。
得られた全てのニッケル一カ ドミ ウム二次霍池について、 まず、 1 0時間充籩 、 2時間放電の条件の充放電を 5回繰り返すことによって初期活性化を施し、 つ いで、 5時間充電、 2時間放電の条件の完全充放電を 2 , 0 0 0回繰り返すこと により寿命試験を行った。 この寿命試験において、 それぞれの電池の寿命試験第
5
1回の放電容量および寿命試験第 2 . 0 2 0 0回後の放電容 Sをそれぞれ測定し、 それらの桔果を表 2 8に示した。 なお、 寿命試験が 2 , 0 0 0回に到達できずに 放電容量が第 1回の放電容量の 8 0 %を下回った時点をその電池の寿命とし、 寿 命試験を中止してその電池についての寿命回数を表 2 8に示した。 また寿命試験 後の電池を角?体し、 セパレータに含まれる電解液の含浸率を測定し、 それらの桔 果を表 2 8に示した。
(この頁、 以下余白)
表 1 8
ニッケル一力 ドミ ゥム二次電池の寿命 試験後のセパレー夕 別 組み込まれた t 4faJ tj I ¾S A 4T2 fP a■ほ*¾ ¾ 表 2の ¾棰 . 1 回の放 ¾容量 2 0 0 0回目の放 ¾¾fi 殍命回数 (容量%) f 、
( in A n > ( m A n ) la )
U
8 1 1 7 1 1 fa L 1 O D
、 L
8 2 2 1 0 6 5 8 3 2 0 0 0 X±.
ッ o Q
0 0 3 7 4 2 6 2 2 2 0 0 0以上 0 0 . 0 ケ
ル 8 4 . 7 3 0 G 1 2 0 0 0以上
1
力 8 5 本発明電極 5 7 3 7 5 9 8 2 0 0 0以上 8 7 . 2
8 6 6 7 4 6 6 1 5 2 0 0 0以上 8 4 . 7 ゥ
ム 8 7 7 7 3 9 6 0 5 2 0 0 0以上 7 3 . 7
8 8 8 7 1 6 0 1 2 0 0 0以上 7 8 . 6 電
池 8 9 9 7 0 2 5 7 9 2 0 0 0以上 7 1 . 2
9 0 1 0 7 3 7 6 0 3 2 0 0 0以上 7 5 . 9
9 1 従来霜極 7 2 0 9 5 8 4 0 . 5
(比校例 2 )
比铰例 2
比絞のために、 平均孔径: 5 0 0 mの発泡ゥレ夕ンに、 厚さ : 2 0 の N iを無 ¾解メ ツキし、 ついで空気中、 5 0 0てに 0 . 5時間保持した後、 H 2— N 2 ( 5〜9 5 %) の混合ガス雰囲気中、 9 5 0 °Cに 1時間に保持してウレタン 成分を燃焼させ、 従来多孔質金属基体を製造し、 得られた従来多孔質金属基体の 全体の気孔率および比表面擯を表 2 6に示した。
表 2 6に示した従来多孔質金属基体を用い、 実施例 6と同様にして、 従来アル カリニ次電池の正極電極 (以下、 従来電極という) を製造し、 水酸化 N 〖粉末の
5
充塡量を測定し、 その結果を表 2 了に示 4した。
また、 この比絞例に係る電極の断面構造を図 8に示す。 図 8に示すように、 N i金属からなるスケル卜ン部分 2が網目状に連铳的に三次元的につながって構成 した空孔部分 1を有するスポンジ状多孔質金属基体において、 空隙部分に、 活物 質が充«してある。
実施例 6と同様にして、 電極の寿命試験を等を行った結果を表 2 8に示した。 実施例 6と比絞例 2との比絞
表 2 8に示される结果から、 本発明電極 8 1 ~ 9 0を組み込んだニッケル一力 ドミ ゥ厶二次電池 8 1〜 9 0は、 従来電極を組み込んだ二ッケルー力 ドミ ゥムニ 次電池 9 1 (比铰例.2 ) に比べて、 寿命回数が多く、 長寿命になることが明らか である。
なお、 この発明の実施例では、 本発明電極 8 1〜 9 0をニッケル一力 ドミ ゥム 二次電池に組み立てて寿命試験を行ったが、 表 2 7のスポンジ状多孔質金属基体 6 a ~ 6 jからなる本発明電極 8 1 ~ 9 0をニッケル—水素二次電池に組み込ん で寿命試験を行っても長寿命化し、 さらに表 2 6のスポンジ伏多孔質金属基体 6 a〜 6 j をニッケル一力 ドミ ゥム二次電池の負極または二ッケル—水素二次電池 の負極に用いても、 長寿命化が達成できることが分かった。
このように、 この発明のアル力リニ次電池の電極を用いると、
( 1 ) アルカリ二次電池内部に電解液が不足すると、 微細多孔質焼锆金厲からな るスケルトン部分の微細孔に保持された電^液が染み出してきて、 電 液を補充 するので電池の寿命が延びる、
( 2 ) 密閉型アルカリ二次電池の缶には負極が接していて、 缶の腐食によって電 解液が固定されて不足すると、 負極に用いたスポンジ状多孔 K金属基体のスケル 卜ン部分の微細孔に保持された電解液が染み出してきて、 電解液を補充するので 籩池の寿命が延びる、
( 3 ) 正極活物質粉末表面に形成されるメソ孔が増加して膨潤が開始すると、 正 極に用いたスポンジ状多孔 K金属基体の微細多孔質スケル卜ン部分からその膨潤 に使用される分の電解液が染み出してきて霓解液の枯渴を防止するので、 電池が 長寿命化する、
などのすぐれた効果をもたらすものである。 実施例 Ί
アル力リニ次電池の電極を形成する他の実施例を説明する。
表 2 6に示したスポンジ伏多孔質金属基体 6 a〜6 jを温度 : 2 5てにおける 飽和硝酸ニッケル水溶液中に 1 0分間浸演し、 取り出した後、 温度: 1 1 0 °Cの 乾燥機中に 3 0分間保持して乾燥し、 ついで温度: 5 0 °Cの 2 5 %水酸化力リゥ ム水溶液中に 1 0分間浸漬し、 取り出した後、 水洗し、 温度 : 1 1 0ての乾燥機 中に 3 0分間保持して乾燥することによって、 前記スポンジ状多孔質金属基体 a 〜 j の空孔部分およびスケルトン部分の微細空孔に水酸化ニッケルを転化させて 充填した。
かかる処理を行ったスポンジ状多孔質金属基体 6 a〜6 j のスゲルトン部分の 微細空孔には水酸化ニッケルが充満したが、 スポンジ伏多孔質金属基体 6 a〜6 j の大きな空孔部分にはその内壁に水酸化ニッケル膜が形成されただけで十分な 充壙がなされいないところから、 さらに下記の処理を行って空孔部分に水酸化二 ッケルを充満させ、 本発明アルカリ二次電池の正極電極 (以下、 本発明電極とい う) 9 2〜 1 0 1を製造した。
すなわち、 前記処理したスポンジ伏多孔質金属基体 6 a〜6 j の表面に、 さら に平均粒 : 1 0 mの水酸化 N i粉末、 平均粒径: 1 8 mの水酸化 C o粉末 、 カルボキシメチルセルロース、 テフロン粉末、 および水を重量比で 1 0 0 : 5 : 0 . 5 : 4 : 4 1の割合で混合してなるペース ト状混合物を塗布して浸透させ 、 大気中、 温度: 1 0 5てに 2時間保持して乾燥した後、 プレス圧延して厚さ : 0 . 5 m mとし、 ついで 1 0 c m x 4 c mに切り出して、 本発明電極 9 2〜 1 0 1を製造した。
このようにして得られた本発明霍極 9 2〜 1 0 1 に含まれる水酸化 N i粉末の 充通量を測定し、 その結果を表 2 9に示した。 さらに比铰のために、 表 2 6に示 した従来発泡ニッケルを用い、 同様にして従来アルカリ二次罨池の正極霍極 (以 下、 従来霍極という) を製造し、 水酸 5化 N i粉末の充填量を測定し、 その結果を
6
表 2 9に示した。 '
これら本発明電極 9 2〜 0 1および従来電極を正極とし、 所定の位置に端子 をスポッ 卜溶接し、 公知の力 ドミゥム負極と公知のセパレー夕を介して倦回し、 3 5 %水酸化力リゥム水溶液電解液とともに封缶して単三型サイズのニッケル一 力 ドミ ゥ厶二次霍池を製造した。
得られた全てのニッケル—カ ドミウム二次電池について、 まず、 1 0時間充電 、 2時間放電の条件の充放電を 5回繰り返すことによって初期活性化を施し、 つ いで、 ついで 5時間充電一 2時間放電の条件の完全充放電を 5 0 0回繰り返し、 第 1回目、 第 2 5 0回目、 および第 5 0 0回目の放電容量をそれぞれ測定し、 そ れらの桔果を表 1 9に示した。
表 2 9に示される結果から、 本発明電極 9 2〜 1 0 1 は従来電極に比べて水酸 化 N iの充塡量が多く、 充填量の多いこれら本発明電極 9 2〜 1 0 1を組み込ん だニッケル一力 ドミ ゥム二次電池は、 従来電極を組み込んだニッケル一力 ドミ ゥ ムニ次電池に比べて、 高容量になることが分かる。
なお、 この発明の実施の形態では、 本発明電極 9 2〜 0 1をニッケル一力 ド ミ ゥム二次電池に組み立てて容量試験を行ったが、 表 2 9のスポンジ状多孔質金 厲基体 a〜 j からなる本発明電極 9 2〜 1 0 1をニッケル一水素二次電池に組み 込んで高容量化し、 さらに表 2 9のスポンジ状多孔 K金属基体 a〜 j に水酸化二 ッケル以外の活物 Kを充填しても高容量化を達成できることが分かった。
このように、 この発明のアルカリ二次電池の電極を用いると、 電極への活物 K 充塡量を多くすることができ、 電池の高容量化を促進することができるという優 れた効果をもたらすものである。 表 2 9
電極を組み込んだニッケル-力 ドミ ゥム二次電池の容量
揷 別 便用した ¾ 1¾に含有された水酸 *(匕
多孔質金属基体 N i の含有量 ( g ) 第 1 回目の放電容 fi 第 2 5 0回目の放電容量 第 5 0 0回目の放髦容量
(. m A h ) ( m A h ) ( m A h )
9 2 6 a 3 . 0 2 8 6 6 7 9 8 7 7 9
p
9 3 U D 3 . 0 0 o 6 0 D 7 7 1 本
発 9 4 υ . I 8 9 0 8 3 6 7 8 8 明
電 9 5 6 d 3 . 0 5 8 7 6 8 2 5 7 8 2
9 6 6 e 3 . 0 0 8 6 0 8 0 8 7 6 5
9 7 G f 3 . 0 9 8 8 5 8 3 5 7 8 0
9 8 6 g 3 . 1 1 8 8 8 8 1 0 7 7 9
9 9 6 h 3 . 3 5 9 5 9 8 9 8 8 5 0
1 0 0 6 i 3 . 0 4 8 7 0 8 2 1 7 7 9
1 0 1 6 j 3 . 2 0 9 1 2 8 6 0 8 1 5
従来電極 従来多孔質金属基体 2 . 2 5 7 2 0 6 5 8 6 2 3

Claims

請求の範囲
1 . スケル 卜ン内部全体が 1 0〜6 0 %の気孔率を有する粉末金属燒桔 体で構成される三次元網伏スケル トン構造を有し、 かつ全体の気孔率が 8 0〜9 9 %であることを特徴とする大きな比表面積を有する多孔質金属体。
2 . 全体の比表面積が 3 0 0〜 1 1 0 0 0 c m 2/ c m 3である請求項 1記載の大きな比表面積を有する多孔質金属体。
3 . スケル卜ン間に形成される空孔の平均孔径が 6 0〜7 0 0 mであ る請求項 1記載の多孔質金属体。
4 . スケルト ン内部全体が 1 0〜6 0 %の気孔率を有する粉末金属燒結 体で構成される三次元網伏スケルトン構造を有し、 かつ全体の気孔率が 8 0〜9 9 %であると共に、 片面または両面に、 スケルト ン間に存する空孔の孔径が内部 孔径に比して相対的に小径の細孔表面層を有することを特徴とする大きな比表面 積を有する多孔質金属板材。
5 . 多孔質金属本体と板伏補強材で構成され、 前記多孔 S金属本体が、 スケル卜 ン内部全体が 1 0〜6 0 %の気孔率を有する粉末金厲燒桔体で構成され る三次元網状スケルトン構造を有し、 かつ全体の気孔率が 8 0〜 9 9 %であるこ とを特徴とする大きな比表面積を有する多孔質金属板材。
6 . 板状補強材が、 網状体、 板材、 穴あき扳材から選ばれる請求項 5記 載の多孔質金属板材。
7 . 板状補強材が多孔質金属本体で挟まれた構造を有する請求項 5また は 6記載の多孔 K金属板材。
8 . 三次元網状スケルトン部分と該スゲル卜ン間に存する空孔部分とか らなる多孔質金属基体の空孔部分に活物質が充塡された二次電池の電極において 前記スケル ト ン部分は、 平均微細孔径が 0 . 5 ~ 2 0 mの微細空孔を有し、 内部全体が気-孔率 1 0〜6 0 %である粉末金属燒拮体から構成されることを特徴 とす 二次電池の電極。
9 . 更に、 上記粉末金厲燒结体中の微細空孔部分にも活物 ¾が充旗され ていることを特徴とする請求項 8記載の二次電池の電極。
1 0 . 前記多孔 S金属基体の空孔部分の平均空孔径が、 6 0〜了 0 0 mである請求項 8記載の二次電池の罨極。
1 1 . 活物質が水酸化ニッケルである請求項 8記載の二次電池の電極。
1 2 . 金属粉末を含む発泡性スラ リ ーを調製するスラ リ ー調製工程と、 該発泡性スラリ一を成形する成形工程と、
成形体を乾燥する乾燥工程と、
乾燥した成形体を焼成する焼成工程と
を有することを特徴とする請求項 1記載の多孔質金厲体の製造方法。
1 3 . 発泡性スラ リーが、 発泡剤、 水溶性樹脂結合剤、 及び界面活性剤 を含有する講求項 1 2記載の多孔質金属体の製造方法。
1 4 . 成形工程と乾燥工程との間に、 発泡工程を有する請求項 1 2記載 の多孔質金属体の製造方法。
1 5 . 上記金属粉末の平均拉 ί!が 0 . 5〜 5 0 0 mである請求項 1 2 記載の多孔質金属体の製造方法。
- δ 9
PCT/JP1996/000911 1995-04-03 1996-04-02 Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery WO1996031306A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE69619179T DE69619179T2 (de) 1995-04-03 1996-04-02 Poröser metallischer körper mit höher spezifischer oberfläche, verfahren zu dessen herstellung, poröses metallisches material und elektrode für alkalische sekundärbatterie
US08/737,931 US5848351A (en) 1995-04-03 1996-04-02 Porous metallic material having high specific surface area, method of producing the same, porous metallic plate material and electrode for alkaline secondary battery
EP96907766A EP0764489B1 (en) 1995-04-03 1996-04-02 Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP10177395 1995-04-03
JP7/101773 1995-04-03
JP7/264930 1995-09-19
JP26493095A JP3417164B2 (ja) 1995-09-19 1995-09-19 アルカリ二次電池の電極
JP7/249899 1995-09-27
JP24989995A JP3535282B2 (ja) 1995-09-27 1995-09-27 多孔質焼結金属板の製造方法
JP7/310439 1995-11-29
JP7/310440 1995-11-29
JP7/310438 1995-11-29
JP7310439A JPH08291304A (ja) 1995-02-23 1995-11-29 大きな比表面積を有する多孔質金属板材
JP7310438A JPH09143511A (ja) 1995-11-29 1995-11-29 大きな比表面積を有する多孔質金属体
JP7310440A JPH09147847A (ja) 1995-11-29 1995-11-29 アルカリ二次電池の電極
JP7/311744 1995-11-30
JP7311744A JPH08333605A (ja) 1995-04-03 1995-11-30 大きな比表面積を有する多孔質金属板材

Publications (1)

Publication Number Publication Date
WO1996031306A1 true WO1996031306A1 (en) 1996-10-10

Family

ID=27565658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000911 WO1996031306A1 (en) 1995-04-03 1996-04-02 Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery

Country Status (4)

Country Link
US (2) US5848351A (ja)
EP (1) EP0764489B1 (ja)
DE (1) DE69619179T2 (ja)
WO (1) WO1996031306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020039693A1 (ja) * 2018-08-24 2021-08-10 富山住友電工株式会社 金属多孔体および金属多孔体の製造方法

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970073821A (ko) * 1995-09-27 1997-12-10 아키모토 유미 다공질 소결금속판의 제조방법 및 제조장치
US6287723B1 (en) * 1997-07-31 2001-09-11 Nippon Zeon Co., Ltd. Alkaline secondary battery having an anode comprising a non ionic polymer binder
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
US6379845B1 (en) * 1999-04-06 2002-04-30 Sumitomo Electric Industries, Ltd. Conductive porous body and metallic porous body and battery plate both produced by using the same
JP4292436B2 (ja) * 1999-05-26 2009-07-08 住友電気工業株式会社 金属多孔質体とその製造方法およびそれを用いた電池用集電体
US6759004B1 (en) * 1999-07-20 2004-07-06 Southco, Inc. Process for forming microporous metal parts
JP4566303B2 (ja) 1999-07-22 2010-10-20 本田技研工業株式会社 ニッケル水素電池用正極板
EP1257678B1 (en) * 2000-02-22 2007-09-05 Metalysis Limited Method for the manufacture of metal foams by electrolytic reduction of porous oxidic preforms
US6531238B1 (en) * 2000-09-26 2003-03-11 Reliant Energy Power Systems, Inc. Mass transport for ternary reaction optimization in a proton exchange membrane fuel cell assembly and stack assembly
CA2344088A1 (en) * 2001-01-16 2002-07-16 Unknown A method and an apparatus for production of a foam metal
US6852272B2 (en) * 2001-03-07 2005-02-08 Advanced Ceramics Research, Inc. Method for preparation of metallic and ceramic foam products and products made
WO2003002243A2 (en) 2001-06-27 2003-01-09 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US6994932B2 (en) * 2001-06-28 2006-02-07 Foamex L.P. Liquid fuel reservoir for fuel cells
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
US6689509B2 (en) * 2001-09-20 2004-02-10 Daramic, Inc. Laminated multilayer separator for lead-acid batteries
JP3849478B2 (ja) * 2001-09-28 2006-11-22 松下電器産業株式会社 アルカリ蓄電池およびその製造方法
US7458991B2 (en) * 2002-02-08 2008-12-02 Howmedica Osteonics Corp. Porous metallic scaffold for tissue ingrowth
US6843960B2 (en) * 2002-06-12 2005-01-18 The University Of Chicago Compositionally graded metallic plates for planar solid oxide fuel cells
US20040001991A1 (en) * 2002-07-01 2004-01-01 Kinkelaar Mark R. Capillarity structures for water and/or fuel management in fuel cells
US6979513B2 (en) * 2002-06-28 2005-12-27 Firefly Energy Inc. Battery including carbon foam current collectors
EP1518288A2 (en) * 2002-06-28 2005-03-30 Foamex L.P. Fuel reservoir for liquid fuel cells
US6964817B2 (en) * 2002-07-15 2005-11-15 Hitachi Metals, Ltd. Porous sintered metal and filter thereof, and method for producing porous sintered metal
CA2435988A1 (en) * 2002-07-25 2004-01-25 Global Thermoelectric Inc. Metal foam interconnect
WO2004027243A2 (en) * 2002-09-18 2004-04-01 Foamex L.P. Orientation independent liquid fuel reservoir
EP1578528A1 (en) * 2002-12-17 2005-09-28 Japan Science and Technology Agency Metal or metal oxide porous material prepared by use of dextran or related soluble carbohydrate polymer
US7033703B2 (en) * 2002-12-20 2006-04-25 Firefly Energy, Inc. Composite material and current collector for battery
US7341806B2 (en) * 2002-12-23 2008-03-11 Caterpillar Inc. Battery having carbon foam current collector
DE10347897B4 (de) * 2003-10-15 2017-07-27 Hjs Emission Technology Gmbh & Co. Kg Vorrichtung zum Füllen von Öffnungen eines Trägers mit einem Sintermetallpulver-Bindemittel-Gemisch sowie Verfahren
WO2005064700A1 (ja) * 2003-12-26 2005-07-14 Murata Manufacturing Co., Ltd 厚膜電極、及び積層セラミック電子部品
US7481968B2 (en) 2004-03-17 2009-01-27 National Institute Of Advanced Industrial Science And Technology Method for preparing a sintered porous body of metal or ceramic
GB0412125D0 (en) * 2004-05-29 2004-06-30 Univ Liverpool Porous metallic materials and method of production thereof
DE102004032089B3 (de) * 2004-06-25 2005-12-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung offenporiger Metallschaumkörper
US8608196B2 (en) * 2004-06-29 2013-12-17 Tk Holdings Inc. Gas generating system
US20060024579A1 (en) 2004-07-27 2006-02-02 Vladimir Kolosnitsyn Battery electrode structure and method for manufacture thereof
GB2412484B (en) * 2004-07-27 2006-03-22 Intellikraft Ltd Improvements relating to electrode structures in batteries
JP4513520B2 (ja) * 2004-11-15 2010-07-28 三菱マテリアル株式会社 圧縮強度に優れたチタン合金スポンジ状焼結体
JP5466364B2 (ja) 2004-12-02 2014-04-09 オクシス・エナジー・リミテッド リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
DE602005010747D1 (de) 2005-01-13 2008-12-11 Cinv Ag Kohlenstoffnanopartikel enthaltende verbundwerkstoffe
US20060188741A1 (en) * 2005-02-14 2006-08-24 Hitachi Metals, Ltd. Porous liquid absorbing-and-holding member, process for production thereof, and alcohol absorbing-and-holding member
KR101301115B1 (ko) 2005-03-22 2013-09-03 옥시스 에너지 리미티드 황화리튬 전지 및 그의 제조 방법
KR100562043B1 (ko) * 2005-07-27 2006-03-17 한국화학연구원 금속 분리막의 제조방법
DE102005039774A1 (de) * 2005-08-23 2007-03-01 Universität Bremen Verfahren zur Herstellung von anorganischen Schäumen, danach hergestellter Schaum und Verwendung desselben
US20070081911A1 (en) * 2005-10-07 2007-04-12 Charles Douglas K High porosity metal biporous foam
US20070154731A1 (en) * 2005-12-29 2007-07-05 Serguei Vatchiants Aluminum-based composite materials and methods of preparation thereof
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US7722735B2 (en) * 2006-04-06 2010-05-25 C3 Materials Corp. Microstructure applique and method for making same
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8226861B2 (en) * 2006-06-27 2012-07-24 Lawrence Livermore National Security, Llc Filter casting nanoscale porous materials
AT503824B1 (de) 2006-07-13 2009-07-15 Huette Klein Reichenbach Gmbh Metallformkörper und verfahren zu dessen herstellung
JP2009545407A (ja) 2006-08-02 2009-12-24 ボストン サイエンティフィック サイムド,インコーポレイテッド 三次元分解制御を備えたエンドプロテーゼ
EP2068964B1 (en) 2006-09-15 2017-11-01 Boston Scientific Limited Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
EP2081616B1 (en) 2006-09-15 2017-11-01 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
JP2010503491A (ja) 2006-09-15 2010-02-04 ボストン サイエンティフィック リミテッド 生物学的安定性無機層を有する生浸食性エンドプロスシーシス
CA2663745A1 (en) * 2006-09-18 2008-03-27 Boston Scientific Limited Medical devices
EP2068962B1 (en) 2006-09-18 2013-01-30 Boston Scientific Limited Endoprostheses
JP4986259B2 (ja) * 2006-10-24 2012-07-25 三菱マテリアル株式会社 発泡速度の速い多孔質金属焼結体製造用混合原料
WO2008063526A1 (en) * 2006-11-13 2008-05-29 Howmedica Osteonics Corp. Preparation of formed orthopedic articles
ES2356274T3 (es) 2006-12-28 2011-04-06 Boston Scientific Limited Endoprótesis biodegradables y procedimientos de fabricación de las mismas.
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
DE202007016125U1 (de) * 2007-11-19 2009-05-28 Burkhardt, Roswitha Rußpartikelfilter mit variabel gesteuerter Rußabbrennung
US8399134B2 (en) 2007-11-20 2013-03-19 Firefly Energy, Inc. Lead acid battery including a two-layer carbon foam current collector
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
WO2010101901A2 (en) 2009-03-02 2010-09-10 Boston Scientific Scimed, Inc. Self-buffering medical implants
JP4818399B2 (ja) 2009-06-15 2011-11-16 三菱電機株式会社 静電霧化装置及び空気調和機
WO2010151572A1 (en) 2009-06-23 2010-12-29 A123 Systems, Inc. Battery electrodes and methods of manufacture
CN102598376A (zh) * 2009-09-04 2012-07-18 G4协同学公司 用于形成发泡的电极结构的方法
KR20120069730A (ko) * 2009-09-22 2012-06-28 지4 시너제틱스 인크. 고성능 전극
CN101660079B (zh) * 2009-10-14 2010-12-08 北京师范大学 宏观网状多孔泡沫钼及其制备方法
JP2011175739A (ja) * 2010-02-23 2011-09-08 Hitachi Ltd リチウム二次電池及びその製造方法
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
JP2012186141A (ja) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd 電気化学デバイス
JP2012256584A (ja) * 2011-02-18 2012-12-27 Sumitomo Electric Ind Ltd 電気化学素子
BRPI1105355B1 (pt) 2011-12-20 2018-12-04 Univ Federal De Santa Catarina Ufsc processo de fabricação de um corpo poroso, por metalurgia do pó e composição metalúrgica de materiais particulados
EP2629352A1 (en) 2012-02-17 2013-08-21 Oxis Energy Limited Reinforced metal foil electrode
EP2764916B1 (en) 2013-02-06 2017-06-28 Alantum Europe GmbH Surface modified metallic foam body, process for its production and use thereof
EP2784850A1 (en) 2013-03-25 2014-10-01 Oxis Energy Limited A method of cycling a lithium-sulphur cell
EP2784852B1 (en) 2013-03-25 2018-05-16 Oxis Energy Limited A method of charging a lithium-sulphur cell
PL2784851T3 (pl) 2013-03-25 2015-12-31 Oxis Energy Ltd Sposób ładowania ogniwa litowo-siarkowego
GB2517228B (en) 2013-08-15 2016-03-02 Oxis Energy Ltd Laminate cell
US9637824B2 (en) 2013-10-23 2017-05-02 United Technologies Corporation Coating for metal cellular structure and method therefor
WO2015061243A1 (en) 2013-10-23 2015-04-30 United Technologies Corporation Nanocellular foam damper
JP2017507451A (ja) 2013-12-17 2017-03-16 オキシス エナジー リミテッド リチウム−硫黄電池の電解質
US10232441B2 (en) 2014-03-18 2019-03-19 United Technologies Corporation Fabrication of articles from nanowires
CN106537660B (zh) 2014-05-30 2020-08-14 奥克斯能源有限公司 锂硫电池
JP6231465B2 (ja) 2014-11-19 2017-11-15 株式会社神戸製鋼所 消失模型鋳造方法
US10035174B2 (en) 2015-02-09 2018-07-31 United Technologies Corporation Open-cell reticulated foam
JP6801173B2 (ja) 2015-10-29 2020-12-16 セイコーエプソン株式会社 三次元構造物の製造方法、その製造装置及びその制御プログラム
KR20180041343A (ko) * 2016-10-14 2018-04-24 주식회사 엘지화학 금속합금폼의 제조 방법
KR102063049B1 (ko) * 2016-10-14 2020-01-07 주식회사 엘지화학 금속폼의 제조 방법
KR102218856B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
KR102218854B1 (ko) * 2016-11-30 2021-02-23 주식회사 엘지화학 금속폼의 제조 방법
WO2019083515A1 (en) * 2017-10-24 2019-05-02 Hewlett-Packard Development Company, L.P. SUSPENSION OF CONSTRUCTION MATERIAL
KR20200002454A (ko) * 2018-06-29 2020-01-08 주식회사 엘지화학 복합재
CN108996662A (zh) * 2018-08-29 2018-12-14 郑州轻工业学院 一种泡沫镍与铁碳的组合式生物填料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127801A (ja) * 1984-11-22 1986-06-16 N D C Kk 吸音材の製造方法
JPH03188203A (ja) * 1989-12-14 1991-08-16 Nippon Steel Corp 多孔質焼結体の製造方法
JPH0434857A (ja) * 1990-05-30 1992-02-05 Matsushita Electric Ind Co Ltd 密閉式アルカリ蓄電池およびその製造法
JPH04325604A (ja) * 1991-04-25 1992-11-16 Tokin Corp 多孔質焼結体の製造方法
JPH06287607A (ja) * 1993-04-02 1994-10-11 Nippon Steel Corp 金属多孔体

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE492340A (ja) * 1947-12-15
US3099899A (en) * 1959-01-24 1963-08-06 Varta Ag Expanded metal
US3549423A (en) * 1967-06-30 1970-12-22 Gen Electric Method for manufacturing foam type electrode
US3946039A (en) * 1967-10-30 1976-03-23 Energy Research & Generation, Inc. Reticulated foam structure
DE2427421A1 (de) * 1973-06-07 1975-01-09 Battelle Memorial Institute Verfahren zur herstellung einer positiven nickel-hydroxid-elektrode fuer galvanische zellen
SE400856C (sv) * 1975-12-08 1982-02-11 Svenska Utvecklings Ab Poros elektrod for en kemoelektrisk cell, forfarande for framstellning av densamma samt kemoelektrisk cell med sadan elektrod
DE2615779C3 (de) * 1976-04-10 1980-04-03 Daimler-Benz Ag, 7000 Stuttgart Verfahren zur Herstellung von gesinterten Elektrodenkörpern
SE443897B (sv) * 1978-03-30 1986-03-10 Jungner Ab Nife Sett for tillverkning av hogporosa nickelelektrodstommar med 90-95% porvolym for elektriska ackumulatorer
US4225346A (en) * 1978-09-08 1980-09-30 Bell Telephone Laboratories, Incorporated Process for fabricating porous nickel bodies
FR2521887A1 (fr) * 1982-02-24 1983-08-26 Comp Generale Electricite Procede de preparation d'un corps poreux metallique
JPS62154569A (ja) * 1985-12-27 1987-07-09 Furukawa Battery Co Ltd:The アルカリ蓄電池用電極板の製造法
US4913782A (en) * 1987-09-18 1990-04-03 Gould Inc. Microporous elemental silver article and method
JP3095150B2 (ja) * 1991-07-25 2000-10-03 ソニー株式会社 半導体装置
US5213612A (en) * 1991-10-17 1993-05-25 General Electric Company Method of forming porous bodies of molybdenum or tungsten
AT399424B (de) * 1992-07-10 1995-05-26 Miba Sintermetall Ag Verfahren zum herstellen einer sinterelektrode für ein galvanisches element
US5640669A (en) * 1995-01-12 1997-06-17 Sumitomo Electric Industries, Ltd. Process for preparing metallic porous body, electrode substrate for battery and process for preparing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127801A (ja) * 1984-11-22 1986-06-16 N D C Kk 吸音材の製造方法
JPH03188203A (ja) * 1989-12-14 1991-08-16 Nippon Steel Corp 多孔質焼結体の製造方法
JPH0434857A (ja) * 1990-05-30 1992-02-05 Matsushita Electric Ind Co Ltd 密閉式アルカリ蓄電池およびその製造法
JPH04325604A (ja) * 1991-04-25 1992-11-16 Tokin Corp 多孔質焼結体の製造方法
JPH06287607A (ja) * 1993-04-02 1994-10-11 Nippon Steel Corp 金属多孔体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0764489A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020039693A1 (ja) * 2018-08-24 2021-08-10 富山住友電工株式会社 金属多孔体および金属多孔体の製造方法

Also Published As

Publication number Publication date
US6117592A (en) 2000-09-12
EP0764489A4 (en) 1997-07-02
DE69619179T2 (de) 2002-08-22
EP0764489A1 (en) 1997-03-26
EP0764489B1 (en) 2002-02-13
DE69619179D1 (de) 2002-03-21
US5848351A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
WO1996031306A1 (en) Porous metallic body with large specific surface area, process for producing the same, porous metallic platy material, and electrode of alkaline secondary battery
TWI454580B (zh) 具有鋁多孔質燒結體之鋁複合體的製造方法
US20150078949A1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP5402381B2 (ja) アルミニウム多孔質焼結体の製造方法
US3985578A (en) Tailored-carbon substrate for fuel cell electrodes
JP5169591B2 (ja) 金属多孔質電極基材およびその製造方法
JP2007531974A (ja) 固体酸化物燃料電池用の、ニッケルのフォームおよびフェルトを基材とするアノード
JP3535282B2 (ja) 多孔質焼結金属板の製造方法
JPS6250524B2 (ja)
CN108258256B (zh) 锌空气电池正极及其正极粉干法制备工艺和锌空气电池
US5989746A (en) Pasted nickel electrode
JP6443725B2 (ja) 多孔質アルミニウム焼結体およびその製造方法、ならびに、電極の製造方法
JP3303181B2 (ja) 大きな比表面積を有する多孔質金属体の製造方法
EP0032291A1 (en) Improvements in method of manufacture of sintered nickel plaque electrode material
JPH09157066A (ja) 多孔質セラミック焼結体の製造方法
JPH09143511A (ja) 大きな比表面積を有する多孔質金属体
JP3417164B2 (ja) アルカリ二次電池の電極
US6887621B1 (en) Electrode capable of storing hydrogen and a method for the production of the same
TW300343B (ja)
JPS6040667B2 (ja) ニッケル電極の製造法
JP2006073463A (ja) アルカリ蓄電池用正極、及びアルカリ蓄電池
JPS5866267A (ja) アルカリ蓄電池用基板の製造法
JPH05221601A (ja) 水素吸蔵多孔体およびその製造方法
JPH09147847A (ja) アルカリ二次電池の電極
JP2004183055A (ja) 多孔質液体吸収保持部材及びアルコール吸収保持部材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996907766

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08737931

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996907766

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996907766

Country of ref document: EP