US20180168633A1 - Surgical stapling instruments and staple-forming anvils - Google Patents

Surgical stapling instruments and staple-forming anvils Download PDF

Info

Publication number
US20180168633A1
US20180168633A1 US15/385,946 US201615385946A US2018168633A1 US 20180168633 A1 US20180168633 A1 US 20180168633A1 US 201615385946 A US201615385946 A US 201615385946A US 2018168633 A1 US2018168633 A1 US 2018168633A1
Authority
US
United States
Prior art keywords
staple
pocket
staples
pockets
patent application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/385,946
Inventor
Frederick E. Shelton, IV
Jason L. Harris
Michael J. Vendely
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Ethicon Endo Surgery LLC
Original Assignee
Ethicon LLC
Ethicon Endo Surgery LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon LLC, Ethicon Endo Surgery LLC filed Critical Ethicon LLC
Priority to US15/385,945 priority Critical patent/US10893864B2/en
Priority to US15/385,947 priority patent/US10568625B2/en
Priority to US15/385,943 priority patent/US10667811B2/en
Priority to US15/385,946 priority patent/US20180168633A1/en
Priority to US15/385,939 priority patent/US10835246B2/en
Assigned to ETHICON ENDO-SURGERY, LLC reassignment ETHICON ENDO-SURGERY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SHELTON, FREDERICK E., IV, VENDELY, MICHAEL J., HARRIS, JASON L.
Priority to PCT/IB2017/056839 priority patent/WO2018116019A1/en
Priority to PCT/IB2017/056844 priority patent/WO2018116021A1/en
Priority to BR112019012392-0A priority patent/BR112019012392B1/en
Priority to JP2019533512A priority patent/JP6946434B2/en
Priority to PCT/US2017/060131 priority patent/WO2018118233A1/en
Priority to PCT/US2017/060136 priority patent/WO2018118234A1/en
Priority to CN201780080018.9A priority patent/CN110114018B/en
Priority to PCT/US2017/060173 priority patent/WO2018118243A2/en
Assigned to ETHICON LLC reassignment ETHICON LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, LLC
Priority to EP17209350.2A priority patent/EP3338659A1/en
Priority to EP17209485.6A priority patent/EP3338688B1/en
Priority to EP17209283.5A priority patent/EP3338651A3/en
Priority to EP17209445.0A priority patent/EP3338681A1/en
Priority to EP17209298.3A priority patent/EP3338652B1/en
Publication of US20180168633A1 publication Critical patent/US20180168633A1/en
Assigned to CILAG GMBH INTERNATIONAL reassignment CILAG GMBH INTERNATIONAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00464Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable for use with different instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0645Surgical staples, i.e. penetrating the tissue being elastically deformed for insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07228Arrangement of the staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07235Stapler heads containing different staples, e.g. staples of different shapes, sizes or materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07242Stapler heads achieving different staple heights during the same shot, e.g. using an anvil anvil having different heights or staples of different sizes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/0725Stapler heads with settable gap between anvil and cartridge, e.g. for different staple heights at different shots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07257Stapler heads characterised by its anvil
    • A61B2017/07264Stapler heads characterised by its anvil characterised by its staple forming cavities, e.g. geometry or material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07271Stapler heads characterised by its cartridge
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07278Stapler heads characterised by its sled or its staple holder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07285Stapler heads characterised by its cutter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft

Definitions

  • the present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
  • FIG. 1 is a perspective view of an interchangeable surgical tool assembly embodiment operably coupled to a handle assembly embodiment
  • FIG. 2 is an exploded assembly view of portions of the handle assembly and interchangeable surgical tool assembly of FIG. 1 ;
  • FIG. 3 is a perspective view of a distal portion of the interchangeable surgical tool assembly embodiment depicted in FIGS. 1 and 2 with portions thereof omitted for clarity;
  • FIG. 4 is an exploded assembly view of a distal portion of the interchangeable surgical tool assembly of FIG. 1 ;
  • FIG. 5 is a perspective view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 6 is a partial perspective bottom view of the staple cartridge body of FIG. 5 ;
  • FIG. 7 is a top plan view of the staple cartridge body of FIG. 5 and depicting a cutting element positioned in a longitudinal slot of the cartridge body;
  • FIG. 8 is a bottom plan view of the staple cartridge body of FIG. 5 and depicting drivers positioned in the staple cavities;
  • FIG. 9 is a staple line implanted in stapled tissue and generated by the staple cartridge body of FIG. 5 and depicting certain staples that are likely to be missing from the staple line with phantom lines;
  • FIG. 10 is a side elevation view of a staple in the staple line of FIG. 9 ;
  • FIG. 11 is a side elevation view of a staple
  • FIG. 12 is a bottom plan view of a staple cartridge body having a plurality of staple cavities defined therein and depicting drivers positioned in the staple cavities;
  • FIG. 13 is a perspective view of the drivers in the proximal staple cavities of FIG. 8 ;
  • FIG. 14 is a side elevation view of the drivers of FIG. 13 and depicting an offset ramped surface with a phantom line;
  • FIG. 15 is a plan view of the drivers of FIG. 13 ;
  • FIG. 16 is a front elevation view of the drivers of FIG. 13 ;
  • FIG. 17 is a plan view of the drivers in the proximal staple cavities of the staple cartridge body of FIG. 12 ;
  • FIG. 18 is a front elevation view of the drivers of FIG. 17 ;
  • FIG. 19 is a top plan view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 20 is a bottom plan view of the staple cartridge body of FIG. 19 and depicting drivers positioned in the staple cavities;
  • FIG. 21 is a perspective view of the drivers in the proximal staple cavities of FIG. 20 ;
  • FIG. 22 is a front elevation view of the drivers of FIG. 21 ;
  • FIG. 23 is a plan view of the drivers of FIG. 21 ;
  • FIG. 24 is a side elevation view of the drivers of FIG. 21 and depicting an offset ramped surface with a phantom line;
  • FIG. 25 is a top plan view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 26 is a bottom plan view of the staple cartridge body of FIG. 25 and depicting drivers positioned in the staple cavities;
  • FIG. 27 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 28 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 29 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 30 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 31 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 32 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 33 is a detail view of a pocket of FIG. 32 ;
  • FIGS. 34-35C are cross-sectional views of the pocket of FIG. 33 ;
  • FIG. 36 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 37 is a detail view of a pocket of FIG. 36 ;
  • FIGS. 38-39C are cross-sectional views of the pocket of FIG. 37 ;
  • FIG. 40 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 41 is a detail view of a pocket of FIG. 40 ;
  • FIGS. 42-43C are cross-sectional views of the pocket of FIG. 41 ;
  • FIG. 44 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 45 is a detail view of a pocket of FIG. 44 ;
  • FIGS. 46-47C are cross-sectional views of the pocket of FIG. 45 ;
  • FIG. 48 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 49 is a detail view of a pocket of FIG. 48 ;
  • FIGS. 50-51C are cross-sectional views of the pocket of FIG. 49 ;
  • FIG. 52 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 53 is a detail view of a pocket of FIG. 52 ;
  • FIGS. 54-55C are cross-sectional views of the pocket of FIG. 53 ;
  • FIG. 56 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 57 is a detail view of a pocket of FIG. 56 ;
  • FIGS. 58-59C are cross-sectional views of the pocket of FIG. 57 ;
  • FIG. 60 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 61 is a detail view of a pocket of FIG. 60 ;
  • FIGS. 62-63C are cross-sectional views of the pocket of FIG. 61 ;
  • FIG. 64 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 65 is a detail view of a pocket of FIG. 64 ;
  • FIGS. 66-67C are cross-sectional views of the pocket of FIG. 65 ;
  • FIG. 68 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 69 is a detail view of a pocket of FIG. 68 ;
  • FIGS. 70-71C are cross-sectional views of the pocket of FIG. 69 ;
  • FIG. 72 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 73 is a detail view of a pocket of FIG. 72 ;
  • FIGS. 74-76C are cross-sectional views of the pocket of FIG. 76 ;
  • FIG. 77 is an exploded perspective view of an end effector and an adaptor assembly
  • FIG. 78 is a cross-sectional perspective view of a portion of the end effector and the adaptor assembly of FIG. 77 ;
  • FIG. 79 is a cross-sectional perspective view of a portion of the end effector of FIG. 77 and an adaptor assembly;
  • FIG. 80 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 81 is a top view of a staple driver embodiment
  • FIG. 82 is a top perspective view of the staple driver embodiment of FIG. 81 ;
  • FIG. 83 is a bottom perspective view of the staple driver embodiment of FIGS. 81 and 82 .
  • proximal and distal are used herein with reference to a clinician manipulating the handle portion of the surgical instrument.
  • proximal refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician.
  • distal refers to the portion located away from the clinician.
  • spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings.
  • surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
  • Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures.
  • the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures.
  • the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc.
  • the working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
  • a surgical stapling system can comprise a shaft and an end effector extending from the shaft.
  • the end effector comprises a first jaw and a second jaw.
  • the first jaw comprises a staple cartridge.
  • the staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw.
  • the second jaw comprises an anvil configured to deform staples ejected from the staple cartridge.
  • the second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw.
  • the surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft.
  • the end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
  • the staple cartridge comprises a cartridge body.
  • the cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end.
  • the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue.
  • the anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck.
  • staples removably stored in the cartridge body can be deployed into the tissue.
  • the cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities.
  • the staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
  • the staples are supported by staple drivers in the cartridge body.
  • the drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities.
  • the drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body.
  • the drivers are movable between their unfired positions and their fired positions by a sled.
  • the sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end.
  • the sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
  • the sled is moved distally by a firing member.
  • the firing member is configured to contact the sled and push the sled toward the distal end.
  • the longitudinal slot defined in the cartridge body is configured to receive the firing member.
  • the anvil also includes a slot configured to receive the firing member.
  • the firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil.
  • the firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
  • FIG. 1 depicts one form of an interchangeable surgical tool assembly 1000 that is operably coupled to a motor driven handle assembly 500 .
  • the tool assembly 1000 may also be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system.
  • the surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety.
  • the handle assembly 500 , as well as the tool drive assembly of a robotic system may also be referred to herein as “control systems” or “control units”.
  • FIGS. 1 and 2 illustrate attachment of the interchangeable surgical tool assembly 1000 to the handle assembly 500 .
  • the handle assembly 500 may comprise a handle housing 502 that includes a pistol grip portion 504 that can be gripped and manipulated by the clinician.
  • the handle assembly 500 may further include a frame 506 that operably supports the plurality of drive systems.
  • the frame 506 can operably support a “first” or closure drive system, generally designated as 510 , which may be employed to apply closing and opening motions to the interchangeable surgical tool assembly 1000 that is operably attached or coupled to the handle assembly 500 .
  • the closure drive system 510 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506 .
  • closure drive system 510 further includes a closure linkage assembly 514 that is pivotally coupled to the closure trigger 512 or otherwise operably interfaces therewith.
  • the closure linkage assembly 514 includes a transverse attachment pin 516 that facilitates attachment to a corresponding drive system on the surgical tool assembly.
  • the clinician depresses the closure trigger 512 towards the pistol grip portion 504 .
  • closure drive system 510 when the clinician fully depresses the closure trigger 512 to attain a “full” closure stroke, the closure drive system 510 is configured to lock the closure trigger 512 into the fully depressed or fully actuated position.
  • the clinician When the clinician desires to unlock the closure trigger 512 to permit it to be biased to the unactuated position, the clinician simply activates a closure release button assembly 518 which enables the closure trigger 512 to return to unactuated position.
  • the closure release button assembly 518 may also be configured to interact with various sensors that communicate with a microcontroller 520 in the handle assembly 500 for tracking the position of the closure trigger 512 . Further details concerning the configuration and operation of the closure release button assembly 518 may be found in U.S. Patent Application Publication No. 2015/0272575.
  • the handle assembly 500 and the frame 506 may operably support another drive system referred to herein as a firing drive system 530 that is configured to apply firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto.
  • a firing drive system 530 may employ an electric motor 505 ( FIG. 1 ) that is located in the pistol grip portion 504 of the handle assembly 500 .
  • the motor 505 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example.
  • the motor 505 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor.
  • the motor 505 may be powered by a power source 522 that in one form may comprise a removable power pack.
  • the power pack may support a plurality of Lithium Ion (“LI”) or other suitable batteries therein.
  • LI Lithium Ion
  • a number of batteries, which may be connected in series, may be used as the power source 522 for the handle assembly 500 .
  • the power source 522 may be replaceable and/or rechargeable.
  • the electric motor 505 is configured to axially drive a longitudinally movable drive member 540 in distal and proximal directions depending upon the polarity of the motor. For example, when the motor 505 is driven in one rotary direction, the longitudinally movable drive member 540 will be axially driven in the distal direction “DD”. When the motor 505 is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”.
  • the handle assembly 500 can include a switch 513 which can be configured to reverse the polarity applied to the electric motor 505 by the power source 522 or otherwise control the motor 505 .
  • the handle assembly 500 can also include a sensor or sensors (not shown) that is configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved.
  • Actuation of the motor 505 can be controlled by a firing trigger 532 that is pivotally supported on the handle assembly 500 .
  • the firing trigger 532 may be pivoted between an unactuated position and an actuated position.
  • the firing trigger 532 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 532 , it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement.
  • the firing trigger 532 can be positioned “outboard” of the closure trigger 512 as was discussed above.
  • the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532 .
  • a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532 .
  • the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired.
  • the safety button and the firing trigger 532 may pivot down wherein they can then be manipulated by the clinician.
  • the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor 505 . Further details regarding those features may be found in U.S. Patent Application Publication No. 2015/0272575.
  • At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor 505 become disabled.
  • the bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550 . The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540 .
  • the interchangeable surgical tool assembly 1000 includes a shaft mounting portion 1300 that is operably attached to an elongate shaft assembly 1400 .
  • a surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a staple cartridge 1110 therein is operably attached to the elongate shaft assembly 1400 . See FIGS. 3 and 4 .
  • the end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102 .
  • the elongate channel 1102 /staple cartridge assembly 1110 and the anvil 1130 may also be referred to as “jaws”.
  • the interchangeable surgical tool assembly 1000 may further include an articulation joint 1200 and an articulation lock 1210 ( FIGS.
  • a firing member 1760 is configured to operably interface with a sled assembly 1120 that is operably supported within the body 1111 of the surgical staple cartridge 1110 .
  • the sled assembly 1120 is slidably displaceable within the surgical staple cartridge body 1111 from a proximal starting position adjacent the proximal end 1112 of the cartridge body 1111 to an ending position adjacent a distal end 1113 of the cartridge body 1111 . See FIG. 4 .
  • the cartridge body 1111 operably supports therein a plurality of staple drivers 1170 ( FIGS. 81-83 ) that are aligned in rows on each side of a centrally disposed slot 1114 .
  • the centrally disposed slot 1114 enables the firing member 1760 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the staple cartridge 1110 .
  • the drivers are associated with corresponding pockets or cavities 1116 that open through the upper deck surface 1115 of the cartridge body 1111 .
  • Each of the staple drivers supports one or more surgical staple or fastener thereon.
  • the sled assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of fasteners or drivers located on a side of the slot 1114 .
  • the tissue cutting feature 1766 cuts the tissue that is clamped between the anvil assembly 1130 and the cartridge 1110 , and the sled assembly 1120 drives the drivers upwardly in the cartridge which drive the corresponding staples or fasteners into forming contact with the anvil assembly 1130 .
  • the cartridge body 1111 operably supports therein a plurality of staple drivers that are aligned in rows on each side of a centrally disposed slot 1114 .
  • FIGS. 81-83 illustrate one example of a staple driver 1170 that may be employed to support staples on one side of a surgical staple cartridge.
  • the drivers located on the opposite side of the centrally disposed slot 1114 may comprise mirror images of drivers 1170 .
  • Other staple driver configurations may also be effectively employed as well.
  • one form of a staple driver 1700 comprises a staple driver body 1172 .
  • the driver body 1172 includes a first or innermost staple support portion 1174 that is configured to support a staple (not shown) thereon.
  • a second or central staple support portion 1176 is configured to support another staple (not shown) thereon and a third support portion 1870 that is configured to support a third staple (not shown) thereon.
  • the first staple support portion 1174 , the second staple support portion 1176 and the third staple support portion 1178 are all coupled together by a connector portion 1180 .
  • the connector portion 1180 is formed with a centrally disposed opening or aperture 1182 that is configured to slidably receive a corresponding first driver guide (not shown) that is formed in the cartridge body.
  • the connector portion 1180 includes a first cam portion 1184 that has a first camming surface or ramp 1186 formed thereon.
  • the connector portion 1180 also includes a second cam portion 1188 that has a second a second camming surface 1190 formed thereon.
  • the camming surfaces 1186 , 1190 have the same slope or angle or they may have different slopes/angles.
  • each staple driver 1170 is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the staple drivers 1170 may be separately fabricated from other materials and be attached together by adhesive, solder, etc.
  • the staple cavities 1116 are angularly oriented relative to the shaft axis SA. More specifically, the staple cavities 1116 are oriented at oblique angles relative to the shaft axis SA and form a herringbone pattern in the deck surface 1115 .
  • Various alternative patterns for staple cavities in a staple cartridge body are described herein.
  • Variations to the arrangement and/or geometry of staples in a staple line can affect the flexibility and sealing properties of the staple line.
  • a staple line comprised of linear staples can provide a limited amount of flexibility or stretch because the staple line can flex or stretch between the linear staples. Consequently, a limited portion of the staple line (e.g., the portion between staples) is flexible.
  • a staple line comprised of angularly-oriented staples can also flex or stretch between the staples. However, the angularly-oriented staples are also able to rotate, which provides an additional degree of stretch within the staple line.
  • a staple line comprised of angularly-oriented staples can stretch in excess of 60%, for example.
  • a staple line comprised of angularly-oriented staples can stretch at least 25% or at least 50%, for example.
  • the arrangement of staples includes the relative orientation of the staples and the spacing between the staples, for example.
  • the geometry of the staples includes the size and shape of the staples, for example.
  • the flexibility and sealing properties of a staple line can change at longitudinal and/or lateral positions based on the arrangement and/or geometry of the staples. In certain instances, it is desirable to alter the flexibility and/or sealing properties of a staple line at one or more locations along the staple line. For example, it can be desirable to maximize the flexibility of the staple line or a portion thereof. Additionally or alternatively, it can be desirable to minimize the flexibility of the staple line or a portion thereof. It can also be desirable to maximize the sealing properties of the staple line or a portion thereof. Additionally or alternatively, it can be desirable to minimize the sealing properties of the staple line or a portion thereof.
  • the arrangement of staple cavities in a staple cartridge corresponds to the arrangement of staples in a staple line generated by the staple cartridge.
  • the spacing and relative orientation of staple cavities in a staple cartridge corresponds to the spacing and relative orientation of staples in a staple line generated by the staple cartridge.
  • a staple cartridge can include an arrangement of staples cavities that is selected and/or designed to optimize the flexibility and/or sealing properties of the resultant staple line. A surgeon may select a staple cartridge having a particular arrangement of staple cavities based on the surgical procedure to be performed and/or the properties of the tissue to be treated during the surgical procedure, for example.
  • a staple line can include a first pattern of staples for a first portion thereof and a second pattern of staples for a second portion thereof.
  • the first pattern and the second pattern can be longitudinally offset.
  • the first pattern can be positioned at the proximal or distal end of the staple line.
  • the first pattern and the second pattern can be laterally offset and, in still other instances, the first pattern and the second pattern can be laterally offset and longitudinally offset.
  • a staple line can include at least two different patterns of staples.
  • the majority of staples in a staple line can form a major pattern and other staples in the staple line can form one or more minor patterns.
  • the major pattern can span a significant portion of the staple line and can include a longitudinally-repetitive sub-pattern.
  • the minor pattern, or irregularity can deviate from the major pattern.
  • the minor pattern can be an anomaly at one or more locations along the length of the staple line, for example.
  • the different patterns in a staple line can be configured to produce different properties at predefined locations.
  • the major pattern can be a highly flexible or elastic pattern, which can permit extensive stretching of the stapled tissue, and the minor pattern can be less flexible or less elastic.
  • the minor pattern can be more flexible than the major pattern. In certain instances, because the minor pattern extends along a shorter portion of the staple line, the flexibility of the minor pattern may not impact, or may not significantly impact, the overall flexibility of the entire staple line.
  • the staple cartridge body 3000 for use with a surgical end effector is depicted.
  • the staple cartridge body 3000 includes a deck 3002 and a slot 3004 , which extends through the deck 3002 from a proximal end 3006 toward a distal end 3008 of the cartridge body 3000 .
  • the slot 3004 extends along the longitudinal axis LA ( FIG. 7 ) of the cartridge body 3000 .
  • Staple cavities 3010 are defined in the cartridge body 3000 and each staple cavity 3010 defines an opening 3012 in the deck 3002 .
  • the majority of the staple cavities 3010 are arranged in a first pattern, or major pattern, 3020 .
  • the first pattern 3020 is a longitudinally-repetitive pattern of angularly-oriented staple cavities 3010 .
  • Longitudinally-repetitive patterns are patterns in which a sub-pattern or arrangement is longitudinally repeated. For example, an arrangement of three staple cavities on each side of the slot 3004 (an inner staple cavity, an intermediate staple cavity, and an outer staple cavity) can be repeated along at least a portion of the length of the staple cartridge body 3000 .
  • Various longitudinally-repetitive patterns of angularly-oriented staples cavities are described in U.S. patent application Ser. No. 14/498,145, filed Sep. 26, 2014, now U.S. Patent Application Publication No.
  • the openings 3012 of the staple cavities 3010 in the first pattern 3020 form a herringbone pattern having six rows of angularly-oriented staple cavity openings 3012 in the cartridge deck 3002 .
  • An inner row 3014 a, an intermediate row 3014 b, and an outer row 3014 c of staple cavities 3010 are positioned on each side of the slot 3004 .
  • Each staple cavity opening 3012 has a proximal end 3016 and a distal end 3018 .
  • the proximal end 3016 and the distal end 3018 of the staple cavities 3010 in the first pattern 3020 are laterally offset. Stated differently, each staple cavity 3010 in the first pattern 3020 is angularly oriented relative to the longitudinal axis LA ( FIG. 7 ).
  • a cavity axis CA ( FIG. 7 ) extends between the proximal end 3016 and the distal end 3018 of each opening 3012 .
  • the cavity axes CA are obliquely oriented relative to the slot 3004 .
  • the openings 3012 in the inner rows 3014 a of staple cavities 3010 and the outer rows 3014 c of staple cavities 3010 are oriented at 45 degrees, or about 45 degrees, relative to the longitudinal axis LA, and the openings 3012 in the intermediate rows 3014 b of staple cavities 3010 are oriented at 90 degrees, or about 90 degrees, relative to the openings 3012 of the inner rows 3014 a and the outer rows 3014 a.
  • Certain staple cavities 3010 in the cartridge body 3000 are oriented at an angle that is anomalous or irregular with respect to the staple cavities 3010 in the first pattern 3020 . More specifically, the angular orientation of proximal staple cavities 3010 a, 3010 b, 3010 c, and 3010 d and distal staples cavities 3010 e, 3010 f, 3010 g, and 3010 h does not conform to the herringbone arrangement of the staple cavities 3010 in the first pattern 3020 . Rather, the proximal staple cavities 3010 a - 3010 d and the distal staple cavities 3010 e - 3010 h are angularly offset from the staple cavities 3010 in the first pattern 3020 .
  • the proximal staple cavities 3010 a, 3010 b, 3010 c, and 3010 d are obliquely oriented relative to the staples cavities 3010 in the first pattern 3020
  • the distal staple cavities 3010 e, 3010 f, 3010 g, and 3010 h are also obliquely oriented relative to the staples cavities 3010 in the first pattern 3020
  • the proximal and distal staple cavities 3010 a - 3010 h are oriented parallel to the slot 3004 and to the longitudinal axis LA.
  • the proximal staple cavities 3010 a - 3010 d form a proximal pattern 3022 that is distinct from the first pattern 3020
  • the distal staple cavities 3010 e - 3010 h form a distal pattern 3024 that is also distinct from the first pattern 3020
  • the proximal pattern 3022 includes a first pair of parallel, longitudinally-aligned staple cavities 3010 a, 3010 b on a first side of the slot 3004 and a second pair of parallel, longitudinally-aligned staple cavities 3010 c, 3010 d on a second side of the longitudinal slot 3004 .
  • the distal pattern 3024 also includes a first pair of parallel, longitudinally-aligned staple cavities 3010 e, 3010 f on the first side of the longitudinal slot 3004 and a second pair of parallel, longitudinally-aligned staple cavities 3010 g, 3010 h on the second side of the longitudinal slot 3004 .
  • the distal pattern 3024 can be different from the proximal pattern 3022 .
  • the proximal pattern 3022 and the distal pattern 3024 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 3022 and/or the distal pattern 3024 can be asymmetric relative to the longitudinal axis LA.
  • the staple cavities 3010 e and 3010 f can be longitudinally offset from the staple cavities 3010 g and 3010 h and/or the staple cavities 3010 a and 3010 b can be longitudinally offset from the staple cavities 3010 c and 3010 d.
  • the staple cartridge body 3000 can include either the proximal pattern 3022 or the distal pattern 3024 . In other instances, the staple cavities 3010 defined in the staple cartridge body 3000 can include additional and/or different patterns of staple cavities 3010 .
  • atraumatic extenders 3030 extend or protrude from the deck 3002 around a portion of the staple cavities 3010 in the first pattern 3020 .
  • the atraumatic extenders 3030 surround the proximal and distal ends 3016 and 3018 , respectively, of the openings 3012 of the staple cavities 3010 in the first pattern 3020 .
  • the atraumatic extenders 3030 may be configured to grip tissue that is clamped by the end effector. Additionally or alternatively, in certain instances, the tips of the staple legs can protrude from the cartridge body 3000 . In such instances, the atraumatic extenders 3030 may be configured to extend flush with and/or beyond the tips of the staple legs to prevent the tips from prematurely penetrating tissue.
  • larger staples e.g., staples having longer legs
  • larger staples can be positioned in the staple cavities 3010 having atraumatic extenders 3030 positioned therearound.
  • larger staples can be positioned in the staple cavities 3010 in the first pattern 3020 than the staples in the staple cavities in the proximal pattern 3022 and the distal pattern 3024 without risking premature piercing of tissue by the longer staple legs.
  • atraumatic extenders 3030 can be positioned around staples cavities 3010 in the proximal pattern 3022 and/or the distal pattern 3024 , and larger staples can be positioned in one of more of those staple cavities 3010 a - 3010 h, as well.
  • the staple cartridge body 3000 can be configured to generate a staple line having different properties along the length thereof.
  • a staple line 3040 generated by the staple cartridge body 3000 and embedded in tissue T is depicted in FIG. 9 .
  • the staple line 3040 is comprised of staples 3042 , and an exemplary staple 3042 for use with various staple cartridges described herein is depicted in FIG. 10 .
  • the staple 3042 can be comprised of a bent wire, for example.
  • the wire can have a diameter of 0.0079 inches, or approximately 0.0079 inches. In other instances, the wire can have a diameter of 0.0089 inches, or approximately 0.0089 inches. In still other instances, the wire can have a diameter of 0.0094, or approximately 0.0094 inches.
  • the wire can have a diameter of less than 0.0079 inches or more than 0.0094 inches.
  • the reader will appreciate that the diameter of the wire can dictate the diameter of the staple.
  • the staple 3042 is a substantially U-shaped staple having a base 3050 , a first leg 3052 extending from a first end of the base 3050 , and a second leg 3054 extending from a second end of the base 3050 .
  • the first leg 3052 is substantially parallel to the second leg 3054 and substantially perpendicular to the base 3050 .
  • the angular orientation of the base 3050 corresponds to the angular orientation of the staple cavity opening 3012 from which the staple 3042 was fired.
  • the staple 3142 is a substantially V-shaped staple having a base 3150 , a first leg 3152 extending from a first end of the base 3050 , and a second leg 3154 extending from a second end of the base 3150 .
  • the first leg 3152 is obliquely oriented relative to the second leg 3154 and the base 3150 .
  • the orientation of the base 3150 corresponds to the orientation of the staple cavity opening 3012 from which the staple 3142 was fired.
  • staples having different geometries can also be fired from the staple cartridges described herein.
  • the staple line 3040 includes a first portion 3044 , a proximal portion 3046 , and a distal portion 3048 .
  • the first portion 3044 is generated from the first pattern, or major pattern, 3020 and extends along a substantial portion of the staple line 3040 .
  • the first portion 3044 is substantially flexible or compliant.
  • the first portion 3044 is configured to stretch or extend longitudinally and/or laterally as the stapled tissue stretches.
  • the proximal portion 3046 is generated from the proximal pattern 3022 and forms the proximal end of the staple line 3040 .
  • the distal portion 3048 is generated from the distal pattern 3024 and forms the distal end of the staple 3040 .
  • the proximal portion 3046 and the distal portion 3046 of the staple line 3040 can be less flexible than the first portion 3044 .
  • the reduced flexibility of the proximal portion 3046 and the distal portion 3048 may not impact, or not substantially impact, the overall flexibility of the staple line 3040 .
  • the proximal portion 3046 and the distal portion 3048 may not extend adjacent to the cutline and, in certain instances, the proximal portion 3046 may be absent or missing from the staple line 3040 .
  • a firing element such as the firing member 1760 ( FIG. 4 ) is configured to move along at least a portion of the slot 3004 to fire the staples 3042 from the staple cavities 3010 .
  • the firing element can include and/or engage one of more wedge sleds and/or camming surfaces, such as the sled assembly 1120 having wedge-shaped cams 1122 ( FIG. 4 ).
  • the cams of the sled are configured to drive the staples upward toward a staple-forming surface, such as into forming pockets in the anvil 1130 ( FIGS. 1, 3 and 4 ), for example.
  • the staple cartridge body 3000 includes a plurality of channels 3036 along a bottom surface 3034 through which the wedge-shaped cams can move during a firing stroke.
  • target tissue is clamped between the staple cartridge body 3000 and an anvil, such as the anvil 1130 ( FIGS. 1, 3 and 4 ).
  • the tissue overlapping the staple cavities 3010 is stapled. If tissue is not positioned over certain staple cavities 3010 , staples fired from those staple cavities 3010 may not engage the tissue.
  • An anvil typically contains downwardly extending sidewalls commonly referred to as “tissue stops”. The tissue stops are configured to block the target tissue from getting too far proximal between the anvil and cartridge.
  • the anvil 1130 includes tissue stops 1131 , which extend toward the staple cartridge 1110 .
  • tissue stops 1131 on either side of the anvil 1130 extend downward past the cartridge deck surface 1115 and form a wall or barrier, which prevents tissue from being positioned too far proximal between the anvil 1130 and cartridge 1110 .
  • the distal ends of the tissue stops 1131 define a proximal starting point for the cutline.
  • a proximal axis PA corresponding to the distal ends of the tissue stops 1131 is depicted in FIG. 7 .
  • the staples that are fired from the staple cavities located proximal to the proximal axis PA are not fired into the target tissue.
  • staples fired from the proximal pattern 3022 do not form a part of the staple line.
  • a cutting element 3028 ( FIG. 7 ) is also configured to move along the longitudinal slot 3004 .
  • the cutting element 3028 can be an integral part of the firing element, such as the tissue cutting feature 1766 on the firing member 1760 ( FIG. 4 ), for example.
  • the cutting element 3028 has a distal cutting edge 3029 that is configured to incise tissue clamped by the end effector and stapled by the staples 3042 .
  • the cutting edge 3029 of the cutting element 3028 is configured to move between a proximal position near the proximal end portion 3006 of the cartridge body 3000 and a distal position near the distal end portion 3008 of the cartridge body 3000 .
  • the distal-most position of the cutting edge 3029 is defined by a distal termination point for the cutline.
  • a distal axis DA corresponding to the distal termination point of the cutting edge 3029 is depicted in FIG. 7 .
  • Tissue positioned distal to the distal axis DA is not incised by the cutting element 3028 during the firing stroke.
  • the first pattern 3020 of staple cavities 3010 extends between the proximal axis PA and the distal axis DA. Moreover, at least one staple cavity 3010 in the first pattern 3020 overlaps the proximal axis PA and the distal axis DA. In other instances, more than one longitudinally-repetitive pattern of staple cavities 3010 can be positioned between the proximal axis PA and the distal axis DA.
  • the proximal pattern 3022 is positioned proximal to the proximal axis PA, and the distal pattern 3024 is positioned distal to the distal axis DA.
  • staples fired from the distal staple cavities 3010 e - 3010 h are not configured to staple incised tissue.
  • staples fired from the proximal staple cavities 3010 a - 3010 d are not configured to staple the target tissue. Accordingly, such staples may not impact the flexibility and/or sealing quality of the resultant staple line.
  • a staple line having a first flexibility adjacent to the cutline and a different flexibility proximal to and/or distal to the cutline may provide certain advantages.
  • a staple arrangement that provides less flexibility may prevent and/or limit the propagation of the cutline and/or tearing of the tissue.
  • the tissue adjacent to an uncut portion may experience less stress and/or strain than the tissue adjacent to the cutline and, thus, may require less flexibility to prevent and/or limit tissue trauma.
  • tissue adjacent to the cutline may experience more forces during the cutting stroke and, thus, increased flexibility may prevent trauma to the tissue. Additionally, the tissue adjacent to the cutline may stretch as it heals and thus, increased flexibility may facilitate the healing process. For tissue that experiences fewer forces, such as the tissue distal to the cutline, for example, the reduced flexibility may reinforce or strengthen the staple line and prevent distal propagation of the cutline.
  • the proximal pattern 3022 includes two irregular staple cavities on each side of the knife slot 3004 adjacent to the proximal end of the first pattern 3020 and the distal pattern 3024 includes two irregular staple cavities on each side of the knife slot 3004 adjacent to the distal end of the first pattern 3020 .
  • the proximal pattern 3022 and/or the distal pattern 3024 can consist of a single irregular staple cavity on one or both sides of the knife slot 3004 .
  • the proximal pattern 3022 and/or the distal pattern 3024 can include three or more irregular staple cavities on one or both sides of the knife slot 3004 .
  • the proximal pattern 3022 and/or the distal pattern 3024 can include longitudinally repetitive sub-patterns.
  • the proximal pattern 3022 and/or the distal pattern 3024 can include multiple columns of parallel staple cavity openings 3012 .
  • the staple cartridge body 3000 can have a single irregular pattern, which can be positioned at either the proximal end or distal end of the first pattern 3020 .
  • one or more staple cavities in the proximal pattern 3022 and/or the distal pattern 3024 can be non-parallel to the knife slot 3004 .
  • such staple cavities can be oriented perpendicular to the knife slot 3004 or at an oblique angle relative to the knife slot 3004 .
  • certain staple cavities in the proximal pattern 3022 and/or the distal pattern 3024 can be non-parallel to each other
  • staple drivers 3060 are positioned in the staple cavities 3010 of the cartridge body 3000 .
  • the staple drivers 3060 are positioned to support the staples 3042 ( FIGS. 9 and 10 ) therein and to drive the staples 3042 from the staple cavities 3010 during a firing stroke.
  • the staple drivers 3060 can have different geometries and/or orientations.
  • the staple drivers 3060 positioned in the staple cavities 3010 of the first pattern 3020 may include connected drivers as described in U.S. patent application Ser. No. 14/498,145, filed Sep. 26, 2014, now U.S.
  • Each connected driver can include an inner driver positioned in a staple cavity 3010 in the inner row 3014 a, an intermediate driver positioned in a staple cavity 3010 in the intermediate row 3014 b, and an outer driver positioned in a staple cavity 3010 in the outer row 3014 c.
  • a connecting flange can connect the intermediate driver to at least one inner driver and at least one outer driver.
  • the staple drivers positioned in the staple cavities in the first pattern 3020 may include individual drivers, wherein each driver drives a single staple.
  • the staples can be direct-drive staples, which can be driven by direct contact with a wedge sled and/or camming surfaces, as described in U.S. patent application Ser. No. 14/138,475, filed on Dec. 23, 2013, now U.S. Patent Application Publication No. 2015/0173749, entitled SURGICAL STAPLES AND STAPLE CARTRIDGES and U.S. patent application Ser. No. 14/498,145, which are incorporated by reference herein in their respective entireties.
  • the drivers 3060 positioned in the staple cavities 3010 are dimensioned and positioned for driving engagement by the sled and camming surfaces thereof.
  • the drivers 3060 are positioned in the staple cavities 3010 of the first pattern 3020 .
  • Proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d are positioned in the staple cavities 3010 a, 3010 b, 3010 c, and 3010 d, respectively, of the proximal pattern 3022
  • distal drivers 3060 e, 3060 f, 3060 g, and 3060 h are positioned in the staple cavities 3010 e, 3010 f, 3010 g, and 3010 h, respectively, of the distal pattern 3024 .
  • the sled assembly 1120 and the wedge-shaped cams 1122 thereof can be configured to lift the drivers 3060 in the staple cavities 3010 .
  • the cams 1122 are configured to drivingly engage the drivers 3060 along the length of the cartridge body 3000 . More specifically, the cams 1122 initially engage and drive the proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d to fire the staples in the proximal pattern 3022 , then engage and drive the drivers 3060 to fire the staples in the first pattern 3022 , and finally engage and drive the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h to fire the staples in the distal pattern 3024 .
  • proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d and/or the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h have a different geometry than the drivers 3060 in the first pattern 3020 of staple cavities 3010 , the sled and camming surfaces thereof are compatible with the different drivers in the cartridge body 3000 .
  • the sled assembly 1120 includes four camming surfaces 1122 .
  • a first pair of camming surfaces 1122 are positioned for driving engagement with the staple drivers on the first side of the longitudinal axis LA, and a second pair of camming surfaces 1122 are positioned for driving engagement with the staple drivers on the second side of the longitudinal axis LA.
  • the camming surfaces 1122 in each pair are longitudinally offset. In other instances, the camming surfaces 1122 can be longitudinally aligned.
  • Each pair of camming surfaces 1122 is configured to lift a triple driver (see, e.g., the driver 1170 in FIGS.
  • the camming surfaces 1122 are also configured to lift the proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d and the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h.
  • the sled assembly 1120 can include more than or less than four camming surfaces.
  • the proximal drivers 3060 a - 3060 d and the distal drivers 3060 e - 3060 h are connected drivers 3058 .
  • An exemplary connected driver 3058 is depicted in FIGS. 13-16 .
  • the connected driver 3058 includes the first driver 3060 a and the second driver 3060 b.
  • a connecting flange 3068 extends between the two drivers 3060 a and 3060 b. Because the first and second drivers 3060 a and 3060 b are connected, the staples supported by the first and second drivers 3060 a, 3060 b are fired simultaneously by the sled assembly.
  • Each driver 3060 a and 3060 b also includes a cradle 3070 for supporting the base of the staple.
  • a guide 3062 a and 3062 b extends laterally from each driver 3060 a and 3060 b, respectively.
  • the first guide 3062 a extends in a first direction and forms an outside portion of the connected driver 3058 and the second guide 3062 b extends in a second, opposite direction and forms an inside portion of the connected driver 3058 .
  • Ramped surfaces 3064 a and 3064 b on the guides 3062 a and 3062 b, respectively, are positioned for driving contact with the camming surfaces of the sled assembly.
  • the guides 3062 a and 3062 b are driven upward in the channels 3036 ( FIG. 6 ) of the cartridge body 3000 when moved to a fired position by the sled assembly.
  • the channels 3036 form a vertical support structure through which the guides 3062 a, 3062 b are driven by the camming surfaces.
  • the camming surfaces can be longitudinally offset.
  • the ramped surfaces 3064 a, 3064 b are correspondingly offset, as depicted in FIGS. 14 and 16 .
  • the ramped surfaces 3064 a and 3064 b can be aligned.
  • a staple cartridge 4800 is depicted.
  • the staple cartridge body 4800 is similar in many aspects to the staple cartridge body 3000 .
  • the staple cartridge body 4800 includes a first pattern 4820 of angularly-oriented staple cavities, which are arranged in a herringbone pattern.
  • a slot 4804 extends along the longitudinal axis LA of the cartridge body 4800 .
  • the staple cartridge body 4800 also includes proximal staple cavities arranged in a proximal pattern 4822 and distal staple cavities arranged in a distal pattern 4824 .
  • the proximal pattern 4822 includes a first pair of parallel, longitudinally-aligned staple cavities on a first side of the slot 4804 and a second pair of parallel, longitudinally-aligned staple cavities on a second side of the longitudinal slot 4804 .
  • the distal pattern 4824 also includes a first pair of parallel, longitudinally-aligned staple cavities on the first side of the slot 4804 and a second pair of parallel, longitudinally-offset staple cavities on the second side of the longitudinal slot 4804 .
  • the proximal pattern 4822 and the distal pattern 4824 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4822 and/or the distal pattern 4824 can be asymmetric relative to the longitudinal axis LA.
  • Drivers 4860 are positioned in the staple cavities 4810 of the first pattern 4820 .
  • the drivers 4860 in the staple cavities 4810 of the first pattern 4820 are triple drivers, as described herein.
  • Proximal drivers 4860 a, 4860 b, 4860 c, and 4860 d are positioned in the staple cavities of the proximal pattern 4822
  • distal drivers 4860 e, 4860 f, 4860 g, and 4860 h are positioned in the staple cavities of the distal pattern 4824 .
  • the proximal drivers 4860 a - 4860 d and the distal drivers 4860 e - 4860 h are single drivers. Exemplary single drivers 4860 a and 4860 b are depicted in FIGS. 17 and 18 .
  • Each driver 4860 a and 4860 b includes a cradle 4870 for supporting the base of the staple.
  • a guide 4862 a and 4862 b extends laterally from each driver 4860 a and 4860 b, respectively.
  • the first guide 4862 a extends in a first direction and forms an outside portion of the first driver 4860 a and the second guide 4862 b extends in a second, opposite direction and forms an outside portion of the second driver 4860 b.
  • Ramped surfaces 4864 a and 4864 b on the guides 4862 a and 4862 b, respectively, are positioned for driving contact with the camming surfaces of a sled assembly.
  • the guides 4862 a and 4862 b are driven upward in channels in the cartridge body 4800 , such as the channels 3036 in the cartridge 3000 ( FIG. 6 ), when the drivers 4860 a and 4860 b are moved to a fired position by the sled assembly.
  • the channels form a vertical support structure through which the guides 4862 a and 4862 b are driven by the camming surfaces.
  • Such channels can stabilize the guides 4862 a and 4862 b and, thus, stabilize the individual drivers 4860 a and 4860 b, respectively, during deployment.
  • the camming surfaces can be longitudinally offset.
  • the ramped surfaces 4864 a, 4864 b are correspondingly offset, as depicted in FIG. 18 . In other instances, the ramped surfaces 4864 a and 4864 b can be aligned.
  • the staples supported by the first and second drivers 4860 a, 4860 b can be fired independently.
  • the first driver 4860 a and the second driver 4860 b can be fired sequentially. It can be advantageous to fire an inner staple before an outer staple, for example, which can be accomplished with the separate drivers 4860 a and 4860 b.
  • an outer staple can be fired before an inner staple with the separate drivers 4860 a and 4860 b.
  • the firing order can be modified by adjusting the relationship between the camming surfaces and the ramped surfaces 3864 a and 4864 b, for example.
  • the staple cavities in a distal pattern and/or a proximal pattern may not be longitudinally-aligned and/or may not be parallel.
  • a staple cartridge body 4600 is depicted.
  • the staple cartridge body 4600 is similar in many aspects to the staple cartridge body 3000 .
  • the staple cartridge body 4600 includes a first pattern 4620 of angularly-oriented staple cavities 4610 , which are arranged in a herringbone pattern.
  • a slot 4604 extends through a deck 4602 of the staple cartridge body 4600 along the longitudinal axis LA of the cartridge body 4600 .
  • the staple cartridge body 4600 also includes proximal staple cavities 4610 a - 4610 d arranged in a proximal pattern 4622 and distal staple cavities 4610 e - 4610 h arranged in a distal pattern 4624 .
  • the proximal pattern 4622 includes a first pair of parallel, longitudinally-offset staple cavities 4610 a, 4610 b on a first side of the slot 4604 and a second pair of parallel, longitudinally-offset staple cavities 4610 c, 4610 d on a second side of the longitudinal slot 4604 .
  • the distal pattern 4624 also includes a first pair of parallel, longitudinally-offset staple cavities 4610 e, 4610 f on the first side of the slot 4604 and a second pair of parallel, longitudinally-offset staple cavities 4610 g, 4610 h on the second side of the longitudinal slot 4604 .
  • the proximal pattern 4622 and the distal pattern 4624 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4622 and the distal pattern 4624 can be asymmetric relative to the longitudinal axis LA.
  • Connected drivers 4658 are positioned in the proximal and distal staple cavities 4610 a - 4610 h.
  • An exemplary connected driver 4658 is depicted in FIGS. 21-24 .
  • the connected driver 4658 includes the first driver 4660 a and the second driver 4660 b.
  • a connecting flange 4668 extends between the two offset drivers 4660 a and 4660 b. Because the drivers 4660 a and 4660 b are connected, the staples supported by the drivers 4660 a, 4660 b are fired simultaneously by the sled assembly.
  • Each driver 4660 a and 4660 b includes a cradle 4670 for supporting the base of the staple.
  • a guide 4662 a and 4662 b extends laterally from each driver 4660 a and 4660 b, respectively.
  • the first guide 4662 a extends in a first direction and forms an outside portion of the connected driver 4658 and the second guide 4662 b extends in a second, opposite direction and forms an inside portion of the connected driver 4658 .
  • Ramped surfaces 4664 a and 4664 b on the guides 4662 a and 4662 b, respectively, are positioned for driving contact with the camming surfaces of a sled assembly.
  • the guides 4662 a and 4662 b are driven upward in channels in the cartridge body 4800 , such as the channels 3036 in the staple cartridge 3000 ( FIG.
  • the channels form a vertical support structure through which the guides 4662 a, 4662 b are supported as they are driven by the camming surfaces.
  • the camming surfaces can be longitudinally offset.
  • the ramped surfaces 4664 a, 4664 b are correspondingly offset, as depicted in FIGS. 22 and 24 .
  • the ramped surfaces 4664 a and 4664 b can be aligned.
  • a staple cartridge body 4700 is depicted.
  • the staple cartridge body 4700 is similar in many aspects to the staple cartridge body 3000 .
  • the staple cartridge body 4700 includes a first pattern 4720 of angularly-oriented staple cavities 4710 , which are arranged in a herringbone pattern.
  • a slot 4704 extends through a deck 4702 of the staple cartridge body 4700 along the longitudinal axis LA of the cartridge body 4700 .
  • the staple cartridge body 4700 also includes proximal staple cavities 4710 a - 4710 f arranged in a proximal pattern 4722 .
  • the proximal pattern 4722 includes inner staple cavities 4710 c and 4710 d, which are oriented parallel to the longitudinal axis LA.
  • the proximal pattern 4722 also includes angularly-oriented outer staple cavities 4710 a and 4710 f, and angularly-oriented intermediate cavities 4710 b and 4710 e.
  • the outer staple cavities 4710 a and 4710 f and the intermediate staple cavities 4710 b and 4710 e are oriented at oblique angles relative to the longitudinal axis LA.
  • the angularly-oriented outer staple cavities 4710 a and 4710 f are also oriented at oblique angles relative to the cavity axes of the staple cavities 4710 in the first pattern 4720 .
  • the outer staple cavities 4710 a and 4710 f are less angled than the staple cavities 4710 in the first pattern 4720 .
  • the outer staple cavities 4710 a and 4710 f are oriented at an angle that is closer to parallel with the longitudinal axis LA than the staple cavities 4710 in the first pattern 4720 .
  • the proximal pattern 4722 can be less flexible than the first pattern 4720 .
  • the intermediate staple cavities 4710 b and 4710 e are oriented parallel to certain staple cavities 4710 in the first pattern 4020 .
  • the intermediate staple cavities 4710 b and 4710 e are oriented parallel to the staple cavities 4710 in an inner row in the first pattern 4720 .
  • certain staple cavities in the proximal pattern 4722 are not angularly offset from the staple cavities in the first pattern 4020 , the proximal pattern 4722 , when considered as a whole, is different than the first pattern 4020 and is different than the longitudinally-repetitive sub-patterns within the first pattern 4020 .
  • the proximal pattern 4722 includes three staple cavities positioned on each side of the slot 4704 . In other instances, less than three staple cavities or more than three staple cavities can be arranged in the proximal pattern 4722 on one or both sides of the slot 4704 .
  • the proximal pattern 4722 does not include a longitudinally-repetitive sub-pattern. In other instances, the proximal pattern 4722 can be longitudinally repetitive. Additionally, the proximal pattern 4722 is symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4722 can be asymmetric relative to the longitudinal axis LA.
  • Drivers 4760 are positioned in the staple cavities 4710 in the cartridge body 4700 .
  • the drivers 4760 in the staple cavities 4710 of the first pattern 4720 are triple drivers, as described herein.
  • Proximal drivers 4760 a, 4760 b, 4760 c, 4760 d, 4710 e, and 4710 f are positioned in the proximal staple cavities 4710 a, 4710 b, 4710 c, 4710 d, 4710 e, and 4710 f respectively, of the proximal pattern 4722 .
  • the proximal drivers 4760 a - 4760 f are single drivers.
  • the proximal drivers 4760 c and 4760 d in the inner cavities 4710 c and 4710 d, respectively, can be single drivers, the proximal drivers 4760 a and 4760 b can be connected drivers, and the proximal drivers 4760 e and 4760 f can be connected drivers.
  • the proximal drivers 4760 a, 4760 b, and 4760 c can comprise a first connected driver, and the distal drivers 4760 d, 4760 e, and 4760 f can comprise a second connected driver.
  • one or more irregular patterns of staple cavities can be defined at the proximal and/or distal end of a staple cartridge body. Additionally or alternatively, one or more irregular patterns, or minor patterns, can be sandwiched or inserted within a major pattern.
  • the angular orientation of staples in a staple line can influence the flexibility or compliance of the stapled tissue along the staple line.
  • the flexibility of a staple line can increase when staples are oriented at an oblique angle relative to the longitudinal axis and/or cutline.
  • Such an angular orientation can provide flexibility or extendability, within certain limits, in response to forces, such as tension and/or torsion, along and/or adjacent to the cutline.
  • the flexibility in the staple line can permit stretching, buckling, folding, and/or twisting of the stapled tissue.
  • a staple line comprised of angularly-oriented staples can be considered a compliant or elastic staple line, for example.
  • the flexibility of a staple line can vary laterally relative to the cutline.
  • one or more staples in a first portion of the staple line can be oriented at a first angle relative to the cutline and one or more staples in a second portion of the staple line can be oriented at a different angle relative to the cutline.
  • the first portion of the staple line can have a first flexibility and the second portion of the staple line can have a different flexibility.
  • the first portion can be laterally offset from the second portion.
  • the first portion of the staple line can include a first row of staples or portion of the first row
  • the second portion of the staple line can include a second row of staples or portion of the second row. In such instances, the flexibility of the staple line along the first row of staples can be different than the flexibility of the staple line along the second row of staples.
  • the staple cartridge body 3200 includes a deck 3202 and a longitudinal slot 3204 .
  • the longitudinal slot 3204 extends along the longitudinal axis LA.
  • Staple cavities 3210 are defined in the staple cartridge body 3200 , and each staple cavity 3210 defines an opening 3212 in the deck 3202 .
  • a staple 3242 is positioned in each staple cavity 3210 .
  • the staple 3242 can be similar in many aspects to the staple 3042 ( FIG. 10 ) or the staple 3142 ( FIG. 11 ). In certain instances, the legs of each staple 3242 can be biased against the inside wall of the staple cavity 3210 .
  • the arrangement of staples 3242 in the staple cavities 3210 corresponds to the arrangement of staples 3242 in a staple line when the staples 3242 are fired from the staple cartridge body 3200 and into tissue. More specifically, the bases of each staple 3242 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • the staple cavity openings 3212 are arranged in three rows 3214 a, 3214 b, and 3214 c on a first side of the longitudinal slot 3204 .
  • Inner openings 3212 a define the perimeter of inner cavities 3210 a in the inner row 3214 a
  • intermediate openings 3212 b define the perimeter of intermediate cavities 3210 b in the intermediate row 3214 b
  • outer openings 3212 c define the perimeter of outer cavities 3210 c in the outer row 3214 c.
  • Inner staples 3242 a are positioned in the inner cavities 3210 a
  • intermediate staples 3242 b are positioned in the intermediate cavities 3210 b
  • outer staples 3242 c are positioned in the outer cavities 3210 c.
  • the staple cavities 3210 on the opposing side of the slot 3204 form a mirror image reflection of the staple cavities 3210 on the first side of the longitudinal slot 3204 . Consequently, the arrangement of staples 3242 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3212 has a first end, or proximal end, 3216 and a second end, or distal end, 3218 .
  • a cavity axis CA extends between the proximal end 3216 and the distal end 3218 of each opening 3212 .
  • the staple cavity openings 3212 in each respective row are parallel.
  • the inner cavities 3210 a are oriented at an angle A relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA A1 and CA A2 ) of the inner openings 3212 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate cavities 3210 b are oriented at an angle B relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA B1 and CA B2 ) of the intermediate openings 3212 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer cavities 3210 c are oriented at an angle C relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA C1 and CA C2 ) defined by the outer openings 3212 are oriented at the angle C relative to the longitudinal axis LA.
  • the angles A, B, and C are different. Consequently, the inner openings 3212 a are obliquely oriented relative to the outer openings 3212 c. Because the cavity axes CA of the outer openings 3212 c (e.g., axes CA C1 and CA C2 ) are not parallel to the cavity axes of the inner openings 3212 a (e.g., axes CA A1 and CA A2 ), the openings 3212 in the staple cartridge body 3200 form a modified or skewed herringbone pattern.
  • the cavity axes CA B1 and CA B2 of the intermediate openings 3212 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3212 a or the outer openings 3212 c.
  • the angle B can be a supplementary angle to either angle A or angle C. In other instances, the angle B may not be a supplementary angle to either angle A or angle C.
  • the widths W A , W B , W C of the staple rows in the staple line can be different.
  • the inner staples 3242 a form a row of staples having a width W A
  • the intermediate staples 3242 b form a row of staples having a width W B
  • the outer staples 3242 c form a row of staples having a width W C .
  • the widths W A and W C are different because the angle A is different than the angle C.
  • the width W B is different than the widths W A and W C .
  • the width W B can match one of the widths W A or W C .
  • the angle B is a supplementary angle to angle A
  • the width W B matches the width W A .
  • the angle B is a supplementary angle to angle C
  • the width W B matches the width W C .
  • the longitudinal lengths L A , L B , and L C of the staples 3242 a, 3242 b, and 3242 c, respectively, are different.
  • the inner staples 3242 a have a longitudinal length L A
  • the intermediate staples 3242 b have a longitudinal length L B
  • the outer staples 3242 c have a longitudinal length L C .
  • the longitudinal lengths L A and L C are different because the angle A is different than the angle C. Because the longitudinal lengths L A and L C are different, the inner staples 3242 a are at least partially longitudinally staggered or offset relative to the outer staples 3242 c.
  • each inner staple 3242 a is not aligned with a corresponding end of an outer staple 3242 b. Because the ends are not aligned, the longitudinal overlap and/or gap with respect to the intermediate staples 3242 b differs between the inner staples 3242 a and the outer staples 3242 c.
  • the longitudinal length L B is different than the lengths L A and L C . In other instances, the longitudinal length L B can match one of the longitudinal lengths L A or L C . For example, if the angle B is a supplementary angle to angle A, the longitudinal length L B matches the longitudinal length L A . Similarly, if the angle B is a supplementary angle to angle C, the longitudinal length L B matches the longitudinal length L C .
  • the length of the staple bases may also impact the widths W A , W B , and W C and the longitudinal lengths L A , L B , and L C .
  • the inner staples 3242 a, the intermediate staples 3242 b, and the outer staples 3242 c have the same length base.
  • identical staples can be positioned in each staple cavity 3210 .
  • staples having different geometries and/or sizes, such as bases of different lengths, for example can be positioned in certain staple cavities in a cartridge body.
  • the angular orientation of the staple cavities 3210 a, 3210 b, and 3210 c, and the corresponding widths W A , W B , and W C and longitudinal lengths L A , L B , and L C , respectively, can impact the amount of lateral and longitudinal overlap in the staple line.
  • the longitudinal and lateral overlap between the staples 3242 also depends on the spacing of the staple cavities 3210 .
  • a greater overlap between adjacent staples corresponds to less direct fluid pathways, which can correspond to greater tissue sealing properties.
  • a greater overlap can also decrease the flexibility of the staple line because the tissue may be more constrained in the overlapped region.
  • a greater overlap can correspond to less spacing between the staples.
  • the overlap or degree of overlap described herein can refer to a positive overlap or a negative overlap, for example.
  • the staples and/or rows of staples may be spaced apart such that they do not overlap and a gap is defined therebetween.
  • the staples or rows of staples can be aligned such that the overlap is equal to the diameter of the staples.
  • the degree of overlap with respect to the staples or rows of staples in a staple cartridge corresponds to the degree of overlap with respect to the staple cavities or rows of staple cavities in the staple cartridge.
  • relative differences in the lateral and/or longitudinal overlaps between staples or rows of staples correspond to the relative differences in the lateral and/or longitudinal overlaps in the staple cavities or rows of staple cavities in the staple cartridge.
  • at least a portion of the staple legs can be positioned against and/or biased into the inside walls of the staple cavities at the proximal and distal ends of the staple cavity.
  • a distance measured with respect to the outside edges of the staples equal the distance measured with respect to the inside edges of the corresponding staple cavities.
  • the difference between such distances can be minimal or insignificant.
  • the degree of overlap can be minimized, such as when ends of the staples are aligned.
  • the overlap is equal, or substantially equal, to the diameter of the staples.
  • the staples are comprised of a wire having a diameter of about 0.0079 inches
  • the overlap can be about 0.0079 inches.
  • the overlap can be less than the diameter of staples.
  • the overlap can be less than about 0.0079 inches.
  • the degree of overlap can be a non-overlap or negative overlap, i.e., a space or gap between the ends of the staples.
  • a minimized overlap can be equal to or less than one-third of the staple length.
  • the overlap can be less 33% of the staple length.
  • the overlap can be less than 25% or less than 10% of the staple length.
  • the overlap can be more than 33% of the staple length, for example.
  • a staple line can include a first degree of overlap between the inner and intermediate rows of staples and a second degree of overlap between the intermediate and outer rows of staples.
  • the second degree of overlap can be different from the first degree of overlap in a lateral and/or longitudinal direction. Consequently, an inner portion of the staple line can comprise a different flexibility than an outer portion of the staple line.
  • the tissue sealing properties of the inner portion can be different than the tissue sealing properties of the outer portion.
  • the angle A is less than the angle C. Consequently, the width W A is less than the width W C and the length L A is greater than the length L C .
  • the angle A can be 35 degrees to 40 degrees, for example, and the angle C can be 43 degrees to 47 degrees, for example. In other instances, the angle A can be less than 35 degrees or more than 40 degrees and/or the angle C can be less than 43 degrees or more than 47 degrees.
  • the difference between the angle A and the angle C can be between three degrees and twelve degrees. For example, the difference can be about eight degrees. In still other instances, the difference between the angle A and the angle C can be less than three degrees or more than twelve degrees.
  • the staples 3242 in each respective row are aligned. More specifically, the proximal ends of the inner staples 3242 a are longitudinally aligned, the distal ends of the inner staples 3242 a are longitudinally aligned, the proximal ends of the intermediate staples 3242 b are longitudinally aligned, the distal ends of the intermediate staples 3242 b are longitudinally aligned, the proximal ends of the outer staples 3242 c are longitudinally aligned, and the distal ends of the outer staples 3242 c are longitudinally aligned.
  • the aligned staples 3242 in each row 3214 a, 3214 b, and 3214 c of staple cavities 3310 are configured to form rows of aligned staples 3242 in a staple line. Owing to the angular orientation of the staples 3242 and the spacing therebetween, the rows of staples 3242 laterally overlap.
  • the inner staples 3242 a laterally overlap the intermediate staples 3242 b by a lateral overlap Y A/B and the outer staples 3242 c laterally overlap the intermediate staples 3242 b by a lateral overlap Y B/C .
  • the lateral overlap Y A/B between the inner staples 3242 a and the intermediate staples 3242 b is greater than the lateral overlap Y B/C between the outer staples 3242 c and the intermediate staples 3242 b.
  • the outer staples are positioned closer to the intermediate staples than the inner staples are positioned to the intermediate staples.
  • the lateral overlap Y A/B can be less than or equal to the lateral overlap Y B/C .
  • the intermediate staples 3242 b are longitudinally staggered with respect to the inner staples 3242 a and the outer staples 3242 c.
  • each intermediate staple 3242 b is positioned longitudinally equidistant between adjacent inner staples 3242 a and longitudinally equidistant between adjacent outer staples 3242 c. Owing to the angular orientation of the staples 3242 and the spacing therebetween, the staples 3242 do not longitudinally overlap.
  • the inner staples 3242 a are spaced apart from the intermediate staples 3242 b by a longitudinal gap X A/B and the outer staples 3242 c are spaced apart from the intermediate staples 3242 b by a longitudinal gap X B/C .
  • the longitudinal gap X A/B between the inner staples 3242 a and the intermediate staples 3242 b is less than the longitudinal gap X B/C between the outer staples 3242 c and the intermediate staples 3242 b. In other instances, the longitudinal gap X A/B can be greater than or equal to the longitudinal gap X B/C . In certain instances, the intermediate staples 3242 b can longitudinally overlap the inner staples 3242 a and/or the outer staples 3242 c.
  • the lateral overlaps and longitudinal gaps generated by the arrangement of staple cavities in FIG. 27 can be sufficient to sufficiently obstruct the fluid pathways across the staple line to seal the tissue.
  • the lateral and/or longitudinal overlaps and/or gaps can be configured to selectively optimize the sealing properties of the staple line. Additionally or alternatively, the lateral and/or longitudinal overlaps and/or gaps can be configured to selectively optimize the flexibility of the staple line. Moreover, the overlaps can be minimized.
  • the lateral overlaps can be less than one-third of the staple length and, in at least one instance, can equal approximately the diameter of the staple.
  • the staple cartridge body 3300 includes a deck 3302 and a longitudinal slot 3304 .
  • the longitudinal slot 3304 extends along the longitudinal axis LA.
  • Staple cavities 3310 are defined in the staple cartridge body 3300 , and each staple cavity 3310 includes an opening 3312 in the deck 3302 .
  • a staple 3342 is positioned in each staple cavity 3310 .
  • the staple 3342 can be similar in many aspects to the staple 3042 ( FIG. 10 ) or the staple 3142 ( FIG. 11 ). In certain instances, the legs of each staple 3342 can be biased against the inside wall of the staple cavity 3310 .
  • the arrangement of staples 3342 in the staple cavities 3310 corresponds to the arrangement of staples 3342 in a staple line when the staples 3342 are fired from the staple cartridge body 3300 and into tissue. More specifically, the bases of each staple 3342 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • the staple cavity openings 3312 are arranged in three rows 3314 a, 3314 b, and 3314 c on a first side of the longitudinal slot 3304 .
  • Inner openings 3312 a define the perimeter of inner cavities 3310 a in the inner row 3314 a
  • intermediate openings 3312 b define the perimeter of intermediate cavities 3310 b in the intermediate row 3314 b
  • outer openings 3312 c define the perimeter of outer cavities 3310 c in the outer row 3314 c.
  • Inner staples 3342 a are positioned in the inner cavities 3310 a
  • intermediate staples 3342 b are positioned in the intermediate cavities 3310 b
  • outer staples 3342 c are positioned in the outer cavities 3310 c.
  • the staple cavities 3310 on the opposing side of the slot 3304 form a mirror image reflection of the staple cavities 3310 on the first side of the longitudinal slot 3304 . Consequently, the arrangement of staples 3342 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3312 has a first end, or proximal end, 3316 and a second end, or distal end, 3318 .
  • a cavity axis CA extends between the proximal end 3316 and the distal end 3318 of each opening 3312 .
  • the staple cavity openings 3312 in each respective row are parallel.
  • the inner cavities 3310 a are oriented at an angle A relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA A ) of the inner openings 3312 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate cavities 3310 b are oriented at an angle B relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA B ) of the intermediate openings 3312 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer cavities 3310 c are oriented at an angle C relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA C ) defined by the outer openings 3312 c are oriented at the angle C relative to the longitudinal axis LA.
  • the angle A is equal to the angle C
  • the angle B is a supplementary angle to the angles A and C. Consequently, the inner openings 3312 a are parallel to outer openings 3312 c and the intermediate openings 3312 b are perpendicular to the inner and outer openings 3312 a and 3312 c, respectively.
  • the staple cavity openings 3312 in the staple cartridge body 3300 form a herringbone pattern.
  • the staples 3342 in each row 3314 a, 3314 b, 3314 c have the same length base BL.
  • the widths of the staple rows are equal, and the longitudinal lengths of the staples 3342 are also equal.
  • the longitudinal overlap X A/B between the inner staples 3342 a and the intermediate staples 3342 b is equal to the longitudinal overlap X B/C between the outer staples 3342 c and the intermediate staples 3342 b.
  • the lateral overlap Y A/B between the inner staples 3342 a and the intermediate staples 3342 b is equal to the lateral overlap Y B/C between the outer staples 3342 c and the intermediate staples 3342 b.
  • the intermediate staples 3342 b are positioned equidistantly close to the inner staples 3342 a and the outer staples 3342 c.
  • the spacing between the staple cavities 3310 in the cartridge body 3300 is minimized.
  • the proximal and distal ends 3316 , 3318 of the staple cavity openings 3312 are positioned adjacent to other staple cavities 3312 .
  • adjacent staple cavities can be in abutting contact.
  • the angular orientation of the staple cavities in at least one row of staple cavities can differ from the angular orientation of the staple cavities in other rows.
  • the length of the staple bases in at least one row of staple cavities can differ from the length of the staple bases in at least one other row.
  • the staple cavities may not be equidistantly staggered or offset from adjacent staple cavities in each adjacent row. Such variations to the staple cartridge and staples therein can generate staple lines with varying properties laterally with respect to the cutline.
  • the staples in an inner portion of the staple line can have a different base length than the staples in an outer portion of the staple line.
  • the staples in the inner row of staple cavities on each side of a knife slot can have a longer base than the staples in the other rows of staple cavities.
  • the longer bases can provide greater sealing capabilities because more tissue can be captured by the staples, for example. Additionally or alternatively, the longer bases can reinforce the staple line and reduce the flexibility thereof.
  • the staple cartridge body 3400 includes a deck 3402 and a longitudinal slot 3404 .
  • the longitudinal slot 3404 extends along the longitudinal axis LA.
  • Staple cavities 3410 are defined in the staple cartridge body 3400 , and each staple cavity 3410 defines an opening 3412 in the deck 3402 .
  • a staple 3442 is positioned in each staple cavity 3410 .
  • the staple 3442 can be similar in many aspects to the staple 3042 ( FIG. 10 ) or the staple 3142 ( FIG. 11 ). In certain instances, the legs of each staple 3442 can be biased against the inside wall of the staple cavity 3410 .
  • the arrangement of staples 3442 in the staple cavities 3410 corresponds to the arrangement of staples 3442 in a staple line when the staples 3442 are fired from the cartridge body 3400 and into tissue. More specifically, the bases of each staple 3442 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • the staple cavity openings 3412 are arranged in three rows 3414 a, 3414 b, and 3414 c on a first side of the longitudinal slot 3404 .
  • Inner openings 3412 a define the perimeter of inner cavities 3410 a in the inner row 3414 a
  • intermediate openings 3412 b define the perimeter of intermediate cavities 3410 b in the intermediate row 3414 b
  • outer openings 3412 c define the perimeter of outer cavities 3410 c in the outer row 3414 c.
  • Inner staples 3442 a are positioned in the inner cavities 3410 a
  • intermediate staples 3442 b are positioned in the intermediate cavities 3410 b
  • outer staples 3442 c are positioned in the outer cavities 3410 c.
  • the staple cavities 3410 on the opposing side of the slot 3404 form a mirror image reflection of the staple cavities 3410 on the first side of the longitudinal slot 3404 . Consequently, the arrangement of staples 3442 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3412 has a first end, or proximal end, 3416 and a second end, or distal end, 3418 .
  • a cavity axis CA extends between the proximal end 3416 and the distal end 3418 of each opening 3412 .
  • the staple cavity openings 3412 in each row are parallel.
  • the inner cavities 3410 a are oriented at an angle A relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA A ) of the inner openings 3412 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate cavities 3410 b are oriented at an angle B relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA B ) of the intermediate openings 3412 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer cavities 3410 c are oriented at an angle C relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA C ) defined by the outer openings 3412 c are oriented at the angle C relative to the longitudinal axis LA.
  • the angles A, B, and C are different.
  • the inner openings 3412 a are obliquely oriented relative to the outer openings 3412 c.
  • the angle A is less than the angle C.
  • the axes of outer openings 3412 c e.g., axis CA C
  • the staple cavity openings 3412 in the staple cartridge body 3400 form a modified or skewed herringbone pattern.
  • the cavity axes CA B of the intermediate openings 3412 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3412 a or the outer openings 3412 c.
  • the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • the inner staples 3442 a have a base length BL A
  • the intermediate staples 3442 b have a base length BL B
  • the outer staples 3442 c have a base length BL C .
  • the base length BL A is greater than the base length BL B and the base length BL C .
  • the inner staples 3442 a are longer than the intermediate staples 3442 b and the outer staples 3442 c.
  • the staple cavities 3410 housing the inner staples 3442 a are correspondingly larger to accommodate the longer length base BL A .
  • the arrangement of staple cavities 3410 in the cartridge body 3400 provides a longitudinal overlap X A/B between inner staples 3442 a and the intermediate staples 3442 b at both the proximal and distal ends of the intermediate staples 3442 b.
  • the intermediate staples 3442 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3442 a.
  • the intermediate staples 3442 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3442 c.
  • each outer staple 3442 c is longitudinally aligned with the distal end of an intermediate staple 3442 b and the distal end of each outer staple 3442 c is longitudinally aligned with the proximal end of another intermediate staple 3442 b.
  • staples are longitudinally aligned and the longitudinal overlap is equal to the diameter of the staples 3442 .
  • the arrangement of staples cavities 3410 in the cartridge body 3400 also provides a lateral gap Y A/B between the inner row 3414 a and the intermediate row 3414 b and a lateral overlap Y B/C between the outer row 3414 c and the intermediate row 3414 b.
  • the intermediate staples 3442 b are positioned closer to the outer staples 3442 c than to the inner staples 3442 a.
  • a staple line generated by the staple cartridge body 3400 can have different properties laterally with respect to the cutline.
  • the staple line may have a greater sealing effectiveness along the cutline than laterally outward from the cutline.
  • the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline.
  • an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • the intermediate staples 3442 b longitudinally overlap the inner staples 3442 a but do not longitudinally overlap the outer staples 3442 c, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • the amount of overlap can be minimized. For example, the overlap can be less than one-third of the staple length and, in at least one instance, can equal approximately the diameter of the staple.
  • the staples in an outer portion of the staple line can have a different base length than the staples in an inner portion of the staple line.
  • the staples in the outer row of staple cavities on each side of a knife slot can have a shorter base than the staples in the other rows of staple cavities. The shorter bases can provide increased flexibility of the staple line, for example.
  • the staple cartridge body 3500 includes a deck 3502 and a longitudinal slot 3504 .
  • the longitudinal slot 3504 extends along the longitudinal axis LA.
  • Staple cavities 3510 are defined in the staple cartridge body 3500 , and each staple cavity 3510 defines an opening 3512 in the deck 3502 .
  • a staple 3542 is positioned in each staple cavity 3510 .
  • the staple 3542 can be similar in many aspects to the staple 3042 ( FIG. 10 ) or the staple 3142 ( FIG. 11 ). In certain instances, the legs of each staple 3542 can be biased against the inside wall of the staple cavity 3510 .
  • the arrangement of staples 3542 in the staple cavities 3510 corresponds to the arrangement of staples 3542 in a staple line when the staples 3542 are fired from the cartridge body 3500 and into tissue. More specifically, the bases of each staple 3542 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • the staple cavity openings 3512 are arranged in three rows 3514 a, 3514 b, and 3514 c on a first side of the longitudinal slot 3504 .
  • Inner openings 3512 a define the perimeter of inner cavities 3510 a in the inner row 3514 a
  • intermediate openings 3512 b define the perimeter of intermediate cavities 3510 b in the intermediate row 3514 b
  • outer openings 3512 c define the perimeter of outer cavities 3510 c in the outer row 3514 c.
  • Inner staples 3542 a are positioned in the inner cavities 3510 a
  • intermediate staples 3542 b are positioned in the intermediate cavities 3510 b
  • outer staples 3542 c are positioned in the outer cavities 3510 c.
  • the staple cavities 3510 on the opposing side of the slot 3504 form a mirror image reflection of the staple cavities 3510 on the first side of the longitudinal slot 3504 . Consequently, the arrangement of staples 3542 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3512 has a first end, or proximal end, 3516 and a second end, or distal end, 3518 .
  • a cavity axis CA extends between the proximal end 3516 and the distal end 3518 of each opening 3512 .
  • the staple cavity openings 3512 in each row are parallel.
  • the inner cavities 3510 a are oriented at an angle A relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA A ) of the inner openings 3512 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate cavities 3510 b are oriented at an angle B relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA B ) of the intermediate openings 3512 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer cavities 3510 c are oriented at an angle C relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA C ) defined by the outer openings 3512 c are oriented at the angle C relative to the longitudinal axis LA.
  • the angles A, B, and C may be different.
  • the inner openings 3512 a are obliquely oriented relative to the outer openings 3512 c.
  • the angle A is less than the angle C.
  • the axes of the outer openings 3512 c e.g., axis CA C
  • the staple cavity openings 3512 in the staple cartridge body 3500 form a modified or skewed herringbone pattern.
  • the cavity axes CA B of the intermediate openings 3512 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3512 a or the outer openings 3512 c.
  • the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • the inner staples 3542 a have a base length BL A
  • the intermediate staples 3542 b have a base length BL B
  • the outer staples 3542 c have a base length BL C .
  • the base length BL C is less than the base length BL B and the base length BL A .
  • the outer staples 3542 c are shorter than the intermediate staples 3542 b and the inner staples 3542 a.
  • the staple cavities 3510 housing the outer staples 3542 c are correspondingly shorter to accommodate the shorter length base BL C .
  • the arrangement of staple cavities 3510 in the cartridge body 3500 provides a longitudinal overlap X A/B between the inner staples 3542 a and the intermediate staples 3542 b at both the proximal and distal ends of the intermediate staples 3542 b.
  • the intermediate staples 3542 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3542 a.
  • the arrangement of staple cavities 3510 in the cartridge body 3500 also provides a longitudinal overlap X B/C between the intermediate staples 3542 b and the outer staples 3542 c at both the proximal and distal ends of the intermediate staples 3542 b.
  • the intermediate staples 3542 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3542 c. Owing to the angular orientation and spacing of the staples 3542 , the longitudinal overlap X A/B is greater than the longitudinal overlap X B/C .
  • the arrangement of staples cavities 3510 in the cartridge body 3500 also provides a lateral gap Y A/B between the inner staples 3542 a and the intermediate staples 3542 b and a lateral overlap Y B/C between the outer staples 3542 c and the intermediate staples 3542 b. In such instances, the intermediate staples 3542 b are positioned closer to the outer staples 3542 c than to the inner staples 3542 a.
  • a staple line generated by the staple cartridge body 3500 can have different properties laterally with respect to the cutline.
  • the staple line may have a greater sealing effectiveness along the cutline than laterally outward from the cutline.
  • the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline.
  • an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • the intermediate staples 3542 b longitudinally overlap the inner staples 3542 a more than the intermediate staples 3542 b longitudinally overlap the outer staples 3542 c an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • the properties of the staple line can be customized in each row of staples.
  • the staples in each row of staple cavities on one side of a knife slot can have different base lengths.
  • the staples in each row of staple cavities on one side of a knife slot can be oriented at different angles relative to the knife slot.
  • the spacing between the cavities can be varied row-to-row.
  • the size and orientation of the staples in each row can be selected to optimize the flexibility of the staple line and sealing properties in each row based on the row's position laterally from the cutline toward the outer boundary of the staple line.
  • the sealing effectiveness can be maximized or emphasized along the cutline, for example, and the flexibility of the staple line can be maximized or emphasized along the outer boundary of the staple line, for example.
  • the sealing effectiveness can be maximized or emphasized along the outer boundary of the staple line and/or the flexibility of the staple line can be maximized or emphasized along the cutline.
  • the staple cartridge body 3600 includes a deck 3602 and a longitudinal slot 3604 .
  • the longitudinal slot 3604 extends along the longitudinal axis LA.
  • Staple cavities 3610 are defined in the staple cartridge body 3600 , and each staple cavity 3610 defines an opening 3612 in the deck 3602 .
  • a staple 3642 is positioned in each staple cavity 3610 .
  • the staple 3642 can be similar in many aspects to the staple 3042 ( FIG. 10 ) or the staple 3142 ( FIG. 11 ). In certain instances, the legs of each staple 3642 can be biased against the inside wall of the staple cavity 3610 .
  • the arrangement of staples 3642 in the staple cavities 3610 corresponds to the arrangement of staples 3642 in a staple line when the staples 3642 are fired from the cartridge body 3600 and into tissue. More specifically, the bases of each staple 3642 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • the staple cavity openings 3612 are arranged in three rows 3614 a, 3614 b, 3614 c on a first side of the longitudinal slot 3604 .
  • Inner openings 3612 a define the perimeter of inner cavities 3610 a in the inner row 3614 a
  • intermediate openings 3612 b define the perimeter of intermediate cavities 3610 b in the intermediate row 3614 b
  • outer openings 3612 c define the perimeter of outer cavities 3610 c in the outer row 3614 c.
  • Inner staples 3642 a are positioned in the inner cavities 3610 a
  • intermediate staples 3642 b are positioned in the intermediate cavities 3610 b
  • outer staples 3642 c are positioned in the outer cavities 3610 c.
  • the staple cavities 3610 on the opposing side of the slot 3604 form a mirror image reflection of the staple cavities 3610 on the first side of the longitudinal slot 3604 . Consequently, the arrangement of staples 3642 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3612 has a first end, or proximal end, 3616 and a second end, or distal end, 3618 .
  • a cavity axis CA extends between the proximal end 3616 and the distal end 3618 of each opening 3612 .
  • the staple cavity openings 3612 in each row are parallel.
  • the inner cavities 3610 a are oriented at an angle A relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA A ) of the inner openings 3612 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate cavities 3610 b are oriented at an angle B relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA B ) of the intermediate openings 3612 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer cavities 3610 c are oriented at an angle C relative to the longitudinal axis LA.
  • the cavity axes (e.g., CA C ) defined by the outer openings 3612 c are oriented at the angle C relative to the longitudinal axis LA.
  • the angles A, B, and C may be different.
  • the inner openings 3612 a are obliquely oriented relative to the outer openings 3612 c.
  • the angle A is less than the angle C.
  • the axes of the outer openings 3612 c e.g., axis CA C
  • the staple cavity openings 3612 in the staple cartridge body 3600 form a modified or skewed herringbone pattern.
  • the cavity axes CA B of the intermediate openings 3612 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3612 a or the outer openings 3612 c.
  • the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • the inner staples 3642 a have a base length BL A
  • the intermediate staples 3642 b have a base length BL B
  • the outer staples 3642 c have a base length BL C .
  • the base length BL C is less than the base length BL B
  • the base length BL B is less than the base length BL A .
  • the length of the staples 3642 increases laterally toward the longitudinal slot 3604 .
  • the staple cavities 3610 correspondingly increase in length laterally toward the longitudinal slot 3604 to accommodate the larger staples.
  • the arrangement of staple cavities 3610 in the cartridge body 3600 provides a longitudinal overlap X A/B between the inner staples 3642 a and the intermediate staples 3642 b at both the proximal and distal ends of the intermediate staples 3642 b.
  • the intermediate staples 3642 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3642 a.
  • the arrangement of staple cavities 3610 in the cartridge body 3600 also provides a longitudinal gap X B/C between the intermediate staples 3642 b and the outer staples 3642 c at both the proximal and distal ends of the intermediate staples 3642 b.
  • the intermediate staples 3642 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3642 c. Owing to the variations in the angular orientation of the staples, the spacing of the staples, and the length of the staples, the longitudinal overlap X A/B is greater than the longitudinal gap X B/C . In other instances, the longitudinal overlap X A/B can be equal to or less than the longitudinal overlap X B/C .
  • the arrangement of staples cavities 3610 in the cartridge body 3600 also provides a lateral gap Y A/B between the inner row 3614 a and the intermediate row 3614 b and a lateral overlap Y B/C between the outer row 3614 c and the intermediate row 3614 b.
  • a staple line generated by the staple cartridge body 3600 can have different properties laterally with respect to the cutline.
  • the staple line may have a greater sealing effectiveness adjacent to the cutline than laterally outward from the cutline.
  • the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline.
  • an inner portion of the staple line may have greater sealing effectiveness than an outer portion of the staple line.
  • an outer portion of the staple line may have greater flexibility than an inner portion of the staple line.
  • staples are removably positioned in a staple cartridge and fired from the staple cartridge during use.
  • the staples can be driven out of staple cavities in the staple cartridge and into forming contact with an anvil.
  • a firing element can translate through the staple cartridge during a firing stroke to drive the staples from the staple cartridge toward an anvil.
  • the staples can be supported by staple drivers and the firing element can lift the staple drivers to eject or remove the staples from the staple cartridge.
  • An anvil can include a staple-forming surface having staple-forming pockets defined therein.
  • the staple-forming pockets can be stamped in the anvil.
  • the staple-forming pockets can be coined in a flat surface of the anvil.
  • certain features of the staple-forming pockets can be a deliberate consequence of a coining process. For example, a certain degree of rounding at corners and/or edges of the staple-forming produce can be an intentional result of the coining process. Such features can also be designed to better form the staples to their formed configurations, including staples that become skewed and/or otherwise misaligned during deployment.
  • Each staple in the staple cartridge can be aligned with a staple-forming pocket of the anvil.
  • the arrangement of staple cavities and staples in a staple cartridge for an end effector can correspond or match the arrangement of staple-forming pockets in an anvil of the end effector.
  • the angular orientation of each staple cavity can match the angular orientation of the respective staple-forming pocket.
  • the staple-forming pockets can also be arranged in a herringbone pattern.
  • the staples When staples are driven from the staple cartridge and into forming contact with the anvil, the staples can be formed into a fired configuration.
  • the fired configuration can be a B-form configuration, in which the tips of the staple legs are bent toward the staple base or crown to form a capital letter B having symmetrical upper and lower loops.
  • the fired configuration can be a modified B-form, such as a skewed B-form configuration, in which at least a portion of a staple leg torques out of plane with the staple base, or an asymmetrical B-form configuration, in which the upper and lower loops of the capital letter B are asymmetric. Tissue can be captured or clamped within the formed staple.
  • the arrangement of staples and/or staple cavities in a staple cartridge can be configured to optimize the corresponding arrangement of staple-forming pockets in the forming surface of a complementary anvil.
  • the angular orientation and spacing of staples in a staple cartridge can be designed to optimize the forming surface of an anvil.
  • the footprint of the staple-forming pockets in an anvil can be limited by the geometry of the anvil.
  • the width of the anvil can limit the size and spacing of the obliquely-oriented staple-forming pockets.
  • the width of an intermediate row of staple-forming pockets can define a minimum distance between a first row (e.g.
  • the rows of staple-forming pockets are confined between an inside edge on the anvil, such as a knife slot, and an outside edge of the anvil.
  • the pockets can be adjacently nested along a staple-forming surface of the anvil.
  • an intermediate pocket can be nested between an inner pocket and an outer pocket.
  • the angular orientation of the pockets can vary row-to-row to facilitate the nesting thereof.
  • the staple-forming pockets in an inner row can be oriented at a first angle
  • the staple-forming pockets in an intermediate row can be oriented at a second angle
  • the staple-forming pockets in an outer row can be oriented at a third angle.
  • the first angle, the second angle, and the third angle can be different, which can facilitate the close arrangement of the staple-forming pockets.
  • the varying angles of the staples and the staple cavities in each row can be selected to optimize the nesting of the staple-forming pockets in a complementary anvil.
  • a complementary anvil can be configured to have a corresponding arrangement of staple-forming pockets.
  • the staple-forming pockets in the complementary anvils can be larger than the staple cavities depicted in FIGS. 27-31 to ensure that the staple legs land or fall within the staple-forming pockets.
  • the staple legs may be biased outward, such as in the case of V-shaped staples (see FIG.
  • the staple-forming pockets can be 0.005 inches to 0.015 inches longer than the corresponding staple cavities and/or staples. Additionally or alternatively, the staple-receiving cups of each staple-forming pocket can be 0.005 inches to 0.015 inches wider than the corresponding staple cavities. In other instances, the difference in length and/or width can be less than 0.005 inches or more than 0.015 inches.
  • the size of the staple-forming pockets can corresponding vary within a complementary anvil. Varying the size of the staple-forming pockets can further facilitate the nesting thereof. For example, in instances in which staple-forming pockets in an intermediate row are shorter than the staple-forming pockets in an inner row or an outer row, the width of the intermediate row of staple-forming pockets can be reduced, which can minimize the requisite spacing between the inner row and the outer row.
  • the spacing of the staple-forming pockets can also be configured to optimize the nesting thereof.
  • the pockets arranged in an inner row can be longitudinally staggered relative to the pockets arranged in an outer row.
  • the pockets in the inner row can partially longitudinally overlap the pockets in the outer row.
  • the pockets in an intermediate row can be longitudinally staggered relative to the pockets in the inner row and the pockets in the outer row.
  • the pockets in the intermediate row can be equidistantly longitudinally offset from the pockets in the outer row and the pockets in the inner row.
  • an anvil 3700 is depicted.
  • the anvil 3700 can be complementary to the staple cartridge 3500 ( FIG. 30 ).
  • the arrangement of staple-forming pockets 3706 in the anvil 3700 can correspond to the arrangement of staples 3542 and staple cavities 3510 ( FIG. 30 ) in the staple cartridge 3500 .
  • the anvil 3700 includes a staple-forming surface 3702 and a longitudinal slot 3704 .
  • the longitudinal slot 3704 extends along the longitudinal axis LA of the anvil 3700 .
  • a firing element and/or cutting element can translate through the longitudinal slot 3704 during at least a portion of a firing stroke.
  • Staple-forming pockets 3706 are defined in the staple-forming surface 3702 .
  • the staple-forming surface 3702 also includes a non-forming portion 3708 that extends around the pockets 3706 .
  • the non-forming portion 3708 extends entirely around each pocket 3706 in FIG. 80 .
  • the non-forming portion 3708 surrounds the staple-forming pockets 3706 .
  • at least a portion of two or more adjacent pockets 3706 can be in abutting contact such that a non-forming portion 3708 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 3702 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3708 of the anvil 3700 can be minimized with respect to the staple-forming pockets 3706 . Additionally or alternatively, the footprint of the staple-forming pockets 3706 can be extended or enlarged to maximize the portion of the staple-forming surface 3702 that is designed to catch and form the staples.
  • the pockets 3706 depicted in FIG. 80 are arranged in three rows 3714 a, 3714 b, 3714 c on a first side of the longitudinal slot 3704 .
  • the first row 3714 a is an inner row
  • the second row 3714 b is an intermediate row
  • the third row 3714 c is an outer row.
  • Inner pockets 3706 a are positioned in the inner row 3714 a
  • intermediate pockets 3706 b are positioned in the intermediate row 3714 b
  • outer pockets 3706 c are positioned in the outer row 3714 c.
  • the pockets 3706 are arranged in a herringbone arrangement along the staple-forming surface 3702 of the anvil 3700 .
  • the pockets 3706 on the opposing side of the slot 3704 can form a mirror image reflection of the pockets 3706 on the first side of the longitudinal slot 3704 .
  • the arrangement of pockets 3706 in the staple-forming surface 3702 can be asymmetrical relative to the slot 3704 and, in certain instances, the anvil 3700 may not include the longitudinal slot 3704 .
  • the pockets 3706 can be arranged in less than or more than three rows on each side of the slot 3704 .
  • Each pocket 3706 includes a perimeter 3716 , which defines the boundary of the pocket 3706 b.
  • Each pocket 3706 also includes a proximal cup 3720 , a distal cup 3722 , and a neck portion 3724 connecting the proximal cup 3720 and the distal cup 3722 .
  • a staple is driven into forming contact with the staple-forming surface 3702 , the proximal cup 3720 is aligned with a proximal staple leg, and the distal cup 3722 is aligned with a distal staple leg.
  • the tips of the staple legs are positioned and configured to land in the respective cups 3720 , 3722 .
  • the proximal cup 3720 is configured to receive a proximal staple leg and the distal cup 3722 is configured to receive a distal staple leg.
  • the cups 3720 and 3722 are also configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3806 , such as the neck portion 3724 , and to deform the staple legs into the formed configuration.
  • a pocket axis PA extends from the proximal cup 3720 , through the neck portion 3724 , and to the distal cup 3722 of each pocket 3706 .
  • the pockets 3706 in each row are parallel.
  • the inner pockets 3706 a are oriented at an angle A relative to the longitudinal axis LA.
  • the pocket axes (e.g., PA A ) of the inner pockets 3706 a are oriented at the angle A relative to the longitudinal axis LA.
  • the intermediate pockets 3706 b are oriented at an angle B relative to the longitudinal axis LA.
  • the pocket axes (e.g., PA B ) of the inner pockets 3706 b are oriented at the angle B relative to the longitudinal axis LA.
  • the outer pockets 3706 c are oriented at an angle C relative to the longitudinal axis LA.
  • the pocket axes (e.g., PA C ) of the inner pockets 3706 a are oriented at the angle C relative to the longitudinal axis LA.
  • the angles A, B, and C may be different.
  • the inner pockets 3706 a are obliquely oriented relative to the outer pockets 3706 c.
  • the angle A is less than the angle C.
  • the axes of the outer pockets 3706 c e.g., axis PA C
  • the staple-forming pockets 3706 in the anvil 3700 form a modified or skewed herringbone pattern.
  • the pocket axes PA B of the intermediate pockets 3706 b are obliquely oriented relative to the inner pockets 3706 a and outer pockets 3706 c.
  • the pocket axes PA B of the intermediate pockets 3706 b can be oriented perpendicular, or substantially perpendicular, to either the inner pocket 3706 a or the outer pocket 3706 c.
  • the angle B can be a supplementary angle to either angle A or C.
  • the inner pockets 3706 a have a length L A
  • the intermediate pockets 3706 b have a length L B
  • the outer pockets 3706 c have a length L C .
  • the length L C is less than the length L B and the length L A .
  • the outer pockets 3706 c are shorter than the intermediate pockets 3706 b and the inner pockets 3706 a.
  • the lengths L A , L B , and L C can be different.
  • the lengths L A , L B , and L C can be the same.
  • the length L B can be less than the length L A and/or L B
  • the length L A can be less than the length L A and/or L C .
  • the lengths L A , L B , and L C can be selected to optimize the nesting of the pockets 3706 .
  • the spacing of the staple-forming pockets 3706 can also be configured to optimize the nesting thereof.
  • the inner pockets 3706 a can be longitudinally staggered relative to the outer pockets 3706 c.
  • the inner pockets 3706 a can partially longitudinally overlap the outer pockets 3706 c.
  • a first end of the inner pocket 3706 a is longitudinally offset from the corresponding end of the outer pocket 3706 c by a distance X 1 A/C .
  • a second end of the inner pocket 3706 a is longitudinally offset from the corresponding end of the outer pocket 3706 c by a distance X 2 A/C .
  • the distance X 2 A/C is less than the distance X 1 A/C .
  • the distance X 2 A/C can be equal to or greater than the distance X 1 A/C .
  • the intermediate pockets 3706 b are longitudinally staggered relative to the inner pockets 3706 a and the outer pockets 3706 c. More specifically, the intermediate pockets 3706 b are equidistantly longitudinally offset between adjacent inner pockets 3706 a and between adjacent outer pockets 3706 c. In other instances, the intermediate pockets 3706 b may be non-equidistantly offset between adjacent inner pockets 3706 a and between adjacent outer pockets 3706 c.
  • the arrangement of pockets 3706 is configured to nest the pockets 3706 such that the pockets 3706 fit within a predefined space.
  • the width of the anvil can be minimized or otherwise restrained to fit within a surgical trocar and/or within a narrow surgical field, and the arrangement of staple-forming pockets 3706 (and the corresponding arrangement of staples and/or staple cavities) can fit within a narrow anvil.
  • the anvil 3800 includes a staple-forming surface 3802 and a longitudinal slot 3804 .
  • the longitudinal slot 3804 extends along the longitudinal axis LA of the anvil 3800 .
  • a firing element and/or cutting element can translate through the longitudinal slot 3804 during at least a portion of a firing stroke.
  • the staple-forming pockets 3806 are defined in the staple-forming surface 3802 , which also includes a non-forming portion 3808 that extends around the pockets 3806 .
  • the non-forming portion 3808 extends entirely around each pocket 3806 .
  • the non-forming portion 3808 surrounds the staple-forming pockets 3806 .
  • at least a portion of two or more adjacent pockets can be in abutting contact such that a non-forming portion is not positioned therebetween.
  • the non-forming portion 3808 can extend across one or more of the pockets 3806 .
  • the “forming ratio” of the staple-forming surface 3802 (the ratio of the non-forming portion 3808 to the forming portion, i.e., the pockets 3806 ) can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3808 of the anvil 3800 can be minimized with respect to the staple-forming pockets 3806 . Additionally or alternatively, the footprint of the staple-forming pockets 3806 can be extended or enlarged to maximize the portion of the staple-forming surface 3802 that is designed to catch and form the staples. Such arrangement, for example, may prevent inadvertent malformed staples that, for whatever reason, miss or fall outside of their corresponding forming pocket during the firing process.
  • the pockets 3806 depicted in FIG. 32 are arranged in three rows 3814 a, 3814 b, and 3814 c on a first side of the longitudinal slot 3804 .
  • the first row 3814 a is an inner row
  • the second row 3814 b is an intermediate row
  • the third row 3814 c is an outer row.
  • Inner pockets 3806 a are positioned in the inner row 3814 a
  • intermediate pockets 3806 b are positioned in the intermediate row 3814 b
  • outer pockets 3806 c are positioned in the outer row 3814 c.
  • the pockets 3806 on the opposing side of the slot 3804 can form a mirror image reflection of the pockets 3806 on the first side of the longitudinal slot 3804 .
  • the arrangement of pockets 3806 in the staple-forming surface 3802 can be asymmetrical relative to the slot 3804 and, in certain instances, the anvil 3800 may not include the longitudinal slot 3804 . In various instances, the pockets 3806 can be arranged in less than or more than three rows on each side of the slot 3804 .
  • the pockets 3806 depicted in FIG. 32 are identical. Each pocket 3806 defined in the staple-forming surface 3802 has the same geometry. In other instances, the geometry of the pockets 3806 can vary row-to-row and/or longitudinally along the length of the anvil 3800 . For example, in certain instances, the depth of the pockets 3806 or portions thereof can vary along the length of the anvil 3800 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 33-35C An exemplary pocket 3806 b is shown in FIGS. 33-35C .
  • the pocket 3806 b has a first end, or proximal end, 3810 and a second end, or distal end, 3812 .
  • a pocket axis PA extends between the proximal end 3810 and the distal end 3814 of the pocket 3806 b. Referring again to FIG. 32 , the pockets 3806 in each respective row are parallel.
  • the pocket axes (e.g., PA A ) of the inner pockets 3806 a are parallel to each other
  • the pocket axes (e.g., PA B ) of the intermediate pockets 3806 b are parallel to each other
  • the pocket axes (e.g., PA C ) of the outer pockets 3806 c are parallel to each other.
  • the pocket axes PA are obliquely oriented relative to the slot 3804 .
  • the axes PA B of the intermediate pockets 3806 b are oriented perpendicular to the axes PA A and PA C of the inner pockets 3806 a and the outer pockets 3806 c, respectively.
  • the pockets 3806 are arranged in a herringbone arrangement along the staple-forming surface 3802 .
  • the pocket 3806 b includes a perimeter 3816 , which defines the boundary of the pocket 3806 b.
  • the pocket 3806 b also includes a proximal cup 3820 , a distal cup 3822 , and a neck portion 3824 connecting the proximal cup 3820 and the distal cup 3822 .
  • a staple is driven into forming contact with the staple-forming surface 3802
  • the proximal cup 3820 is aligned with a proximal staple leg
  • the distal cup 3822 is aligned with a distal staple leg.
  • the tips of the staple legs are positioned and configured to land in the respective cups 3820 , 3822 .
  • the proximal cup 3820 is configured to receive a proximal staple leg and the distal cup 3822 is configured to receive a distal staple leg.
  • the cups 3820 and 3822 are also configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3806 , such as the neck portion 3824 , and to deform the staple legs into the formed configuration.
  • the pockets 3806 include extended landing zones for the staple legs.
  • the pocket 3806 b depicted in FIG. 33 the pocket 3806 b includes a proximal extended landing zone 3830 and a distal extended landing zone 3832 .
  • the proximal extended landing zone 3830 is positioned in a proximal portion of the proximal cup 3820
  • the distal extended landing zone 3832 is positioned in a distal portion of the distal cup 3822 .
  • the extended landing zones 3830 and 3832 define a substantially triangular perimeter.
  • the extended landing zones 3830 and 3832 terminate along the pocket axis PA at a point to form corners of the pocket 3806 b.
  • the extended landing zones 3830 and 3832 can define straight and/or contoured perimeters, for example, and may extend laterally and/or longitudinally relative to the pocket axis PA.
  • the extended landing zones 3830 , 3832 can salvage, or at least attempt to salvage, the formation of the skewed staple.
  • each cup 3820 , 3822 of the pocket 3806 b defines an entrance ramp 3840 and an exit ramp 3842 .
  • the exit ramp 3842 is steeper than the entrance ramp 3840 .
  • the tip of a staple leg can enter the respective cup 3820 , 3822 along the entrance ramp 3840 and exit the respective cup 3820 , 3822 along the exit ramp 3842 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the proximal cup 3820 defines a proximal depth D 1 at the apex 3846 thereof measured relative to the non-forming portion 3808 of the staple-forming surface 3802
  • the distal cup 3822 defines a distal depth D 2 at the apex 3846 thereof measured relative to the non-forming portion 3808 of the staple-forming surface 3802 .
  • the proximal depth D 1 and the distal depth D 2 are equal. In other instances, the proximal depth D 1 and the distal depth D 2 can be different.
  • the pocket 3806 b also defines a bridge 3844 in the neck portion 3824 between the proximal cup 3820 and the distal cup 3822 .
  • the bridge 3844 is offset from the non-forming portion 3808 of the staple-forming surface 3802 . More specifically, the bridge 3844 is positioned below or recessed relative to the non-forming portion 3808 . In other instances, the bridge 3844 can be aligned with the non-forming portion 3808 and/or can protrude away from the non-forming portion 3808 toward the opposing jaw of the end effector.
  • the pocket 3806 b includes sidewalls 3850 .
  • the sidewalls 3850 are oriented perpendicular to the non-forming portion 3808 of the staple-forming surface 3802 .
  • the sidewalls 3850 widen toward a central region 3821 of each cup 3820 , 3822 , and narrow from the central region 3821 of each cup 3820 , 3822 toward the neck portion 3824 .
  • the widened central region 3821 provides an enlarged footprint for receiving the tip of a staple leg.
  • the extended landing zones 3830 , 3832 also enlarge the footprint of the respective cups 3820 , 3822 for receiving the staple tips.
  • the cups 3820 , 3822 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the perimeter 3816 of the pocket 3806 b defines a contour or arced profile. In other instances, the perimeter 3816 of the pocket 3806 b can extend along linear, non-contoured profiles having non-rounded corners, for example.
  • the pocket 3806 b defines fillets 3852 ( FIGS. 35A-35C ) between the sidewalls 3850 and the bottom surface of the pocket 3806 b.
  • the fillets 3852 are configured to guide the staple legs along the desired path in the pocket 3806 b. For example, if a staple leg lands along the fillet 3852 or is diverted to the fillet 3852 , the fillet 3852 can smoothly guide the staple leg toward the pocket axis PA.
  • the pocket 3806 b is symmetric about the pocket axis PA.
  • the perimeter 3816 of the pocket 3806 b is symmetric about the pocket axis PA.
  • the pocket 3806 b is symmetric about a central axis CA through the neck portion 3824 and perpendicular to the pocket axis PA.
  • the perimeter 3816 of each pocket 3806 is symmetric about the central axis CA, and the proximal cup 3820 has the same geometry as the distal cup 3822 .
  • the proximal cup 3820 can be different than the distal cup 3822 .
  • the distal depth D 2 can be less than the proximal depth D 1 .
  • the variation in the depth of a staple-forming pocket can accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector when tissue is clamped therebetween.
  • an anvil may bow or bend away from the staple cartridge as the anvil approaches the distal end of the end effector.
  • Variations to the depth of the staple-forming pockets 3806 can be configured to ensure that an appropriate forming height is maintained in view of the anticipated or expected bowing or bending of the anvil 3800 .
  • the variation in the depth of a staple-forming pocket can accommodate for tissue movement or flow relative to the end effector. More specifically, when tissue is clamped between the jaws of the end effector, fluid in the clamped tissue can flow or move toward adjacent, unclamped tissue. The tissue can flow laterally toward the longitudinal sides of the anvil 3800 , distally toward the distal end of the anvil 3800 , and/or proximally toward the proximal end of the anvil 3800 . In certain instances, tissue can flow relative to the anvil 3800 when the cutting edge is advanced distally through the tissue.
  • tissue may flow laterally, distally, and/or proximally, but it primarily flows distally due to the distal movement of the cutting edge.
  • tissue may flow laterally, distally, and/or proximally, but it primarily flows distally due to the distal movement of the cutting edge.
  • the movement or flow of the tissue would be generally proximal during the cutting stroke.
  • Different depths D 1 and D 1 in the pocket 3806 can accommodate for the distal flow of the tissue, which can shift or skew the staple legs embedded therein distally.
  • tissue movement or flow at the distal end of an end effector can be larger than the tissue movement or flow at the proximal end of the end effector.
  • tissue movement or flow at the proximal end of the end effector can arise as a result of the distal movement of the firing member within the end effector.
  • the firing member is configured to progressively staple and incise the tissue as it is moved distally, the firing member can also plow or push the tissue distally.
  • This pushing or plowing effect may begin at the proximal end of the end effector and may compound as the firing member is moved distally such that the largest pushing or plowing effect is realized at the distal end of the end effector. Consequently, the tissue flow can be increased toward the distal end of the end effector.
  • the geometries of the staple pockets can vary longitudinally along the length of a row.
  • a gradient in pocket asymmetries may be utilized within a row of pockets to compensate for the gradient in tissue movement and staple shifting.
  • different staple geometries can be utilized with the different pocket geometries.
  • the use of different staples to accommodate for tissue flow along the length of an end effector is described in U.S. patent application Ser. No. 14/318,996, entitled FASTENER CARTRIDGES INCLUDING EXTENSIONS HAVING DIFFERENT CONFIGURATIONS, filed Jun. 30, 2014, which is hereby incorporated by reference herein in its entirety.
  • identical staples can be utilized with different pocket geometries along the length of an anvil.
  • the neck portion 3824 defines a width W N and the proximal and distal cups 3820 and 3822 define a width W C .
  • the width W N is less than the width Wc. Consequently, the central portion of the pocket 3806 b is narrower than the proximal and distal cups 3820 and 3822 .
  • the narrowed perimeter 3816 of the pocket 3806 b at the neck portion 3824 defines a receiving peninsula 3826 between a portion of the proximal cup 3820 and a portion of the distal cup 3822 . Owing to the symmetry of the pocket 3806 b, symmetrical receiving peninsulas 3826 are positioned on each side of the pocket 3806 b.
  • the receiving peninsulas 3826 are bounded by the perimeter 3816 of the pocket 3806 b and a tangent axis (e.g., T A , T B1 , T B2 , and T C ), which is tangential to the widest portion of the proximal and distal cups 3820 and 3822 on a side of the pocket 3806 .
  • a first tangent axis T B1 is positioned on a first side of the pocket 3806 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 3806 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 33 are parallel to the pocket axis PA B .
  • each pocket 3806 extends into the receiving peninsula 3826 of an adjacent pocket 3806 .
  • the intermediate pockets 3806 b are nested between the inner pockets 3806 a and the outer pockets 3806 c.
  • the intermediate pockets 3806 b extend into the receiving peninsula 3826 of an adjacent inner pocket 3806 a and into the receiving peninsula 3826 of an adjacent outer pocket 3806 c.
  • the inner pockets 3806 a and the outer pockets 3806 b are nested with the intermediate pockets 3806 b. More specifically, the inner pockets 3806 a extend into the receiving peninsula 3826 of an adjacent intermediate pocket 3806 b, and the outer pockets 3806 c extend into the receiving peninsula 3826 of an adjacent intermediate pocket 3806 b.
  • the distal cup 3822 of the intermediate pocket 3806 b extend across the tangent axis T A and into the receiving peninsula 3826 of the adjacent inner pocket 3806 a. Moreover, the proximal cup 3820 of the intermediate pocket 3806 b extends across the tangent axis T C and into the receiving peninsula 3826 of the adjacent outer pocket 3806 c. Additionally, the distal cup 3822 of the inner pockets 3806 a extends across the tangent axis T B1 and into the receiving peninsula 3826 of the adjacent intermediate pocket 3806 b. Furthermore, the proximal cup 3820 of the outer pockets 3806 c extends across the tangent axis T B2 and into the receiving peninsula 3826 of the adjacent intermediate pocket 3806 b.
  • the distal extended landing zone 3832 of the intermediate pocket 3806 b is positioned in the receiving peninsula 3826 of an inner pocket 3806 a
  • the proximal extended landing zone 3830 of the intermediate pocket 3806 b is positioned in the receiving peninsula 3826 of an outer pocket 3806 c
  • the distal extended landing zone 3832 of an inner pocket 3806 a is positioned in the receiving peninsula 3826 of an intermediate pocket 3806 b
  • the proximal extended landing zone 3830 of the outer pocket 3806 c is positioned in the receiving peninsula 3826 of an intermediate pocket 3806 b.
  • the geometry of the pockets 3806 facilitates the nesting of the pockets 3806 in the staple-forming surface 3802 .
  • the pockets 3806 include a narrowed neck portion 3824 between two enlarged cups 3820 and 3822 , one of the enlarged cups 3820 , 3822 of another pocket 3806 can be positioned adjacent to the narrowed neck portion 3824 .
  • one of the enlarged cups 3820 , 3822 can be aligned with and/or received by a portion of an adjacent pocket 3806 .
  • the surface area of the staple-forming surface 3802 that is covered by the pockets 3806 can be optimized.
  • the surface area of the staple-forming surface 3802 that is covered by the pockets 3806 is maximized.
  • the “forming ratio” of the staple-forming surface 3802 is the ratio of the non-forming portion 3808 to the forming portion, i.e., the pockets 3806 .
  • the forming ratio is about 1.7:1. In other instances, the forming ratio can be less than 1.7:1 or more than 1.7:1. For example, in at least one instance, more than 50% of the staple-forming surface 3802 can be covered with staple-forming pockets 3806 .
  • the nesting of staple-forming pockets discussed herein can refer to the nesting of adjacent pocket perimeters.
  • a first pocket defines an inward contour, i.e., a contour extending inward toward the pocket axis
  • an adjacent second pocket can protrude toward and/or into the region adjacent to the inward contour.
  • a portion of the second pocket such as an end of the second pocket, can be aligned with the narrowed region of the first pocket. Consequently, the second pocket can be positioned nearer to the pocket axis of the first pocket than if the end of the second pocket was aligned with a wider region of the first pocket.
  • the anvil 3900 includes a staple-forming surface 3902 and a longitudinal slot 3904 .
  • the longitudinal slot 3904 extends along the longitudinal axis LA of the anvil 3900 .
  • a firing element and/or cutting element can translate through the longitudinal slot 3904 during at least a portion of a firing stroke.
  • the staple-forming pockets 3906 are defined in the staple-forming surface 3902 .
  • the staple-forming surface 3902 also includes a non-forming portion 3908 that extends around the pockets 3906 .
  • the non-forming portion 3908 extends entirely around each pocket 3906 in FIG. 36 .
  • the non-forming portion 3908 surrounds the staple-forming pockets 3906 .
  • at least a portion of two or more adjacent pockets 3906 can be in abutting contact such that a non-forming portion 3908 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 3902 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3908 of the anvil 3900 can be minimized with respect to the staple-forming pockets 3906 . Additionally or alternatively, the footprint of the staple-forming pockets 3906 can be extended or enlarged to maximize the portion of the staple-forming surface 3902 that is designed to catch and form the staples.
  • the pockets 3906 depicted in FIG. 36 are arranged in three rows 3914 a, 3914 b, 3914 c on a first side of the longitudinal slot 3904 .
  • the first row 3914 a is an inner row
  • the second row 3914 b is an intermediate row
  • the third row 3914 c is an outer row.
  • Inner pockets 3906 a are positioned in the inner row 3914 a
  • intermediate pockets 3906 b are positioned in the intermediate row 3914 b
  • outer pockets 3906 c are positioned in the outer row 3914 c.
  • the pockets 3906 are arranged in a herringbone arrangement along the staple-forming surface 3902 of the anvil 3900 .
  • the pockets 3906 on the opposing side of the slot 3904 can form a mirror image reflection of the pockets 3906 on the first side of the longitudinal slot 3904 .
  • the arrangement of pockets 3906 in the staple-forming surface 3902 can be asymmetrical relative to the slot 3904 and, in certain instances, the anvil 3900 may not include the longitudinal slot 3904 .
  • the pockets 3906 can be arranged in less than or more than three rows on each side of the slot 3904 .
  • the pockets 3906 depicted in FIG. 36 are identical. Each pocket 3906 defined in the staple-forming surface 3802 has the same geometry. In other instances, the geometry of the pockets 3906 can vary row-to-row and/or longitudinally along the length of the anvil 3900 . For example, in certain instances, the depth of the pockets 3906 or portions thereof can vary along the length of the anvil 3900 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 37-39C An exemplary pocket 3906 b is shown in FIGS. 37-39C .
  • the pocket 3906 b has a first end, or proximal end, 3910 and a second end, or distal end, 3912 .
  • a pocket axis PA ( FIG. 37 ) extends between the proximal end 3910 and the distal end 3912 of the pocket 3906 b.
  • the pocket 3906 b includes a perimeter 3916 , which defines the boundary of the pocket 3906 .
  • the pocket 3906 b also includes a proximal cup 3920 , a distal cup 3922 , and a neck portion 3924 connecting the proximal cup 3920 and the distal cup 3922 .
  • the proximal cup 3920 is aligned with a proximal staple leg
  • the distal cup 3922 is aligned with a distal staple leg.
  • the cups 3920 and 3922 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3906 , such as the neck portion 3924 , and to deform the staple legs into the formed configuration.
  • each cup 3920 , 3922 of the pocket 3906 b defines an entrance ramp 3940 and an exit ramp 3942 .
  • the exit ramp 3942 is steeper than the entrance ramp 3940 .
  • the tip of a staple leg can enter the respective cup 3920 , 3922 along the entrance ramp 3940 and exit the respective cup 3920 , 3922 along the exit ramp 3942 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the proximal cup 3920 defines a proximal depth D 1 at the apex 3946 thereof measured relative to the non-forming portion 3908 of the staple-forming surface 3902
  • the distal cup 3922 defines a distal depth D 2 at the apex 3946 thereof measured relative to the non-forming portion 3908 of the staple-forming surface 3902
  • the proximal depth D 1 and the distal depth D 2 are equal. In other instances, the proximal depth D 1 and the distal depth D 2 can be different.
  • the pocket 3906 b also defines a bridge 3944 in the neck portion 3924 between the proximal cup 3920 and the distal cup 3922 .
  • the bridge 3944 is offset from the non-forming portion 3908 of the staple-forming surface 3902 . More specifically, the bridge 3944 is positioned below or recessed relative to the non-forming portion 3908 .
  • the pocket 3906 b includes sidewalls 3950 .
  • the sidewalls 3950 are oriented perpendicular to the non-forming portion 3908 of the staple-forming surface 3902 .
  • the sidewalls 3950 narrow linearly from the outer ends of each cup 3920 , 3922 toward the neck portion 3924 . Consequently, the widest portion of the cups 3920 , 3922 is at the proximal and distal ends 3910 , 3912 of the pocket 3906 b, respectively.
  • the profile 3916 of the pocket 3906 b defines a bow-tie shape perimeter.
  • the widened region at the proximal and distal ends 3910 , 3912 provides an enlarged footprint for receiving the tip of a staple leg.
  • the widened portions of the cups 3920 and 3922 define extended landing zones for receiving the staple tips.
  • the cups 3920 , 3922 narrow toward the neck portion 3924 , the cups 3920 , 3922 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA into a formed configuration.
  • the pocket 3906 b defines a chamfered edge 3954 along the sides of the pocket 3906 b. The chamfered edge 3954 serves to enlarge the footprint of the pocket 3906 b and guide the tips of the staple legs toward the pocket axis PA.
  • the pocket 3906 b is symmetric about the pocket axis PA.
  • the perimeter 3916 of the pocket 3906 b is symmetric about the pocket axis PA.
  • the pocket 3906 b is symmetric about a central axis CA through the neck portion 3924 and perpendicular to the pocket axis PA.
  • the perimeter 3916 of the pocket 3906 b is symmetric about the central axis CA
  • the proximal cup 3920 has the same geometry as the distal cup 3922 .
  • the proximal cup 3920 can be different than the distal cup 3922 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the width of the neck portion 3924 is less than the width of the cups 3920 and 3922 . Consequently, the central portion of the pocket 3906 b is narrower than the proximal and distal cups 3920 and 3922 .
  • the narrowed perimeter 3916 of the pocket 3906 b at the neck portion 3924 defines a receiving peninsula 3926 between a portion of the proximal cup 3920 and a portion of the distal cup 3922 . Owing to the symmetry of the pocket 3906 b, symmetrical receiving peninsulas 3926 are positioned on each side of the pocket 3906 b.
  • the receiving peninsulas 3926 are bounded by the perimeter 3916 of the pocket 3906 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portion of the proximal and distal cups 3920 and 3922 on a side of the pocket 3906 b.
  • a first tangent axis T B1 is positioned on a first side of the pocket 3906 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 3906 b.
  • the first and second tangent axes T B1 and T B2 are parallel to the pocket axis PA.
  • each pocket 3906 extends toward the receiving peninsula 3926 of an adjacent pocket 3906 .
  • the intermediate pockets 3906 b are aligned with the neck portions 3924 of the inner pockets 3906 a and the outer pockets 3906 c.
  • the inner pockets 3906 a and the outer pockets 3906 b extend toward the receiving peninsula 3926 of one of the intermediate pockets 3906 b.
  • the pocket axes PA of the intermediate pockets 3906 b are aligned with the neck portions 3924 of adjacent inner and outer pockets 3906 a and 3906 c, respectively, the pocket axes PA of the inner pockets 3906 a are aligned with the neck portion 3924 of an adjacent intermediate pocket 3906 b, and the pocket axes PA of the outer pockets 3906 c are aligned with the neck portion 3924 of an adjacent intermediate pocket 3906 b.
  • a portion of one or more of the pockets 3906 can extend into the receiving peninsula of an adjacent pocket 3906 .
  • the geometry of the pockets 3906 facilitates the close arrangement of the pockets 3906 in the staple-forming surface 3902 .
  • the pockets 3906 include a narrowed neck portion 3924 between two enlarged cups 3920 and 3922 , the enlarged cup 3920 , 3922 of another pocket 3906 can be positioned adjacent to the narrowed neck portion 3924 .
  • an enlarged cup 3920 , 3922 can be aligned with and/or received by a portion of the adjacent pocket 3906 . Consequently, the surface area of the staple-forming surface 3902 that is covered by the pockets 3906 can be optimized.
  • the surface area of the staple-forming surface 3902 that is covered by pockets 3906 is maximized.
  • the “forming ratio” is the ratio of the non-forming portion 3908 to the forming portion, i.e., the pockets 3906 . In various instances, the forming ratio can be at least 1:1, for example.
  • the non-forming portion 3908 can extend between the neck portion 3924 of an inner pocket 3906 a and the distal cup 3922 of an adjacent intermediate pocket 3906 b.
  • the non-forming portion 3908 between adjacent pockets 3906 can provide sufficient spacing between pockets 3906 to strengthen and/or reinforce the anvil 3900 .
  • staple-forming pockets 4006 in a portion of an anvil 4000 are depicted.
  • the pockets 4006 and arrangement thereof in the anvil 4000 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900 .
  • the anvil 4000 includes a staple-forming surface 4002 and a longitudinal slot 4004 .
  • the longitudinal slot 4004 extends along the longitudinal axis LA of the anvil 4000 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4004 during at least a portion of a firing stroke.
  • the staple-forming pockets 4006 are defined in the staple-forming surface 4002 .
  • the staple-forming surface 4002 also includes a non-forming portion 4008 that extends around the pockets 4006 .
  • the non-forming portion 4008 extends entirely around each pocket 4006 in FIG. 40 .
  • the non-forming portion 4008 surrounds the staple-forming pockets 4006 .
  • at least a portion of two or more adjacent pockets 4006 can be in abutting contact such that a non-forming portion 4008 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 4002 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4008 of the anvil 4000 can be minimized with respect to the staple-forming pockets 4006 . Additionally or alternatively, the footprint of the staple-forming pockets 4006 can be extended or enlarged to maximize the portion of the staple-forming surface 4002 that is designed to catch and form the staples.
  • the pockets 4006 are arranged in an inner row 4014 a, an intermediate row 4014 b, and an outer row 4014 c on a first side of the longitudinal slot 4004 .
  • Inner pockets 4006 a are positioned in the inner row 4014 a
  • intermediate pockets 4006 b are positioned in the intermediate row 4014 b
  • outer pockets 4006 c are positioned in the outer row 4014 c.
  • the pockets 4006 are arranged in a herringbone arrangement along the staple-forming surface 4002 of the anvil 4000 .
  • the pockets 4006 on the opposing side of the slot 4004 can form a mirror image reflection of the pockets 4006 on the first side of the longitudinal slot 4004 .
  • the arrangement of pockets 4006 in the staple-forming surface 4002 can be asymmetrical relative to the slot 4004 and, in certain instances, the anvil 4000 may not include the longitudinal slot 4004 . In various instances, the pockets 4006 can be arranged in less than or more than three rows on each side of the slot 4004 .
  • the pockets 4006 depicted in FIG. 40 are identical. Each pocket 4006 defined in the staple-forming surface 4002 has the same geometry. In other instances, the geometry of the pockets 4006 can vary row-to-row and/or longitudinally along the length of the anvil 4000 . For example, in certain instances, the depth of the pockets 4006 or portions thereof can vary along the length of the anvil 4000 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 41-43C An exemplary pocket 4006 b is shown in FIGS. 41-43C .
  • the pocket 4006 b has a first end, or proximal end, 4010 and a second end, or distal end, 4012 .
  • a pocket axis PA ( FIG. 41 ) extends between the proximal end 4010 and the distal end 4012 of the pocket 4006 b.
  • the pocket 4006 b includes a perimeter 4016 , which defines the boundary of the pocket 4006 b.
  • the pocket 4006 b also includes a proximal cup 4020 , a distal cup 4022 , and a neck portion 4024 connecting the proximal cup 4020 and the distal cup 4022 .
  • the proximal cup 4020 When a staple is driven into forming contact with the staple-forming surface 4002 , the proximal cup 4020 is aligned with a proximal staple leg, and the distal cup 4022 is aligned with a distal staple leg.
  • the cups 4020 and 4022 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4006 , such as the neck portion 4024 , and to deform the staple legs into the formed configuration.
  • each cup 4020 , 4022 of the pocket 4006 b defines an entrance ramp 4040 and an exit ramp 4042 .
  • the tip of a staple leg can enter the respective cup 4020 , 4022 along the entrance ramp 4040 and exit the respective cup 4020 , 4022 along the exit ramp 4042 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4006 b also defines a bridge 4044 between the proximal cup 4020 and the distal cup 4022 .
  • the bridge 4044 is offset from the non-forming portion 4008 . More specifically, the bridge 4044 is positioned below or recessed relative to the non-forming portion 4008 .
  • the pocket 4006 b includes sidewalls 4050 , which are oriented perpendicular to the non-forming portion 4008 of the staple-forming surface 4002 .
  • the sidewalls 4050 narrow from the outer ends of each cup 4020 , 4022 toward the neck portion 4024 . Consequently, the widest portion of the cups 4020 , 4022 is at the proximal and distal ends 4010 , 4012 of the pocket 4006 b, respectively.
  • the profile 4016 of the pocket 4006 b defines a bow-tie shape perimeter.
  • the widened region at the proximal and distal ends 4010 , 4012 provides an enlarged footprint for receiving the tip of a staple leg.
  • the widened portions of the cups 4020 , 4022 define extended landing zones for receiving the staple tips.
  • the cups 4020 , 4022 narrow toward the neck portion 4024 , the cups 4020 , 4022 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the pocket 4006 b defines a chamfered edge 4054 along the sides of the pocket 4006 b. Additionally, the pocket 4006 b includes a groove 4056 in the bottom surface 4058 thereof. The groove 4056 extends from the proximal cup 4020 over the bridge 4024 and into the distal cup 4022 . The groove 4056 is configured to constrain and guide the staple legs as they move to the deformed configuration.
  • the diameter of the groove 4056 can be less than the diameter of the staple engaged with the groove 4056 .
  • a staple can have a diameter of at least 0.0079 inches, and the diameter of the groove 4056 can be less than 0.0079 inches.
  • the diameter of the groove 4056 can be about 0.007 inches, about 0.005 inches, or less than 0.005 inches.
  • the staple can have a diameter of more than 0.0079 inches, such as about 0.0089 inches or about 0.0094 inches, for example.
  • the diameter of the staple can be less than 0.0079 inches or more than 0.0094 inches.
  • the width of the groove in the pocket can be less than the smallest diameter staple.
  • the width of the groove 4056 can vary staple-to-staple within a row and/or row-to-row.
  • the pocket 4006 b is symmetric about the pocket axis PA.
  • the perimeter 4016 of the pocket 4006 b is symmetric about the pocket axis PA.
  • the pocket 4006 b is symmetric about a central axis CA through the neck portion 4024 and perpendicular to the pocket axis PA.
  • the perimeter 4016 of the pocket 4006 b is symmetric about the central axis CA
  • the proximal cup 4020 has the same geometry as the distal cup 4022 .
  • the proximal cup 4020 can be different than the distal cup 4022 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the neck portion 4024 of the pocket 4006 b is narrower than the proximal and distal cups 4020 and 4022 .
  • the narrowed perimeter 4016 of the pocket 4006 b defines a receiving peninsula 4026 between a portion of the proximal cup 4020 and a portion of the distal cup 4022 .
  • symmetrical receiving peninsulas 4026 are positioned on each side of the pocket 4006 b.
  • the receiving peninsulas 4026 are bounded by the perimeter 4016 of the pocket 4006 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portion of the proximal and distal cups 4020 and 4022 on a side of the pocket 4006 b.
  • a first tangent axis T B1 is positioned on a first side of the pocket 4006 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 4006 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 41 are parallel to the pocket axis PA.
  • each pocket 4006 extends toward the receiving peninsula 4026 of an adjacent pocket 4006 .
  • the intermediate pockets 4006 b are aligned with the neck portions 4024 of the inner pockets 4006 a and the outer pockets 4006 c.
  • the inner pockets 4006 a and the outer pockets 4006 b extend toward the receiving peninsula 4026 of one of the intermediate pockets 4006 b. More specifically, the inner pockets 4006 a are aligned with the neck portion 4024 of an adjacent intermediate pocket 4006 b, and the outer pockets 4006 c are aligned with the neck portion 4024 of an adjacent intermediate pocket 4006 b.
  • a portion of the pockets 4006 can extend into the receiving peninsula 4026 of an adjacent pocket 4006 .
  • the “forming ratio” is the ratio of the non-forming portion 4008 to the forming portion, i.e., the pockets 4006 . In various instances, the forming ratio can be at least 1:1, for example.
  • staple-forming pockets 4106 in a portion of an anvil 4100 are depicted.
  • the pockets 4106 and arrangement thereof in the anvil 4100 are similar in many aspects to the pockets 4006 and arrangement thereof in the anvil 4000 .
  • the anvil 4100 includes a staple-forming surface 4102 and a longitudinal slot 4104 .
  • the longitudinal slot 4104 extends along the longitudinal axis LA of the anvil 4100 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4104 during at least a portion of a firing stroke.
  • Staple-forming pockets 4106 are defined in the staple-forming surface 4102 .
  • the staple-forming surface 4102 also includes a non-forming portion 4108 that extends around the pockets 4106 .
  • the non-forming portion 4108 extends entirely around each pocket 4106 in FIG. 41 .
  • the non-forming portion 4108 surrounds the staple-forming pockets 4106 .
  • at least a portion of two or more adjacent pockets 4106 can be in abutting contact such that a non-forming portion 4108 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 4102 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4108 of the anvil 4100 can be minimized with respect to the staple-forming pockets 4106 . Additionally or alternatively, the footprint of the staple-forming pockets 4106 can be extended or enlarged to maximize the portion of the staple-forming surface 4102 that is designed to catch and form the staples.
  • the pockets 4106 depicted in FIG. 44 are arranged in an inner row 4114 a, an intermediate row 4114 b, and an outer row 4114 c on a first side of the longitudinal slot 4104 .
  • Inner pockets 4106 a are positioned in the inner row 4114 a
  • intermediate pockets 4106 b are positioned in the intermediate row 4114 b
  • outer pockets 4106 c are positioned in the outer row 4114 c.
  • the pockets 4106 are arranged in a herringbone arrangement along the staple-forming surface 4102 of the anvil 4100 .
  • the pockets 4106 on the opposing side of the slot 4104 can form a mirror image reflection of the pockets 4106 on the first side of the longitudinal slot 4104 .
  • the arrangement of pockets 4106 in the staple-forming surface 4102 can be asymmetrical relative to the slot 4104 and, in certain instances, the anvil 4100 may not include the longitudinal slot 4104 .
  • the pockets 4106 can be arranged in less than or more than three rows on each side of the slot 4104 .
  • the pockets 4106 depicted in FIG. 44 are identical. Each pocket 4106 defined in the staple-forming surface 4102 has the same geometry. In other instances, the geometry of the pockets 4106 can vary row-to-row and/or longitudinally along the length of the anvil 4100 . For example, in certain instances, the depth of the pockets 4106 or portions thereof can vary along the length of the anvil 4100 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 45-47C An exemplary pocket 4106 b is shown in FIGS. 45-47C .
  • the pocket 4106 b has a first end, or proximal end, 4110 and a second end, or distal end, 4112 .
  • a pocket axis PA ( FIG. 45 ) extends between the proximal end 4110 and the distal end 4112 of the pocket 4106 b.
  • the pocket 4106 b includes a perimeter 4116 , which defines the boundary of the pocket 4106 b.
  • the pocket 4106 also includes a proximal cup 4120 , a distal cup 4122 , and a neck portion 4124 connecting the proximal cup 4120 and the distal cup 4122 .
  • the proximal cup 4120 When a staple is driven into forming contact with the staple-forming surface 4102 , the proximal cup 4120 is aligned with a proximal staple leg, and the distal cup 4122 is aligned with a distal staple leg.
  • the cups 4120 , 4122 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4106 , such as the neck portion 4124 , and to deform the staple legs into the formed configuration.
  • each cup 4120 , 4122 of the pocket 4106 b defines an entrance ramp 4140 and an exit ramp 4142 .
  • the exit ramp 4142 is steeper than the entrance ramp 4140 .
  • the tip of a staple leg can enter the respective cup 4120 , 4122 along the entrance ramp 4140 and exit the respective cup 4120 , 4122 along the exit ramp 4142 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4106 b also defines a bridge 4144 in the neck portion 4124 between the proximal cup 4120 and the distal cup 4122 .
  • the bridge 4144 is offset from the non-forming portion 4108 . More specifically, the bridge 4144 is positioned below or recessed relative to the non-forming portion 4108 .
  • the pocket 4106 b includes sidewalls 4150 , which are oriented perpendicular to the non-forming portion 4108 of the staple-forming surface 4102 .
  • the sidewalls 4150 narrow from the outer ends of each cup 4120 , 4122 toward the neck portion 4124 . Consequently, the widest portion of the cups 4120 and 4122 is at the proximal and distal ends 4110 and 4112 , respectively, of the pocket 4106 b.
  • the profile 4116 of the pocket 4106 b defines a bow-tie shape perimeter.
  • the widened region at the proximal and distal ends 4110 , 4112 provides an enlarged footprint for receiving the tip of a staple leg.
  • the widened portions of the cups 4120 , 4122 define extended landing zones for receiving the staple tips.
  • the cups 4120 , 4122 narrow toward the neck portion 4124 , the cups 4120 , 4122 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the pocket 4106 b defines a chamfered edge 4154 along the sides of the pocket 4106 b. Additionally, the pocket 4106 b includes a groove 4156 in the bottom surface 4158 thereof.
  • the groove 4156 is defined in the proximal cup 4120 and the distal cup 4122 . In the depicted embodiment, the groove 4156 does not extend across the bridge 4144 of the pocket 4106 b.
  • the groove 4156 is configured to constrain and guide the staple legs as they move to the deformed configuration. For example, the staple legs can slide through the groove 4156 as the staples move along at least a portion of the entrance ramp 4140 and the exit ramp 4142 .
  • the diameter of the groove 4156 can be less than the diameter of the staple engaged with the groove 4156 .
  • the width of the groove in the pocket can be less than the smallest diameter staple.
  • the staple legs are deformed toward the staple base before reaching the bridge 4144 and, thus, do not engage the bridge 4144 of the pocket 4106 b.
  • the pocket 4106 b is symmetric about the pocket axis PA.
  • the perimeter 4116 of the pocket 4106 b is symmetric about the pocket axis PA.
  • the pocket 4106 b is symmetric about a central axis CA through the neck portion 4124 and perpendicular to the pocket axis PA.
  • the perimeter 4116 of the pocket 4106 b is symmetric about the central axis CA
  • the proximal cup 4120 has the same geometry as the distal cup 4122 .
  • the proximal cup 4120 can be different than the distal cup 4122 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the neck portion 4124 of the pocket 4106 b is narrower than the proximal and distal cups 4120 and 4122 .
  • the narrowed perimeter 4116 of the pocket 4106 b defines a receiving peninsula 4126 between a portion of the proximal cup 4120 and a portion of the distal cup 4122 .
  • symmetrical receiving peninsulas 4126 are positioned on each side of the pocket 4106 b.
  • the receiving peninsulas 4126 are bounded by the perimeter 4116 of the pocket 4106 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portion of the proximal and distal cups 4120 and 4122 on a side of the pocket 4106 b.
  • a first tangent axis T B1 is positioned on a first side of the pocket 4106 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 4106 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 45 are parallel to the pocket axis PA.
  • each pocket 4106 extends toward the receiving peninsula 4126 of an adjacent pocket 4106 .
  • the intermediate pockets 4106 b are aligned with the neck portion 4124 of the inner pockets 4106 a and the outer pockets 4106 c.
  • the inner pockets 4106 a and the outer pockets 4106 b extend toward the receiving peninsula 4126 of one of the intermediate pockets 4106 b. More specifically, the inner pockets 4106 a are aligned with the neck portion 4124 of an adjacent intermediate pocket 4106 b, and the outer pockets 4106 c are aligned with the neck portion 4124 of an adjacent intermediate pocket 4106 b.
  • a portion of the pockets 4106 can extend into the receiving peninsula 4126 of an adjacent pocket 4106 .
  • the “forming ratio” is the ratio of the non-forming portion 4108 to the forming portion, i.e., the pockets 4106 . In various instances, the forming ratio can be at least 1:1, for example.
  • staple-forming pockets 4206 in a portion of an anvil 4200 are depicted.
  • the pockets 4206 and arrangement thereof in the anvil 4200 are similar in many aspects to the pockets 4106 and arrangement thereof in the anvil 4100 .
  • the anvil 4200 includes a staple-forming surface 4202 and a longitudinal slot 4204 .
  • the longitudinal slot 4204 extends along the longitudinal axis LA of the anvil 4200 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4204 during at least a portion of a firing stroke.
  • the staple-forming pockets 4206 are defined in the staple-forming surface 4202 .
  • the staple-forming surface 4202 also includes a non-forming portion 4208 that extends around the pockets 4206 .
  • the non-forming portion 4208 extends entirely around each pocket 4206 in FIG. 48 .
  • the non-forming portion 4208 surrounds the staple-forming pockets 4206 .
  • at least a portion of two or more adjacent pockets 4206 can be in abutting contact such that a non-forming portion 4208 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 4202 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4208 of the anvil 4200 can be minimized with respect to the staple-forming pockets 4206 . Additionally or alternatively, the footprint of the staple-forming pockets 4206 can be extended or enlarged to maximize the portion of the staple-forming surface 4202 that is designed to catch and form the staples.
  • the pockets 4206 depicted in FIG. 48 are arranged in an inner row 4214 a, an intermediate row 4214 b, and an outer row 4214 c on a first side of the longitudinal slot 4204 .
  • Inner pockets 4206 a are positioned in the inner row 4214 a
  • intermediate pockets 4206 b are positioned in the intermediate row 4214 b
  • outer pockets 4206 c are positioned in the outer row 4214 c.
  • the pockets 4206 are arranged in a herringbone arrangement along the staple-forming surface 4202 of the anvil 4200 .
  • the pockets 4206 on the opposing side of the slot 4204 can form a mirror image reflection of the pockets 4206 on the first side of the longitudinal slot 4204 .
  • the arrangement of pockets 4206 in the staple-forming surface 4202 can be asymmetrical relative to the slot 4204 and, in certain instances, the anvil 4200 may not include the longitudinal slot 4204 .
  • the pockets 4206 can be arranged in less than or more than three rows on each side of the slot 4204 .
  • the pockets 4206 depicted in FIG. 48 are identical. Each pocket 4206 defined in the staple-forming surface 4202 has the same geometry. In other instances, the geometry of the pockets 4206 can vary row-to-row and/or longitudinally along the length of the anvil 4200 . For example, in certain instances, the depth of the pockets 4206 or portions thereof can vary along the length of the anvil 4200 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 49-51C An exemplary pocket 4206 b is shown in FIGS. 49-51C .
  • the pocket 4206 b has a first end, or proximal end, 4210 and a second end, or distal end, 4212 .
  • a pocket axis PA ( FIG. 49 ) extends between the proximal end 4210 and the distal end 4212 of each pocket 4206 .
  • the pocket 4206 b includes a perimeter 4216 , which defines the boundary of the pocket 4206 b.
  • the pocket 4206 b also includes a proximal cup 4220 , a distal cup 4222 , and a neck portion 4224 connecting the proximal cup 4220 and the distal cup 4222 .
  • the proximal cup 4220 When a staple is driven into forming contact with the staple-forming surface 4202 , the proximal cup 4220 is aligned with a proximal staple leg, and the distal cup 4222 is aligned with a distal staple leg.
  • the cups 4220 , 4222 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4206 , such as the neck portion 4224 , and to deform the staple legs into the formed configuration.
  • each cup 4220 , 4222 of the pocket 4206 b defines an entrance ramp 4240 and an exit ramp 4242 .
  • the exit ramp 4242 is steeper than the entrance ramp 4240 .
  • the tip of a staple leg can enter the respective cup 4220 , 4222 along the entrance ramp 4240 and exit the respective cup 4220 , 4222 along the exit ramp 4242 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4206 b also defines a bridge 4244 between the proximal cup 4220 and the distal cup 4222 .
  • the bridge 4244 is offset from the non-forming portion 4208 . More specifically, the bridge 4244 is positioned below or recessed relative to the non-forming portion 4208 .
  • the pocket 4206 b includes sidewalls 4250 , which are oriented perpendicular to the non-forming portion 4208 of the staple-forming surface 4202 .
  • the sidewalls 4250 narrow toward the neck portion 4224 . Consequently, the widest portion of the cups 4220 , 4222 is at the proximal and distal ends of the sidewalls 4250 .
  • the widened region provides an enlarged footprint for receiving the tip of a staple leg.
  • the cups 4220 , 4222 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the cups 4220 , 4222 also include extended landing zones 4230 , 4232 , respectively, which further enlarge the footprint of the cups 4220 , 4222 .
  • the proximal extended landing zone 4230 extends proximally along the pocket axis PA
  • the distal extended landing zone 4232 extends distally along the pocket axis PA.
  • the extended landing zones 4230 and 4232 define a substantially triangular perimeter.
  • the extended landing zones 4230 and 4232 terminate along the respective pocket axis PA at a corner.
  • the extended landing zones 4230 and 4232 can define straight or contoured perimeters, for example, and can extend laterally and/or longitudinally from the cups 4220 and 4222 , for example.
  • the pocket 4206 b includes a trough 4256 in the bottom surface thereof.
  • the trough 4256 is configured to constrain and guide the staple legs as they move to the deformed configuration.
  • the trough 4256 spans between the sidewalls 4250 and defines the entire bottom surface of the pocket 4206 b.
  • the trough 4256 extends from the proximal cup 4220 over the bridge 4224 and into the distal cup 4222 . In other instances, the trough 4256 may not extend across the bridge 4244 of the pocket 4206 b.
  • the trough 4256 includes two ramped surfaces 4256 a and 4256 b that extend downward away from the non-forming portion 4208 and meet along the pocket axis PA ( FIG. 49 ).
  • the trough 4256 defines a steeper gradient along the bridge 4244 than in the cups 4220 , 4222 .
  • the gradient can be uniform along the length of the trough 4256 and/or can be steeper in the cups 4220 , 4222 than along the bridge 4244 , for example.
  • the pocket 4206 b also defines a chamfered edge 4254 along the sides of the pocket 4206 b.
  • the chamfered edge 4254 defines the overall width of the pocket 4206 b.
  • the overall width of the pocket 4206 b is uniform.
  • the width W A ( FIG. 51A ) is equal to the width W B ( FIG. 51B ) and the width W C ( FIG. 51C ).
  • the widths W A , W B , and/or W C may not be equal.
  • the pocket 4206 b also includes projections or knobs 4258 which extend toward the pocket axis PA at the neck portion 4224 of the pocket 4206 b.
  • the knobs 4258 further narrow the neck portion 4224 to a width W N .
  • the trough 4256 spans the bottom surface of the neck portion 4224 across the width W N .
  • the pocket 4206 b is symmetric about the pocket axis PA.
  • the perimeter 4216 of the pocket 4206 b is symmetric about the pocket axis PA.
  • the pocket 4206 b is symmetric about a central axis CA through the neck portion 4224 and perpendicular to the pocket axis PA.
  • the perimeter 4216 of the pocket 4206 b is symmetric about the central axis CA
  • the proximal cup 4220 has the same geometry as the distal cup 4222 .
  • the proximal cup 4220 can be different than the distal cup 4222 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • each pocket 4206 extends toward the neck portion 4224 of an adjacent pocket 4206 .
  • the intermediate pockets 4206 b are aligned with the neck portions 4224 of the inner pockets 4206 a and the outer pockets 4206 c.
  • the proximal landing zones 4230 of the intermediate pockets 4206 b are aligned with the neck portion 4224 of an adjacent outer staple 4206 c
  • the distal landing zones 4232 of the intermediate pockets 4206 b are aligned with the neck portion 4224 of an adjacent inner staple 4206 a.
  • the inner pockets 4206 a and the outer pockets 4206 b extend toward the neck portion 4224 of one of the intermediate pockets 4206 b.
  • the distal landing zones 4232 of the inner pockets 4206 a are aligned with the neck portion 4224 of an adjacent intermediate pocket 4206 b
  • the proximal landing zones 4230 of the outer pockets 4206 c are aligned with the neck portion 4224 of an adjacent intermediate pocket 4206 b.
  • staple-forming pockets 4306 in a portion of an anvil 4300 are depicted.
  • the pockets 4306 and arrangement thereof in the anvil 4300 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900 .
  • the anvil 4300 includes a staple-forming surface 4302 and a longitudinal slot 4304 .
  • the longitudinal slot 4304 extends along the longitudinal axis LA of the anvil 4300 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4304 during at least a portion of a firing stroke.
  • the staple-forming pockets 4306 are defined in the staple-forming surface 4302 .
  • the staple-forming surface 4302 also includes a non-forming portion 4308 that extends around the pockets 4306 .
  • the non-forming portion 4308 extends entirely around each pocket 4306 in FIG. 52 .
  • the non-forming portion 4308 surrounds the staple-forming pockets 4306 .
  • at least a portion of two or more adjacent pockets 4306 can be in abutting contact such that a non-forming portion 4308 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 4302 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4308 of the anvil 4300 can be minimized with respect to the staple-forming pockets 4306 . Additionally or alternatively, the footprint of the staple-forming pockets 4306 can be extended or enlarged to maximize the portion of the staple-forming surface 4302 that is designed to catch and form the staples.
  • the pockets 4306 depicted in FIG. 52 are arranged in an inner row 4314 a, an intermediate row 4314 b, and an outer row 4314 c on a first side of the longitudinal slot 4304 .
  • Inner pockets 4306 a are positioned in the inner row 4314 a
  • intermediate pockets 4306 b are positioned in the intermediate row 4314 b
  • outer pockets 4306 c are positioned in the outer row 4314 c.
  • the pockets 4306 are arranged in a herringbone arrangement along the staple-forming surface 4302 of the anvil 4300 .
  • the pockets 4306 on the opposing side of the slot 4304 can form a mirror image reflection of the pockets 4306 on the first side of the longitudinal slot 4304 .
  • the arrangement of pockets 4306 in the staple-forming surface 4302 can be asymmetrical relative to the slot 4304 and, in certain instances, the anvil 4300 may not include the longitudinal slot 4304 .
  • the pockets 4306 can be arranged in less than or more than three rows on each side of the slot 4304 .
  • the pockets 4306 depicted in FIG. 52 are identical. Each pocket 4306 defined in the staple-forming surface 4302 has the same geometry. In other instances, the geometry of the pockets 4306 can vary row-to-row and/or longitudinally along the length of the anvil 4300 . For example, in certain instances, the depth of the pockets 4306 or portions thereof can vary along the length of the anvil 4300 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 53-55C An exemplary pocket 4306 b is shown in FIGS. 53-55C .
  • the pocket 4306 b has a first end, or proximal end, 4310 and a second end, or distal end, 4312 .
  • a pocket axis PA ( FIG. 53 ) extends between the proximal end 4310 and the distal end 4312 of the pocket 4306 b.
  • the pocket 4306 b includes a perimeter 4316 , which defines the boundary of the pocket 4306 b.
  • the perimeter 4316 includes rounded corners at the proximal and distal ends of the pockets 4306 .
  • the pocket 4306 b also includes a proximal cup 4320 , a distal cup 4322 , and a neck portion 4324 connecting the proximal cup 4320 and the distal cup 4322 .
  • a staple is driven into forming contact with the staple-forming surface 4302
  • the proximal cup 4320 is aligned with a proximal staple leg
  • the distal cup 4322 is aligned with a distal staple leg.
  • the cups 4320 , 4322 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4306 , such as the neck portion 4324 , and to deform the staple legs into the formed configuration.
  • each cup 4320 , 4322 of the pocket 4306 b defines an entrance ramp 4340 and an exit ramp 4342 .
  • the exit ramp 4342 is steeper than the entrance ramp 4340 .
  • the tip of a staple leg can enter the respective cup 4320 , 4322 along the entrance ramp 4340 and exit the respective cup 4320 , 4322 along the exit ramp 4342 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4306 b also defines a bridge 4344 between the proximal cup 4320 and the distal cup 4322 .
  • the bridge 4344 is offset from the non-forming portion 4308 . More specifically, the bridge 4344 is positioned below or recessed relative to the non-forming portion 4308 .
  • the pocket 4306 b includes sidewalls 4350 , which are oriented perpendicular to the non-forming portion 4308 of the staple-forming surface 4302 .
  • the sidewalls 4350 narrow between the outer ends of each cup 4320 , 4322 and the neck portion 4324 . More specifically, the sidewalls 4350 extend along an inward contour to define a contour in the perimeter 4316 of the pocket 4306 b.
  • the widest portion of the cups 4320 , 4322 is at the proximal and distal ends of the sidewalls 4350 .
  • the widened region provides an enlarged footprint for receiving the tip of a staple leg.
  • the cups 4320 , 4322 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the pocket 4306 b defines a chamfered edge 4354 along the sides of the pocket 4306 b.
  • the chamfered edge 4354 defines the overall width of the pocket 4306 b, which narrows toward the neck portion 4324 .
  • the pocket 4306 b also defines a fillet 4352 (FIGS. 55 A- 55 C) between the sidewalls 4350 and the bottom surface 4358 the pocket 4306 b.
  • the fillets 4352 are configured to guide the staple legs along the desired path in the pocket 4306 b. For example, if a staple leg lands along the chamfer 4352 , the fillet corner 4352 can smoothly guide the staple leg toward the pocket axis PA.
  • the pocket 4306 b is symmetric about the pocket axis PA.
  • the perimeter 4316 of the pocket 4306 b is symmetric about the pocket axis PA.
  • the pocket 4306 b is symmetric about a central axis CA through the neck portion 4324 and perpendicular to the pocket axis PA.
  • the perimeter 4316 of the pocket 4306 b is symmetric about the central axis CA
  • the proximal cup 4320 has the same geometry as the distal cup 4322 .
  • the proximal cup 4320 can be different than the distal cup 4322 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the neck portion 4324 of the pocket 4306 b is narrower than the proximal and distal cups 4320 and 4322 .
  • the narrowed perimeter 4316 of the pocket 4306 b defines a receiving peninsula 4326 between a portion of the proximal cup 4320 and a portion of the distal cup 4322 .
  • symmetrical receiving peninsulas 4326 are positioned on each side of the pocket 4306 b.
  • the receiving peninsulas 4326 are bounded by the perimeter 4316 of the pocket 4306 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portion of the proximal and distal cups 4320 and 4322 on a side of the pocket 4306 b.
  • a first tangent axis T B1 is positioned on a first side of the pocket 4306 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 4306 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 53 are parallel to the pocket axis PA.
  • each pocket 4306 extends toward the receiving peninsula 4326 of an adjacent pocket 4306 .
  • the intermediate pockets 4306 b are aligned with the neck portions 4324 of the inner pockets 4306 a and the outer pockets 4306 c.
  • the inner pockets 4306 a and the outer pockets 4306 b extend toward the receiving peninsula 4326 of one of the intermediate pockets 4306 b. More specifically, the inner pockets 4306 a are aligned with the neck portion 4324 of an adjacent intermediate pocket 4306 b, and the outer pockets 4306 c are aligned with the neck portion 4324 of an adjacent intermediate pocket 4306 b.
  • a portion of the pockets 4306 can extend into the receiving peninsula 4326 of an adjacent pocket 4306 .
  • the “forming ratio” is the ratio of the non-forming portion 4308 to the forming portion, i.e., the pockets 4306 . In at least one instance, the forming ratio can be at least 1:1, for example.
  • staple-forming pockets 4406 in a portion of an anvil 4400 are depicted.
  • the pockets 4406 and arrangement thereof in the anvil 4400 are similar in many aspects to the pockets 4306 and arrangement thereof in the anvil 4300 .
  • the anvil 4400 includes a staple-forming surface 4402 and a longitudinal slot 4404 .
  • the longitudinal slot 4404 extends along the longitudinal axis LA of the anvil 4400 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4404 during at least a portion of a firing stroke.
  • the staple-forming pockets 4406 are defined in the staple-forming surface 4402 .
  • the staple-forming surface 4402 also includes a non-forming portion 4408 that extends around the pockets 4406 .
  • the non-forming portion 4408 extends entirely around each pocket 4406 in FIG. 56 .
  • the non-forming portion 4408 surrounds the staple-forming pockets 4406 .
  • at least a portion of two or more adjacent pockets 4406 can be in abutting contact such that a non-forming portion 4408 is not positioned therebetween.
  • the non-forming portion 4406 extends through each pocket 4406 , as described herein.
  • the forming ratio of the staple-forming surface 4402 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4408 of the anvil 4400 can be minimized with respect to the staple-forming pockets 4406 . Additionally or alternatively, the footprint of the staple-forming pockets 4406 can be extended or enlarged to maximize the portion of the staple-forming surface 4402 that is designed to catch and form the staples.
  • the pockets 4406 depicted in FIG. 56 are arranged in an inner row 4414 a, an intermediate row 4414 b, and an outer row 4414 c on a first side of the longitudinal slot 4404 .
  • Inner pockets 4406 a are positioned in the inner row 4414 a
  • intermediate pockets 4406 b are positioned in the intermediate row 4414 b
  • outer pockets 4406 c are positioned in the outer row 4414 c.
  • the pockets 4406 are arranged in a herringbone arrangement along the staple-forming surface 4402 of the anvil 4400 .
  • the pockets 4406 on the opposing side of the slot 4404 can form a mirror image reflection of the pockets 4406 on the first side of the longitudinal slot 4404 .
  • the arrangement of pockets 4406 in the staple-forming surface 4402 can be asymmetrical relative to the slot 4404 and, in certain instances, the anvil 4400 may not include the longitudinal slot 4404 .
  • the pockets 4406 can be arranged in less than or more than three rows on each side of the slot 4404 .
  • the pockets 4406 depicted in FIG. 56 are identical. Each pocket 4406 defined in the staple-forming surface 4402 has the same geometry. In other instances, the geometry of the pockets 4406 can vary row-to-row and/or longitudinally along the length of the anvil 4400 . For example, in certain instances, the depth of the pockets 4406 or portions thereof can vary along the length of the anvil 4400 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 57-59C An exemplary pocket 4406 b is shown in FIGS. 57-59C .
  • the pocket 4406 b has a first end, or proximal end, 4410 and a second end, or distal end, 4412 .
  • a pocket axis PA ( FIG. 57 ) extends between the proximal end 4410 and the distal end 4412 of the pocket 4406 b.
  • the pocket 4406 b includes a perimeter 4416 , which defines the boundary of the pocket 4406 b.
  • the perimeter 4416 includes rounded corners at the proximal and distal ends 4410 and 4412 of the pocket 4406 b.
  • the pocket 4406 b also includes a proximal cup 4420 and a distal cup 4422 .
  • a portion of the non-forming portion 4408 extends between the proximal cup 4420 and the distal cup 4422 .
  • the pocket 4406 b includes two separate and discrete cups 4420 and 4422 in the staple-forming surface 4402 .
  • the proximal cup 4420 is aligned with a proximal staple leg
  • the distal cup 4422 is aligned with a distal staple leg.
  • the cups 4420 , 4422 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4406 and to deform the staple legs into the formed configuration.
  • each cup 4420 , 4422 of the pocket 4406 b defines an entrance ramp 4440 and an exit ramp 4442 .
  • the exit ramp 4442 is steeper than the entrance ramp 4440 .
  • the tip of a staple leg can enter the respective cup 4420 , 4422 along the entrance ramp 4440 and exit the respective cup 4420 , 4422 along the exit ramp 4442 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4406 b also defines a bridge 4444 between the proximal cup 4420 and the distal cup 4422 .
  • the bridge 4444 is aligned with the non-forming portion 4408 . More specifically, the bridge 4444 is a planar extension of the non-forming portion 4408 , which extends between the proximal and distal cups 4420 , 4422 .
  • the pocket 4406 b includes sidewalls 4450 , which are oriented at an angle relative to the non-forming portion 4408 of the staple-forming surface 4402 . More specifically, the sidewalls 4450 are obliquely oriented relative to the non-forming portion 4408 . Moreover, the angular orientation of the sidewalls 4450 is constant along the length of the cups. For example, the angles A, B, and C depicted in FIGS. 59A, 59B, and 59C , respectively, are equal. In other instances, one of more of the angles A, B, and C can be different.
  • the sidewalls 4450 narrow between the outer ends of each cup 4420 , 4422 and inner ends of the cups 4420 , 4422 . More specifically, the sidewalls 4450 extend along an inward contour to define a contour in the perimeter 4416 of the pocket 4406 b. The widest portion of the cups 4420 , 4422 is at the proximal and distal ends of the pocket 4406 b. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4420 , 4422 narrow toward the bridge 4444 , the cups 4420 , 4422 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the pocket 4406 b defines a fillet 4452 ( FIGS. 59A-59C ) between the sidewalls 4450 and the bottom surface 4458 of the pocket 4406 b.
  • the fillets 4452 are configured to guide the staple legs along the desired path in the pocket 4406 b. For example, if a staple leg lands along the fillet 4452 , the fillet 4452 can smoothly guide the staple leg toward the pocket axis PA.
  • the pocket 4406 b is symmetric about the pocket axis PA.
  • the perimeter 4416 of the pocket 4406 b is symmetric about the pocket axis PA.
  • the pocket 4406 b is symmetric about a central axis CA between the proximal and distal cups 4420 and 4422 and perpendicular to the pocket axis PA.
  • the perimeter 4416 of the pocket 4406 b is symmetric about the central axis CA, and the proximal cup 4420 has the same geometry as the distal cup 4422 .
  • the proximal cup 4420 can be different than the distal cup 4422 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the central portion of the pocket 4406 b is narrower than the proximal and distal ends 4410 and 4412 of the cups 4420 and 4422 , respectively.
  • the narrowed perimeter 4416 of the pocket 4406 b defines a receiving peninsula 4426 between a portion of the proximal cup 4420 and a portion of the distal cup 4422 .
  • symmetrical receiving peninsulas 4426 are positioned on each side of the pocket 4406 b.
  • the receiving peninsulas 4426 are bounded by the perimeter 4416 of the pocket 4406 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portion of the proximal and distal cups 4420 and 4422 on a side of the pocket 4406 b.
  • a first tangent axis T B1 is positioned on a first side of the pocket 4406 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 4406 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 57 are parallel to the pocket axis PA.
  • each pocket 4406 extends toward the receiving peninsula 4426 of an adjacent pocket 4406 .
  • the intermediate pockets 4406 b are aligned with the central portion of the inner pockets 4406 a and the outer pockets 4406 c.
  • the inner pockets 4406 a and the outer pockets 4406 b extend toward the receiving peninsula 4426 of one of the intermediate pockets 4406 b. More specifically, the inner pockets 4406 a are aligned with the central portion of an adjacent intermediate pocket 4406 b, and the outer pockets 4406 c are aligned with the central portion of an adjacent intermediate pocket 4406 b. In certain instances, a portion of the pockets 4406 can extend into the receiving peninsula 4426 of an adjacent pocket 4406 .
  • the “forming ratio” of the staple-forming surface 4402 is the ratio of the non-forming portion 4408 to the forming portion, i.e., the pockets 4406 .
  • the forming ratio of the staple-forming surface 4402 is about 2.56:1. In other instances, the forming ratio can be less than 2.56:1 or more than 2.56:1. For example, in at least one instance, more than 50% of the staple-forming surface 4402 can be covered with staple-forming pockets 4406 .
  • staple-forming pockets 4506 in a portion of an anvil 4500 are depicted.
  • the pockets 4506 and arrangement thereof in the anvil 4500 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900 .
  • the anvil 4500 includes a staple-forming surface 4502 and a longitudinal slot 4504 .
  • the longitudinal slot 4504 extends along the longitudinal axis LA of the anvil 4500 .
  • a firing element and/or cutting element can translate through the longitudinal slot 4504 during at least a portion of a firing stroke.
  • the staple-forming pockets 4506 are defined in the staple-forming surface 4502 .
  • the staple-forming surface 4502 also includes a non-forming portion 4508 that extends around the pockets 4506 .
  • the non-forming portion 4508 extends entirely around each pocket 4506 in FIG. 60 .
  • the non-forming portion 4508 surrounds the staple-forming pockets 4506 .
  • at least a portion of two or more adjacent pockets 4506 can be in abutting contact such that a non-forming portion 4508 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 4502 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4508 of the anvil 4500 can be minimized with respect to the staple-forming pockets 4506 . Additionally or alternatively, the footprint of the staple-forming pockets 4506 can be extended or enlarged to maximize the portion of the staple-forming surface 4502 that is designed to catch and form the staples.
  • the pockets 4506 depicted in FIG. 60 are arranged in an inner row 4514 a, an intermediate row 4514 b, and an outer row 4514 c on a first side of the longitudinal slot 4504 .
  • Inner pockets 4506 a are positioned in the inner row 4514 a
  • intermediate pockets 4506 b are positioned in the intermediate row 4514 b
  • outer pockets 4506 c are positioned in the outer row 4514 c.
  • the pockets 4506 are arranged in a herringbone arrangement along the staple-forming surface 4502 of the anvil 4500 .
  • the pockets 4506 on the opposing side of the slot 4504 can form a mirror image reflection of the pockets 4506 on the first side of the longitudinal slot 4504 .
  • the arrangement of pockets 4506 in the staple-forming surface 4502 can be asymmetrical relative to the slot 4504 and, in certain instances, the anvil 4500 may not include the longitudinal slot 4504 .
  • the pockets 4506 can be arranged in less than or more than three rows on each side of the slot 4504 .
  • the pockets 4506 depicted in FIG. 60 are identical. Each pocket 4506 defined in the staple-forming surface 4502 has the same geometry. In other instances, the geometry of the pockets 4506 can vary row-to-row and/or longitudinally along the length of the anvil 4500 . For example, in certain instances, the depth of the pockets 4506 or portions thereof can vary along the length of the anvil 4500 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 61-63C An exemplary pocket 4506 b is shown in FIGS. 61-63C .
  • the pocket 4506 b has a first end, or proximal end, 4510 and a second end, or distal end, 4512 .
  • a pocket axis PA ( FIG. 61 ) extends between the proximal end 4510 and the distal end 4512 of the pocket 4506 b.
  • the pocket 4506 b includes a perimeter 4516 , which defines the boundary of the pocket 4506 b. Similar to the pockets 4306 , the perimeter 4516 includes rounded corners at the proximal and distal ends 4510 and 4512 of the pocket 4506 b.
  • the pocket 4506 b also includes a proximal cup 4520 , a distal cup 4522 , and a neck 4524 extending between the proximal cup 4520 and the distal cup 4522 .
  • a staple is driven into forming contact with the staple-forming surface 4502
  • the proximal cup 4520 is aligned with a proximal staple leg
  • the distal cup 4522 is aligned with a distal staple leg.
  • the cups 4520 , 4522 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4506 , such as the neck 4524 , and to deform the staple legs into the formed configuration.
  • each cup 4520 , 4522 of the pocket 4506 b defines an entrance ramp 4540 and an exit ramp 4542 .
  • the entrance ramp 4540 is steeper than the exit ramp 4542 .
  • the tip of a staple leg can enter the respective cup 4520 , 4522 along the entrance ramp 4540 and exit the respective cup 4520 , 4522 along the exit ramp 4542 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 4506 b also defines a bridge 4544 between the proximal cup 4520 and the distal cup 4522 .
  • the bridge 4544 is offset from the non-forming portion 4508 . More specifically, the bridge 4544 is positioned below or recessed relative to the non-forming portion 4508 .
  • the pocket 4506 b includes contoured or arced walls 4550 .
  • the walls 4550 form each cup 4520 , 5422 into a wide, rounded basin for receiving and forming the staple legs.
  • the pocket 4506 b includes a groove 4556 along the bottom surface.
  • the walls 4550 arc downward into the anvil 4500 between the non-forming surface 4508 and the groove 4556 .
  • the sidewalls 4550 seamlessly transition to a bottom surface of the pocket 4506 b.
  • the groove 4556 extends along the bottom surface from the proximal cup 4520 over the bridge 4524 and into the distal cup 4522 .
  • the groove 4556 is configured to constrain and guide the staple legs as they move to the deformed configuration.
  • the diameter of the groove 4556 can be less than the diameter of the staple engaged with the groove 4556 .
  • the width of the groove in the pocket can be less than the smallest diameter staple.
  • the contoured walls 4550 narrow between the outer ends of each cup 4520 , 4522 and the neck 4524 . More specifically, the walls 4550 extend along an inward contour to define a contour in the perimeter 4516 of the pocket 4506 b. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4520 , 4522 narrow toward the bridge 4544 , the cups 4520 , 4522 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • the pocket 4506 b also defines a chamfered edge 4554 along a portion of the sides of the pocket 4506 b. As the sidewalls 4550 narrow toward the neck portion 4524 , the width of the chamfered edge 4554 correspondingly expands toward the neck portion 4224 to maintain the overall pocket width.
  • the pocket 4506 b is symmetric about the pocket axis PA.
  • the perimeter 4516 of the pocket 4406 b is symmetric about the pocket axis PA.
  • the pocket 4506 b is symmetric about a central axis CA through the neck portion 4524 and perpendicular to the pocket axis PA.
  • the perimeter 4516 of the pocket 4506 b is symmetric about the central axis CA
  • the proximal cup 4520 has the same geometry as the distal cup 4522 .
  • the proximal cup 4520 can be different than the distal cup 4522 .
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • each pocket 4506 extends toward the neck portion 4524 of an adjacent pocket 4506 .
  • the intermediate pockets 4506 b are aligned with the neck portions 4524 of the inner pockets 4506 a and the outer pockets 4506 c.
  • the inner pockets 4506 a and the outer pockets 4506 b extend toward the neck portion 4524 of one of the intermediate pockets 4506 b.
  • Staple-forming pockets can include extended landing zones for receiving the tips of the staple legs when the staples are fired into forming contact with the anvil.
  • the extended landing zones can extend laterally and/or longitudinally from the cups of the staple-forming pockets, as described herein.
  • the profile, or perimeter, of the staple-forming pockets can nest with the profile, or perimeter, of one or more adjacent staple-forming pockets.
  • at least a portion of the perimeter of a staple-forming pocket can extend along a contour or path that matches, tracks, follows and/or parallels a portion of the perimeter of one or more adjacent staple-forming pockets.
  • Such tracking portions or adjacent perimeters can define concentric profiles.
  • the surface area of a staple-forming pocket having one or more extended landing zones can be greater than the surface area of a staple-forming pocket without the one or more extended landing zones.
  • extended landing zones can increase the surface area of a staple-forming pocket by at least 10%.
  • Extended landing zones can increase the surface area of a staple-forming pocket by 15% or 25%, for example.
  • extended landing zones can increase the surface area of a staple-forming pocket by less than 10%, such as 5%, for example.
  • Certain staple-forming pockets described herein can have a greater surface area than the staple-forming pockets in an anvil having six rows of parallel staple-forming pockets but that is otherwise identical to certain anvils described herein having six rows of angularly-oriented staple-forming pockets.
  • a staple-forming pocket having extended landing zones may also include narrowed and/or otherwise reduced portions having a surface area that is equal to or greater than the surface area of the extended landing zones.
  • the staple-forming pockets can be asymmetrical.
  • the staple-forming pockets can be asymmetrical relative to a pocket axis extending between a proximal end and a distal end of the pocket and/or can be asymmetrical relative to a central axis extending perpendicular to the pocket axis and transecting a central portion of the pocket.
  • the asymmetry of the staple-forming pockets can facilitate nesting of the pockets and/or can maximize the surface area of the pockets in a staple-forming surface, for example.
  • staple-forming pockets 5006 in a portion of an anvil 5000 are depicted. Similar to the anvil 3800 , the pockets 5006 are arranged in a herringbone arrangement along the staple-forming surface 5002 of the anvil 5000 .
  • the anvil 5000 includes a staple-forming surface 5002 and a longitudinal slot 5004 .
  • the longitudinal slot 5004 extends along the longitudinal axis LA of the anvil 5000 .
  • a firing element and/or a cutting element can translate through the longitudinal slot 5004 during at least a portion of a firing stroke.
  • the staple-forming pockets 5006 are defined in the staple-forming surface 5002 .
  • the staple-forming surface 5002 also includes a non-forming portion 5008 that extends around the pockets 5006 .
  • the non-forming portion 5008 extends entirely around each pocket 5006 .
  • the non-forming portion 5008 surrounds the staple-forming pockets 5006 .
  • at least a portion of two or more adjacent pockets 5006 can be in abutting contact such that a non-forming portion 5008 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 5002 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5008 of the anvil 5000 can be minimized with respect to the staple-forming pockets 5006 . Additionally or alternatively, the footprint of the staple-forming pockets 5006 can be extended or enlarged to maximize the portion of the staple-forming surface 5002 that is designed to catch and form the staples.
  • the pockets 5006 depicted in FIG. 64 are arranged in an inner row 5014 a, an intermediate row 5014 b, and an outer row 5014 c on a first side of the longitudinal slot 5004 .
  • Inner pockets 5006 a are positioned in the inner row 5014 a
  • intermediate pockets 5006 b are positioned in the intermediate row 5014 b
  • outer pockets 5006 c are positioned in the outer row 5014 c.
  • the pockets 5006 on the opposing side of the slot 5004 can form a mirror image reflection of the pockets 5006 on the first side of the longitudinal slot 5004 .
  • the arrangement of pockets 5006 in the staple-forming surface 5002 can be asymmetrical relative to the slot 5004 and, in certain instances, the anvil 5000 may not include the longitudinal slot 5004 . In various instances, the pockets 5006 can be arranged in less than or more than three rows on each side of the slot 5004 .
  • the inner pockets 5006 a are identical, the intermediate pockets 5006 b are identical, and the outer pockets 5006 c are identical; however, the inner pockets 5006 a are different than the intermediate pockets 5006 b and the outer pockets 5006 c, and the intermediate pockets 5006 b are different than the outer pockets 5006 c.
  • the pockets 5006 in each row 5014 a, 5014 b, and 5014 c are different.
  • Extended landing zones 5030 and 5032 of the pockets 5006 a, 5006 b, and 5006 c which are described herein, contribute to the different geometries thereof.
  • the shape and size of the extended landing zones 5030 and 5032 are confined by the perimeter 5016 of adjacent, nested pockets 5006 .
  • the pockets 5006 in each row 5014 a, 5014 b, and 5014 c are different, the pockets 5006 can be configured to form staples to the same, or substantially the same, formed shape. In other instances, the pockets 5006 can be configured to form staples to different formed shapes, such as to different heights and/or configurations. In certain instances, the pockets 5006 can vary longitudinally within each row 5014 a, 5014 b, and 5014 c. For example, in certain instances, the depth of the pockets 5006 or portions thereof can vary along the length of the anvil 5000 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • the pockets 5006 can be configured to engage different geometry staples.
  • staples having different unformed heights and/or different diameters can be formed by the pockets 5006 in the anvil 5000 .
  • the geometry of the staples can vary longitudinally, and the pockets 5006 can be configured to form the different geometry staples.
  • the unformed height of the staples and/or the wire diameter can vary along the length of the anvil 5000 .
  • FIGS. 64-67C An exemplary intermediate pocket 5006 b is shown in FIGS. 64-67C .
  • the pocket 5006 b has a first end, or proximal end, 5010 and a second end, or distal end, 5012 .
  • a pocket axis PA ( FIG. 65 ) extends between the proximal end 5010 and the distal end 5012 of the pocket 5006 b.
  • the pocket 5006 b includes a perimeter 5016 , which defines the boundary of the pocket 5006 b.
  • the perimeter 5016 includes linear portions and contoured portions. More specifically, the perimeter 5016 includes linear portions and contoured corners therebetween at which the linear portions change directions. Referring again to FIG. 64 , at least a portion of the perimeter 5016 of each pocket 5006 closely tracks or parallels at least a portion of the perimeter of one or more adjacent pockets 5006 .
  • the pocket 5006 b includes a proximal cup 5020 , a distal cup 5022 , and a neck 5024 extending between the proximal cup 5020 and the distal cup 5022 .
  • a staple is driven into forming contact with the staple-forming surface 5002
  • the proximal cup 5020 is aligned with a proximal staple leg
  • the distal cup 5022 is aligned with a distal staple leg.
  • the cups 5020 and 5022 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5006 , such as the neck portion 5024 , and to deform the staple legs into the formed configuration.
  • each cup 5020 , 5022 of the pocket 5006 b defines an entrance ramp 5040 and an exit ramp 5042 .
  • the tip of a staple leg can enter the respective pocket 5020 , 5022 along the entrance ramp 5040 and exit the respective pocket 5020 , 5022 along the exit ramp 5042 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 5006 b also defines a bridge 5044 in the neck portion 5024 between the proximal cup 5020 and the distal cup 5022 .
  • the bridge 5044 is offset from the non-forming portion 5008 . More specifically, the bridge 5044 is positioned below or recessed relative to the non-forming portion 5008 .
  • the pocket 5006 b includes sidewalls 5050 , which extend from the non-forming portion 5008 to the bottom surface 5058 .
  • the sidewalls 5050 include linear portions and contoured portions.
  • the sidewalls 5050 widen toward a central region 5021 ( FIG. 65 ) of each cup 5020 , 5022 , and narrow from the central region 5021 of each cup 5020 , 5022 toward the neck portion 5024 .
  • the widened central region 5021 provides an enlarged footprint for receiving the tip of a staple leg.
  • the cups 5020 , 5022 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration.
  • FIG. 67A is taken along the plane ALL in FIG. 65 , which corresponds to the anticipated landing location (ALL) of a staple leg.
  • ALL anticipated landing location
  • the tip of a staple leg can be expected to land in the proximal cup 5020 at and/or near the intersection of the plane ALL and the pocket axis PA.
  • the pocket 5006 b defines a width W A and a depth D A .
  • the cross-section in FIG. 67B is taken across a transition between the proximal cup 5020 and the neck 5024 .
  • FIG. 67B depicts the pocket 5006 b defining a width W B and a depth D B .
  • the width W B is less than the width W A
  • the depth D B is greater than the depth D A .
  • the pocket 5006 b narrows and deepens from the plane ALL in the proximal cup 5020 toward the neck 5024 .
  • the comparatively large width W A at the plane ALL is configured to provide a wide receptacle or basin for receiving the staple leg.
  • the cross-section in FIG. 67C is taken across the neck portion 5024 .
  • FIG. 67C depicts the pocket 5006 b defining a width W C and a depth D C .
  • the width Wc is less than the width W B
  • the depth D C is less than the depth D B .
  • the pocket 5006 b continues to narrow, and becomes shallower in the neck 5024 across the bridge 5044 .
  • the bottom surface 5058 of the pocket 5006 b is a flat surface, which is bounded by an arcuate fillet 5059 therearound.
  • the bottom surface 5058 can have a groove defined along at least a portion thereof.
  • the bottom surface 5058 can form a trough.
  • the bottom surface can include hump or ridge along at least a portion thereof, such as across the bridge 5044 , for example.
  • the pocket 5006 b includes a proximal extended landing zone 5030 and a distal extended landing zone 5032 .
  • the proximal extended landing zone 5030 is positioned in a proximal portion of the proximal cup 5020
  • the distal extended landing zone 5032 is positioned in a distal portion of the distal cup 5022 . More specifically, the extended landing zones 5030 and 5032 are positioned beyond the anticipated landing location of a staple.
  • the proximal extended landing zone 5030 is positioned proximal to the plane ALL and, in instances where the tip of a staple leg lands beyond the plane ALL, the proximal extended landing zones 5030 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5024 .
  • the landing zones 5030 and 5032 define a generally polygonal shape and, more specifically, a quadrilateral with rounded corners. In other instances, the landing zones 5030 and 5032 can be triangular or substantially triangular and, in still other instances, can define an arcuate or bulbous profile, for example.
  • the geometry of the extended landing zones 5030 and 5032 is constrained by the perimeter 5016 of the adjacent staple-forming pockets 5006 .
  • the extended landing zones 5030 and 5032 can extend toward and/or into nearly abutting contact with one or more adjacent staple-forming pockets.
  • the extended landing zones 5030 and 5032 and/or other portions of the pocket 5006 b can track and/or extend parallel to adjacent staple-forming pockets 5006 .
  • the extended landing zones 5030 and 5032 can abut one or more adjacent staple-forming pockets 5006 .
  • the pocket 5006 b is asymmetric about the pocket axis PA.
  • the perimeter 5016 of the pocket 5006 b is asymmetric about the pocket axis PA.
  • the pocket 5006 b is asymmetric about a central axis CA through the neck portion 5024 and perpendicular to the pocket axis PA.
  • the perimeter 5016 of the pocket 5006 b is asymmetric about the central axis CA, and the proximal cup 5020 has a different geometry than the distal cup 5022 .
  • the proximal cup 5020 and the distal cup 5022 are different, the pocket 5006 b can be configured to form symmetric staples.
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • the formed height of the proximal and distal legs of a staple can be equal.
  • the pocket 5006 can be configured to form asymmetric staples.
  • the neck portion 5024 is narrower than the proximal and distal cups 5020 and 5022 .
  • the narrowed perimeter 5016 of the pocket 5006 b at the neck portion 5024 defines a receiving peninsula 5026 between a portion of the proximal cup 5020 and a portion of the distal cup 5022 .
  • Receiving peninsulas 5026 are positioned on each side of the pocket 5006 b.
  • the receiving peninsulas 5026 are bounded by the perimeter 5016 of the pocket 5006 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portions of the proximal and distal cups 5020 and 5022 on each side of the pocket 5006 .
  • a first tangent axis T B1 is positioned on a first side of the pocket 5006 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 5006 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 67 are parallel to the pocket axis PA. In other instances, one or both of the tangent axes T B1 and T B2 may not be parallel to the pocket axis PA.
  • each pocket 5006 extends into the receiving peninsula 5026 of an adjacent pocket 5006 .
  • the intermediate pockets 5006 b are nested between the inner pockets 5006 a and the outer pockets 5006 c.
  • the intermediate pockets 5006 b extend into the receiving peninsula 5026 of an adjacent inner pocket 5006 a and into the receiving peninsula 5026 of an adjacent outer pocket 5006 c.
  • the inner pockets 5006 a and the outer pockets 5006 b are nested with the intermediate pockets 5006 b.
  • the inner pockets 5006 a extend into the receiving peninsula 5026 of an adjacent intermediate pocket 5006 b
  • the outer pockets 5006 c extend into the receiving peninsula 5026 of an adjacent intermediate pocket 5006 b.
  • the distal extended landing zone 5032 of the intermediate pocket 5006 b is positioned in the receiving peninsula 5026 of an inner pocket 5006 a
  • the proximal extended landing zone 5030 of the intermediate pocket 5006 b is positioned in the receiving peninsula 5026 of an outer pocket 5006 c
  • the distal extended landing zone 5032 of an inner pocket 5006 a is positioned in the receiving peninsula 5026 of an intermediate pocket 5006 b
  • the proximal extended landing zone 5030 of the outer pocket 5006 c is positioned in the receiving peninsula 5026 of an intermediate pocket 5006 b.
  • the geometry of the pockets 5006 facilitates the nesting of the pockets 5006 in the staple-forming surface 5002 .
  • the pockets 5006 include a narrowed neck portion 5024 between two enlarged cups 5020 and 5022 , one of the enlarged cups 5020 , 5022 of another pocket 5006 can be positioned adjacent to the narrowed neck portion 5024 .
  • one of the enlarged cups 5020 , 5022 can be aligned with and/or received by a portion of an adjacent pocket 5006 .
  • the surface area of the staple-forming surface 5002 that is covered by the pockets 5006 can be optimized.
  • the “forming ratio” of the staple-forming surface 5002 is the ratio of the non-forming portion 5008 to the forming portion, i.e., the pockets 5006 .
  • the forming ratio of the staple-forming surface 5002 is about 1:1. In other instances, the forming ratio can be less than 1:1 or more than 1:1. For example, in at least one instance, more than 50% of the staple-forming surface 5002 can be covered with staple-forming pockets 5006 . In another instances, more than 60% or more than 75% of the stapling-forming surface 5002 can be covered with staple-forming pockets 5006 .
  • staple-forming pockets 5106 in a portion of an anvil 5100 are depicted. Similar to the anvil 3800 , the pockets 5106 are arranged in a herringbone arrangement along the staple-forming surface 5102 of the anvil 5100 .
  • the anvil 5100 includes a staple-forming surface 5102 and a longitudinal slot 5104 .
  • the longitudinal slot 5104 extends along the longitudinal axis LA of the anvil 5100 .
  • a firing element and/or a cutting element can translate through the longitudinal slot 5104 during at least a portion of a firing stroke.
  • the staple-forming pockets 5106 are defined in the staple-forming surface 5102 .
  • the staple-forming surface 5102 also includes a non-forming portion 5108 that extends around the pockets 5106 .
  • the non-forming portion 5108 extends entirely around each pocket 5106 .
  • the non-forming portion 5108 surrounds the staple-forming pockets 5106 .
  • at least a portion of two or more adjacent pockets 5106 can be in abutting contact such that a non-forming portion 5108 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 5102 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5108 of the anvil 5100 can be minimized with respect to the staple-forming pockets 5106 . Additionally or alternatively, the footprint of the staple-forming pockets 5106 can be extended or enlarged to maximize the portion of the staple-forming surface 5102 that is designed to catch and form the staples.
  • the pockets 5106 depicted in FIG. 68 are arranged in an inner row 5114 a, an intermediate row 5114 b, and an outer row 5114 c on a first side of the longitudinal slot 5104 .
  • Inner pockets 5106 a are positioned in the inner row 5114 a
  • intermediate pockets 5106 b are positioned in the intermediate row 5114 b
  • outer pockets 5106 c are positioned in the outer row 5114 c.
  • the pockets 5106 on the opposing side of the slot 5104 can form a mirror image reflection of the pockets 5106 on the first side of the longitudinal slot 5104 .
  • the arrangement of pockets 5106 in the staple-forming surface 5102 can be asymmetrical relative to the slot 5104 and, in certain instances, the anvil 5100 may not include the longitudinal slot 5104 . In various instances, the pockets 5106 can be arranged in less than or more than three rows on each side of the slot 5104 .
  • the inner pockets 5106 a are identical, the intermediate pockets 5106 b are identical, and the outer pockets 5106 c are identical; however, the inner pockets 5106 a are different than the intermediate pockets 5106 b and the outer pockets 5106 c, and the intermediate pockets 5106 b are different than the outer pockets 5106 c.
  • the pockets 5106 in each row 5114 a, 5114 b, and 5114 c are different.
  • the pockets 5106 in two or more of the rows can be the same.
  • the inner pockets 5106 a can be the same as the outer pockets 5106 c.
  • Extended landing zones 5130 and 5132 of the pockets 5106 a, 5106 b, and 5106 c which are described herein, can contribute to the different geometries thereof. Moreover, the shape and size of the extended landing zones 5130 and 5132 are confined by the perimeter 5116 of the adjacent, nested pockets 5106 .
  • the landing zones 5130 and 5132 define an arcuate profile. In other instances, the landing zones 5030 and 5032 can be polygonal and/or include one or more linear and/or contoured portions.
  • the pockets in each row 5114 a, 5114 b, and 5114 c are different, the pockets 5106 can be configured to form staples to the same, or substantially the same, formed shape. In other instances, the pockets 5106 can be configured to form staples to different formed shapes, such as to different heights and/or configurations. In certain instances, the pockets 5106 can vary longitudinally within each row 5114 a, 5114 b, and 5114 c. For example, in certain instances, the depth of the pockets 5106 or portions thereof can vary along the length of the anvil 5100 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • FIGS. 68-71C An exemplary intermediate pocket 5106 b is shown in FIGS. 68-71C .
  • the pocket 5106 b has a first end, or proximal end, 5110 and a second end, or distal end, 5112 .
  • a pocket axis PA ( FIG. 69 ) extends between the proximal end 5110 and the distal end 5112 of the pocket 5106 b.
  • the pocket 5106 b includes a perimeter 5116 , which defines the boundary of the pocket 5106 b.
  • the perimeter 5116 includes linear portions and contoured portions. More specifically, the perimeter 5116 includes linear portions and contoured corners therebetween at which the linear portions change directions. Referring again to FIG.
  • each pocket 5106 closely tracks or parallels at least a portion of the perimeter of one or more adjacent pockets 5106 .
  • the rounded perimeter 5116 of the pocket 5106 b can provide a smoother profile, which can be easier to coin and/or stamp in the staple-forming surface 5102 than pockets having sharp corners, for example.
  • the pocket 5106 b includes a proximal cup 5120 , a distal cup 5122 , and a neck portion 5124 extending between the proximal cup 5120 and the distal cup 5122 .
  • a staple is driven into forming contact with the staple-forming surface 5102
  • the proximal cup 5120 is aligned with a proximal staple leg
  • the distal cup 5122 is aligned with a distal staple leg.
  • the cups 5120 and 5122 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5106 , such as the neck portion 5124 , and to deform the staple legs into the formed configuration.
  • each cup 5120 , 5122 of the pocket 5106 b defines an entrance ramp 5140 and an exit ramp 5142 .
  • the tip of a staple leg can enter the respective pocket 5120 , 5122 along the entrance ramp 5140 and exit the respective pocket 5120 , 5122 along the exit ramp 5142 .
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 5106 b also defines a bridge 5144 in the neck portion 5124 between the proximal cup 5120 and the distal cup 5122 .
  • the bridge 5144 is offset from the non-forming portion 5108 . More specifically, the bridge 5144 is positioned below or recessed relative to the non-forming portion 5108 .
  • the pocket 5106 b includes sidewalls 5150 , which extend from the non-forming portion 5108 .
  • the sidewalls 5150 include linear portions and contoured portions.
  • the sidewalls 5150 widen toward a central region 5121 ( FIG. 69 ) of each cup 5120 , 5122 , and narrow from the central region 5121 of each cup 5120 , 5122 toward the neck portion 5124 .
  • the widened central region 5121 provides an enlarged footprint for receiving the tip of a staple leg.
  • the cups 5120 , 5122 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration.
  • FIG. 71A is taken along the plane ALL in FIG. 69 , which corresponds to the anticipated landing location of a staple leg.
  • the tip of a staple leg can be expected to land in the proximal cup 5120 at and/or near the intersection of the plane ALL and the pocket axis PA.
  • the pocket 5106 b defines a width W A and a depth D A .
  • the cross-section in FIG. 71B is taken across a transition between the proximal cup 5120 and the neck 5124 .
  • FIG. 71B depicts the pocket 5106 b defining a width W B and a depth D B .
  • the width W B is less than the width W A
  • the depth D B is greater than the depth D A .
  • the pocket 5106 b narrows and deepens from the plane ALL in the proximal cup 5120 toward the neck 5124 .
  • the comparatively large width W A at the plane ALL is configured to provide a wide basin or receptacle for receiving the staple leg.
  • the cross-section in FIG. 71C is taken across the neck portion 5124 .
  • FIG. 71C depicts the pocket 5106 b defining a width W C and a depth D C .
  • the width Wc is less than the width W B
  • the depth D C is less than the depth D B .
  • the pocket 5106 b continues to narrow, and becomes shallower in the neck 5124 across the bridge 5144 .
  • the bottom surface 5158 of the pocket 5106 b is a flat surface.
  • the bottom surface 5158 can have a groove defined along at least a portion thereof.
  • the bottom surface 5158 can form a trough and/or can include hump or ridge along at least a portion thereof, such as across the bridge 5144 , for example.
  • the pocket 5106 b includes a proximal extended landing zone 5130 and a distal extended landing zone 5132 .
  • the proximal extended landing zone 5130 is positioned in a proximal portion of the proximal cup 5120
  • the distal extended landing zone 5132 is positioned in a distal portion of the distal cup 5122 . More specifically, the extended landing zones 5130 and 5132 are positioned beyond the anticipated landing location of a staple.
  • the proximal extended landing zone 5130 is positioned proximal to the plane ALL and, in instances where the tip of a staple leg lands beyond the plane ALL, the proximal extended landing zone 5130 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5124 .
  • the geometry of the extended landing zones 5130 and 5132 is constrained by the perimeter 5016 of the adjacent staple-forming pockets 5106 .
  • the extended landing zones 5130 and 5132 can extend toward and/or into nearly abutting contact with one of more adjacent staple-forming pockets.
  • the extended landing zones 5130 and 5132 and/or other portions of the pocket 5106 b can extend parallel to adjacent staple-forming pockets 5106 . In other instances, the extended landing zones 5130 and 5132 can abut one or more adjacent staple-forming pockets 5106 .
  • the pocket 5106 b is asymmetric about the pocket axis PA.
  • the perimeter 5116 of the pocket 5106 b is asymmetric about the pocket axis PA.
  • the pocket 5106 b is asymmetric about a central axis CA through the neck portion 5124 and perpendicular to the pocket axis PA.
  • the perimeter 5116 of the pocket 5106 b is asymmetric about the central axis CA, and the proximal cup 5120 has a different geometry than the distal cup 5122 .
  • the proximal cup 5120 and the distal cup 5122 are different, the pocket 5106 b can be configured to form symmetric staples.
  • FIG. asymmetric staples For example, referring again to FIG.
  • the distal depth D 2 can be less than the proximal depth D 1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein. Accordingly, the formed height of the proximal and distal legs of a staple can be equal. In other instances, the pocket 5106 can be configured to form asymmetric staples.
  • the neck portion 5124 is narrower than the proximal and distal cups 5120 and 5122 .
  • the narrowed perimeter 5116 of the pocket 5106 b at the neck portion 5124 defines a receiving peninsula 5126 between a portion of the proximal cup 5120 and a portion of the distal cup 5122 .
  • Receiving peninsulas 5126 are positioned on each side of the pocket 5106 b.
  • the receiving peninsulas 5126 are bounded by the perimeter 5116 of the pocket 5106 b and a tangent axis (e.g., T B1 or T B2 ), which is tangential to the widest portions of the proximal and distal cups 5120 and 5122 on each side of the pocket 5106 .
  • a first tangent axis T B1 is positioned on a first side of the pocket 5106 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 5106 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 69 are skewed relative to the pocket axis PA. In other instances, one or both of the tangent axes T B1 and T B2 can be parallel to the pocket axis PA.
  • each pocket 5106 extends into the receiving peninsula 5126 of an adjacent pocket 5106 .
  • the intermediate pockets 5106 b are nested between the inner pockets 5106 a and the outer pockets 5106 c. Stated differently, the intermediate pockets 5106 b extend into the receiving peninsula 5126 of an adjacent inner pocket 5106 a and into the receiving peninsula 5126 of an adjacent outer pocket 5106 c.
  • the inner pockets 5106 a and the outer pockets 5106 b are nested with the intermediate pockets 5106 b.
  • the inner pockets 5106 a extend into the receiving peninsula 5126 of an adjacent intermediate pocket 5106 b
  • the outer pockets 5106 c extend into the receiving peninsula 5126 of an adjacent intermediate pocket 5106 b.
  • the distal extended landing zone 5132 of the intermediate pocket 5106 b is positioned in the receiving peninsula 5126 of an inner pocket 5106 a
  • the proximal extended landing zone 5130 of the intermediate pocket 5106 b is positioned in the receiving peninsula 5126 of an outer pocket 5106 c
  • the distal extended landing zone 5132 of an inner pocket 5106 a is positioned in the receiving peninsula 5126 of an intermediate pocket 5106 b
  • the proximal extended landing zone 5130 of the outer pocket 5106 c is positioned in the receiving peninsula 5126 of an intermediate pocket 5106 b.
  • the geometry of the pockets 5106 facilitates the nesting of the pockets 5106 in the staple-forming surface 5102 .
  • the pockets 5106 include a narrowed neck portion 5124 between two enlarged cups 5120 and 5122 , one of the enlarged cups 5120 , 5122 of another pocket 5106 can be positioned adjacent to the narrowed neck portion 5124 .
  • one of the enlarged cups 5120 , 5122 can be aligned with and/or received by a portion of an adjacent pocket 5106 .
  • the surface area of the staple-forming surface 5102 that is covered by the pockets 5106 can be optimized.
  • the surface area of the staple-forming surface 5102 that is covered by the pockets 5106 is maximized.
  • the “forming ratio” of the staple-forming surface 5102 is the ratio of the non-forming portion 5108 to the forming portion, i.e., the pockets 5106 . In at least one instance, the forming ratio can be at least 1:1, for example. In certain instances, more than 60% or more than 75% of the staple-forming surface 5102 can be covered by staple-forming pockets 5106 .
  • staple-forming pockets 5206 in a portion of an anvil 5200 are depicted. Similar to the anvil 3800 , the pockets 5206 are arranged in a herringbone arrangement along the staple-forming surface 5202 of the anvil 5200 .
  • the anvil 5200 includes a staple-forming surface 5202 and a longitudinal slot 5204 .
  • the longitudinal slot 5204 extends along the longitudinal axis LA of the anvil 5200 .
  • a firing element and/or a cutting element can translate through the longitudinal slot 5204 during at least a portion of a firing stroke.
  • the staple-forming pockets 5206 are defined in the staple-forming surface 5202 .
  • the staple-forming surface 5202 also includes a non-forming portion 5208 that extends around the pockets 5206 .
  • the non-forming portion 5208 extends entirely around each pocket 5206 .
  • the non-forming portion 5208 surrounds the staple-forming pockets 5206 .
  • at least a portion of two or more adjacent pockets 5206 can be in abutting contact such that a non-forming portion 5208 is not positioned therebetween.
  • the forming ratio of the staple-forming surface 5202 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5208 of the anvil 5200 can be minimized with respect to the staple-forming pockets 5206 . Additionally or alternatively, the footprint of the staple-forming pockets 5206 can be extended or enlarged to maximize the portion of the staple-forming surface 5202 that is designed to catch and form the staples.
  • the pockets 5206 depicted in FIG. 72 are arranged in an inner row 5214 a, an intermediate row 5214 b, and an outer row 5214 c on a first side of the longitudinal slot 5204 .
  • Inner pockets 5206 a are positioned in the inner row 5214 a
  • intermediate pockets 5206 b are positioned in the intermediate row 5214 b
  • outer pockets 5206 c are positioned in the outer row 5214 c.
  • the pockets 5206 on the opposing side of the slot 5204 can form a mirror image reflection of the pockets 5206 on the first side of the longitudinal slot 5204 .
  • the arrangement of pockets 5206 in the staple-forming surface 5202 can be asymmetrical relative to the slot 5204 and, in certain instances, the anvil 5200 may not include the longitudinal slot 5204 . In various instances, the pockets 5206 can be arranged in less than or more than three rows on each side of the slot 5204 .
  • the pockets 5206 depicted in FIG. 72 are identical. Each pocket 5206 defined in the staple-forming surface 5202 has the same geometry. In other instances, the geometry of the pockets 5206 can vary row-to-row and/or longitudinally along the length of the anvil 5200 . For example, in certain instances, the depth of the pockets 5206 can vary along the length of the anvil 5200 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • the pockets 5206 can be configured to form staples to the same, or substantially the same, formed shape. As described herein, the pockets 5206 can be configured to form each staple to the same asymmetrical shape. In other instances, the pockets 5206 can be configured to form staples to different formed shapes, such as to different heights and/or configurations.
  • FIGS. 73-76C An exemplary intermediate pocket 5206 b is shown in FIGS. 73-76C .
  • the pocket 5206 b has a first end, or proximal end, 5210 and a second end, or distal end, 5212 .
  • a pocket axis PA ( FIG. 72 ) extends between the proximal end 5210 and the distal end 5212 of the pocket 5206 b.
  • the pocket 5206 b includes a perimeter 5216 , which defines the boundary of the pocket 5206 b.
  • the perimeter 5216 includes linear portions and contoured portions.
  • the pocket 5206 b includes a proximal cup 5220 , a distal cup 5222 , and a neck 5224 extending between the proximal cup 5220 and the distal cup 5222 .
  • a staple is driven into forming contact with the staple-forming surface 5202
  • the proximal cup 5220 is aligned with a proximal staple leg
  • the distal cup 5222 is aligned with a distal staple leg.
  • the cups 5220 and 5222 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5206 , such as the neck portion 5224 , and to deform the staple legs into the formed configuration.
  • the cup 5222 can be proximal to the cup 5220 .
  • each cup 5220 and 5222 of the pocket 5206 b defines an entrance ramp 5240 a and 5240 b, respectively, and an exit ramp 5242 a and 5242 b, respectively.
  • the tip of a staple leg can enter the respective pocket 5220 , 5222 along the entrance ramp 5240 a, 5240 b and exit the respective pocket 5220 , 5222 along the exit ramp 5242 a, 5242 b.
  • the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example.
  • the pocket 5206 b also defines a bridge 5244 between the proximal cup 5220 and the distal cup 5222 .
  • the bridge 5244 is offset from the non-forming portion 5208 . More specifically, the bridge 5244 is positioned below or recessed relative to the non-forming portion 5208 .
  • the pocket 5206 b is symmetric about the pocket axis PA.
  • the perimeter 5216 of the pocket 5206 b is symmetric about the pocket axis PA.
  • the pocket 5206 b is asymmetric about a central axis CA through the neck portion 5224 and perpendicular to the pocket axis PA.
  • the perimeter 5216 of the pocket 5206 b is asymmetric about the central axis CA, and the proximal cup 5220 has a different geometry than the distal cup 5222 .
  • the asymmetry of the cups 5220 and 5222 is configured to form asymmetric staples. For example, referring again to FIG.
  • the distal depth D 2 is less than the proximal depth D 1 , which is configured to form a staple having a greater formed height at the proximal leg than at the distal leg.
  • the distal depth D 2 can be about 0.002 inches less than the proximal depth D 1 .
  • the difference between the distal depth D 2 and the proximal depth D 1 can be greater than and/or less than 0.002 inches.
  • the difference can be between one percent and ten percent of the staple diameter.
  • the difference can be about two percent of the staple diameter.
  • the formed height of the staple can be greater at the distal leg than the proximal leg.
  • the length of each cup 5220 , 5222 is also different.
  • the distal length D 2 is greater than the proximal length D 1 in FIG. 74 .
  • the incline of the entrance ramps 5240 a and 5240 b in the pocket 5206 b are different, and the incline of the exit ramps 5242 a and 5242 b in the pocket 5206 b are also different.
  • the reduced depth in a portion of the pocket 5206 b can improve the stiffness of the anvil.
  • the anvil 5200 is comprised of more material, which can increase the stiffness thereof.
  • the increased material is in a distal portion of the anvil 5200 , such portion can have an increased stiffness, which can limit bowing or deformation of the anvil toward the distal end.
  • tissue movement or flow can accommodate for tissue movement or flow. More specifically, when tissue is clamped against the anvil 5200 , fluid in the clamped tissue can flow or move toward adjacent, unclamped tissue. The tissue can flow laterally toward the longitudinal sides of the anvil 5200 , distally toward the distal end of the anvil 5200 , and/or proximally toward the proximal end of the anvil 5200 . In certain instances, tissue can flow relative to the anvil 5200 when the cutting edge is advanced distally through the tissue. In such instances, tissue may flow laterally, distally, and/or proximally, but it primarily flows distally due to the distal movement of the cutting edge.
  • the movement or flow of the tissue would be generally proximal during the cutting stroke.
  • the different geometries of the proximal and distal cups 5220 and 5222 , respectively, can accommodate for the flow of the tissue, which can shift or skew the staple legs embedded therein.
  • the pocket 5206 b includes sidewalls 5250 , which extend from the non-forming portion 5208 .
  • the cups 5220 , 5222 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration.
  • the path of the proximal staple leg can be different than the path of the distal staple leg when driven into forming contact with the pocket 5206 b.
  • the asymmetrical staple pockets 5206 b can form asymmetrical staples from symmetrical unformed staples. Additionally or alternatively, asymmetrical unformed staples can be formed into asymmetrical formed staples by the staple pockets 5206 b.
  • FIG. 75A is taken along the plane ALL 1 in FIG. 73 , which corresponds to the anticipated landing location of a proximal staple leg.
  • the tip of a proximal staple leg can be expected to land in the proximal cup 5220 at and/or near the intersection of the plane ALL 1 and the pocket axis PA.
  • the proximal cup 5220 defines a width W 1 A and a depth D 1 A .
  • the cross-section in FIG. 75B is taken across a transition between the proximal cup 5220 and the neck 5224 .
  • FIG. 75B depicts the proximal cup 5220 defining a width W 1 B and a depth D 1 B .
  • the width W 1 B is greater than the width W 1 A , and the depth D 1 B is greater than the depth D 1 A .
  • the proximal cup 5220 widens and deepens from the plane ALL 1 in the proximal cup 5220 toward the neck 5224 .
  • the cross-section in FIG. 75C is taken across a proximal end of the neck portion 5224 .
  • FIG. 75C depicts the pocket 5206 b defining a width W 1 C and a depth D 1 C .
  • the width W 1 C is less than the width W 1 B
  • the depth D 1 C is less than the depth D 1 B .
  • the pocket 5206 b continues to narrow, and becomes shallower in the neck 5224 across the bridge 5244 .
  • FIG. 76A is taken along the plane ALL 2 in FIG. 73 , which corresponds to the anticipated landing location of a distal staple leg.
  • the tip of a distal staple leg can be expected to land in the distal cup 5222 at and/or near the intersection of the plane ALL 2 and the pocket axis PA.
  • the distal cup 5222 defines a width W 2 A and a depth D 2 A .
  • the width W 2 A is different than the width W 1 A
  • the depth D 2 A is different than the depth D 1 A .
  • the cross-section in FIG. 76B is taken across a transition between the distal cup 5222 and the neck 5224 .
  • FIG. 76B depicts the distal cup 5222 defining a width W 2 B and a depth D 2 B .
  • the width W 2 B is different than the width W 1 B
  • the depth D 2 B is different than the depth D 1 B
  • the width W 2 B is less than the width W 2 A
  • the depth D 2 B is greater than the depth D 2 A .
  • the distal cup 5222 narrows and deepens from the plane ALL 2 in the distal cup 5222 toward the neck 5224 .
  • the cross-section in FIG. 76C is taken across a distal end of the neck portion 5224 .
  • FIG. 76C depicts the pocket 5206 b defining a width W 2 C and a depth D 2 C .
  • the width W 2 C is different than the width W 1 C , and the depth D 2 is different than the depth D 1 C
  • the width W 2 C is less than the width W 2 B
  • the depth D 2 is less than the depth D 2 B .
  • the pocket 5206 b continues to narrow, and becomes shallower in the neck 5224 across the bridge 5244 .
  • the bottom surface 5258 of the pocket 5206 b is a flat surface.
  • the bottom surface 5258 can have a groove defined along at least a portion thereof.
  • the bottom surface 5258 can form a trough and/or can include a hump or ridge along at least a portion thereof, such as across the bridge 5244 , for example.
  • the pocket 5206 b includes a proximal extended landing zone 5230 and a distal extended landing zone 5232 .
  • the proximal extended landing zone 5230 is positioned in a proximal portion of the proximal cup 5220
  • the distal extended landing zone 5232 is positioned in a distal portion of the distal cup 5222 . More specifically, the extended landing zones 5230 and 5232 are positioned beyond the anticipated landing location of a staple.
  • the proximal extended landing zone 5230 is positioned proximal to the plane ALL 1 and, in instances where the tip of a staple leg lands beyond the plane ALL 1 , the proximal extended landing zones 5230 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5224 .
  • the distal extended landing zone 5232 is positioned distal to the plane ALL 2 and, in instances where the tip of a staple leg lands beyond the plane ALL 2 , the distal extended landing zones 5232 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5224 .
  • the geometry of the extended landing zones 5230 , 5232 can be constrained or limited by the geometry of the adjacent, nested staple-forming pockets 5206 .
  • the neck portion 5224 is narrower than the proximal and distal cups 5220 and 5222 .
  • the narrowed perimeter 5216 of the pocket 5206 b at the neck portion 5224 defines a receiving peninsula 5226 between a portion of the proximal cup 5220 and a portion of the distal cup 5222 .
  • Receiving peninsulas 5226 are positioned on each side of the pocket 5206 b.
  • the receiving peninsulas 5226 are bounded by the perimeter 5216 of the pocket 5206 b and a tangent axis (e.g., T B1 and T B2 ), which is tangential to the widest portions of the proximal and distal cups 5220 and 5222 on each side of the pocket 5206 .
  • a first tangent axis T B1 is positioned on a first side of the pocket 5206 b and a second tangent axis T B2 is positioned on the opposite side of the pocket 5206 b.
  • the first and second tangent axes T B1 and T B2 depicted in FIG. 73 are skewed relative to the pocket axis PA. In other instances, one or both of the tangent axes T B1 and T B2 can be parallel to the pocket axis PA.
  • the geometry of the pockets 5206 can facilitate the nesting and/or the close arrangement of the pockets 5206 in the staple-forming surface 5202 .
  • the surface area of the staple-forming surface 5202 that is covered by the pockets 5206 can be optimized.
  • the “forming ratio” of the staple-forming surface 5202 is the ratio of the non-forming portion 5208 to the forming portion, i.e., the pockets 5206 . In at least one instance, the forming ratio can be at least 1:1, for example.
  • the arrangement of staple cavities and staples in a staple cartridge for an end effector can correspond to or match the arrangement of staple-forming pockets in an anvil of the end effector. More specifically, the angular orientation and spacing of each staple cavity can match the angular orientation and spacing of a respective staple-forming pocket. For example, when the staple cavities are arranged in a herringbone pattern, the staple-forming pockets can be arranged in a corresponding herringbone pattern.
  • an end effector can include a staple cartridge having an arrangement of staple cavities and an anvil having a non-corresponding arrangement of staple-forming pockets.
  • the staple cavities can be obliquely oriented relative to a longitudinal axis and the staple-forming pockets can be oriented parallel to the longitudinal axis.
  • an end effector can be configured to receive different staple cartridges having different arrangements of staple cavities, for example, and the anvil of the end effector may not be compatible with all of the different staple cartridges and permutations of staple cavities therein.
  • the anvil can be retrofit or adapted with an attachment, such as an anvil plate, having a suitable arrangement of staple-forming pockets.
  • FIGS. 77-79 A surgical end effector 5500 is depicted in FIGS. 77-79 . Similar to the end effector 1100 ( FIGS. 1-4 ), the end effector 5500 includes the elongate channel 1102 , which is configured to operably support a staple cartridge 5510 therein.
  • the staple cartridge 5510 is similar in many aspects to the staple cartridge 1110 .
  • the staple cartridge includes a staple cartridge body 5511 having a deck 5515 .
  • a longitudinal slot 5514 extends through the deck 5515 from a proximal end portion 5512 of the body 5511 toward a distal end portion 5513 of the body 5511 .
  • Angularly-oriented staple cavities 5516 are defined in the cartridge body 5511 and each staple cavity 5516 defines an opening in the deck 5515 .
  • the opening of each staple cavity 5516 is oriented at an oblique angle relative to the longitudinal slot 5514 .
  • the staple cavities 5516 are arranged in a herringbone pattern. Staples are re
  • the end effector 5500 also includes an anvil 5530 that is pivotally supported relative to the elongate channel 1102 .
  • the anvil 5530 is similar in many aspects to the anvil 1130 .
  • the anvil 5530 includes a staple-forming surface 5502 and a longitudinal slot 5504 .
  • a firing element and/or a cutting element such as the sled assembly 1120 and/or the firing member 1760 ( FIG. 4 ), for example, can translate through the longitudinal slot 5504 during at least a portion of a firing stroke.
  • Tissue stops 5531 extend downward toward the staple cartridge 5510 to control the positioning of tissue between the proximal end portion 5512 of the cartridge body 5511 and the anvil 5530 .
  • Staple-forming pockets 5506 are defined in the staple-forming surface 5502 , which also includes a non-forming portion 5508 that extends around the pockets 5506 .
  • the staple-forming pockets 5506 are oriented parallel to the longitudinal slot 5504 . In other words, the arrangement of staple-forming pockets 5506 does not match or correspond to the arrangement of staple cavities 5516 . If staples were fired from the staple cartridge 5510 into forming contact with the anvil 5530 , the majority of such staples would likely be unformed and/or malformed.
  • the end effector 5500 includes an adaptor assembly 5540 , which is configured to adapt the anvil 5530 to a suitable arrangement of staple-forming pockets.
  • the staple cartridge 5510 is part of the adaptor assembly 5540 .
  • the adaptor assembly 5540 also includes an anvil plate 5550 and connecting material 5570 .
  • a proximal portion of the anvil plate 5550 forms a spring 5551 at which the anvil plate 5550 is attached to the staple cartridge 5510 .
  • the anvil plate 5550 is configured to pivot downward toward the staple cartridge 5510 at the proximal spring 5551 when a closing motion is applied to the anvil plate 5550 , such as by the anvil 5530 , for example.
  • the spring 5551 can bias the anvil plate 5550 toward the configuration shown in FIG. 77 , which can facilitate the releasable attachment of the adaptor assembly 5540 to the anvil 5530 .
  • the arrangement of staple-forming pockets in the anvil plate 5550 corresponds to the arrangement of staple cavities 5516 in the staple cartridge.
  • the anvil plate 5550 includes a staple-forming surface 5502 and a longitudinal slot 5554 , which is aligned with the longitudinal slot 5504 in the anvil 5530 and the longitudinal slot 5514 in the staple cartridge 5510 when the adaptor assembly 5540 is installed in the end effector 5500 .
  • Staple-forming pockets 5556 are defined in the staple-forming surface 5502 and a non-forming portion 5558 ( FIG. 77 ) extends around the staple-forming pockets 5556 .
  • the staple-forming pockets 5556 are oriented at oblique angles relative to the longitudinal slot 5554 .
  • the staple-forming pockets 5556 are arranged in a herringbone pattern, which corresponds to the herringbone pattern of the staple cavities 5516 .
  • the anvil plate 5550 can be a sheet of metal in which the arrangement of staple-forming pockets has been stamped.
  • the arrangement of staple-forming pockets 5556 in the anvil plate 5550 corresponds to the arrangement of staple cavities 5516 in the staple cartridge.
  • each staple-forming pocket 5556 in the anvil plate 5550 corresponds to the angle and position of a staple cavity 5516 .
  • a staple cartridge can include a variety of different arrangements of staple cavities, and various exemplary arrangements of staple cavities are described herein.
  • a staple cartridge can include a longitudinally-repetitive pattern of obliquely-oriented staple cavities and/or one or more parallel and/or angularly-offset staple cavities.
  • a staple cartridge can include multiple distinct patterns of staple cavities.
  • the arrangement of staple cavities can vary laterally and/or longitudinally along the cartridge body.
  • a corresponding arrangement of staple-forming pockets can be provided by the complementary anvil plate 5550 of the adaptor assembly 5540 .
  • the anvil plate 5500 is connectable to the staple cartridge 5510 , and the connecting material 5570 is attached to the anvil plate 5500 .
  • the anvil plate 5500 and the connecting material 5570 of the adaptor assembly 5540 are also disposed between the elongate channel 1102 and the anvil 5530 .
  • the anvil 5530 can be pivoted downward toward the elongate channel 1102 to secure or otherwise attach the anvil plate 5550 to the staple-forming surface 5502 of the anvil 5530 with the connecting material 5570 .
  • the spring member 5551 can bias the anvil plate 5550 and the connecting material 5570 thereon into and/or toward attachment with the anvil 5530 .
  • the anvil 5530 has effectively been retrofit or adapted for use with the staple cartridge 5510 .
  • the staple cartridge 5510 and the anvil plate 5550 may include alignment features for aligning the staple cavities 5516 in the staple cartridge 5510 with the corresponding staple-forming pockets 5556 in the anvil plate 5500 .
  • the staple cartridge 5510 includes alignment apertures 5520 ( FIG. 77 ), and the anvil plate 5550 includes alignment posts or pins 5562 .
  • the alignment pins 5562 are received by the alignment apertures 5520 to position the anvil plate 5550 relative to the staple cartridge 5510 .
  • the alignment pins 5562 can be press fit into the alignment apertures 5520 .
  • the connection between the alignment apertures 5520 and the alignment pins 5562 is configured to longitudinally align the staple cartridge 5510 and the anvil plate 5550 , for example.
  • the manufacturer and/or distributor can provide the assembly 5540 pre-assembled.
  • the anvil plate 5550 can be press fit into engagement with the staple cartridge 5510 before a surgeon or assistant thereto obtains the assembly 5540 for a surgical procedure.
  • the surgeon and/or assistant thereto can assemble the assembly 5540 .
  • the anvil plate 5550 also includes alignment features for aligning the anvil plate 5550 with the anvil 5530 .
  • the anvil plate 5550 includes distal alignment flanges 5564 .
  • the distal alignment flanges 5564 are received by the longitudinal slot 5504 in the anvil 5530 to position the anvil plate 5550 relative to the anvil 5530 .
  • the distal alignment flanges 5564 can be press fit into the longitudinal slot 5504 .
  • the connection between the alignment flanges 5564 and the longitudinal slot 5504 is configured to laterally align the anvil plate 5550 and the anvil 5530 , for example.
  • the connecting material 5570 is a flexible material.
  • the connecting material 5570 can comprise an elastomer and/or low density polyethylene.
  • the connecting material 5570 can be an overmold on the anvil plate 5550 .
  • the connecting material 5570 is configured to assume a deformed configuration that matches the profile of the staple-forming surface 5502 .
  • the unformed configuration of the connecting material 5570 is depicted in FIG. 77 and the formed configuration of the connecting material 5570 is depicted in FIG. 78 .
  • the connecting material 5570 flows into and fills the staple-forming pockets 5506 .
  • the staple-forming pockets 5506 imprint in the connecting material 5570 .
  • the connecting material 5570 can fortify the anvil plate 5550 during a forming process.
  • the connecting material 5570 between the anvil plate 5550 and the anvil 5530 can provide a backing for the anvil plate 5550 to prevent and/or limit deformation of the anvil plate 5550 relative to the anvil 5530 when the anvil plate 5550 is impacted and subjected to other forces during use.
  • the connecting material 5570 includes a channel 5572 .
  • the channel 5572 extends along a portion of the length thereof.
  • a similar channel 5572 can be defined in the connecting material 5570 along the opposite side of the adaptor assembly 5540 .
  • a lip 5566 of the anvil plate 5550 is positioned in the channel 5572 .
  • the lip 5566 is substantially U-shaped. In other instances, the lip 5566 can be L-shaped, linear, and/or contoured, for example.
  • the anvil plate 5500 also includes an inner ridge 5568 , which is aligned with a longitudinal slot 5574 ( FIG. 77 ) in the connecting material 5570 and the longitudinal slot 5504 in the anvil 5530 .
  • the ridge 5568 is configured to facilitate the alignment of the adaptor assembly 5540 along the length of the end effector 5500 .
  • the connecting material 5570 can be molded over the anvil plate 5550 .
  • the connecting material 5570 can be molded around the lip 5566 and/or the ridge 5568 .
  • FIG. 79 A portion of the end effector 5500 is also depicted in FIG. 79 .
  • An adaptor assembly 5640 is installed in the end effector 5500 in FIG. 79 .
  • the adaptor assembly 5640 is similar in many aspects to the adaptor assembly 5540 .
  • the adaptor assembly 5640 includes an anvil plate 5650 having a staple-forming surface 5652 and a longitudinal slot 5654 , which is aligned with the longitudinal slot 5504 in the anvil 5530 .
  • Staple-forming pockets 5656 are defined in the staple-forming surface 5652 and a non-forming portion 5658 extends around the staple-forming pockets 5656 .
  • the staple-forming pockets 5656 are oriented at oblique angles relative to the longitudinal slot 5654 .
  • the staple-forming pockets 5656 are arranged in a herringbone pattern, which corresponds to the herringbone pattern of the staple cavities 5516 ( FIG. 77 ).
  • the anvil plate 5650 can be a sheet of metal in which the arrangement of staple-forming pockets has been stamped.
  • the adaptor assembly 5640 does not include a deformable material, such as the deformable material 5570 . Rather, the anvil plate 5650 is configured to directly engage the anvil 5530 .
  • the anvil plate 5650 includes a lip 5666 , which is positioned against the staple-forming surface 5502 .
  • the lip 5666 is substantially U-shaped. In other instances, the lip 5666 can be L-shaped, linear, and/or contoured, for example.
  • the anvil plate 5600 also includes an inner ridge 5668 , which is aligned with the longitudinal slot 5504 in the anvil 5530 .
  • the ridge 5668 is configured to facilitate the alignment of the adaptor assembly 5640 along the length of the end effector 5600 .
  • the anvil plate 5650 can be embedded in the staple-forming surface 5502 of the anvil 5530 .
  • staple-forming pockets 5656 of the anvil plate 5650 can at least partially nest within the staple-forming pockets 5506 in the anvil 5530 .
  • the arrangement, quantity, and/or geometry of the staple-forming pockets 5656 are different than the arrangement, quantity, and/or geometry of the staple-forming pockets 5506 , portions of the staple-forming pockets 5656 can be positioned within portions of the staple-forming pockets 5506 .
  • a staple cartridge comprising a longitudinal axis, a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein a majority of the plurality of staple cavities are arranged in a longitudinally-repetitive pattern, wherein the plurality of staple cavities further comprises an irregular staple cavity, and wherein the irregular staple cavity is angularly-offset from the staple cavities in the longitudinally-repetitive pattern, and a plurality of staples positioned in the staple cavities.
  • the staple cartridge of Example 1 further comprising a firing element configured to translate between a proximal position and a distal position in the cartridge body, wherein the longitudinally-repetitive pattern extends distally beyond the distal position of the firing element.
  • the staple cartridge of Examples 1 or 2, wherein the longitudinally-repetitive pattern consists of a pattern of staple cavities obliquely oriented relative to the longitudinal axis.
  • each staple cavity defines an opening in the deck, and wherein the openings of the staple cavities in the pattern form a herringbone pattern.
  • the staple cartridge of Examples 1, 2, 3, or 4 wherein the opening of the irregular staple cavity comprises a proximal end and a distal end, wherein a staple cavity axis extends between the proximal end and the distal end, and wherein the staple cavity axis is parallel to the longitudinal axis.
  • a staple cartridge comprising a longitudinal axis and a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein the plurality of staple cavities are arranged in a plurality of patterns, and wherein the plurality of patterns comprises a first pattern comprising a longitudinally-repetitive pattern of staple cavities angularly oriented relative to the longitudinal axis and a second pattern, wherein the second pattern is laterally aligned with the first pattern and longitudinally offset from the first pattern, and wherein the second pattern is different than the first pattern.
  • the staple cartridge further comprises a plurality of staples positioned in the staple cavities.
  • the staple cartridge of Example 6 wherein the cartridge body comprises a deck, and wherein the longitudinally-repetitive pattern comprises a first staple cavity defining a first opening in the deck and a second staple cavity defining a second opening in the deck, wherein the second opening is obliquely oriented relative to the first opening.
  • the staple cartridge of Example 10 further comprising a plurality of staple drivers comprising a first driver positioned in the third staple cavity and comprising a first ramp profile and a second driver positioned in the fourth staple cavity and comprising a second ramp profile, wherein the first driver is connected to the second driver, and wherein the first ramp profile is different than the second ramp profile.
  • An end effector for stapling tissue comprising, the end effector comprising a staple cartridge comprising a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein the plurality of staple cavities are arranged in a plurality of patterns.
  • the plurality of patterns comprises a first pattern comprising a longitudinally-repetitive pattern of staple cavities angularly oriented relative to a longitudinal axis and a second pattern, wherein the second pattern is longitudinally offset from the first pattern, and wherein the second pattern is different than the first pattern.
  • the end effector further comprises a cutting edge configured to move between a proximal position and a distal position and a tissue stop, wherein the first pattern extends between the tissue stop and the distal position of the cutting edge.
  • Example 17 The end effector of Example 17, wherein the second pattern comprises a plurality of parallel staple cavities.
  • tissue stop comprises a pair of sidewalls extending from the anvil toward the staple cartridge.
  • An end effector for use with a surgical stapler comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, and wherein the first staple comprises a proximal leg and a distal leg and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket.
  • the first pocket comprises a proximal cup, wherein the proximal leg is aligned with the proximal cup and a distal cup, wherein the distal leg is aligned with the distal cup, and wherein the first pocket is asymmetric relative to a central axis transecting the first pocket equidistant between the proximal cup and the distal cup.
  • Example 21 The end effector of Example 21, wherein the first pocket is obliquely oriented relative to a longitudinal axis defined by the end effector.
  • each pocket comprises a perimeter
  • the plurality of pockets comprises a second pocket
  • a portion of the perimeter of the first pocket is adjacently nested with a portion of the perimeter of the second pocket.
  • An end effector for use with a surgical stapler comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, and wherein the first staple comprises a first proximal leg and a first distal leg, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket.
  • the first pocket comprises a first proximal cup, wherein the first proximal leg is aligned with the first proximal cup, and a first distal cup, wherein the first distal leg is aligned with the first distal cup, wherein the first distal cup is laterally offset from the first proximal cup, and wherein the first pocket is asymmetric relative to a first pocket axis extending between the first proximal cup and the first distal cup.
  • Example 26 wherein the plurality of pockets comprises a second pocket, and wherein the second pocket comprises a second proximal cup and a second distal cup, wherein the second distal cup is laterally offset from the second proximal cup, and wherein the second pocket is asymmetric relative to a second pocket axis extending between the second proximal cup and the second distal cup.
  • Example 27 The end effector of Example 27, wherein the second pocket axis is angularly oriented relative to the first pocket axis.
  • the plurality of staples further comprises a second staple, wherein the second staple comprises a second proximal leg and a second distal leg, wherein the second proximal leg is aligned with the second proximal cup, and wherein the second distal leg is aligned with the second distal cup.
  • the staple-forming surface comprises a non-forming planar surface surrounding at least a portion of the pockets
  • the first proximal cup comprises a proximal depth relative to the non-forming planar surface
  • the first distal cup comprises a distal depth relative to the non-forming planar surface, and wherein the distal depth is different than the proximal depth.
  • Example 34 The end effector of Example 34, wherein the proximal depth is greater than the distal depth.
  • An end effector for use with a surgical stapler comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, wherein the first staple comprises a first proximal leg and a first distal leg, and wherein the first distal leg is laterally offset from the first proximal leg, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket.
  • the first pocket comprises a first proximal cup comprising a proximal geometry, wherein the first proximal leg is aligned with the first proximal cup, and a first distal cup comprising a distal geometry, wherein the first distal leg is aligned with the first distal cup, and wherein distal geometry is different than the proximal geometry.
  • Example 36 The end effector of Example 36, wherein the first proximal cup is configured to form the first proximal leg to a first height, wherein the first distal cup is configured to form the first distal leg to a second height, and wherein the second height is different than the first height.
  • first proximal cup comprises a first entrance angle and a first exit angle
  • first distal cup comprises a second entrance angle and a second exit angle
  • first entrance angle is different than the second entrance angle
  • first exit angle is different than the second exit angle
  • Example 41 The end effector of Example 41, wherein the plurality of pockets are arranged in a plurality of rows comprising a first row comprising the first pocket and a second row comprising the second pocket, wherein the second pocket is not parallel to the first pocket.
  • An end effector comprising a staple cartridge and an anvil comprising a longitudinal axis and a staple-forming surface, wherein a plurality of staple-forming pockets are defined in the staple-forming surface.
  • the plurality of staple-forming pockets comprises a first pocket obliquely oriented relative to the longitudinal axis, a second pocket obliquely oriented relative to the longitudinal axis and the first pocket, and a third pocket obliquely oriented relative to the longitudinal axis, the first pocket, and the second pocket.
  • Example 43 The end effector of Example 43, wherein a slot is defined at least partially through the anvil along the longitudinal axis, wherein the first pocket is spaced a first distance from the slot, wherein the second pocket is spaced a second distance from the slot, wherein the third pocket is spaced a third distance from the slot, and wherein the first distance, the second distance, and the third distance are different.
  • the staple cartridge comprises a plurality of staples comprising a first staple positioned for forming contact with the first pocket, a second staple positioned for forming contact with the second pocket, wherein the first staple laterally overlaps the first staple by a first distance, and a third staple positioned for forming contact with the third pocket, wherein the third staple laterally overlaps the second staple by a second distance, and wherein the second distance is different than the first distance.
  • a staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, wherein the staple cavities are obliquely oriented relative to the longitudinal slot, wherein the staple cavities are arranged in a plurality of rows comprising a first row positioned on a first side of the longitudinal slot, a second row positioned on the first side of the longitudinal slot, wherein the staple cavities in the first row laterally overlap the staple cavities in the second row by a first distance, and a third row positioned on the first side of the longitudinal slot, wherein the staple cavities in the second row laterally overlaps the staple cavities in the third row by a second distance, and wherein the second distance is different than the first distance.
  • Example 48 The staple cartridge of Example 48, wherein the staple cavities in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staple cavities in the second row are oriented at a second angle relative to the longitudinal slot, wherein the staple cavities in the third row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • the staple cartridge of Examples 48, 49, 50, 51, or 52 further comprising a plurality of staples positioned in the plurality of staple cavities.
  • the staple cartridge of Example 53 wherein the staples comprise a staple length, and wherein the first distance and the second distance are less than one-third the staple length.
  • the staple cartridge of Examples 53 or 54 wherein the staples comprise a diameter, and wherein the first distance and the second distance are greater than the diameter.
  • a staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, and a plurality of staples positioned in the plurality of staple cavities, wherein the staples are obliquely oriented relative to the longitudinal slot, and wherein the plurality of staples comprises a first group of staples arranged in a first row, a second group of staples arranged in a second row, wherein the first group of staples in the first row laterally overlap the second group of staples in the second row by a first distance, and a third group of staples arranged in a third row, wherein the second group of staples in the second row laterally overlaps the third group of staples in the third row by a second distance, and wherein the second distance is different than the first distance.
  • the staple cartridge of Example 58 wherein the staples in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staples in the second row are oriented at a second angle relative to the longitudinal slot, wherein the staples in the third row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • the staple cartridge of Examples 58, 59, or 60 wherein the staples comprise a staple length, and wherein the first distance and the second distance are less than one-third the staple length.
  • the staple cartridge of Examples 58, 59, 60, 61, or 62 wherein the first row comprises an inner row, wherein the second row comprises an intermediate row, and wherein the third row comprises an outer row.
  • a staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, and a plurality of staples positioned in the plurality of staple cavities, wherein the staples are obliquely oriented relative to the longitudinal slot, and wherein the plurality of staples comprises a first group of staples arranged in an inner row, a second group of staples arranged in an intermediate row, wherein the inner row is laterally offset from the intermediate row by a first distance, and a third group of staples arranged in an outer row, wherein the outer row is laterally offset from the intermediate row by a second distance, and wherein the second distance is different than the first distance.
  • Example 65 The staple cartridge of Example 65, wherein the staples in the inner row are oriented at a first angle relative to the longitudinal slot, wherein the staples in the intermediate row are oriented at a second angle relative to the longitudinal slot, wherein the staples in the outer row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • each staple in the first group is longitudinally offset from an adjacent the staple in the second group by a first longitudinal distance
  • each staple in the third group is longitudinally offset from an adjacent the staple in the third group by a second longitudinal distance
  • the second longitudinal distance is different than the first longitudinal distance
  • An adaptor for use with an end effector having an anvil comprising a first arrangement of staple-forming pockets comprising a staple cartridge comprising a plurality of staples and an anvil plate comprising a second arrangement of staple-forming pockets, wherein the second arrangement of staple-forming pockets is different than the first arrangement of staple-forming pockets.
  • anvil plate further comprises an alignment feature configured to engage the anvil.
  • anvil plate further comprises an alignment post positioned in an alignment aperture in the staple cartridge.
  • anvil plate further comprises an alignment ridge aligned with a longitudinal slot in the anvil.
  • Example 73 wherein the deformable material comprises an overmold on the anvil plate.
  • the staple cartridge comprises a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, and wherein the staple cavities are arranged in a plurality of angled rows corresponding to the plurality of rows of angled staple-forming pockets.
  • An adaptor for use with an end effector having a staple-forming anvil comprising a staple cartridge comprising a plurality of staple cavities and a plurality of staples positioned in the staple cavities.
  • the adaptor further comprises an anvil plate, wherein the anvil plate is movable between an open position and a closed position relative to the staple cartridge.
  • the anvil plate comprises a plurality of staple-forming pockets, wherein each staple is aligned with a corresponding the staple-forming pocket when the anvil plate is in the closed position, and an alignment feature configured to engage the staple-forming anvil.
  • Example 79 The adaptor of Example 79, further comprising a deformable overmold on the anvil plate.
  • An adaptor for use with an end effector having an anvil comprising a plurality of first staple-forming pockets comprising a staple cartridge comprising a plurality of staple cavities and a plurality of staples positioned in the staple cavities, wherein the plurality of staples are misaligned with the first staple-forming pockets.
  • the adaptor further comprises an anvil plate comprising a plurality of second staple-forming pockets, wherein the staples are aligned with the second staple-forming pockets.
  • the adaptor of Example 83 further comprising a deformable overmold on the anvil plate.
  • a method comprising obtaining a staple cartridge comprising a plurality of staples, wherein each staple comprises a base and a leg extending from the base and firing the staples from the staple cartridge, wherein the staples are fired into tissue in a staple line.
  • the staple line comprises a first portion comprising a first flexibility and a second portion longitudinally offset from the first portion, wherein the second portion comprises a second flexibility, and wherein the second flexibility is different than the first flexibility.
  • Example 88 further comprising selecting the staple cartridge from at least two different staple cartridges.
  • Example 89 The method of Example 89, wherein the at least two different staple cartridges comprise different arrangements of staple cavities.
  • a method comprising obtaining a staple cartridge comprising a plurality of staples, wherein each staple comprises a base and a leg extending from the base and firing the staples from the staple cartridge, wherein the staples are fired into tissue in a staple line.
  • the staple line comprises a first length comprising a first group of the staples, wherein the bases of the staples in the first group are arranged in a herringbone pattern, and a second length comprising a second group of the staples, wherein the second length is longitudinally offset from the first length, and wherein the bases of the staples in the first group are arranged in parallel.
  • Example 94 The method of Example 94, wherein the first length comprises a first flexibility, wherein the second length comprises a second flexibility, and wherein the second flexibility is different than the first flexibility.
  • Examples 94, 95, or 96 further comprising selecting the staple cartridge from at least two different staple cartridges.
  • Example 97 The method of Example 97, wherein the at least two different staple cartridges comprise different arrangements of staple cavities.
  • a method comprising obtaining an adaptor assembly comprising a staple cartridge and an anvil plate, wherein the anvil plate comprises a plurality of first staple-forming pockets, and wherein the plurality of first staple-forming pockets are arranged in a first arrangement, and installing the adaptor assembly in an end effector, wherein the end effector comprises an anvil comprising a plurality of second staple-forming pockets, wherein the second staple-forming pockets are arranged in a second arrangement, and wherein the second arrangement is different than the first arrangement.
  • Example 99 The method of Example 99, wherein the first arrangement comprises a herringbone pattern of pockets.
  • Example 103 further comprising driving the staples into forming contact with the second staple-forming pockets in the adaptor assembly.
  • An end effector for use with a surgical stapler comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple and a second staple, and wherein the second staple is obliquely oriented relative to the first staple, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, and wherein the pockets cover more than 50% of the staple-forming surface.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Robotics (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

An adaptor for an end effector is disclosed. The adaptor can include a staple cartridge having a plurality of staple cavities and a plurality of staples positioned in the staple cavities. The adaptor can also include an anvil plate comprising an arrangement of staple-forming pockets that differs from the staple-forming pockets in the anvil of the end effector. The arrangement of staple cavities in the staple cartridge can correspond to the arrangement of staple-forming pockets in the anvil plate. Additionally or alternatively, the staples in the staple cartridge can be misaligned with the staple-forming pockets in the anvil. The adaptor can include a deformable overmold positioned over the anvil plate, and the anvil plate can comprise a stamped metal sheet.

Description

    BACKGROUND
  • The present invention relates to surgical instruments and, in various arrangements, to surgical stapling and cutting instruments and staple cartridges for use therewith that are designed to staple and cut tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various features of the embodiments described herein, together with advantages thereof, may be understood in accordance with the following description taken in conjunction with the accompanying drawings as follows:
  • FIG. 1 is a perspective view of an interchangeable surgical tool assembly embodiment operably coupled to a handle assembly embodiment;
  • FIG. 2 is an exploded assembly view of portions of the handle assembly and interchangeable surgical tool assembly of FIG. 1;
  • FIG. 3 is a perspective view of a distal portion of the interchangeable surgical tool assembly embodiment depicted in FIGS. 1 and 2 with portions thereof omitted for clarity;
  • FIG. 4 is an exploded assembly view of a distal portion of the interchangeable surgical tool assembly of FIG. 1;
  • FIG. 5 is a perspective view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 6 is a partial perspective bottom view of the staple cartridge body of FIG. 5;
  • FIG. 7 is a top plan view of the staple cartridge body of FIG. 5 and depicting a cutting element positioned in a longitudinal slot of the cartridge body;
  • FIG. 8 is a bottom plan view of the staple cartridge body of FIG. 5 and depicting drivers positioned in the staple cavities;
  • FIG. 9 is a staple line implanted in stapled tissue and generated by the staple cartridge body of FIG. 5 and depicting certain staples that are likely to be missing from the staple line with phantom lines;
  • FIG. 10 is a side elevation view of a staple in the staple line of FIG. 9;
  • FIG. 11 is a side elevation view of a staple;
  • FIG. 12 is a bottom plan view of a staple cartridge body having a plurality of staple cavities defined therein and depicting drivers positioned in the staple cavities;
  • FIG. 13 is a perspective view of the drivers in the proximal staple cavities of FIG. 8;
  • FIG. 14 is a side elevation view of the drivers of FIG. 13 and depicting an offset ramped surface with a phantom line;
  • FIG. 15 is a plan view of the drivers of FIG. 13;
  • FIG. 16 is a front elevation view of the drivers of FIG. 13;
  • FIG. 17 is a plan view of the drivers in the proximal staple cavities of the staple cartridge body of FIG. 12;
  • FIG. 18 is a front elevation view of the drivers of FIG. 17;
  • FIG. 19 is a top plan view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 20 is a bottom plan view of the staple cartridge body of FIG. 19 and depicting drivers positioned in the staple cavities;
  • FIG. 21 is a perspective view of the drivers in the proximal staple cavities of FIG. 20;
  • FIG. 22 is a front elevation view of the drivers of FIG. 21;
  • FIG. 23 is a plan view of the drivers of FIG. 21;
  • FIG. 24 is a side elevation view of the drivers of FIG. 21 and depicting an offset ramped surface with a phantom line;
  • FIG. 25 is a top plan view of a staple cartridge body having a plurality of staple cavities defined therein;
  • FIG. 26 is a bottom plan view of the staple cartridge body of FIG. 25 and depicting drivers positioned in the staple cavities;
  • FIG. 27 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 28 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 29 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 30 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 31 is a plan view of a portion of a staple cartridge body having a plurality of angularly-oriented staple cavities defined therein and depicting staples in the staple cavities;
  • FIG. 32 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 33 is a detail view of a pocket of FIG. 32;
  • FIGS. 34-35C are cross-sectional views of the pocket of FIG. 33;
  • FIG. 36 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 37 is a detail view of a pocket of FIG. 36;
  • FIGS. 38-39C are cross-sectional views of the pocket of FIG. 37;
  • FIG. 40 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 41 is a detail view of a pocket of FIG. 40;
  • FIGS. 42-43C are cross-sectional views of the pocket of FIG. 41;
  • FIG. 44 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 45 is a detail view of a pocket of FIG. 44;
  • FIGS. 46-47C are cross-sectional views of the pocket of FIG. 45;
  • FIG. 48 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 49 is a detail view of a pocket of FIG. 48;
  • FIGS. 50-51C are cross-sectional views of the pocket of FIG. 49;
  • FIG. 52 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 53 is a detail view of a pocket of FIG. 52;
  • FIGS. 54-55C are cross-sectional views of the pocket of FIG. 53;
  • FIG. 56 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 57 is a detail view of a pocket of FIG. 56;
  • FIGS. 58-59C are cross-sectional views of the pocket of FIG. 57;
  • FIG. 60 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 61 is a detail view of a pocket of FIG. 60;
  • FIGS. 62-63C are cross-sectional views of the pocket of FIG. 61;
  • FIG. 64 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 65 is a detail view of a pocket of FIG. 64;
  • FIGS. 66-67C are cross-sectional views of the pocket of FIG. 65;
  • FIG. 68 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 69 is a detail view of a pocket of FIG. 68;
  • FIGS. 70-71C are cross-sectional views of the pocket of FIG. 69;
  • FIG. 72 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 73 is a detail view of a pocket of FIG. 72;
  • FIGS. 74-76C are cross-sectional views of the pocket of FIG. 76;
  • FIG. 77 is an exploded perspective view of an end effector and an adaptor assembly;
  • FIG. 78 is a cross-sectional perspective view of a portion of the end effector and the adaptor assembly of FIG. 77;
  • FIG. 79 is a cross-sectional perspective view of a portion of the end effector of FIG. 77 and an adaptor assembly;
  • FIG. 80 is a plan view of a portion of an anvil having a plurality of staple-forming pockets defined therein;
  • FIG. 81 is a top view of a staple driver embodiment;
  • FIG. 82 is a top perspective view of the staple driver embodiment of FIG. 81; and
  • FIG. 83 is a bottom perspective view of the staple driver embodiment of FIGS. 81 and 82.
  • Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate various embodiments of the invention, in one form, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
  • DETAILED DESCRIPTION
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/386,185, entitled SURGICAL STAPLING INSTRUMENTS AND REPLACEABLE TOOL ASSEMBLIES THEREOF;
  • U.S. patent application Ser. No. 15/386,230, entitled ARTICULATABLE SURGICAL STAPLING INSTRUMENTS;
  • U.S. patent application Ser. No. 15/386,221, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS;
  • U.S. patent application Ser. No. 15/386,209, entitled SURGICAL END EFFECTORS AND FIRING MEMBERS THEREOF;
  • U.S. patent application Ser. No. 15/386,198, entitled LOCKOUT ARRANGEMENTS FOR SURGICAL END EFFECTORS AND REPLACEABLE TOOL ASSEMBLIES; and
  • U.S. patent application Ser. No. 15/386,240, entitled SURGICAL END EFFECTORS AND ADAPTABLE FIRING MEMBERS THEREFOR.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/385,939, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;
  • U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,943, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
  • U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES;
  • U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;
  • U.S. patent application Ser. No. 15/385,950, entitled SURGICAL TOOL ASSEMBLIES WITH CLOSURE STROKE REDUCTION FEATURES;
  • U.S. patent application Ser. No. 15/385,945, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN;
  • U.S. patent application Ser. No. 15/385,946, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
  • U.S. patent application Ser. No. 15/385,951, entitled SURGICAL INSTRUMENTS WITH JAW OPENING FEATURES FOR INCREASING A JAW OPENING DISTANCE;
  • U.S. patent application Ser. No. 15/385,953, entitled METHODS OF STAPLING TISSUE;
  • U.S. patent application Ser. No. 15/385,954, entitled FIRING MEMBERS WITH NON-PARALLEL JAW ENGAGEMENT FEATURES FOR SURGICAL END EFFECTORS;
  • U.S. patent application Ser. No. 15/385,955, entitled SURGICAL END EFFECTORS WITH EXPANDABLE TISSUE STOP ARRANGEMENTS;
  • U.S. patent application Ser. No. 15/385,948, entitled SURGICAL STAPLING INSTRUMENTS AND STAPLE-FORMING ANVILS;
  • U.S. patent application Ser. No. 15/385,956, entitled SURGICAL INSTRUMENTS WITH POSITIVE JAW OPENING FEATURES;
  • U.S. patent application Ser. No. 15/385,958, entitled SURGICAL INSTRUMENTS WITH LOCKOUT ARRANGEMENTS FOR PREVENTING FIRING SYSTEM ACTUATION UNLESS AN UNSPENT STAPLE CARTRIDGE IS PRESENT; and
  • U.S. patent application Ser. No. 15/385,947, entitled STAPLE CARTRIDGES AND ARRANGEMENTS OF STAPLES AND STAPLE CAVITIES THEREIN.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/385,896, entitled METHOD FOR RESETTING A FUSE OF A SURGICAL INSTRUMENT SHAFT;
  • U.S. patent application Ser. No. 15/385,898, entitled STAPLE FORMING POCKET ARRANGEMENT TO ACCOMMODATE DIFFERENT TYPES OF STAPLES;
  • U.S. patent application Ser. No. 15/385,899, entitled SURGICAL INSTRUMENT COMPRISING IMPROVED JAW CONTROL;
  • U.S. patent application Ser. No. 15/385,901, entitled STAPLE CARTRIDGE AND STAPLE CARTRIDGE CHANNEL COMPRISING WINDOWS DEFINED THEREIN;
  • U.S. patent application Ser. No. 15/385,902, entitled SURGICAL INSTRUMENT COMPRISING A CUTTING MEMBER;
  • U.S. patent application Ser. No. 15/385,904, entitled STAPLE FIRING MEMBER COMPRISING A MISSING CARTRIDGE AND/OR SPENT CARTRIDGE LOCKOUT;
  • U.S. patent application Ser. No. 15/385,905, entitled FIRING ASSEMBLY COMPRISING A LOCKOUT;
  • U.S. patent application Ser. No. 15/385,907, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN END EFFECTOR LOCKOUT AND A FIRING ASSEMBLY LOCKOUT;
  • U.S. patent application Ser. No. 15/385,908, entitled FIRING ASSEMBLY COMPRISING A FUSE; and
  • U.S. patent application Ser. No. 15/385,909, entitled FIRING ASSEMBLY COMPRISING A MULTIPLE FAILED-STATE FUSE.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/385,920, entitled STAPLE FORMING POCKET ARRANGEMENTS;
  • U.S. patent application Ser. No. 15/385,913, entitled ANVIL ARRANGEMENTS FOR SURGICAL STAPLERS;
  • U.S. patent application Ser. No. 15/385,914, entitled METHOD OF DEFORMING STAPLES FROM TWO DIFFERENT TYPES OF STAPLE CARTRIDGES WITH THE SAME SURGICAL STAPLING INSTRUMENT;
  • U.S. patent application Ser. No. 15/385,893, entitled BILATERALLY ASYMMETRIC STAPLE FORMING POCKET PAIRS;
  • U.S. patent application Ser. No. 15/385,929, entitled CLOSURE MEMBERS WITH CAM SURFACE ARRANGEMENTS FOR SURGICAL INSTRUMENTS WITH SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,911, entitled SURGICAL STAPLERS WITH INDEPENDENTLY ACTUATABLE CLOSING AND FIRING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,927, entitled SURGICAL STAPLING INSTRUMENTS WITH SMART STAPLE CARTRIDGES;
  • U.S. patent application Ser. No. 15/385,917, entitled STAPLE CARTRIDGE COMPRISING STAPLES WITH DIFFERENT CLAMPING BREADTHS;
  • U.S. patent application Ser. No. 15/385,900, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING PRIMARY SIDEWALLS AND POCKET SIDEWALLS;
  • U.S. patent application Ser. No. 15/385,931, entitled NO-CARTRIDGE AND SPENT CARTRIDGE LOCKOUT ARRANGEMENTS FOR SURGICAL STAPLERS;
  • U.S. patent application Ser. No. 15/385,915, entitled FIRING MEMBER PIN ANGLE;
  • U.S. patent application Ser. No. 15/385,897, entitled STAPLE FORMING POCKET ARRANGEMENTS COMPRISING ZONED FORMING SURFACE GROOVES;
  • U.S. patent application Ser. No. 15/385,922, entitled SURGICAL INSTRUMENT WITH MULTIPLE FAILURE RESPONSE MODES;
  • U.S. patent application Ser. No. 15/385,924, entitled SURGICAL INSTRUMENT WITH PRIMARY AND SAFETY PROCESSORS;
  • U.S. patent application Ser. No. 15/385,912, entitled SURGICAL INSTRUMENTS WITH JAWS THAT ARE PIVOTABLE ABOUT A FIXED AXIS AND INCLUDE SEPARATE AND DISTINCT CLOSURE AND FIRING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,910, entitled ANVIL HAVING A KNIFE SLOT WIDTH;
  • U.S. patent application Ser. No. 15/385,903, entitled CLOSURE MEMBER ARRANGEMENTS FOR SURGICAL INSTRUMENTS; and
  • U.S. patent application Ser. No. 15/385,906, entitled FIRING MEMBER PIN CONFIGURATIONS.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/386,188, entitled STEPPED STAPLE CARTRIDGE WITH ASYMMETRICAL STAPLES;
  • U.S. patent application Ser. No. 15/386,192, entitled STEPPED STAPLE CARTRIDGE WITH TISSUE RETENTION AND GAP SETTING FEATURES;
  • U.S. patent application Ser. No. 15/386,206, entitled STAPLE CARTRIDGE WITH DEFORMABLE DRIVER RETENTION FEATURES;
  • U.S. patent application Ser. No. 15/386,226, entitled DURABILITY FEATURES FOR END EFFECTORS AND FIRING ASSEMBLIES OF SURGICAL STAPLING INSTRUMENTS;
  • U.S. patent application Ser. No. 15/386,222, entitled SURGICAL STAPLING INSTRUMENTS HAVING END EFFECTORS WITH POSITIVE OPENING FEATURES; and
  • U.S. patent application Ser. No. 15/386,236, entitled CONNECTION PORTIONS FOR DISPOSABLE LOADING UNITS FOR SURGICAL STAPLING INSTRUMENTS.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/385,887, entitled METHOD FOR ATTACHING A SHAFT ASSEMBLY TO A SURGICAL INSTRUMENT AND, ALTERNATIVELY, TO A SURGICAL ROBOT;
  • U.S. patent application Ser. No. 15/385,889, entitled SHAFT ASSEMBLY COMPRISING A MANUALLY-OPERABLE RETRACTION SYSTEM FOR USE WITH A MOTORIZED SURGICAL INSTRUMENT SYSTEM;
  • U.S. patent application Ser. No. 15/385,890, entitled SHAFT ASSEMBLY COMPRISING SEPARATELY ACTUATABLE AND RETRACTABLE SYSTEMS;
  • U.S. patent application Ser. No. 15/385,891, entitled SHAFT ASSEMBLY COMPRISING A CLUTCH CONFIGURED TO ADAPT THE OUTPUT OF A ROTARY FIRING MEMBER TO TWO DIFFERENT SYSTEMS;
  • U.S. patent application Ser. No. 15/385,892, entitled SURGICAL SYSTEM COMPRISING A FIRING MEMBER ROTATABLE INTO AN ARTICULATION STATE TO ARTICULATE AN END EFFECTOR OF THE SURGICAL SYSTEM;
  • U.S. patent application Ser. No. 15/385,894, entitled SHAFT ASSEMBLY COMPRISING A LOCKOUT; and
  • U.S. patent application Ser. No. 15/385,895, entitled SHAFT ASSEMBLY COMPRISING FIRST AND SECOND ARTICULATION LOCKOUTS.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Dec. 21, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/385,916, entitled SURGICAL STAPLING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,918, entitled SURGICAL STAPLING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,919, entitled SURGICAL STAPLING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,921, entitled SURGICAL STAPLE CARTRIDGE WITH MOVABLE CAMMING MEMBER CONFIGURED TO DISENGAGE FIRING MEMBER LOCKOUT FEATURES;
  • U.S. patent application Ser. No. 15/385,923, entitled SURGICAL STAPLING SYSTEMS;
  • U.S. patent application Ser. No. 15/385,925, entitled JAW ACTUATED LOCK ARRANGEMENTS FOR PREVENTING ADVANCEMENT OF A FIRING MEMBER IN A SURGICAL END EFFECTOR UNLESS AN UNFIRED CARTRIDGE IS INSTALLED IN THE END EFFECTOR;
  • U.S. patent application Ser. No. 15/385,926, entitled AXIALLY MOVABLE CLOSURE SYSTEM ARRANGEMENTS FOR APPLYING CLOSURE MOTIONS TO JAWS OF SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 15/385,928, entitled PROTECTIVE COVER ARRANGEMENTS FOR A JOINT INTERFACE BETWEEN A MOVABLE JAW AND ACTUATOR SHAFT OF A SURGICAL INSTRUMENT;
  • U.S. patent application Ser. No. 15/385,930, entitled SURGICAL END EFFECTOR WITH TWO SEPARATE COOPERATING OPENING FEATURES FOR OPENING AND CLOSING END EFFECTOR JAWS;
  • U.S. patent application Ser. No. 15/385,932, entitled ARTICULATABLE SURGICAL END EFFECTOR WITH ASYMMETRIC SHAFT ARRANGEMENT;
  • U.S. patent application Ser. No. 15/385,933, entitled ARTICULATABLE SURGICAL INSTRUMENT WITH INDEPENDENT PIVOTABLE LINKAGE DISTAL OF AN ARTICULATION LOCK;
  • U.S. patent application Ser. No. 15/385,934, entitled ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR IN AN ARTICULATED POSITION IN RESPONSE TO ACTUATION OF A JAW CLOSURE SYSTEM;
  • U.S. patent application Ser. No. 15/385,935, entitled LATERALLY ACTUATABLE ARTICULATION LOCK ARRANGEMENTS FOR LOCKING AN END EFFECTOR OF A SURGICAL INSTRUMENT IN AN ARTICULATED CONFIGURATION; and
  • U.S. patent application Ser. No. 15/385,936, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH ARTICULATION STROKE AMPLIFICATION FEATURES.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. patent application Ser. No. 15/191,775, entitled STAPLE CARTRIDGE COMPRISING WIRE STAPLES AND STAMPED STAPLES;
  • U.S. patent application Ser. No. 15/191,807, entitled STAPLING SYSTEM FOR USE WITH WIRE STAPLES AND STAMPED STAPLES;
  • U.S. patent application Ser. No. 15/191,834, entitled STAMPED STAPLES AND STAPLE CARTRIDGES USING THE SAME;
  • U.S. patent application Ser. No. 15/191,788, entitled STAPLE CARTRIDGE COMPRISING OVERDRIVEN STAPLES; and
  • U.S. patent application Ser. No. 15/191,818, entitled STAPLE CARTRIDGE COMPRISING OFFSET LONGITUDINAL STAPLE ROWS.
  • Applicant of the present application owns the following U.S. Patent Applications that were filed on Jun. 24, 2016 and which are each herein incorporated by reference in their respective entireties:
  • U.S. Design patent application Ser. No. 29/569,218, entitled SURGICAL FASTENER;
  • U.S. Design patent application Ser. No. 29/569,227, entitled SURGICAL FASTENER;
  • U.S. Design patent application Ser. No. 29/569,259, entitled SURGICAL FASTENER CARTRIDGE; and
  • U.S. Design Patent Application Serial No. 29/569,264, entitled SURGICAL FASTENER CARTRIDGE.
  • Applicant of the present application owns the following patent applications that were filed on Apr. 1, 2016 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 15/089,325, entitled METHOD FOR OPERATING A SURGICAL STAPLING SYSTEM;
  • U.S. patent application Ser. No. 15/089,321, entitled MODULAR SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY;
  • U.S. patent application Ser. No. 15/089,326, entitled SURGICAL STAPLING SYSTEM COMPRISING A DISPLAY INCLUDING A RE-ORIENTABLE DISPLAY FIELD;
  • U.S. patent application Ser. No. 15/089,263, entitled SURGICAL INSTRUMENT HANDLE ASSEMBLY WITH RECONFIGURABLE GRIP PORTION;
  • U.S. patent application Ser. No. 15/089,262, entitled ROTARY POWERED SURGICAL INSTRUMENT WITH MANUALLY ACTUATABLE BAILOUT SYSTEM;
  • U.S. patent application Ser. No. 15/089,277, entitled SURGICAL CUTTING AND STAPLING END EFFECTOR WITH ANVIL CONCENTRIC DRIVE MEMBER;
  • U.S. patent application Ser. No. 15/089,296, entitled INTERCHANGEABLE SURGICAL TOOL ASSEMBLY WITH A SURGICAL END EFFECTOR THAT IS SELECTIVELY ROTATABLE ABOUT A SHAFT AXIS;
  • U.S. patent application Ser. No. 15/089,258, entitled SURGICAL STAPLING SYSTEM COMPRISING A SHIFTABLE TRANSMISSION;
  • U.S. patent application Ser. No. 15/089,278, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO PROVIDE SELECTIVE CUTTING OF TISSUE;
  • U.S. patent application Ser. No. 15/089,284, entitled SURGICAL STAPLING SYSTEM COMPRISING A CONTOURABLE SHAFT;
  • U.S. patent application Ser. No. 15/089,295, entitled SURGICAL STAPLING SYSTEM COMPRISING A TISSUE COMPRESSION LOCKOUT;
  • U.S. patent application Ser. No. 15/089,300, entitled SURGICAL STAPLING SYSTEM COMPRISING AN UNCLAMPING LOCKOUT;
  • U.S. patent application Ser. No. 15/089,196, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW CLOSURE LOCKOUT;
  • U.S. patent application Ser. No. 15/089,203, entitled SURGICAL STAPLING SYSTEM COMPRISING A JAW ATTACHMENT LOCKOUT;
  • U.S. patent application Ser. No. 15/089,210, entitled SURGICAL STAPLING SYSTEM COMPRISING A SPENT CARTRIDGE LOCKOUT;
  • U.S. patent application Ser. No. 15/089,324, entitled SURGICAL INSTRUMENT COMPRISING A SHIFTING MECHANISM;
  • U.S. patent application Ser. No. 15/089,335, entitled SURGICAL STAPLING INSTRUMENT COMPRISING MULTIPLE LOCKOUTS;
  • U.S. patent application Ser. No. 15/089,339, entitled SURGICAL STAPLING INSTRUMENT;
  • U.S. patent application Ser. No. 15/089,253, entitled SURGICAL STAPLING SYSTEM CONFIGURED TO APPLY ANNULAR ROWS OF STAPLES HAVING DIFFERENT HEIGHTS;
  • U.S. patent application Ser. No. 15/089,304, entitled SURGICAL STAPLING SYSTEM COMPRISING A GROOVED FORMING POCKET;
  • U.S. patent application Ser. No. 15/089,331, entitled ANVIL MODIFICATION MEMBERS FOR SURGICAL STAPLERS;
  • U.S. patent application Ser. No. 15/089,336, entitled STAPLE CARTRIDGES WITH ATRAUMATIC FEATURES;
  • U.S. patent application Ser. No. 15/089,312, entitled CIRCULAR STAPLING SYSTEM COMPRISING AN INCISABLE TISSUE SUPPORT;
  • U.S. patent application Ser. No. 15/089,309, entitled CIRCULAR STAPLING SYSTEM COMPRISING ROTARY FIRING SYSTEM; and
  • U.S. patent application Ser. No. 15/089,349, entitled CIRCULAR STAPLING SYSTEM COMPRISING LOAD CONTROL.
  • Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Dec. 31, 2015 which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/984,488, entitled MECHANISMS FOR COMPENSATING FOR BATTERY PACK FAILURE IN POWERED SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 14/984,525, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
  • U.S. patent application Ser. No. 14/984,552, entitled SURGICAL INSTRUMENTS WITH SEPARABLE MOTORS AND MOTOR CONTROL CIRCUITS.
  • Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 9, 2016 which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 15/019,220, entitled SURGICAL INSTRUMENT WITH ARTICULATING AND AXIALLY TRANSLATABLE END EFFECTOR;
  • U.S. patent application Ser. No. 15/019,228, entitled SURGICAL INSTRUMENTS WITH MULTIPLE LINK ARTICULATION ARRANGEMENTS;
  • U.S. patent application Ser. No. 15/019,196, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT;
  • U.S. patent application Ser. No. 15/019,206, entitled SURGICAL INSTRUMENTS WITH AN END EFFECTOR THAT IS HIGHLY ARTICULATABLE RELATIVE TO AN ELONGATE SHAFT ASSEMBLY;
  • U.S. patent application Ser. No. 15/019,215, entitled SURGICAL INSTRUMENTS WITH NON-SYMMETRICAL ARTICULATION ARRANGEMENTS;
  • U.S. patent application Ser. No. 15/019,227, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH SINGLE ARTICULATION LINK ARRANGEMENTS;
  • U.S. patent application Ser. No. 15/019,235, entitled SURGICAL INSTRUMENTS WITH TENSIONING ARRANGEMENTS FOR CABLE DRIVEN ARTICULATION SYSTEMS;
  • U.S. patent application Ser. No. 15/019,230, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH OFF-AXIS FIRING BEAM ARRANGEMENTS; and
  • U.S. patent application Ser. No. 15/019,245, entitled SURGICAL INSTRUMENTS WITH CLOSURE STROKE REDUCTION ARRANGEMENTS.
  • Applicant of the present application also owns the U.S. Patent Applications identified below which were filed on Feb. 12, 2016 which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 15/043,254, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 15/043,259, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 15/043,275, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS; and
  • U.S. patent application Ser. No. 15/043,289, entitled MECHANISMS FOR COMPENSATING FOR DRIVETRAIN FAILURE IN POWERED SURGICAL INSTRUMENTS.
  • Applicant of the present application owns the following patent applications that were filed on Jun. 18, 2015 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/742,925, entitled SURGICAL END EFFECTORS WITH POSITIVE JAW OPENING ARRANGEMENTS;
  • U.S. patent application Ser. No. 14/742,941, entitled SURGICAL END EFFECTORS WITH DUAL CAM ACTUATED JAW CLOSING FEATURES;
  • U.S. patent application Ser. No. 14/742,914, entitled MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS;
  • U.S. patent application Ser. No. 14/742,900, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH COMPOSITE FIRING BEAM STRUCTURES WITH CENTER FIRING SUPPORT MEMBER FOR ARTICULATION SUPPORT;
  • U.S. patent application Ser. No. 14/742,885, entitled DUAL ARTICULATION DRIVE SYSTEM ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS; and
  • U.S. patent application Ser. No. 14/742,876, entitled PUSH/PULL ARTICULATION DRIVE SYSTEMS FOR ARTICULATABLE SURGICAL INSTRUMENTS.
  • Applicant of the present application owns the following patent applications that were filed on Mar. 6, 2015 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/640,746, entitled POWERED SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0256184;
  • U.S. patent application Ser. No. 14/640,795, entitled MULTIPLE LEVEL THRESHOLDS TO MODIFY OPERATION OF POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/02561185;
  • U.S. patent application Ser. No. 14/640,832, entitled ADAPTIVE TISSUE COMPRESSION TECHNIQUES TO ADJUST CLOSURE RATES FOR MULTIPLE TISSUE TYPES, now U.S. Patent Application Publication No. 2016/0256154;
  • U.S. patent application Ser. No. 14/640,935, entitled OVERLAID MULTI SENSOR RADIO FREQUENCY (RF) ELECTRODE SYSTEM TO MEASURE TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0256071;
  • U.S. patent application Ser. No. 14/640,831, entitled MONITORING SPEED CONTROL AND PRECISION INCREMENTING OF MOTOR FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256153;
  • U.S. patent application Ser. No. 14/640,859, entitled TIME DEPENDENT EVALUATION OF SENSOR DATA TO DETERMINE STABILITY, CREEP, AND VISCOELASTIC ELEMENTS OF MEASURES, now U.S. Patent Application Publication No. 2016/0256187;
  • U.S. patent application Ser. No. 14/640,817, entitled INTERACTIVE FEEDBACK SYSTEM FOR POWERED SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0256186;
  • U.S. patent application Ser. No. 14/640,844, entitled CONTROL TECHNIQUES AND SUB-PROCESSOR CONTAINED WITHIN MODULAR SHAFT WITH SELECT CONTROL PROCESSING FROM HANDLE, now U.S. Patent Application Publication No. 2016/0256155;
  • U.S. patent application Ser. No. 14/640,837, entitled SMART SENSORS WITH LOCAL SIGNAL PROCESSING, now U.S. Patent Application Publication No. 2016/0256163;
  • U.S. patent application Ser. No. 14/640,765, entitled SYSTEM FOR DETECTING THE MIS-INSERTION OF A STAPLE CARTRIDGE INTO A SURGICAL STAPLER, now U.S. Patent Application Publication No. 2016/0256160;
  • U.S. patent application Ser. No. 14/640,799, entitled SIGNAL AND POWER COMMUNICATION SYSTEM POSITIONED ON A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2016/0256162; and
  • U.S. patent application Ser. No. 14/640,780, entitled SURGICAL INSTRUMENT COMPRISING A LOCKABLE BATTERY HOUSING, now U.S. Patent Application Publication No. 2016/0256161.
  • Applicant of the present application owns the following patent applications that were filed on Feb. 27, 2015, and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/633,576, entitled SURGICAL INSTRUMENT SYSTEM COMPRISING AN INSPECTION STATION, now U.S. Patent Application Publication No. 2016/0249919;
  • U.S. patent application Ser. No. 14/633,546, entitled SURGICAL APPARATUS CONFIGURED TO ASSESS WHETHER A PERFORMANCE PARAMETER OF THE SURGICAL APPARATUS IS WITHIN AN ACCEPTABLE PERFORMANCE BAND, now U.S. Patent Application Publication No. 2016/0249915;
  • U.S. patent application Ser. No. 14/633,560, entitled SURGICAL CHARGING SYSTEM THAT CHARGES AND/OR CONDITIONS ONE OR MORE BATTERIES, now U.S. Patent Application Publication No. 2016/0249910;
  • U.S. patent application Ser. No. 14/633,566, entitled CHARGING SYSTEM THAT ENABLES EMERGENCY RESOLUTIONS FOR CHARGING A BATTERY, now U.S. Patent Application Publication No. 2016/0249918;
  • U.S. patent application Ser. No. 14/633,555, entitled SYSTEM FOR MONITORING WHETHER A SURGICAL INSTRUMENT NEEDS TO BE SERVICED, now U.S. Patent Application Publication No. 2016/0249916;
  • U.S. patent application Ser. No. 14/633,542, entitled REINFORCED BATTERY FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249908;
  • U.S. patent application Ser. No. 14/633,548, entitled POWER ADAPTER FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2016/0249909;
  • U.S. patent application Ser. No. 14/633,526, entitled ADAPTABLE SURGICAL INSTRUMENT HANDLE, now U.S. Patent Application Publication No. 2016/0249945;
  • U.S. patent application Ser. No. 14/633,541, entitled MODULAR STAPLING ASSEMBLY, now U.S. Patent Application Publication No. 2016/0249927; and
  • U.S. patent application Ser. No. 14/633,562, entitled SURGICAL APPARATUS CONFIGURED TO TRACK AN END-OF-LIFE PARAMETER, now U.S. Patent Application Publication No. 2016/0249917.
  • Applicant of the present application owns the following patent applications that were filed on Dec. 18, 2014 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/574,478, entitled SURGICAL INSTRUMENT SYSTEMS COMPRISING AN ARTICULATABLE END EFFECTOR AND MEANS FOR ADJUSTING THE FIRING STROKE OF A FIRING MEMBER, now U.S. Patent Application Publication No. 2016/0174977;
  • U.S. patent application Ser. No. 14/574,483, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING LOCKABLE SYSTEMS, now U.S. Patent Application Publication No. 2016/0174969;
  • U.S. patent application Ser. No. 14/575,139, entitled DRIVE ARRANGEMENTS FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2016/0174978;
  • U.S. patent application Ser. No. 14/575,148, entitled LOCKING ARRANGEMENTS FOR DETACHABLE SHAFT ASSEMBLIES WITH ARTICULATABLE SURGICAL END EFFECTORS, now U.S. Patent Application Publication No. 2016/0174976;
  • U.S. patent application Ser. No. 14/575,130, entitled SURGICAL INSTRUMENT WITH AN ANVIL THAT IS SELECTIVELY MOVABLE ABOUT A DISCRETE NON-MOVABLE AXIS RELATIVE TO A STAPLE CARTRIDGE, now U.S. Patent Application Publication No. 2016/0174972;
  • U.S. patent application Ser. No. 14/575,143, entitled SURGICAL INSTRUMENTS WITH IMPROVED CLOSURE ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174983;
  • U.S. patent application Ser. No. 14/575,117, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND MOVABLE FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174975;
  • U.S. patent application Ser. No. 14/575,154, entitled SURGICAL INSTRUMENTS WITH ARTICULATABLE END EFFECTORS AND IMPROVED FIRING BEAM SUPPORT ARRANGEMENTS, now U.S. Patent Application Publication No. 2016/0174973;
  • U.S. patent application Ser. No. 14/574,493, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A FLEXIBLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174970; and
  • U.S. patent application Ser. No. 14/574,500, entitled SURGICAL INSTRUMENT ASSEMBLY COMPRISING A LOCKABLE ARTICULATION SYSTEM, now U.S. Patent Application Publication No. 2016/0174971.
  • Applicant of the present application owns the following patent applications that were filed on Mar. 1, 2013 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 13/782,295, entitled ARTICULATABLE SURGICAL INSTRUMENTS WITH CONDUCTIVE PATHWAYS FOR SIGNAL COMMUNICATION, now U.S. Patent Application Publication No. 2014/0246471;
  • U.S. patent application Ser. No. 13/782,323, entitled ROTARY POWERED ARTICULATION JOINTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246472;
  • U.S. patent application Ser. No. 13/782,338, entitled THUMBWHEEL SWITCH ARRANGEMENTS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0249557;
  • U.S. patent application Ser. No. 13/782,499, entitled ELECTROMECHANICAL SURGICAL DEVICE WITH SIGNAL RELAY ARRANGEMENT, now U.S. Pat. No. 9,358,003;
  • U.S. patent application Ser. No. 13/782,460, entitled MULTIPLE PROCESSOR MOTOR CONTROL FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0246478;
  • U.S. patent application Ser. No. 13/782,358, entitled JOYSTICK SWITCH ASSEMBLIES FOR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,326,767;
  • U.S. patent application Ser. No. 13/782,481, entitled SENSOR STRAIGHTENED END EFFECTOR DURING REMOVAL THROUGH TROCAR, now U.S. Pat. No. 9,468,438;
  • U.S. patent application Ser. No. 13/782,518, entitled CONTROL METHODS FOR SURGICAL INSTRUMENTS WITH REMOVABLE IMPLEMENT PORTIONS, now U.S. Patent Application Publication No. 2014/0246475;
  • U.S. patent application Ser. No. 13/782,375, entitled ROTARY POWERED SURGICAL INSTRUMENTS WITH MULTIPLE DEGREES OF FREEDOM, now U.S. Pat. No. 9,398,911; and
  • U.S. patent application Ser. No. 13/782,536, entitled SURGICAL INSTRUMENT SOFT STOP, now U.S. Pat. No. 9,307,986.
  • Applicant of the present application also owns the following patent applications that were filed on Mar. 14, 2013 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 13/803,097, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, now U.S. Patent Application Publication No. 2014/0263542;
  • U.S. patent application Ser. No. 13/803,193, entitled CONTROL ARRANGEMENTS FOR A DRIVE MEMBER OF A SURGICAL INSTRUMENT, now U.S. Pat. No. 9,332,987;
  • U.S. patent application Ser. No. 13/803,053, entitled INTERCHANGEABLE SHAFT ASSEMBLIES FOR USE WITH A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263564;
  • U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541;
  • U.S. patent application Ser. No. 13/803,210, entitled SENSOR ARRANGEMENTS FOR ABSOLUTE POSITIONING SYSTEM FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263538;
  • U.S. patent application Ser. No. 13/803,148, entitled MULTI-FUNCTION MOTOR FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0263554;
  • U.S. patent application Ser. No. 13/803,066, entitled DRIVE SYSTEM LOCKOUT ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263565;
  • U.S. patent application Ser. No. 13/803,117, entitled ARTICULATION CONTROL SYSTEM FOR ARTICULATABLE SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,726;
  • U.S. patent application Ser. No. 13/803,130, entitled DRIVE TRAIN CONTROL ARRANGEMENTS FOR MODULAR SURGICAL INSTRUMENTS, now U.S. Pat. No. 9,351,727; and
  • U.S. patent application Ser. No. 13/803,159, entitled METHOD AND SYSTEM FOR OPERATING A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0277017.
  • Applicant of the present application also owns the following patent application that was filed on Mar. 7, 2014 and is herein incorporated by reference in its entirety:
  • U.S. patent application Ser. No. 14/200,111, entitled CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2014/0263539.
  • Applicant of the present application also owns the following patent applications that were filed on Mar. 26, 2014 and are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/226,106, entitled POWER MANAGEMENT CONTROL SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272582;
  • U.S. patent application Ser. No. 14/226,099, entitled STERILIZATION VERIFICATION CIRCUIT, now U.S. Patent Application Publication No. 2015/0272581;
  • U.S. patent application Ser. No. 14/226,094, entitled VERIFICATION OF NUMBER OF BATTERY EXCHANGES/PROCEDURE COUNT, now U.S. Patent Application Publication No. 2015/0272580;
  • U.S. patent application Ser. No. 14/226,117, entitled POWER MANAGEMENT THROUGH SLEEP OPTIONS OF SEGMENTED CIRCUIT AND WAKE UP CONTROL, now U.S. Patent Application Publication No. 2015/0272574;
  • U.S. patent application Ser. No. 14/226,075, entitled MODULAR POWERED SURGICAL INSTRUMENT WITH DETACHABLE SHAFT ASSEMBLIES, now U.S. Patent Application Publication No. 2015/0272579;
  • U.S. patent application Ser. No. 14/226,093, entitled FEEDBACK ALGORITHMS FOR MANUAL BAILOUT SYSTEMS FOR SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272569;
  • U.S. patent application Ser. No. 14/226,116, entitled SURGICAL INSTRUMENT UTILIZING SENSOR ADAPTATION, now U.S. Patent Application Publication No. 2015/0272571;
  • U.S. patent application Ser. No. 14/226,071, entitled SURGICAL INSTRUMENT CONTROL CIRCUIT HAVING A SAFETY PROCESSOR, now U.S. Patent Application Publication No. 2015/0272578;
  • U.S. patent application Ser. No. 14/226,097, entitled SURGICAL INSTRUMENT COMPRISING INTERACTIVE SYSTEMS, now U.S. Patent Application Publication No. 2015/0272570;
  • U.S. patent application Ser. No. 14/226,126, entitled INTERFACE SYSTEMS FOR USE WITH SURGICAL INSTRUMENTS, now U.S. Patent Application Publication No. 2015/0272572;
  • U.S. patent application Ser. No. 14/226,133, entitled MODULAR SURGICAL INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272557;
  • U.S. patent application Ser. No. 14/226,081, entitled SYSTEMS AND METHODS FOR CONTROLLING A SEGMENTED CIRCUIT, now U.S. Patent Application Publication No. 2015/0277471;
  • U.S. patent application Ser. No. 14/226,076, entitled POWER MANAGEMENT THROUGH SEGMENTED CIRCUIT AND VARIABLE VOLTAGE PROTECTION, now U.S. Patent Application Publication No. 2015/0280424;
  • U.S. patent application Ser. No. 14/226,111, entitled SURGICAL STAPLING INSTRUMENT SYSTEM, now U.S. Patent Application Publication No. 2015/0272583; and
  • U.S. patent application Ser. No. 14/226,125, entitled SURGICAL INSTRUMENT COMPRISING A ROTATABLE SHAFT, now U.S. Patent Application Publication No. 2015/0280384.
  • Applicant of the present application also owns the following patent applications that were filed on Sep. 5, 2014 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/479,103, entitled CIRCUITRY AND SENSORS FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066912;
  • U.S. patent application Ser. No. 14/479,119, entitled ADJUNCT WITH INTEGRATED SENSORS TO QUANTIFY TISSUE COMPRESSION, now U.S. Patent Application Publication No. 2016/0066914;
  • U.S. patent application Ser. No. 14/478,908, entitled MONITORING DEVICE DEGRADATION BASED ON COMPONENT EVALUATION, now U.S. Patent Application Publication No. 2016/0066910;
  • U.S. patent application Ser. No. 14/478,895, entitled MULTIPLE SENSORS WITH ONE SENSOR AFFECTING A SECOND SENSOR′S OUTPUT OR INTERPRETATION, now U.S. Patent Application Publication No. 2016/0066909;
  • U.S. patent application Ser. No. 14/479,110, entitled POLARITY OF HALL MAGNET TO DETECT MISLOADED CARTRIDGE, now U.S. Patent Application Publication No. 2016/0066915;
  • U.S. patent application Ser. No. 14/479,098, entitled SMART CARTRIDGE WAKE UP OPERATION AND DATA RETENTION, now U.S. Patent Application Publication No. 2016/0066911;
  • U.S. patent application Ser. No. 14/479,115, entitled MULTIPLE MOTOR CONTROL FOR POWERED MEDICAL DEVICE, now U.S. Patent Application Publication No. 2016/0066916; and
  • U.S. patent application Ser. No. 14/479,108, entitled LOCAL DISPLAY OF TISSUE PARAMETER STABILIZATION, now U.S. Patent Application Publication No. 2016/0066913.
  • Applicant of the present application also owns the following patent applications that were filed on Apr. 9, 2014 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/248,590, entitled MOTOR DRIVEN SURGICAL INSTRUMENTS WITH LOCKABLE DUAL DRIVE SHAFTS, now U.S. Patent Application Publication No. 2014/0305987;
  • U.S. patent application Ser. No. 14/248,581, entitled SURGICAL INSTRUMENT COMPRISING A CLOSING DRIVE AND A FIRING DRIVE OPERATED FROM THE SAME ROTATABLE OUTPUT, now U.S. Patent Application Publication No. 2014/0305989;
  • U.S. patent application Ser. No. 14/248,595, entitled SURGICAL INSTRUMENT SHAFT INCLUDING SWITCHES FOR CONTROLLING THE OPERATION OF THE SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305988;
  • U.S. patent application Ser. No. 14/248,588, entitled POWERED LINEAR SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309666;
  • U.S. patent application Ser. No. 14/248,591, entitled TRANSMISSION ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305991;
  • U.S. patent application Ser. No. 14/248,584, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH ALIGNMENT FEATURES FOR ALIGNING ROTARY DRIVE SHAFTS WITH SURGICAL END EFFECTOR SHAFTS, now U.S. Patent Application Publication No. 2014/0305994;
  • U.S. patent application Ser. No. 14/248,587, entitled POWERED SURGICAL STAPLER, now U.S. Patent Application Publication No. 2014/0309665;
  • U.S. patent application Ser. No. 14/248,586, entitled DRIVE SYSTEM DECOUPLING ARRANGEMENT FOR A SURGICAL INSTRUMENT, now U.S. Patent Application Publication No. 2014/0305990; and
  • U.S. patent application Ser. No. 14/248,607, entitled MODULAR MOTOR DRIVEN SURGICAL INSTRUMENTS WITH STATUS INDICATION ARRANGEMENTS, now U.S. Patent Application Publication No. 2014/0305992.
  • Applicant of the present application also owns the following patent applications that were filed on Apr. 16, 2013 and which are each herein incorporated by reference in their respective entirety:
  • U.S. Provisional Patent Application Ser. No. 61/812,365, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR;
  • U.S. Provisional Patent Application Ser. No. 61/812,376, entitled LINEAR CUTTER WITH POWER;
  • U.S. Provisional Patent Application Ser. No. 61/812,382, entitled LINEAR CUTTER WITH MOTOR AND PISTOL GRIP;
  • U.S. Provisional Patent Application Ser. No. 61/812,385, entitled SURGICAL INSTRUMENT HANDLE WITH MULTIPLE ACTUATION MOTORS AND MOTOR CONTROL; and
  • U.S. Provisional Patent Application Ser. No. 61/812,372, entitled SURGICAL INSTRUMENT WITH MULTIPLE FUNCTIONS PERFORMED BY A SINGLE MOTOR.
  • Applicant of the present application also owns the following patent applications that were filed on Sep. 2, 2015 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/843,168, entitled SURGICAL STAPLE CARTRIDGE WITH IMPROVED STAPLE DRIVER CONFIGURATIONS;
  • U.S. patent application Ser. No. 14/843,196, entitled SURGICAL STAPLE DRIVER ARRAYS;
  • U.S. patent application Ser. No. 14/843,216, entitled SURGICAL STAPLE CARTRIDGE STAPLE DRIVERS WITH CENTRAL SUPPORT FEATURES;
  • U.S. patent application Ser. No. 14/843,243, entitled SURGICAL STAPLE CONFIGURATIONS WITH CAMMING SURFACES LOCATED BETWEEN PORTIONS SUPPORTING SURGICAL STAPLES; and
  • U.S. patent application Ser. No. 14/843,267, entitled SURGICAL STAPLE CARTRIDGES WITH DRIVER ARRANGEMENTS FOR ESTABLISHING HERRINGBONE STAPLE PATTERNS.
  • Applicant of the present application also owns the following patent applications that were filed on Sep. 26, 2014 and which are each herein incorporated by reference in their respective entirety:
  • U.S. patent application Ser. No. 14/498,070, entitled CIRCULAR FASTENER CARTRIDGES FOR APPLYING RADIALLY EXPANDABLE FASTENER LINES; now U.S. Patent Application Publication No. 2016/0089146;
  • U.S. patent application Ser. No. 14/498,087, entitled SURGICAL STAPLE AND DRIVER ARRANGEMENTS FOR STAPLE CARTRIDGES; now U.S. Patent Application Publication No. 2016/0089147;
  • U.S. patent application Ser. No. 14/498,105, entitled SURGICAL STAPLE AND DRIVER ARRANGEMENTS FOR STAPLE CARTRIDGES; now U.S. Patent Application Publication No. 2016/0089148;
  • U.S. patent application Ser. No. 14/498,121, entitled FASTENER CARTRIDGE FOR CREATING A FLEXIBLE STAPLE LINE; now U.S. Patent Application Publication No. 2016/0089141
  • U.S. patent application Ser. No. 14/498,145, entitled METHOD FOR CREATING A FLEXIBLE STAPLE LINE; now U.S. Patent Application Publication No. 2016/0089142; and
  • U.S. patent application Ser. No. 14/498,107, entitled SURGICAL STAPLING BUTTRESSES AND ADJUNCT MATERIALS; now U.S. Patent Application Publication No. 2016/0089143.
  • Applicant of the present application also owns U.S. Pat. No. 8,590,762, which issued Nov. 26, 2013, entitled STAPLE CARTRIDGE CAVITY CONFIGURATIONS, which is herein incorporated by reference in its respective entirety.
  • Applicant of the present application also owns U.S. Pat. No. 8,727,197, which issued May 20, 2014, entitled STAPLE CARTRIDGE CAVITY CONFIGURATION WITH COOPERATIVE SURGICAL STAPLE, which is herein incorporated by reference in its respective entirety.
  • Numerous specific details are set forth to provide a thorough understanding of the overall structure, function, manufacture, and use of the embodiments as described in the specification and illustrated in the accompanying drawings. Well-known operations, components, and elements have not been described in detail so as not to obscure the embodiments described in the specification. The reader will understand that the embodiments described and illustrated herein are non-limiting examples, and thus it can be appreciated that the specific structural and functional details disclosed herein may be representative and illustrative. Variations and changes thereto may be made without departing from the scope of the claims.
  • The terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”) and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a surgical system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more elements possesses those one or more elements, but is not limited to possessing only those one or more elements. Likewise, an element of a system, device, or apparatus that “comprises,” “has,” “includes” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features.
  • The terms “proximal” and “distal” are used herein with reference to a clinician manipulating the handle portion of the surgical instrument. The term “proximal” refers to the portion closest to the clinician and the term “distal” refers to the portion located away from the clinician. It will be further appreciated that, for convenience and clarity, spatial terms such as “vertical”, “horizontal”, “up”, and “down” may be used herein with respect to the drawings. However, surgical instruments are used in many orientations and positions, and these terms are not intended to be limiting and/or absolute.
  • Various exemplary devices and methods are provided for performing laparoscopic and minimally invasive surgical procedures. However, the reader will readily appreciate that the various methods and devices disclosed herein can be used in numerous surgical procedures and applications including, for example, in connection with open surgical procedures. As the present Detailed Description proceeds, the reader will further appreciate that the various instruments disclosed herein can be inserted into a body in any way, such as through a natural orifice, through an incision or puncture hole formed in tissue, etc. The working portions or end effector portions of the instruments can be inserted directly into a patient's body or can be inserted through an access device that has a working channel through which the end effector and elongate shaft of a surgical instrument can be advanced.
  • A surgical stapling system can comprise a shaft and an end effector extending from the shaft. The end effector comprises a first jaw and a second jaw. The first jaw comprises a staple cartridge. The staple cartridge is insertable into and removable from the first jaw; however, other embodiments are envisioned in which a staple cartridge is not removable from, or at least readily replaceable from, the first jaw. The second jaw comprises an anvil configured to deform staples ejected from the staple cartridge. The second jaw is pivotable relative to the first jaw about a closure axis; however, other embodiments are envisioned in which the first jaw is pivotable relative to the second jaw. The surgical stapling system further comprises an articulation joint configured to permit the end effector to be rotated, or articulated, relative to the shaft. The end effector is rotatable about an articulation axis extending through the articulation joint. Other embodiments are envisioned which do not include an articulation joint.
  • The staple cartridge comprises a cartridge body. The cartridge body includes a proximal end, a distal end, and a deck extending between the proximal end and the distal end. In use, the staple cartridge is positioned on a first side of the tissue to be stapled and the anvil is positioned on a second side of the tissue. The anvil is moved toward the staple cartridge to compress and clamp the tissue against the deck. Thereafter, staples removably stored in the cartridge body can be deployed into the tissue. The cartridge body includes staple cavities defined therein wherein staples are removably stored in the staple cavities. The staple cavities are arranged in six longitudinal rows. Three rows of staple cavities are positioned on a first side of a longitudinal slot and three rows of staple cavities are positioned on a second side of the longitudinal slot. Other arrangements of staple cavities and staples may be possible.
  • The staples are supported by staple drivers in the cartridge body. The drivers are movable between a first, or unfired position, and a second, or fired, position to eject the staples from the staple cavities. The drivers are retained in the cartridge body by a retainer which extends around the bottom of the cartridge body and includes resilient members configured to grip the cartridge body and hold the retainer to the cartridge body. The drivers are movable between their unfired positions and their fired positions by a sled. The sled is movable between a proximal position adjacent the proximal end and a distal position adjacent the distal end. The sled comprises a plurality of ramped surfaces configured to slide under the drivers and lift the drivers, and the staples supported thereon, toward the anvil.
  • Further to the above, the sled is moved distally by a firing member. The firing member is configured to contact the sled and push the sled toward the distal end. The longitudinal slot defined in the cartridge body is configured to receive the firing member. The anvil also includes a slot configured to receive the firing member. The firing member further comprises a first cam which engages the first jaw and a second cam which engages the second jaw. As the firing member is advanced distally, the first cam and the second cam can control the distance, or tissue gap, between the deck of the staple cartridge and the anvil. The firing member also comprises a knife configured to incise the tissue captured intermediate the staple cartridge and the anvil. It is desirable for the knife to be positioned at least partially proximal to the ramped surfaces such that the staples are ejected ahead of the knife.
  • FIG. 1 depicts one form of an interchangeable surgical tool assembly 1000 that is operably coupled to a motor driven handle assembly 500. The tool assembly 1000 may also be effectively employed with a tool drive assembly of a robotically controlled or automated surgical system. For example, the surgical tool assemblies disclosed herein may be employed with various robotic systems, instruments, components and methods such as, but not limited to, those disclosed in U.S. Pat. No. 9,072,535, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, which is hereby incorporated by reference herein in its entirety. The handle assembly 500, as well as the tool drive assembly of a robotic system may also be referred to herein as “control systems” or “control units”.
  • FIGS. 1 and 2 illustrate attachment of the interchangeable surgical tool assembly 1000 to the handle assembly 500. The handle assembly 500 may comprise a handle housing 502 that includes a pistol grip portion 504 that can be gripped and manipulated by the clinician. The handle assembly 500 may further include a frame 506 that operably supports the plurality of drive systems. For example, the frame 506 can operably support a “first” or closure drive system, generally designated as 510, which may be employed to apply closing and opening motions to the interchangeable surgical tool assembly 1000 that is operably attached or coupled to the handle assembly 500. In at least one form, the closure drive system 510 may include an actuator in the form of a closure trigger 512 that is pivotally supported by the frame 506. Such arrangement enables the closure trigger 512 to be manipulated by a clinician such that when the clinician grips the pistol grip portion 504 of the handle assembly 500, the closure trigger 512 may be easily pivoted from a starting or “unactuated” position to an “actuated” position and more particularly, to a fully compressed or fully actuated position. In various forms, the closure drive system 510 further includes a closure linkage assembly 514 that is pivotally coupled to the closure trigger 512 or otherwise operably interfaces therewith. As further discussed in contemporaneously-filed U.S. patent application Ser. No. 15/385,941, entitled SURGICAL TOOL ASSEMBLIES WITH CLUTCHING ARRANGEMENTS FOR SHIFTING BETWEEN CLOSURE SYSTEMS WITH CLOSURE STROKE REDUCTION FEATURES AND ARTICULATION AND FIRING SYSTEMS, which is hereby incorporated by reference herein in its entirety, the closure linkage assembly 514 includes a transverse attachment pin 516 that facilitates attachment to a corresponding drive system on the surgical tool assembly. In use, to actuate the closure drive system 510, the clinician depresses the closure trigger 512 towards the pistol grip portion 504. As described in further detail in U.S. patent application Ser. No. 14/226,142, entitled SURGICAL INSTRUMENT COMPRISING A SENSOR SYSTEM, now U.S. Patent Application Publication No. 2015/0272575, which is hereby incorporated by reference in its entirety herein, when the clinician fully depresses the closure trigger 512 to attain a “full” closure stroke, the closure drive system 510 is configured to lock the closure trigger 512 into the fully depressed or fully actuated position. When the clinician desires to unlock the closure trigger 512 to permit it to be biased to the unactuated position, the clinician simply activates a closure release button assembly 518 which enables the closure trigger 512 to return to unactuated position. The closure release button assembly 518 may also be configured to interact with various sensors that communicate with a microcontroller 520 in the handle assembly 500 for tracking the position of the closure trigger 512. Further details concerning the configuration and operation of the closure release button assembly 518 may be found in U.S. Patent Application Publication No. 2015/0272575.
  • In at least one form, the handle assembly 500 and the frame 506 may operably support another drive system referred to herein as a firing drive system 530 that is configured to apply firing motions to corresponding portions of the interchangeable surgical tool assembly that is attached thereto. As was described in detail in U.S. Patent Application Publication No. 2015/0272575, the firing drive system 530 may employ an electric motor 505 (FIG. 1) that is located in the pistol grip portion 504 of the handle assembly 500. In various forms, the motor 505 may be a DC brushed driving motor having a maximum rotation of, approximately, 25,000 RPM, for example. In other arrangements, the motor 505 may include a brushless motor, a cordless motor, a synchronous motor, a stepper motor, or any other suitable electric motor. The motor 505 may be powered by a power source 522 that in one form may comprise a removable power pack. The power pack may support a plurality of Lithium Ion (“LI”) or other suitable batteries therein. A number of batteries, which may be connected in series, may be used as the power source 522 for the handle assembly 500. In addition, the power source 522 may be replaceable and/or rechargeable.
  • The electric motor 505 is configured to axially drive a longitudinally movable drive member 540 in distal and proximal directions depending upon the polarity of the motor. For example, when the motor 505 is driven in one rotary direction, the longitudinally movable drive member 540 will be axially driven in the distal direction “DD”. When the motor 505 is driven in the opposite rotary direction, the longitudinally movable drive member 540 will be axially driven in a proximal direction “PD”. The handle assembly 500 can include a switch 513 which can be configured to reverse the polarity applied to the electric motor 505 by the power source 522 or otherwise control the motor 505. The handle assembly 500 can also include a sensor or sensors (not shown) that is configured to detect the position of the drive member 540 and/or the direction in which the drive member 540 is being moved. Actuation of the motor 505 can be controlled by a firing trigger 532 that is pivotally supported on the handle assembly 500. The firing trigger 532 may be pivoted between an unactuated position and an actuated position. The firing trigger 532 may be biased into the unactuated position by a spring (not shown) or other biasing arrangement such that when the clinician releases the firing trigger 532, it may be pivoted or otherwise returned to the unactuated position by the spring or biasing arrangement. In at least one form, the firing trigger 532 can be positioned “outboard” of the closure trigger 512 as was discussed above. As discussed in U.S. Patent Application Publication No. 2015/0272575, the handle assembly 500 may be equipped with a firing trigger safety button (not shown) to prevent inadvertent actuation of the firing trigger 532. When the closure trigger 512 is in the unactuated position, the safety button is contained in the handle assembly 500 where the clinician cannot readily access it and move it between a safety position preventing actuation of the firing trigger 532 and a firing position wherein the firing trigger 532 may be fired. As the clinician depresses the closure trigger 512, the safety button and the firing trigger 532 may pivot down wherein they can then be manipulated by the clinician.
  • In at least one form, the longitudinally movable drive member 540 may have a rack of teeth (not shown) formed thereon for meshing engagement with a corresponding drive gear arrangement (not shown) that interfaces with the motor 505. Further details regarding those features may be found in U.S. Patent Application Publication No. 2015/0272575. At least one form also includes a manually-actuatable “bailout” assembly that is configured to enable the clinician to manually retract the longitudinally movable drive member 540 should the motor 505 become disabled. The bailout assembly may include a lever or bailout handle assembly that is stored within the handle assembly 500 under a releasable door 550. The lever is configured to be manually pivoted into ratcheting engagement with the teeth in the drive member 540. Thus, the clinician can manually retract the drive member 540 by using the bailout handle assembly to ratchet the drive member 540 in the proximal direction “PD”. U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Patent Application Publication No. 2010/0089970, the entire disclosure of which is hereby incorporated by reference herein, discloses bailout arrangements and other components, arrangements and systems that may also be employed with the tool assembly 1000.
  • The interchangeable surgical tool assembly 1000 includes a shaft mounting portion 1300 that is operably attached to an elongate shaft assembly 1400. A surgical end effector 1100 that comprises an elongate channel 1102 that is configured to operably support a staple cartridge 1110 therein is operably attached to the elongate shaft assembly 1400. See FIGS. 3 and 4. The end effector 1100 may further include an anvil 1130 that is pivotally supported relative to the elongate channel 1102. The elongate channel 1102/staple cartridge assembly 1110 and the anvil 1130 may also be referred to as “jaws”. The interchangeable surgical tool assembly 1000 may further include an articulation joint 1200 and an articulation lock 1210 (FIGS. 3 and 4) which can be configured to releasably hold the end effector 1100 in a desired articulated position about an articulation axis B-B which is transverse to a shaft axis SA. Details regarding the construction and operation of the articulation lock 1210 may be found in in U.S. patent application Ser. No. 13/803,086, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING AN ARTICULATION LOCK, now U.S. Patent Application Publication No. 2014/0263541, the entire disclosure of which is hereby incorporated by reference herein. Additional details concerning the articulation lock 1210 may also be found in U.S. patent application Ser. No. 15/019,196, filed Feb. 9, 2016, entitled SURGICAL INSTRUMENT ARTICULATION MECHANISM WITH SLOTTED SECONDARY CONSTRAINT, the entire disclosure of which is hereby incorporated by reference herein.
  • A firing member 1760 is configured to operably interface with a sled assembly 1120 that is operably supported within the body 1111 of the surgical staple cartridge 1110. The sled assembly 1120 is slidably displaceable within the surgical staple cartridge body 1111 from a proximal starting position adjacent the proximal end 1112 of the cartridge body 1111 to an ending position adjacent a distal end 1113 of the cartridge body 1111. See FIG. 4. The cartridge body 1111 operably supports therein a plurality of staple drivers 1170 (FIGS. 81-83) that are aligned in rows on each side of a centrally disposed slot 1114. The centrally disposed slot 1114 enables the firing member 1760 to pass therethrough and cut the tissue that is clamped between the anvil 1130 and the staple cartridge 1110. The drivers are associated with corresponding pockets or cavities 1116 that open through the upper deck surface 1115 of the cartridge body 1111. Each of the staple drivers supports one or more surgical staple or fastener thereon. The sled assembly 1120 includes a plurality of sloped or wedge-shaped cams 1122 wherein each cam 1122 corresponds to a particular line of fasteners or drivers located on a side of the slot 1114. When the firing member 1760 is fired or driven distally, the firing member 1760 drives the sled assembly 1120 distally as well. As the firing member 1760 moves distally through the cartridge 1110, the tissue cutting feature 1766 cuts the tissue that is clamped between the anvil assembly 1130 and the cartridge 1110, and the sled assembly 1120 drives the drivers upwardly in the cartridge which drive the corresponding staples or fasteners into forming contact with the anvil assembly 1130.
  • In the illustrated example, the cartridge body 1111 operably supports therein a plurality of staple drivers that are aligned in rows on each side of a centrally disposed slot 1114. FIGS. 81-83 illustrate one example of a staple driver 1170 that may be employed to support staples on one side of a surgical staple cartridge. The drivers located on the opposite side of the centrally disposed slot 1114 may comprise mirror images of drivers 1170. Other staple driver configurations may also be effectively employed as well. As can be seen in FIGS. 81-83, one form of a staple driver 1700 comprises a staple driver body 1172. The driver body 1172 includes a first or innermost staple support portion 1174 that is configured to support a staple (not shown) thereon. A second or central staple support portion 1176 is configured to support another staple (not shown) thereon and a third support portion 1870 that is configured to support a third staple (not shown) thereon. The first staple support portion 1174, the second staple support portion 1176 and the third staple support portion 1178 are all coupled together by a connector portion 1180. In at least one arrangement, the connector portion 1180 is formed with a centrally disposed opening or aperture 1182 that is configured to slidably receive a corresponding first driver guide (not shown) that is formed in the cartridge body. The connector portion 1180 includes a first cam portion 1184 that has a first camming surface or ramp 1186 formed thereon. The connector portion 1180 also includes a second cam portion 1188 that has a second a second camming surface 1190 formed thereon. The camming surfaces 1186, 1190 have the same slope or angle or they may have different slopes/angles. In at least one embodiment, each staple driver 1170 is integrally formed from or molded from, for example, Ultem®, with no fill. However, other materials such as, for example, Ultem® with a glass or mineral fill or Nylon or Nylon with a glass file could be used. In other arrangements, the various portions of the staple drivers 1170 may be separately fabricated from other materials and be attached together by adhesive, solder, etc. Further details concerning the staple drivers 1170 as well as other driver embodiments that may be effectively employed with the various embodiments disclosed herein may be found in U.S. patent application Ser. No. 14/843,243, filed Sep. 2, 2015, entitled SURGICAL STAPLE CONFIGURATIONS WITH CAMMING SURFACES LOCATED BETWEEN PORTIONS SUPPORTING SURGICAL STAPLES, the entire disclosure of which is hereby incorporated by reference herein.
  • The staple cavities 1116 are angularly oriented relative to the shaft axis SA. More specifically, the staple cavities 1116 are oriented at oblique angles relative to the shaft axis SA and form a herringbone pattern in the deck surface 1115. Various alternative patterns for staple cavities in a staple cartridge body are described herein.
  • Variations to the arrangement and/or geometry of staples in a staple line can affect the flexibility and sealing properties of the staple line. For example, a staple line comprised of linear staples can provide a limited amount of flexibility or stretch because the staple line can flex or stretch between the linear staples. Consequently, a limited portion of the staple line (e.g., the portion between staples) is flexible. A staple line comprised of angularly-oriented staples can also flex or stretch between the staples. However, the angularly-oriented staples are also able to rotate, which provides an additional degree of stretch within the staple line. A staple line comprised of angularly-oriented staples can stretch in excess of 60%, for example. In certain instances, a staple line comprised of angularly-oriented staples can stretch at least 25% or at least 50%, for example. The arrangement of staples includes the relative orientation of the staples and the spacing between the staples, for example. The geometry of the staples includes the size and shape of the staples, for example. The flexibility and sealing properties of a staple line can change at longitudinal and/or lateral positions based on the arrangement and/or geometry of the staples. In certain instances, it is desirable to alter the flexibility and/or sealing properties of a staple line at one or more locations along the staple line. For example, it can be desirable to maximize the flexibility of the staple line or a portion thereof. Additionally or alternatively, it can be desirable to minimize the flexibility of the staple line or a portion thereof. It can also be desirable to maximize the sealing properties of the staple line or a portion thereof. Additionally or alternatively, it can be desirable to minimize the sealing properties of the staple line or a portion thereof.
  • The arrangement of staple cavities in a staple cartridge corresponds to the arrangement of staples in a staple line generated by the staple cartridge. For example, the spacing and relative orientation of staple cavities in a staple cartridge corresponds to the spacing and relative orientation of staples in a staple line generated by the staple cartridge. In various instances, a staple cartridge can include an arrangement of staples cavities that is selected and/or designed to optimize the flexibility and/or sealing properties of the resultant staple line. A surgeon may select a staple cartridge having a particular arrangement of staple cavities based on the surgical procedure to be performed and/or the properties of the tissue to be treated during the surgical procedure, for example.
  • In certain instances, it can be desirable to generate a staple line with different staple patterns. A staple line can include a first pattern of staples for a first portion thereof and a second pattern of staples for a second portion thereof. The first pattern and the second pattern can be longitudinally offset. For example, the first pattern can be positioned at the proximal or distal end of the staple line. In other instances, the first pattern and the second pattern can be laterally offset and, in still other instances, the first pattern and the second pattern can be laterally offset and longitudinally offset. A staple line can include at least two different patterns of staples.
  • In certain instances, the majority of staples in a staple line can form a major pattern and other staples in the staple line can form one or more minor patterns. The major pattern can span a significant portion of the staple line and can include a longitudinally-repetitive sub-pattern. In certain instances, the minor pattern, or irregularity, can deviate from the major pattern. The minor pattern can be an anomaly at one or more locations along the length of the staple line, for example. The different patterns in a staple line can be configured to produce different properties at predefined locations. For example, the major pattern can be a highly flexible or elastic pattern, which can permit extensive stretching of the stapled tissue, and the minor pattern can be less flexible or less elastic. It can be desirable for the majority of the staple line to be highly flexible and for one or more limited portions to be less flexible, for example. In other instances, the minor pattern can be more flexible than the major pattern. In certain instances, because the minor pattern extends along a shorter portion of the staple line, the flexibility of the minor pattern may not impact, or may not significantly impact, the overall flexibility of the entire staple line.
  • Referring now to FIGS. 5-8, a staple cartridge body 3000 for use with a surgical end effector is depicted. The staple cartridge body 3000 includes a deck 3002 and a slot 3004, which extends through the deck 3002 from a proximal end 3006 toward a distal end 3008 of the cartridge body 3000. The slot 3004 extends along the longitudinal axis LA (FIG. 7) of the cartridge body 3000. Staple cavities 3010 are defined in the cartridge body 3000 and each staple cavity 3010 defines an opening 3012 in the deck 3002.
  • The majority of the staple cavities 3010 are arranged in a first pattern, or major pattern, 3020. The first pattern 3020 is a longitudinally-repetitive pattern of angularly-oriented staple cavities 3010. Longitudinally-repetitive patterns are patterns in which a sub-pattern or arrangement is longitudinally repeated. For example, an arrangement of three staple cavities on each side of the slot 3004 (an inner staple cavity, an intermediate staple cavity, and an outer staple cavity) can be repeated along at least a portion of the length of the staple cartridge body 3000. Various longitudinally-repetitive patterns of angularly-oriented staples cavities are described in U.S. patent application Ser. No. 14/498,145, filed Sep. 26, 2014, now U.S. Patent Application Publication No. 2016/0089142, entitled METHOD FOR CREATING A FLEXIBLE STAPLE LINE, which is incorporated by reference herein in its entirety. The openings 3012 of the staple cavities 3010 in the first pattern 3020 form a herringbone pattern having six rows of angularly-oriented staple cavity openings 3012 in the cartridge deck 3002. An inner row 3014 a, an intermediate row 3014 b, and an outer row 3014 c of staple cavities 3010 are positioned on each side of the slot 3004.
  • Each staple cavity opening 3012 has a proximal end 3016 and a distal end 3018. The proximal end 3016 and the distal end 3018 of the staple cavities 3010 in the first pattern 3020 are laterally offset. Stated differently, each staple cavity 3010 in the first pattern 3020 is angularly oriented relative to the longitudinal axis LA (FIG. 7). A cavity axis CA (FIG. 7) extends between the proximal end 3016 and the distal end 3018 of each opening 3012. The cavity axes CA are obliquely oriented relative to the slot 3004. More specifically, the openings 3012 in the inner rows 3014 a of staple cavities 3010 and the outer rows 3014 c of staple cavities 3010 are oriented at 45 degrees, or about 45 degrees, relative to the longitudinal axis LA, and the openings 3012 in the intermediate rows 3014 b of staple cavities 3010 are oriented at 90 degrees, or about 90 degrees, relative to the openings 3012 of the inner rows 3014 a and the outer rows 3014 a.
  • Certain staple cavities 3010 in the cartridge body 3000 are oriented at an angle that is anomalous or irregular with respect to the staple cavities 3010 in the first pattern 3020. More specifically, the angular orientation of proximal staple cavities 3010 a, 3010 b, 3010 c, and 3010 d and distal staples cavities 3010 e, 3010 f, 3010 g, and 3010 h does not conform to the herringbone arrangement of the staple cavities 3010 in the first pattern 3020. Rather, the proximal staple cavities 3010 a-3010 d and the distal staple cavities 3010 e-3010 h are angularly offset from the staple cavities 3010 in the first pattern 3020. The proximal staple cavities 3010 a, 3010 b, 3010 c, and 3010 d are obliquely oriented relative to the staples cavities 3010 in the first pattern 3020, and the distal staple cavities 3010 e, 3010 f, 3010 g, and 3010 h are also obliquely oriented relative to the staples cavities 3010 in the first pattern 3020. The proximal and distal staple cavities 3010 a-3010 h are oriented parallel to the slot 3004 and to the longitudinal axis LA.
  • The proximal staple cavities 3010 a-3010 d form a proximal pattern 3022 that is distinct from the first pattern 3020, and the distal staple cavities 3010 e-3010 h form a distal pattern 3024 that is also distinct from the first pattern 3020. In the depicted arrangement, the proximal pattern 3022 includes a first pair of parallel, longitudinally-aligned staple cavities 3010 a, 3010 b on a first side of the slot 3004 and a second pair of parallel, longitudinally-aligned staple cavities 3010 c, 3010 d on a second side of the longitudinal slot 3004. The distal pattern 3024 also includes a first pair of parallel, longitudinally-aligned staple cavities 3010 e, 3010 f on the first side of the longitudinal slot 3004 and a second pair of parallel, longitudinally-aligned staple cavities 3010 g, 3010 h on the second side of the longitudinal slot 3004. In other instances, the distal pattern 3024 can be different from the proximal pattern 3022.
  • The proximal pattern 3022 and the distal pattern 3024 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 3022 and/or the distal pattern 3024 can be asymmetric relative to the longitudinal axis LA. For example, the staple cavities 3010 e and 3010 f can be longitudinally offset from the staple cavities 3010 g and 3010 h and/or the staple cavities 3010 a and 3010 b can be longitudinally offset from the staple cavities 3010 c and 3010 d. Additionally or alternatively, in certain instances, the staple cartridge body 3000 can include either the proximal pattern 3022 or the distal pattern 3024. In other instances, the staple cavities 3010 defined in the staple cartridge body 3000 can include additional and/or different patterns of staple cavities 3010.
  • Referring primarily to FIG. 5, atraumatic extenders 3030 extend or protrude from the deck 3002 around a portion of the staple cavities 3010 in the first pattern 3020. The atraumatic extenders 3030 surround the proximal and distal ends 3016 and 3018, respectively, of the openings 3012 of the staple cavities 3010 in the first pattern 3020. The atraumatic extenders 3030 may be configured to grip tissue that is clamped by the end effector. Additionally or alternatively, in certain instances, the tips of the staple legs can protrude from the cartridge body 3000. In such instances, the atraumatic extenders 3030 may be configured to extend flush with and/or beyond the tips of the staple legs to prevent the tips from prematurely penetrating tissue. Consequently, larger staples, e.g., staples having longer legs, can be positioned in the staple cavities 3010 having atraumatic extenders 3030 positioned therearound. For example, referring again to FIG. 5, larger staples can be positioned in the staple cavities 3010 in the first pattern 3020 than the staples in the staple cavities in the proximal pattern 3022 and the distal pattern 3024 without risking premature piercing of tissue by the longer staple legs. In certain instances, atraumatic extenders 3030 can be positioned around staples cavities 3010 in the proximal pattern 3022 and/or the distal pattern 3024, and larger staples can be positioned in one of more of those staple cavities 3010 a-3010 h, as well.
  • The staple cartridge body 3000 can be configured to generate a staple line having different properties along the length thereof. A staple line 3040 generated by the staple cartridge body 3000 and embedded in tissue T is depicted in FIG. 9. The staple line 3040 is comprised of staples 3042, and an exemplary staple 3042 for use with various staple cartridges described herein is depicted in FIG. 10. The staple 3042 can be comprised of a bent wire, for example. The wire can have a diameter of 0.0079 inches, or approximately 0.0079 inches. In other instances, the wire can have a diameter of 0.0089 inches, or approximately 0.0089 inches. In still other instances, the wire can have a diameter of 0.0094, or approximately 0.0094 inches. In certain instances, the wire can have a diameter of less than 0.0079 inches or more than 0.0094 inches. The reader will appreciate that the diameter of the wire can dictate the diameter of the staple. The staple 3042 is a substantially U-shaped staple having a base 3050, a first leg 3052 extending from a first end of the base 3050, and a second leg 3054 extending from a second end of the base 3050. The first leg 3052 is substantially parallel to the second leg 3054 and substantially perpendicular to the base 3050. When implanted in tissue T, the angular orientation of the base 3050 corresponds to the angular orientation of the staple cavity opening 3012 from which the staple 3042 was fired.
  • Another exemplary staple 3142 for use with various staple cartridges described herein is depicted in FIG. 11. The staple 3142 is a substantially V-shaped staple having a base 3150, a first leg 3152 extending from a first end of the base 3050, and a second leg 3154 extending from a second end of the base 3150. The first leg 3152 is obliquely oriented relative to the second leg 3154 and the base 3150. When implanted in tissue T, the orientation of the base 3150 corresponds to the orientation of the staple cavity opening 3012 from which the staple 3142 was fired. The reader will appreciate that staples having different geometries can also be fired from the staple cartridges described herein.
  • Referring again to FIG. 9, the staple line 3040 includes a first portion 3044, a proximal portion 3046, and a distal portion 3048. The first portion 3044 is generated from the first pattern, or major pattern, 3020 and extends along a substantial portion of the staple line 3040. Owing to the angular orientation of the staples 3042 in the first portion 3044, the first portion 3044 is substantially flexible or compliant. For example, because the angularly-oriented staples 3042 can rotate within the stapled tissue T while minimizing trauma to the tissue T, the first portion 3044 is configured to stretch or extend longitudinally and/or laterally as the stapled tissue stretches.
  • The proximal portion 3046 is generated from the proximal pattern 3022 and forms the proximal end of the staple line 3040. The distal portion 3048 is generated from the distal pattern 3024 and forms the distal end of the staple 3040. Owing to the parallel orientation of the staples 3042 in the proximal portion 3046 and the distal portion 3048 of the staple line 3040, the proximal portion 3046 and the distal portion 3046 of the staple line 3040 can be less flexible than the first portion 3044. However, the reduced flexibility of the proximal portion 3046 and the distal portion 3048 may not impact, or not substantially impact, the overall flexibility of the staple line 3040. Moreover, as described herein, the proximal portion 3046 and the distal portion 3048 may not extend adjacent to the cutline and, in certain instances, the proximal portion 3046 may be absent or missing from the staple line 3040.
  • A firing element, such as the firing member 1760 (FIG. 4), is configured to move along at least a portion of the slot 3004 to fire the staples 3042 from the staple cavities 3010. The firing element can include and/or engage one of more wedge sleds and/or camming surfaces, such as the sled assembly 1120 having wedge-shaped cams 1122 (FIG. 4). The cams of the sled are configured to drive the staples upward toward a staple-forming surface, such as into forming pockets in the anvil 1130 (FIGS. 1, 3 and 4), for example. Referring to FIG. 6, the staple cartridge body 3000 includes a plurality of channels 3036 along a bottom surface 3034 through which the wedge-shaped cams can move during a firing stroke.
  • In use, target tissue is clamped between the staple cartridge body 3000 and an anvil, such as the anvil 1130 (FIGS. 1, 3 and 4). The tissue overlapping the staple cavities 3010 is stapled. If tissue is not positioned over certain staple cavities 3010, staples fired from those staple cavities 3010 may not engage the tissue. An anvil typically contains downwardly extending sidewalls commonly referred to as “tissue stops”. The tissue stops are configured to block the target tissue from getting too far proximal between the anvil and cartridge. For example, referring to the end effector 1100 in FIG. 4, the anvil 1130 includes tissue stops 1131, which extend toward the staple cartridge 1110. When the anvil 1130 is closed toward the cartridge 1110, the tissue stops 1131 on either side of the anvil 1130 extend downward past the cartridge deck surface 1115 and form a wall or barrier, which prevents tissue from being positioned too far proximal between the anvil 1130 and cartridge 1110. The distal ends of the tissue stops 1131 define a proximal starting point for the cutline. A proximal axis PA corresponding to the distal ends of the tissue stops 1131 is depicted in FIG. 7. Because target tissue is not positioned proximal to the proximal axis PA, the staples that are fired from the staple cavities located proximal to the proximal axis PA, i.e., the proximal staple cavities 3010 a-3010 d, are not fired into the target tissue. In such instances, staples fired from the proximal pattern 3022 do not form a part of the staple line.
  • A cutting element 3028 (FIG. 7) is also configured to move along the longitudinal slot 3004. In various instances, the cutting element 3028 can be an integral part of the firing element, such as the tissue cutting feature 1766 on the firing member 1760 (FIG. 4), for example. The cutting element 3028 has a distal cutting edge 3029 that is configured to incise tissue clamped by the end effector and stapled by the staples 3042. Referring primarily to FIG. 7, the cutting edge 3029 of the cutting element 3028 is configured to move between a proximal position near the proximal end portion 3006 of the cartridge body 3000 and a distal position near the distal end portion 3008 of the cartridge body 3000. The distal-most position of the cutting edge 3029 is defined by a distal termination point for the cutline. A distal axis DA corresponding to the distal termination point of the cutting edge 3029 is depicted in FIG. 7. Tissue positioned distal to the distal axis DA is not incised by the cutting element 3028 during the firing stroke.
  • The first pattern 3020 of staple cavities 3010 extends between the proximal axis PA and the distal axis DA. Moreover, at least one staple cavity 3010 in the first pattern 3020 overlaps the proximal axis PA and the distal axis DA. In other instances, more than one longitudinally-repetitive pattern of staple cavities 3010 can be positioned between the proximal axis PA and the distal axis DA. The proximal pattern 3022 is positioned proximal to the proximal axis PA, and the distal pattern 3024 is positioned distal to the distal axis DA. In such instances, staples fired from the distal staple cavities 3010 e-3010 h are not configured to staple incised tissue. Moreover, staples fired from the proximal staple cavities 3010 a-3010 d are not configured to staple the target tissue. Accordingly, such staples may not impact the flexibility and/or sealing quality of the resultant staple line.
  • In certain instances, it can be desirable to generate a staple line having a first flexibility adjacent to the cutline and a different flexibility proximal to and/or distal to the cutline. For example, a staple line that includes at least two parallel staples on each side of the cutline and positioned distal to the distal end of the cutline, may provide certain advantages. In certain instances, a staple arrangement that provides less flexibility may prevent and/or limit the propagation of the cutline and/or tearing of the tissue. Additionally, the tissue adjacent to an uncut portion may experience less stress and/or strain than the tissue adjacent to the cutline and, thus, may require less flexibility to prevent and/or limit tissue trauma. More specifically, tissue adjacent to the cutline may experience more forces during the cutting stroke and, thus, increased flexibility may prevent trauma to the tissue. Additionally, the tissue adjacent to the cutline may stretch as it heals and thus, increased flexibility may facilitate the healing process. For tissue that experiences fewer forces, such as the tissue distal to the cutline, for example, the reduced flexibility may reinforce or strengthen the staple line and prevent distal propagation of the cutline.
  • In the depicted arrangement, the proximal pattern 3022 includes two irregular staple cavities on each side of the knife slot 3004 adjacent to the proximal end of the first pattern 3020 and the distal pattern 3024 includes two irregular staple cavities on each side of the knife slot 3004 adjacent to the distal end of the first pattern 3020. In other instances, the proximal pattern 3022 and/or the distal pattern 3024 can consist of a single irregular staple cavity on one or both sides of the knife slot 3004. In still other instances, the proximal pattern 3022 and/or the distal pattern 3024 can include three or more irregular staple cavities on one or both sides of the knife slot 3004. The proximal pattern 3022 and/or the distal pattern 3024 can include longitudinally repetitive sub-patterns. For example, the proximal pattern 3022 and/or the distal pattern 3024 can include multiple columns of parallel staple cavity openings 3012. In certain instances, the staple cartridge body 3000 can have a single irregular pattern, which can be positioned at either the proximal end or distal end of the first pattern 3020.
  • In certain instances, one or more staple cavities in the proximal pattern 3022 and/or the distal pattern 3024 can be non-parallel to the knife slot 3004. For example, such staple cavities can be oriented perpendicular to the knife slot 3004 or at an oblique angle relative to the knife slot 3004. Additionally or alternatively, certain staple cavities in the proximal pattern 3022 and/or the distal pattern 3024 can be non-parallel to each other
  • Referring primarily to FIG. 8, staple drivers 3060 are positioned in the staple cavities 3010 of the cartridge body 3000. The staple drivers 3060 are positioned to support the staples 3042 (FIGS. 9 and 10) therein and to drive the staples 3042 from the staple cavities 3010 during a firing stroke. Owing to the different patterns of staple cavities 3010 in the cartridge body 3000, e.g., the patterns 3020, 3022 and 3024, the staple drivers 3060 can have different geometries and/or orientations. For example, the staple drivers 3060 positioned in the staple cavities 3010 of the first pattern 3020 may include connected drivers as described in U.S. patent application Ser. No. 14/498,145, filed Sep. 26, 2014, now U.S. Patent Application Publication No. 2016/0089142, entitled METHOD FOR CREATING A FLEXIBLE STAPLE LINE, which is incorporated by reference herein in its entirety. Each connected driver can include an inner driver positioned in a staple cavity 3010 in the inner row 3014 a, an intermediate driver positioned in a staple cavity 3010 in the intermediate row 3014 b, and an outer driver positioned in a staple cavity 3010 in the outer row 3014 c. A connecting flange can connect the intermediate driver to at least one inner driver and at least one outer driver. In other instances, the staple drivers positioned in the staple cavities in the first pattern 3020 may include individual drivers, wherein each driver drives a single staple. In still other instances, the staples can be direct-drive staples, which can be driven by direct contact with a wedge sled and/or camming surfaces, as described in U.S. patent application Ser. No. 14/138,475, filed on Dec. 23, 2013, now U.S. Patent Application Publication No. 2015/0173749, entitled SURGICAL STAPLES AND STAPLE CARTRIDGES and U.S. patent application Ser. No. 14/498,145, which are incorporated by reference herein in their respective entireties.
  • The drivers 3060 positioned in the staple cavities 3010 are dimensioned and positioned for driving engagement by the sled and camming surfaces thereof. For example, the drivers 3060 are positioned in the staple cavities 3010 of the first pattern 3020. Proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d are positioned in the staple cavities 3010 a, 3010 b, 3010 c, and 3010 d, respectively, of the proximal pattern 3022, and distal drivers 3060 e, 3060 f, 3060 g, and 3060 h are positioned in the staple cavities 3010 e, 3010 f, 3010 g, and 3010 h, respectively, of the distal pattern 3024. Referring again to FIG. 4, the sled assembly 1120 and the wedge-shaped cams 1122 thereof can be configured to lift the drivers 3060 in the staple cavities 3010. In such instances, the cams 1122 are configured to drivingly engage the drivers 3060 along the length of the cartridge body 3000. More specifically, the cams 1122 initially engage and drive the proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d to fire the staples in the proximal pattern 3022, then engage and drive the drivers 3060 to fire the staples in the first pattern 3022, and finally engage and drive the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h to fire the staples in the distal pattern 3024. Although the proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d and/or the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h have a different geometry than the drivers 3060 in the first pattern 3020 of staple cavities 3010, the sled and camming surfaces thereof are compatible with the different drivers in the cartridge body 3000.
  • Referring again to FIG. 4, the sled assembly 1120 includes four camming surfaces 1122. A first pair of camming surfaces 1122 are positioned for driving engagement with the staple drivers on the first side of the longitudinal axis LA, and a second pair of camming surfaces 1122 are positioned for driving engagement with the staple drivers on the second side of the longitudinal axis LA. The camming surfaces 1122 in each pair are longitudinally offset. In other instances, the camming surfaces 1122 can be longitudinally aligned. Each pair of camming surfaces 1122 is configured to lift a triple driver (see, e.g., the driver 1170 in FIGS. 81-83), i.e., a connected driver supporting a staple in the inner row 3014 a of staple cavities 3010, a staple in the intermediate row 3014 b of staple cavities 3010, and a staple in the outer row 3014 c of staple cavities 3010. The camming surfaces 1122 are also configured to lift the proximal drivers 3060 a, 3060 b, 3060 c, and 3060 d and the distal drivers 3060 e, 3060 f, 3060 g, and 3060 h. In other instances, the sled assembly 1120 can include more than or less than four camming surfaces.
  • The proximal drivers 3060 a-3060 d and the distal drivers 3060 e-3060 h are connected drivers 3058. An exemplary connected driver 3058 is depicted in FIGS. 13-16. The connected driver 3058 includes the first driver 3060 a and the second driver 3060 b. A connecting flange 3068 extends between the two drivers 3060 a and 3060 b. Because the first and second drivers 3060 a and 3060 b are connected, the staples supported by the first and second drivers 3060 a, 3060 b are fired simultaneously by the sled assembly. Each driver 3060 a and 3060 b also includes a cradle 3070 for supporting the base of the staple. A guide 3062 a and 3062 b extends laterally from each driver 3060 a and 3060 b, respectively. The first guide 3062 a extends in a first direction and forms an outside portion of the connected driver 3058 and the second guide 3062 b extends in a second, opposite direction and forms an inside portion of the connected driver 3058. Ramped surfaces 3064 a and 3064 b on the guides 3062 a and 3062 b, respectively, are positioned for driving contact with the camming surfaces of the sled assembly. The guides 3062 a and 3062 b are driven upward in the channels 3036 (FIG. 6) of the cartridge body 3000 when moved to a fired position by the sled assembly. The channels 3036 form a vertical support structure through which the guides 3062 a, 3062 b are driven by the camming surfaces. As described herein, the camming surfaces can be longitudinally offset. In such instances, the ramped surfaces 3064 a, 3064 b are correspondingly offset, as depicted in FIGS. 14 and 16. In other instances, the ramped surfaces 3064 a and 3064 b can be aligned.
  • In other instances, the proximal drivers and/or the distal drivers in a staple cartridge may not be connected. For example, referring to FIG. 12, a staple cartridge 4800 is depicted. The staple cartridge body 4800 is similar in many aspects to the staple cartridge body 3000. For example, the staple cartridge body 4800 includes a first pattern 4820 of angularly-oriented staple cavities, which are arranged in a herringbone pattern. A slot 4804 extends along the longitudinal axis LA of the cartridge body 4800. The staple cartridge body 4800 also includes proximal staple cavities arranged in a proximal pattern 4822 and distal staple cavities arranged in a distal pattern 4824. The proximal pattern 4822 includes a first pair of parallel, longitudinally-aligned staple cavities on a first side of the slot 4804 and a second pair of parallel, longitudinally-aligned staple cavities on a second side of the longitudinal slot 4804. The distal pattern 4824 also includes a first pair of parallel, longitudinally-aligned staple cavities on the first side of the slot 4804 and a second pair of parallel, longitudinally-offset staple cavities on the second side of the longitudinal slot 4804. The proximal pattern 4822 and the distal pattern 4824 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4822 and/or the distal pattern 4824 can be asymmetric relative to the longitudinal axis LA.
  • Drivers 4860 are positioned in the staple cavities 4810 of the first pattern 4820. The drivers 4860 in the staple cavities 4810 of the first pattern 4820 are triple drivers, as described herein. Proximal drivers 4860 a, 4860 b, 4860 c, and 4860 d are positioned in the staple cavities of the proximal pattern 4822, and distal drivers 4860 e, 4860 f, 4860 g, and 4860 h are positioned in the staple cavities of the distal pattern 4824. The proximal drivers 4860 a-4860 d and the distal drivers 4860 e-4860 h are single drivers. Exemplary single drivers 4860 a and 4860 b are depicted in FIGS. 17 and 18.
  • Each driver 4860 a and 4860 b includes a cradle 4870 for supporting the base of the staple. A guide 4862 a and 4862 b extends laterally from each driver 4860 a and 4860 b, respectively. The first guide 4862 a extends in a first direction and forms an outside portion of the first driver 4860 a and the second guide 4862 b extends in a second, opposite direction and forms an outside portion of the second driver 4860 b. Ramped surfaces 4864 a and 4864 b on the guides 4862 a and 4862 b, respectively, are positioned for driving contact with the camming surfaces of a sled assembly. The guides 4862 a and 4862 b are driven upward in channels in the cartridge body 4800, such as the channels 3036 in the cartridge 3000 (FIG. 6), when the drivers 4860 a and 4860 b are moved to a fired position by the sled assembly. The channels form a vertical support structure through which the guides 4862 a and 4862 b are driven by the camming surfaces. Such channels can stabilize the guides 4862 a and 4862 b and, thus, stabilize the individual drivers 4860 a and 4860 b, respectively, during deployment. As described herein, the camming surfaces can be longitudinally offset. In such instances, the ramped surfaces 4864 a, 4864 b are correspondingly offset, as depicted in FIG. 18. In other instances, the ramped surfaces 4864 a and 4864 b can be aligned.
  • Because the first and second drivers 4860 a, 4860 b are separate, the staples supported by the first and second drivers 4860 a, 4860 b can be fired independently. In certain instances, the first driver 4860 a and the second driver 4860 b can be fired sequentially. It can be advantageous to fire an inner staple before an outer staple, for example, which can be accomplished with the separate drivers 4860 a and 4860 b. In other instances, an outer staple can be fired before an inner staple with the separate drivers 4860 a and 4860 b. The firing order can be modified by adjusting the relationship between the camming surfaces and the ramped surfaces 3864 a and 4864 b, for example.
  • In various instances, the staple cavities in a distal pattern and/or a proximal pattern may not be longitudinally-aligned and/or may not be parallel. For example, referring now to FIGS. 19 and 20, a staple cartridge body 4600 is depicted. The staple cartridge body 4600 is similar in many aspects to the staple cartridge body 3000. For example, the staple cartridge body 4600 includes a first pattern 4620 of angularly-oriented staple cavities 4610, which are arranged in a herringbone pattern. A slot 4604 extends through a deck 4602 of the staple cartridge body 4600 along the longitudinal axis LA of the cartridge body 4600. The staple cartridge body 4600 also includes proximal staple cavities 4610 a-4610 d arranged in a proximal pattern 4622 and distal staple cavities 4610 e-4610 h arranged in a distal pattern 4624. The proximal pattern 4622 includes a first pair of parallel, longitudinally-offset staple cavities 4610 a, 4610 b on a first side of the slot 4604 and a second pair of parallel, longitudinally-offset staple cavities 4610 c, 4610 d on a second side of the longitudinal slot 4604. The distal pattern 4624 also includes a first pair of parallel, longitudinally-offset staple cavities 4610 e, 4610 f on the first side of the slot 4604 and a second pair of parallel, longitudinally-offset staple cavities 4610 g, 4610 h on the second side of the longitudinal slot 4604. The proximal pattern 4622 and the distal pattern 4624 are symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4622 and the distal pattern 4624 can be asymmetric relative to the longitudinal axis LA.
  • Connected drivers 4658 are positioned in the proximal and distal staple cavities 4610 a-4610 h. An exemplary connected driver 4658 is depicted in FIGS. 21-24. The connected driver 4658 includes the first driver 4660 a and the second driver 4660 b. A connecting flange 4668 extends between the two offset drivers 4660 a and 4660 b. Because the drivers 4660 a and 4660 b are connected, the staples supported by the drivers 4660 a, 4660 b are fired simultaneously by the sled assembly. Each driver 4660 a and 4660 b includes a cradle 4670 for supporting the base of the staple. A guide 4662 a and 4662 b extends laterally from each driver 4660 a and 4660 b, respectively. The first guide 4662 a extends in a first direction and forms an outside portion of the connected driver 4658 and the second guide 4662 b extends in a second, opposite direction and forms an inside portion of the connected driver 4658. Ramped surfaces 4664 a and 4664 b on the guides 4662 a and 4662 b, respectively, are positioned for driving contact with the camming surfaces of a sled assembly. The guides 4662 a and 4662 b are driven upward in channels in the cartridge body 4800, such as the channels 3036 in the staple cartridge 3000 (FIG. 6), for example, when the drivers 4660 a, 4660 b are moved to a fired position by the sled assembly. The channels form a vertical support structure through which the guides 4662 a, 4662 b are supported as they are driven by the camming surfaces. As described herein, the camming surfaces can be longitudinally offset. In such instances, the ramped surfaces 4664 a, 4664 b are correspondingly offset, as depicted in FIGS. 22 and 24. In other instances, the ramped surfaces 4664 a and 4664 b can be aligned.
  • Referring now to FIGS. 25 and 26, a staple cartridge body 4700 is depicted. The staple cartridge body 4700 is similar in many aspects to the staple cartridge body 3000. For example, the staple cartridge body 4700 includes a first pattern 4720 of angularly-oriented staple cavities 4710, which are arranged in a herringbone pattern. A slot 4704 extends through a deck 4702 of the staple cartridge body 4700 along the longitudinal axis LA of the cartridge body 4700. The staple cartridge body 4700 also includes proximal staple cavities 4710 a-4710 f arranged in a proximal pattern 4722. The proximal pattern 4722 includes inner staple cavities 4710 c and 4710 d, which are oriented parallel to the longitudinal axis LA. The proximal pattern 4722 also includes angularly-oriented outer staple cavities 4710 a and 4710 f, and angularly-oriented intermediate cavities 4710 b and 4710 e. The outer staple cavities 4710 a and 4710 f and the intermediate staple cavities 4710 b and 4710 e are oriented at oblique angles relative to the longitudinal axis LA. The angularly-oriented outer staple cavities 4710 a and 4710 f are also oriented at oblique angles relative to the cavity axes of the staple cavities 4710 in the first pattern 4720. The outer staple cavities 4710 a and 4710 f are less angled than the staple cavities 4710 in the first pattern 4720. In other words, the outer staple cavities 4710 a and 4710 f are oriented at an angle that is closer to parallel with the longitudinal axis LA than the staple cavities 4710 in the first pattern 4720. In such instances, the proximal pattern 4722 can be less flexible than the first pattern 4720.
  • The intermediate staple cavities 4710 b and 4710 e are oriented parallel to certain staple cavities 4710 in the first pattern 4020. For example, the intermediate staple cavities 4710 b and 4710 e are oriented parallel to the staple cavities 4710 in an inner row in the first pattern 4720. Though certain staple cavities in the proximal pattern 4722 are not angularly offset from the staple cavities in the first pattern 4020, the proximal pattern 4722, when considered as a whole, is different than the first pattern 4020 and is different than the longitudinally-repetitive sub-patterns within the first pattern 4020.
  • The proximal pattern 4722 includes three staple cavities positioned on each side of the slot 4704. In other instances, less than three staple cavities or more than three staple cavities can be arranged in the proximal pattern 4722 on one or both sides of the slot 4704. The proximal pattern 4722 does not include a longitudinally-repetitive sub-pattern. In other instances, the proximal pattern 4722 can be longitudinally repetitive. Additionally, the proximal pattern 4722 is symmetric relative to the longitudinal axis LA. In other instances, the proximal pattern 4722 can be asymmetric relative to the longitudinal axis LA.
  • Drivers 4760 are positioned in the staple cavities 4710 in the cartridge body 4700. The drivers 4760 in the staple cavities 4710 of the first pattern 4720 are triple drivers, as described herein. Proximal drivers 4760 a, 4760 b, 4760 c, 4760 d, 4710 e, and 4710 f are positioned in the proximal staple cavities 4710 a, 4710 b, 4710 c, 4710 d, 4710 e, and 4710 f respectively, of the proximal pattern 4722. The proximal drivers 4760 a-4760 f are single drivers. In certain instances, the proximal drivers 4760 c and 4760 d in the inner cavities 4710 c and 4710 d, respectively, can be single drivers, the proximal drivers 4760 a and 4760 b can be connected drivers, and the proximal drivers 4760 e and 4760 f can be connected drivers. In still other instances, the proximal drivers 4760 a, 4760 b, and 4760 c can comprise a first connected driver, and the distal drivers 4760 d, 4760 e, and 4760 f can comprise a second connected driver.
  • The reader will appreciate that the various patterns of staple cavities described herein can be combined and/or interchanged. In certain instances, one or more irregular patterns of staple cavities can be defined at the proximal and/or distal end of a staple cartridge body. Additionally or alternatively, one or more irregular patterns, or minor patterns, can be sandwiched or inserted within a major pattern.
  • The angular orientation of staples in a staple line can influence the flexibility or compliance of the stapled tissue along the staple line. For example, the flexibility of a staple line can increase when staples are oriented at an oblique angle relative to the longitudinal axis and/or cutline. Such an angular orientation can provide flexibility or extendability, within certain limits, in response to forces, such as tension and/or torsion, along and/or adjacent to the cutline. More specifically, the flexibility in the staple line can permit stretching, buckling, folding, and/or twisting of the stapled tissue. Generally, as the angular orientation of a staple approaches 45 degrees or 135 degrees relative to the longitudinal axis of the staple line and/or the cutline, the flexibility of the stapled tissue increases. A staple line comprised of angularly-oriented staples can be considered a compliant or elastic staple line, for example.
  • In certain instances, the flexibility of a staple line can vary laterally relative to the cutline. For example, one or more staples in a first portion of the staple line can be oriented at a first angle relative to the cutline and one or more staples in a second portion of the staple line can be oriented at a different angle relative to the cutline. The first portion of the staple line can have a first flexibility and the second portion of the staple line can have a different flexibility. In certain instances, the first portion can be laterally offset from the second portion. For example, the first portion of the staple line can include a first row of staples or portion of the first row, and the second portion of the staple line can include a second row of staples or portion of the second row. In such instances, the flexibility of the staple line along the first row of staples can be different than the flexibility of the staple line along the second row of staples.
  • Referring now to FIG. 27, a portion of a staple cartridge body 3200 is depicted. The staple cartridge body 3200 includes a deck 3202 and a longitudinal slot 3204. The longitudinal slot 3204 extends along the longitudinal axis LA. Staple cavities 3210 are defined in the staple cartridge body 3200, and each staple cavity 3210 defines an opening 3212 in the deck 3202. A staple 3242 is positioned in each staple cavity 3210. The staple 3242 can be similar in many aspects to the staple 3042 (FIG. 10) or the staple 3142 (FIG. 11). In certain instances, the legs of each staple 3242 can be biased against the inside wall of the staple cavity 3210. The reader will appreciate that the arrangement of staples 3242 in the staple cavities 3210 corresponds to the arrangement of staples 3242 in a staple line when the staples 3242 are fired from the staple cartridge body 3200 and into tissue. More specifically, the bases of each staple 3242 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • The staple cavity openings 3212 are arranged in three rows 3214 a, 3214 b, and 3214 c on a first side of the longitudinal slot 3204. Inner openings 3212 a define the perimeter of inner cavities 3210 a in the inner row 3214 a, intermediate openings 3212 b define the perimeter of intermediate cavities 3210 b in the intermediate row 3214 b, and outer openings 3212 c define the perimeter of outer cavities 3210 c in the outer row 3214 c. Inner staples 3242 a are positioned in the inner cavities 3210 a, intermediate staples 3242 b are positioned in the intermediate cavities 3210 b, and outer staples 3242 c are positioned in the outer cavities 3210 c. Although not shown in FIG. 27, in at least one instance, the staple cavities 3210 on the opposing side of the slot 3204 form a mirror image reflection of the staple cavities 3210 on the first side of the longitudinal slot 3204. Consequently, the arrangement of staples 3242 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3212 has a first end, or proximal end, 3216 and a second end, or distal end, 3218. A cavity axis CA extends between the proximal end 3216 and the distal end 3218 of each opening 3212. The staple cavity openings 3212 in each respective row are parallel. For example, the inner cavities 3210 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAA1 and CAA2) of the inner openings 3212 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate cavities 3210 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAB1 and CAB2) of the intermediate openings 3212 b are oriented at the angle B relative to the longitudinal axis LA. The outer cavities 3210 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAC1 and CAC2) defined by the outer openings 3212 are oriented at the angle C relative to the longitudinal axis LA.
  • The angles A, B, and C are different. Consequently, the inner openings 3212 a are obliquely oriented relative to the outer openings 3212 c. Because the cavity axes CA of the outer openings 3212 c (e.g., axes CAC1 and CAC2) are not parallel to the cavity axes of the inner openings 3212 a (e.g., axes CAA1 and CAA2), the openings 3212 in the staple cartridge body 3200 form a modified or skewed herringbone pattern. The cavity axes CAB1 and CAB2 of the intermediate openings 3212 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3212 a or the outer openings 3212 c. For example, the angle B can be a supplementary angle to either angle A or angle C. In other instances, the angle B may not be a supplementary angle to either angle A or angle C.
  • Owing to the different angles A, B, and C, the widths WA, WB, WC of the staple rows in the staple line can be different. For example, the inner staples 3242 a form a row of staples having a width WA, the intermediate staples 3242 b form a row of staples having a width WB, and the outer staples 3242 c form a row of staples having a width WC. The widths WA and WC are different because the angle A is different than the angle C. In certain instances, the width WB is different than the widths WA and WC. In other instances, the width WB can match one of the widths WA or WC. For example, if the angle B is a supplementary angle to angle A, the width WB matches the width WA. Similarly, if the angle B is a supplementary angle to angle C, the width WB matches the width WC.
  • Furthermore, owing to the different angles A, B, and C, the longitudinal lengths LA, LB, and LC of the staples 3242 a, 3242 b, and 3242 c, respectively, are different. For example, the inner staples 3242 a have a longitudinal length LA, the intermediate staples 3242 b have a longitudinal length LB, and the outer staples 3242 c have a longitudinal length LC. The longitudinal lengths LA and LC are different because the angle A is different than the angle C. Because the longitudinal lengths LA and LC are different, the inner staples 3242 a are at least partially longitudinally staggered or offset relative to the outer staples 3242 c. Stated differently, at least one end of each inner staple 3242 a is not aligned with a corresponding end of an outer staple 3242 b. Because the ends are not aligned, the longitudinal overlap and/or gap with respect to the intermediate staples 3242 b differs between the inner staples 3242 a and the outer staples 3242 c. In certain instances, the longitudinal length LB is different than the lengths LA and LC. In other instances, the longitudinal length LB can match one of the longitudinal lengths LA or LC. For example, if the angle B is a supplementary angle to angle A, the longitudinal length LB matches the longitudinal length LA. Similarly, if the angle B is a supplementary angle to angle C, the longitudinal length LB matches the longitudinal length LC.
  • The length of the staple bases may also impact the widths WA, WB, and WC and the longitudinal lengths LA, LB, and LC. In the staple cartridge body 3200, the inner staples 3242 a, the intermediate staples 3242 b, and the outer staples 3242 c have the same length base. For example, identical staples can be positioned in each staple cavity 3210. In other instances, as further described herein, staples having different geometries and/or sizes, such as bases of different lengths, for example, can be positioned in certain staple cavities in a cartridge body.
  • Referring still to FIG. 27, the angular orientation of the staple cavities 3210 a, 3210 b, and 3210 c, and the corresponding widths WA, WB, and WC and longitudinal lengths LA, LB, and LC, respectively, can impact the amount of lateral and longitudinal overlap in the staple line. The longitudinal and lateral overlap between the staples 3242 also depends on the spacing of the staple cavities 3210. Generally, a greater overlap between adjacent staples corresponds to less direct fluid pathways, which can correspond to greater tissue sealing properties. A greater overlap can also decrease the flexibility of the staple line because the tissue may be more constrained in the overlapped region. Moreover, a greater overlap can correspond to less spacing between the staples. In certain instances, it can be desirable to modify the degree of lateral and/or longitudinal overlap in a staple line. As the overlap varies, the flexibility and sealing properties of the staple line can also vary.
  • The overlap or degree of overlap described herein can refer to a positive overlap or a negative overlap, for example. When staples and/or rows of staples define a negative overlap, the staples and/or rows of staples may be spaced apart such that they do not overlap and a gap is defined therebetween. In still other instances, the staples or rows of staples can be aligned such that the overlap is equal to the diameter of the staples.
  • The reader will further appreciate that the degree of overlap with respect to the staples or rows of staples in a staple cartridge corresponds to the degree of overlap with respect to the staple cavities or rows of staple cavities in the staple cartridge. For example, relative differences in the lateral and/or longitudinal overlaps between staples or rows of staples correspond to the relative differences in the lateral and/or longitudinal overlaps in the staple cavities or rows of staple cavities in the staple cartridge. In certain instances, at least a portion of the staple legs can be positioned against and/or biased into the inside walls of the staple cavities at the proximal and distal ends of the staple cavity. In such instances, a distance measured with respect to the outside edges of the staples equal the distance measured with respect to the inside edges of the corresponding staple cavities. In other instances, the difference between such distances can be minimal or insignificant.
  • In certain instances, the degree of overlap can be minimized, such as when ends of the staples are aligned. When the ends of the staples are aligned, the overlap is equal, or substantially equal, to the diameter of the staples. For example, if the staples are comprised of a wire having a diameter of about 0.0079 inches, the overlap can be about 0.0079 inches. In other instances, the overlap can be less than the diameter of staples. For example, the overlap can be less than about 0.0079 inches. In still other instances, the degree of overlap can be a non-overlap or negative overlap, i.e., a space or gap between the ends of the staples. In still other instances, a minimized overlap can be equal to or less than one-third of the staple length. For example, the overlap can be less 33% of the staple length. In other instances, the overlap can be less than 25% or less than 10% of the staple length. In still other instances, the overlap can be more than 33% of the staple length, for example.
  • In certain instances, a staple line can include a first degree of overlap between the inner and intermediate rows of staples and a second degree of overlap between the intermediate and outer rows of staples. The second degree of overlap can be different from the first degree of overlap in a lateral and/or longitudinal direction. Consequently, an inner portion of the staple line can comprise a different flexibility than an outer portion of the staple line. Moreover, the tissue sealing properties of the inner portion can be different than the tissue sealing properties of the outer portion.
  • Referring again to FIG. 27, the angle A is less than the angle C. Consequently, the width WA is less than the width WC and the length LA is greater than the length LC. The angle A can be 35 degrees to 40 degrees, for example, and the angle C can be 43 degrees to 47 degrees, for example. In other instances, the angle A can be less than 35 degrees or more than 40 degrees and/or the angle C can be less than 43 degrees or more than 47 degrees. The difference between the angle A and the angle C can be between three degrees and twelve degrees. For example, the difference can be about eight degrees. In still other instances, the difference between the angle A and the angle C can be less than three degrees or more than twelve degrees.
  • Referring still to FIG. 27, the staples 3242 in each respective row are aligned. More specifically, the proximal ends of the inner staples 3242 a are longitudinally aligned, the distal ends of the inner staples 3242 a are longitudinally aligned, the proximal ends of the intermediate staples 3242 b are longitudinally aligned, the distal ends of the intermediate staples 3242 b are longitudinally aligned, the proximal ends of the outer staples 3242 c are longitudinally aligned, and the distal ends of the outer staples 3242 c are longitudinally aligned. The aligned staples 3242 in each row 3214 a, 3214 b, and 3214 c of staple cavities 3310 are configured to form rows of aligned staples 3242 in a staple line. Owing to the angular orientation of the staples 3242 and the spacing therebetween, the rows of staples 3242 laterally overlap. The inner staples 3242 a laterally overlap the intermediate staples 3242 b by a lateral overlap YA/B and the outer staples 3242 c laterally overlap the intermediate staples 3242 b by a lateral overlap YB/C. The lateral overlap YA/B between the inner staples 3242 a and the intermediate staples 3242 b is greater than the lateral overlap YB/C between the outer staples 3242 c and the intermediate staples 3242 b. In such instances, the outer staples are positioned closer to the intermediate staples than the inner staples are positioned to the intermediate staples. In other instances, the lateral overlap YA/B can be less than or equal to the lateral overlap YB/C.
  • The intermediate staples 3242 b are longitudinally staggered with respect to the inner staples 3242 a and the outer staples 3242 c. In particular, each intermediate staple 3242 b is positioned longitudinally equidistant between adjacent inner staples 3242 a and longitudinally equidistant between adjacent outer staples 3242 c. Owing to the angular orientation of the staples 3242 and the spacing therebetween, the staples 3242 do not longitudinally overlap. The inner staples 3242 a are spaced apart from the intermediate staples 3242 b by a longitudinal gap XA/B and the outer staples 3242 c are spaced apart from the intermediate staples 3242 b by a longitudinal gap XB/C. The longitudinal gap XA/B between the inner staples 3242 a and the intermediate staples 3242 b is less than the longitudinal gap XB/C between the outer staples 3242 c and the intermediate staples 3242 b. In other instances, the longitudinal gap XA/B can be greater than or equal to the longitudinal gap XB/C. In certain instances, the intermediate staples 3242 b can longitudinally overlap the inner staples 3242 a and/or the outer staples 3242 c.
  • The lateral overlaps and longitudinal gaps generated by the arrangement of staple cavities in FIG. 27 can be sufficient to sufficiently obstruct the fluid pathways across the staple line to seal the tissue. In various instances, the lateral and/or longitudinal overlaps and/or gaps can be configured to selectively optimize the sealing properties of the staple line. Additionally or alternatively, the lateral and/or longitudinal overlaps and/or gaps can be configured to selectively optimize the flexibility of the staple line. Moreover, the overlaps can be minimized. In certain instances, the lateral overlaps can be less than one-third of the staple length and, in at least one instance, can equal approximately the diameter of the staple.
  • Referring now to FIG. 28, a portion of a staple cartridge body 3300 is depicted. The staple cartridge body 3300 includes a deck 3302 and a longitudinal slot 3304. The longitudinal slot 3304 extends along the longitudinal axis LA. Staple cavities 3310 are defined in the staple cartridge body 3300, and each staple cavity 3310 includes an opening 3312 in the deck 3302. A staple 3342 is positioned in each staple cavity 3310. The staple 3342 can be similar in many aspects to the staple 3042 (FIG. 10) or the staple 3142 (FIG. 11). In certain instances, the legs of each staple 3342 can be biased against the inside wall of the staple cavity 3310. The reader will appreciate that the arrangement of staples 3342 in the staple cavities 3310 corresponds to the arrangement of staples 3342 in a staple line when the staples 3342 are fired from the staple cartridge body 3300 and into tissue. More specifically, the bases of each staple 3342 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • The staple cavity openings 3312 are arranged in three rows 3314 a, 3314 b, and 3314 c on a first side of the longitudinal slot 3304. Inner openings 3312 a define the perimeter of inner cavities 3310 a in the inner row 3314 a, intermediate openings 3312 b define the perimeter of intermediate cavities 3310 b in the intermediate row 3314 b, and outer openings 3312 c define the perimeter of outer cavities 3310 c in the outer row 3314 c. Inner staples 3342 a are positioned in the inner cavities 3310 a, intermediate staples 3342 b are positioned in the intermediate cavities 3310 b, and outer staples 3342 c are positioned in the outer cavities 3310 c. Although not shown in FIG. 28, in at least one instance, the staple cavities 3310 on the opposing side of the slot 3304 form a mirror image reflection of the staple cavities 3310 on the first side of the longitudinal slot 3304. Consequently, the arrangement of staples 3342 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3312 has a first end, or proximal end, 3316 and a second end, or distal end, 3318. A cavity axis CA extends between the proximal end 3316 and the distal end 3318 of each opening 3312. The staple cavity openings 3312 in each respective row are parallel. For example, the inner cavities 3310 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAA) of the inner openings 3312 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate cavities 3310 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAB) of the intermediate openings 3312 b are oriented at the angle B relative to the longitudinal axis LA. The outer cavities 3310 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAC) defined by the outer openings 3312 c are oriented at the angle C relative to the longitudinal axis LA.
  • In the staple cartridge body 3300, the angle A is equal to the angle C, and the angle B is a supplementary angle to the angles A and C. Consequently, the inner openings 3312 a are parallel to outer openings 3312 c and the intermediate openings 3312 b are perpendicular to the inner and outer openings 3312 a and 3312 c, respectively. The staple cavity openings 3312 in the staple cartridge body 3300 form a herringbone pattern. Moreover, referring still to FIG. 28, the staples 3342 in each row 3314 a, 3314 b, 3314 c have the same length base BL. The widths of the staple rows are equal, and the longitudinal lengths of the staples 3342 are also equal.
  • Referring still to FIG. 28, the longitudinal overlap XA/B between the inner staples 3342 a and the intermediate staples 3342 b is equal to the longitudinal overlap XB/C between the outer staples 3342 c and the intermediate staples 3342 b. Moreover, the lateral overlap YA/B between the inner staples 3342 a and the intermediate staples 3342 b is equal to the lateral overlap YB/C between the outer staples 3342 c and the intermediate staples 3342 b. In such instances, the intermediate staples 3342 b are positioned equidistantly close to the inner staples 3342 a and the outer staples 3342 c.
  • Referring still to FIG. 28, the spacing between the staple cavities 3310 in the cartridge body 3300 is minimized. For example, the proximal and distal ends 3316, 3318 of the staple cavity openings 3312 are positioned adjacent to other staple cavities 3312. In certain instances, adjacent staple cavities can be in abutting contact. By minimizing the spacing between the staple cavities 3310, the density of the staple cavities 3310 and the degree of overlap between the staple cavities 3310 in the arrangement of FIG. 28 is maximized. Although the degree of overlap is maximized, because of the close proximity of the staple cavities, the lateral overlap is still less than one-third of the staple length.
  • In other instances, the angular orientation of the staple cavities in at least one row of staple cavities can differ from the angular orientation of the staple cavities in other rows. Additionally or alternatively, the length of the staple bases in at least one row of staple cavities can differ from the length of the staple bases in at least one other row. Additionally or alternatively, the staple cavities may not be equidistantly staggered or offset from adjacent staple cavities in each adjacent row. Such variations to the staple cartridge and staples therein can generate staple lines with varying properties laterally with respect to the cutline.
  • In certain instances, the staples in an inner portion of the staple line, such as the staples fired from the inner rows of staple cavities, for example, can have a different base length than the staples in an outer portion of the staple line. For example, the staples in the inner row of staple cavities on each side of a knife slot can have a longer base than the staples in the other rows of staple cavities. The longer bases can provide greater sealing capabilities because more tissue can be captured by the staples, for example. Additionally or alternatively, the longer bases can reinforce the staple line and reduce the flexibility thereof.
  • Referring now to FIG. 29, a portion of a staple cartridge body 3400 is depicted. The staple cartridge body 3400 includes a deck 3402 and a longitudinal slot 3404. The longitudinal slot 3404 extends along the longitudinal axis LA. Staple cavities 3410 are defined in the staple cartridge body 3400, and each staple cavity 3410 defines an opening 3412 in the deck 3402. A staple 3442 is positioned in each staple cavity 3410. The staple 3442 can be similar in many aspects to the staple 3042 (FIG. 10) or the staple 3142 (FIG. 11). In certain instances, the legs of each staple 3442 can be biased against the inside wall of the staple cavity 3410. The reader will appreciate that the arrangement of staples 3442 in the staple cavities 3410 corresponds to the arrangement of staples 3442 in a staple line when the staples 3442 are fired from the cartridge body 3400 and into tissue. More specifically, the bases of each staple 3442 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • The staple cavity openings 3412 are arranged in three rows 3414 a, 3414 b, and 3414 c on a first side of the longitudinal slot 3404. Inner openings 3412 a define the perimeter of inner cavities 3410 a in the inner row 3414 a, intermediate openings 3412 b define the perimeter of intermediate cavities 3410 b in the intermediate row 3414 b, and outer openings 3412 c define the perimeter of outer cavities 3410 c in the outer row 3414 c. Inner staples 3442 a are positioned in the inner cavities 3410 a, intermediate staples 3442 b are positioned in the intermediate cavities 3410 b, and outer staples 3442 c are positioned in the outer cavities 3410 c. Although not shown in FIG. 29, in at least one instance, the staple cavities 3410 on the opposing side of the slot 3404 form a mirror image reflection of the staple cavities 3410 on the first side of the longitudinal slot 3404. Consequently, the arrangement of staples 3442 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3412 has a first end, or proximal end, 3416 and a second end, or distal end, 3418. A cavity axis CA extends between the proximal end 3416 and the distal end 3418 of each opening 3412. The staple cavity openings 3412 in each row are parallel. For example, the inner cavities 3410 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAA) of the inner openings 3412 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate cavities 3410 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAB) of the intermediate openings 3412 b are oriented at the angle B relative to the longitudinal axis LA. The outer cavities 3410 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAC) defined by the outer openings 3412 c are oriented at the angle C relative to the longitudinal axis LA.
  • The angles A, B, and C are different. The inner openings 3412 a are obliquely oriented relative to the outer openings 3412 c. The angle A is less than the angle C. Because the axes of outer openings 3412 c (e.g., axis CAC) are not parallel to the axes of inner openings 3412 a (e.g., axis CAA), the staple cavity openings 3412 in the staple cartridge body 3400 form a modified or skewed herringbone pattern. The cavity axes CAB of the intermediate openings 3412 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3412 a or the outer openings 3412 c. For example, the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • Referring still to FIG. 29, the inner staples 3442 a have a base length BLA, the intermediate staples 3442 b have a base length BLB, and the outer staples 3442 c have a base length BLC. The base length BLA is greater than the base length BLB and the base length BLC. In other words, the inner staples 3442 a are longer than the intermediate staples 3442 b and the outer staples 3442 c. Moreover, the staple cavities 3410 housing the inner staples 3442 a are correspondingly larger to accommodate the longer length base BLA.
  • The arrangement of staple cavities 3410 in the cartridge body 3400 provides a longitudinal overlap XA/B between inner staples 3442 a and the intermediate staples 3442 b at both the proximal and distal ends of the intermediate staples 3442 b. The intermediate staples 3442 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3442 a. The intermediate staples 3442 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3442 c. The proximal end of each outer staple 3442 c is longitudinally aligned with the distal end of an intermediate staple 3442 b and the distal end of each outer staple 3442 c is longitudinally aligned with the proximal end of another intermediate staple 3442 b. In other words, such staples are longitudinally aligned and the longitudinal overlap is equal to the diameter of the staples 3442. The arrangement of staples cavities 3410 in the cartridge body 3400 also provides a lateral gap YA/B between the inner row 3414 a and the intermediate row 3414 b and a lateral overlap YB/C between the outer row 3414 c and the intermediate row 3414 b. In such instances, the intermediate staples 3442 b are positioned closer to the outer staples 3442 c than to the inner staples 3442 a.
  • Referring still to FIG. 29, a staple line generated by the staple cartridge body 3400 can have different properties laterally with respect to the cutline. In particular, the staple line may have a greater sealing effectiveness along the cutline than laterally outward from the cutline. Furthermore, the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline. For example, because the bases BLA of the inner staples 3442 a are longer than the bases BLB and BLC of the intermediate staples 3442 b and the outer staples 3442 c, respectively, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line. Additionally or alternatively, because the inner staples 3442 a are oriented at an angle that is less than the outer staples 3442 c and is closer to a parallel orientation than the outer staples 3442 c, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line. Additionally or alternatively, because the intermediate staples 3442 b longitudinally overlap the inner staples 3442 a but do not longitudinally overlap the outer staples 3442 c, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line. The amount of overlap can be minimized. For example, the overlap can be less than one-third of the staple length and, in at least one instance, can equal approximately the diameter of the staple.
  • In certain instances, the staples in an outer portion of the staple line, such as the staples fired from the outer rows of staple cavities, for example, can have a different base length than the staples in an inner portion of the staple line. For example, the staples in the outer row of staple cavities on each side of a knife slot can have a shorter base than the staples in the other rows of staple cavities. The shorter bases can provide increased flexibility of the staple line, for example.
  • Referring now to FIG. 30, a portion of a staple cartridge body 3500 is depicted. The staple cartridge body 3500 includes a deck 3502 and a longitudinal slot 3504. The longitudinal slot 3504 extends along the longitudinal axis LA. Staple cavities 3510 are defined in the staple cartridge body 3500, and each staple cavity 3510 defines an opening 3512 in the deck 3502. A staple 3542 is positioned in each staple cavity 3510. The staple 3542 can be similar in many aspects to the staple 3042 (FIG. 10) or the staple 3142 (FIG. 11). In certain instances, the legs of each staple 3542 can be biased against the inside wall of the staple cavity 3510. The reader will appreciate that the arrangement of staples 3542 in the staple cavities 3510 corresponds to the arrangement of staples 3542 in a staple line when the staples 3542 are fired from the cartridge body 3500 and into tissue. More specifically, the bases of each staple 3542 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • The staple cavity openings 3512 are arranged in three rows 3514 a, 3514 b, and 3514 c on a first side of the longitudinal slot 3504. Inner openings 3512 a define the perimeter of inner cavities 3510 a in the inner row 3514 a, intermediate openings 3512 b define the perimeter of intermediate cavities 3510 b in the intermediate row 3514 b, and outer openings 3512 c define the perimeter of outer cavities 3510 c in the outer row 3514 c. Inner staples 3542 a are positioned in the inner cavities 3510 a, intermediate staples 3542 b are positioned in the intermediate cavities 3510 b, and outer staples 3542 c are positioned in the outer cavities 3510 c. Although not shown in FIG. 30, in at least one instance, the staple cavities 3510 on the opposing side of the slot 3504 form a mirror image reflection of the staple cavities 3510 on the first side of the longitudinal slot 3504. Consequently, the arrangement of staples 3542 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3512 has a first end, or proximal end, 3516 and a second end, or distal end, 3518. A cavity axis CA extends between the proximal end 3516 and the distal end 3518 of each opening 3512. The staple cavity openings 3512 in each row are parallel. For example, the inner cavities 3510 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAA) of the inner openings 3512 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate cavities 3510 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAB) of the intermediate openings 3512 b are oriented at the angle B relative to the longitudinal axis LA. The outer cavities 3510 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAC) defined by the outer openings 3512 c are oriented at the angle C relative to the longitudinal axis LA.
  • The angles A, B, and C may be different. The inner openings 3512 a are obliquely oriented relative to the outer openings 3512 c. The angle A is less than the angle C. Because the axes of the outer openings 3512 c (e.g., axis CAC) are not parallel to the axes of the inner openings 3512 a (e.g., axis CAA), the staple cavity openings 3512 in the staple cartridge body 3500 form a modified or skewed herringbone pattern. The cavity axes CAB of the intermediate openings 3512 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3512 a or the outer openings 3512 c. For example, the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • The inner staples 3542 a have a base length BLA, the intermediate staples 3542 b have a base length BLB, and the outer staples 3542 c have a base length BLC. The base length BLC is less than the base length BLB and the base length BLA. In other words, the outer staples 3542 c are shorter than the intermediate staples 3542 b and the inner staples 3542 a. Moreover, the staple cavities 3510 housing the outer staples 3542 c are correspondingly shorter to accommodate the shorter length base BLC.
  • The arrangement of staple cavities 3510 in the cartridge body 3500 provides a longitudinal overlap XA/B between the inner staples 3542 a and the intermediate staples 3542 b at both the proximal and distal ends of the intermediate staples 3542 b. The intermediate staples 3542 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3542 a. The arrangement of staple cavities 3510 in the cartridge body 3500 also provides a longitudinal overlap XB/C between the intermediate staples 3542 b and the outer staples 3542 c at both the proximal and distal ends of the intermediate staples 3542 b. The intermediate staples 3542 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3542 c. Owing to the angular orientation and spacing of the staples 3542, the longitudinal overlap XA/B is greater than the longitudinal overlap XB/C. The arrangement of staples cavities 3510 in the cartridge body 3500 also provides a lateral gap YA/B between the inner staples 3542 a and the intermediate staples 3542 b and a lateral overlap YB/C between the outer staples 3542 c and the intermediate staples 3542 b. In such instances, the intermediate staples 3542 b are positioned closer to the outer staples 3542 c than to the inner staples 3542 a.
  • Referring still to FIG. 30, a staple line generated by the staple cartridge body 3500 can have different properties laterally with respect to the cutline. In particular, the staple line may have a greater sealing effectiveness along the cutline than laterally outward from the cutline. Furthermore, the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline. For example, because the bases BLC of the outer staples 3542 c are shorter than the bases BLA and BLB of the intermediate staples 3542 b and the outer staples 3542 c, respectively, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line. Additionally or alternatively, because the inner staples 3542 a are oriented at an angle that is less than the outer staples 3542 c and is closer to a parallel orientation than the outer staples 3542 c, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line. Additionally or alternatively, because the intermediate staples 3542 b longitudinally overlap the inner staples 3542 a more than the intermediate staples 3542 b longitudinally overlap the outer staples 3542 c, an inner portion of the staple line may have greater sealing effectiveness and/or less flexibility than an outer portion of the staple line.
  • In various instances, the properties of the staple line can be customized in each row of staples. The staples in each row of staple cavities on one side of a knife slot can have different base lengths. Additionally, the staples in each row of staple cavities on one side of a knife slot can be oriented at different angles relative to the knife slot. Moreover, the spacing between the cavities can be varied row-to-row. For example, the size and orientation of the staples in each row can be selected to optimize the flexibility of the staple line and sealing properties in each row based on the row's position laterally from the cutline toward the outer boundary of the staple line. In certain instances, the sealing effectiveness can be maximized or emphasized along the cutline, for example, and the flexibility of the staple line can be maximized or emphasized along the outer boundary of the staple line, for example. Alternatively, in certain instances, the sealing effectiveness can be maximized or emphasized along the outer boundary of the staple line and/or the flexibility of the staple line can be maximized or emphasized along the cutline.
  • Referring now to FIG. 31, a portion of a staple cartridge body 3600 is depicted. The staple cartridge body 3600 includes a deck 3602 and a longitudinal slot 3604. The longitudinal slot 3604 extends along the longitudinal axis LA. Staple cavities 3610 are defined in the staple cartridge body 3600, and each staple cavity 3610 defines an opening 3612 in the deck 3602. A staple 3642 is positioned in each staple cavity 3610. The staple 3642 can be similar in many aspects to the staple 3042 (FIG. 10) or the staple 3142 (FIG. 11). In certain instances, the legs of each staple 3642 can be biased against the inside wall of the staple cavity 3610. The reader will appreciate that the arrangement of staples 3642 in the staple cavities 3610 corresponds to the arrangement of staples 3642 in a staple line when the staples 3642 are fired from the cartridge body 3600 and into tissue. More specifically, the bases of each staple 3642 in a resultant staple line are collinear, or substantially collinear, with the cavities axes CA.
  • The staple cavity openings 3612 are arranged in three rows 3614 a, 3614 b, 3614 c on a first side of the longitudinal slot 3604. Inner openings 3612 a define the perimeter of inner cavities 3610 a in the inner row 3614 a, intermediate openings 3612 b define the perimeter of intermediate cavities 3610 b in the intermediate row 3614 b, and outer openings 3612 c define the perimeter of outer cavities 3610 c in the outer row 3614 c. Inner staples 3642 a are positioned in the inner cavities 3610 a, intermediate staples 3642 b are positioned in the intermediate cavities 3610 b, and outer staples 3642 c are positioned in the outer cavities 3610 c. Although not shown in FIG. 31, in at least one instance, the staple cavities 3610 on the opposing side of the slot 3604 form a mirror image reflection of the staple cavities 3610 on the first side of the longitudinal slot 3604. Consequently, the arrangement of staples 3642 in a resultant staple line is symmetric relative to the cutline. In other instances, the staple line can be asymmetric relative to the cutline.
  • Each staple cavity opening 3612 has a first end, or proximal end, 3616 and a second end, or distal end, 3618. A cavity axis CA extends between the proximal end 3616 and the distal end 3618 of each opening 3612. The staple cavity openings 3612 in each row are parallel. For example, the inner cavities 3610 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAA) of the inner openings 3612 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate cavities 3610 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAB) of the intermediate openings 3612 b are oriented at the angle B relative to the longitudinal axis LA. The outer cavities 3610 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the cavity axes (e.g., CAC) defined by the outer openings 3612 c are oriented at the angle C relative to the longitudinal axis LA.
  • The angles A, B, and C may be different. The inner openings 3612 a are obliquely oriented relative to the outer openings 3612 c. The angle A is less than the angle C. Because the axes of the outer openings 3612 c (e.g., axis CAC) are not parallel to the axes of the inner openings 3612 a (e.g., axis CAA), the staple cavity openings 3612 in the staple cartridge body 3600 form a modified or skewed herringbone pattern. The cavity axes CAB of the intermediate openings 3612 b can be oriented perpendicular, or substantially perpendicular, to either the inner openings 3612 a or the outer openings 3612 c. For example, the angle B can be a supplementary angle to either angle A or C. In other instances, the angle B may not be a supplementary angle to either angle A or C.
  • The inner staples 3642 a have a base length BLA, the intermediate staples 3642 b have a base length BLB, and the outer staples 3642 c have a base length BLC. The base length BLC is less than the base length BLB, and the base length BLB is less than the base length BLA. In other words, the length of the staples 3642 increases laterally toward the longitudinal slot 3604. Moreover, the staple cavities 3610 correspondingly increase in length laterally toward the longitudinal slot 3604 to accommodate the larger staples.
  • The arrangement of staple cavities 3610 in the cartridge body 3600 provides a longitudinal overlap XA/B between the inner staples 3642 a and the intermediate staples 3642 b at both the proximal and distal ends of the intermediate staples 3642 b. The intermediate staples 3642 b are equidistantly spaced and longitudinally staggered between two adjacent inner staples 3642 a. The arrangement of staple cavities 3610 in the cartridge body 3600 also provides a longitudinal gap XB/C between the intermediate staples 3642 b and the outer staples 3642 c at both the proximal and distal ends of the intermediate staples 3642 b. The intermediate staples 3642 b are also equidistantly spaced and longitudinally staggered between two adjacent outer staples 3642 c. Owing to the variations in the angular orientation of the staples, the spacing of the staples, and the length of the staples, the longitudinal overlap XA/B is greater than the longitudinal gap XB/C. In other instances, the longitudinal overlap XA/B can be equal to or less than the longitudinal overlap XB/C. The arrangement of staples cavities 3610 in the cartridge body 3600 also provides a lateral gap YA/B between the inner row 3614 a and the intermediate row 3614 b and a lateral overlap YB/C between the outer row 3614 c and the intermediate row 3614 b.
  • Referring still to FIG. 31, a staple line generated by the staple cartridge body 3600 can have different properties laterally with respect to the cutline. In particular, the staple line may have a greater sealing effectiveness adjacent to the cutline than laterally outward from the cutline. Furthermore, the staple line may have a greater flexibility laterally away from the cutline than inward toward the cutline. For example, because the length of the bases BLA, BLB, and BLC of the staples 3642 a, 3642 b, and 3642 c, respectively, increases laterally inward toward the cutline, an inner portion of the staple line may have greater sealing effectiveness than an outer portion of the staple line. Additionally or alternatively, because the angular orientation of the staples 3642 a, 3642 b, and 3642 c increases laterally outward away from the cutline, an outer portion of the staple line may have greater flexibility than an inner portion of the staple line.
  • As described herein, staples are removably positioned in a staple cartridge and fired from the staple cartridge during use. In various instances, the staples can be driven out of staple cavities in the staple cartridge and into forming contact with an anvil. For example, a firing element can translate through the staple cartridge during a firing stroke to drive the staples from the staple cartridge toward an anvil. In certain instances, the staples can be supported by staple drivers and the firing element can lift the staple drivers to eject or remove the staples from the staple cartridge.
  • An anvil can include a staple-forming surface having staple-forming pockets defined therein. In certain instances, the staple-forming pockets can be stamped in the anvil. For example, the staple-forming pockets can be coined in a flat surface of the anvil. The reader will appreciate that certain features of the staple-forming pockets can be a deliberate consequence of a coining process. For example, a certain degree of rounding at corners and/or edges of the staple-forming produce can be an intentional result of the coining process. Such features can also be designed to better form the staples to their formed configurations, including staples that become skewed and/or otherwise misaligned during deployment.
  • Each staple in the staple cartridge can be aligned with a staple-forming pocket of the anvil. In other words, the arrangement of staple cavities and staples in a staple cartridge for an end effector can correspond or match the arrangement of staple-forming pockets in an anvil of the end effector. More specifically, the angular orientation of each staple cavity can match the angular orientation of the respective staple-forming pocket. For example, when the staple cavities are arranged in a herringbone pattern, the staple-forming pockets can also be arranged in a herringbone pattern.
  • When staples are driven from the staple cartridge and into forming contact with the anvil, the staples can be formed into a fired configuration. In various instances, the fired configuration can be a B-form configuration, in which the tips of the staple legs are bent toward the staple base or crown to form a capital letter B having symmetrical upper and lower loops. In other instances, the fired configuration can be a modified B-form, such as a skewed B-form configuration, in which at least a portion of a staple leg torques out of plane with the staple base, or an asymmetrical B-form configuration, in which the upper and lower loops of the capital letter B are asymmetric. Tissue can be captured or clamped within the formed staple.
  • The arrangement of staples and/or staple cavities in a staple cartridge can be configured to optimize the corresponding arrangement of staple-forming pockets in the forming surface of a complementary anvil. For example, the angular orientation and spacing of staples in a staple cartridge can be designed to optimize the forming surface of an anvil. In certain instances, the footprint of the staple-forming pockets in an anvil can be limited by the geometry of the anvil. In instances in which the staple-forming pockets are obliquely-oriented relative to a longitudinal axis, the width of the anvil can limit the size and spacing of the obliquely-oriented staple-forming pockets. For example, the width of an intermediate row of staple-forming pockets can define a minimum distance between a first row (e.g. an outer row) on one side of the intermediate row and a second row (e.g. an inner row) on the other side of the intermediate row. Moreover, the rows of staple-forming pockets are confined between an inside edge on the anvil, such as a knife slot, and an outside edge of the anvil.
  • In various instances, the pockets can be adjacently nested along a staple-forming surface of the anvil. For example, an intermediate pocket can be nested between an inner pocket and an outer pocket. The angular orientation of the pockets can vary row-to-row to facilitate the nesting thereof. For example, the staple-forming pockets in an inner row can be oriented at a first angle, the staple-forming pockets in an intermediate row can be oriented at a second angle, and the staple-forming pockets in an outer row can be oriented at a third angle. The first angle, the second angle, and the third angle can be different, which can facilitate the close arrangement of the staple-forming pockets.
  • Referring again to the staple cartridges depicted in FIGS. 27-31, the varying angles of the staples and the staple cavities in each row can be selected to optimize the nesting of the staple-forming pockets in a complementary anvil. For each staple cartridge depicted in FIGS. 27-31, a complementary anvil can be configured to have a corresponding arrangement of staple-forming pockets. Moreover, the staple-forming pockets in the complementary anvils can be larger than the staple cavities depicted in FIGS. 27-31 to ensure that the staple legs land or fall within the staple-forming pockets. For example, the staple legs may be biased outward, such as in the case of V-shaped staples (see FIG. 11) and the larger footprint of the staple-forming pockets can catch the outwardly-biased staple legs during firing. In various instances, the staple-forming pockets can be 0.005 inches to 0.015 inches longer than the corresponding staple cavities and/or staples. Additionally or alternatively, the staple-receiving cups of each staple-forming pocket can be 0.005 inches to 0.015 inches wider than the corresponding staple cavities. In other instances, the difference in length and/or width can be less than 0.005 inches or more than 0.015 inches.
  • In instances in which the size of the staples varies within a staple cartridge (see, e.g., FIGS. 29-31), the size of the staple-forming pockets can corresponding vary within a complementary anvil. Varying the size of the staple-forming pockets can further facilitate the nesting thereof. For example, in instances in which staple-forming pockets in an intermediate row are shorter than the staple-forming pockets in an inner row or an outer row, the width of the intermediate row of staple-forming pockets can be reduced, which can minimize the requisite spacing between the inner row and the outer row.
  • The spacing of the staple-forming pockets can also be configured to optimize the nesting thereof. For example, the pockets arranged in an inner row can be longitudinally staggered relative to the pockets arranged in an outer row. Moreover, the pockets in the inner row can partially longitudinally overlap the pockets in the outer row. The pockets in an intermediate row can be longitudinally staggered relative to the pockets in the inner row and the pockets in the outer row. For example, the pockets in the intermediate row can be equidistantly longitudinally offset from the pockets in the outer row and the pockets in the inner row.
  • Referring now to FIG. 80, an anvil 3700 is depicted. The anvil 3700 can be complementary to the staple cartridge 3500 (FIG. 30). For example, the arrangement of staple-forming pockets 3706 in the anvil 3700 can correspond to the arrangement of staples 3542 and staple cavities 3510 (FIG. 30) in the staple cartridge 3500. The anvil 3700 includes a staple-forming surface 3702 and a longitudinal slot 3704. The longitudinal slot 3704 extends along the longitudinal axis LA of the anvil 3700. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 3704 during at least a portion of a firing stroke. Staple-forming pockets 3706 are defined in the staple-forming surface 3702. The staple-forming surface 3702 also includes a non-forming portion 3708 that extends around the pockets 3706. The non-forming portion 3708 extends entirely around each pocket 3706 in FIG. 80. In other words, the non-forming portion 3708 surrounds the staple-forming pockets 3706. In other instances, at least a portion of two or more adjacent pockets 3706 can be in abutting contact such that a non-forming portion 3708 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 3702 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3708 of the anvil 3700 can be minimized with respect to the staple-forming pockets 3706. Additionally or alternatively, the footprint of the staple-forming pockets 3706 can be extended or enlarged to maximize the portion of the staple-forming surface 3702 that is designed to catch and form the staples.
  • The pockets 3706 depicted in FIG. 80 are arranged in three rows 3714 a, 3714 b, 3714 c on a first side of the longitudinal slot 3704. The first row 3714 a is an inner row, the second row 3714 b is an intermediate row, and the third row 3714 c is an outer row. Inner pockets 3706 a are positioned in the inner row 3714 a, intermediate pockets 3706 b are positioned in the intermediate row 3714 b, and outer pockets 3706 c are positioned in the outer row 3714 c. The pockets 3706 are arranged in a herringbone arrangement along the staple-forming surface 3702 of the anvil 3700. Although not shown in FIG. 80, in at least one instance, the pockets 3706 on the opposing side of the slot 3704 can form a mirror image reflection of the pockets 3706 on the first side of the longitudinal slot 3704. In other instances, the arrangement of pockets 3706 in the staple-forming surface 3702 can be asymmetrical relative to the slot 3704 and, in certain instances, the anvil 3700 may not include the longitudinal slot 3704. In various instances, the pockets 3706 can be arranged in less than or more than three rows on each side of the slot 3704.
  • Each pocket 3706 includes a perimeter 3716, which defines the boundary of the pocket 3706 b. Each pocket 3706 also includes a proximal cup 3720, a distal cup 3722, and a neck portion 3724 connecting the proximal cup 3720 and the distal cup 3722. When a staple is driven into forming contact with the staple-forming surface 3702, the proximal cup 3720 is aligned with a proximal staple leg, and the distal cup 3722 is aligned with a distal staple leg. The tips of the staple legs are positioned and configured to land in the respective cups 3720, 3722. Stated differently, the proximal cup 3720 is configured to receive a proximal staple leg and the distal cup 3722 is configured to receive a distal staple leg. The cups 3720 and 3722 are also configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3806, such as the neck portion 3724, and to deform the staple legs into the formed configuration.
  • The geometry, spacing, and/or orientation of the pockets 3706 can vary row-to-row. A pocket axis PA extends from the proximal cup 3720, through the neck portion 3724, and to the distal cup 3722 of each pocket 3706. The pockets 3706 in each row are parallel. For example, the inner pockets 3706 a are oriented at an angle A relative to the longitudinal axis LA. Stated differently, the pocket axes (e.g., PAA) of the inner pockets 3706 a are oriented at the angle A relative to the longitudinal axis LA. The intermediate pockets 3706 b are oriented at an angle B relative to the longitudinal axis LA. Stated differently, the pocket axes (e.g., PAB) of the inner pockets 3706 b are oriented at the angle B relative to the longitudinal axis LA. The outer pockets 3706 c are oriented at an angle C relative to the longitudinal axis LA. Stated differently, the pocket axes (e.g., PAC) of the inner pockets 3706 a are oriented at the angle C relative to the longitudinal axis LA.
  • The angles A, B, and C may be different. The inner pockets 3706 a are obliquely oriented relative to the outer pockets 3706 c. The angle A is less than the angle C. Because the axes of the outer pockets 3706 c (e.g., axis PAC) are not parallel to the axes of the inner pockets 3706 a (e.g., axis PAA), the staple-forming pockets 3706 in the anvil 3700 form a modified or skewed herringbone pattern. The pocket axes PAB of the intermediate pockets 3706 b are obliquely oriented relative to the inner pockets 3706 a and outer pockets 3706 c. In other instances, the pocket axes PAB of the intermediate pockets 3706 b can be oriented perpendicular, or substantially perpendicular, to either the inner pocket 3706 a or the outer pocket 3706 c. For example, the angle B can be a supplementary angle to either angle A or C.
  • The inner pockets 3706 a have a length LA, the intermediate pockets 3706 b have a length LB, and the outer pockets 3706 c have a length LC. The length LC is less than the length LB and the length LA. In other words, the outer pockets 3706 c are shorter than the intermediate pockets 3706 b and the inner pockets 3706 a. In certain instances, the lengths LA, LB, and LC can be different. In other instances, the lengths LA, LB, and LC can be the same. In still other instances, the length LB can be less than the length LA and/or LB, and/or the length LA can be less than the length LA and/or LC. The lengths LA, LB, and LC can be selected to optimize the nesting of the pockets 3706.
  • The spacing of the staple-forming pockets 3706 can also be configured to optimize the nesting thereof. For example, the inner pockets 3706 a can be longitudinally staggered relative to the outer pockets 3706 c. Moreover, the inner pockets 3706 a can partially longitudinally overlap the outer pockets 3706 c. Referring to FIG. 80, a first end of the inner pocket 3706 a is longitudinally offset from the corresponding end of the outer pocket 3706 c by a distance X1 A/C. Moreover, a second end of the inner pocket 3706 a is longitudinally offset from the corresponding end of the outer pocket 3706 c by a distance X2 A/C. The distance X2 A/C is less than the distance X1 A/C. In other instances, the distance X2 A/C can be equal to or greater than the distance X1 A/C. The intermediate pockets 3706 b are longitudinally staggered relative to the inner pockets 3706 a and the outer pockets 3706 c. More specifically, the intermediate pockets 3706 b are equidistantly longitudinally offset between adjacent inner pockets 3706 a and between adjacent outer pockets 3706 c. In other instances, the intermediate pockets 3706 b may be non-equidistantly offset between adjacent inner pockets 3706 a and between adjacent outer pockets 3706 c.
  • The arrangement of pockets 3706 is configured to nest the pockets 3706 such that the pockets 3706 fit within a predefined space. For example, in certain instances, the width of the anvil can be minimized or otherwise restrained to fit within a surgical trocar and/or within a narrow surgical field, and the arrangement of staple-forming pockets 3706 (and the corresponding arrangement of staples and/or staple cavities) can fit within a narrow anvil.
  • Referring now to FIGS. 32-35C, staple-forming pockets 3806 in a portion of an anvil 3800 are shown. The anvil 3800 includes a staple-forming surface 3802 and a longitudinal slot 3804. The longitudinal slot 3804 extends along the longitudinal axis LA of the anvil 3800. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 3804 during at least a portion of a firing stroke. The staple-forming pockets 3806 are defined in the staple-forming surface 3802, which also includes a non-forming portion 3808 that extends around the pockets 3806. The non-forming portion 3808 extends entirely around each pocket 3806. In other words, the non-forming portion 3808 surrounds the staple-forming pockets 3806. In other instances, at least a portion of two or more adjacent pockets can be in abutting contact such that a non-forming portion is not positioned therebetween. In certain instances, the non-forming portion 3808 can extend across one or more of the pockets 3806.
  • The “forming ratio” of the staple-forming surface 3802 (the ratio of the non-forming portion 3808 to the forming portion, i.e., the pockets 3806) can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3808 of the anvil 3800 can be minimized with respect to the staple-forming pockets 3806. Additionally or alternatively, the footprint of the staple-forming pockets 3806 can be extended or enlarged to maximize the portion of the staple-forming surface 3802 that is designed to catch and form the staples. Such arrangement, for example, may prevent inadvertent malformed staples that, for whatever reason, miss or fall outside of their corresponding forming pocket during the firing process.
  • The pockets 3806 depicted in FIG. 32 are arranged in three rows 3814 a, 3814 b, and 3814 c on a first side of the longitudinal slot 3804. The first row 3814 a is an inner row, the second row 3814 b is an intermediate row, and the third row 3814 c is an outer row. Inner pockets 3806 a are positioned in the inner row 3814 a, intermediate pockets 3806 b are positioned in the intermediate row 3814 b, and outer pockets 3806 c are positioned in the outer row 3814 c. Although not shown in FIG. 32, in at least one instance, the pockets 3806 on the opposing side of the slot 3804 can form a mirror image reflection of the pockets 3806 on the first side of the longitudinal slot 3804. In other instances, the arrangement of pockets 3806 in the staple-forming surface 3802 can be asymmetrical relative to the slot 3804 and, in certain instances, the anvil 3800 may not include the longitudinal slot 3804. In various instances, the pockets 3806 can be arranged in less than or more than three rows on each side of the slot 3804.
  • The pockets 3806 depicted in FIG. 32 are identical. Each pocket 3806 defined in the staple-forming surface 3802 has the same geometry. In other instances, the geometry of the pockets 3806 can vary row-to-row and/or longitudinally along the length of the anvil 3800. For example, in certain instances, the depth of the pockets 3806 or portions thereof can vary along the length of the anvil 3800 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 3806 b is shown in FIGS. 33-35C. The pocket 3806 b has a first end, or proximal end, 3810 and a second end, or distal end, 3812. A pocket axis PA extends between the proximal end 3810 and the distal end 3814 of the pocket 3806 b. Referring again to FIG. 32, the pockets 3806 in each respective row are parallel. For example, the pocket axes (e.g., PAA) of the inner pockets 3806 a are parallel to each other, the pocket axes (e.g., PAB) of the intermediate pockets 3806 b are parallel to each other, and the pocket axes (e.g., PAC) of the outer pockets 3806 c are parallel to each other. The pocket axes PA are obliquely oriented relative to the slot 3804. Moreover, the axes PAB of the intermediate pockets 3806 b are oriented perpendicular to the axes PAA and PAC of the inner pockets 3806 a and the outer pockets 3806 c, respectively. As such, the pockets 3806 are arranged in a herringbone arrangement along the staple-forming surface 3802.
  • The pocket 3806 b includes a perimeter 3816, which defines the boundary of the pocket 3806 b. The pocket 3806 b also includes a proximal cup 3820, a distal cup 3822, and a neck portion 3824 connecting the proximal cup 3820 and the distal cup 3822. When a staple is driven into forming contact with the staple-forming surface 3802, the proximal cup 3820 is aligned with a proximal staple leg, and the distal cup 3822 is aligned with a distal staple leg. The tips of the staple legs are positioned and configured to land in the respective cups 3820, 3822. Stated differently, the proximal cup 3820 is configured to receive a proximal staple leg and the distal cup 3822 is configured to receive a distal staple leg. The cups 3820 and 3822 are also configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3806, such as the neck portion 3824, and to deform the staple legs into the formed configuration.
  • The pockets 3806 include extended landing zones for the staple legs. Referring to the pocket 3806 b depicted in FIG. 33, the pocket 3806 b includes a proximal extended landing zone 3830 and a distal extended landing zone 3832. The proximal extended landing zone 3830 is positioned in a proximal portion of the proximal cup 3820, and the distal extended landing zone 3832 is positioned in a distal portion of the distal cup 3822. The extended landing zones 3830 and 3832 define a substantially triangular perimeter. Moreover, the extended landing zones 3830 and 3832 terminate along the pocket axis PA at a point to form corners of the pocket 3806 b.
  • In other instances, the extended landing zones 3830 and 3832 can define straight and/or contoured perimeters, for example, and may extend laterally and/or longitudinally relative to the pocket axis PA. In instances where a staple or portion thereof is skewed during firing, the extended landing zones 3830, 3832 can salvage, or at least attempt to salvage, the formation of the skewed staple.
  • Referring primarily to FIG. 34, each cup 3820, 3822 of the pocket 3806 b defines an entrance ramp 3840 and an exit ramp 3842. The exit ramp 3842 is steeper than the entrance ramp 3840. When forming a staple, the tip of a staple leg can enter the respective cup 3820, 3822 along the entrance ramp 3840 and exit the respective cup 3820, 3822 along the exit ramp 3842. At an apex 3846 between the entrance ramp 3840 and the exit ramp 3842, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The proximal cup 3820 defines a proximal depth D1 at the apex 3846 thereof measured relative to the non-forming portion 3808 of the staple-forming surface 3802, and the distal cup 3822 defines a distal depth D2 at the apex 3846 thereof measured relative to the non-forming portion 3808 of the staple-forming surface 3802. In the pocket 3806 b, the proximal depth D1 and the distal depth D2 are equal. In other instances, the proximal depth D1 and the distal depth D2 can be different.
  • The pocket 3806 b also defines a bridge 3844 in the neck portion 3824 between the proximal cup 3820 and the distal cup 3822. The bridge 3844 is offset from the non-forming portion 3808 of the staple-forming surface 3802. More specifically, the bridge 3844 is positioned below or recessed relative to the non-forming portion 3808. In other instances, the bridge 3844 can be aligned with the non-forming portion 3808 and/or can protrude away from the non-forming portion 3808 toward the opposing jaw of the end effector.
  • Referring primarily to FIGS. 35A-35C, the pocket 3806 b includes sidewalls 3850. The sidewalls 3850 are oriented perpendicular to the non-forming portion 3808 of the staple-forming surface 3802. The sidewalls 3850 widen toward a central region 3821 of each cup 3820, 3822, and narrow from the central region 3821 of each cup 3820, 3822 toward the neck portion 3824. The widened central region 3821 provides an enlarged footprint for receiving the tip of a staple leg. The extended landing zones 3830, 3832 also enlarge the footprint of the respective cups 3820, 3822 for receiving the staple tips. As the cups 3820, 3822 narrow toward the neck portion 3824, the cups 3820, 3822 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration. As the cups 3820 and 3822 widen and then narrow toward the neck portion 3824, the perimeter 3816 of the pocket 3806 b defines a contour or arced profile. In other instances, the perimeter 3816 of the pocket 3806 b can extend along linear, non-contoured profiles having non-rounded corners, for example.
  • The pocket 3806 b defines fillets 3852 (FIGS. 35A-35C) between the sidewalls 3850 and the bottom surface of the pocket 3806 b. The fillets 3852 are configured to guide the staple legs along the desired path in the pocket 3806 b. For example, if a staple leg lands along the fillet 3852 or is diverted to the fillet 3852, the fillet 3852 can smoothly guide the staple leg toward the pocket axis PA.
  • Referring again to FIG. 33, the pocket 3806 b is symmetric about the pocket axis PA. For example, the perimeter 3816 of the pocket 3806 b is symmetric about the pocket axis PA. Moreover, the pocket 3806 b is symmetric about a central axis CA through the neck portion 3824 and perpendicular to the pocket axis PA. For example, the perimeter 3816 of each pocket 3806 is symmetric about the central axis CA, and the proximal cup 3820 has the same geometry as the distal cup 3822.
  • In other instances, the proximal cup 3820 can be different than the distal cup 3822. For example, referring again to FIG. 34, the distal depth D2 can be less than the proximal depth D1. In various instances, the variation in the depth of a staple-forming pocket can accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector when tissue is clamped therebetween. For example, an anvil may bow or bend away from the staple cartridge as the anvil approaches the distal end of the end effector. Variations to the depth of the staple-forming pockets 3806 can be configured to ensure that an appropriate forming height is maintained in view of the anticipated or expected bowing or bending of the anvil 3800.
  • Additionally or alternatively, the variation in the depth of a staple-forming pocket can accommodate for tissue movement or flow relative to the end effector. More specifically, when tissue is clamped between the jaws of the end effector, fluid in the clamped tissue can flow or move toward adjacent, unclamped tissue. The tissue can flow laterally toward the longitudinal sides of the anvil 3800, distally toward the distal end of the anvil 3800, and/or proximally toward the proximal end of the anvil 3800. In certain instances, tissue can flow relative to the anvil 3800 when the cutting edge is advanced distally through the tissue. In such instances, tissue may flow laterally, distally, and/or proximally, but it primarily flows distally due to the distal movement of the cutting edge. In instances where the cutting edge moves proximally to incise tissue, the movement or flow of the tissue would be generally proximal during the cutting stroke. Different depths D1 and D1 in the pocket 3806 can accommodate for the distal flow of the tissue, which can shift or skew the staple legs embedded therein distally.
  • In various instances, tissue movement or flow at the distal end of an end effector can be larger than the tissue movement or flow at the proximal end of the end effector. Such instances can arise as a result of the distal movement of the firing member within the end effector. Although the firing member is configured to progressively staple and incise the tissue as it is moved distally, the firing member can also plow or push the tissue distally. This pushing or plowing effect may begin at the proximal end of the end effector and may compound as the firing member is moved distally such that the largest pushing or plowing effect is realized at the distal end of the end effector. Consequently, the tissue flow can be increased toward the distal end of the end effector. To accommodate for such an increase in tissue flow, the geometries of the staple pockets can vary longitudinally along the length of a row. In instances where the proximal and distal cups of the staple pockets are different to accommodate for tissue flow, a gradient in pocket asymmetries may be utilized within a row of pockets to compensate for the gradient in tissue movement and staple shifting.
  • In certain instances, different staple geometries can be utilized with the different pocket geometries. The use of different staples to accommodate for tissue flow along the length of an end effector is described in U.S. patent application Ser. No. 14/318,996, entitled FASTENER CARTRIDGES INCLUDING EXTENSIONS HAVING DIFFERENT CONFIGURATIONS, filed Jun. 30, 2014, which is hereby incorporated by reference herein in its entirety. In other instances, identical staples can be utilized with different pocket geometries along the length of an anvil.
  • Referring again to FIG. 33, the neck portion 3824 defines a width WN and the proximal and distal cups 3820 and 3822 define a width WC. The width WN is less than the width Wc. Consequently, the central portion of the pocket 3806 b is narrower than the proximal and distal cups 3820 and 3822. The narrowed perimeter 3816 of the pocket 3806 b at the neck portion 3824 defines a receiving peninsula 3826 between a portion of the proximal cup 3820 and a portion of the distal cup 3822. Owing to the symmetry of the pocket 3806 b, symmetrical receiving peninsulas 3826 are positioned on each side of the pocket 3806 b. The receiving peninsulas 3826 are bounded by the perimeter 3816 of the pocket 3806 b and a tangent axis (e.g., TA, TB1, TB2, and TC), which is tangential to the widest portion of the proximal and distal cups 3820 and 3822 on a side of the pocket 3806. A first tangent axis TB1 is positioned on a first side of the pocket 3806 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 3806 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 33 are parallel to the pocket axis PAB.
  • Referring again to FIG. 32, the perimeters 3816 of the pockets 3806 are nested or interlocked along the staple-forming surface 3802. In particular, each pocket 3806 extends into the receiving peninsula 3826 of an adjacent pocket 3806. For example, the intermediate pockets 3806 b are nested between the inner pockets 3806 a and the outer pockets 3806 c. Stated differently, the intermediate pockets 3806 b extend into the receiving peninsula 3826 of an adjacent inner pocket 3806 a and into the receiving peninsula 3826 of an adjacent outer pocket 3806 c. Moreover, the inner pockets 3806 a and the outer pockets 3806 b are nested with the intermediate pockets 3806 b. More specifically, the inner pockets 3806 a extend into the receiving peninsula 3826 of an adjacent intermediate pocket 3806 b, and the outer pockets 3806 c extend into the receiving peninsula 3826 of an adjacent intermediate pocket 3806 b.
  • The distal cup 3822 of the intermediate pocket 3806 b extend across the tangent axis TA and into the receiving peninsula 3826 of the adjacent inner pocket 3806 a. Moreover, the proximal cup 3820 of the intermediate pocket 3806 b extends across the tangent axis TC and into the receiving peninsula 3826 of the adjacent outer pocket 3806 c. Additionally, the distal cup 3822 of the inner pockets 3806 a extends across the tangent axis TB1 and into the receiving peninsula 3826 of the adjacent intermediate pocket 3806 b. Furthermore, the proximal cup 3820 of the outer pockets 3806 c extends across the tangent axis TB2 and into the receiving peninsula 3826 of the adjacent intermediate pocket 3806 b. In various instances, the distal extended landing zone 3832 of the intermediate pocket 3806 b is positioned in the receiving peninsula 3826 of an inner pocket 3806 a, the proximal extended landing zone 3830 of the intermediate pocket 3806 b is positioned in the receiving peninsula 3826 of an outer pocket 3806 c, the distal extended landing zone 3832 of an inner pocket 3806 a is positioned in the receiving peninsula 3826 of an intermediate pocket 3806 b, and the proximal extended landing zone 3830 of the outer pocket 3806 c is positioned in the receiving peninsula 3826 of an intermediate pocket 3806 b.
  • The geometry of the pockets 3806 facilitates the nesting of the pockets 3806 in the staple-forming surface 3802. For example, because the pockets 3806 include a narrowed neck portion 3824 between two enlarged cups 3820 and 3822, one of the enlarged cups 3820, 3822 of another pocket 3806 can be positioned adjacent to the narrowed neck portion 3824. For example, one of the enlarged cups 3820, 3822 can be aligned with and/or received by a portion of an adjacent pocket 3806. In such instances, the surface area of the staple-forming surface 3802 that is covered by the pockets 3806 can be optimized. For example, the surface area of the staple-forming surface 3802 that is covered by the pockets 3806 is maximized. The “forming ratio” of the staple-forming surface 3802 is the ratio of the non-forming portion 3808 to the forming portion, i.e., the pockets 3806. The forming ratio is about 1.7:1. In other instances, the forming ratio can be less than 1.7:1 or more than 1.7:1. For example, in at least one instance, more than 50% of the staple-forming surface 3802 can be covered with staple-forming pockets 3806.
  • The nesting of staple-forming pockets discussed herein can refer to the nesting of adjacent pocket perimeters. For example, where a first pocket defines an inward contour, i.e., a contour extending inward toward the pocket axis, an adjacent second pocket can protrude toward and/or into the region adjacent to the inward contour. Additionally or alternatively, a portion of the second pocket, such as an end of the second pocket, can be aligned with the narrowed region of the first pocket. Consequently, the second pocket can be positioned nearer to the pocket axis of the first pocket than if the end of the second pocket was aligned with a wider region of the first pocket.
  • Referring now to FIGS. 36-39C, staple-forming pockets 3906 in a portion of an anvil 3900 are depicted. The anvil 3900 includes a staple-forming surface 3902 and a longitudinal slot 3904. The longitudinal slot 3904 extends along the longitudinal axis LA of the anvil 3900. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 3904 during at least a portion of a firing stroke. The staple-forming pockets 3906 are defined in the staple-forming surface 3902. The staple-forming surface 3902 also includes a non-forming portion 3908 that extends around the pockets 3906. The non-forming portion 3908 extends entirely around each pocket 3906 in FIG. 36. In other words, the non-forming portion 3908 surrounds the staple-forming pockets 3906. In other instances, at least a portion of two or more adjacent pockets 3906 can be in abutting contact such that a non-forming portion 3908 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 3902 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 3908 of the anvil 3900 can be minimized with respect to the staple-forming pockets 3906. Additionally or alternatively, the footprint of the staple-forming pockets 3906 can be extended or enlarged to maximize the portion of the staple-forming surface 3902 that is designed to catch and form the staples.
  • The pockets 3906 depicted in FIG. 36 are arranged in three rows 3914 a, 3914 b, 3914 c on a first side of the longitudinal slot 3904. The first row 3914 a is an inner row, the second row 3914 b is an intermediate row, and the third row 3914 c is an outer row. Inner pockets 3906 a are positioned in the inner row 3914 a, intermediate pockets 3906 b are positioned in the intermediate row 3914 b, and outer pockets 3906 c are positioned in the outer row 3914 c. Similar to the anvil 3800, the pockets 3906 are arranged in a herringbone arrangement along the staple-forming surface 3902 of the anvil 3900. Although not shown in FIG. 36, in at least one instance, the pockets 3906 on the opposing side of the slot 3904 can form a mirror image reflection of the pockets 3906 on the first side of the longitudinal slot 3904. In other instances, the arrangement of pockets 3906 in the staple-forming surface 3902 can be asymmetrical relative to the slot 3904 and, in certain instances, the anvil 3900 may not include the longitudinal slot 3904. In various instances, the pockets 3906 can be arranged in less than or more than three rows on each side of the slot 3904.
  • The pockets 3906 depicted in FIG. 36 are identical. Each pocket 3906 defined in the staple-forming surface 3802 has the same geometry. In other instances, the geometry of the pockets 3906 can vary row-to-row and/or longitudinally along the length of the anvil 3900. For example, in certain instances, the depth of the pockets 3906 or portions thereof can vary along the length of the anvil 3900 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 3906 b is shown in FIGS. 37-39C. The pocket 3906 b has a first end, or proximal end, 3910 and a second end, or distal end, 3912. A pocket axis PA (FIG. 37) extends between the proximal end 3910 and the distal end 3912 of the pocket 3906 b. The pocket 3906 b includes a perimeter 3916, which defines the boundary of the pocket 3906. The pocket 3906 b also includes a proximal cup 3920, a distal cup 3922, and a neck portion 3924 connecting the proximal cup 3920 and the distal cup 3922. When a staple is driven into forming contact with the staple-forming surface 3902, the proximal cup 3920 is aligned with a proximal staple leg, and the distal cup 3922 is aligned with a distal staple leg. The cups 3920 and 3922 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 3906, such as the neck portion 3924, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 38, each cup 3920, 3922 of the pocket 3906 b defines an entrance ramp 3940 and an exit ramp 3942. The exit ramp 3942 is steeper than the entrance ramp 3940. When forming a staple, the tip of a staple leg can enter the respective cup 3920, 3922 along the entrance ramp 3940 and exit the respective cup 3920, 3922 along the exit ramp 3942. At an apex 3946 between the entrance ramp 3940 and the exit ramp 3942, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The proximal cup 3920 defines a proximal depth D1 at the apex 3946 thereof measured relative to the non-forming portion 3908 of the staple-forming surface 3902, and the distal cup 3922 defines a distal depth D2 at the apex 3946 thereof measured relative to the non-forming portion 3908 of the staple-forming surface 3902. In the pocket 3906, the proximal depth D1 and the distal depth D2 are equal. In other instances, the proximal depth D1 and the distal depth D2 can be different. The pocket 3906 b also defines a bridge 3944 in the neck portion 3924 between the proximal cup 3920 and the distal cup 3922. The bridge 3944 is offset from the non-forming portion 3908 of the staple-forming surface 3902. More specifically, the bridge 3944 is positioned below or recessed relative to the non-forming portion 3908.
  • Referring primarily to FIGS. 39A-39C, the pocket 3906 b includes sidewalls 3950. The sidewalls 3950 are oriented perpendicular to the non-forming portion 3908 of the staple-forming surface 3902. The sidewalls 3950 narrow linearly from the outer ends of each cup 3920, 3922 toward the neck portion 3924. Consequently, the widest portion of the cups 3920, 3922 is at the proximal and distal ends 3910, 3912 of the pocket 3906 b, respectively. The profile 3916 of the pocket 3906 b defines a bow-tie shape perimeter. The widened region at the proximal and distal ends 3910, 3912 provides an enlarged footprint for receiving the tip of a staple leg. In various instances, the widened portions of the cups 3920 and 3922 define extended landing zones for receiving the staple tips. As the cups 3920, 3922 narrow toward the neck portion 3924, the cups 3920, 3922 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA into a formed configuration. The pocket 3906 b defines a chamfered edge 3954 along the sides of the pocket 3906 b. The chamfered edge 3954 serves to enlarge the footprint of the pocket 3906 b and guide the tips of the staple legs toward the pocket axis PA.
  • Referring again to FIG. 37, the pocket 3906 b is symmetric about the pocket axis PA. For example, the perimeter 3916 of the pocket 3906 b is symmetric about the pocket axis PA. Moreover, the pocket 3906 b is symmetric about a central axis CA through the neck portion 3924 and perpendicular to the pocket axis PA. For example, the perimeter 3916 of the pocket 3906 b is symmetric about the central axis CA, and the proximal cup 3920 has the same geometry as the distal cup 3922. In other instances, the proximal cup 3920 can be different than the distal cup 3922. For example, referring again to FIG. 38, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 37, the width of the neck portion 3924 is less than the width of the cups 3920 and 3922. Consequently, the central portion of the pocket 3906 b is narrower than the proximal and distal cups 3920 and 3922. The narrowed perimeter 3916 of the pocket 3906 b at the neck portion 3924 defines a receiving peninsula 3926 between a portion of the proximal cup 3920 and a portion of the distal cup 3922. Owing to the symmetry of the pocket 3906 b, symmetrical receiving peninsulas 3926 are positioned on each side of the pocket 3906 b. The receiving peninsulas 3926 are bounded by the perimeter 3916 of the pocket 3906 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portion of the proximal and distal cups 3920 and 3922 on a side of the pocket 3906 b. A first tangent axis TB1 is positioned on a first side of the pocket 3906 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 3906 b. The first and second tangent axes TB1 and TB2 are parallel to the pocket axis PA.
  • Referring again to FIG. 36, each pocket 3906 extends toward the receiving peninsula 3926 of an adjacent pocket 3906. For example, the intermediate pockets 3906 b are aligned with the neck portions 3924 of the inner pockets 3906 a and the outer pockets 3906 c. Moreover, the inner pockets 3906 a and the outer pockets 3906 b extend toward the receiving peninsula 3926 of one of the intermediate pockets 3906 b. More specifically, the pocket axes PA of the intermediate pockets 3906 b are aligned with the neck portions 3924 of adjacent inner and outer pockets 3906 a and 3906 c, respectively, the pocket axes PA of the inner pockets 3906 a are aligned with the neck portion 3924 of an adjacent intermediate pocket 3906 b, and the pocket axes PA of the outer pockets 3906 c are aligned with the neck portion 3924 of an adjacent intermediate pocket 3906 b. In certain instances, a portion of one or more of the pockets 3906 can extend into the receiving peninsula of an adjacent pocket 3906.
  • The geometry of the pockets 3906 facilitates the close arrangement of the pockets 3906 in the staple-forming surface 3902. For example, because the pockets 3906 include a narrowed neck portion 3924 between two enlarged cups 3920 and 3922, the enlarged cup 3920, 3922 of another pocket 3906 can be positioned adjacent to the narrowed neck portion 3924. For example, an enlarged cup 3920, 3922 can be aligned with and/or received by a portion of the adjacent pocket 3906. Consequently, the surface area of the staple-forming surface 3902 that is covered by the pockets 3906 can be optimized. For example, the surface area of the staple-forming surface 3902 that is covered by pockets 3906 is maximized. The “forming ratio” is the ratio of the non-forming portion 3908 to the forming portion, i.e., the pockets 3906. In various instances, the forming ratio can be at least 1:1, for example.
  • In certain instances, though the pockets 3906 are positioned in close proximity to each other, because the neck portion 3924 narrows, there is space for the non-forming portion 3908 between adjacent pockets 3906. For example, the non-forming portion 3908 can extend between the neck portion 3924 of an inner pocket 3906 a and the distal cup 3922 of an adjacent intermediate pocket 3906 b. The non-forming portion 3908 between adjacent pockets 3906 can provide sufficient spacing between pockets 3906 to strengthen and/or reinforce the anvil 3900.
  • Referring now to FIGS. 40-43C, staple-forming pockets 4006 in a portion of an anvil 4000 are depicted. The pockets 4006 and arrangement thereof in the anvil 4000 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900. For example, the anvil 4000 includes a staple-forming surface 4002 and a longitudinal slot 4004. The longitudinal slot 4004 extends along the longitudinal axis LA of the anvil 4000. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4004 during at least a portion of a firing stroke. The staple-forming pockets 4006 are defined in the staple-forming surface 4002. The staple-forming surface 4002 also includes a non-forming portion 4008 that extends around the pockets 4006. The non-forming portion 4008 extends entirely around each pocket 4006 in FIG. 40. In other words, the non-forming portion 4008 surrounds the staple-forming pockets 4006. In other instances, at least a portion of two or more adjacent pockets 4006 can be in abutting contact such that a non-forming portion 4008 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 4002 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4008 of the anvil 4000 can be minimized with respect to the staple-forming pockets 4006. Additionally or alternatively, the footprint of the staple-forming pockets 4006 can be extended or enlarged to maximize the portion of the staple-forming surface 4002 that is designed to catch and form the staples.
  • The pockets 4006 are arranged in an inner row 4014 a, an intermediate row 4014 b, and an outer row 4014 c on a first side of the longitudinal slot 4004. Inner pockets 4006 a are positioned in the inner row 4014 a, intermediate pockets 4006 b are positioned in the intermediate row 4014 b, and outer pockets 4006 c are positioned in the outer row 4014 c. Similar to the anvil 3800, the pockets 4006 are arranged in a herringbone arrangement along the staple-forming surface 4002 of the anvil 4000. Although not shown in FIG. 40, in at least one instance, the pockets 4006 on the opposing side of the slot 4004 can form a mirror image reflection of the pockets 4006 on the first side of the longitudinal slot 4004. In other instances, the arrangement of pockets 4006 in the staple-forming surface 4002 can be asymmetrical relative to the slot 4004 and, in certain instances, the anvil 4000 may not include the longitudinal slot 4004. In various instances, the pockets 4006 can be arranged in less than or more than three rows on each side of the slot 4004.
  • The pockets 4006 depicted in FIG. 40 are identical. Each pocket 4006 defined in the staple-forming surface 4002 has the same geometry. In other instances, the geometry of the pockets 4006 can vary row-to-row and/or longitudinally along the length of the anvil 4000. For example, in certain instances, the depth of the pockets 4006 or portions thereof can vary along the length of the anvil 4000 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4006 b is shown in FIGS. 41-43C. The pocket 4006 b has a first end, or proximal end, 4010 and a second end, or distal end, 4012. A pocket axis PA (FIG. 41) extends between the proximal end 4010 and the distal end 4012 of the pocket 4006 b. The pocket 4006 b includes a perimeter 4016, which defines the boundary of the pocket 4006 b. The pocket 4006 b also includes a proximal cup 4020, a distal cup 4022, and a neck portion 4024 connecting the proximal cup 4020 and the distal cup 4022. When a staple is driven into forming contact with the staple-forming surface 4002, the proximal cup 4020 is aligned with a proximal staple leg, and the distal cup 4022 is aligned with a distal staple leg. The cups 4020 and 4022 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4006, such as the neck portion 4024, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 42, each cup 4020, 4022 of the pocket 4006 b defines an entrance ramp 4040 and an exit ramp 4042. When forming a staple, the tip of a staple leg can enter the respective cup 4020, 4022 along the entrance ramp 4040 and exit the respective cup 4020, 4022 along the exit ramp 4042. At an apex 4046 between the entrance ramp 4040 and the exit ramp 4042, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4006 b also defines a bridge 4044 between the proximal cup 4020 and the distal cup 4022. The bridge 4044 is offset from the non-forming portion 4008. More specifically, the bridge 4044 is positioned below or recessed relative to the non-forming portion 4008.
  • Referring primarily to FIGS. 43A-43C, the pocket 4006 b includes sidewalls 4050, which are oriented perpendicular to the non-forming portion 4008 of the staple-forming surface 4002. The sidewalls 4050 narrow from the outer ends of each cup 4020, 4022 toward the neck portion 4024. Consequently, the widest portion of the cups 4020, 4022 is at the proximal and distal ends 4010, 4012 of the pocket 4006 b, respectively. The profile 4016 of the pocket 4006 b defines a bow-tie shape perimeter. The widened region at the proximal and distal ends 4010, 4012 provides an enlarged footprint for receiving the tip of a staple leg. In various instances, the widened portions of the cups 4020, 4022 define extended landing zones for receiving the staple tips. As the cups 4020, 4022 narrow toward the neck portion 4024, the cups 4020, 4022 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • The pocket 4006 b defines a chamfered edge 4054 along the sides of the pocket 4006 b. Additionally, the pocket 4006 b includes a groove 4056 in the bottom surface 4058 thereof. The groove 4056 extends from the proximal cup 4020 over the bridge 4024 and into the distal cup 4022. The groove 4056 is configured to constrain and guide the staple legs as they move to the deformed configuration.
  • In various instances, the diameter of the groove 4056 can be less than the diameter of the staple engaged with the groove 4056. For example, a staple can have a diameter of at least 0.0079 inches, and the diameter of the groove 4056 can be less than 0.0079 inches. The diameter of the groove 4056 can be about 0.007 inches, about 0.005 inches, or less than 0.005 inches. In certain instances, the staple can have a diameter of more than 0.0079 inches, such as about 0.0089 inches or about 0.0094 inches, for example. In various instances, the diameter of the staple can be less than 0.0079 inches or more than 0.0094 inches. In end effectors in which different staple geometries are utilized with the same staple-forming pocket geometry, the width of the groove in the pocket can be less than the smallest diameter staple. In still other instances, the width of the groove 4056 can vary staple-to-staple within a row and/or row-to-row.
  • Referring again to FIG. 41, the pocket 4006 b is symmetric about the pocket axis PA. For example, the perimeter 4016 of the pocket 4006 b is symmetric about the pocket axis PA. Moreover, the pocket 4006 b is symmetric about a central axis CA through the neck portion 4024 and perpendicular to the pocket axis PA. For example, the perimeter 4016 of the pocket 4006 b is symmetric about the central axis CA, and the proximal cup 4020 has the same geometry as the distal cup 4022. In other instances, the proximal cup 4020 can be different than the distal cup 4022. For example, referring again to FIG. 42, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 41, the neck portion 4024 of the pocket 4006 b is narrower than the proximal and distal cups 4020 and 4022. The narrowed perimeter 4016 of the pocket 4006 b defines a receiving peninsula 4026 between a portion of the proximal cup 4020 and a portion of the distal cup 4022. Owing to the symmetry of the pocket 4006 b, symmetrical receiving peninsulas 4026 are positioned on each side of the pocket 4006 b. The receiving peninsulas 4026 are bounded by the perimeter 4016 of the pocket 4006 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portion of the proximal and distal cups 4020 and 4022 on a side of the pocket 4006 b. A first tangent axis TB1 is positioned on a first side of the pocket 4006 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 4006 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 41 are parallel to the pocket axis PA.
  • Referring again to FIG. 40, each pocket 4006 extends toward the receiving peninsula 4026 of an adjacent pocket 4006. For example, the intermediate pockets 4006 b are aligned with the neck portions 4024 of the inner pockets 4006 a and the outer pockets 4006 c. Moreover, the inner pockets 4006 a and the outer pockets 4006 b extend toward the receiving peninsula 4026 of one of the intermediate pockets 4006 b. More specifically, the inner pockets 4006 a are aligned with the neck portion 4024 of an adjacent intermediate pocket 4006 b, and the outer pockets 4006 c are aligned with the neck portion 4024 of an adjacent intermediate pocket 4006 b. In certain instances, a portion of the pockets 4006 can extend into the receiving peninsula 4026 of an adjacent pocket 4006. Similar to the pockets 3906 in the anvil 3900, the geometry of the pockets 4006 facilitates the close arrangement of the pockets 4006 in the staple-forming surface 4002. The “forming ratio” is the ratio of the non-forming portion 4008 to the forming portion, i.e., the pockets 4006. In various instances, the forming ratio can be at least 1:1, for example.
  • Referring now to FIGS. 44-47C, staple-forming pockets 4106 in a portion of an anvil 4100 are depicted. The pockets 4106 and arrangement thereof in the anvil 4100 are similar in many aspects to the pockets 4006 and arrangement thereof in the anvil 4000. For example, the anvil 4100 includes a staple-forming surface 4102 and a longitudinal slot 4104. The longitudinal slot 4104 extends along the longitudinal axis LA of the anvil 4100. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4104 during at least a portion of a firing stroke. Staple-forming pockets 4106 are defined in the staple-forming surface 4102. The staple-forming surface 4102 also includes a non-forming portion 4108 that extends around the pockets 4106. The non-forming portion 4108 extends entirely around each pocket 4106 in FIG. 41. In other words, the non-forming portion 4108 surrounds the staple-forming pockets 4106. In other instances, at least a portion of two or more adjacent pockets 4106 can be in abutting contact such that a non-forming portion 4108 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 4102 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4108 of the anvil 4100 can be minimized with respect to the staple-forming pockets 4106. Additionally or alternatively, the footprint of the staple-forming pockets 4106 can be extended or enlarged to maximize the portion of the staple-forming surface 4102 that is designed to catch and form the staples.
  • The pockets 4106 depicted in FIG. 44 are arranged in an inner row 4114 a, an intermediate row 4114 b, and an outer row 4114 c on a first side of the longitudinal slot 4104. Inner pockets 4106 a are positioned in the inner row 4114 a, intermediate pockets 4106 b are positioned in the intermediate row 4114 b, and outer pockets 4106 c are positioned in the outer row 4114 c. Similar to the anvil 3800, the pockets 4106 are arranged in a herringbone arrangement along the staple-forming surface 4102 of the anvil 4100. Although not shown in FIG. 44, in at least one instance, the pockets 4106 on the opposing side of the slot 4104 can form a mirror image reflection of the pockets 4106 on the first side of the longitudinal slot 4104. In other instances, the arrangement of pockets 4106 in the staple-forming surface 4102 can be asymmetrical relative to the slot 4104 and, in certain instances, the anvil 4100 may not include the longitudinal slot 4104. In various instances, the pockets 4106 can be arranged in less than or more than three rows on each side of the slot 4104.
  • The pockets 4106 depicted in FIG. 44 are identical. Each pocket 4106 defined in the staple-forming surface 4102 has the same geometry. In other instances, the geometry of the pockets 4106 can vary row-to-row and/or longitudinally along the length of the anvil 4100. For example, in certain instances, the depth of the pockets 4106 or portions thereof can vary along the length of the anvil 4100 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4106 b is shown in FIGS. 45-47C. The pocket 4106 b has a first end, or proximal end, 4110 and a second end, or distal end, 4112. A pocket axis PA (FIG. 45) extends between the proximal end 4110 and the distal end 4112 of the pocket 4106 b. The pocket 4106 b includes a perimeter 4116, which defines the boundary of the pocket 4106 b. The pocket 4106 also includes a proximal cup 4120, a distal cup 4122, and a neck portion 4124 connecting the proximal cup 4120 and the distal cup 4122. When a staple is driven into forming contact with the staple-forming surface 4102, the proximal cup 4120 is aligned with a proximal staple leg, and the distal cup 4122 is aligned with a distal staple leg. The cups 4120, 4122 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4106, such as the neck portion 4124, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 46, each cup 4120, 4122 of the pocket 4106 b defines an entrance ramp 4140 and an exit ramp 4142. The exit ramp 4142 is steeper than the entrance ramp 4140. When forming a staple, the tip of a staple leg can enter the respective cup 4120, 4122 along the entrance ramp 4140 and exit the respective cup 4120, 4122 along the exit ramp 4142. At an apex 4146 between the entrance ramp 4140 and the exit ramp 4142, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4106 b also defines a bridge 4144 in the neck portion 4124 between the proximal cup 4120 and the distal cup 4122. The bridge 4144 is offset from the non-forming portion 4108. More specifically, the bridge 4144 is positioned below or recessed relative to the non-forming portion 4108.
  • Referring primarily to FIGS. 47A-47C, the pocket 4106 b includes sidewalls 4150, which are oriented perpendicular to the non-forming portion 4108 of the staple-forming surface 4102. The sidewalls 4150 narrow from the outer ends of each cup 4120, 4122 toward the neck portion 4124. Consequently, the widest portion of the cups 4120 and 4122 is at the proximal and distal ends 4110 and 4112, respectively, of the pocket 4106 b. The profile 4116 of the pocket 4106 b defines a bow-tie shape perimeter. The widened region at the proximal and distal ends 4110, 4112 provides an enlarged footprint for receiving the tip of a staple leg. In various instances, the widened portions of the cups 4120, 4122 define extended landing zones for receiving the staple tips. As the cups 4120, 4122 narrow toward the neck portion 4124, the cups 4120, 4122 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • Referring again to FIG. 47A-47C, the pocket 4106 b defines a chamfered edge 4154 along the sides of the pocket 4106 b. Additionally, the pocket 4106 b includes a groove 4156 in the bottom surface 4158 thereof. The groove 4156 is defined in the proximal cup 4120 and the distal cup 4122. In the depicted embodiment, the groove 4156 does not extend across the bridge 4144 of the pocket 4106 b. The groove 4156 is configured to constrain and guide the staple legs as they move to the deformed configuration. For example, the staple legs can slide through the groove 4156 as the staples move along at least a portion of the entrance ramp 4140 and the exit ramp 4142. In various instances, the diameter of the groove 4156 can be less than the diameter of the staple engaged with the groove 4156. In end effectors in which different staple geometries are utilized with the same staple-forming pocket geometry, the width of the groove in the pocket can be less than the smallest diameter staple. In various instances, the staple legs are deformed toward the staple base before reaching the bridge 4144 and, thus, do not engage the bridge 4144 of the pocket 4106 b.
  • Referring again to FIG. 45, the pocket 4106 b is symmetric about the pocket axis PA. For example, the perimeter 4116 of the pocket 4106 b is symmetric about the pocket axis PA.
  • Moreover, the pocket 4106 b is symmetric about a central axis CA through the neck portion 4124 and perpendicular to the pocket axis PA. For example, the perimeter 4116 of the pocket 4106 b is symmetric about the central axis CA, and the proximal cup 4120 has the same geometry as the distal cup 4122. In other instances, the proximal cup 4120 can be different than the distal cup 4122. For example, referring again to FIG. 42, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 45, the neck portion 4124 of the pocket 4106 b is narrower than the proximal and distal cups 4120 and 4122. The narrowed perimeter 4116 of the pocket 4106 b defines a receiving peninsula 4126 between a portion of the proximal cup 4120 and a portion of the distal cup 4122. Owing to the symmetry of the pocket 4106 b, symmetrical receiving peninsulas 4126 are positioned on each side of the pocket 4106 b. The receiving peninsulas 4126 are bounded by the perimeter 4116 of the pocket 4106 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portion of the proximal and distal cups 4120 and 4122 on a side of the pocket 4106 b. A first tangent axis TB1 is positioned on a first side of the pocket 4106 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 4106 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 45 are parallel to the pocket axis PA.
  • Referring again to FIG. 44, each pocket 4106 extends toward the receiving peninsula 4126 of an adjacent pocket 4106. For example, the intermediate pockets 4106 b are aligned with the neck portion 4124 of the inner pockets 4106 a and the outer pockets 4106 c. Moreover, the inner pockets 4106 a and the outer pockets 4106 b extend toward the receiving peninsula 4126 of one of the intermediate pockets 4106 b. More specifically, the inner pockets 4106 a are aligned with the neck portion 4124 of an adjacent intermediate pocket 4106 b, and the outer pockets 4106 c are aligned with the neck portion 4124 of an adjacent intermediate pocket 4106 b. In certain instances, a portion of the pockets 4106 can extend into the receiving peninsula 4126 of an adjacent pocket 4106. Similar to the pockets 3906 in the anvil 3900, the geometry of the pockets 4106 facilitates the close arrangement of the pockets 4106 in the staple-forming surface 4102. The “forming ratio” is the ratio of the non-forming portion 4108 to the forming portion, i.e., the pockets 4106. In various instances, the forming ratio can be at least 1:1, for example.
  • Referring now to FIGS. 48-51C, staple-forming pockets 4206 in a portion of an anvil 4200 are depicted. The pockets 4206 and arrangement thereof in the anvil 4200 are similar in many aspects to the pockets 4106 and arrangement thereof in the anvil 4100. For example, the anvil 4200 includes a staple-forming surface 4202 and a longitudinal slot 4204. The longitudinal slot 4204 extends along the longitudinal axis LA of the anvil 4200. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4204 during at least a portion of a firing stroke. The staple-forming pockets 4206 are defined in the staple-forming surface 4202. The staple-forming surface 4202 also includes a non-forming portion 4208 that extends around the pockets 4206. The non-forming portion 4208 extends entirely around each pocket 4206 in FIG. 48. In other words, the non-forming portion 4208 surrounds the staple-forming pockets 4206. In other instances, at least a portion of two or more adjacent pockets 4206 can be in abutting contact such that a non-forming portion 4208 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 4202 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4208 of the anvil 4200 can be minimized with respect to the staple-forming pockets 4206. Additionally or alternatively, the footprint of the staple-forming pockets 4206 can be extended or enlarged to maximize the portion of the staple-forming surface 4202 that is designed to catch and form the staples.
  • The pockets 4206 depicted in FIG. 48 are arranged in an inner row 4214 a, an intermediate row 4214 b, and an outer row 4214 c on a first side of the longitudinal slot 4204. Inner pockets 4206 a are positioned in the inner row 4214 a, intermediate pockets 4206 b are positioned in the intermediate row 4214 b, and outer pockets 4206 c are positioned in the outer row 4214 c. Similar to the anvil 3800, the pockets 4206 are arranged in a herringbone arrangement along the staple-forming surface 4202 of the anvil 4200. Although not shown in FIG. 48, in at least one instance, the pockets 4206 on the opposing side of the slot 4204 can form a mirror image reflection of the pockets 4206 on the first side of the longitudinal slot 4204. In other instances, the arrangement of pockets 4206 in the staple-forming surface 4202 can be asymmetrical relative to the slot 4204 and, in certain instances, the anvil 4200 may not include the longitudinal slot 4204. In various instances, the pockets 4206 can be arranged in less than or more than three rows on each side of the slot 4204.
  • The pockets 4206 depicted in FIG. 48 are identical. Each pocket 4206 defined in the staple-forming surface 4202 has the same geometry. In other instances, the geometry of the pockets 4206 can vary row-to-row and/or longitudinally along the length of the anvil 4200. For example, in certain instances, the depth of the pockets 4206 or portions thereof can vary along the length of the anvil 4200 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4206 b is shown in FIGS. 49-51C. The pocket 4206 b has a first end, or proximal end, 4210 and a second end, or distal end, 4212. A pocket axis PA (FIG. 49) extends between the proximal end 4210 and the distal end 4212 of each pocket 4206. The pocket 4206 b includes a perimeter 4216, which defines the boundary of the pocket 4206 b. The pocket 4206 b also includes a proximal cup 4220, a distal cup 4222, and a neck portion 4224 connecting the proximal cup 4220 and the distal cup 4222. When a staple is driven into forming contact with the staple-forming surface 4202, the proximal cup 4220 is aligned with a proximal staple leg, and the distal cup 4222 is aligned with a distal staple leg. The cups 4220, 4222 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4206, such as the neck portion 4224, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 50, each cup 4220, 4222 of the pocket 4206 b defines an entrance ramp 4240 and an exit ramp 4242. The exit ramp 4242 is steeper than the entrance ramp 4240. When forming a staple, the tip of a staple leg can enter the respective cup 4220, 4222 along the entrance ramp 4240 and exit the respective cup 4220, 4222 along the exit ramp 4242. At an apex 4246 between the entrance ramp 4240 and the exit ramp 4242, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4206 b also defines a bridge 4244 between the proximal cup 4220 and the distal cup 4222. The bridge 4244 is offset from the non-forming portion 4208. More specifically, the bridge 4244 is positioned below or recessed relative to the non-forming portion 4208.
  • Referring primarily to FIGS. 51A-51C, the pocket 4206 b includes sidewalls 4250, which are oriented perpendicular to the non-forming portion 4208 of the staple-forming surface 4202. The sidewalls 4250 narrow toward the neck portion 4224. Consequently, the widest portion of the cups 4220, 4222 is at the proximal and distal ends of the sidewalls 4250. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4220, 4222 narrow toward the neck portion 4224, the cups 4220, 4222 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • The cups 4220, 4222 also include extended landing zones 4230, 4232, respectively, which further enlarge the footprint of the cups 4220, 4222. The proximal extended landing zone 4230 extends proximally along the pocket axis PA, and the distal extended landing zone 4232 extends distally along the pocket axis PA. In the pocket 4206 b, the extended landing zones 4230 and 4232 define a substantially triangular perimeter. Moreover, the extended landing zones 4230 and 4232 terminate along the respective pocket axis PA at a corner. In other instances, the extended landing zones 4230 and 4232 can define straight or contoured perimeters, for example, and can extend laterally and/or longitudinally from the cups 4220 and 4222, for example.
  • Additionally, the pocket 4206 b includes a trough 4256 in the bottom surface thereof. The trough 4256 is configured to constrain and guide the staple legs as they move to the deformed configuration. In the depicted embodiment, the trough 4256 spans between the sidewalls 4250 and defines the entire bottom surface of the pocket 4206 b. The trough 4256 extends from the proximal cup 4220 over the bridge 4224 and into the distal cup 4222. In other instances, the trough 4256 may not extend across the bridge 4244 of the pocket 4206 b. The trough 4256 includes two ramped surfaces 4256 a and 4256 b that extend downward away from the non-forming portion 4208 and meet along the pocket axis PA (FIG. 49). As depicted in FIGS. 51A-51C, the trough 4256 defines a steeper gradient along the bridge 4244 than in the cups 4220, 4222. In other instances, the gradient can be uniform along the length of the trough 4256 and/or can be steeper in the cups 4220, 4222 than along the bridge 4244, for example.
  • Still referring to FIGS. 51A-51C, the pocket 4206 b also defines a chamfered edge 4254 along the sides of the pocket 4206 b. In the pocket 4206 b, the chamfered edge 4254 defines the overall width of the pocket 4206 b. The overall width of the pocket 4206 b is uniform. For example, the width WA (FIG. 51A) is equal to the width WB (FIG. 51B) and the width WC (FIG. 51C). In other instances, the widths WA, WB, and/or WC may not be equal. Because the sidewalls 4250 narrow toward the neck portion 4224, the width of the chamfered edge 4254 correspondingly expands toward the neck portion 4224 to maintain the same overall pocket width. The pocket 4206 b also includes projections or knobs 4258 which extend toward the pocket axis PA at the neck portion 4224 of the pocket 4206 b. The knobs 4258 further narrow the neck portion 4224 to a width WN. The trough 4256 spans the bottom surface of the neck portion 4224 across the width WN.
  • Referring again to FIG. 49, the pocket 4206 b is symmetric about the pocket axis PA. For example, the perimeter 4216 of the pocket 4206 b is symmetric about the pocket axis PA. Moreover, the pocket 4206 b is symmetric about a central axis CA through the neck portion 4224 and perpendicular to the pocket axis PA. For example, the perimeter 4216 of the pocket 4206 b is symmetric about the central axis CA, and the proximal cup 4220 has the same geometry as the distal cup 4222. In other instances, the proximal cup 4220 can be different than the distal cup 4222. For example, referring again to FIG. 50, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 48, each pocket 4206 extends toward the neck portion 4224 of an adjacent pocket 4206. For example, the intermediate pockets 4206 b are aligned with the neck portions 4224 of the inner pockets 4206 a and the outer pockets 4206 c. More specifically, the proximal landing zones 4230 of the intermediate pockets 4206 b are aligned with the neck portion 4224 of an adjacent outer staple 4206 c, and the distal landing zones 4232 of the intermediate pockets 4206 b are aligned with the neck portion 4224 of an adjacent inner staple 4206 a. Moreover, the inner pockets 4206 a and the outer pockets 4206 b extend toward the neck portion 4224 of one of the intermediate pockets 4206 b. More specifically, the distal landing zones 4232 of the inner pockets 4206 a are aligned with the neck portion 4224 of an adjacent intermediate pocket 4206 b, and the proximal landing zones 4230 of the outer pockets 4206 c are aligned with the neck portion 4224 of an adjacent intermediate pocket 4206 b.
  • Referring now to FIGS. 52-55C, staple-forming pockets 4306 in a portion of an anvil 4300 are depicted. The pockets 4306 and arrangement thereof in the anvil 4300 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900. For example, the anvil 4300 includes a staple-forming surface 4302 and a longitudinal slot 4304. The longitudinal slot 4304 extends along the longitudinal axis LA of the anvil 4300. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4304 during at least a portion of a firing stroke. The staple-forming pockets 4306 are defined in the staple-forming surface 4302. The staple-forming surface 4302 also includes a non-forming portion 4308 that extends around the pockets 4306. The non-forming portion 4308 extends entirely around each pocket 4306 in FIG. 52. In other words, the non-forming portion 4308 surrounds the staple-forming pockets 4306. In other instances, at least a portion of two or more adjacent pockets 4306 can be in abutting contact such that a non-forming portion 4308 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 4302 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4308 of the anvil 4300 can be minimized with respect to the staple-forming pockets 4306. Additionally or alternatively, the footprint of the staple-forming pockets 4306 can be extended or enlarged to maximize the portion of the staple-forming surface 4302 that is designed to catch and form the staples.
  • The pockets 4306 depicted in FIG. 52 are arranged in an inner row 4314 a, an intermediate row 4314 b, and an outer row 4314 c on a first side of the longitudinal slot 4304. Inner pockets 4306 a are positioned in the inner row 4314 a, intermediate pockets 4306 b are positioned in the intermediate row 4314 b, and outer pockets 4306 c are positioned in the outer row 4314 c. Similar to the anvil 3800, the pockets 4306 are arranged in a herringbone arrangement along the staple-forming surface 4302 of the anvil 4300. Although not shown in FIG. 52, in at least one instance, the pockets 4306 on the opposing side of the slot 4304 can form a mirror image reflection of the pockets 4306 on the first side of the longitudinal slot 4304. In other instances, the arrangement of pockets 4306 in the staple-forming surface 4302 can be asymmetrical relative to the slot 4304 and, in certain instances, the anvil 4300 may not include the longitudinal slot 4304. In various instances, the pockets 4306 can be arranged in less than or more than three rows on each side of the slot 4304.
  • The pockets 4306 depicted in FIG. 52 are identical. Each pocket 4306 defined in the staple-forming surface 4302 has the same geometry. In other instances, the geometry of the pockets 4306 can vary row-to-row and/or longitudinally along the length of the anvil 4300. For example, in certain instances, the depth of the pockets 4306 or portions thereof can vary along the length of the anvil 4300 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4306 b is shown in FIGS. 53-55C. The pocket 4306 b has a first end, or proximal end, 4310 and a second end, or distal end, 4312. A pocket axis PA (FIG. 53) extends between the proximal end 4310 and the distal end 4312 of the pocket 4306 b. The pocket 4306 b includes a perimeter 4316, which defines the boundary of the pocket 4306 b. The perimeter 4316 includes rounded corners at the proximal and distal ends of the pockets 4306. The pocket 4306 b also includes a proximal cup 4320, a distal cup 4322, and a neck portion 4324 connecting the proximal cup 4320 and the distal cup 4322. When a staple is driven into forming contact with the staple-forming surface 4302, the proximal cup 4320 is aligned with a proximal staple leg, and the distal cup 4322 is aligned with a distal staple leg. The cups 4320, 4322 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4306, such as the neck portion 4324, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 54, each cup 4320, 4322 of the pocket 4306 b defines an entrance ramp 4340 and an exit ramp 4342. The exit ramp 4342 is steeper than the entrance ramp 4340. When forming a staple, the tip of a staple leg can enter the respective cup 4320, 4322 along the entrance ramp 4340 and exit the respective cup 4320, 4322 along the exit ramp 4342. At an apex 4346 between the entrance ramp 4340 and the exit ramp 4342, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4306 b also defines a bridge 4344 between the proximal cup 4320 and the distal cup 4322. The bridge 4344 is offset from the non-forming portion 4308. More specifically, the bridge 4344 is positioned below or recessed relative to the non-forming portion 4308.
  • Referring primarily to FIGS. 55A-55C, the pocket 4306 b includes sidewalls 4350, which are oriented perpendicular to the non-forming portion 4308 of the staple-forming surface 4302. The sidewalls 4350 narrow between the outer ends of each cup 4320, 4322 and the neck portion 4324. More specifically, the sidewalls 4350 extend along an inward contour to define a contour in the perimeter 4316 of the pocket 4306 b. The widest portion of the cups 4320, 4322 is at the proximal and distal ends of the sidewalls 4350. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4320, 4322 narrow toward the neck portion 4324, the cups 4320, 4322 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • The pocket 4306 b defines a chamfered edge 4354 along the sides of the pocket 4306 b. In the pocket 4306 b, the chamfered edge 4354 defines the overall width of the pocket 4306 b, which narrows toward the neck portion 4324. The pocket 4306 b also defines a fillet 4352 (FIGS. 55A-55C) between the sidewalls 4350 and the bottom surface 4358 the pocket 4306 b. The fillets 4352 are configured to guide the staple legs along the desired path in the pocket 4306 b. For example, if a staple leg lands along the chamfer 4352, the fillet corner 4352 can smoothly guide the staple leg toward the pocket axis PA.
  • Referring again to FIG. 53, the pocket 4306 b is symmetric about the pocket axis PA. For example, the perimeter 4316 of the pocket 4306 b is symmetric about the pocket axis PA. Moreover, the pocket 4306 b is symmetric about a central axis CA through the neck portion 4324 and perpendicular to the pocket axis PA. For example, the perimeter 4316 of the pocket 4306 b is symmetric about the central axis CA, and the proximal cup 4320 has the same geometry as the distal cup 4322. In other instances, the proximal cup 4320 can be different than the distal cup 4322. For example, referring again to FIG. 54, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 53, the neck portion 4324 of the pocket 4306 b is narrower than the proximal and distal cups 4320 and 4322. The narrowed perimeter 4316 of the pocket 4306 b defines a receiving peninsula 4326 between a portion of the proximal cup 4320 and a portion of the distal cup 4322. Owing to the symmetry of the pocket 4306 b, symmetrical receiving peninsulas 4326 are positioned on each side of the pocket 4306 b. The receiving peninsulas 4326 are bounded by the perimeter 4316 of the pocket 4306 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portion of the proximal and distal cups 4320 and 4322 on a side of the pocket 4306 b. A first tangent axis TB1 is positioned on a first side of the pocket 4306 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 4306 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 53 are parallel to the pocket axis PA.
  • Referring again to FIG. 52, each pocket 4306 extends toward the receiving peninsula 4326 of an adjacent pocket 4306. For example, the intermediate pockets 4306 b are aligned with the neck portions 4324 of the inner pockets 4306 a and the outer pockets 4306 c. Moreover, the inner pockets 4306 a and the outer pockets 4306 b extend toward the receiving peninsula 4326 of one of the intermediate pockets 4306 b. More specifically, the inner pockets 4306 a are aligned with the neck portion 4324 of an adjacent intermediate pocket 4306 b, and the outer pockets 4306 c are aligned with the neck portion 4324 of an adjacent intermediate pocket 4306 b. In certain instances, a portion of the pockets 4306 can extend into the receiving peninsula 4326 of an adjacent pocket 4306. Similar to the pockets 3906 in the anvil 3900, the geometry of the pockets 4306 facilitates the close arrangement of the pockets 4306 in the staple-forming surface 4302. The “forming ratio” is the ratio of the non-forming portion 4308 to the forming portion, i.e., the pockets 4306. In at least one instance, the forming ratio can be at least 1:1, for example.
  • Referring now to FIGS. 56-59C, staple-forming pockets 4406 in a portion of an anvil 4400 are depicted. The pockets 4406 and arrangement thereof in the anvil 4400 are similar in many aspects to the pockets 4306 and arrangement thereof in the anvil 4300. For example, the anvil 4400 includes a staple-forming surface 4402 and a longitudinal slot 4404. The longitudinal slot 4404 extends along the longitudinal axis LA of the anvil 4400. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4404 during at least a portion of a firing stroke. The staple-forming pockets 4406 are defined in the staple-forming surface 4402. The staple-forming surface 4402 also includes a non-forming portion 4408 that extends around the pockets 4406. The non-forming portion 4408 extends entirely around each pocket 4406 in FIG. 56. In other words, the non-forming portion 4408 surrounds the staple-forming pockets 4406. In other instances, at least a portion of two or more adjacent pockets 4406 can be in abutting contact such that a non-forming portion 4408 is not positioned therebetween. Additionally, the non-forming portion 4406 extends through each pocket 4406, as described herein.
  • The forming ratio of the staple-forming surface 4402 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4408 of the anvil 4400 can be minimized with respect to the staple-forming pockets 4406. Additionally or alternatively, the footprint of the staple-forming pockets 4406 can be extended or enlarged to maximize the portion of the staple-forming surface 4402 that is designed to catch and form the staples.
  • The pockets 4406 depicted in FIG. 56 are arranged in an inner row 4414 a, an intermediate row 4414 b, and an outer row 4414 c on a first side of the longitudinal slot 4404. Inner pockets 4406 a are positioned in the inner row 4414 a, intermediate pockets 4406 b are positioned in the intermediate row 4414 b, and outer pockets 4406 c are positioned in the outer row 4414 c. Similar to the anvil 3800, the pockets 4406 are arranged in a herringbone arrangement along the staple-forming surface 4402 of the anvil 4400. Although not shown in FIG. 56, in at least one instance, the pockets 4406 on the opposing side of the slot 4404 can form a mirror image reflection of the pockets 4406 on the first side of the longitudinal slot 4404. In other instances, the arrangement of pockets 4406 in the staple-forming surface 4402 can be asymmetrical relative to the slot 4404 and, in certain instances, the anvil 4400 may not include the longitudinal slot 4404. In various instances, the pockets 4406 can be arranged in less than or more than three rows on each side of the slot 4404.
  • The pockets 4406 depicted in FIG. 56 are identical. Each pocket 4406 defined in the staple-forming surface 4402 has the same geometry. In other instances, the geometry of the pockets 4406 can vary row-to-row and/or longitudinally along the length of the anvil 4400. For example, in certain instances, the depth of the pockets 4406 or portions thereof can vary along the length of the anvil 4400 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4406 b is shown in FIGS. 57-59C. The pocket 4406 b has a first end, or proximal end, 4410 and a second end, or distal end, 4412. A pocket axis PA (FIG. 57) extends between the proximal end 4410 and the distal end 4412 of the pocket 4406 b. The pocket 4406 b includes a perimeter 4416, which defines the boundary of the pocket 4406 b. The perimeter 4416 includes rounded corners at the proximal and distal ends 4410 and 4412 of the pocket 4406 b. The pocket 4406 b also includes a proximal cup 4420 and a distal cup 4422. A portion of the non-forming portion 4408 extends between the proximal cup 4420 and the distal cup 4422. In other words, the pocket 4406 b includes two separate and discrete cups 4420 and 4422 in the staple-forming surface 4402. When a staple is driven into forming contact with the staple-forming surface 4402, the proximal cup 4420 is aligned with a proximal staple leg, and the distal cup 4422 is aligned with a distal staple leg. The cups 4420, 4422 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4406 and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 58, each cup 4420, 4422 of the pocket 4406 b defines an entrance ramp 4440 and an exit ramp 4442. The exit ramp 4442 is steeper than the entrance ramp 4440. When forming a staple, the tip of a staple leg can enter the respective cup 4420, 4422 along the entrance ramp 4440 and exit the respective cup 4420, 4422 along the exit ramp 4442. At an apex 4446 between the entrance ramp 4440 and the exit ramp 4442, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4406 b also defines a bridge 4444 between the proximal cup 4420 and the distal cup 4422. The bridge 4444 is aligned with the non-forming portion 4408. More specifically, the bridge 4444 is a planar extension of the non-forming portion 4408, which extends between the proximal and distal cups 4420, 4422.
  • Referring primarily to FIGS. 59A-59C, the pocket 4406 b includes sidewalls 4450, which are oriented at an angle relative to the non-forming portion 4408 of the staple-forming surface 4402. More specifically, the sidewalls 4450 are obliquely oriented relative to the non-forming portion 4408. Moreover, the angular orientation of the sidewalls 4450 is constant along the length of the cups. For example, the angles A, B, and C depicted in FIGS. 59A, 59B, and 59C, respectively, are equal. In other instances, one of more of the angles A, B, and C can be different. The sidewalls 4450 narrow between the outer ends of each cup 4420, 4422 and inner ends of the cups 4420, 4422. More specifically, the sidewalls 4450 extend along an inward contour to define a contour in the perimeter 4416 of the pocket 4406 b. The widest portion of the cups 4420, 4422 is at the proximal and distal ends of the pocket 4406 b. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4420, 4422 narrow toward the bridge 4444, the cups 4420, 4422 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • The pocket 4406 b defines a fillet 4452 (FIGS. 59A-59C) between the sidewalls 4450 and the bottom surface 4458 of the pocket 4406 b. The fillets 4452 are configured to guide the staple legs along the desired path in the pocket 4406 b. For example, if a staple leg lands along the fillet 4452, the fillet 4452 can smoothly guide the staple leg toward the pocket axis PA.
  • Referring again to FIG. 57, the pocket 4406 b is symmetric about the pocket axis PA. For example, the perimeter 4416 of the pocket 4406 b is symmetric about the pocket axis PA. Moreover, the pocket 4406 b is symmetric about a central axis CA between the proximal and distal cups 4420 and 4422 and perpendicular to the pocket axis PA. For example, the perimeter 4416 of the pocket 4406 b is symmetric about the central axis CA, and the proximal cup 4420 has the same geometry as the distal cup 4422. In other instances, the proximal cup 4420 can be different than the distal cup 4422. For example, referring again to FIG. 58, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 57, the central portion of the pocket 4406 b is narrower than the proximal and distal ends 4410 and 4412 of the cups 4420 and 4422, respectively. The narrowed perimeter 4416 of the pocket 4406 b defines a receiving peninsula 4426 between a portion of the proximal cup 4420 and a portion of the distal cup 4422. Owing to the symmetry of the pocket 4406 b, symmetrical receiving peninsulas 4426 are positioned on each side of the pocket 4406 b. The receiving peninsulas 4426 are bounded by the perimeter 4416 of the pocket 4406 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portion of the proximal and distal cups 4420 and 4422 on a side of the pocket 4406 b. A first tangent axis TB1 is positioned on a first side of the pocket 4406 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 4406 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 57 are parallel to the pocket axis PA.
  • Referring again to FIG. 56, each pocket 4406 extends toward the receiving peninsula 4426 of an adjacent pocket 4406. For example, the intermediate pockets 4406 b are aligned with the central portion of the inner pockets 4406 a and the outer pockets 4406 c. Moreover, the inner pockets 4406 a and the outer pockets 4406 b extend toward the receiving peninsula 4426 of one of the intermediate pockets 4406 b. More specifically, the inner pockets 4406 a are aligned with the central portion of an adjacent intermediate pocket 4406 b, and the outer pockets 4406 c are aligned with the central portion of an adjacent intermediate pocket 4406 b. In certain instances, a portion of the pockets 4406 can extend into the receiving peninsula 4426 of an adjacent pocket 4406. Similar to the pockets 3906 in the anvil 3900, the geometry of the pockets 4406 facilitates the close arrangement of the pockets 4406 in the staple-forming surface 4402. The “forming ratio” of the staple-forming surface 4402 is the ratio of the non-forming portion 4408 to the forming portion, i.e., the pockets 4406. The forming ratio of the staple-forming surface 4402 is about 2.56:1. In other instances, the forming ratio can be less than 2.56:1 or more than 2.56:1. For example, in at least one instance, more than 50% of the staple-forming surface 4402 can be covered with staple-forming pockets 4406.
  • Referring now to FIGS. 60-63C, staple-forming pockets 4506 in a portion of an anvil 4500 are depicted. The pockets 4506 and arrangement thereof in the anvil 4500 are similar in many aspects to the pockets 3906 and arrangement thereof in the anvil 3900. For example, the anvil 4500 includes a staple-forming surface 4502 and a longitudinal slot 4504. The longitudinal slot 4504 extends along the longitudinal axis LA of the anvil 4500. In certain instances, a firing element and/or cutting element can translate through the longitudinal slot 4504 during at least a portion of a firing stroke. The staple-forming pockets 4506 are defined in the staple-forming surface 4502. The staple-forming surface 4502 also includes a non-forming portion 4508 that extends around the pockets 4506. The non-forming portion 4508 extends entirely around each pocket 4506 in FIG. 60. In other words, the non-forming portion 4508 surrounds the staple-forming pockets 4506. In other instances, at least a portion of two or more adjacent pockets 4506 can be in abutting contact such that a non-forming portion 4508 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 4502 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 4508 of the anvil 4500 can be minimized with respect to the staple-forming pockets 4506. Additionally or alternatively, the footprint of the staple-forming pockets 4506 can be extended or enlarged to maximize the portion of the staple-forming surface 4502 that is designed to catch and form the staples.
  • The pockets 4506 depicted in FIG. 60 are arranged in an inner row 4514 a, an intermediate row 4514 b, and an outer row 4514 c on a first side of the longitudinal slot 4504. Inner pockets 4506 a are positioned in the inner row 4514 a, intermediate pockets 4506 b are positioned in the intermediate row 4514 b, and outer pockets 4506 c are positioned in the outer row 4514 c. Similar to the anvil 3800, the pockets 4506 are arranged in a herringbone arrangement along the staple-forming surface 4502 of the anvil 4500. Although not shown in FIG. 60, in at least one instance, the pockets 4506 on the opposing side of the slot 4504 can form a mirror image reflection of the pockets 4506 on the first side of the longitudinal slot 4504. In other instances, the arrangement of pockets 4506 in the staple-forming surface 4502 can be asymmetrical relative to the slot 4504 and, in certain instances, the anvil 4500 may not include the longitudinal slot 4504. In various instances, the pockets 4506 can be arranged in less than or more than three rows on each side of the slot 4504.
  • The pockets 4506 depicted in FIG. 60 are identical. Each pocket 4506 defined in the staple-forming surface 4502 has the same geometry. In other instances, the geometry of the pockets 4506 can vary row-to-row and/or longitudinally along the length of the anvil 4500. For example, in certain instances, the depth of the pockets 4506 or portions thereof can vary along the length of the anvil 4500 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary pocket 4506 b is shown in FIGS. 61-63C. The pocket 4506 b has a first end, or proximal end, 4510 and a second end, or distal end, 4512. A pocket axis PA (FIG. 61) extends between the proximal end 4510 and the distal end 4512 of the pocket 4506 b. The pocket 4506 b includes a perimeter 4516, which defines the boundary of the pocket 4506 b. Similar to the pockets 4306, the perimeter 4516 includes rounded corners at the proximal and distal ends 4510 and 4512 of the pocket 4506 b. The pocket 4506 b also includes a proximal cup 4520, a distal cup 4522, and a neck 4524 extending between the proximal cup 4520 and the distal cup 4522. When a staple is driven into forming contact with the staple-forming surface 4502, the proximal cup 4520 is aligned with a proximal staple leg, and the distal cup 4522 is aligned with a distal staple leg. The cups 4520, 4522 are configured to direct or funnel the staple legs toward the pocket axis PA and a central portion of the pocket 4506, such as the neck 4524, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 62, each cup 4520, 4522 of the pocket 4506 b defines an entrance ramp 4540 and an exit ramp 4542. The entrance ramp 4540 is steeper than the exit ramp 4542. When forming a staple, the tip of a staple leg can enter the respective cup 4520, 4522 along the entrance ramp 4540 and exit the respective cup 4520, 4522 along the exit ramp 4542. At an apex 4546 between the entrance ramp 4540 and the exit ramp 4542, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 4506 b also defines a bridge 4544 between the proximal cup 4520 and the distal cup 4522. The bridge 4544 is offset from the non-forming portion 4508. More specifically, the bridge 4544 is positioned below or recessed relative to the non-forming portion 4508.
  • Referring primarily to FIGS. 63A-63C, the pocket 4506 b includes contoured or arced walls 4550. The walls 4550 form each cup 4520, 5422 into a wide, rounded basin for receiving and forming the staple legs. Additionally, the pocket 4506 b includes a groove 4556 along the bottom surface. The walls 4550 arc downward into the anvil 4500 between the non-forming surface 4508 and the groove 4556. For example, the sidewalls 4550 seamlessly transition to a bottom surface of the pocket 4506 b. The groove 4556 extends along the bottom surface from the proximal cup 4520 over the bridge 4524 and into the distal cup 4522. The groove 4556 is configured to constrain and guide the staple legs as they move to the deformed configuration. In various instances, the diameter of the groove 4556 can be less than the diameter of the staple engaged with the groove 4556. In end effectors in which different staple geometries are utilized with the same staple-forming pocket geometry, the width of the groove in the pocket can be less than the smallest diameter staple.
  • The contoured walls 4550 narrow between the outer ends of each cup 4520, 4522 and the neck 4524. More specifically, the walls 4550 extend along an inward contour to define a contour in the perimeter 4516 of the pocket 4506 b. The widened region provides an enlarged footprint for receiving the tip of a staple leg. As the cups 4520, 4522 narrow toward the bridge 4544, the cups 4520, 4522 are configured to funnel and/or guide the tips of the staple legs toward and/or along the pocket axis PA and into a formed configuration.
  • The pocket 4506 b also defines a chamfered edge 4554 along a portion of the sides of the pocket 4506 b. As the sidewalls 4550 narrow toward the neck portion 4524, the width of the chamfered edge 4554 correspondingly expands toward the neck portion 4224 to maintain the overall pocket width.
  • Referring again to FIG. 61, the pocket 4506 b is symmetric about the pocket axis PA. For example, the perimeter 4516 of the pocket 4406 b is symmetric about the pocket axis PA. Moreover, the pocket 4506 b is symmetric about a central axis CA through the neck portion 4524 and perpendicular to the pocket axis PA. For example, the perimeter 4516 of the pocket 4506 b is symmetric about the central axis CA, and the proximal cup 4520 has the same geometry as the distal cup 4522. In other instances, the proximal cup 4520 can be different than the distal cup 4522. For example, referring again to FIG. 62, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein.
  • Referring again to FIG. 60, each pocket 4506 extends toward the neck portion 4524 of an adjacent pocket 4506. For example, the intermediate pockets 4506 b are aligned with the neck portions 4524 of the inner pockets 4506 a and the outer pockets 4506 c. Moreover, the inner pockets 4506 a and the outer pockets 4506 b extend toward the neck portion 4524 of one of the intermediate pockets 4506 b.
  • Staple-forming pockets can include extended landing zones for receiving the tips of the staple legs when the staples are fired into forming contact with the anvil. In certain instances, the extended landing zones can extend laterally and/or longitudinally from the cups of the staple-forming pockets, as described herein. The profile, or perimeter, of the staple-forming pockets can nest with the profile, or perimeter, of one or more adjacent staple-forming pockets. For example, at least a portion of the perimeter of a staple-forming pocket can extend along a contour or path that matches, tracks, follows and/or parallels a portion of the perimeter of one or more adjacent staple-forming pockets. Such tracking portions or adjacent perimeters can define concentric profiles.
  • In various instances, the surface area of a staple-forming pocket having one or more extended landing zones can be greater than the surface area of a staple-forming pocket without the one or more extended landing zones. For example, extended landing zones can increase the surface area of a staple-forming pocket by at least 10%. Extended landing zones can increase the surface area of a staple-forming pocket by 15% or 25%, for example. In other instances, extended landing zones can increase the surface area of a staple-forming pocket by less than 10%, such as 5%, for example. Certain staple-forming pockets described herein can have a greater surface area than the staple-forming pockets in an anvil having six rows of parallel staple-forming pockets but that is otherwise identical to certain anvils described herein having six rows of angularly-oriented staple-forming pockets. In still other instances, a staple-forming pocket having extended landing zones may also include narrowed and/or otherwise reduced portions having a surface area that is equal to or greater than the surface area of the extended landing zones.
  • In certain instances, the staple-forming pockets can be asymmetrical. For example, the staple-forming pockets can be asymmetrical relative to a pocket axis extending between a proximal end and a distal end of the pocket and/or can be asymmetrical relative to a central axis extending perpendicular to the pocket axis and transecting a central portion of the pocket. The asymmetry of the staple-forming pockets can facilitate nesting of the pockets and/or can maximize the surface area of the pockets in a staple-forming surface, for example.
  • Referring now to FIGS. 64-67C, staple-forming pockets 5006 in a portion of an anvil 5000 are depicted. Similar to the anvil 3800, the pockets 5006 are arranged in a herringbone arrangement along the staple-forming surface 5002 of the anvil 5000. The anvil 5000 includes a staple-forming surface 5002 and a longitudinal slot 5004. The longitudinal slot 5004 extends along the longitudinal axis LA of the anvil 5000. In certain instances, a firing element and/or a cutting element can translate through the longitudinal slot 5004 during at least a portion of a firing stroke. The staple-forming pockets 5006 are defined in the staple-forming surface 5002.
  • The staple-forming surface 5002 also includes a non-forming portion 5008 that extends around the pockets 5006. The non-forming portion 5008 extends entirely around each pocket 5006. In other words, the non-forming portion 5008 surrounds the staple-forming pockets 5006. In other instances, at least a portion of two or more adjacent pockets 5006 can be in abutting contact such that a non-forming portion 5008 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 5002 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5008 of the anvil 5000 can be minimized with respect to the staple-forming pockets 5006. Additionally or alternatively, the footprint of the staple-forming pockets 5006 can be extended or enlarged to maximize the portion of the staple-forming surface 5002 that is designed to catch and form the staples.
  • The pockets 5006 depicted in FIG. 64 are arranged in an inner row 5014 a, an intermediate row 5014 b, and an outer row 5014 c on a first side of the longitudinal slot 5004. Inner pockets 5006 a are positioned in the inner row 5014 a, intermediate pockets 5006 b are positioned in the intermediate row 5014 b, and outer pockets 5006 c are positioned in the outer row 5014 c. Although not shown in FIG. 64, in at least one instance, the pockets 5006 on the opposing side of the slot 5004 can form a mirror image reflection of the pockets 5006 on the first side of the longitudinal slot 5004. In other instances, the arrangement of pockets 5006 in the staple-forming surface 5002 can be asymmetrical relative to the slot 5004 and, in certain instances, the anvil 5000 may not include the longitudinal slot 5004. In various instances, the pockets 5006 can be arranged in less than or more than three rows on each side of the slot 5004.
  • The inner pockets 5006 a are identical, the intermediate pockets 5006 b are identical, and the outer pockets 5006 c are identical; however, the inner pockets 5006 a are different than the intermediate pockets 5006 b and the outer pockets 5006 c, and the intermediate pockets 5006 b are different than the outer pockets 5006 c. In other words, the pockets 5006 in each row 5014 a, 5014 b, and 5014 c are different. Extended landing zones 5030 and 5032 of the pockets 5006 a, 5006 b, and 5006 c, which are described herein, contribute to the different geometries thereof. The shape and size of the extended landing zones 5030 and 5032 are confined by the perimeter 5016 of adjacent, nested pockets 5006.
  • Although the pockets 5006 in each row 5014 a, 5014 b, and 5014 c are different, the pockets 5006 can be configured to form staples to the same, or substantially the same, formed shape. In other instances, the pockets 5006 can be configured to form staples to different formed shapes, such as to different heights and/or configurations. In certain instances, the pockets 5006 can vary longitudinally within each row 5014 a, 5014 b, and 5014 c. For example, in certain instances, the depth of the pockets 5006 or portions thereof can vary along the length of the anvil 5000 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • In certain instances, the pockets 5006 can be configured to engage different geometry staples. For example, staples having different unformed heights and/or different diameters can be formed by the pockets 5006 in the anvil 5000. In certain instances, the geometry of the staples can vary longitudinally, and the pockets 5006 can be configured to form the different geometry staples. For example, the unformed height of the staples and/or the wire diameter can vary along the length of the anvil 5000.
  • An exemplary intermediate pocket 5006 b is shown in FIGS. 64-67C. The pocket 5006 b has a first end, or proximal end, 5010 and a second end, or distal end, 5012. A pocket axis PA (FIG. 65) extends between the proximal end 5010 and the distal end 5012 of the pocket 5006 b. The pocket 5006 b includes a perimeter 5016, which defines the boundary of the pocket 5006 b. The perimeter 5016 includes linear portions and contoured portions. More specifically, the perimeter 5016 includes linear portions and contoured corners therebetween at which the linear portions change directions. Referring again to FIG. 64, at least a portion of the perimeter 5016 of each pocket 5006 closely tracks or parallels at least a portion of the perimeter of one or more adjacent pockets 5006.
  • The pocket 5006 b includes a proximal cup 5020, a distal cup 5022, and a neck 5024 extending between the proximal cup 5020 and the distal cup 5022. When a staple is driven into forming contact with the staple-forming surface 5002, the proximal cup 5020 is aligned with a proximal staple leg, and the distal cup 5022 is aligned with a distal staple leg. The cups 5020 and 5022 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5006, such as the neck portion 5024, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 66, each cup 5020, 5022 of the pocket 5006 b defines an entrance ramp 5040 and an exit ramp 5042. When forming a staple, the tip of a staple leg can enter the respective pocket 5020, 5022 along the entrance ramp 5040 and exit the respective pocket 5020, 5022 along the exit ramp 5042. At an apex 5046 between the entrance ramp 5040 and the exit ramp 5042, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 5006 b also defines a bridge 5044 in the neck portion 5024 between the proximal cup 5020 and the distal cup 5022. The bridge 5044 is offset from the non-forming portion 5008. More specifically, the bridge 5044 is positioned below or recessed relative to the non-forming portion 5008.
  • Referring primarily to FIGS. 67A-67C, the pocket 5006 b includes sidewalls 5050, which extend from the non-forming portion 5008 to the bottom surface 5058. The sidewalls 5050 include linear portions and contoured portions. The sidewalls 5050 widen toward a central region 5021 (FIG. 65) of each cup 5020, 5022, and narrow from the central region 5021 of each cup 5020, 5022 toward the neck portion 5024. The widened central region 5021 provides an enlarged footprint for receiving the tip of a staple leg. As the cups 5020, 5022 narrow toward the neck 5024, the cups 5020, 5022 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration.
  • FIG. 67A is taken along the plane ALL in FIG. 65, which corresponds to the anticipated landing location (ALL) of a staple leg. For example, the tip of a staple leg can be expected to land in the proximal cup 5020 at and/or near the intersection of the plane ALL and the pocket axis PA. At the plane ALL, the pocket 5006 b defines a width WA and a depth DA. The cross-section in FIG. 67B is taken across a transition between the proximal cup 5020 and the neck 5024. FIG. 67B depicts the pocket 5006 b defining a width WB and a depth DB. The width WB is less than the width WA, and the depth DB is greater than the depth DA. In other words, the pocket 5006 b narrows and deepens from the plane ALL in the proximal cup 5020 toward the neck 5024. The comparatively large width WA at the plane ALL is configured to provide a wide receptacle or basin for receiving the staple leg. The cross-section in FIG. 67C is taken across the neck portion 5024. FIG. 67C depicts the pocket 5006 b defining a width WC and a depth DC. The width Wc is less than the width WB, and the depth DC is less than the depth DB. In other words, the pocket 5006 b continues to narrow, and becomes shallower in the neck 5024 across the bridge 5044.
  • The bottom surface 5058 of the pocket 5006 b is a flat surface, which is bounded by an arcuate fillet 5059 therearound. In certain instances, the bottom surface 5058 can have a groove defined along at least a portion thereof. In other instances, the bottom surface 5058 can form a trough. In still other instances, the bottom surface can include hump or ridge along at least a portion thereof, such as across the bridge 5044, for example.
  • Referring primarily now to FIG. 65, the pocket 5006 b includes a proximal extended landing zone 5030 and a distal extended landing zone 5032. The proximal extended landing zone 5030 is positioned in a proximal portion of the proximal cup 5020, and the distal extended landing zone 5032 is positioned in a distal portion of the distal cup 5022. More specifically, the extended landing zones 5030 and 5032 are positioned beyond the anticipated landing location of a staple. For example, the proximal extended landing zone 5030 is positioned proximal to the plane ALL and, in instances where the tip of a staple leg lands beyond the plane ALL, the proximal extended landing zones 5030 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5024. The landing zones 5030 and 5032 define a generally polygonal shape and, more specifically, a quadrilateral with rounded corners. In other instances, the landing zones 5030 and 5032 can be triangular or substantially triangular and, in still other instances, can define an arcuate or bulbous profile, for example.
  • The geometry of the extended landing zones 5030 and 5032 is constrained by the perimeter 5016 of the adjacent staple-forming pockets 5006. For example, the extended landing zones 5030 and 5032 can extend toward and/or into nearly abutting contact with one or more adjacent staple-forming pockets. The extended landing zones 5030 and 5032 and/or other portions of the pocket 5006 b can track and/or extend parallel to adjacent staple-forming pockets 5006. In other instances, the extended landing zones 5030 and 5032 can abut one or more adjacent staple-forming pockets 5006.
  • Referring again to FIG. 65, the pocket 5006 b is asymmetric about the pocket axis PA. For example, the perimeter 5016 of the pocket 5006 b is asymmetric about the pocket axis PA. Moreover, the pocket 5006 b is asymmetric about a central axis CA through the neck portion 5024 and perpendicular to the pocket axis PA. For example, the perimeter 5016 of the pocket 5006 b is asymmetric about the central axis CA, and the proximal cup 5020 has a different geometry than the distal cup 5022. Although the proximal cup 5020 and the distal cup 5022 are different, the pocket 5006 b can be configured to form symmetric staples. For example, referring again to FIG. 66, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein. The formed height of the proximal and distal legs of a staple can be equal. In other instances, the pocket 5006 can be configured to form asymmetric staples.
  • Referring again to FIG. 65, the neck portion 5024 is narrower than the proximal and distal cups 5020 and 5022. The narrowed perimeter 5016 of the pocket 5006 b at the neck portion 5024 defines a receiving peninsula 5026 between a portion of the proximal cup 5020 and a portion of the distal cup 5022. Receiving peninsulas 5026 are positioned on each side of the pocket 5006 b. The receiving peninsulas 5026 are bounded by the perimeter 5016 of the pocket 5006 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portions of the proximal and distal cups 5020 and 5022 on each side of the pocket 5006. A first tangent axis TB1 is positioned on a first side of the pocket 5006 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 5006 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 67 are parallel to the pocket axis PA. In other instances, one or both of the tangent axes TB1 and TB2 may not be parallel to the pocket axis PA.
  • Referring again to FIG. 64, the perimeters 5016 of the pockets 5006 are nested or interlocked along the staple-forming surface 5002. In particular, each pocket 5006 extends into the receiving peninsula 5026 of an adjacent pocket 5006. For example, the intermediate pockets 5006 b are nested between the inner pockets 5006 a and the outer pockets 5006 c. Stated differently, the intermediate pockets 5006 b extend into the receiving peninsula 5026 of an adjacent inner pocket 5006 a and into the receiving peninsula 5026 of an adjacent outer pocket 5006 c. Moreover, the inner pockets 5006 a and the outer pockets 5006 b are nested with the intermediate pockets 5006 b. More specifically, the inner pockets 5006 a extend into the receiving peninsula 5026 of an adjacent intermediate pocket 5006 b, and the outer pockets 5006 c extend into the receiving peninsula 5026 of an adjacent intermediate pocket 5006 b. In various instances, the distal extended landing zone 5032 of the intermediate pocket 5006 b is positioned in the receiving peninsula 5026 of an inner pocket 5006 a, the proximal extended landing zone 5030 of the intermediate pocket 5006 b is positioned in the receiving peninsula 5026 of an outer pocket 5006 c, the distal extended landing zone 5032 of an inner pocket 5006 a is positioned in the receiving peninsula 5026 of an intermediate pocket 5006 b, and the proximal extended landing zone 5030 of the outer pocket 5006 c is positioned in the receiving peninsula 5026 of an intermediate pocket 5006 b.
  • The geometry of the pockets 5006 facilitates the nesting of the pockets 5006 in the staple-forming surface 5002. For example, because the pockets 5006 include a narrowed neck portion 5024 between two enlarged cups 5020 and 5022, one of the enlarged cups 5020, 5022 of another pocket 5006 can be positioned adjacent to the narrowed neck portion 5024. For example, one of the enlarged cups 5020, 5022 can be aligned with and/or received by a portion of an adjacent pocket 5006. In such instances, the surface area of the staple-forming surface 5002 that is covered by the pockets 5006 can be optimized. The “forming ratio” of the staple-forming surface 5002 is the ratio of the non-forming portion 5008 to the forming portion, i.e., the pockets 5006. The forming ratio of the staple-forming surface 5002 is about 1:1. In other instances, the forming ratio can be less than 1:1 or more than 1:1. For example, in at least one instance, more than 50% of the staple-forming surface 5002 can be covered with staple-forming pockets 5006. In another instances, more than 60% or more than 75% of the stapling-forming surface 5002 can be covered with staple-forming pockets 5006.
  • Referring now to FIGS. 68-71C, staple-forming pockets 5106 in a portion of an anvil 5100 are depicted. Similar to the anvil 3800, the pockets 5106 are arranged in a herringbone arrangement along the staple-forming surface 5102 of the anvil 5100. The anvil 5100 includes a staple-forming surface 5102 and a longitudinal slot 5104. The longitudinal slot 5104 extends along the longitudinal axis LA of the anvil 5100. In certain instances, a firing element and/or a cutting element can translate through the longitudinal slot 5104 during at least a portion of a firing stroke. The staple-forming pockets 5106 are defined in the staple-forming surface 5102. The staple-forming surface 5102 also includes a non-forming portion 5108 that extends around the pockets 5106. The non-forming portion 5108 extends entirely around each pocket 5106. In other words, the non-forming portion 5108 surrounds the staple-forming pockets 5106. In other instances, at least a portion of two or more adjacent pockets 5106 can be in abutting contact such that a non-forming portion 5108 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 5102 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5108 of the anvil 5100 can be minimized with respect to the staple-forming pockets 5106. Additionally or alternatively, the footprint of the staple-forming pockets 5106 can be extended or enlarged to maximize the portion of the staple-forming surface 5102 that is designed to catch and form the staples.
  • The pockets 5106 depicted in FIG. 68 are arranged in an inner row 5114 a, an intermediate row 5114 b, and an outer row 5114 c on a first side of the longitudinal slot 5104. Inner pockets 5106 a are positioned in the inner row 5114 a, intermediate pockets 5106 b are positioned in the intermediate row 5114 b, and outer pockets 5106 c are positioned in the outer row 5114 c. Although not shown in FIG. 68, in at least one instance, the pockets 5106 on the opposing side of the slot 5104 can form a mirror image reflection of the pockets 5106 on the first side of the longitudinal slot 5104. In other instances, the arrangement of pockets 5106 in the staple-forming surface 5102 can be asymmetrical relative to the slot 5104 and, in certain instances, the anvil 5100 may not include the longitudinal slot 5104. In various instances, the pockets 5106 can be arranged in less than or more than three rows on each side of the slot 5104.
  • The inner pockets 5106 a are identical, the intermediate pockets 5106 b are identical, and the outer pockets 5106 c are identical; however, the inner pockets 5106 a are different than the intermediate pockets 5106 b and the outer pockets 5106 c, and the intermediate pockets 5106 b are different than the outer pockets 5106 c. In other words, the pockets 5106 in each row 5114 a, 5114 b, and 5114 c are different. In other instances, the pockets 5106 in two or more of the rows can be the same. For example, the inner pockets 5106 a can be the same as the outer pockets 5106 c. Extended landing zones 5130 and 5132 of the pockets 5106 a, 5106 b, and 5106 c, which are described herein, can contribute to the different geometries thereof. Moreover, the shape and size of the extended landing zones 5130 and 5132 are confined by the perimeter 5116 of the adjacent, nested pockets 5106. The landing zones 5130 and 5132 define an arcuate profile. In other instances, the landing zones 5030 and 5032 can be polygonal and/or include one or more linear and/or contoured portions.
  • Although the pockets in each row 5114 a, 5114 b, and 5114 c are different, the pockets 5106 can be configured to form staples to the same, or substantially the same, formed shape. In other instances, the pockets 5106 can be configured to form staples to different formed shapes, such as to different heights and/or configurations. In certain instances, the pockets 5106 can vary longitudinally within each row 5114 a, 5114 b, and 5114 c. For example, in certain instances, the depth of the pockets 5106 or portions thereof can vary along the length of the anvil 5100 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • An exemplary intermediate pocket 5106 b is shown in FIGS. 68-71C. The pocket 5106 b has a first end, or proximal end, 5110 and a second end, or distal end, 5112. A pocket axis PA (FIG. 69) extends between the proximal end 5110 and the distal end 5112 of the pocket 5106 b. The pocket 5106 b includes a perimeter 5116, which defines the boundary of the pocket 5106 b. The perimeter 5116 includes linear portions and contoured portions. More specifically, the perimeter 5116 includes linear portions and contoured corners therebetween at which the linear portions change directions. Referring again to FIG. 68, at least a portion of the perimeter 5116 of each pocket 5106 closely tracks or parallels at least a portion of the perimeter of one or more adjacent pockets 5106. The rounded perimeter 5116 of the pocket 5106 b can provide a smoother profile, which can be easier to coin and/or stamp in the staple-forming surface 5102 than pockets having sharp corners, for example.
  • The pocket 5106 b includes a proximal cup 5120, a distal cup 5122, and a neck portion 5124 extending between the proximal cup 5120 and the distal cup 5122. When a staple is driven into forming contact with the staple-forming surface 5102, the proximal cup 5120 is aligned with a proximal staple leg, and the distal cup 5122 is aligned with a distal staple leg. The cups 5120 and 5122 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5106, such as the neck portion 5124, and to deform the staple legs into the formed configuration.
  • Referring primarily to FIG. 70, each cup 5120, 5122 of the pocket 5106 b defines an entrance ramp 5140 and an exit ramp 5142. When forming a staple, the tip of a staple leg can enter the respective pocket 5120, 5122 along the entrance ramp 5140 and exit the respective pocket 5120, 5122 along the exit ramp 5142. At an apex 5146 between the entrance ramp 5140 and the exit ramp 5142, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 5106 b also defines a bridge 5144 in the neck portion 5124 between the proximal cup 5120 and the distal cup 5122. The bridge 5144 is offset from the non-forming portion 5108. More specifically, the bridge 5144 is positioned below or recessed relative to the non-forming portion 5108.
  • Referring primarily to FIGS. 71A-71C, the pocket 5106 b includes sidewalls 5150, which extend from the non-forming portion 5108. The sidewalls 5150 include linear portions and contoured portions. The sidewalls 5150 widen toward a central region 5121 (FIG. 69) of each cup 5120, 5122, and narrow from the central region 5121 of each cup 5120, 5122 toward the neck portion 5124. The widened central region 5121 provides an enlarged footprint for receiving the tip of a staple leg. As the cups 5120, 5122 narrow toward the neck 5124, the cups 5120, 5122 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration.
  • FIG. 71A is taken along the plane ALL in FIG. 69, which corresponds to the anticipated landing location of a staple leg. For example, the tip of a staple leg can be expected to land in the proximal cup 5120 at and/or near the intersection of the plane ALL and the pocket axis PA. At the plane ALL, the pocket 5106 b defines a width WA and a depth DA. The cross-section in FIG. 71B is taken across a transition between the proximal cup 5120 and the neck 5124. FIG. 71B depicts the pocket 5106 b defining a width WB and a depth DB. The width WB is less than the width WA, and the depth DB is greater than the depth DA. In other words, the pocket 5106 b narrows and deepens from the plane ALL in the proximal cup 5120 toward the neck 5124. The comparatively large width WA at the plane ALL is configured to provide a wide basin or receptacle for receiving the staple leg. The cross-section in FIG. 71C is taken across the neck portion 5124. FIG. 71C depicts the pocket 5106 b defining a width WC and a depth DC. The width Wc is less than the width WB, and the depth DC is less than the depth DB. In other words, the pocket 5106 b continues to narrow, and becomes shallower in the neck 5124 across the bridge 5144.
  • The bottom surface 5158 of the pocket 5106 b is a flat surface. In other instances, the bottom surface 5158 can have a groove defined along at least a portion thereof. In still instances, the bottom surface 5158 can form a trough and/or can include hump or ridge along at least a portion thereof, such as across the bridge 5144, for example.
  • Referring primarily now to FIG. 69, the pocket 5106 b includes a proximal extended landing zone 5130 and a distal extended landing zone 5132. The proximal extended landing zone 5130 is positioned in a proximal portion of the proximal cup 5120, and the distal extended landing zone 5132 is positioned in a distal portion of the distal cup 5122. More specifically, the extended landing zones 5130 and 5132 are positioned beyond the anticipated landing location of a staple. For example, the proximal extended landing zone 5130 is positioned proximal to the plane ALL and, in instances where the tip of a staple leg lands beyond the plane ALL, the proximal extended landing zone 5130 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5124.
  • The geometry of the extended landing zones 5130 and 5132 is constrained by the perimeter 5016 of the adjacent staple-forming pockets 5106. For example, the extended landing zones 5130 and 5132 can extend toward and/or into nearly abutting contact with one of more adjacent staple-forming pockets. The extended landing zones 5130 and 5132 and/or other portions of the pocket 5106 b can extend parallel to adjacent staple-forming pockets 5106. In other instances, the extended landing zones 5130 and 5132 can abut one or more adjacent staple-forming pockets 5106.
  • Referring again to FIG. 69, the pocket 5106 b is asymmetric about the pocket axis PA. For example, the perimeter 5116 of the pocket 5106 b is asymmetric about the pocket axis PA. Moreover, the pocket 5106 b is asymmetric about a central axis CA through the neck portion 5124 and perpendicular to the pocket axis PA. For example, the perimeter 5116 of the pocket 5106 b is asymmetric about the central axis CA, and the proximal cup 5120 has a different geometry than the distal cup 5122. Although the proximal cup 5120 and the distal cup 5122 are different, the pocket 5106 b can be configured to form symmetric staples. For example, referring again to FIG. 70, the distal depth D2 can be less than the proximal depth D1 to accommodate for variations in gap distance between the anvil and the staple cartridge and/or tissue flow, as described herein. Accordingly, the formed height of the proximal and distal legs of a staple can be equal. In other instances, the pocket 5106 can be configured to form asymmetric staples.
  • Referring again to FIG. 69, the neck portion 5124 is narrower than the proximal and distal cups 5120 and 5122. The narrowed perimeter 5116 of the pocket 5106 b at the neck portion 5124 defines a receiving peninsula 5126 between a portion of the proximal cup 5120 and a portion of the distal cup 5122. Receiving peninsulas 5126 are positioned on each side of the pocket 5106 b. The receiving peninsulas 5126 are bounded by the perimeter 5116 of the pocket 5106 b and a tangent axis (e.g., TB1 or TB2), which is tangential to the widest portions of the proximal and distal cups 5120 and 5122 on each side of the pocket 5106. A first tangent axis TB1 is positioned on a first side of the pocket 5106 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 5106 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 69 are skewed relative to the pocket axis PA. In other instances, one or both of the tangent axes TB1 and TB2 can be parallel to the pocket axis PA.
  • Referring again to FIG. 68, the perimeters 5116 of the pockets 5106 are nested or interlocked along the staple-forming surface 5102. In particular, each pocket 5106 extends into the receiving peninsula 5126 of an adjacent pocket 5106. For example, the intermediate pockets 5106 b are nested between the inner pockets 5106 a and the outer pockets 5106 c. Stated differently, the intermediate pockets 5106 b extend into the receiving peninsula 5126 of an adjacent inner pocket 5106 a and into the receiving peninsula 5126 of an adjacent outer pocket 5106 c. Moreover, the inner pockets 5106 a and the outer pockets 5106 b are nested with the intermediate pockets 5106 b. More specifically, the inner pockets 5106 a extend into the receiving peninsula 5126 of an adjacent intermediate pocket 5106 b, and the outer pockets 5106 c extend into the receiving peninsula 5126 of an adjacent intermediate pocket 5106 b. In various instances, the distal extended landing zone 5132 of the intermediate pocket 5106 b is positioned in the receiving peninsula 5126 of an inner pocket 5106 a, the proximal extended landing zone 5130 of the intermediate pocket 5106 b is positioned in the receiving peninsula 5126 of an outer pocket 5106 c, the distal extended landing zone 5132 of an inner pocket 5106 a is positioned in the receiving peninsula 5126 of an intermediate pocket 5106 b, and the proximal extended landing zone 5130 of the outer pocket 5106 c is positioned in the receiving peninsula 5126 of an intermediate pocket 5106 b.
  • The geometry of the pockets 5106 facilitates the nesting of the pockets 5106 in the staple-forming surface 5102. For example, because the pockets 5106 include a narrowed neck portion 5124 between two enlarged cups 5120 and 5122, one of the enlarged cups 5120, 5122 of another pocket 5106 can be positioned adjacent to the narrowed neck portion 5124. For example, one of the enlarged cups 5120, 5122 can be aligned with and/or received by a portion of an adjacent pocket 5106. In such instances, the surface area of the staple-forming surface 5102 that is covered by the pockets 5106 can be optimized. For example, the surface area of the staple-forming surface 5102 that is covered by the pockets 5106 is maximized. The “forming ratio” of the staple-forming surface 5102 is the ratio of the non-forming portion 5108 to the forming portion, i.e., the pockets 5106. In at least one instance, the forming ratio can be at least 1:1, for example. In certain instances, more than 60% or more than 75% of the staple-forming surface 5102 can be covered by staple-forming pockets 5106.
  • Referring now to FIGS. 72-76C, staple-forming pockets 5206 in a portion of an anvil 5200 are depicted. Similar to the anvil 3800, the pockets 5206 are arranged in a herringbone arrangement along the staple-forming surface 5202 of the anvil 5200. The anvil 5200 includes a staple-forming surface 5202 and a longitudinal slot 5204. The longitudinal slot 5204 extends along the longitudinal axis LA of the anvil 5200. In certain instances, a firing element and/or a cutting element can translate through the longitudinal slot 5204 during at least a portion of a firing stroke. The staple-forming pockets 5206 are defined in the staple-forming surface 5202. The staple-forming surface 5202 also includes a non-forming portion 5208 that extends around the pockets 5206. The non-forming portion 5208 extends entirely around each pocket 5206. In other words, the non-forming portion 5208 surrounds the staple-forming pockets 5206. In other instances, at least a portion of two or more adjacent pockets 5206 can be in abutting contact such that a non-forming portion 5208 is not positioned therebetween.
  • The forming ratio of the staple-forming surface 5202 can be optimized. By optimizing the forming ratio, more staples can be formed and/or formed to their desired configurations. In certain instances, the surface area of the non-forming portion 5208 of the anvil 5200 can be minimized with respect to the staple-forming pockets 5206. Additionally or alternatively, the footprint of the staple-forming pockets 5206 can be extended or enlarged to maximize the portion of the staple-forming surface 5202 that is designed to catch and form the staples.
  • The pockets 5206 depicted in FIG. 72 are arranged in an inner row 5214 a, an intermediate row 5214 b, and an outer row 5214 c on a first side of the longitudinal slot 5204. Inner pockets 5206 a are positioned in the inner row 5214 a, intermediate pockets 5206 b are positioned in the intermediate row 5214 b, and outer pockets 5206 c are positioned in the outer row 5214 c. Although not shown in FIG. 72, in at least one instance, the pockets 5206 on the opposing side of the slot 5204 can form a mirror image reflection of the pockets 5206 on the first side of the longitudinal slot 5204. In other instances, the arrangement of pockets 5206 in the staple-forming surface 5202 can be asymmetrical relative to the slot 5204 and, in certain instances, the anvil 5200 may not include the longitudinal slot 5204. In various instances, the pockets 5206 can be arranged in less than or more than three rows on each side of the slot 5204.
  • The pockets 5206 depicted in FIG. 72 are identical. Each pocket 5206 defined in the staple-forming surface 5202 has the same geometry. In other instances, the geometry of the pockets 5206 can vary row-to-row and/or longitudinally along the length of the anvil 5200. For example, in certain instances, the depth of the pockets 5206 can vary along the length of the anvil 5200 to accommodate for variations in gap distance between the anvil and the staple cartridge along the length of an end effector and/or tissue flow, as described herein.
  • The pockets 5206 can be configured to form staples to the same, or substantially the same, formed shape. As described herein, the pockets 5206 can be configured to form each staple to the same asymmetrical shape. In other instances, the pockets 5206 can be configured to form staples to different formed shapes, such as to different heights and/or configurations.
  • An exemplary intermediate pocket 5206 b is shown in FIGS. 73-76C. The pocket 5206 b has a first end, or proximal end, 5210 and a second end, or distal end, 5212. A pocket axis PA (FIG. 72) extends between the proximal end 5210 and the distal end 5212 of the pocket 5206 b. The pocket 5206 b includes a perimeter 5216, which defines the boundary of the pocket 5206 b. The perimeter 5216 includes linear portions and contoured portions.
  • The pocket 5206 b includes a proximal cup 5220, a distal cup 5222, and a neck 5224 extending between the proximal cup 5220 and the distal cup 5222. When a staple is driven into forming contact with the staple-forming surface 5202, the proximal cup 5220 is aligned with a proximal staple leg, and the distal cup 5222 is aligned with a distal staple leg. The cups 5220 and 5222 are configured to direct or funnel the staple legs toward the pocket axis PA and the central portion of the pocket 5206, such as the neck portion 5224, and to deform the staple legs into the formed configuration. In other instances, the cup 5222 can be proximal to the cup 5220.
  • Referring primarily to FIG. 70, each cup 5220 and 5222 of the pocket 5206 b defines an entrance ramp 5240 a and 5240 b, respectively, and an exit ramp 5242 a and 5242 b, respectively. When forming a staple, the tip of a staple leg can enter the respective pocket 5220, 5222 along the entrance ramp 5240 a, 5240 b and exit the respective pocket 5220, 5222 along the exit ramp 5242 a, 5242 b. At an apex 5246 a, 5246 b, respectively, between the entrance ramp 5240 a, 5240 b and the exit ramp 5242 a, 5242 b, the tips of the staple legs are deformed toward the staple base to assume the formed configuration, such as a B-form or modified B-form, for example. The pocket 5206 b also defines a bridge 5244 between the proximal cup 5220 and the distal cup 5222. The bridge 5244 is offset from the non-forming portion 5208. More specifically, the bridge 5244 is positioned below or recessed relative to the non-forming portion 5208.
  • Referring again to FIG. 73, the pocket 5206 b is symmetric about the pocket axis PA. For example, the perimeter 5216 of the pocket 5206 b is symmetric about the pocket axis PA. Moreover, the pocket 5206 b is asymmetric about a central axis CA through the neck portion 5224 and perpendicular to the pocket axis PA. For example, the perimeter 5216 of the pocket 5206 b is asymmetric about the central axis CA, and the proximal cup 5220 has a different geometry than the distal cup 5222. The asymmetry of the cups 5220 and 5222 is configured to form asymmetric staples. For example, referring again to FIG. 74, the distal depth D2 is less than the proximal depth D1, which is configured to form a staple having a greater formed height at the proximal leg than at the distal leg. The distal depth D2 can be about 0.002 inches less than the proximal depth D1. In other instances, the difference between the distal depth D2 and the proximal depth D1 can be greater than and/or less than 0.002 inches. In certain instances, the difference can be between one percent and ten percent of the staple diameter. For example, the difference can be about two percent of the staple diameter. In other instances, the formed height of the staple can be greater at the distal leg than the proximal leg. The length of each cup 5220, 5222 is also different. For example, the distal length D2 is greater than the proximal length D1 in FIG. 74. Additionally, the incline of the entrance ramps 5240 a and 5240 b in the pocket 5206 b are different, and the incline of the exit ramps 5242 a and 5242 b in the pocket 5206 b are also different.
  • In various instances, the reduced depth in a portion of the pocket 5206 b can improve the stiffness of the anvil. For example, because the distal depth D2 is less than the proximal depth D1, the anvil 5200 is comprised of more material, which can increase the stiffness thereof. Moreover, because the increased material is in a distal portion of the anvil 5200, such portion can have an increased stiffness, which can limit bowing or deformation of the anvil toward the distal end.
  • The difference in geometry of the proximal and distal cups 5220 and 5222, respectively, can accommodate for tissue movement or flow. More specifically, when tissue is clamped against the anvil 5200, fluid in the clamped tissue can flow or move toward adjacent, unclamped tissue. The tissue can flow laterally toward the longitudinal sides of the anvil 5200, distally toward the distal end of the anvil 5200, and/or proximally toward the proximal end of the anvil 5200. In certain instances, tissue can flow relative to the anvil 5200 when the cutting edge is advanced distally through the tissue. In such instances, tissue may flow laterally, distally, and/or proximally, but it primarily flows distally due to the distal movement of the cutting edge. In instances where the cutting edge moves proximally to incise tissue, the movement or flow of the tissue would be generally proximal during the cutting stroke. The different geometries of the proximal and distal cups 5220 and 5222, respectively, can accommodate for the flow of the tissue, which can shift or skew the staple legs embedded therein.
  • Referring primarily to FIGS. 75A-76C, the pocket 5206 b includes sidewalls 5250, which extend from the non-forming portion 5208. The cups 5220, 5222 are configured to funnel and/or guide the staple legs and tips thereof toward and/or along the pocket axis PA and into a formed configuration. Owing to the different geometries of the proximal and distal cups 5220 and 5222, the path of the proximal staple leg can be different than the path of the distal staple leg when driven into forming contact with the pocket 5206 b. In certain instances, the asymmetrical staple pockets 5206 b can form asymmetrical staples from symmetrical unformed staples. Additionally or alternatively, asymmetrical unformed staples can be formed into asymmetrical formed staples by the staple pockets 5206 b.
  • FIG. 75A is taken along the plane ALL1 in FIG. 73, which corresponds to the anticipated landing location of a proximal staple leg. For example, the tip of a proximal staple leg can be expected to land in the proximal cup 5220 at and/or near the intersection of the plane ALL1 and the pocket axis PA. At the plane ALL1, the proximal cup 5220 defines a width W1 A and a depth D1 A. The cross-section in FIG. 75B is taken across a transition between the proximal cup 5220 and the neck 5224. FIG. 75B depicts the proximal cup 5220 defining a width W1 B and a depth D1 B. The width W1 B is greater than the width W1 A, and the depth D1 B is greater than the depth D1 A. In other words, the proximal cup 5220 widens and deepens from the plane ALL1 in the proximal cup 5220 toward the neck 5224. The cross-section in FIG. 75C is taken across a proximal end of the neck portion 5224. FIG. 75C depicts the pocket 5206 b defining a width W1 C and a depth D1 C. The width W1 C is less than the width W1 B, and the depth D1 C is less than the depth D1 B. In other words, the pocket 5206 b continues to narrow, and becomes shallower in the neck 5224 across the bridge 5244.
  • FIG. 76A is taken along the plane ALL2 in FIG. 73, which corresponds to the anticipated landing location of a distal staple leg. For example, the tip of a distal staple leg can be expected to land in the distal cup 5222 at and/or near the intersection of the plane ALL2 and the pocket axis PA. At the plane ALL2, the distal cup 5222 defines a width W2 A and a depth D2 A. The width W2 A is different than the width W1 A, and the depth D2 A is different than the depth D1 A. The cross-section in FIG. 76B is taken across a transition between the distal cup 5222 and the neck 5224. FIG. 76B depicts the distal cup 5222 defining a width W2 B and a depth D2 B. The width W2 B is different than the width W1 B, and the depth D2 B is different than the depth D1 B. The width W2 B is less than the width W2 A, and the depth D2 B is greater than the depth D2 A. In other words, the distal cup 5222 narrows and deepens from the plane ALL2 in the distal cup 5222 toward the neck 5224. The cross-section in FIG. 76C is taken across a distal end of the neck portion 5224. FIG. 76C depicts the pocket 5206 b defining a width W2 C and a depth D2 C. The width W2 C is different than the width W1 C, and the depth D2 is different than the depth D1 C The width W2 C is less than the width W2 B, and the depth D2 is less than the depth D2 B. In other words, the pocket 5206 b continues to narrow, and becomes shallower in the neck 5224 across the bridge 5244.
  • The bottom surface 5258 of the pocket 5206 b is a flat surface. In other instances, the bottom surface 5258 can have a groove defined along at least a portion thereof. In still other instances, the bottom surface 5258 can form a trough and/or can include a hump or ridge along at least a portion thereof, such as across the bridge 5244, for example.
  • Referring primarily now to FIG. 73, the pocket 5206 b includes a proximal extended landing zone 5230 and a distal extended landing zone 5232. The proximal extended landing zone 5230 is positioned in a proximal portion of the proximal cup 5220, and the distal extended landing zone 5232 is positioned in a distal portion of the distal cup 5222. More specifically, the extended landing zones 5230 and 5232 are positioned beyond the anticipated landing location of a staple. For example, the proximal extended landing zone 5230 is positioned proximal to the plane ALL1 and, in instances where the tip of a staple leg lands beyond the plane ALL1, the proximal extended landing zones 5230 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5224. The distal extended landing zone 5232 is positioned distal to the plane ALL2 and, in instances where the tip of a staple leg lands beyond the plane ALL2, the distal extended landing zones 5232 can catch the staple leg and direct it toward the pocket axis PA and/or toward the neck portion 5224. In certain instances, the geometry of the extended landing zones 5230, 5232 can be constrained or limited by the geometry of the adjacent, nested staple-forming pockets 5206.
  • Referring again to FIG. 73, the neck portion 5224 is narrower than the proximal and distal cups 5220 and 5222. The narrowed perimeter 5216 of the pocket 5206 b at the neck portion 5224 defines a receiving peninsula 5226 between a portion of the proximal cup 5220 and a portion of the distal cup 5222. Receiving peninsulas 5226 are positioned on each side of the pocket 5206 b. The receiving peninsulas 5226 are bounded by the perimeter 5216 of the pocket 5206 b and a tangent axis (e.g., TB1 and TB2), which is tangential to the widest portions of the proximal and distal cups 5220 and 5222 on each side of the pocket 5206. A first tangent axis TB1 is positioned on a first side of the pocket 5206 b and a second tangent axis TB2 is positioned on the opposite side of the pocket 5206 b. The first and second tangent axes TB1 and TB2 depicted in FIG. 73 are skewed relative to the pocket axis PA. In other instances, one or both of the tangent axes TB1 and TB2 can be parallel to the pocket axis PA.
  • In various instances, the geometry of the pockets 5206 can facilitate the nesting and/or the close arrangement of the pockets 5206 in the staple-forming surface 5202. For example, the surface area of the staple-forming surface 5202 that is covered by the pockets 5206 can be optimized. The “forming ratio” of the staple-forming surface 5202 is the ratio of the non-forming portion 5208 to the forming portion, i.e., the pockets 5206. In at least one instance, the forming ratio can be at least 1:1, for example.
  • As described herein, the arrangement of staple cavities and staples in a staple cartridge for an end effector can correspond to or match the arrangement of staple-forming pockets in an anvil of the end effector. More specifically, the angular orientation and spacing of each staple cavity can match the angular orientation and spacing of a respective staple-forming pocket. For example, when the staple cavities are arranged in a herringbone pattern, the staple-forming pockets can be arranged in a corresponding herringbone pattern.
  • In certain instances, an end effector can include a staple cartridge having an arrangement of staple cavities and an anvil having a non-corresponding arrangement of staple-forming pockets. For example, the staple cavities can be obliquely oriented relative to a longitudinal axis and the staple-forming pockets can be oriented parallel to the longitudinal axis. In certain instances, an end effector can be configured to receive different staple cartridges having different arrangements of staple cavities, for example, and the anvil of the end effector may not be compatible with all of the different staple cartridges and permutations of staple cavities therein. In such instances, the anvil can be retrofit or adapted with an attachment, such as an anvil plate, having a suitable arrangement of staple-forming pockets.
  • A surgical end effector 5500 is depicted in FIGS. 77-79. Similar to the end effector 1100 (FIGS. 1-4), the end effector 5500 includes the elongate channel 1102, which is configured to operably support a staple cartridge 5510 therein. The staple cartridge 5510 is similar in many aspects to the staple cartridge 1110. For example, the staple cartridge includes a staple cartridge body 5511 having a deck 5515. A longitudinal slot 5514 extends through the deck 5515 from a proximal end portion 5512 of the body 5511 toward a distal end portion 5513 of the body 5511. Angularly-oriented staple cavities 5516 are defined in the cartridge body 5511 and each staple cavity 5516 defines an opening in the deck 5515. The opening of each staple cavity 5516 is oriented at an oblique angle relative to the longitudinal slot 5514. The staple cavities 5516 are arranged in a herringbone pattern. Staples are removably positioned in the staple cavities.
  • The end effector 5500 also includes an anvil 5530 that is pivotally supported relative to the elongate channel 1102. The anvil 5530 is similar in many aspects to the anvil 1130. For example, the anvil 5530 includes a staple-forming surface 5502 and a longitudinal slot 5504. In certain instances, a firing element and/or a cutting element, such as the sled assembly 1120 and/or the firing member 1760 (FIG. 4), for example, can translate through the longitudinal slot 5504 during at least a portion of a firing stroke. Tissue stops 5531 extend downward toward the staple cartridge 5510 to control the positioning of tissue between the proximal end portion 5512 of the cartridge body 5511 and the anvil 5530. Staple-forming pockets 5506 are defined in the staple-forming surface 5502, which also includes a non-forming portion 5508 that extends around the pockets 5506. The staple-forming pockets 5506 are oriented parallel to the longitudinal slot 5504. In other words, the arrangement of staple-forming pockets 5506 does not match or correspond to the arrangement of staple cavities 5516. If staples were fired from the staple cartridge 5510 into forming contact with the anvil 5530, the majority of such staples would likely be unformed and/or malformed.
  • The end effector 5500 includes an adaptor assembly 5540, which is configured to adapt the anvil 5530 to a suitable arrangement of staple-forming pockets. The staple cartridge 5510 is part of the adaptor assembly 5540. The adaptor assembly 5540 also includes an anvil plate 5550 and connecting material 5570. A proximal portion of the anvil plate 5550 forms a spring 5551 at which the anvil plate 5550 is attached to the staple cartridge 5510. As such, the anvil plate 5550 is configured to pivot downward toward the staple cartridge 5510 at the proximal spring 5551 when a closing motion is applied to the anvil plate 5550, such as by the anvil 5530, for example. The spring 5551 can bias the anvil plate 5550 toward the configuration shown in FIG. 77, which can facilitate the releasable attachment of the adaptor assembly 5540 to the anvil 5530.
  • The arrangement of staple-forming pockets in the anvil plate 5550 corresponds to the arrangement of staple cavities 5516 in the staple cartridge. The anvil plate 5550 includes a staple-forming surface 5502 and a longitudinal slot 5554, which is aligned with the longitudinal slot 5504 in the anvil 5530 and the longitudinal slot 5514 in the staple cartridge 5510 when the adaptor assembly 5540 is installed in the end effector 5500. Staple-forming pockets 5556 are defined in the staple-forming surface 5502 and a non-forming portion 5558 (FIG. 77) extends around the staple-forming pockets 5556. In the illustrated embodiment, the staple-forming pockets 5556 are oriented at oblique angles relative to the longitudinal slot 5554. More specifically, the staple-forming pockets 5556 are arranged in a herringbone pattern, which corresponds to the herringbone pattern of the staple cavities 5516. The anvil plate 5550 can be a sheet of metal in which the arrangement of staple-forming pockets has been stamped.
  • The arrangement of staple-forming pockets 5556 in the anvil plate 5550 corresponds to the arrangement of staple cavities 5516 in the staple cartridge. In other words, each staple-forming pocket 5556 in the anvil plate 5550 corresponds to the angle and position of a staple cavity 5516. The reader will appreciate that a staple cartridge can include a variety of different arrangements of staple cavities, and various exemplary arrangements of staple cavities are described herein. For example, a staple cartridge can include a longitudinally-repetitive pattern of obliquely-oriented staple cavities and/or one or more parallel and/or angularly-offset staple cavities. Additionally or alternatively, a staple cartridge can include multiple distinct patterns of staple cavities. In still other instances, the arrangement of staple cavities can vary laterally and/or longitudinally along the cartridge body. Whatever the arrangement of staple cavities in a staple cartridge, a corresponding arrangement of staple-forming pockets can be provided by the complementary anvil plate 5550 of the adaptor assembly 5540.
  • The anvil plate 5500 is connectable to the staple cartridge 5510, and the connecting material 5570 is attached to the anvil plate 5500. In use, when the staple cartridge 5510 is inserted into the elongate channel 1102, the anvil plate 5500 and the connecting material 5570 of the adaptor assembly 5540 are also disposed between the elongate channel 1102 and the anvil 5530. In certain instances, the anvil 5530 can be pivoted downward toward the elongate channel 1102 to secure or otherwise attach the anvil plate 5550 to the staple-forming surface 5502 of the anvil 5530 with the connecting material 5570. Additionally or alternatively, the spring member 5551 can bias the anvil plate 5550 and the connecting material 5570 thereon into and/or toward attachment with the anvil 5530. When the adaptor assembly 5540 is installed in the end effector 5500, the anvil 5530 has effectively been retrofit or adapted for use with the staple cartridge 5510.
  • The staple cartridge 5510 and the anvil plate 5550 may include alignment features for aligning the staple cavities 5516 in the staple cartridge 5510 with the corresponding staple-forming pockets 5556 in the anvil plate 5500. For example, the staple cartridge 5510 includes alignment apertures 5520 (FIG. 77), and the anvil plate 5550 includes alignment posts or pins 5562. The alignment pins 5562 are received by the alignment apertures 5520 to position the anvil plate 5550 relative to the staple cartridge 5510. For example, the alignment pins 5562 can be press fit into the alignment apertures 5520. The connection between the alignment apertures 5520 and the alignment pins 5562 is configured to longitudinally align the staple cartridge 5510 and the anvil plate 5550, for example.
  • In certain instances, the manufacturer and/or distributor can provide the assembly 5540 pre-assembled. For example, the anvil plate 5550 can be press fit into engagement with the staple cartridge 5510 before a surgeon or assistant thereto obtains the assembly 5540 for a surgical procedure. In other instances, the surgeon and/or assistant thereto can assemble the assembly 5540.
  • The anvil plate 5550 also includes alignment features for aligning the anvil plate 5550 with the anvil 5530. For example, the anvil plate 5550 includes distal alignment flanges 5564. The distal alignment flanges 5564 are received by the longitudinal slot 5504 in the anvil 5530 to position the anvil plate 5550 relative to the anvil 5530. For example, the distal alignment flanges 5564 can be press fit into the longitudinal slot 5504. The connection between the alignment flanges 5564 and the longitudinal slot 5504 is configured to laterally align the anvil plate 5550 and the anvil 5530, for example.
  • The connecting material 5570 is a flexible material. For example, the connecting material 5570 can comprise an elastomer and/or low density polyethylene. In various instances, the connecting material 5570 can be an overmold on the anvil plate 5550. When adhered or otherwise secured to the anvil 5530, the connecting material 5570 is configured to assume a deformed configuration that matches the profile of the staple-forming surface 5502. For example, the unformed configuration of the connecting material 5570 is depicted in FIG. 77 and the formed configuration of the connecting material 5570 is depicted in FIG. 78. Referring primarily to FIG. 78, the connecting material 5570 flows into and fills the staple-forming pockets 5506. In other words, the staple-forming pockets 5506 imprint in the connecting material 5570. In such instances, the connecting material 5570 can fortify the anvil plate 5550 during a forming process. For example, the connecting material 5570 between the anvil plate 5550 and the anvil 5530 can provide a backing for the anvil plate 5550 to prevent and/or limit deformation of the anvil plate 5550 relative to the anvil 5530 when the anvil plate 5550 is impacted and subjected to other forces during use.
  • The connecting material 5570 includes a channel 5572. The channel 5572 extends along a portion of the length thereof. Although not shown in FIG. 77, a similar channel 5572 can be defined in the connecting material 5570 along the opposite side of the adaptor assembly 5540. A lip 5566 of the anvil plate 5550 is positioned in the channel 5572. The lip 5566 is substantially U-shaped. In other instances, the lip 5566 can be L-shaped, linear, and/or contoured, for example. The anvil plate 5500 also includes an inner ridge 5568, which is aligned with a longitudinal slot 5574 (FIG. 77) in the connecting material 5570 and the longitudinal slot 5504 in the anvil 5530. The ridge 5568 is configured to facilitate the alignment of the adaptor assembly 5540 along the length of the end effector 5500. In various instances, the connecting material 5570 can be molded over the anvil plate 5550. For example, the connecting material 5570 can be molded around the lip 5566 and/or the ridge 5568.
  • A portion of the end effector 5500 is also depicted in FIG. 79. An adaptor assembly 5640 is installed in the end effector 5500 in FIG. 79. The adaptor assembly 5640 is similar in many aspects to the adaptor assembly 5540. For example, the adaptor assembly 5640 includes an anvil plate 5650 having a staple-forming surface 5652 and a longitudinal slot 5654, which is aligned with the longitudinal slot 5504 in the anvil 5530. Staple-forming pockets 5656 are defined in the staple-forming surface 5652 and a non-forming portion 5658 extends around the staple-forming pockets 5656. The staple-forming pockets 5656 are oriented at oblique angles relative to the longitudinal slot 5654. More specifically, the staple-forming pockets 5656 are arranged in a herringbone pattern, which corresponds to the herringbone pattern of the staple cavities 5516 (FIG. 77). The anvil plate 5650 can be a sheet of metal in which the arrangement of staple-forming pockets has been stamped.
  • The adaptor assembly 5640 does not include a deformable material, such as the deformable material 5570. Rather, the anvil plate 5650 is configured to directly engage the anvil 5530. The anvil plate 5650 includes a lip 5666, which is positioned against the staple-forming surface 5502. The lip 5666 is substantially U-shaped. In other instances, the lip 5666 can be L-shaped, linear, and/or contoured, for example. The anvil plate 5600 also includes an inner ridge 5668, which is aligned with the longitudinal slot 5504 in the anvil 5530. The ridge 5668 is configured to facilitate the alignment of the adaptor assembly 5640 along the length of the end effector 5600.
  • In other instances, the anvil plate 5650 can be embedded in the staple-forming surface 5502 of the anvil 5530. For example, staple-forming pockets 5656 of the anvil plate 5650 can at least partially nest within the staple-forming pockets 5506 in the anvil 5530. Although the arrangement, quantity, and/or geometry of the staple-forming pockets 5656 are different than the arrangement, quantity, and/or geometry of the staple-forming pockets 5506, portions of the staple-forming pockets 5656 can be positioned within portions of the staple-forming pockets 5506.
  • Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Patent Application Publication No. 2012/0298719, for example, discloses several examples of a robotic surgical instrument system in greater detail.
  • EXAMPLES Example 1
  • A staple cartridge comprising a longitudinal axis, a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein a majority of the plurality of staple cavities are arranged in a longitudinally-repetitive pattern, wherein the plurality of staple cavities further comprises an irregular staple cavity, and wherein the irregular staple cavity is angularly-offset from the staple cavities in the longitudinally-repetitive pattern, and a plurality of staples positioned in the staple cavities.
  • Example 2
  • The staple cartridge of Example 1, further comprising a firing element configured to translate between a proximal position and a distal position in the cartridge body, wherein the longitudinally-repetitive pattern extends distally beyond the distal position of the firing element.
  • Example 3
  • The staple cartridge of Examples 1 or 2, wherein the longitudinally-repetitive pattern consists of a pattern of staple cavities obliquely oriented relative to the longitudinal axis.
  • Example 4
  • The staple cartridge of Examples 1, 2, or 3, wherein the cartridge body comprises a deck, wherein each staple cavity defines an opening in the deck, and wherein the openings of the staple cavities in the pattern form a herringbone pattern.
  • Example 5
  • The staple cartridge of Examples 1, 2, 3, or 4, wherein the opening of the irregular staple cavity comprises a proximal end and a distal end, wherein a staple cavity axis extends between the proximal end and the distal end, and wherein the staple cavity axis is parallel to the longitudinal axis.
  • Example 6
  • A staple cartridge comprising a longitudinal axis and a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein the plurality of staple cavities are arranged in a plurality of patterns, and wherein the plurality of patterns comprises a first pattern comprising a longitudinally-repetitive pattern of staple cavities angularly oriented relative to the longitudinal axis and a second pattern, wherein the second pattern is laterally aligned with the first pattern and longitudinally offset from the first pattern, and wherein the second pattern is different than the first pattern. The staple cartridge further comprises a plurality of staples positioned in the staple cavities.
  • Example 7
  • The staple cartridge of Example 6, wherein the cartridge body comprises a deck, and wherein the longitudinally-repetitive pattern comprises a first staple cavity defining a first opening in the deck and a second staple cavity defining a second opening in the deck, wherein the second opening is obliquely oriented relative to the first opening.
  • Example 8
  • The staple cartridge of Examples 6 or 7, wherein the longitudinally-repetitive pattern comprises a herringbone pattern.
  • Example 9
  • The staple cartridge of Examples 6, 7, or 8, wherein the second pattern comprises a third staple cavity defining a third opening in the deck, and wherein the third opening is obliquely oriented relative to the first opening and the second opening.
  • Example 10
  • The staple cartridge of Examples 6, 7, 8, or 9, wherein the second pattern further comprises a fourth staple cavity defining a fourth opening in the deck, and wherein the fourth opening is parallel to the third opening.
  • Example 11
  • The staple cartridge of Example 10, further comprising a plurality of staple drivers comprising a first driver positioned in the third staple cavity and comprising a first ramp profile and a second driver positioned in the fourth staple cavity and comprising a second ramp profile, wherein the first driver is connected to the second driver, and wherein the first ramp profile is different than the second ramp profile.
  • Example 12
  • The staple cartridge of Examples 10 or 11, wherein the fourth opening is longitudinally staggered relative to the third opening.
  • Example 13
  • The staple cartridge of Examples 6, 7, 8, 9, 10, 11, or 12, wherein the second pattern comprises a proximal pattern.
  • Example 14
  • The staple cartridge of Examples 6, 7, 8, 9, 10, 11, 12, or 13, wherein the plurality of patterns further comprises a third pattern laterally aligned with the first pattern and longitudinally offset from the first pattern, and wherein the third pattern is different than the first pattern.
  • Example 15
  • The staple cartridge of Example 14, wherein the first pattern is positioned intermediate the second pattern and the third pattern.
  • Example 16
  • The staple cartridge of Examples 14 or 15, further comprising a cutting edge configured to move relative to the cartridge body during a firing stroke, wherein the cutting edge is configured to move between a proximal position and a distal position, and wherein the third pattern is positioned distal to the distal position of the cutting edge.
  • Example 17
  • An end effector for stapling tissue comprising, the end effector comprising a staple cartridge comprising a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, wherein the plurality of staple cavities are arranged in a plurality of patterns. The plurality of patterns comprises a first pattern comprising a longitudinally-repetitive pattern of staple cavities angularly oriented relative to a longitudinal axis and a second pattern, wherein the second pattern is longitudinally offset from the first pattern, and wherein the second pattern is different than the first pattern. The end effector further comprises a cutting edge configured to move between a proximal position and a distal position and a tissue stop, wherein the first pattern extends between the tissue stop and the distal position of the cutting edge.
  • Example 18
  • The end effector of Example 17, wherein the second pattern comprises a plurality of parallel staple cavities.
  • Example 19
  • The end effector of Examples 17 or 18, wherein the parallel staple cavities are obliquely oriented relative to the staple cavities in the first pattern.
  • Example 20
  • The end effector of Examples 17, 18, or 19, further comprising an anvil, wherein the tissue stop comprises a pair of sidewalls extending from the anvil toward the staple cartridge.
  • Example 21
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, and wherein the first staple comprises a proximal leg and a distal leg and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket. The first pocket comprises a proximal cup, wherein the proximal leg is aligned with the proximal cup and a distal cup, wherein the distal leg is aligned with the distal cup, and wherein the first pocket is asymmetric relative to a central axis transecting the first pocket equidistant between the proximal cup and the distal cup.
  • Example 22
  • The end effector of Example 21, wherein the first pocket is obliquely oriented relative to a longitudinal axis defined by the end effector.
  • Example 23
  • The end effector of Examples 21 or 22, wherein each pocket comprises a perimeter, wherein the plurality of pockets comprises a second pocket, and wherein a portion of the perimeter of the first pocket is adjacently nested with a portion of the perimeter of the second pocket.
  • Example 24
  • The end effector of Examples 21, 22, or 23, wherein the first pocket is configured to form a staple to an asymmetric configuration.
  • Example 25
  • The end effector of Examples 21, 22, 23, or 24, wherein the first pocket is asymmetric relative to a first pocket axis extending between the proximal cup and the distal cup perpendicular to the central axis.
  • Example 26
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, and wherein the first staple comprises a first proximal leg and a first distal leg, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket. The first pocket comprises a first proximal cup, wherein the first proximal leg is aligned with the first proximal cup, and a first distal cup, wherein the first distal leg is aligned with the first distal cup, wherein the first distal cup is laterally offset from the first proximal cup, and wherein the first pocket is asymmetric relative to a first pocket axis extending between the first proximal cup and the first distal cup.
  • Example 27
  • The end effector of Example 26, wherein the plurality of pockets comprises a second pocket, and wherein the second pocket comprises a second proximal cup and a second distal cup, wherein the second distal cup is laterally offset from the second proximal cup, and wherein the second pocket is asymmetric relative to a second pocket axis extending between the second proximal cup and the second distal cup.
  • Example 28
  • The end effector of Example 27, wherein the second pocket axis is angularly oriented relative to the first pocket axis.
  • Example 29
  • The end effector of Examples 27 or 28, wherein the first pocket axis and the second pocket axis are obliquely oriented relative to a longitudinal axis defined by the end effector.
  • Example 30
  • The end effector of Examples 27, 28, or 29, wherein the plurality of staples further comprises a second staple, wherein the second staple comprises a second proximal leg and a second distal leg, wherein the second proximal leg is aligned with the second proximal cup, and wherein the second distal leg is aligned with the second distal cup.
  • Example 31
  • The end effector of Examples 27, 28, 29, or 30, wherein the second distal cup is nested adjacent to the first pocket between the first proximal cup and the first distal cup.
  • Example 32
  • The end effector of Examples 26, 27, 28, 29, 30, or 31, wherein the plurality of pockets comprises a plurality of nested pockets.
  • Example 33
  • The end effector of Examples 26, 27, 28, 29, 30, 31, or 32, wherein the first proximal cup comprises a first geometry, wherein the first distal cup comprises a second geometry, and wherein the second geometry is different than the first geometry.
  • Example 34
  • The end effector of Examples 26, 27, 28, 29, 30, 31, or 32, wherein the staple-forming surface comprises a non-forming planar surface surrounding at least a portion of the pockets, wherein the first proximal cup comprises a proximal depth relative to the non-forming planar surface, wherein the first distal cup comprises a distal depth relative to the non-forming planar surface, and wherein the distal depth is different than the proximal depth.
  • Example 35
  • The end effector of Example 34, wherein the proximal depth is greater than the distal depth.
  • Example 36
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple, wherein the first staple comprises a first proximal leg and a first distal leg, and wherein the first distal leg is laterally offset from the first proximal leg, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets comprises a first pocket. The first pocket comprises a first proximal cup comprising a proximal geometry, wherein the first proximal leg is aligned with the first proximal cup, and a first distal cup comprising a distal geometry, wherein the first distal leg is aligned with the first distal cup, and wherein distal geometry is different than the proximal geometry.
  • Example 37
  • The end effector of Example 36, wherein the first proximal cup is configured to form the first proximal leg to a first height, wherein the first distal cup is configured to form the first distal leg to a second height, and wherein the second height is different than the first height.
  • Example 38
  • The end effector of Examples 36 or 37, wherein the first proximal cup comprises a first depth, wherein the second distal cup comprises a second depth, and wherein the first depth is different than the second depth.
  • Example 39
  • The end effector of Examples 36, 37, or 38, wherein the first proximal cup comprises a first entrance angle and a first exit angle, wherein the first distal cup comprises a second entrance angle and a second exit angle, wherein the first entrance angle is different than the second entrance angle, and wherein the first exit angle is different than the second exit angle.
  • Example 40
  • The end effector of Examples 36, 37, 38, or 39, wherein the first proximal cup comprises a first width, wherein the second distal cup comprises a second width, and wherein the first width is different than the second width.
  • Example 41
  • The end effector of Examples 36, 37, 38, 39, or 40, wherein the plurality of pockets comprises a second pocket, and wherein the second pocket is different than the first pocket.
  • Example 42
  • The end effector of Example 41, wherein the plurality of pockets are arranged in a plurality of rows comprising a first row comprising the first pocket and a second row comprising the second pocket, wherein the second pocket is not parallel to the first pocket.
  • Example 43
  • An end effector comprising a staple cartridge and an anvil comprising a longitudinal axis and a staple-forming surface, wherein a plurality of staple-forming pockets are defined in the staple-forming surface. The plurality of staple-forming pockets comprises a first pocket obliquely oriented relative to the longitudinal axis, a second pocket obliquely oriented relative to the longitudinal axis and the first pocket, and a third pocket obliquely oriented relative to the longitudinal axis, the first pocket, and the second pocket.
  • Example 44
  • The end effector of Example 43, wherein a slot is defined at least partially through the anvil along the longitudinal axis, wherein the first pocket is spaced a first distance from the slot, wherein the second pocket is spaced a second distance from the slot, wherein the third pocket is spaced a third distance from the slot, and wherein the first distance, the second distance, and the third distance are different.
  • Example 45
  • The end effector of Examples 43 or 44, wherein the first pocket is positioned in an inner row, wherein the second pocket is positioned in an intermediate row, wherein the third pocket is positioned in an outer row, and wherein the first pocket is longitudinally staggered from the third pocket and longitudinally overlapping the third pocket.
  • Example 46
  • The end effector of Examples 43, 44, or 45, wherein the second pocket is laterally spaced apart from the first pocket by a first lateral distance, wherein the second pocket is laterally spaced apart from the third pocket by a second lateral distance, and wherein the second lateral distance is different than the first lateral distance.
  • Example 47
  • The end effector of Examples 43, 44, 45, or 46, wherein the staple cartridge comprises a plurality of staples comprising a first staple positioned for forming contact with the first pocket, a second staple positioned for forming contact with the second pocket, wherein the first staple laterally overlaps the first staple by a first distance, and a third staple positioned for forming contact with the third pocket, wherein the third staple laterally overlaps the second staple by a second distance, and wherein the second distance is different than the first distance.
  • Example 48
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, wherein the staple cavities are obliquely oriented relative to the longitudinal slot, wherein the staple cavities are arranged in a plurality of rows comprising a first row positioned on a first side of the longitudinal slot, a second row positioned on the first side of the longitudinal slot, wherein the staple cavities in the first row laterally overlap the staple cavities in the second row by a first distance, and a third row positioned on the first side of the longitudinal slot, wherein the staple cavities in the second row laterally overlaps the staple cavities in the third row by a second distance, and wherein the second distance is different than the first distance.
  • Example 49
  • The staple cartridge of Example 48, wherein the staple cavities in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staple cavities in the second row are oriented at a second angle relative to the longitudinal slot, wherein the staple cavities in the third row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • Example 50
  • The staple cartridge of Example 49, wherein the second angle is a supplementary angle to the first angle.
  • Example 51
  • The staple cartridge of Examples 49 or 50, wherein the third angle is greater than the first angle.
  • Example 52
  • The staple cartridge of Examples 48, 49, or 50, wherein the second distance is greater than the first distance.
  • Example 53
  • The staple cartridge of Examples 48, 49, 50, 51, or 52, further comprising a plurality of staples positioned in the plurality of staple cavities.
  • Example 54
  • The staple cartridge of Example 53, wherein the staples comprise a staple length, and wherein the first distance and the second distance are less than one-third the staple length.
  • Example 55
  • The staple cartridge of Examples 53 or 54, wherein the staples comprise a diameter, and wherein the first distance and the second distance are greater than the diameter.
  • Example 56
  • The staple cartridge of Examples 48, 49, 50, 51, 52, 53, 54, or 55, wherein the first row comprises an inner row, wherein the second row comprises an intermediate row, and wherein the third row comprises an outer row.
  • Example 57
  • The staple cartridge of Example 56, wherein the staple cavities in the inner row are at least partially longitudinally staggered relative to the staple cavities in the outer row.
  • Example 58
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, and a plurality of staples positioned in the plurality of staple cavities, wherein the staples are obliquely oriented relative to the longitudinal slot, and wherein the plurality of staples comprises a first group of staples arranged in a first row, a second group of staples arranged in a second row, wherein the first group of staples in the first row laterally overlap the second group of staples in the second row by a first distance, and a third group of staples arranged in a third row, wherein the second group of staples in the second row laterally overlaps the third group of staples in the third row by a second distance, and wherein the second distance is different than the first distance.
  • Example 59
  • The staple cartridge of Example 58, wherein the staples in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staples in the second row are oriented at a second angle relative to the longitudinal slot, wherein the staples in the third row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • Example 60
  • The staple cartridge of Examples 58 or 59, wherein the second distance is greater than the first distance.
  • Example 61
  • The staple cartridge of Examples 58, 59, or 60, wherein the staples comprise a staple length, and wherein the first distance and the second distance are less than one-third the staple length.
  • Example 62
  • The staple cartridge of Examples 58, 59, 60, or 61, wherein the staples comprise a diameter, and wherein the first distance and the second distance are greater than the diameter.
  • Example 63
  • The staple cartridge of Examples 58, 59, 60, 61, or 62, wherein the first row comprises an inner row, wherein the second row comprises an intermediate row, and wherein the third row comprises an outer row.
  • Example 64
  • The staple cartridge of Example 63, wherein the staple cavities in the inner row are at least partially longitudinally staggered relative to the staple cavities in the outer row.
  • Example 65
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, and a plurality of staples positioned in the plurality of staple cavities, wherein the staples are obliquely oriented relative to the longitudinal slot, and wherein the plurality of staples comprises a first group of staples arranged in an inner row, a second group of staples arranged in an intermediate row, wherein the inner row is laterally offset from the intermediate row by a first distance, and a third group of staples arranged in an outer row, wherein the outer row is laterally offset from the intermediate row by a second distance, and wherein the second distance is different than the first distance.
  • Example 66
  • The staple cartridge of Example 65, wherein the staples in the inner row are oriented at a first angle relative to the longitudinal slot, wherein the staples in the intermediate row are oriented at a second angle relative to the longitudinal slot, wherein the staples in the outer row are oriented at a third angle relative to the longitudinal slot, and wherein the first angle, the second angle, and the third angle are different.
  • Example 67
  • The staple cartridge of Examples 65 or 66, wherein each staple in the first group is longitudinally offset from an adjacent the staple in the second group by a first longitudinal distance, wherein each staple in the third group is longitudinally offset from an adjacent the staple in the third group by a second longitudinal distance, and wherein the second longitudinal distance is different than the first longitudinal distance.
  • Example 68
  • An adaptor for use with an end effector having an anvil comprising a first arrangement of staple-forming pockets, the adaptor comprising a staple cartridge comprising a plurality of staples and an anvil plate comprising a second arrangement of staple-forming pockets, wherein the second arrangement of staple-forming pockets is different than the first arrangement of staple-forming pockets.
  • Example 69
  • The adaptor of Example 68, wherein the anvil plate further comprises an alignment feature configured to engage the anvil.
  • Example 70
  • The adaptor of Examples 68 or 69, wherein the anvil plate further comprises an alignment post positioned in an alignment aperture in the staple cartridge.
  • Example 71
  • The adaptor of Examples 68, 69, or 70, wherein the anvil plate further comprises an alignment ridge aligned with a longitudinal slot in the anvil.
  • Example 72
  • The adaptor of Examples 68, 69, 70, or 71, further comprising a spring connection between the staple cartridge and the anvil plate.
  • Example 73
  • The adaptor of Examples 68, 69, 70, 71, or 72, further comprising a deformable material.
  • Example 74
  • The adaptor of Example 73, wherein the deformable material comprises an overmold on the anvil plate.
  • Example 75
  • The adaptor of Examples 68, 69, 70, 71, 72, 73, or 74, wherein the anvil plate comprises a stamped metal sheet.
  • Example 76
  • The adaptor of Examples 68, 69, 70, 71, 72, 73, 74, or 75, wherein the second arrangement of staple-forming pockets are partially nested in the first arrangement of staple-forming pockets.
  • Example 77
  • The adaptor of Examples 68, 69, 70, 71, 72, 73, 74, 75, or 76, wherein the first arrangement of staple-forming pockets comprises a plurality of rows of parallel staple-forming pockets, and wherein the second arrangement of staple-forming pockets comprises a plurality of rows of angled staple-forming pockets.
  • Example 78
  • The adaptor of Example 77, wherein the staple cartridge comprises a cartridge body, wherein a plurality of staple cavities are defined in the cartridge body, and wherein the staple cavities are arranged in a plurality of angled rows corresponding to the plurality of rows of angled staple-forming pockets.
  • Example 79
  • An adaptor for use with an end effector having a staple-forming anvil, the adaptor comprising a staple cartridge comprising a plurality of staple cavities and a plurality of staples positioned in the staple cavities. The adaptor further comprises an anvil plate, wherein the anvil plate is movable between an open position and a closed position relative to the staple cartridge. The anvil plate comprises a plurality of staple-forming pockets, wherein each staple is aligned with a corresponding the staple-forming pocket when the anvil plate is in the closed position, and an alignment feature configured to engage the staple-forming anvil.
  • Example 80
  • The adaptor of Example 79, further comprising a deformable overmold on the anvil plate.
  • Example 81
  • The adaptor of Examples 79 or 80, wherein the anvil plate comprises a stamped metal sheet.
  • Example 82
  • The adaptor of Examples 79, 80, or 81, wherein the staple cavities are arranged in a herringbone pattern, and wherein the staple-forming pockets are arranged in a corresponding herringbone pattern.
  • Example 83
  • An adaptor for use with an end effector having an anvil comprising a plurality of first staple-forming pockets, the adaptor comprising a staple cartridge comprising a plurality of staple cavities and a plurality of staples positioned in the staple cavities, wherein the plurality of staples are misaligned with the first staple-forming pockets. The adaptor further comprises an anvil plate comprising a plurality of second staple-forming pockets, wherein the staples are aligned with the second staple-forming pockets.
  • Example 84
  • The adaptor of Example 83, further comprising a deformable overmold on the anvil plate.
  • Example 85
  • The adaptor of Examples 83 or 84, wherein the anvil plate comprises a stamped metal sheet.
  • Example 86
  • The adaptor of Examples 83, 84, or 85, wherein the second staple-forming pockets are partially nested in the first staple-forming pockets.
  • Example 87
  • The adaptor of Examples 83, 84, 85, or 86, wherein the first staple-forming pockets are arranged in a plurality of rows of parallel staple-forming pockets, and wherein the second staple-forming pockets are arranged in a plurality of rows of angled staple-forming pockets.
  • Example 88
  • A method comprising obtaining a staple cartridge comprising a plurality of staples, wherein each staple comprises a base and a leg extending from the base and firing the staples from the staple cartridge, wherein the staples are fired into tissue in a staple line. The staple line comprises a first portion comprising a first flexibility and a second portion longitudinally offset from the first portion, wherein the second portion comprises a second flexibility, and wherein the second flexibility is different than the first flexibility.
  • Example 89
  • The method of Example 88, further comprising selecting the staple cartridge from at least two different staple cartridges.
  • Example 90
  • The method of Example 89, wherein the at least two different staple cartridges comprise different arrangements of staple cavities.
  • Example 91
  • The method of Examples 88, 89, or 90, wherein the first portion comprises a distal portion.
  • Example 92
  • The method of Examples 88, 89, 90, or 91, wherein the first portion is laterally offset from the second portion.
  • Example 93
  • The method of Examples 88, 89, 90, 91, or 92, wherein the first portion comprises a first row of staples, and wherein the second portion comprises a second row of staples.
  • Example 94
  • A method comprising obtaining a staple cartridge comprising a plurality of staples, wherein each staple comprises a base and a leg extending from the base and firing the staples from the staple cartridge, wherein the staples are fired into tissue in a staple line. The staple line comprises a first length comprising a first group of the staples, wherein the bases of the staples in the first group are arranged in a herringbone pattern, and a second length comprising a second group of the staples, wherein the second length is longitudinally offset from the first length, and wherein the bases of the staples in the first group are arranged in parallel.
  • Example 95
  • The method of Example 94, wherein the first length comprises a first flexibility, wherein the second length comprises a second flexibility, and wherein the second flexibility is different than the first flexibility.
  • Example 96
  • The method of Examples 94 or 95, wherein the first length is more flexible than the second length.
  • Example 97
  • The method of Examples 94, 95, or 96, further comprising selecting the staple cartridge from at least two different staple cartridges.
  • Example 98
  • The method of Example 97, wherein the at least two different staple cartridges comprise different arrangements of staple cavities.
  • Example 99
  • A method comprising obtaining an adaptor assembly comprising a staple cartridge and an anvil plate, wherein the anvil plate comprises a plurality of first staple-forming pockets, and wherein the plurality of first staple-forming pockets are arranged in a first arrangement, and installing the adaptor assembly in an end effector, wherein the end effector comprises an anvil comprising a plurality of second staple-forming pockets, wherein the second staple-forming pockets are arranged in a second arrangement, and wherein the second arrangement is different than the first arrangement.
  • Example 100
  • The method of Example 99, wherein the first arrangement comprises a herringbone pattern of pockets.
  • Example 101
  • The method of Examples 99 or 100, wherein the second arrangement comprises a parallel pattern of pockets.
  • Example 102
  • The method of Examples 99, 100, or 101, wherein the staple cartridge comprises a plurality of staple cavities arranged in a corresponding herringbone pattern.
  • Example 103
  • The method of Examples 99, 100, 101, or 102, wherein the staple cartridge comprises a plurality of staples arranged in a corresponding herringbone pattern.
  • Example 104
  • The method of Example 103, further comprising driving the staples into forming contact with the second staple-forming pockets in the adaptor assembly.
  • Example 105
  • The method of Examples 99, 100, 101, 102, 103, or 104, wherein the adaptor assembly comprises a deformable material, and wherein the installing step further comprises forming the deformable material to a deformed configuration that corresponds to a profile of the anvil.
  • Example 106
  • The method of Examples 99, 100, 101, 102, 103, 104, or 105, wherein the installing step further comprises aligning features on the anvil plate with features on the anvil.
  • Example 107
  • The method of Examples 99, 100, 101, 102, 103, 104, 105, or 106, further comprising clamping tissue between the staple cartridge and the anvil plate.
  • Example 108
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple and a second staple, and wherein the second staple is obliquely oriented relative to the first staple, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, and wherein the pockets cover more than 50% of the staple-forming surface.
  • Example 109
  • The end effector of Example 108, wherein each pocket comprises a perimeter, and wherein the perimeters are adjacently nested along the staple-forming surface.
  • Example 110
  • The end effector of Examples 108 or 109, wherein each pocket comprises a proximal cup, a distal cup, and a neck extending between the proximal cup and the distal cup.
  • Example 111
  • The end effector of Example 110, wherein the plurality of pockets comprises a first pocket in a first row, a second pocket in a second row, and a third pocket in a third row, and wherein the second pocket comprises a proximal extended landing zone extending toward the neck of the first pocket.
  • Example 112
  • The end effector of Examples 110 or 111, wherein the second pocket further comprises a distal extended landing zone extending toward the neck of the third pocket.
  • Example 113
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple and a second staple, and wherein the second staple is angularly oriented with respect to the first staple, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, and wherein the plurality of pockets comprises a first pocket aligned with the first staple, wherein the first pocket comprises a first proximal cup and a first distal cup, and a second pocket aligned with the second staple, wherein the second pocket comprises a second proximal cup and a second distal cup, wherein the first distal cup extends into a receiving peninsula defined between a portion of the second proximal cup and a portion of the second distal cup.
  • Example 114
  • The end effector of Example 113, wherein the staple-forming surface comprises a non-forming portion extending around the pockets, and wherein the non-forming portion covers less than 50% of the staple-forming surface.
  • Example 115
  • The end effector of Examples 113 or 114, wherein the first pocket further comprises a first neck extending between the first proximal cup and the first distal cup, and wherein the second pocket further comprises a second neck extending between the second proximal cup and the second distal cup.
  • Example 116
  • The end effector of Example 115, wherein the first neck is narrower than the first proximal cup and the first distal cup, and wherein the second neck is narrower than the second proximal cup and the second distal cup.
  • Example 117
  • The end effector of Examples 113, 114, 115, or 116, wherein the first distal cup extends laterally toward the second pocket.
  • Example 118
  • The end effector of Examples 113, 114, 115, 116, or 117, wherein the first distal cup extends longitudinally toward the second pocket.
  • Example 119
  • The end effector of Examples 113, 114, 115, 116, 117, or 118, wherein the first distal cup comprises an extended landing zone disposed in the receiving peninsula.
  • Example 120
  • The end effector of Examples 113, 114, 115, 116, 117, 118, or 119, wherein the plurality of pockets further comprises a third pocket aligned with a third staple, wherein the third pocket comprises a third proximal cup and a third distal cup, and wherein the second proximal cup extends into a second receiving peninsula between a portion of the third proximal cup and a portion of the third distal cup.
  • Example 121
  • The end effector of Example 120, wherein the pockets are arranged in a plurality of rows, and wherein the plurality of rows comprises an inner row comprising the first pocket, an intermediate row comprising the second pocket, wherein the second pocket is offset from the first pocket, and an outer row comprising the third pocket, wherein the third pocket is aligned with the first pocket.
  • Example 122
  • An end effector for use with a surgical stapler, the end effector comprising a staple cartridge comprising a plurality of staples, wherein the plurality of staples comprises a first staple and a second staple, and wherein the second staple is angularly oriented with respect to the first staple, and an anvil comprising a staple-forming surface, wherein a plurality of pockets are defined in the staple-forming surface, wherein the plurality of pockets are arranged in a plurality of rows, and wherein the plurality of rows comprises a first row comprising a first pocket aligned with the first staple, wherein the first pocket comprises a narrow-most region, and a second row comprising a second pocket aligned with the second staple, wherein the second pocket comprises a proximal end and a distal end, and wherein a pocket axis extending between the proximal end and the distal end transects the narrow-most region of the first pocket.
  • Example 123
  • The end effector of Example 122, wherein the first pocket comprises a perimeter, and wherein the second pocket nests in the perimeter of the first pocket.
  • Example 124
  • The end effector of Examples 122 or 123, wherein the staple-forming surface comprises a non-forming portion extending around the pockets, wherein the non-forming portion comprises less than 50% of the staple-forming surface.
  • Example 125
  • The end effector of Examples 122, 123, or 124, wherein the second pocket comprises a groove extending along the pocket axis.
  • Example 126
  • The end effector of Examples 122, 123, 124, or 125, wherein the staple-forming portion comprises a non-forming portion extending around the pockets, wherein the second pocket comprises a sidewall extending between the proximal end and the distal end, and wherein the sidewall is oriented at a constant angle relative to the non-forming portion from the proximal end to the distal end.
  • Example 127
  • The end effector of Examples 122, 123, 124, 125, or 126, wherein the second pocket comprises a chamfered perimeter.
  • Example 128
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, and wherein the staple cavities are obliquely oriented relative to the longitudinal slot, and a plurality of staples positioned in the staple cavities, wherein the staple cavities in the cartridge body are arranged in a plurality of rows. The plurality of rows comprises a first row positioned on a first side of the longitudinal slot, a second row positioned on the first side of the longitudinal slot, wherein the staples positioned in the staple cavities in the first row are longitudinally spaced from the staples positioned in the staple cavities in the second row by a first distance, and a third row positioned on the first side of the longitudinal slot, wherein the staples positioned in the staple cavities in the third row are longitudinally spaced from the staples positioned in the staple cavities in the second row by a second distance, and wherein the second distance is different than the first distance.
  • Example 129
  • The staple cartridge of Example 128, wherein the second row is positioned intermediate the first row and the third row.
  • Example 130
  • The staple cartridge of Examples 128 or 129, wherein the staples in the staple cavities in the first row longitudinally overlap the staples in the staple cavities in the second row by the first distance, and wherein the staples in the staple cavities in the third row longitudinally overlap the staples in the staple cavities in the second row by the second distance.
  • Example 131
  • The staple cartridge of Examples 128, 129, or 130, wherein the second distance is zero.
  • Example 132
  • The staple cartridge of Examples 128, 129, 130, or 131, wherein the plurality of staples comprises a first staple positioned in one of the staple cavities in the first row, wherein the first staple comprises a first base comprising a first length, and a third staple positioned in one of the staple cavities in the third row, wherein the third staple comprises a third base comprising a third length, and wherein the third length is different than the first length.
  • Example 133
  • The staple cartridge of Example 132, wherein the plurality of staples further comprises a second staple positioned in one of the staple cavities in the second row, wherein the second staple comprises a second base comprising a second length, and wherein the second length is different than the first length and the third length.
  • Example 134
  • The staple cartridge of Examples 128, 129, 130, 131, 132, or 133, wherein the staple cavities in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staple cavities in the second row are oriented at a second angle relative to the longitudinal slot, and wherein the staple cavities in the third row are oriented at a third angle relative to the longitudinal slot.
  • Example 135
  • The staple cartridge of Example 134, wherein the second angle is different than the first angle and the third angle.
  • Example 136
  • The staple cartridge of Examples 134 or 135, wherein the second angle is 180 degrees offset from the first angle.
  • Example 137
  • The staple cartridge of Examples 134, 135, or 136, wherein the third angle is different than the first angle.
  • Example 138
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, wherein the staple cavities are obliquely oriented relative to the longitudinal axis, wherein each staple cavity comprises a proximal end and a distal end, wherein the plurality of staple cavities are arranged in a plurality of rows. The plurality of rows comprises a first row positioned on a first side of the longitudinal slot, a second row positioned on the first side of the longitudinal slot, wherein the proximal and distal ends of the staple cavities in the second row are longitudinally offset relative to the proximal and distal ends of the staple cavities in the first row, and a third row positioned on the first side of the longitudinal slot, wherein the proximal and distal ends of the staple cavities in the third row are longitudinally offset relative to the proximal and distal ends of the staple cavities in the first row and the second row.
  • Example 139
  • The staple cartridge of Example 138, wherein the staple cavities in the third row at least partially longitudinally overlap the staple cavities in the first row.
  • Example 140
  • The staple cartridge of Examples 138 or 139, wherein the staple cavities in the second row at least partially longitudinally overlap the staple cavities in the third row.
  • Example 141
  • The staple cartridge of Examples 138, 139, or 140, wherein the staple cavities in the second row at least partially longitudinally overlap the staple cavities in the first row.
  • Example 142
  • The staple cartridge of Examples 138, 139, 140, or 141, further comprising a plurality of staples positioned in the staple cavities, wherein the plurality of staples comprises a first staple positioned in one of the staple cavities in the first row, wherein the first staple comprises a first base comprising a first length, and a third staple positioned in one of the staple cavities in the third row, wherein the third staple comprises a third base comprising a third length, and wherein the third length is greater than the first length.
  • Example 143
  • The staple cartridge of Example 142, wherein the plurality of staples further comprises a second staple positioned in one of the staple cavities in the second row, wherein the second staple comprises a second base comprising a second length, and wherein the second length is different than the first length and the third length.
  • Example 144
  • The staple cartridge of Examples 138, 139, 140, 141, 142, or 143, wherein the staple cavities in the first row are oriented at a first angle relative to the longitudinal slot, wherein the staple cavities in the second row are oriented at a second angle relative to the longitudinal slot, and wherein the staple cavities in the third row are oriented at a third angle relative to the longitudinal slot.
  • Example 145
  • The staple cartridge of Example 144, wherein the second angle is different than the first angle and the third angle.
  • Example 146
  • The staple cartridge of Examples 144 or 145, wherein the third angle is different than the first angle.
  • Example 147
  • A staple cartridge comprising a cartridge body comprising a longitudinal slot, wherein a plurality of staple cavities are defined in the cartridge body, wherein the staple cavities are angularly oriented relative to the longitudinal slot, wherein the staple cavities are arranged in a plurality of rows. The plurality of rows comprises a first row positioned on a first side of the longitudinal slot, a second row positioned on the first side of the longitudinal slot, wherein the staples in the first row longitudinally overlap the staples in the second row by a first distance, and a third row positioned on the first side of the longitudinal slot, wherein the staples in the third row longitudinally overlap the staples in the second row by a second distance, and wherein the second distance is different than the first distance. The staple cartridge further comprises a plurality of staples positioned in the staple cavities.
  • Many of the surgical instrument systems described herein are motivated by an electric motor; however, the surgical instrument systems described herein can be motivated in any suitable manner. In various instances, the surgical instrument systems described herein can be motivated by a manually-operated trigger, for example. In certain instances, the motors disclosed herein may comprise a portion or portions of a robotically controlled system. Moreover, any of the end effectors and/or tool assemblies disclosed herein can be utilized with a robotic surgical instrument system. U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535, for example, discloses several examples of a robotic surgical instrument system in greater detail.
  • The surgical instrument systems described herein have been described in connection with the deployment and deformation of staples; however, the embodiments described herein are not so limited. Various embodiments are envisioned which deploy fasteners other than staples, such as clamps or tacks, for example. Moreover, various embodiments are envisioned which utilize any suitable means for sealing tissue. For instance, an end effector in accordance with various embodiments can comprise electrodes configured to heat and seal the tissue. Also, for instance, an end effector in accordance with certain embodiments can apply vibrational energy to seal the tissue.
  • The entire disclosures of:
  • U.S. Pat. No. 5,403,312, entitled ELECTROSURGICAL HEMOSTATIC DEVICE, which issued on Apr. 4, 1995;
  • U.S. Pat. No. 7,000,818, entitled SURGICAL STAPLING INSTRUMENT HAVING SEPARATE DISTINCT CLOSING AND FIRING SYSTEMS, which issued on Feb. 21, 2006;
  • U.S. Pat. No. 7,422,139, entitled MOTOR-DRIVEN SURGICAL CUTTING AND FASTENING INSTRUMENT WITH TACTILE POSITION FEEDBACK, which issued on Sep. 9, 2008;
  • U.S. Pat. No. 7,464,849, entitled ELECTRO-MECHANICAL SURGICAL INSTRUMENT WITH CLOSURE SYSTEM AND ANVIL ALIGNMENT COMPONENTS, which issued on Dec. 16, 2008;
  • U.S. Pat. No. 7,670,334, entitled SURGICAL INSTRUMENT HAVING AN ARTICULATING END EFFECTOR, which issued on Mar. 2, 2010;
  • U.S. Pat. No. 7,753,245, entitled SURGICAL STAPLING INSTRUMENTS, which issued on Jul. 13, 2010;
  • U.S. Pat. No. 8,393,514, entitled SELECTIVELY ORIENTABLE IMPLANTABLE FASTENER CARTRIDGE, which issued on Mar. 12, 2013;
  • U.S. patent application Ser. No. 11/343,803, entitled SURGICAL INSTRUMENT HAVING RECORDING CAPABILITIES; now U.S. Pat. No. 7,845,537;
  • U.S. patent application Ser. No. 12/031,573, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT HAVING RF ELECTRODES, filed Feb. 14, 2008;
  • U.S. patent application Ser. No. 12/031,873, entitled END EFFECTORS FOR A SURGICAL CUTTING AND STAPLING INSTRUMENT, filed Feb. 15, 2008, now U.S. Pat. No. 7,980,443;
  • U.S. patent application Ser. No. 12/235,782, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT, now U.S. Pat. No. 8,210,411;
  • U.S. patent application Ser. No. 12/249,117, entitled POWERED SURGICAL CUTTING AND STAPLING APPARATUS WITH MANUALLY RETRACTABLE FIRING SYSTEM, now U.S. Pat. No. 8,608,045;
  • U.S. patent application Ser. No. 12/647,100, entitled MOTOR-DRIVEN SURGICAL CUTTING INSTRUMENT WITH ELECTRIC ACTUATOR DIRECTIONAL CONTROL ASSEMBLY, filed Dec. 24, 2009; now U.S. Pat. No. 8,220,688;
  • U.S. patent application Ser. No. 12/893,461, entitled STAPLE CARTRIDGE, filed Sep. 29, 2012, now U.S. Pat. No. 8,733,613;
  • U.S. patent application Ser. No. 13/036,647, entitled SURGICAL STAPLING INSTRUMENT, filed Feb. 28, 2011, now U.S. Pat. No. 8,561,870;
  • U.S. patent application Ser. No. 13/118,241, entitled SURGICAL STAPLING INSTRUMENTS WITH ROTATABLE STAPLE DEPLOYMENT ARRANGEMENTS, now U.S. Pat. No. 9,072,535;
  • U.S. patent application Ser. No. 13/524,049, entitled ARTICULATABLE SURGICAL INSTRUMENT COMPRISING A FIRING DRIVE, filed on Jun. 15, 2012; now U.S. Pat. No. 9,101,358;
  • U.S. patent application Ser. No. 13/800,025, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Pat. No. 9,345,481;
  • U.S. patent application Ser. No. 13/800,067, entitled STAPLE CARTRIDGE TISSUE THICKNESS SENSOR SYSTEM, filed on Mar. 13, 2013, now U.S. Patent Application Publication No. 2014/0263552;
  • U.S. Patent Application Publication No. 2007/0175955, entitled SURGICAL CUTTING AND FASTENING INSTRUMENT WITH CLOSURE TRIGGER LOCKING MECHANISM, filed Jan. 31, 2006; and
  • U.S. Patent Application Publication No. 2010/0264194, entitled SURGICAL STAPLING INSTRUMENT WITH AN ARTICULATABLE END EFFECTOR, filed Apr. 22, 2010, now U.S. Pat. No. 8,308,040, are hereby incorporated by reference herein.
  • Although various devices have been described herein in connection with certain embodiments, modifications and variations to those embodiments may be implemented. Particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. Thus, the particular features, structures, or characteristics illustrated or described in connection with one embodiment may be combined in whole or in part, with the features, structures or characteristics of one ore more other embodiments without limitation. Also, where materials are disclosed for certain components, other materials may be used. Furthermore, according to various embodiments, a single component may be replaced by multiple components, and multiple components may be replaced by a single component, to perform a given function or functions. The foregoing description and following claims are intended to cover all such modification and variations.
  • The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, a device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps including, but not limited to, the disassembly of the device, followed by cleaning or replacement of particular pieces of the device, and subsequent reassembly of the device. In particular, a reconditioning facility and/or surgical team can disassemble a device and, after cleaning and/or replacing particular parts of the device, the device can be reassembled for subsequent use. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • The devices disclosed herein may be processed before surgery. First, a new or used instrument may be obtained and, when necessary, cleaned. The instrument may then be sterilized. In one sterilization technique, the instrument is placed in a closed and sealed container, such as a plastic or TYVEK bag. The container and instrument may then be placed in a field of radiation that can penetrate the container, such as gamma radiation, x-rays, and/or high-energy electrons. The radiation may kill bacteria on the instrument and in the container. The sterilized instrument may then be stored in the sterile container. The sealed container may keep the instrument sterile until it is opened in a medical facility. A device may also be sterilized using any other technique known in the art, including but not limited to beta radiation, gamma radiation, ethylene oxide, plasma peroxide, and/or steam.
  • While this invention has been described as having exemplary designs, the present invention may be further modified within the spirit and scope of the disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
  • Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials do not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims (20)

What is claimed is:
1. An adaptor for use with an end effector having an anvil comprising a first arrangement of staple-forming pockets, the adaptor comprising:
a staple cartridge comprising a plurality of staples; and
an anvil plate comprising a second arrangement of staple-forming pockets, wherein said second arrangement of staple-forming pockets is different than the first arrangement of staple-forming pockets.
2. The adaptor of claim 1, wherein said anvil plate further comprises an alignment feature configured to engage the anvil.
3. The adaptor of claim 2, wherein said anvil plate further comprises an alignment post positioned in an alignment aperture in said staple cartridge.
4. The adaptor of claim 2, wherein said anvil plate further comprises an alignment ridge aligned with a longitudinal slot in the anvil.
5. The adaptor of claim 1, further comprising a spring connection between said staple cartridge and said anvil plate.
6. The adaptor of claim 1, further comprising a deformable material.
7. The adaptor of claim 6, wherein said deformable material comprises an overmold on said anvil plate.
8. The adaptor of claim 1, wherein said anvil plate comprises a stamped metal sheet.
9. The adaptor of claim 1, wherein said second arrangement of staple-forming pockets are partially nested in the first arrangement of staple-forming pockets.
10. The adaptor of claim 1, wherein the first arrangement of staple-forming pockets comprises a plurality of rows of parallel staple-forming pockets, and wherein said second arrangement of staple-forming pockets comprises a plurality of rows of angled staple-forming pockets.
11. The adaptor of claim 10, wherein said staple cartridge comprises a cartridge body, wherein a plurality of staple cavities are defined in said cartridge body, and wherein said staple cavities are arranged in a plurality of angled rows corresponding to said plurality of rows of angled staple-forming pockets.
12. An adaptor for use with an end effector having a staple-forming anvil, the adaptor comprising:
a staple cartridge, comprising:
a plurality of staple cavities; and
a plurality of staples positioned in said staple cavities; and
an anvil plate, wherein the anvil plate is movable between an open position and a closed position relative to the staple cartridge, and wherein the anvil plate comprises:
a plurality of staple-forming pockets, wherein each said staple is aligned with a corresponding said staple-forming pocket when said anvil plate is in the closed position; and
an alignment feature configured to engage the staple-forming anvil.
13. The adaptor of claim 12, further comprising a deformable overmold on said anvil plate.
14. The adaptor of claim 12, wherein said anvil plate comprises a stamped metal sheet.
15. The adaptor of claim 12, wherein said staple cavities are arranged in a herringbone pattern, and wherein said staple-forming pockets are arranged in a corresponding herringbone pattern.
16. An adaptor for use with an end effector having an anvil comprising a plurality of first staple-forming pockets, the adaptor comprising:
a staple cartridge, comprising:
a plurality of staple cavities; and
a plurality of staples positioned in said staple cavities, wherein said plurality of staples are misaligned with the first staple-forming pockets; and
an anvil plate comprising a plurality of second staple-forming pockets, wherein said staples are aligned with said second staple-forming pockets.
17. The adaptor of claim 16, further comprising a deformable overmold on said anvil plate.
18. The adaptor of claim 16, wherein said anvil plate comprises a stamped metal sheet.
19. The adaptor of claim 16, wherein said second staple-forming pockets are partially nested in the first staple-forming pockets.
20. The adaptor of claim 16, wherein the first staple-forming pockets are arranged in a plurality of rows of parallel staple-forming pockets, and wherein said second staple-forming pockets are arranged in a plurality of rows of angled staple-forming pockets.
US15/385,946 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils Abandoned US20180168633A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US15/385,945 US10893864B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,947 US10568625B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,943 US10667811B2 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,946 US20180168633A1 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,939 US10835246B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
PCT/IB2017/056839 WO2018116019A1 (en) 2016-12-21 2017-11-02 Staple cartridges and arrangements of staples and staple cavities therein
PCT/IB2017/056844 WO2018116021A1 (en) 2016-12-21 2017-11-02 Surgical stapling instruments and staple-forming anvils
PCT/US2017/060173 WO2018118243A2 (en) 2016-12-21 2017-11-06 Staple cartridges and arrangements of staples and staple cavities therein
PCT/US2017/060136 WO2018118234A1 (en) 2016-12-21 2017-11-06 Surgical stapling instruments and staple-forming anvils
JP2019533512A JP6946434B2 (en) 2016-12-21 2017-11-06 Surgical staple fasteners and staple forming anvils
PCT/US2017/060131 WO2018118233A1 (en) 2016-12-21 2017-11-06 Staple cartridges and arrangements of staples and staple cavities therein
BR112019012392-0A BR112019012392B1 (en) 2016-12-21 2017-11-06 APPARATUS AND METHOD
CN201780080018.9A CN110114018B (en) 2016-12-21 2017-11-06 Surgical stapling instrument and staple forming anvil
EP17209298.3A EP3338652B1 (en) 2016-12-21 2017-12-21 Staple cartridges and arrangements of staples and staple cavities therein
EP17209445.0A EP3338681A1 (en) 2016-12-21 2017-12-21 Staple cartridges and arrangements of staples and staple cavities therein
EP17209350.2A EP3338659A1 (en) 2016-12-21 2017-12-21 Staple cartridges and arrangements of staples and staple cavities therein
EP17209485.6A EP3338688B1 (en) 2016-12-21 2017-12-21 Surgical stapling instruments and staple-forming anvils
EP17209283.5A EP3338651A3 (en) 2016-12-21 2017-12-21 Surgical stapling instruments and staple-forming anvils

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15/385,945 US10893864B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,946 US20180168633A1 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,939 US10835246B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,943 US10667811B2 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,947 US10568625B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein

Publications (1)

Publication Number Publication Date
US20180168633A1 true US20180168633A1 (en) 2018-06-21

Family

ID=63914648

Family Applications (5)

Application Number Title Priority Date Filing Date
US15/385,943 Active 2038-04-04 US10667811B2 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,945 Active 2037-11-16 US10893864B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,939 Active 2038-05-22 US10835246B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,946 Abandoned US20180168633A1 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,947 Active 2038-01-23 US10568625B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US15/385,943 Active 2038-04-04 US10667811B2 (en) 2016-12-21 2016-12-21 Surgical stapling instruments and staple-forming anvils
US15/385,945 Active 2037-11-16 US10893864B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein
US15/385,939 Active 2038-05-22 US10835246B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/385,947 Active 2038-01-23 US10568625B2 (en) 2016-12-21 2016-12-21 Staple cartridges and arrangements of staples and staple cavities therein

Country Status (3)

Country Link
US (5) US10667811B2 (en)
EP (5) EP3338652B1 (en)
WO (5) WO2018116021A1 (en)

Cited By (635)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
WO2019186432A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
WO2019186467A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with improved rotary driven closure systems
WO2019186474A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
WO2019186472A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Rotary driven firing members with different anvil and channel engagement features
WO2019186466A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
WO2019186470A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
EP3613358A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Fabricating techniques for surgical stapler anvils
EP3613368A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Switching arrangements for motor powered articulatable surgical instruments
EP3613360A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
EP3613356A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613354A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapling devices with improved closure members
EP3613357A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
EP3613355A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
EP3613362A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Reinforced deformable anvil tip for surgical stapler anvil
EP3613361A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical instruments with progressive jaw closure arrangements
EP3613359A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with staple directing protrusions and tissue stability features
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10772651B2 (en) 2017-10-30 2020-09-15 Ethicon Llc Surgical instruments comprising a system for articulation and rotation compensation
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
EP3714805A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714803A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Articulation drive arrangements for surgical systems
EP3714804A2 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714806A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
EP3733080A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Shaft rotation actuator on a surgical instrument
EP3733084A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation directional lights on a surgical instrument
EP3733081A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation actuators for a surgical instrument
EP3733083A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Rotatable jaw tip for a surgical instrument
EP3733097A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Surgical instrument comprising an articulation pin having a retention head
EP3733079A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation control mapping for a surgical instrument
EP3733113A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
EP3733082A2 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
WO2020222082A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10966721B2 (en) 2017-08-14 2021-04-06 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10987108B2 (en) 2013-12-17 2021-04-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11096686B2 (en) 2014-03-29 2021-08-24 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11114195B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Surgical instrument with a tissue marking assembly
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129430B2 (en) * 2015-09-09 2021-09-28 Gruppo Meccaniche Luciani S.R.L. Apparatus for applying studs
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11173060B2 (en) 2019-11-04 2021-11-16 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298148B2 (en) 2018-03-08 2022-04-12 Cilag Gmbh International Live time tissue classification using electrical parameters
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
WO2022090924A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation lock
WO2022090925A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
WO2022090928A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
WO2022090911A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090913A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a limited travel switch
WO2022090929A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
WO2022090930A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
WO2022090922A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising sealable interface
WO2022090926A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
WO2022090919A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11324620B2 (en) 2015-09-16 2022-05-10 Standard Bariatrics, Inc. Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
WO2022180541A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022180520A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a signal antenna
WO2022180543A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
WO2022180529A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
WO2022180540A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
WO2022180519A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
WO2022180528A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a power management circuit
WO2022180537A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of manufacturing life-cycle
WO2022180538A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustment to transfer parameters to improve available power
WO2022180539A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Distal communication array to tune frequency of rf systems
WO2022180533A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
WO2022180530A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensor array
WO2022180525A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11452574B1 (en) 2021-03-23 2022-09-27 Standard Bariatrics, Inc. Systems and methods for preventing tissue migration in surgical staplers
WO2022200958A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising tissue compression systems
WO2022200955A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
WO2022200956A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising a firing lockout
WO2022200954A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
WO2022200952A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
WO2022200953A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
WO2022200951A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
WO2022229860A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to cooperatively control end effector function and application of therapeutic energy
WO2022229870A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229865A2 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising staple drivers and stability supports
WO2022229857A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with energy sensitive resistance elements
WO2022229871A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
WO2022229862A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical techniques for sealing, short circuit detection, and system determination of power level
WO2022229861A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
WO2022229866A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Shaft system for surgical instrument
WO2022229868A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical staple for use with combination electrosurgical instruments
WO2022229872A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
WO2022229867A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising formation support features
WO2022229864A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Interchangeable end effector reloads
WO2022229855A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters
WO2022229858A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising independently activatable segmented electrodes
WO2022229869A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Articulation system for surgical instrument
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
WO2022238849A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Cartridge assemblies with absorbable metal staples and absorbable implantable adjuncts
WO2022238845A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Dissimilar staple cartridges with different bioabsorbable components
WO2022238844A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staple comprising a coating
WO2022238841A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Packaging assemblies for surgical staple cartridges containing bioabsorbable staples
WO2022238836A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple
WO2022238840A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International System of surgical staple cartridges comprising absorbable staples
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510672B2 (en) 2014-03-29 2022-11-29 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
WO2022249091A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
WO2022249086A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising jaw mounts
WO2022249092A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising an articulation control display
WO2022249099A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
WO2022249094A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firiing stroke length
WO2022249088A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11596291B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
WO2023067459A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Anvil comprising an arrangement of forming pockets proximal to tissue stop
WO2023067464A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Cable-driven actuation system for robotic surgical tool attachment
WO2023067463A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023067461A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Row-to-row staple array variations
WO2023067458A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
WO2023073540A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Method and device for transmitting uart communications over a security short range wireless communication
WO2023073545A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Alternate means to establish resistive load force
WO2023073537A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Staple cartridge identification systems
WO2023073546A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical device with internal communication that combines multiple signals per wire
WO2023073549A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023073543A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical instrument cartridge with unique resistor for surgical instrument identification
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896221B2 (en) 2017-06-28 2024-02-13 Cilag GmbH Intemational Surgical cartridge system with impedance sensors
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11963682B2 (en) 2015-08-26 2024-04-23 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US12004745B2 (en) 2016-12-21 2024-06-11 Cilag Gmbh International Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US12029506B2 (en) 2017-12-28 2024-07-09 Cilag Gmbh International Method of cloud based data analytics for use with the hub
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US12035890B2 (en) 2017-12-28 2024-07-16 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US12064142B2 (en) 2020-06-30 2024-08-20 Standard Bariatrics, Inc. Systems, devices, and methods for preventing or reducing loss of insufflation during a laparoscopic surgical procedure
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12121256B2 (en) 2023-04-06 2024-10-22 Cilag Gmbh International Methods for controlling temperature in ultrasonic device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016171395A1 (en) * 2015-04-20 2016-10-27 주식회사 메디튤립 Surgical linear stapler
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10959731B2 (en) * 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US10542981B2 (en) 2016-11-14 2020-01-28 Ethicon Llc Atraumatic stapling head features for circular surgical stapler
USD836198S1 (en) * 2017-02-17 2018-12-18 Ethicon Llc Staple cartridge for a surgical stapler
USD835785S1 (en) 2017-06-27 2018-12-11 Ethicon Llc Handle for surgical stapler
USD865174S1 (en) * 2017-06-27 2019-10-29 Ethicon Llc Shaft assembly for surgical stapler
US11207068B2 (en) * 2017-11-03 2021-12-28 Ethicon, Inc. Anvil assembly for use with surgical stapling instruments
US10779817B2 (en) 2018-02-21 2020-09-22 Ethicon Llc Three dimensional adjuncts
USD882782S1 (en) 2018-02-21 2020-04-28 Ethicon Llc Three dimensional adjunct
USD904612S1 (en) * 2018-08-13 2020-12-08 Ethicon Llc Cartridge for linear surgical stapler
USD904613S1 (en) * 2018-08-13 2020-12-08 Ethicon Llc Cartridge for linear surgical stapler
US11701109B2 (en) * 2018-12-28 2023-07-18 Cilag Gmbh International Surgical stapler with sloped staple deck for varying tissue compression
USD956230S1 (en) * 2019-08-09 2022-06-28 Cilag Gmbh International Staple cartridge assembly for linear surgical stapler
US11471158B2 (en) 2019-09-16 2022-10-18 Cilag Gmbh International Compressible non-fibrous adjuncts
US11490890B2 (en) 2019-09-16 2022-11-08 Cilag Gmbh International Compressible non-fibrous adjuncts
USD1029255S1 (en) * 2020-09-01 2024-05-28 Cilag Gmbh International Stapling cartridge assembly with a compressible adjunct
US20220304682A1 (en) * 2021-03-24 2022-09-29 Ethicon Llc Fastener cartridge with non-repeating fastener rows

Family Cites Families (5243)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1306107A (en) 1919-06-10 Assigotob to amebxcak
US66052A (en) 1867-06-25 smith
DE273689C (en) 1913-08-07 1914-05-08
US1314601A (en) 1919-09-02 Flexible shaft
US662587A (en) 1900-05-18 1900-11-27 Charles Chandler Blake Insulated support for electric conductors.
US670748A (en) 1900-10-25 1901-03-26 Paul Weddeler Flexible shafting.
US719487A (en) 1901-09-16 1903-02-03 William E Minor Dilator.
US804229A (en) 1904-07-27 1905-11-14 Thomas C Hutchinson Forceps and the like.
US951393A (en) 1909-04-06 1910-03-08 John N Hahn Staple.
FR459743A (en) 1912-09-14 1913-11-12 Bariquant Et Marre Des Atel Flexible transmission
US1188721A (en) 1915-05-05 1916-06-27 Frank Bittner Pipe-wrench.
US1677337A (en) 1924-09-27 1928-07-17 Thomas E Grove Antrum drill
US1849427A (en) 1927-10-17 1932-03-15 Westminster Tool And Electric Handle of tools driven by flexible shafts
US1794907A (en) 1929-07-19 1931-03-03 Joseph N Kelly Worm and gear
US1944116A (en) 1930-05-26 1934-01-16 Edward A Stratman Lever locking device
US1954048A (en) 1931-01-06 1934-04-10 Jeffrey Mfg Co Tool holder
US2037727A (en) 1934-12-27 1936-04-21 United Shoe Machinery Corp Fastening
US2132295A (en) 1937-05-05 1938-10-04 Hawkins Earl Stapling device
US2211117A (en) 1937-09-06 1940-08-13 Rieter Joh Jacob & Cie Ag Device for drawing rovings in speeders and spinning machines
US2161632A (en) 1937-12-20 1939-06-06 Martin L Nattenheimer Fastening device
US2214870A (en) 1938-08-10 1940-09-17 William J West Siding cutter
US2224882A (en) 1939-08-01 1940-12-17 Herbert G Peck Umbrella
US2329440A (en) 1941-04-02 1943-09-14 Bocjl Corp Fastener
US2318379A (en) 1941-04-17 1943-05-04 Walter S Davis Suture package
US2406389A (en) 1942-11-30 1946-08-27 Lee Engineering Res Corp Electric motor
US2377581A (en) 1944-03-09 1945-06-05 Matthew J Shaffrey Divided nut construction
US2441096A (en) 1944-09-04 1948-05-04 Singer Mfg Co Control means for portable electric tools
US2448741A (en) 1945-04-25 1948-09-07 American Cystoscope Makers Inc Endoscopic surgical instrument
US2578686A (en) 1945-04-27 1951-12-18 Tubing Appliance Co Inc Open-sided-socket ratchet wrench
US2450527A (en) 1945-10-27 1948-10-05 P & V Quicklocking Co Semiautomatic coupling
US2507872A (en) 1946-01-18 1950-05-16 Unsinger Ap Corp Implement or toolholder
US2526902A (en) 1947-07-31 1950-10-24 Norman C Rublee Insulating staple
US2527256A (en) 1947-11-07 1950-10-24 Earle R Jackson Connector for brushes, brooms, and the like
FR999646A (en) 1949-11-16 1952-02-04 Cable clamp device
US2742955A (en) 1951-01-13 1956-04-24 Richard A Dominguez Collapsible seat structure
US2638901A (en) 1951-07-30 1953-05-19 Everett D Sugarbaker Surgical clamp
US2701489A (en) 1951-09-12 1955-02-08 Leonard C Osborn Cam-actuated slidable jaw wrench
US2674149A (en) 1952-03-01 1954-04-06 Jerry S Benson Multiple pronged fastener device with spreading means
US2711461A (en) 1953-12-24 1955-06-21 Singer Mfg Co Portable electric tool handle assemblies
US2804848A (en) 1954-09-30 1957-09-03 Chicago Pneumatic Tool Co Drilling apparatus
FR1112936A (en) 1954-10-20 1956-03-20 Electric motor and three-speed control enclosed in a sheath
US2887004A (en) 1954-11-04 1959-05-19 William H Stewart Staple having flat depressed head with reinforcing ridge
US2808482A (en) 1956-04-12 1957-10-01 Miniature Switch Corp Toggle switch construction
US2853074A (en) 1956-06-15 1958-09-23 Edward A Olson Stapling instrument for surgical purposes
US2856192A (en) 1956-10-29 1958-10-14 Hi Shear Rivet Tool Company Collet with spring jaws
US3060972A (en) 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US3972734A (en) 1957-12-27 1976-08-03 Catalyst Research Corporation Thermal deferred action battery
US2959974A (en) 1958-05-28 1960-11-15 Melvin H Emrick Forward and reverse friction drive tapping attachment
US2957353A (en) 1958-08-26 1960-10-25 Teleflex Inc Connector
US3032769A (en) 1959-08-18 1962-05-08 John R Palmer Method of making a bracket
US3078465A (en) 1959-09-09 1963-02-26 Bobrov Boris Sergueevitch Instrument for stitching gastric stump
US3080564A (en) 1959-09-10 1963-03-12 Strekopitov Alexey Alexeevich Instrument for stitching hollow organs
GB939929A (en) 1959-10-30 1963-10-16 Vasilii Fedotovich Goodov Instrument for stitching blood vessels, intestines, bronchi and other soft tissues
US3079606A (en) 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3075062A (en) 1960-02-02 1963-01-22 J B T Instr Inc Toggle switch
US4034143A (en) 1960-02-24 1977-07-05 Catalyst Research Corporation Thermal deferred action battery with interconnecting, foldable electrodes
SU143738A1 (en) 1960-06-15 1960-11-30 А.А. Стрекопытов Method of suturing lung tissue by double-sided immersion sutures
US3204731A (en) 1961-05-26 1965-09-07 Gardner Denver Co Positive engaging jaw clutch or brake
US3187308A (en) 1961-07-03 1965-06-01 Gen Electric Information storage system for microwave computer
US3157308A (en) 1961-09-05 1964-11-17 Clark Mfg Co J L Canister type container and method of making the same
US3157305A (en) 1961-10-05 1964-11-17 Huck Mfg Co Nose assembly
US3196869A (en) 1962-06-13 1965-07-27 William M Scholl Buttress pad and method of making the same
US3166072A (en) 1962-10-22 1965-01-19 Jr John T Sullivan Barbed clips
US3180236A (en) 1962-12-20 1965-04-27 Beckett Harcum Co Fluid motor construction
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3317105A (en) 1964-03-25 1967-05-02 Niiex Khirurgicheskoi Apparatu Instrument for placing lateral intestinal anastomoses
US3269630A (en) 1964-04-30 1966-08-30 Fleischer Harry Stapling instrument
US3269631A (en) 1964-06-19 1966-08-30 Takaro Timothy Surgical stapler
US3359978A (en) 1964-10-26 1967-12-26 Jr Raymond M Smith Guide needle for flexible catheters
US3317103A (en) 1965-05-03 1967-05-02 Cullen Apparatus for handling hose or similar elongate members
US3275211A (en) 1965-05-10 1966-09-27 United States Surgical Corp Surgical stapler with replaceable cartridge
US3357296A (en) 1965-05-14 1967-12-12 Keuneth W Lefever Staple fastener
US3726755A (en) 1966-09-29 1973-04-10 Owens Corning Fiberglass Corp High-strength foam material
US3509629A (en) 1966-10-01 1970-05-05 Mitsubishi Electric Corp Portable and adjustable contra-angle dental instrument
GB1210522A (en) 1966-10-10 1970-10-28 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
US3494533A (en) 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3377893A (en) 1967-03-06 1968-04-16 John A. Shorb Wrench having pivoted jaws adjustable by a lockable exterior camming sleeve
US3499591A (en) 1967-06-23 1970-03-10 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3480193A (en) 1967-09-15 1969-11-25 Robert E Ralston Power-operable fastener applying device
DE1791114B1 (en) 1967-09-19 1971-12-02 Vnii Chirurgitscheskoj Apparat Surgical device for stapling tissues
US3503396A (en) 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
GB1217159A (en) 1967-12-05 1970-12-31 Coventry Gauge & Tool Co Ltd Torque limiting device
US3583393A (en) 1967-12-26 1971-06-08 Olympus Optical Co Bendable tube assembly
JPS4711908Y1 (en) 1968-01-18 1972-05-02
DE1775926A1 (en) 1968-08-28 1972-01-27 Ver Deutsche Metallwerke Ag Verfaerkungen for plastic Bowden cable guide hoses without wire reinforcement
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3551987A (en) 1968-09-12 1971-01-05 Jack E Wilkinson Stapling clamp for gastrointestinal surgery
US4369013A (en) 1969-02-13 1983-01-18 Velo-Bind, Inc. Bookbinding strips
US3640317A (en) 1969-03-21 1972-02-08 Jack Panfili Clip for closing fragile stuffed casings
US3572159A (en) 1969-06-12 1971-03-23 Teleflex Inc Motion transmitting remote control assembly
US3643851A (en) 1969-08-25 1972-02-22 United States Surgical Corp Skin stapler
US3688966A (en) 1969-11-10 1972-09-05 Spotnails Magazine and feed assembly for a fastener-driving tool
US3709221A (en) 1969-11-21 1973-01-09 Pall Corp Microporous nonadherent surgical dressing
US3598943A (en) 1969-12-01 1971-08-10 Illinois Tool Works Actuator assembly for toggle switch
US3744495A (en) 1970-01-02 1973-07-10 M Johnson Method of securing prolapsed vagina in cattle
US3608549A (en) 1970-01-15 1971-09-28 Merrill Edward Wilson Method of administering drugs and capsule therefor
US3662939A (en) 1970-02-26 1972-05-16 United States Surgical Corp Surgical stapler for skin and fascia
FR2084475A5 (en) 1970-03-16 1971-12-17 Brumlik George
US3618842A (en) 1970-03-20 1971-11-09 United States Surgical Corp Surgical stapling cartridge with cylindrical driving cams
US3902247A (en) 1970-05-15 1975-09-02 Siemens Ag Device for operating dental hand pieces
US3638652A (en) 1970-06-01 1972-02-01 James L Kelley Surgical instrument for intraluminal anastomosis
US3695646A (en) 1970-06-18 1972-10-03 Metal Matic Inc Ball and socket pipe joint with clip spring
US3661666A (en) 1970-08-06 1972-05-09 Philip Morris Inc Method for making swab applicators
US3650453A (en) 1970-08-13 1972-03-21 United States Surgical Corp Staple cartridge with drive belt
US3740994A (en) 1970-10-13 1973-06-26 Surgical Corp Three stage medical instrument
US3837555A (en) 1970-12-14 1974-09-24 Surgical Corp Powering instrument for stapling skin and fascia
US3717294A (en) 1970-12-14 1973-02-20 Surgical Corp Cartridge and powering instrument for stapling skin and fascia
US3799151A (en) 1970-12-21 1974-03-26 Olympus Optical Co Controllably bendable tube of an endoscope
US3727904A (en) 1971-03-12 1973-04-17 E Gabbey Concentricity coil for screw threads
US3746002A (en) 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US3836171A (en) 1971-07-07 1974-09-17 Tokai Rika Co Ltd Safety belt locking device
CA960189A (en) 1971-07-12 1974-12-31 Hilti Aktiengesellschaft Nail holder assembly
US3752161A (en) 1971-08-02 1973-08-14 Minnesota Mining & Mfg Fluid operated surgical tool
US3747692A (en) 1971-08-30 1973-07-24 Parrott Bell Seltzer Park & Gi Stonesetter{40 s hand tool
US3851196A (en) 1971-09-08 1974-11-26 Xynetics Inc Plural axis linear motor structure
US3747603A (en) 1971-11-03 1973-07-24 B Adler Cervical dilators
US3883624A (en) 1971-11-18 1975-05-13 Grandview Ind Limited Recovery and utilization of scrap in production of foamed thermoplastic polymeric products
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3940844A (en) 1972-02-22 1976-03-02 Pci Group, Inc. Method of installing an insulating sleeve on a staple
US3751902A (en) 1972-02-22 1973-08-14 Emhart Corp Apparatus for installing insulation on a staple
US4198734A (en) 1972-04-04 1980-04-22 Brumlik George C Self-gripping devices with flexible self-gripping means and method
GB1339394A (en) 1972-04-06 1973-12-05 Vnii Khirurgicheskoi Apparatur Dies for surgical stapling instruments
USRE28932E (en) 1972-09-29 1976-08-17 United States Surgical Corporation Surgical stapling instrument
US3819100A (en) 1972-09-29 1974-06-25 United States Surgical Corp Surgical stapling instrument
US3892228A (en) 1972-10-06 1975-07-01 Olympus Optical Co Apparatus for adjusting the flexing of the bending section of an endoscope
US3821919A (en) 1972-11-10 1974-07-02 Illinois Tool Works Staple
US3959879A (en) 1973-02-26 1976-06-01 Rockwell International Corporation Electrically powered grass trimmer
US3944163A (en) 1973-03-24 1976-03-16 Kabushiki Kaisha Tokai Rika Denki Seisakusho Seat belt retractor
US3826978A (en) 1973-04-03 1974-07-30 Dynalysis Of Princeton Waveguide refractometer
US3863940A (en) 1973-04-04 1975-02-04 Philip T Cummings Wide opening collet
US3808452A (en) 1973-06-04 1974-04-30 Gte Automatic Electric Lab Inc Power supply system having redundant d. c. power supplies
SU511939A1 (en) 1973-07-13 1976-04-30 Центральная Научно-Исследовательская Лаборатория При 4-М Главном Управлении Apparatus for imposing arcuate suture on the greater curvature of the stomach
JPS5033988U (en) 1973-07-21 1975-04-11
US3885491A (en) 1973-12-21 1975-05-27 Illinois Tool Works Locking staple
JPS552966Y2 (en) 1974-02-08 1980-01-24
JPS543B2 (en) 1974-02-28 1979-01-05
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US3863639A (en) 1974-04-04 1975-02-04 Richard N Kleaveland Disposable visceral retainer
CA1015829A (en) 1974-05-23 1977-08-16 Kurt Pokrandt Current sensing circuitry
US4459519A (en) 1974-06-24 1984-07-10 General Electric Company Electronically commutated motor systems and control therefor
US4169990A (en) 1974-06-24 1979-10-02 General Electric Company Electronically commutated motor
US3894174A (en) 1974-07-03 1975-07-08 Emhart Corp Insulated staple and method of making the same
DE2442260A1 (en) 1974-09-04 1976-03-18 Bosch Gmbh Robert CRAFT MACHINE
US3955581A (en) 1974-10-18 1976-05-11 United States Surgical Corporation Three-stage surgical instrument
DE2530261C2 (en) 1974-10-22 1986-10-23 Asea S.p.A., Mailand/Milano Programming device for a manipulator
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
US3950686A (en) 1974-12-11 1976-04-13 Trw Inc. Series redundant drive system
GB1491083A (en) 1975-03-19 1977-11-09 Newage Kitchens Ltd Joint assemblies
US4108211A (en) 1975-04-28 1978-08-22 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
SU566574A1 (en) 1975-05-04 1977-07-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for applying linear agraffe suture on organs and tissue
US4185701A (en) 1975-05-19 1980-01-29 Sps Technologies, Inc. Tightening apparatus
US4060089A (en) 1975-09-03 1977-11-29 United States Surgical Corporation Surgical fastening method and device therefor
US4027746A (en) 1975-09-05 1977-06-07 Shimano Industrial Company, Limited Center-pull type caliper brake for a bicycle
US4085337A (en) 1975-10-07 1978-04-18 Moeller Wolfgang W Electric drill multi-functional apparatus
DE2628508A1 (en) 1976-06-25 1977-12-29 Hilti Ag SWIVEL NUT WITH TWO U-SHAPED DISCS
US4054108A (en) 1976-08-02 1977-10-18 General Motors Corporation Internal combustion engine
US4100820A (en) 1976-09-13 1978-07-18 Joel Evett Shift lever and integral handbrake apparatus
US4127227A (en) 1976-10-08 1978-11-28 United States Surgical Corporation Wide fascia staple cartridge
AU518664B2 (en) 1976-10-08 1981-10-15 K. Jarvik Robert Surgical' clip applicator
US4226242A (en) 1977-09-13 1980-10-07 United States Surgical Corporation Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
SU674747A1 (en) 1976-11-24 1979-07-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for mechanical suturing of tissues
FR2446509A1 (en) 1977-04-29 1980-08-08 Garret Roger PROGRAMMER
SU728848A1 (en) 1977-05-24 1980-04-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing arrangement
US4573468A (en) 1977-05-26 1986-03-04 United States Surgical Corporation Hollow body organ stapling instrument and disposable cartridge employing relief vents
US4304236A (en) 1977-05-26 1981-12-08 United States Surgical Corporation Stapling instrument having an anvil-carrying part of particular geometric shape
US4135517A (en) 1977-07-21 1979-01-23 Minnesota Mining And Manufacturing Company Femoral prosthesis trial fitting device
US4452376A (en) 1977-08-05 1984-06-05 Charles H. Klieman Hemostatic clip applicator
CA1124605A (en) 1977-08-05 1982-06-01 Charles H. Klieman Surgical stapler
USD261356S (en) 1977-09-07 1981-10-20 Ofrex Group Limited Strip of insulated cable clips
US5133727A (en) 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US6264617B1 (en) 1977-09-12 2001-07-24 Symbiosis Corporation Radial jaw biopsy forceps
US4154122A (en) 1977-09-16 1979-05-15 Severin Hubert J Hand-powered tool
US4106620A (en) 1977-10-03 1978-08-15 Brimmer Frances M Surgical blade dispenser
JPS6060024B2 (en) 1977-10-19 1985-12-27 株式会社日立製作所 Engine control method
US4241861A (en) 1977-12-20 1980-12-30 Fleischer Harry N Scissor-type surgical stapler
US4900303A (en) 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4190042A (en) 1978-03-16 1980-02-26 Manfred Sinnreich Surgical retractor for endoscopes
US4321002A (en) 1978-03-27 1982-03-23 Minnesota Mining And Manufacturing Company Medical stapling device
US4207898A (en) 1978-03-27 1980-06-17 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4274304A (en) 1978-03-29 1981-06-23 Cooper Industries, Inc. In-line reversing mechanism
SU1036324A1 (en) 1978-03-31 1983-08-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing device
US4198982A (en) 1978-03-31 1980-04-22 Memorial Hospital For Cancer And Allied Diseases Surgical stapling instrument and method
GB2024012B (en) 1978-04-10 1982-07-28 Johnson & Johnson Oxygen-generating surgical dressing
US4180285A (en) 1978-05-11 1979-12-25 Reneau Bobby J Articulated ball connector for use with pipeline
DE2839990C2 (en) 1978-09-14 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Method for remelt hardening the surface of a workpiece rotating about its axis of rotation, which surface is at a different distance from the axis of rotation
US4321746A (en) 1978-11-01 1982-03-30 White Consolidated Industries, Inc. Tool changer for vertical boring machine
SU886897A1 (en) 1978-12-25 1981-12-07 Всесоюзный Научно-Исследовательский Институт Медицинской Техники Surgical apparatus for applying side gastroenterostomy
SE419421B (en) 1979-03-16 1981-08-03 Ove Larson RESIDENTIAL ARM IN SPECIAL ROBOT ARM
SU886900A1 (en) 1979-03-26 1981-12-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying line sutures
US4340331A (en) 1979-03-26 1982-07-20 Savino Dominick J Staple and anviless stapling apparatus therefor
JPS55138634A (en) 1979-04-16 1980-10-29 Kansai Electric Power Co Inc:The Fault diagnosis apparatus of apparatus
US4512038A (en) 1979-04-27 1985-04-23 University Of Medicine And Dentistry Of New Jersey Bio-absorbable composite tissue scaffold
US4261244A (en) 1979-05-14 1981-04-14 Senco Products, Inc. Surgical staple
US4274398A (en) 1979-05-14 1981-06-23 Scott Jr Frank B Surgical retractor utilizing elastic tubes frictionally held in spaced notches
US4289131A (en) 1979-05-17 1981-09-15 Ergo Instruments, Inc. Surgical power tool
US4272662A (en) 1979-05-21 1981-06-09 C & K Components, Inc. Toggle switch with shaped wire spring contact
US4275813A (en) 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
US4272002A (en) 1979-07-23 1981-06-09 Lawrence M. Smith Internal surgical stapler
US4296654A (en) 1979-08-20 1981-10-27 Mercer Albert E Adjustable angled socket wrench extension
US4250436A (en) 1979-09-24 1981-02-10 The Singer Company Motor braking arrangement and method
US4357940A (en) 1979-12-13 1982-11-09 Detroit Neurosurgical Foundation Tissue pneumatic separator structure
SU1022703A1 (en) 1979-12-20 1983-06-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Device for correcting and fixing vertebral column of patients ill with scoliosis surgical apparatus for applying compression sutures
US4278091A (en) 1980-02-01 1981-07-14 Howmedica, Inc. Soft tissue retainer for use with bone implants, especially bone staples
CA1205525A (en) 1980-02-01 1986-06-03 Russell H. Taggart Current detector
US4376380A (en) 1980-02-05 1983-03-15 John D. Brush & Co., Inc. Combination lock
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
AU534210B2 (en) 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
JPS56112235A (en) 1980-02-07 1981-09-04 Vnii Ispytatel Med Tech Surgical suturing implement for suturing staple
US4368731A (en) 1980-02-12 1983-01-18 Schramm Heinrich W Pistol-type syringe
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4312363A (en) 1980-02-26 1982-01-26 Senco Products, Inc. Surgical tissue thickness measuring instrument
US4319576A (en) 1980-02-26 1982-03-16 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4361057A (en) 1980-02-28 1982-11-30 John Sigan Handlebar adjusting device
US4289133A (en) 1980-02-28 1981-09-15 Senco Products, Inc. Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
US4296881A (en) 1980-04-03 1981-10-27 Sukoo Lee Surgical stapler using cartridge
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US5445604A (en) 1980-05-22 1995-08-29 Smith & Nephew Associated Companies, Ltd. Wound dressing with conformable elastomeric wound contact layer
US4293604A (en) 1980-07-11 1981-10-06 Minnesota Mining And Manufacturing Company Flocked three-dimensional network mat
US4380312A (en) 1980-07-17 1983-04-19 Minnesota Mining And Manufacturing Company Stapling tool
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4328839A (en) 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
DE3036217C2 (en) 1980-09-25 1986-12-18 Siemens AG, 1000 Berlin und 8000 München Remote-controlled medical device
US4349028A (en) 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
AU542936B2 (en) 1980-10-17 1985-03-28 United States Surgical Corporation Self centering staple
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
US4500024A (en) 1980-11-19 1985-02-19 Ethicon, Inc. Multiple clip applier
US4430997A (en) 1980-11-19 1984-02-14 Ethicon, Inc. Multiple clip applier
US4347450A (en) 1980-12-10 1982-08-31 Colligan Wallace M Portable power tool
US4451743A (en) 1980-12-29 1984-05-29 Citizen Watch Company Limited DC-to-DC Voltage converter
SU1235495A1 (en) 1980-12-29 1986-06-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for placing compression anastomoses
US4382326A (en) 1981-01-19 1983-05-10 Minnesota Mining & Manufacturing Company Staple supporting and staple removing strip
US4409057A (en) 1981-01-19 1983-10-11 Minnesota Mining & Manufacturing Company Staple supporting and removing strip
US4394613A (en) 1981-01-19 1983-07-19 California Institute Of Technology Full-charge indicator for battery chargers
US4348603A (en) 1981-01-29 1982-09-07 Black & Decker Inc. Printed-circuit board and trigger-switch arrangement for a portable electric tool
FR2499395A1 (en) 1981-02-10 1982-08-13 Amphoux Andre DEFORMABLE CONDUIT SUCH AS GAS FLUID SUCTION ARM
FR2499782A1 (en) 1981-02-11 1982-08-13 Faiveley Sa METHOD FOR ADJUSTING THE POWER SUPPLY OF A DC MOTOR AND DEVICE FOR IMPLEMENTING SAID METHOD
US4379457A (en) 1981-02-17 1983-04-12 United States Surgical Corporation Indicator for surgical stapler
US4350151A (en) 1981-03-12 1982-09-21 Lone Star Medical Products, Inc. Expanding dilator
SU1009439A1 (en) 1981-03-24 1983-04-07 Предприятие П/Я Р-6094 Surgical suturing device for application of anastomosis on digestive tract
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
SU982676A1 (en) 1981-04-07 1982-12-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical cramp
DE3115192C2 (en) 1981-04-15 1983-05-19 Christian Prof. Dr.med. 2400 Lübeck Krüger Medical instrument
US4406621A (en) 1981-05-04 1983-09-27 Young Dental Manufacturing Company, Inc. Coupling ensemble for dental handpiece
US4383634A (en) 1981-05-26 1983-05-17 United States Surgical Corporation Surgical stapler apparatus with pivotally mounted actuator assemblies
JPS57211361A (en) 1981-06-23 1982-12-25 Terumo Corp Liquid injecting apparatus
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
FR2509490B1 (en) 1981-07-09 1985-02-22 Tractel Sa RELEASE MECHANISM FOR TRACTION EQUIPMENT ACTING ON A CABLE THROUGH IT
US4486928A (en) 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
US4373147A (en) 1981-07-23 1983-02-08 General Signal Corporation Torque compensated electric motor
JPS6010269B2 (en) * 1981-07-23 1985-03-15 太洋無線株式会社 direction finder
US4475679A (en) 1981-08-07 1984-10-09 Fleury Jr George J Multi-staple cartridge for surgical staplers
US4417890A (en) 1981-08-17 1983-11-29 Baxter Travenol Laboratories, Inc. Antibacterial closure
US4632290A (en) 1981-08-17 1986-12-30 United States Surgical Corporation Surgical stapler apparatus
US4576167A (en) 1981-09-03 1986-03-18 United States Surgical Corporation Surgical stapler apparatus with curved shaft
US4461305A (en) 1981-09-04 1984-07-24 Cibley Leonard J Automated biopsy device
JPS5844033A (en) 1981-09-11 1983-03-14 富士写真光機株式会社 Adaptor type treating tool introducing apparatus for endoscope
JPS5861747A (en) 1981-10-08 1983-04-12 馬渕 健一 Beauty tool
AU548370B2 (en) 1981-10-08 1985-12-05 United States Surgical Corporation Surgical fastener
DE3277287D1 (en) 1981-10-15 1987-10-22 Olympus Optical Co Endoscope system with an electric bending mechanism
US4483562A (en) 1981-10-16 1984-11-20 Arnold Schoolman Locking flexible shaft device with live distal end attachment
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4415112A (en) 1981-10-27 1983-11-15 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
JPS5878639A (en) 1981-11-04 1983-05-12 オリンパス光学工業株式会社 Endoscope
US4423456A (en) 1981-11-13 1983-12-27 Medtronic, Inc. Battery reversal protection
JPS5887494U (en) 1981-12-05 1983-06-14 株式会社モリタ製作所 Speed control device for small medical motors
US4442964A (en) 1981-12-07 1984-04-17 Senco Products, Inc. Pressure sensitive and working-gap controlled surgical stapling instrument
US4586502A (en) 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4471781A (en) 1982-02-03 1984-09-18 Ethicon, Inc. Surgical instrument with rotatable front housing and latch mechanism
US4724840A (en) 1982-02-03 1988-02-16 Ethicon, Inc. Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
US4448194A (en) 1982-02-03 1984-05-15 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
US4480641A (en) 1982-02-05 1984-11-06 Ethicon, Inc. Tip configuration for a ligating clip applier
US4478220A (en) 1982-02-05 1984-10-23 Ethicon, Inc. Ligating clip cartridge
US4471780A (en) 1982-02-05 1984-09-18 Ethicon, Inc. Multiple ligating clip applier instrument
DE3204532C2 (en) 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen Surgical skin staple
SU1114405A1 (en) 1982-02-23 1984-09-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus for placing compression anastomoses on the organs of digestive tract
DE3210466A1 (en) 1982-03-22 1983-09-29 Peter Dipl.-Kfm. Dr. 6230 Frankfurt Gschaider Method and device for carrying out handling processes
USD278081S (en) 1982-04-02 1985-03-19 United States Surgical Corporation Linear anastomosis surgical staple cartridge
US4408692A (en) 1982-04-12 1983-10-11 The Kendall Company Sterile cover for instrument
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
US4473077A (en) 1982-05-28 1984-09-25 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4485817A (en) 1982-05-28 1984-12-04 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4467805A (en) 1982-08-25 1984-08-28 Mamoru Fukuda Skin closure stapling device for surgical procedures
US4488523A (en) 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
FR2534801A1 (en) 1982-10-21 1984-04-27 Claracq Michel DEVICE FOR PARTIALLY OCCLUDING A VESSEL, PARTICULARLY OF THE CAUDAL CAVE VEIN, AND CONSTITUENT PART THEREOF
US4604786A (en) 1982-11-05 1986-08-12 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
US4790225A (en) 1982-11-24 1988-12-13 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
US4676245A (en) 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
JPS59163608A (en) 1983-03-08 1984-09-14 Hitachi Koki Co Ltd Jigsaw
JPS59168848A (en) 1983-03-11 1984-09-22 エチコン・インコ−ポレ−テツド Antiseptic surgical apparatus made of nonmetal having affinity to organism
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
US4556058A (en) 1983-08-17 1985-12-03 United States Surgical Corporation Apparatus for ligation and division with fixed jaws
US4569346A (en) 1983-03-30 1986-02-11 United States Surgical Corporation Safety apparatus for surgical occluding and cutting device
US4506671A (en) 1983-03-30 1985-03-26 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US4530357A (en) 1983-04-18 1985-07-23 Pawloski James A Fluid actuated orthopedic tool
GB2138298B (en) 1983-04-21 1986-11-05 Hundon Forge Ltd Pellet implanter
US4522327A (en) 1983-05-18 1985-06-11 United States Surgical Corporation Surgical fastener applying apparatus
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
GR81919B (en) 1983-06-20 1984-12-12 Ethicon Inc
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
US4531522A (en) 1983-06-20 1985-07-30 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
US4693248A (en) 1983-06-20 1987-09-15 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
US4532927A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
DE3325282C2 (en) 1983-07-13 1986-09-25 Howmedica International, Inc., 2301 Schönkirchen Procedure for charging an accumulator
SU1175891A1 (en) 1983-08-16 1985-08-30 Предприятие П/Я А-7840 Device for moulding articles
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4669647A (en) 1983-08-26 1987-06-02 Technalytics, Inc. Surgical stapler
US4589416A (en) 1983-10-04 1986-05-20 United States Surgical Corporation Surgical fastener retainer member assembly
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4667674A (en) 1983-10-04 1987-05-26 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4571213A (en) 1983-11-17 1986-02-18 Nikko Co., Ltd. Direction-converting device for a toy car
JPS60113007A (en) 1983-11-24 1985-06-19 Nissan Motor Co Ltd Control device of intake and exhaust valve in internal- combustion engine
US4565109A (en) 1983-12-27 1986-01-21 Tsay Chi Chour Instantaneous direction changing rotation mechanism
US4576165A (en) 1984-01-23 1986-03-18 United States Surgical Corporation Surgical ligation and cutting device with safety means
US4635638A (en) 1984-02-07 1987-01-13 Galil Advanced Technologies Ltd. Power-driven gripping tool particularly useful as a suturing device
US4589870A (en) 1984-02-21 1986-05-20 Indicon, Inc. Incremental actuator for syringe
USD287278S (en) 1984-02-21 1986-12-16 Senmed, Inc. Flexible surgical stapler
JPS60137406U (en) 1984-02-24 1985-09-11 シ−アイ化成株式会社 magnetic sheet
US4600037A (en) 1984-03-19 1986-07-15 Texas Eastern Drilling Systems, Inc. Flexible drill pipe
US4612933A (en) 1984-03-30 1986-09-23 Senmed, Inc. Multiple-load cartridge assembly for a linear surgical stapling instrument
US4619391A (en) 1984-04-18 1986-10-28 Acme United Corporation Surgical stapling instrument
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
JPS60232124A (en) 1984-05-04 1985-11-18 旭光学工業株式会社 Curving operation apparatus of endoscope
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US4894051A (en) 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US4628636A (en) 1984-05-18 1986-12-16 Holmes-Hally Industries, Inc. Garage door operator mechanism
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
US4781186A (en) 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
GB8417562D0 (en) 1984-07-10 1984-08-15 Surgical Design Services Fasteners
US4605004A (en) 1984-07-16 1986-08-12 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
US4607636A (en) 1984-07-16 1986-08-26 Ethicon, Inc. Surgical instrument for applying fasteners having tissue locking means for maintaining the tissue in the instrument while applying the fasteners (case I)
US4591085A (en) 1984-07-16 1986-05-27 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
US4741336A (en) 1984-07-16 1988-05-03 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
US4585153A (en) 1984-07-16 1986-04-29 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
IN165375B (en) 1984-07-16 1989-10-07 Ethicon Inc
DE3427329A1 (en) 1984-07-25 1986-01-30 Mannesmann Kienzle GmbH, 7730 Villingen-Schwenningen METHOD FOR POSITIONING A SWITCH ASSOCIATED WITH A SPEED LIMITER
US4655222A (en) 1984-07-30 1987-04-07 Ethicon, Inc. Coated surgical staple
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
US4754909A (en) 1984-08-09 1988-07-05 Barker John M Flexible stapler
US4589582A (en) 1984-08-23 1986-05-20 Senmed, Inc. Cartridge and driver assembly for a surgical stapling instrument
US4560915A (en) 1984-08-23 1985-12-24 Wen Products, Inc. Electronic charging circuit for battery operated appliances
IL73079A (en) 1984-09-26 1989-01-31 Porat Michael Gripper means for medical instruments
USD286180S (en) 1984-10-16 1986-10-14 United States Surgical Corporation Surgical fastener
US4767044A (en) 1984-10-19 1988-08-30 United States Surgical Corporation Surgical fastener applying apparatus
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4633861A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4580712A (en) 1984-10-19 1986-04-08 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
US4566620A (en) 1984-10-19 1986-01-28 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4573622A (en) 1984-10-19 1986-03-04 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
IT1180106B (en) 1984-11-05 1987-09-23 Olivetti & Co Spa CIRCUIT FOR PILOTING ELECTRIC MOTORS OF TABULATION SELECTION AND INTERLINE OF A ELECTRONIC WRITING MACHINE
US4949707A (en) 1984-11-08 1990-08-21 Minnesota Scientific, Inc. Retractor apparatus
US4787387A (en) 1984-11-08 1988-11-29 American Cyanamid Company Surgical closure element
DE3543096A1 (en) 1984-12-05 1986-06-05 Olympus Optical Co., Ltd., Tokio/Tokyo DEVICE FOR THE CRUSHING OF STONES, LIKE KIDNEY AND GALLET STONES OR THE LIKE
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
SU1271497A1 (en) 1985-01-07 1986-11-23 Научно-производственное объединение "Мединструмент" Apparatus for bringing together the wound edges
US4828542A (en) 1986-08-29 1989-05-09 Twin Rivers Engineering Foam substrate and micropackaged active ingredient particle composite dispensing materials
US4671278A (en) 1985-01-14 1987-06-09 Thomas J. Fogarty Scalp hemostatic clip and dispenser therefor
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4641076A (en) 1985-01-23 1987-02-03 Hall Surgical-Division Of Zimmer, Inc. Method and apparatus for sterilizing and charging batteries
US4643173A (en) 1985-01-29 1987-02-17 Bell John H Heated traction belt
JPS61129692U (en) 1985-02-02 1986-08-14
US4651734A (en) 1985-02-08 1987-03-24 The United States Of America As Represented By The United States Department Of Energy Electrosurgical device for both mechanical cutting and coagulation of bleeding
US4569469A (en) 1985-02-15 1986-02-11 Minnesota Mining And Manufacturing Company Bone stapler cartridge
JPS61209647A (en) 1985-03-14 1986-09-17 須广 久善 Incision opening retractor for connecting blood vessel
JPS635697Y2 (en) 1985-04-04 1988-02-17
JPS61235446A (en) 1985-04-11 1986-10-20 Karupu Kogyo Kk Jacket tube for industrial robot
SU1377052A1 (en) 1985-04-17 1988-02-28 Всесоюзный онкологический научный центр Arrangement for connecting hollow organs
US4833937A (en) 1985-04-22 1989-05-30 Shimano Industrial Company Limited Adjusting device for a control cable for a bicycle
US4807628A (en) 1985-04-26 1989-02-28 Edward Weck & Company, Inc. Method and apparatus for storing, dispensing, and applying surgical staples
DE3515659C1 (en) 1985-05-02 1986-08-28 Goetze Ag, 5093 Burscheid Piston ring
US4671280A (en) 1985-05-13 1987-06-09 Ethicon, Inc. Surgical fastening device and method for manufacture
US4642618A (en) 1985-07-23 1987-02-10 Ibm Corporation Tool failure detector
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4643731A (en) 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US4750902A (en) 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
SE457228B (en) 1985-09-10 1988-12-12 Vnii Ispytatel Med Tech SURGICAL INSTRUMENT FOR APPLICATION OF LINERABLE HANGING SEWINGS
SU1377053A1 (en) 1985-10-02 1988-02-28 В. Г. Сахаутдинов, Р. А. Талипов, Р. М. Халиков и 3. X. Гарифуллин Surgical suturing apparatus
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4721099A (en) 1985-10-30 1988-01-26 Kabushiki Kaisha Machida Seisakusho Operating mechanism for bendable section of endoscope
DE3671185D1 (en) 1985-12-06 1990-06-21 Desoutter Ltd TWO-SPEED TRANSMISSION.
SU1333319A2 (en) 1985-12-10 1987-08-30 Петрозаводский государственный университет им.О.В.Куусинена Suture appliance for hollow organs
US4634419A (en) 1985-12-13 1987-01-06 Cooper Lasersonics, Inc. Angulated ultrasonic surgical handpieces and method for their production
USD297764S (en) 1985-12-18 1988-09-20 Ethicon, Inc. Surgical staple cartridge
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
USD286442S (en) 1985-12-31 1986-10-28 United States Surgical Corporation Surgical fastener
US4763669A (en) 1986-01-09 1988-08-16 Jaeger John C Surgical instrument with adjustable angle of operation
US4728876A (en) 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4672964A (en) 1986-02-21 1987-06-16 Dee Robert N Scalpel with universally adjustable blade
US4662555A (en) 1986-03-11 1987-05-05 Edward Weck & Company, Inc. Surgical stapler
US4675944A (en) 1986-03-17 1987-06-30 Wells Daryl F Pneumatic meat saw
JPS62221897A (en) 1986-03-24 1987-09-29 Mitsubishi Electric Corp Motor control apparatus
US4903697A (en) 1986-03-27 1990-02-27 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4700703A (en) 1986-03-27 1987-10-20 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4909789A (en) 1986-03-28 1990-03-20 Olympus Optical Co., Ltd. Observation assisting forceps
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4747820A (en) 1986-04-09 1988-05-31 Cooper Lasersonics, Inc. Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
US4988334A (en) 1986-04-09 1991-01-29 Valleylab, Inc. Ultrasonic surgical system with aspiration tubulation connector
JPS62170011U (en) 1986-04-16 1987-10-28
ATE96633T1 (en) 1986-04-21 1993-11-15 Globe Control Finanz Aktienges DEVICE FOR MAKING AN ANASTOMOSE.
SU1561964A1 (en) 1986-04-24 1990-05-07 Благовещенский государственный медицинский институт Surgical suturing apparatus
US4688555A (en) 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US4691703A (en) 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
FR2598905B1 (en) 1986-05-22 1993-08-13 Chevalier Jean Michel DEVICE FOR INTERRUPTING THE CIRCULATION OF A FLUID IN A FLEXIBLE WALL CONDUIT, IN PARTICULAR A HOLLOW VISCERE AND CLIP ASSEMBLY COMPRISING THIS DEVICE
US4709120A (en) 1986-06-06 1987-11-24 Pearson Dean C Underground utility equipment vault
USD298967S (en) 1986-06-09 1988-12-13 Ethicon, Inc. Surgical staple cartridge
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4744363A (en) 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
DE8620714U1 (en) 1986-08-01 1986-11-20 C. & E. Fein GmbH & Co KG, 70176 Stuttgart Sterilizable battery
US4727308A (en) 1986-08-28 1988-02-23 International Business Machines Corporation FET power converter with reduced switching loss
US4743214A (en) 1986-09-03 1988-05-10 Tai Cheng Yang Steering control for toy electric vehicles
US4875486A (en) 1986-09-04 1989-10-24 Advanced Techtronics, Inc. Instrument and method for non-invasive in vivo testing for body fluid constituents
US4890613A (en) 1986-09-19 1990-01-02 Ethicon, Inc. Two piece internal organ fastener
US4893622A (en) 1986-10-17 1990-01-16 United States Surgical Corporation Method of stapling tubular body organs
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
CH674058A5 (en) 1986-10-22 1990-04-30 Festo Kg
US4933843A (en) 1986-11-06 1990-06-12 Storz Instrument Company Control system for ophthalmic surgical instruments
US4970656A (en) 1986-11-07 1990-11-13 Alcon Laboratories, Inc. Analog drive for ultrasonic probe with tunable phase angle
US4954960A (en) 1986-11-07 1990-09-04 Alcon Laboratories Linear power control for ultrasonic probe with tuned reactance
JPH0418209Y2 (en) 1986-11-14 1992-04-23
JPH0755222B2 (en) 1986-12-12 1995-06-14 オリンパス光学工業株式会社 Treatment tool
SE457680B (en) 1987-01-15 1989-01-16 Toecksfors Verkstads Ab ELECTRONIC SWITCH INCLUDING ONE IN A MUCH MOVABLE MANUAL
US4832158A (en) 1987-01-20 1989-05-23 Delaware Capital Formation, Inc. Elevator system having microprocessor-based door operator
US4865030A (en) 1987-01-21 1989-09-12 American Medical Systems, Inc. Apparatus for removal of objects from body passages
EP0302093A4 (en) 1987-02-10 1989-08-30 Vaso Products Australia Pty Lt Venous cuff applicator, cartridge and cuff.
US4873977A (en) 1987-02-11 1989-10-17 Odis L. Avant Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5217478A (en) 1987-02-18 1993-06-08 Linvatec Corporation Arthroscopic surgical instrument drive system
DE3807004A1 (en) 1987-03-02 1988-09-15 Olympus Optical Co ULTRASONIC TREATMENT DEVICE
DE3709067A1 (en) 1987-03-19 1988-09-29 Ewald Hensler Medical, especially surgical, instrument
US5001649A (en) 1987-04-06 1991-03-19 Alcon Laboratories, Inc. Linear power control for ultrasonic probe with tuned reactance
US4730726A (en) 1987-04-21 1988-03-15 United States Surgical Corporation Sealed sterile package
US4777780A (en) 1987-04-21 1988-10-18 United States Surgical Corporation Method for forming a sealed sterile package
SU1443874A1 (en) 1987-04-23 1988-12-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying compression anastomoses
JPS63270040A (en) 1987-04-28 1988-11-08 Haruo Takase Suturing method and device in surgical operation
US4941623A (en) 1987-05-12 1990-07-17 United States Surgical Corporation Stapling process and device for use on the mesentery of the abdomen
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US4928699A (en) 1987-05-18 1990-05-29 Olympus Optical Co., Ltd. Ultrasonic diagnosis device
US4838859A (en) 1987-05-19 1989-06-13 Steve Strassmann Steerable catheter
US5158222A (en) 1987-05-26 1992-10-27 United States Surgical Corp. Surgical stapler apparatus
US5285944A (en) 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus
USD309350S (en) 1987-06-01 1990-07-17 Pfizer Hospital Products Group, Inc. Surgical sternotomy band tightening instrument
US4844068A (en) 1987-06-05 1989-07-04 Ethicon, Inc. Bariatric surgical instrument
US4761326A (en) 1987-06-09 1988-08-02 Precision Fabrics Group, Inc. Foam coated CSR/surgical instrument wrap fabric
SU1475611A1 (en) 1987-06-10 1989-04-30 Предприятие П/Я А-3697 Device for joining tubular organs
US4848637A (en) 1987-06-11 1989-07-18 Pruitt J Crayton Staple device for use on the mesenteries of the abdomen
US4930503A (en) 1987-06-11 1990-06-05 Pruitt J Crayton Stapling process and device for use on the mesenteries of the abdomen
US5027834A (en) 1987-06-11 1991-07-02 United States Surgical Corporation Stapling process for use on the mesenteries of the abdomen
US4773420A (en) 1987-06-22 1988-09-27 U.S. Surgical Corporation Purse string applicator
JPS63318824A (en) 1987-06-22 1988-12-27 Oki Electric Ind Co Ltd Capacity coupled rotary coupler
DE3723310A1 (en) 1987-07-15 1989-01-26 John Urquhart PHARMACEUTICAL PREPARATION AND METHOD FOR THE PRODUCTION THEREOF
US4817643A (en) 1987-07-30 1989-04-04 Olson Mary Lou C Chinese finger cuff dental floss
US5158567A (en) 1987-09-02 1992-10-27 United States Surgical Corporation One-piece surgical staple
US4821939A (en) 1987-09-02 1989-04-18 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
SU1509051A1 (en) 1987-09-14 1989-09-23 Институт прикладной физики АН СССР Appliance for suturing organs
GB2209673B (en) 1987-09-15 1991-06-12 Wallace Ltd H G Catheter and cannula assembly
US5025559A (en) 1987-09-29 1991-06-25 Food Industry Equipment International, Inc. Pneumatic control system for meat trimming knife
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4921479A (en) 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US4805617A (en) 1987-11-05 1989-02-21 Ethicon, Inc. Surgical fastening systems made from polymeric materials
US4830855A (en) 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
FR2622429A1 (en) 1987-11-16 1989-05-05 Blagoveschensky G SURGICAL SUTURE APPARATUS
US5106627A (en) 1987-11-17 1992-04-21 Brown University Research Foundation Neurological therapy devices
US5018515A (en) 1987-12-14 1991-05-28 The Kendall Company See through absorbent dressing
US5062491A (en) 1987-12-23 1991-11-05 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling nut runner
US4834720A (en) 1987-12-24 1989-05-30 Becton, Dickinson And Company Implantable port septum
US4951860A (en) 1987-12-28 1990-08-28 Edward Weck & Co. Method and apparatus for storing, dispensing and applying surgical staples
US4819853A (en) 1987-12-31 1989-04-11 United States Surgical Corporation Surgical fastener cartridge
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5030226A (en) 1988-01-15 1991-07-09 United States Surgical Corporation Surgical clip applicator
GB8800909D0 (en) 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
US5100420A (en) 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5383881A (en) 1989-07-18 1995-01-24 United States Surgical Corporation Safety device for use with endoscopic instrumentation
US5197970A (en) 1988-01-15 1993-03-30 United States Surgical Corporation Surgical clip applicator
JPH01182196A (en) 1988-01-18 1989-07-20 Sanshin Ind Co Ltd Auxiliary shift device
DE3805179A1 (en) 1988-02-19 1989-08-31 Wolf Gmbh Richard DEVICE WITH A ROTATING DRIVEN SURGICAL INSTRUMENT
US5060658A (en) 1988-02-23 1991-10-29 Vance Products Incorporated Fine-needle aspiration cell sampling apparatus
US4860644A (en) 1988-02-29 1989-08-29 Donaldson Company, Inc. Articulatable fume exhauster trunk
US4862891A (en) 1988-03-14 1989-09-05 Canyon Medical Products Device for sequential percutaneous dilation
FR2628488B1 (en) 1988-03-14 1990-12-28 Ecia Equip Composants Ind Auto QUICK ATTACHMENT OF THE IMPROVED BAYONET TYPE
US4790314A (en) 1988-03-16 1988-12-13 Kenneth Weaver Orifice dilator
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US4856078A (en) 1988-03-23 1989-08-08 Zenith Electronics Corporation DC fan speed control
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
US4933800A (en) 1988-06-03 1990-06-12 Yang Tai Her Motor overload detection with predetermined rotation reversal
GB2220919B (en) 1988-06-10 1992-04-08 Seikosha Kk Automatic feeder
JPH01313783A (en) 1988-06-14 1989-12-19 Philips Kk Measuring circuit for capacity of battery
US5193731A (en) 1988-07-01 1993-03-16 United States Surgical Corporation Anastomosis surgical stapling instrument
KR920001244Y1 (en) 1988-07-06 1992-02-20 이재희 Stapler
US5185717A (en) 1988-08-05 1993-02-09 Ryoichi Mori Tamper resistant module having logical elements arranged in multiple layers on the outer surface of a substrate to protect stored information
US5444113A (en) 1988-08-08 1995-08-22 Ecopol, Llc End use applications of biodegradable polymers
ES2011110A6 (en) 1988-09-02 1989-12-16 Lopez Hervas Pedro Hydraulic device with flexible body for surgical anastomosts
CA1327424C (en) 1988-09-16 1994-03-08 James C. Armour Compact tampon applicator
DE3831607A1 (en) 1988-09-17 1990-03-22 Haubold Kihlberg Gmbh STRIKE DEVICE OPERATED BY COMPRESSED AIR WITH BLEEDING VALVE FOR THE MAIN VALVE
US5024671A (en) 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US5071052A (en) 1988-09-22 1991-12-10 United States Surgical Corporation Surgical fastening apparatus with activation lockout
US5024652A (en) 1988-09-23 1991-06-18 Dumenek Vladimir A Ophthalmological device
DE3832528C1 (en) 1988-09-24 1989-11-16 Fresenius Ag, 6380 Bad Homburg, De
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
US4948327A (en) 1988-09-28 1990-08-14 Crupi Jr Theodore P Towing apparatus for coupling to towed vehicle undercarriage
CA1308782C (en) 1988-10-13 1992-10-13 Gyrus Medical Limited Screening and monitoring instrument
US4892244A (en) 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
DE68924692T2 (en) 1988-11-11 1996-04-25 United States Surgical Corp Surgical instrument.
US5197648A (en) 1988-11-29 1993-03-30 Gingold Bruce S Surgical stapling apparatus
US4915100A (en) 1988-12-19 1990-04-10 United States Surgical Corporation Surgical stapler apparatus with tissue shield
US4986808A (en) 1988-12-20 1991-01-22 Valleylab, Inc. Magnetostrictive transducer
US4978333A (en) 1988-12-20 1990-12-18 Valleylab, Inc. Resonator for surgical handpiece
US5098360A (en) 1988-12-26 1992-03-24 Tochigifujisangyo Kabushiki Kaisha Differential gear with limited slip and locking mechanism
US5108368A (en) 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5089606A (en) 1989-01-24 1992-02-18 Minnesota Mining And Manufacturing Company Water-insoluble polysaccharide hydrogel foam for medical applications
US4919679A (en) 1989-01-31 1990-04-24 Osteonics Corp. Femoral stem surgical instrument system
US5077506A (en) 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
EP0389102B1 (en) 1989-02-22 1995-05-10 United States Surgical Corporation Skin fastener
US4930674A (en) 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5186711A (en) 1989-03-07 1993-02-16 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5522817A (en) 1989-03-31 1996-06-04 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
US5062563A (en) 1989-04-10 1991-11-05 United States Surgical Corporation Fascia stapler
US5104397A (en) 1989-04-14 1992-04-14 Codman & Shurtleff, Inc. Multi-position latching mechanism for forceps
US5038247A (en) 1989-04-17 1991-08-06 Delco Electronics Corporation Method and apparatus for inductive load control with current simulation
US5119009A (en) 1989-04-20 1992-06-02 Motorola, Inc. Lithium battery deactivator
US6200320B1 (en) 1989-04-24 2001-03-13 Gary Karlin Michelson Surgical rongeur
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
AU5534090A (en) 1989-05-03 1990-11-29 Intra-Sonix, Inc. Instrument and method for intraluminally relieving stenosis
SU1708312A1 (en) 1989-05-16 1992-01-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for suturing bone tissue
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
US5040715B1 (en) 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US5104400A (en) 1989-05-26 1992-04-14 Impra, Inc. Blood vessel patch
US5035040A (en) 1989-05-30 1991-07-30 Duo-Fast Corporation Hog ring fastener, tool and methods
JPH034831A (en) 1989-06-01 1991-01-10 Toshiba Corp Endoscope device
US4946067A (en) 1989-06-07 1990-08-07 Wickes Manufacturing Company Inflation valve with actuating lever interlock
US4987049A (en) 1989-07-21 1991-01-22 Konica Corporation Image-receiving element for heat transfer type dye image
USD327323S (en) 1989-08-02 1992-06-23 Ethicon,Inc. Combination skin stapler and rotating head
US6004330A (en) 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
US4932960A (en) 1989-09-01 1990-06-12 United States Surgical Corporation Absorbable surgical fastener
DE3929575A1 (en) 1989-09-06 1991-03-07 Vascomed Kathetertech DILATATION CATHETER FOR EXTENDING BLOOD VESSELS WITH MOTOR DRIVE
US5155941A (en) 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US4965709A (en) 1989-09-25 1990-10-23 General Electric Company Switching converter with pseudo-resonant DC link
US4984564A (en) 1989-09-27 1991-01-15 Frank Yuen Surgical retractor device
CH677728A5 (en) 1989-10-17 1991-06-28 Bieffe Medital Sa
US5264218A (en) 1989-10-25 1993-11-23 C. R. Bard, Inc. Modifiable, semi-permeable, wound dressing
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5239981A (en) 1989-11-16 1993-08-31 Effner Biomet Gmbh Film covering to protect a surgical instrument and an endoscope to be used with the film covering
US5176677A (en) 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
JPH0737603Y2 (en) 1989-11-30 1995-08-30 晴夫 高瀬 Surgical suture instrument
JPH0527929Y2 (en) 1989-12-19 1993-07-16
US5098004A (en) 1989-12-19 1992-03-24 Duo-Fast Corporation Fastener driving tool
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5109722A (en) 1990-01-12 1992-05-05 The Toro Company Self-detenting transmission shift key
US6033378A (en) 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
AU7082091A (en) 1990-02-13 1991-08-15 Ethicon Inc. Rotating head skin stapler
US5100042A (en) 1990-03-05 1992-03-31 United States Surgical Corporation Surgical fastener apparatus
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
SU1722476A1 (en) 1990-04-02 1992-03-30 Свердловский Филиал Научно-Производственного Объединения "Фтизиопульмонология" Appliance for temporary occlusion of tubular organs
US5005754A (en) 1990-04-04 1991-04-09 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
US5002543A (en) 1990-04-09 1991-03-26 Bradshaw Anthony J Steerable intramedullary fracture reduction device
US5343391A (en) 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
US5124990A (en) 1990-05-08 1992-06-23 Caterpillar Inc. Diagnostic hardware for serial datalink
US5613499A (en) 1990-05-10 1997-03-25 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5331971A (en) 1990-05-10 1994-07-26 Symbiosis Corporation Endoscopic surgical instruments
US5454378A (en) 1993-02-11 1995-10-03 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
CA2042006C (en) 1990-05-11 1995-08-29 Morito Idemoto Surgical ultrasonic horn
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5396635A (en) 1990-06-01 1995-03-07 Vadem Corporation Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system
US5074454A (en) 1990-06-04 1991-12-24 Peters Ronald L Surgical stapler
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
NL9001564A (en) 1990-07-09 1992-02-03 Optische Ind De Oude Delft Nv BODY CONTAINABLE TUBE EQUIPPED WITH A MANIPULATOR.
SU1752361A1 (en) 1990-07-10 1992-08-07 Производственное Объединение "Челябинский Тракторный Завод Им.В.И.Ленина" Surgical sutural material
RU2008830C1 (en) 1990-07-13 1994-03-15 Константин Алексеевич Додонов Electrosurgical apparatus
US5163598A (en) 1990-07-23 1992-11-17 Rudolph Peters Sternum stapling apparatus
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5094247A (en) 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5653373A (en) 1990-09-17 1997-08-05 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5080556A (en) 1990-09-28 1992-01-14 General Electric Company Thermal seal for a gas turbine spacer disc
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
DE9117288U1 (en) 1990-10-05 1999-10-21 United States Surgical Corp. (N.D.Ges.D.Staates Delaware), Norwalk, Conn. Surgical stapling instrument
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
USD330699S (en) 1990-10-19 1992-11-03 W. W. Cross, Inc. Insulated staple
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
US5658307A (en) 1990-11-07 1997-08-19 Exconde; Primo D. Method of using a surgical dissector instrument
GB9025131D0 (en) 1990-11-19 1991-01-02 Ofrex Group Holdings Plc Improvements in or relating to a stapling machine
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
US5470009A (en) 1990-12-06 1995-11-28 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
CA2055943C (en) 1990-12-06 2003-09-23 Daniel P. Rodak Surgical fastening apparatus with locking mechanism
US5209747A (en) 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
USRE36720E (en) 1990-12-13 2000-05-30 United States Surgical Corporation Apparatus and method for applying latchless surgical clips
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US7384417B2 (en) 1990-12-14 2008-06-10 Cucin Robert L Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly
US5141144A (en) 1990-12-18 1992-08-25 Minnesota Mining And Manufacturing Company Stapler and firing device
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
AU662719B2 (en) 1990-12-18 1995-09-14 United States Surgical Corporation Safety device for a surgical stapler cartridge
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5195505A (en) 1990-12-27 1993-03-23 United States Surgical Corporation Surgical retractor
EP0566694A1 (en) 1991-01-09 1993-10-27 EndoMedix Corporation Method and device for intracorporeal liquidization of tissue and/or intracorporeal fragmentation of calculi during endoscopic surgical procedures
US5354303A (en) 1991-01-09 1994-10-11 Endomedix Corporation Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
US5222963A (en) 1991-01-17 1993-06-29 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
US5188111A (en) 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5425355A (en) 1991-01-28 1995-06-20 Laserscope Energy discharging surgical probe and surgical process having distal energy application without concomitant proximal movement
US5342385A (en) 1991-02-05 1994-08-30 Norelli Robert A Fluid-expandable surgical retractor
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
US5690675A (en) 1991-02-13 1997-11-25 Fusion Medical Technologies, Inc. Methods for sealing of staples and other fasteners in tissue
US5168605A (en) 1991-02-15 1992-12-08 Russell Bartlett Method and apparatus for securing a tarp
DE4104755A1 (en) 1991-02-15 1992-08-20 Heidmueller Harald SURGICAL INSTRUMENT
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
CA2061319A1 (en) 1991-02-19 1992-08-20 Hector Chow Surgical staple for insertion into tissue
US5571285A (en) 1991-02-19 1996-11-05 Ethicon, Inc. Surgical staple for insertion into tissue
US5219111A (en) 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5353798A (en) 1991-03-13 1994-10-11 Scimed Life Systems, Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5445155A (en) 1991-03-13 1995-08-29 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5438997A (en) 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5336232A (en) 1991-03-14 1994-08-09 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
CA2061885A1 (en) 1991-03-14 1992-09-15 David T. Green Approximating apparatus for surgical jaw structure
JP2760666B2 (en) 1991-03-15 1998-06-04 株式会社東芝 Method and apparatus for controlling PWM converter
US5170925A (en) 1991-03-18 1992-12-15 Ethicon, Inc. Laparoscopic stapler with knife means
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
SU1814161A1 (en) 1991-03-19 1993-05-07 Penzen Nii Elektronno Mekh Pri Electric motor
US5171253A (en) 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
USD338729S (en) 1991-03-22 1993-08-24 Ethicon, Inc. Linear surgical stapler
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5359993A (en) 1992-12-31 1994-11-01 Symbiosis Corporation Apparatus for counting the number of times a medical instrument has been used
JPH05226945A (en) 1991-04-09 1993-09-03 Olympus Optical Co Ltd Voltage current conversion circuit and differential amplifier circuit having same circuit
JPH05208014A (en) 1991-04-10 1993-08-20 Olympus Optical Co Ltd Treating tool
US5297714A (en) 1991-04-17 1994-03-29 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5257713A (en) 1991-05-07 1993-11-02 United States Surgical Corporation Surgical fastening device
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
AU671685B2 (en) 1991-05-14 1996-09-05 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5137198A (en) 1991-05-16 1992-08-11 Ethicon, Inc. Fast closure device for linear surgical stapling instrument
DE4116343A1 (en) 1991-05-18 1992-11-19 Bosch Gmbh Robert HAND-MADE ELECTRIC TOOL, ESPECIALLY DRILLING MACHINE
US5181514A (en) 1991-05-21 1993-01-26 Hewlett-Packard Company Transducer positioning system
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
JP2581082Y2 (en) 1991-05-24 1998-09-17 三洋電機株式会社 Battery device
US5370134A (en) 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US5527264A (en) 1991-05-29 1996-06-18 Origin Medsystem, Inc. Methods of using endoscopic inflatable retraction devices
US5361752A (en) 1991-05-29 1994-11-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5258010A (en) 1991-05-30 1993-11-02 United States Surgical Corporation Anvilless surgical apparatus for applying surgical fasteners
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5190560A (en) 1991-06-20 1993-03-02 Woods John B Instrument for ligation and castration
US5262678A (en) 1991-06-21 1993-11-16 Lutron Electronics Co., Inc. Wallbox-mountable switch and dimmer
US5207697A (en) 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5268622A (en) 1991-06-27 1993-12-07 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5735290A (en) 1993-02-22 1998-04-07 Heartport, Inc. Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5176688A (en) 1991-07-17 1993-01-05 Perinchery Narayan Stone extractor and method
US5190657A (en) 1991-07-22 1993-03-02 Lydall, Inc. Blood filter and method of filtration
US5261877A (en) 1991-07-22 1993-11-16 Dow Corning Wright Method of performing a thrombectomy procedure
US5173133A (en) 1991-07-23 1992-12-22 United States Surgical Corporation Method for annealing stapler anvils
US5187422A (en) 1991-07-31 1993-02-16 Stryker Corporation Charger for batteries of different type
US5490819A (en) 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5391180A (en) 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
AU2063592A (en) 1991-08-09 1993-02-11 Emerson Electric Co. Cordless power tool
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
US5350104A (en) 1991-08-23 1994-09-27 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5333773A (en) 1991-08-23 1994-08-02 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
GR920100358A (en) 1991-08-23 1993-06-07 Ethicon Inc Surgical anastomosis stapling instrument.
US5259835A (en) 1991-08-29 1993-11-09 Tri-Point Medical L.P. Wound closure means and method using flowable adhesive
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5142932A (en) 1991-09-04 1992-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible robotic arm
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
IT1251206B (en) 1991-09-18 1995-05-04 Magneti Marelli Spa ELECTRICAL SYSTEM OF A MOTOR VEHICLE, INCLUDING AT LEAST A SUPER CAPACITOR.
CA2075319C (en) 1991-09-26 1998-06-30 Ernie Aranyi Handle for surgical instruments
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
US5431654A (en) 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5369565A (en) 1991-10-04 1994-11-29 Innova Electronics Corp. Modular power supply system
US5220269A (en) 1991-10-04 1993-06-15 Innova Electronics Corporation Power supply unit
JP2817749B2 (en) 1991-10-07 1998-10-30 三菱電機株式会社 Laser processing equipment
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
USD347474S (en) 1991-10-11 1994-05-31 Ethicon, Inc. Endoscopic stapler
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
CA2075141C (en) 1991-10-17 1998-06-30 Donald A. Morin Anvil for surgical staplers
US5474223A (en) 1991-10-18 1995-12-12 United States Surgical Corporation Surgical fastener applying apparatus
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
US5364001A (en) 1991-10-18 1994-11-15 United States Surgical Corporation Self contained gas powered surgical apparatus
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
AU660712B2 (en) 1991-10-18 1995-07-06 United States Surgical Corporation Apparatus for applying surgical fasteners
US5356064A (en) 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
CA2075227C (en) 1991-10-18 2004-02-10 Robert J. Geiste Surgical fastening apparatus with shipping interlock
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5308576A (en) 1991-10-18 1994-05-03 United States Surgical Corporation Injection molded anvils
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5443198A (en) 1991-10-18 1995-08-22 United States Surgical Corporation Surgical fastener applying apparatus
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5332142A (en) 1991-10-18 1994-07-26 Ethicon, Inc. Linear stapling mechanism with cutting means
CA2078794C (en) 1991-10-18 1998-10-06 Frank J. Viola Locking device for an apparatus for applying surgical fasteners
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US5579978A (en) 1991-10-18 1996-12-03 United States Surgical Corporation Apparatus for applying surgical fasteners
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
AU657364B2 (en) 1991-10-18 1995-03-09 United States Surgical Corporation Self contained gas powered surgical apparatus
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
ES2041610T3 (en) 1991-10-18 1997-05-16 United States Surgical Corp APPARATUS TO APPLY SURGICAL FASTENING CLAMPS.
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
EP0540461A1 (en) 1991-10-29 1993-05-05 SULZER Medizinaltechnik AG Sterile puncturing apparatus for blood vessels with non-sterile ultrasound probe and device for preparing the apparatus
ES2217252T3 (en) 1991-10-30 2004-11-01 Sherwood Services Ag MALEABLE, BIOABSORBIBLE AND METHOD PASSIVE STAPLE AND APPARATUS TO DEFORM A CLIP OF THIS TYPE.
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
US5350400A (en) 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
JPH05123325A (en) 1991-11-01 1993-05-21 Olympus Optical Co Ltd Treating tool
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5741271A (en) 1991-11-05 1998-04-21 Nakao; Naomi L. Surgical retrieval assembly and associated method
US5395034A (en) 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
JP3530528B2 (en) 1991-11-08 2004-05-24 ボストン サイエンティフィック リミテッド Ablation electrode with insulated temperature sensing element
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5476481A (en) 1991-11-15 1995-12-19 Robert Ley Electrotherapy apparatus with superimposed AC fields
RU2069981C1 (en) * 1991-11-15 1996-12-10 Ялмар Яковлевич Татти Surgical suture appliance
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
US5173053A (en) 1991-11-26 1992-12-22 Caterpillar Inc. Electrical connector for an electromechanical device
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5458579A (en) 1991-12-31 1995-10-17 Technalytics, Inc. Mechanical trocar insertion apparatus
WO1993013704A1 (en) 1992-01-09 1993-07-22 Endomedix Corporation Bi-directional miniscope
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5631973A (en) 1994-05-05 1997-05-20 Sri International Method for telemanipulation with telepresence
JP3583777B2 (en) 1992-01-21 2004-11-04 エス・アール・アイ・インターナシヨナル Teleoperator system and telepresence method
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
WO1993013718A1 (en) 1992-01-21 1993-07-22 Valleylab, Inc. Electrosurgical control for a trocar
US5284128A (en) 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
KR950700131A (en) 1992-02-07 1995-01-16 알렌 제이. 스피겔 Ultrasonic Piezoelectric Crystal Transducer Control Systems for Monitoring Electrical and Electronic Control Loops and Their Combination Systems (ULTRASONIC SURGICAL APPARATUS)
AU3610693A (en) 1992-02-07 1993-09-03 Nakao, Naomi Endoscope with disposable insertion member
US5348259A (en) 1992-02-10 1994-09-20 Massachusetts Institute Of Technology Flexible, articulable column
US5514157A (en) 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
CA2117379C (en) 1992-02-14 1999-11-16 Kypriacos A. Athanasiou Multi-phase bioerodible implant/carrier and method of manufacturing and using same
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5626595A (en) 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5261922A (en) 1992-02-20 1993-11-16 Hood Larry L Improved ultrasonic knife
US5282806A (en) 1992-08-21 1994-02-01 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
CA2089999A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
US5658238A (en) 1992-02-25 1997-08-19 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
GR1002537B (en) 1992-03-30 1997-01-27 Ethicon Inc. Surgical staple for insertion into tissue.
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5223675A (en) 1992-04-02 1993-06-29 Taft Anthony W Cable fastener
DE4211230C2 (en) 1992-04-03 1997-06-26 Ivoclar Ag Rechargeable light curing device
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
US5602449A (en) 1992-04-13 1997-02-11 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having positional control
US5563481A (en) 1992-04-13 1996-10-08 Smith & Nephew Endoscopy, Inc. Brushless motor
US5672945A (en) 1992-04-13 1997-09-30 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having self clearing motor control
FR2689749B1 (en) 1992-04-13 1994-07-22 Toledano Haviv FLEXIBLE SURGICAL STAPLING INSTRUMENT FOR CIRCULAR ANASTOMOSES.
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
DK50592A (en) 1992-04-15 1993-10-16 Jane Noeglebaek Christensen BACENTIAL TRAINING APPARATUS
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5417203A (en) 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
US5261135A (en) 1992-05-01 1993-11-16 Mitchell Brent R Screw gun router for drywall installation
GR1002336B (en) 1992-05-06 1996-05-21 Ethicon Inc. Endoscopic surgical apparatus capable of ligation and division.
US5211655A (en) 1992-05-08 1993-05-18 Hasson Harrith M Multiple use forceps for endoscopy
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5258007A (en) 1992-05-14 1993-11-02 Robert F. Spetzler Powered surgical instrument
JPH0630945A (en) 1992-05-19 1994-02-08 Olympus Optical Co Ltd Suturing apparatus
US5389098A (en) * 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5344059A (en) 1992-05-19 1994-09-06 United States Surgical Corporation Surgical apparatus and anvil delivery system therefor
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5197966A (en) 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
US5236424A (en) 1992-06-05 1993-08-17 Cardiac Pathways Corporation Catheter with retractable cannula for delivering a plurality of chemicals
JP3442423B2 (en) 1992-06-05 2003-09-02 積水化学工業株式会社 Simple corset and simple corset stuck body
US5279416A (en) 1992-06-05 1994-01-18 Edward Weck Incorporated Ligating device cartridge with separable retainer
US5361902A (en) 1992-06-05 1994-11-08 Leonard Bloom Surgical blade dispenser and disposal system for use during an operating procedure and method thereof
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5258012A (en) 1992-06-30 1993-11-02 Ethicon, Inc. Surgical fasteners
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5258009A (en) 1992-06-30 1993-11-02 American Cyanamid Company Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5222975A (en) 1992-07-13 1993-06-29 Lawrence Crainich Surgical staples
US5360428A (en) 1992-07-22 1994-11-01 Hutchinson Jr William B Laparoscopic instrument with electrical cutting wires
US5313967A (en) 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5511564A (en) 1992-07-29 1996-04-30 Valleylab Inc. Laparoscopic stretching instrument and associated method
US5258008A (en) 1992-07-29 1993-11-02 Wilk Peter J Surgical stapling device and associated method
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
AU675077B2 (en) 1992-08-14 1997-01-23 British Telecommunications Public Limited Company Position location system
US5375588A (en) 1992-08-17 1994-12-27 Yoon; Inbae Method and apparatus for use in endoscopic procedures
DE4228909C2 (en) 1992-08-28 1994-06-09 Ethicon Gmbh Endoscopic instrument for the application of ligature binders and ligature binders
US5630782A (en) 1992-09-01 1997-05-20 Adair; Edwin L. Sterilizable endoscope with separable auxiliary assembly
CA2143639C (en) 1992-09-01 2004-07-20 Edwin L. Adair Sterilizable endoscope with separable disposable tube assembly
CA2104345A1 (en) 1992-09-02 1994-03-03 David T. Green Surgical clamp apparatus
US5368215A (en) 1992-09-08 1994-11-29 United States Surgical Corporation Surgical apparatus and detachable anvil rod therefor
US5285381A (en) 1992-09-09 1994-02-08 Vanderbilt University Multiple control-point control system and method of use
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
CA2437777C (en) 1992-09-21 2006-11-28 United States Surgical Corporation Device for applying a meniscal staple
US5485952A (en) 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5465819A (en) 1992-09-29 1995-11-14 Borg-Warner Automotive, Inc. Power transmitting assembly
US5423471A (en) 1992-10-02 1995-06-13 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5573169A (en) 1992-10-02 1996-11-12 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5569161A (en) 1992-10-08 1996-10-29 Wendell V. Ebling Endoscope with sterile sleeve
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5286253A (en) 1992-10-09 1994-02-15 Linvatec Corporation Angled rotating surgical instrument
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5222945A (en) 1992-10-13 1993-06-29 Basnight Robert W Hypodermic syringe with protective shield
US5350391A (en) 1992-10-19 1994-09-27 Benedetto Iacovelli Laparoscopic instruments
US5718548A (en) 1992-10-20 1998-02-17 Clipmaster Corporation Pty Ltd Staple assembly
CA2108605A1 (en) 1992-10-21 1994-04-22 Nagabhushanam Totakura Bioabsorbable foam pledget
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
GB2272159A (en) 1992-11-10 1994-05-11 Andreas G Constantinides Surgical/diagnostic aid
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5389104A (en) 1992-11-18 1995-02-14 Symbiosis Corporation Arthroscopic surgical instruments
US5346504A (en) 1992-11-19 1994-09-13 Ethicon, Inc. Intraluminal manipulator with a head having articulating links
CA2150487C (en) 1992-11-30 2000-11-21 Michael D. Olichney An ultrasonic surgical handpiece and an energy initiator to maintain thevibration and linear dynamics
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5333422A (en) 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5330487A (en) 1992-12-17 1994-07-19 Tfi Acquistion Corp. Drive mechanism for surgical instruments
JP3042816B2 (en) 1992-12-18 2000-05-22 矢崎総業株式会社 Power supply connector
US5807393A (en) 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
FR2699806B1 (en) 1992-12-30 1995-03-24 Duthoit Francois Instrument, intended in particular to allow the extraction of pathological venous sections such as varicose veins.
US5313935A (en) 1992-12-31 1994-05-24 Symbiosis Corporation Apparatus for counting the number of times a surgical instrument has been used
EP0604789A1 (en) 1992-12-31 1994-07-06 K. Widmann Ag Surgical clamping element for making a purse string
US5236269A (en) 1993-01-14 1993-08-17 Mattel, Inc. Battery-powered dispenser for hot melt adhesive
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US5358510A (en) 1993-01-26 1994-10-25 Ethicon, Inc. Two part surgical fastener
JP2857555B2 (en) 1993-01-27 1999-02-17 三菱電機株式会社 Electric power steering device
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5383895A (en) 1993-02-10 1995-01-24 Unisurge, Inc. Endoscopic surgical grasper and method
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
US5263937A (en) 1993-02-11 1993-11-23 Shipp John I Trocar with profile to reduce insertion force
US5553624A (en) 1993-02-11 1996-09-10 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
JPH06237937A (en) 1993-02-12 1994-08-30 Olympus Optical Co Ltd Suturing device for surgery
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
US5613937A (en) 1993-02-22 1997-03-25 Heartport, Inc. Method of retracting heart tissue in closed-chest heart surgery using endo-scopic retraction
JPH08502438A (en) 1993-02-22 1996-03-19 ヴァリーラブ・インコーポレーテッド Laparoscopic distraction tension retractor device and method
US5643294A (en) 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
US5749968A (en) 1993-03-01 1998-05-12 Focal, Inc. Device for priming for improved adherence of gels to substrates
JP2672713B2 (en) 1993-03-02 1997-11-05 ホロビーム インコーポレイティド Surgical equipment
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
US5336130A (en) 1993-03-04 1994-08-09 Metal-Fab, Inc. Adjustable exhauster arm assembly
DE4306786C1 (en) 1993-03-04 1994-02-10 Wolfgang Daum Hand-type surgical manipulator for areas hard to reach - has distal components actuated by fingers via Bowden cables
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
DE4308454A1 (en) 1993-03-17 1994-09-22 Ferdinand Dr Koeckerling Surgical suture clip, in particular tobacco pouch suture clip
US5360305A (en) 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5343382A (en) 1993-04-05 1994-08-30 Delco Electronics Corp. Adaptive current control
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5456917A (en) 1993-04-12 1995-10-10 Cambridge Scientific, Inc. Method for making a bioerodible material for the sustained release of a medicament and the material made from the method
USD352780S (en) 1993-04-19 1994-11-22 Valleylab Inc. Combined suction, irrigation and electrosurgical handle
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
DE69406845T2 (en) 1993-04-20 1998-04-09 United States Surgical Corp Surgical stapling instrument
CA2121861A1 (en) 1993-04-23 1994-10-24 William D. Fox Mechanical morcellator
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
EP0622048B1 (en) 1993-04-27 1997-05-21 American Cyanamid Company Automatic laparoscopic ligation clip applicator
US5407293A (en) 1993-04-29 1995-04-18 Crainich; Lawrence Coupling apparatus for medical instrument
US5464300A (en) 1993-04-29 1995-11-07 Crainich; Lawrence Medical instrument and coupling apparatus for same
US5431668A (en) 1993-04-29 1995-07-11 Ethicon, Inc. Ligating clip applier
JP3559561B2 (en) 1993-04-30 2004-09-02 ユナイテッド・ステイツ・サージカル・コーポレイション Surgical instrument with articulated jaw structure and removable knife
US6716232B1 (en) 1993-04-30 2004-04-06 United States Surgical Corporation Surgical instrument having an articulated jaw structure and a detachable knife
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5449370A (en) 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
US5549621A (en) 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US6406472B1 (en) 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
EP0699053B1 (en) 1993-05-14 1999-03-17 Sri International Surgical apparatus
US5791231A (en) 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
JPH06327684A (en) 1993-05-19 1994-11-29 Olympus Optical Co Ltd Surgical suture instrument
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
JP3172977B2 (en) 1993-05-26 2001-06-04 富士重工業株式会社 In-vehicle battery capacity meter
US5601604A (en) 1993-05-27 1997-02-11 Inamed Development Co. Universal gastric band
US5489290A (en) 1993-05-28 1996-02-06 Snowden-Pencer, Inc. Flush port for endoscopic surgical instruments
US5404870A (en) 1993-05-28 1995-04-11 Ethicon, Inc. Method of using a transanal inserter
US5381649A (en) 1993-06-04 1995-01-17 Webb; Stephen A. Medical staple forming die and punch
US5443197A (en) 1993-06-16 1995-08-22 United States Surgical Corporation Locking mechanism for a skin stapler cartridge
RU2066128C1 (en) 1993-06-21 1996-09-10 Иван Александрович Корольков Surgical suture appliance
US5409703A (en) 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
US5341724A (en) 1993-06-28 1994-08-30 Bronislav Vatel Pneumatic telescoping cylinder and method
US5651762A (en) 1993-07-09 1997-07-29 Bridges; Doye R. Apparatus for holding intestines out of an operative field
US6063025A (en) 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
DE4323585A1 (en) 1993-07-14 1995-01-19 Delma Elektro Med App Bipolar high-frequency surgical instrument
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
DE9310601U1 (en) 1993-07-15 1993-09-02 Siemens AG, 80333 München Cassette for holding medical, in particular dental, instruments
US5501654A (en) 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
DE4323815C2 (en) 1993-07-15 1997-09-25 Siemens Ag Method and device for the hygienic preparation of medical, in particular dental, instruments
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
WO1995003001A1 (en) 1993-07-21 1995-02-02 Klieman Charles H Surgical instrument for endoscopic and general surgery
US5582617A (en) 1993-07-21 1996-12-10 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5827323A (en) 1993-07-21 1998-10-27 Charles H. Klieman Surgical instrument for endoscopic and general surgery
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
GR940100335A (en) 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
JPH079622U (en) 1993-07-27 1995-02-10 和光化成工業株式会社 Vehicle sun visor holder structure
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
US5447417A (en) 1993-08-31 1995-09-05 Valleylab Inc. Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
USD357981S (en) 1993-09-01 1995-05-02 United States Surgical Corporation Surgical stapler
DE4432596A1 (en) 1993-09-16 1995-03-23 Whitaker Corp Modular electrical contact arrangement
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
DE69426414T2 (en) 1993-09-24 2001-05-03 Takiron Co. Ltd., Osaka IMPLANT MATERIAL
US5419766A (en) 1993-09-28 1995-05-30 Critikon, Inc. Catheter with stick protection
CA2133159A1 (en) 1993-09-30 1995-03-31 Eric J. Butterfield Surgical instrument having improved manipulating means
US5405344A (en) 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
DE4333983A1 (en) 1993-10-05 1995-04-06 Delma Elektro Med App High frequency electrosurgical instrument
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
CA2132917C (en) 1993-10-07 2004-12-14 John Charles Robertson Circular anastomosis device
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US5439155A (en) 1993-10-07 1995-08-08 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
RU2098025C1 (en) 1993-10-11 1997-12-10 Аркадий Вениаминович Дубровский Rotary device
US5556416A (en) 1993-10-12 1996-09-17 Valleylab, Inc. Endoscopic instrument
US5724025A (en) 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5427298A (en) 1993-10-28 1995-06-27 Tegtmeier; C. Allen Method and apparatus for indicating quantity of fasteners in a fastening device
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
JP3414455B2 (en) 1993-11-02 2003-06-09 オリンパス光学工業株式会社 Suture device
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5531305A (en) 1993-11-05 1996-07-02 Borg-Warner Automotive, Inc. Synchronizer clutch assembly for multiple ratio gearing
US5658298A (en) 1993-11-09 1997-08-19 Inamed Development Company Laparoscopic tool
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5562690A (en) 1993-11-12 1996-10-08 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
US5633374A (en) 1993-11-26 1997-05-27 The Upjohn Company Pyrimidine, cyanoguanidines as K-channel blockers
DE4340707C2 (en) 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US5405073A (en) 1993-12-06 1995-04-11 Ethicon, Inc. Flexible support shaft assembly
US5465894A (en) 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5543695A (en) 1993-12-15 1996-08-06 Stryker Corporation Medical instrument with programmable torque control
US5743456A (en) 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
US5470008A (en) 1993-12-20 1995-11-28 United States Surgical Corporation Apparatus for applying surgical fasteners
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5643293A (en) 1993-12-29 1997-07-01 Olympus Optical Co., Ltd. Suturing instrument
US5564658A (en) 1993-12-29 1996-10-15 B-Line Systems, Inc. Support system for data transmission lines
US5441191A (en) 1993-12-30 1995-08-15 Linden; Gerald E. Indicating "staples low" in a paper stapler
JPH09500812A (en) 1993-12-30 1997-01-28 ヴァリーラブ・インコーポレーテッド Bipolar ultrasonic surgery
US5782397A (en) 1994-01-04 1998-07-21 Alpha Surgical Technologies, Inc. Stapling device
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
DE9490471U1 (en) 1994-01-31 1996-09-26 Valleylab, Inc., Boulder, Col. Telescopic bipolar electrode for non-invasive medical procedures
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5527320A (en) 1994-02-10 1996-06-18 Pilling Weck Inc. Surgical clip applying instrument
US5503638A (en) 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
JPH0833642A (en) 1994-02-25 1996-02-06 Ethicon Endo Surgery Inc Improved anvil receiving port for surgical stapler
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
CA2143560C (en) 1994-03-02 2007-01-16 Mark Fogelberg Sterile occlusion fasteners and instrument and method for their placement
US5445142A (en) 1994-03-15 1995-08-29 Ethicon Endo-Surgery, Inc. Surgical trocars having optical tips defining one or more viewing ports
DE9404459U1 (en) 1994-03-16 1994-07-14 Chr. Renz GmbH & Co, 73540 Heubach Device for packaging binding elements
CA2144211C (en) 1994-03-16 2005-05-24 David T. Green Surgical instruments useful for endoscopic spinal procedures
US5484398A (en) 1994-03-17 1996-01-16 Valleylab Inc. Methods of making and using ultrasonic handpiece
JP3421117B2 (en) 1994-03-17 2003-06-30 テルモ株式会社 Surgical instruments
RU2052979C1 (en) 1994-03-22 1996-01-27 Товарищество с ограниченной ответственностью "Дипы" ЛТД Apparatus for application of clamping clips and magazine for suturing staples or clamping clips
US5561881A (en) 1994-03-22 1996-10-08 U.S. Philips Corporation Electric toothbrush
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US5860581A (en) 1994-03-24 1999-01-19 United States Surgical Corporation Anvil for circular stapler
US5541376A (en) 1994-03-28 1996-07-30 Valleylab Inc Switch and connector
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
US5715987A (en) 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
CA2144818C (en) 1994-04-07 2006-07-11 Henry Bolanos Graduated anvil for surgical stapling instruments
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5653677A (en) 1994-04-12 1997-08-05 Fuji Photo Optical Co. Ltd Electronic endoscope apparatus with imaging unit separable therefrom
JPH07285089A (en) 1994-04-14 1995-10-31 Mitsubishi Heavy Ind Ltd Pentadactylic hand arm mechanism
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
CA2148667A1 (en) 1994-05-05 1995-11-06 Carlo A. Mililli Self-contained powered surgical apparatus
US5628446A (en) 1994-05-05 1997-05-13 United States Surgical Corporation Self-contained powered surgical apparatus
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
US5498164A (en) 1994-05-09 1996-03-12 Ward; Mark C. Automotive steering column electrical connector
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
US6704210B1 (en) 1994-05-20 2004-03-09 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
EP0690520B1 (en) 1994-05-30 1999-08-18 Canon Kabushiki Kaisha Rechargeable batteries
US5814057A (en) 1994-06-03 1998-09-29 Gunze Limited Supporting element for staple region
GB9411429D0 (en) 1994-06-08 1994-07-27 Seton Healthcare Group Plc Wound dressings
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5522831A (en) 1994-06-13 1996-06-04 Dennis R. Sleister Incising trocar and cannula assembly
US5473204A (en) 1994-06-16 1995-12-05 Temple; Thomas D. Time delay switch
JP3568207B2 (en) 1994-06-17 2004-09-22 ハートポート インコーポレイテッド Surgical stapling instrument
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5807376A (en) 1994-06-24 1998-09-15 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5746224A (en) 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5651821A (en) 1994-06-27 1997-07-29 Ricoh Company, Ltd. Battery disposal and collection apparatus
DE4422621C1 (en) 1994-06-28 1995-08-31 Aesculap Ag Surgical instrument for gripping, transporting or fixing objects
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5551622A (en) 1994-07-13 1996-09-03 Yoon; Inbae Surgical stapler
US5833695A (en) 1994-07-13 1998-11-10 Yoon; Inbae Surgical stapling system and method of applying staples from multiple staple cartridges
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5533521A (en) 1994-07-15 1996-07-09 United States Surgical Corporation Interchangeable tissue measuring device
US5629577A (en) 1994-07-15 1997-05-13 Micro Medical Devices Miniature linear motion actuator
US5712460A (en) 1994-07-19 1998-01-27 Linvatec Corporation Multi-function surgical device control system
US5544802A (en) 1994-07-27 1996-08-13 Crainich; Lawrence Surgical staple and stapler device therefor
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
DE9412228U1 (en) 1994-07-28 1994-09-22 Loctite Europa E.E.I.G. (E.W.I.V.), 85748 Garching Peristaltic pump for precise dosing of small amounts of liquid
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
RU2104671C1 (en) 1994-08-03 1998-02-20 Виктор Алексеевич Липатов Surgical suturing device
US5507426A (en) 1994-08-05 1996-04-16 United States Surgical Corporation Apparatus for applying surgical fasteners
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5509916A (en) 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US5480089A (en) 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
CA2146508C (en) 1994-08-25 2006-11-14 Robert H. Schnut Anvil for circular stapler
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
JPH08136626A (en) 1994-09-16 1996-05-31 Seiko Epson Corp Residual capacity meter for battery, and method for calculating residual capacity of battery
US5569284A (en) 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5609601A (en) 1994-09-23 1997-03-11 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
DE4434864C2 (en) 1994-09-29 1997-06-19 United States Surgical Corp Surgical staple applicator with interchangeable staple magazine
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5685474A (en) 1994-10-04 1997-11-11 United States Surgical Corporation Tactile indicator for surgical instrument
US5901895A (en) 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5797538A (en) 1994-10-05 1998-08-25 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5540374A (en) 1994-10-06 1996-07-30 Minnesota Mining And Manufacturing Company Bone stapler cartridge
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
CA2157744C (en) 1994-10-07 2005-08-23 Charles R. Sherts Endoscopic vascular suturing apparatus
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
US5575805A (en) 1994-10-07 1996-11-19 Li Medical Technologies, Inc. Variable tip-pressure surgical grasper
US5718714A (en) 1994-10-11 1998-02-17 Circon Corporation Surgical instrument with removable shaft assembly
CN1163558A (en) 1994-10-11 1997-10-29 查尔斯·H·克利曼 Endoscopic instrument with detachable end effector
US5591170A (en) 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
AU706434B2 (en) 1994-10-18 1999-06-17 Ethicon Inc. Injectable liquid copolymers for soft tissue repair and augmentation
US5549627A (en) 1994-10-21 1996-08-27 Kieturakis; Maciej J. Surgical instruments and method for applying progressive intracorporeal traction
US5599852A (en) 1994-10-18 1997-02-04 Ethicon, Inc. Injectable microdispersions for soft tissue repair and augmentation
US5752973A (en) 1994-10-18 1998-05-19 Archimedes Surgical, Inc. Endoscopic surgical gripping instrument with universal joint jaw coupler
USD381077S (en) 1994-10-25 1997-07-15 Ethicon Endo-Surgery Multifunctional surgical stapling instrument
US5620454A (en) 1994-10-25 1997-04-15 Becton, Dickinson And Company Guarded surgical scalpel
US5575789A (en) 1994-10-27 1996-11-19 Valleylab Inc. Energizable surgical tool safety device and method
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
JPH08136628A (en) 1994-11-11 1996-05-31 Fujitsu Ltd Device for monitoring capacity of battery
US5989244A (en) 1994-11-15 1999-11-23 Gregory; Kenton W. Method of use of a sheet of elastin or elastin-based material
US5891558A (en) 1994-11-22 1999-04-06 Tissue Engineering, Inc. Biopolymer foams for use in tissue repair and reconstruction
US5709934A (en) 1994-11-22 1998-01-20 Tissue Engineering, Inc. Bipolymer foams having extracellular matrix particulates
US6206897B1 (en) 1994-12-02 2001-03-27 Ethicon, Inc. Enhanced visualization of the latching mechanism of latching surgical devices
US7235089B1 (en) 1994-12-07 2007-06-26 Boston Scientific Corporation Surgical apparatus and method
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5569270A (en) 1994-12-13 1996-10-29 Weng; Edward E. Laparoscopic surgical instrument
US5988479A (en) 1994-12-13 1999-11-23 United States Surgical Corporation Apparatus for applying surgical fasteners
JPH08164141A (en) 1994-12-13 1996-06-25 Olympus Optical Co Ltd Treating tool
US5636779A (en) 1994-12-13 1997-06-10 United States Surgical Corporation Apparatus for applying surgical fasteners
US5541489A (en) 1994-12-15 1996-07-30 Intel Corporation Smart battery power availability feature based on battery-specific characteristics
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5492671A (en) 1994-12-20 1996-02-20 Zimmer, Inc. Sterilization case and method of sterilization
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
AU701320B2 (en) 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5713895A (en) 1994-12-30 1998-02-03 Valleylab Inc Partially coated electrodes
US5466020A (en) 1994-12-30 1995-11-14 Valleylab Inc. Bayonet connector for surgical handpiece
US6430298B1 (en) 1995-01-13 2002-08-06 Lonnie Joe Kettl Microphone mounting structure for a sound amplifying respirator and/or bubble suit
CA2168404C (en) 1995-02-01 2007-07-10 Dale Schulze Surgical instrument with expandable cutting element
EP0806914B1 (en) 1995-02-03 2001-09-19 Sherwood Services AG Electrosurgical aspirator combined with a pencil
USD372086S (en) 1995-02-03 1996-07-23 Valleylab Inc. Aspirator attachment for a surgical device
AU4763296A (en) 1995-02-03 1996-08-21 Inbae Yoon Cannula with distal end valve
DE69610723T2 (en) 1995-02-10 2001-10-18 The Raymond Corp., Greene Industrial truck with internal temperature monitoring
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6110187A (en) 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US5735445A (en) 1995-03-07 1998-04-07 United States Surgical Corporation Surgical stapler
US5669904A (en) 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5681341A (en) 1995-03-14 1997-10-28 Origin Medsystems, Inc. Flexible lifting apparatus
DE19509116C2 (en) 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt Flexible structure
DE19509115C2 (en) 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt Surgical device for preparing an anastomosis using minimally invasive surgical techniques
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US5618307A (en) 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
US6669690B1 (en) 1995-04-06 2003-12-30 Olympus Optical Co., Ltd. Ultrasound treatment system
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US6056735A (en) 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
DE69625660T2 (en) 1995-04-21 2003-11-06 W.L. Gore & Associates, Inc. DISPENSING DEVICE FOR SURGICAL FIXING PLATES
JPH08289895A (en) 1995-04-21 1996-11-05 Olympus Optical Co Ltd Suture device
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
US5773991A (en) 1995-05-02 1998-06-30 Texas Instruments Incorporated Motor current sense circuit using H bridge circuits
US5657417A (en) 1995-05-02 1997-08-12 Burndy Corporation Control for battery powered tool
JP3795100B2 (en) 1995-05-08 2006-07-12 株式会社伊垣医療設計 Medical suture material
JP3526487B2 (en) 1995-05-08 2004-05-17 株式会社伊垣医療設計 Medical sutures
AU5741296A (en) 1995-05-12 1996-11-29 Rodney C. Perkins Translumenal circumferential injector
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
US6123241A (en) 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
US5678748A (en) 1995-05-24 1997-10-21 Vir Engineering Surgical stapler with improved safety mechanism
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
AU5700796A (en) 1995-06-06 1996-12-24 Valleylab, Inc. Power control for an electrosurgical generator
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
AU710400B2 (en) 1995-06-06 1999-09-16 Sherwood Services Ag Digital waveform generation for electrosurgical generators
US5614887A (en) 1995-06-07 1997-03-25 Buchbinder; Dale Patient monitoring system and method thereof
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5667864A (en) 1995-06-07 1997-09-16 Landoll; Leo M. Absorbant laminates and method of making same
US5620326A (en) 1995-06-09 1997-04-15 Simulab Corporation Anatomical simulator for videoendoscopic surgical training
DE19521257C2 (en) 1995-06-10 1999-01-28 Winter & Ibe Olympus Surgical forceps
FR2735350B1 (en) 1995-06-15 1997-12-26 Maurice Lanzoni DEVICE FOR DEVELOPING EFFORTS OF A CUTTER
US5849011A (en) 1995-06-19 1998-12-15 Vidamed, Inc. Medical device with trigger actuation assembly
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
GB9604770D0 (en) 1995-06-23 1996-05-08 Gyrus Medical Ltd An electrosurgical generator and system
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
DE69611912T3 (en) 1995-06-23 2005-06-09 Gyrus Medical Ltd. ELECTRO-SURGICAL INSTRUMENT
IL122713A (en) 1995-06-23 2001-04-30 Gyrus Medical Ltd Electrosurgical instrument
US6185356B1 (en) 1995-06-27 2001-02-06 Lumitex, Inc. Protective cover for a lighting device
US6077280A (en) 1995-06-29 2000-06-20 Thomas Jefferson University Surgical clamp
WO1997001989A1 (en) 1995-07-03 1997-01-23 Frater Dirk A System for mounting bolster material on tissue staplers
US5878607A (en) 1995-07-06 1999-03-09 Johnson & Johnson Professional, Inc. Surgical cast cutter
USRE38708E1 (en) 1995-07-11 2005-03-01 United States Surgical Corporation Disposable loading unit for surgical stapler
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
US6447518B1 (en) 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
JPH11509752A (en) 1995-07-18 1999-08-31 エドワーズ,ガーランド,ユー. Flexible shaft
US5749896A (en) 1995-07-18 1998-05-12 Cook; Melvin S. Staple overlap
US5810855A (en) 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US5702409A (en) 1995-07-21 1997-12-30 W. L. Gore & Associates, Inc. Device and method for reinforcing surgical staples
US5556020A (en) 1995-07-21 1996-09-17 Hou; Chang F. Power staple gun
JP3264607B2 (en) 1995-07-28 2002-03-11 株式会社モリタ製作所 Motor control device for dental handpiece
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
RU2110965C1 (en) 1995-08-03 1998-05-20 Ярослав Петрович Кулик Apparatus for laparoscopic interventions
US5549583A (en) 1995-08-04 1996-08-27 Adam Spence Corporation Surgical connector
US5611709A (en) 1995-08-10 1997-03-18 Valleylab Inc Method and assembly of member and terminal
US5715988A (en) 1995-08-14 1998-02-10 United States Surgical Corporation Surgical stapler with lockout mechanism
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5839639A (en) 1995-08-17 1998-11-24 Lasersurge, Inc. Collapsible anvil assembly and applicator instrument
US5931853A (en) 1995-08-25 1999-08-03 Mcewen; James A. Physiologic tourniquet with safety circuit
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5574431A (en) 1995-08-29 1996-11-12 Checkpoint Systems, Inc. Deactivateable security tag
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5891094A (en) 1995-09-07 1999-04-06 Innerdyne, Inc. System for direct heating of fluid solution in a hollow body organ and methods
US6075441A (en) 1996-09-05 2000-06-13 Key-Trak, Inc. Inventoriable-object control and tracking system
DE19534043A1 (en) 1995-09-14 1997-03-20 Carisius Christensen Gmbh Dr Surgical machine with inductively stored electric energy driven electric motor
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5704087A (en) 1995-09-19 1998-01-06 Strub; Richard Dental care apparatus and technique
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5662667A (en) 1995-09-19 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5797959A (en) 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5702387A (en) 1995-09-27 1997-12-30 Valleylab Inc Coated electrosurgical electrode
US5732821A (en) 1995-09-28 1998-03-31 Biomet, Inc. System for sterilizing medical devices
US5707392A (en) 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5796188A (en) 1995-10-05 1998-08-18 Xomed Surgical Products, Inc. Battery-powered medical instrument with power booster
US5804726A (en) 1995-10-16 1998-09-08 Mtd Products Inc. Acoustic signature analysis for a noisy enviroment
US5809441A (en) 1995-10-19 1998-09-15 Case Corporation Apparatus and method of neutral start control of a power transmission
US5697542A (en) 1995-10-19 1997-12-16 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
US5653721A (en) 1995-10-19 1997-08-05 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
US5839369A (en) 1995-10-20 1998-11-24 Eastman Kodak Company Method of controlled laser imaging of zirconia alloy ceramic lithographic member to provide localized melting in exposed areas
US5997552A (en) 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
CA2188738A1 (en) 1995-10-27 1997-04-28 Lisa W. Heaton Surgical stapler having interchangeable loading units
US5651491A (en) 1995-10-27 1997-07-29 United States Surgical Corporation Surgical stapler having interchangeable loading units
US5804936A (en) 1995-10-31 1998-09-08 Smith & Nephew, Inc. Motor controlled surgical system
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5860953A (en) 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
JPH09149941A (en) 1995-12-01 1997-06-10 Tokai Rika Co Ltd Sensor for intra-corporeal medical instrument
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5638582A (en) 1995-12-20 1997-06-17 Flexible Steel Lacing Company Belt fastener with pre-set staples
US5865638A (en) 1995-12-21 1999-02-02 Alcoa Fujikura Ltd. Electrical connector
US5971916A (en) 1995-12-27 1999-10-26 Koren; Arie Video camera cover
BR9612395A (en) 1995-12-29 1999-07-13 Gyrus Medical Ltd Electrosurgical instrument and an electrosurgical electrode set
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5738648A (en) 1996-01-23 1998-04-14 Valleylab Inc Method and apparatus for a valve and irrigator
US6015417A (en) 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
DE19603889C2 (en) 1996-02-03 1999-05-06 Aesculap Ag & Co Kg Surgical application device
US7166117B2 (en) 1996-02-07 2007-01-23 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
US20070244496A1 (en) 1996-02-07 2007-10-18 Hellenkamp Johann F Automatic surgical device and control assembly for cutting a cornea
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
GB9602580D0 (en) 1996-02-08 1996-04-10 Dual Voltage Ltd Plastics flexible core
US5620289A (en) 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
WO1997029680A1 (en) 1996-02-13 1997-08-21 Imagyn Medical, Inc. Surgical access device and method of constructing same
US5749889A (en) 1996-02-13 1998-05-12 Imagyn Medical, Inc. Method and apparatus for performing biopsy
US5713128A (en) 1996-02-16 1998-02-03 Valleylab Inc Electrosurgical pad apparatus and method of manufacture
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5894843A (en) 1996-02-20 1999-04-20 Cardiothoracic Systems, Inc. Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US5800379A (en) 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
DE19607123C2 (en) 1996-02-26 1998-07-16 Aesculap Ag & Co Kg Drilling machine for surgical purposes
US5951575A (en) 1996-03-01 1999-09-14 Heartport, Inc. Apparatus and methods for rotationally deploying needles
US5810721A (en) 1996-03-04 1998-09-22 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US5673842A (en) 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
US5697543A (en) 1996-03-12 1997-12-16 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
US5605272A (en) 1996-03-12 1997-02-25 Ethicon Endo-Surgery, Inc. Trigger mechanism for surgical instruments
US5810240A (en) 1996-03-15 1998-09-22 United States Surgical Corporation Surgical fastener applying device
IL117607A0 (en) 1996-03-21 1996-07-23 Dev Of Advanced Medical Produc Surgical stapler and method of surgical fastening
WO1997035533A1 (en) 1996-03-25 1997-10-02 Enrico Nicolo Surgical mesh prosthetic material and methods of use
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
US5785232A (en) 1996-04-17 1998-07-28 Vir Engineering Surgical stapler
US5728121A (en) 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US5836503A (en) 1996-04-22 1998-11-17 United States Surgical Corporation Insertion device for surgical apparatus
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
JP3791856B2 (en) 1996-04-26 2006-06-28 オリンパス株式会社 Medical suture device
US6050472A (en) 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
US6221007B1 (en) 1996-05-03 2001-04-24 Philip S. Green System and method for endoscopic imaging and endosurgery
US5928137A (en) 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US5741305A (en) 1996-05-06 1998-04-21 Physio-Control Corporation Keyed self-latching battery pack for a portable defibrillator
DE19618291A1 (en) 1996-05-07 1998-01-29 Storz Karl Gmbh & Co Instrument with a bendable handle
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5772379A (en) 1996-05-24 1998-06-30 Evensen; Kenneth Self-filling staple fastener
JPH09323068A (en) 1996-06-07 1997-12-16 Chowa Kogyo Kk Method for controlling phase difference of eccentric weight for excitation and mechanism for controlling the same phase
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US5735874A (en) 1996-06-21 1998-04-07 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
US5853366A (en) 1996-07-08 1998-12-29 Kelsey, Inc. Marker element for interstitial treatment and localizing device and method using same
US5782748A (en) 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5812188A (en) 1996-07-12 1998-09-22 Adair; Edwin L. Sterile encapsulated endoscopic video monitor
US5957831A (en) 1996-07-12 1999-09-28 Adair; Edwin L. Sterile encapsulated endoscopic video monitor
US5765565A (en) 1996-07-12 1998-06-16 Adair; Edwin L. Sterile encapsulated operating room video monitor and video monitor support device
US5702408A (en) 1996-07-17 1997-12-30 Ethicon Endo-Surgery, Inc. Articulating surgical instrument
US6083234A (en) 1996-07-23 2000-07-04 Surgical Dynamics, Inc. Anastomosis instrument and method
US6024748A (en) 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6440146B2 (en) 1996-07-23 2002-08-27 United States Surgical Corporation Anastomosis instrument and method
US5785647A (en) 1996-07-31 1998-07-28 United States Surgical Corporation Surgical instruments useful for spinal surgery
US6054142A (en) 1996-08-01 2000-04-25 Cyto Therapeutics, Inc. Biocompatible devices with foam scaffolds
JP3752737B2 (en) 1996-08-12 2006-03-08 トヨタ自動車株式会社 Angular velocity detector
US5830598A (en) 1996-08-15 1998-11-03 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
USD393067S (en) 1996-08-27 1998-03-31 Valleylab Inc. Electrosurgical pencil
US5873885A (en) 1996-08-29 1999-02-23 Storz Instrument Company Surgical handpiece
US5997528A (en) 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US6065679A (en) 1996-09-06 2000-05-23 Ivi Checkmate Inc. Modular transaction terminal
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5730758A (en) 1996-09-12 1998-03-24 Allgeyer; Dean O. Staple and staple applicator for use in skin fixation of catheters
US20050143769A1 (en) 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
US5833696A (en) 1996-10-03 1998-11-10 United States Surgical Corporation Apparatus for applying surgical clips
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US5843132A (en) 1996-10-07 1998-12-01 Ilvento; Joseph P. Self-contained, self-powered temporary intravenous pacing catheter assembly
US5904647A (en) 1996-10-08 1999-05-18 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
US5851179A (en) 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
JP3091420B2 (en) 1996-10-18 2000-09-25 株式会社貝印刃物開発センター Endoscope treatment tool
US5752965A (en) 1996-10-21 1998-05-19 Bio-Vascular, Inc. Apparatus and method for producing a reinforced surgical fastener suture line
US5769892A (en) 1996-10-22 1998-06-23 Mitroflow International Inc. Surgical stapler sleeve for reinforcing staple lines
US6043626A (en) 1996-10-29 2000-03-28 Ericsson Inc. Auxiliary battery holder with multicharger functionality
US6162537A (en) 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
US6033105A (en) 1996-11-15 2000-03-07 Barker; Donald Integrated bone cement mixing and dispensing system
BR9714740A (en) 1996-11-18 2002-01-02 Univ Massachusetts Systems, methods and instruments for minimized penetration surgery
US6165184A (en) 1996-11-18 2000-12-26 Smith & Nephew, Inc. Systems methods and instruments for minimally invasive surgery
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
US6159224A (en) 1996-11-27 2000-12-12 Yoon; Inbae Multiple needle suturing instrument and method
FR2756574B1 (en) 1996-11-29 1999-01-08 Staubli Lyon SELECTION DEVICE, THREE POSITION WEAPON MECHANICS AND WEAVING MACHINE EQUIPPED WITH SUCH WEAPON MECHANICS
US6165188A (en) 1996-12-02 2000-12-26 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use
US6102926A (en) 1996-12-02 2000-08-15 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having means for sensing tissue parameters and methods of use
US5899915A (en) 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
US6050990A (en) 1996-12-05 2000-04-18 Thermolase Corporation Methods and devices for inhibiting hair growth and related skin treatments
CA2224366C (en) 1996-12-11 2006-10-31 Ethicon, Inc. Meniscal repair device
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US7963913B2 (en) 1996-12-12 2011-06-21 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US5966126A (en) 1996-12-23 1999-10-12 Szabo; Andrew J. Graphic user interface for database system
IL119883A0 (en) 1996-12-23 1997-03-18 Dev Of Advanced Medical Produc Connector of rod posts in surgical stapler apparatus
US6063098A (en) 1996-12-23 2000-05-16 Houser; Kevin Articulable ultrasonic surgical apparatus
US5849023A (en) 1996-12-27 1998-12-15 Mericle; Robert William Disposable remote flexible drive cutting apparatus
US6007521A (en) 1997-01-07 1999-12-28 Bidwell; Robert E. Drainage catheter system
DE19700402C2 (en) 1997-01-08 1999-12-30 Ferdinand Peer Instrument to compensate for hand tremors when manipulating fine structures
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5931847A (en) 1997-01-09 1999-08-03 Ethicon Endo-Surgery, Inc. Surgical cutting instrument with improved cutting edge
US5769748A (en) 1997-01-16 1998-06-23 Hughes Electronics Corporation Gimbal employing differential combination of offset drives
JPH10200699A (en) 1997-01-16 1998-07-31 Ricoh Co Ltd Servo controller in scanner of image formation device
GB2323744B (en) 1997-01-17 1999-03-24 Connell Anne O Method of supporting unknown addresses in an interface for data transmission in an asynchronous transfer mode
US6485667B1 (en) 1997-01-17 2002-11-26 Rayonier Products And Financial Services Company Process for making a soft, strong, absorbent material for use in absorbent articles
US5784934A (en) 1997-01-30 1998-07-28 Shinano Pneumatic Industries, Inc. Ratchet wrench with pivotable head
US5908402A (en) 1997-02-03 1999-06-01 Valleylab Method and apparatus for detecting tube occlusion in argon electrosurgery system
US6376971B1 (en) 1997-02-07 2002-04-23 Sri International Electroactive polymer electrodes
US6545384B1 (en) 1997-02-07 2003-04-08 Sri International Electroactive polymer devices
US5899824A (en) 1997-02-12 1999-05-04 Accudart Corporation Snap-fit dart and adapter
US5797637A (en) 1997-02-21 1998-08-25 Ervin; Scott P. Roll mover and method of using
DE19707373C1 (en) 1997-02-25 1998-02-05 Storz Karl Gmbh & Co Releasable connection of two tube shaft instruments or instrument parts
US5907211A (en) 1997-02-28 1999-05-25 Massachusetts Institute Of Technology High-efficiency, large stroke electromechanical actuator
IT1291164B1 (en) 1997-03-04 1998-12-29 Coral Spa UNIVERSAL DUCT FOR THE CONVEYANCE OF HARMFUL SMOKES OR GAS FROM A WORKING PLACE.
AU6448798A (en) 1997-03-05 1998-09-22 Trustees Of Columbia University In The City Of New York, The Electrothermal device for sealing and joining or cutting tissue
US5810821A (en) 1997-03-28 1998-09-22 Biomet Inc. Bone fixation screw system
ES2296330T3 (en) 1997-03-31 2008-04-16 Kabushikikaisha Igaki Iryo Sekkei SUTURE HOLDING ELEMENT FOR USE IN MEDICAL TREATMENTS.
US6050172A (en) 1997-04-04 2000-04-18 Emhart Glass S.A. Pneumatically operated mechanism
US5846254A (en) 1997-04-08 1998-12-08 Ethicon Endo-Surgery, Inc. Surgical instrument for forming a knot
US5843169A (en) 1997-04-08 1998-12-01 Taheri; Syde A. Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US6270916B1 (en) 1997-04-10 2001-08-07 Alcatel Complete discharge device for lithium battery
RU2144791C1 (en) 1997-04-14 2000-01-27 Дубровский Аркадий Вениаминович Gently sloping turning device
USD462437S1 (en) 1997-04-14 2002-09-03 Baxter International Inc. Manually operable irrigation surgical instrument
TW473600B (en) 1997-04-15 2002-01-21 Swagelok Co Tube fitting, rear ferrule for a two ferrule tube fitting and ferrule for a tube fitting and a non-flared tube fitting
US5919198A (en) 1997-04-17 1999-07-06 Ethicon Endo-Surgery, Inc. Disposable cartridge with drivers
DE29720616U1 (en) 1997-04-18 1998-08-20 Kaltenbach & Voigt Gmbh & Co, 88400 Biberach Handpiece for medical purposes, in particular for a medical or dental treatment facility, preferably for machining a tooth root canal
US5893878A (en) 1997-04-24 1999-04-13 Pierce; Javin Micro traumatic tissue manipulator apparatus
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
JPH10296660A (en) 1997-04-25 1998-11-10 Hitachi Koki Co Ltd Battery type portable tool
US6157169A (en) 1997-04-30 2000-12-05 Samsung Electronics Co., Ltd. Monitoring technique for accurately determining residual capacity of a battery
US5906577A (en) 1997-04-30 1999-05-25 University Of Massachusetts Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision
US6017358A (en) 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6037724A (en) 1997-05-01 2000-03-14 Osteomed Corporation Electronic controlled surgical power tool
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
US7048716B1 (en) 1997-05-15 2006-05-23 Stanford University MR-compatible devices
DE19721076A1 (en) 1997-05-20 1998-11-26 Trw Repa Gmbh Method for producing a rope section with a fastening element for a vehicle occupant restraint system, and rope section produced with this method
US5817091A (en) 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US5997952A (en) 1997-05-23 1999-12-07 The Dow Chemical Company Fast-setting latex coating and formulations
US5899914A (en) 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US5947996A (en) 1997-06-23 1999-09-07 Medicor Corporation Yoke for surgical instrument
US5951552A (en) 1997-06-30 1999-09-14 Ethicon Endo-Surgery, Inc. Capacitively coupled cordless electrosurgical instrument
US5849020A (en) 1997-06-30 1998-12-15 Ethicon Endo-Surgery, Inc. Inductively coupled electrosurgical instrument
US7021878B1 (en) 1997-07-03 2006-04-04 Trackers Company Categorizing fasteners and construction connectors using visual identifiers
US6049145A (en) 1997-07-07 2000-04-11 Motorola, Inc. Tamper proof safety circuit
FR2765794B1 (en) 1997-07-11 1999-09-03 Joel Bardeau DRAINAGE DEVICE, PARTICULARLY FOR COVERING
US6338737B1 (en) 1997-07-17 2002-01-15 Haviv Toledano Flexible annular stapler for closed surgery of hollow organs
EP0996376A1 (en) 1997-07-18 2000-05-03 Gyrus Medical Limited An electrosurgical instrument
GB2327352A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
WO1999003409A1 (en) 1997-07-18 1999-01-28 Gyrus Medical Limited An electrosurgical instrument
GB9900964D0 (en) 1999-01-15 1999-03-10 Gyrus Medical Ltd An electrosurgical system
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
JP2001510067A (en) 1997-07-18 2001-07-31 ガイラス・メディカル・リミテッド Electrosurgical instrument
US7278994B2 (en) 1997-07-18 2007-10-09 Gyrus Medical Limited Electrosurgical instrument
US5937951A (en) 1997-07-18 1999-08-17 Ethicon Endo-Surgery, Inc. Skin stapler with rack and pinion staple feed mechanism
CA2297122A1 (en) 1997-07-24 1999-02-04 James F. Mcguckin, Jr. Stationary central tunnel dialysis catheter with optional separable sheath
US6532958B1 (en) 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US5948030A (en) 1997-07-25 1999-09-07 General Motors Corporation Steering angle determaination method and apparatus
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
WO1999005167A1 (en) 1997-07-25 1999-02-04 University Of Massachusetts Designed protein pores as components for biosensors
EP1579883A3 (en) 1997-07-25 2005-10-12 Minnesota Innovative Technologies & Instruments Corporation (MITI) Control device for supplying supplemental respiratory oxygen
DE69824545T2 (en) 1997-07-29 2005-06-16 Thomas & Betts International, Inc., Wilmington DEVICE FOR DISTRIBUTING CABLE TIES
JP3811291B2 (en) 1998-07-02 2006-08-16 オリンパス株式会社 Endoscope system
US5878938A (en) 1997-08-11 1999-03-09 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US5904702A (en) 1997-08-14 1999-05-18 University Of Massachusetts Instrument for thoracic surgical procedures
US6024764A (en) 1997-08-19 2000-02-15 Intermedics, Inc. Apparatus for imparting physician-determined shapes to implantable tubular devices
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6083223A (en) 1997-08-28 2000-07-04 Baker; James A. Methods and apparatus for welding blood vessels
AUPO889497A0 (en) 1997-09-01 1997-09-25 N.J. Phillips Pty. Limited An applicator
US6731976B2 (en) 1997-09-03 2004-05-04 Medtronic, Inc. Device and method to measure and communicate body parameters
US6267761B1 (en) 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
AU739648B2 (en) 1997-09-10 2001-10-18 Covidien Ag Bipolar instrument for vessel fusion
AU9478498A (en) 1997-09-11 1999-03-29 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
EP2362285B1 (en) 1997-09-19 2015-03-25 Massachusetts Institute of Technology Robotic apparatus
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US6017356A (en) 1997-09-19 2000-01-25 Ethicon Endo-Surgery Inc. Method for using a trocar for penetration and skin incision
US20040236352A1 (en) 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5921956A (en) 1997-09-24 1999-07-13 Smith & Nephew, Inc. Surgical instrument
JP3748511B2 (en) 1997-09-29 2006-02-22 ボストン・サイエンティフィック・サイメド・インコーポレイテッド Image guide wire
US6173074B1 (en) 1997-09-30 2001-01-09 Lucent Technologies, Inc. Acoustic signature recognition and identification
US6174318B1 (en) 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
EP1018949B1 (en) 1997-10-02 2005-08-24 Boston Scientific Limited Device for delivering fiber material into a body
GB2329840C (en) 1997-10-03 2007-10-05 Johnson & Johnson Medical Biopolymer sponge tubes
US5944172A (en) 1997-10-06 1999-08-31 Allen-Bradley Company, Llc Biasing assembly for a switching device
US7030904B2 (en) 1997-10-06 2006-04-18 Micro-Medical Devices, Inc. Reduced area imaging device incorporated within wireless endoscopic devices
US6231569B1 (en) 1997-10-06 2001-05-15 Somnus Medical Technologies, Inc. Dual processor architecture for electro generator
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
EP1027000A4 (en) 1997-10-09 2001-09-12 Camran Nezhat Methods and systems for organ resection
US6206894B1 (en) 1997-10-09 2001-03-27 Ethicon Endo-Surgery, Inc. Electrically powered needle holder to assist in suturing
US5947984A (en) 1997-10-10 1999-09-07 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
US6171316B1 (en) 1997-10-10 2001-01-09 Origin Medsystems, Inc. Endoscopic surgical instrument for rotational manipulation
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US6241723B1 (en) 1997-10-15 2001-06-05 Team Medical Llc Electrosurgical system
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6224617B1 (en) 1997-10-17 2001-05-01 Angiotrax, Inc. Methods and apparatus for defibrillating a heart refractory to electrical stimuli
US6117148A (en) 1997-10-17 2000-09-12 Ravo; Biagio Intraluminal anastomotic device
US6142149A (en) 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US5903117A (en) 1997-10-28 1999-05-11 Xomed Surgical Products, Inc. Method and adaptor for connecting a powered surgical instrument to a medical console
JP4121615B2 (en) 1997-10-31 2008-07-23 オリンパス株式会社 Endoscope
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US5946978A (en) 1997-11-13 1999-09-07 Shimano Inc. Cable adjustment device
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
FR2771145B1 (en) 1997-11-19 2000-02-25 Car X FLEXIBLE SHEATH WITH BELLOWS FOR ARTICULATED JOINT AND TOOLS FOR PLACING THIS SHEATH
US6010513A (en) 1997-11-26 2000-01-04 Bionx Implants Oy Device for installing a tissue fastener
US6273876B1 (en) 1997-12-05 2001-08-14 Intratherapeutics, Inc. Catheter segments having circumferential supports with axial projection
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6171330B1 (en) 1997-12-15 2001-01-09 Sofradim Production Pneumatic surgical instrument for the distribution and placement of connecting or fastening means
US6472784B2 (en) 1997-12-16 2002-10-29 Fred N. Miekka Methods and apparatus for increasing power of permanent magnet motors
US6248116B1 (en) 1997-12-16 2001-06-19 B. Braun Celsa Medical treatment of a diseased anatomical duct
US6055062A (en) 1997-12-19 2000-04-25 Hewlett-Packard Company Electronic printer having wireless power and communications connections to accessory units
US6228089B1 (en) 1997-12-19 2001-05-08 Depuy International Limited Device for positioning and guiding a surgical instrument during orthopaedic interventions
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
JPH11178833A (en) 1997-12-24 1999-07-06 Olympus Optical Co Ltd Ultrasonic treatment implement
US6033427A (en) 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6620166B1 (en) 1998-01-09 2003-09-16 Ethicon, Inc. Suture buttress system
US6245081B1 (en) 1998-01-09 2001-06-12 Steven M. Bowman Suture buttress
US6156056A (en) 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
GB2336214A (en) 1998-01-16 1999-10-13 David William Taylor Preventionof multiple use of limited use devices
US6200311B1 (en) 1998-01-20 2001-03-13 Eclipse Surgical Technologies, Inc. Minimally invasive TMR device
US6072299A (en) 1998-01-26 2000-06-06 Medtronic Physio-Control Manufacturing Corp. Smart battery with maintenance and testing functions
US6096074A (en) 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US6228454B1 (en) 1998-02-02 2001-05-08 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US6296640B1 (en) 1998-02-06 2001-10-02 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
US6165175A (en) 1999-02-02 2000-12-26 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
US6457625B1 (en) 1998-02-17 2002-10-01 Bionx Implants, Oy Device for installing a tissue fastener
US7052499B2 (en) 1998-02-18 2006-05-30 Walter Lorenz Surgical, Inc. Method and apparatus for bone fracture fixation
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US7775972B2 (en) 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US20020095175A1 (en) 1998-02-24 2002-07-18 Brock David L. Flexible instrument
US20020087048A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US7371210B2 (en) 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US6843793B2 (en) 1998-02-24 2005-01-18 Endovia Medical, Inc. Surgical instrument
US7789875B2 (en) 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
WO2002065933A2 (en) 2001-02-15 2002-08-29 Endovia Medical Inc. Surgical master/slave system
US6183442B1 (en) 1998-03-02 2001-02-06 Board Of Regents Of The University Of Texas System Tissue penetrating device and methods for using same
US5909062A (en) 1998-03-10 1999-06-01 Krietzman; Mark Howard Secondary power supply for use with handheld illumination devices
RU2141279C1 (en) 1998-03-11 1999-11-20 Кондратюк Георгий Константинович Multipurpose attachment
US6099551A (en) 1998-03-12 2000-08-08 Shelhigh, Inc. Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
US6592538B1 (en) 1998-03-20 2003-07-15 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Dynamic orthopedic braces
US20020025921A1 (en) 1999-07-26 2002-02-28 Petito George D. Composition and method for growing, protecting, and healing tissues and cells
WO1999048430A1 (en) 1998-03-26 1999-09-30 Gyrus Medical Limited An electrosurgical instrument
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
GB2335858A (en) 1998-04-03 1999-10-06 Gyrus Medical Ltd Resectoscope having pivoting electrode assembly
US6347241B2 (en) 1999-02-02 2002-02-12 Senorx, Inc. Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6249076B1 (en) 1998-04-14 2001-06-19 Massachusetts Institute Of Technology Conducting polymer actuator
US6047861A (en) 1998-04-15 2000-04-11 Vir Engineering, Inc. Two component fluid dispenser
FR2777443B1 (en) 1998-04-21 2000-06-30 Tornier Sa ANCILLARY FOR THE PLACEMENT AND REMOVAL OF AN IMPLANT AND MORE PARTICULARLY A SUTURE ANCHOR
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6023641A (en) 1998-04-29 2000-02-08 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6010520A (en) 1998-05-01 2000-01-04 Pattison; C. Phillip Double tapered esophageal dilator
US6558378B2 (en) 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6171305B1 (en) 1998-05-05 2001-01-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method having high output impedance drivers
US6517566B1 (en) 1998-05-11 2003-02-11 Surgical Connections, Inc. Devices and methods for treating e.g. urinary stress incontinence
US6062360A (en) 1998-05-13 2000-05-16 Brunswick Corporation Synchronizer for a gear shift mechanism for a marine propulsion system
US6165929A (en) 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6261679B1 (en) 1998-05-22 2001-07-17 Kimberly-Clark Worldwide, Inc. Fibrous absorbent material and methods of making the same
US20050283188A1 (en) 1998-05-29 2005-12-22 By-Pass, Inc. Vascular closure device
EP1083835A4 (en) 1998-05-29 2004-06-02 By Pass Inc Methods and devices for vascular surgery
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
JP2000002228A (en) 1998-06-12 2000-01-07 Chuo Spring Co Ltd Terminal end structure of pull cable
JP3331172B2 (en) 1998-06-12 2002-10-07 旭光学工業株式会社 Endoscope foreign matter collection tool
US6126058A (en) 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6601749B2 (en) 1998-06-19 2003-08-05 Scimed Life Systems, Inc. Multi fire full thickness resectioning device
US6629630B2 (en) 1998-06-19 2003-10-07 Scimed Life Systems, Inc. Non-circular resection device and endoscope
US6585144B2 (en) 1998-06-19 2003-07-01 Acimed Life Systems, Inc. Integrated surgical staple retainer for a full thickness resectioning device
US6478210B2 (en) 2000-10-25 2002-11-12 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6018227A (en) 1998-06-22 2000-01-25 Stryker Corporation Battery charger especially useful with sterilizable, rechargeable battery packs
US5941890A (en) 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
CA2276313C (en) 1998-06-29 2008-01-29 Ethicon Endo-Surgery, Inc. Balanced ultrasonic blade including a plurality of balance asymmetries
US6309400B2 (en) 1998-06-29 2001-10-30 Ethicon Endo-Surgery, Inc. Curved ultrasonic blade having a trapezoidal cross section
CA2276316C (en) 1998-06-29 2008-02-12 Ethicon Endo-Surgery, Inc. Method of balancing asymmetric ultrasonic surgical blades
US6066132A (en) 1998-06-30 2000-05-23 Ethicon, Inc. Articulating endometrial ablation device
US6228098B1 (en) 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
JP3806518B2 (en) 1998-07-17 2006-08-09 オリンパス株式会社 Endoscopic treatment device
US5977746A (en) 1998-07-21 1999-11-02 Stryker Corporation Rechargeable battery pack and method for manufacturing same
JP2000055752A (en) 1998-08-03 2000-02-25 Kayaba Ind Co Ltd Torque detecting device
DE69940850D1 (en) 1998-08-04 2009-06-18 Intuitive Surgical Inc Articular device for positioning a manipulator for robotic surgery
MXPA01001460A (en) 1998-08-14 2005-06-06 Verigen Transplantation Serv Methods, instruments and materials for chondrocyte cell transplantation.
US6818018B1 (en) 1998-08-14 2004-11-16 Incept Llc In situ polymerizable hydrogels
DE19836950B4 (en) 1998-08-17 2004-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surgical instrument in the form of a suturing device
DE19837258A1 (en) 1998-08-17 2000-03-02 Deutsch Zentr Luft & Raumfahrt Device for operating a surgical instrument for anastomosis of hollow organs
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6050989A (en) 1998-08-24 2000-04-18 Linvatec Corporation Angularly adjustable powered surgical handpiece
US6458147B1 (en) 1998-11-06 2002-10-01 Neomend, Inc. Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
USH2086H1 (en) 1998-08-31 2003-10-07 Kimberly-Clark Worldwide Fine particle liquid filtration media
US6131790A (en) 1998-09-02 2000-10-17 Piraka; Hadi A. Surgical stapler and cartridge
DE19840163A1 (en) 1998-09-03 2000-03-16 Webasto Karosseriesysteme Drive device and method for adjusting a vehicle part
US6924781B1 (en) 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
FR2783429B1 (en) 1998-09-18 2002-04-12 Imedex Biomateriaux BICOMPOSITE COLLAGENIC MATERIAL, ITS OBTAINING PROCESS AND ITS THERAPEUTIC APPLICATIONS
US6445530B1 (en) 1998-09-25 2002-09-03 Seagate Technology Llc Class AB H-bridge using current sensing MOSFETs
JP3766552B2 (en) 1998-10-01 2006-04-12 富士写真フイルム株式会社 Film unit with lens with data imprinting device
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6245084B1 (en) 1998-10-20 2001-06-12 Promex, Inc. System for controlling a motor driven surgical cutting instrument
ES2251260T3 (en) 1998-10-23 2006-04-16 Sherwood Services Ag FORCEPS OF OBTURATION OF OPEN GLASSES WITH MEMBER OF BUMPER.
EP2072017B1 (en) 1998-10-23 2018-04-18 Covidien AG Endoscopic bipolar electrosurgical forceps
US5951574A (en) 1998-10-23 1999-09-14 Ethicon Endo-Surgery, Inc. Multiple clip applier having a split feeding mechanism
EP1123051A4 (en) 1998-10-23 2003-01-02 Applied Med Resources Surgical grasper with inserts and method of using same
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
EP1123045B8 (en) 1998-10-23 2008-12-24 Boston Scientific Limited Improved system for intraluminal imaging
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US6270508B1 (en) 1998-10-26 2001-08-07 Charles H. Klieman End effector and instrument for endoscopic and general surgery needle control
DE19851291A1 (en) 1998-11-06 2000-01-05 Siemens Ag Data input unit suitable for use in operating theatre
US6887710B2 (en) 1998-11-13 2005-05-03 Mesosystems Technology, Inc. Robust system for screening mail for biological agents
US6249105B1 (en) 1998-11-13 2001-06-19 Neal Andrews System and method for detecting performance components of a battery pack
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US6142933A (en) 1998-11-23 2000-11-07 Ethicon Endo-Surgery, Inc. Anoscope for hemorrhoidal surgery
US6102271A (en) 1998-11-23 2000-08-15 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
US6167185A (en) 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
JP2000171730A (en) 1998-12-08 2000-06-23 Olympus Optical Co Ltd Battery type portable endoscopic device
US7125403B2 (en) 1998-12-08 2006-10-24 Intuitive Surgical In vivo accessories for minimally invasive robotic surgery
US6309397B1 (en) 1999-12-02 2001-10-30 Sri International Accessories for minimally invasive robotic surgery and methods
JP4233656B2 (en) 1998-12-11 2009-03-04 ジョンソン・エンド・ジョンソン株式会社 Automatic anastomosis instrument and guide balloon attachable to the anastomosis instrument
US6828902B2 (en) 1998-12-14 2004-12-07 Soundcraft, Inc. Wireless data input to RFID reader
US6126670A (en) 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
DE19858512C1 (en) 1998-12-18 2000-05-25 Storz Karl Gmbh & Co Kg Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts
DE19860444C2 (en) 1998-12-28 2001-03-29 Storz Karl Gmbh & Co Kg Handle for a medical tubular shaft instrument
DE19860611C1 (en) 1998-12-29 2000-03-23 Fraunhofer Ges Forschung Particulate polymer foam product molding process for impact resisting cushions, models, prototypes, involving shaping and microwave fusing of foam particles in evacuated bag
US6147135A (en) 1998-12-31 2000-11-14 Ethicon, Inc. Fabrication of biocompatible polymeric composites
US6806867B1 (en) 1998-12-31 2004-10-19 A.T.X. International, Inc. Palm pad system
US6113618A (en) 1999-01-13 2000-09-05 Stryker Corporation Surgical saw with spring-loaded, low-noise cutting blade
US7001380B2 (en) 1999-01-15 2006-02-21 Gyrus Medical Limited Electrosurgical system and method
US20040030333A1 (en) 1999-01-15 2004-02-12 Gyrus Medical Ltd. Electrosurgical system and method
US6554861B2 (en) 1999-01-19 2003-04-29 Gyrus Ent L.L.C. Otologic prosthesis
US6273252B1 (en) 1999-01-20 2001-08-14 Burke H. Mitchell Protective covering for a hand-held device
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US8529588B2 (en) 1999-01-25 2013-09-10 Applied Medical Resources Corporation Multiple clip applier apparatus and method
DE19905085A1 (en) 1999-01-29 2000-08-03 Black & Decker Inc N D Ges D S Battery operated, hand-held power tool
US6387113B1 (en) 1999-02-02 2002-05-14 Biomet, Inc. Method and apparatus for repairing a torn meniscus
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
DE19906191A1 (en) 1999-02-15 2000-08-17 Ingo F Herrmann Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening
US6295888B1 (en) 1999-02-16 2001-10-02 Shimano Inc. Gear indicator for a bicycle
US6083242A (en) 1999-02-17 2000-07-04 Holobeam, Inc. Surgical staples with deformation zones of non-uniform cross section
US6065919A (en) 1999-02-18 2000-05-23 Peck; Philip D. Self-tapping screw with an improved thread design
USD429252S (en) 1999-02-22 2000-08-08 3Com Corporation Computer icon for a display screen
US6806808B1 (en) 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
GB9905211D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system and instrument
GB9905210D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgical system
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US6666875B1 (en) 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
GB9905209D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system
US6190386B1 (en) 1999-03-09 2001-02-20 Everest Medical Corporation Electrosurgical forceps with needle electrodes
US6159146A (en) 1999-03-12 2000-12-12 El Gazayerli; Mohamed Mounir Method and apparatus for minimally-invasive fundoplication
US6179776B1 (en) 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6512360B1 (en) 1999-03-15 2003-01-28 Amiteq Co., Ltd Self-induction-type stroke sensor
DE19912038C1 (en) 1999-03-17 2001-01-25 Storz Karl Gmbh & Co Kg Handle for a medical instrument
JP2000271141A (en) 1999-03-23 2000-10-03 Olympus Optical Co Ltd Operation device
DK1163019T3 (en) 1999-03-25 2008-03-03 Metabolix Inc Medical devices and applications of polyhydroxyalkanoate polymers
US6186957B1 (en) 1999-03-30 2001-02-13 Michael W. Milam Stethoscope cover
US6120462A (en) 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
US6416486B1 (en) 1999-03-31 2002-07-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical device having an embedding surface and a coagulating surface
US6086544A (en) 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device
AU4187800A (en) 1999-03-31 2000-10-16 Peter L. Rosenblatt Systems and methods for soft tissue reconstruction
JP2000287987A (en) 1999-04-01 2000-10-17 Olympus Optical Co Ltd Chargeable battery type medical treatment apparatus
DE19915291A1 (en) 1999-04-03 2000-10-05 Gardena Kress & Kastner Gmbh Pipe connector comprises two connecting sections and locking sleeve which can be slid back to undo joint, sleeve and one part of the coupling having stops which fit into sockets on other part to lock connector together
US6228084B1 (en) 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6424885B1 (en) 1999-04-07 2002-07-23 Intuitive Surgical, Inc. Camera referenced control in a minimally invasive surgical apparatus
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
WO2000060995A2 (en) 1999-04-09 2000-10-19 Evalve, Inc. Methods and apparatus for cardiac valve repair
US10327743B2 (en) 1999-04-09 2019-06-25 Evalve, Inc. Device and methods for endoscopic annuloplasty
US6182673B1 (en) 1999-04-12 2001-02-06 Mike Kindermann Marketing/Vertriebs Gmbh Dump facility for cassette sewage tanks
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6689153B1 (en) 1999-04-16 2004-02-10 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
JP2000304153A (en) 1999-04-19 2000-11-02 Honda Motor Co Ltd Electromagnet actuator driving device
US6319510B1 (en) 1999-04-20 2001-11-20 Alayne Yates Gum pad for delivery of medication to mucosal tissues
US20050222665A1 (en) 1999-04-23 2005-10-06 Ernest Aranyi Endovascular fastener applicator
US6325805B1 (en) 1999-04-23 2001-12-04 Sdgi Holdings, Inc. Shape memory alloy staple
US6181105B1 (en) 1999-04-26 2001-01-30 Exonix Corporation Self contained transportable power source maintenance and charge
TNSN00086A1 (en) 1999-04-26 2002-05-30 Int Paper Co INDUCTION SEALING JAW
US6383201B1 (en) 1999-05-14 2002-05-07 Tennison S. Dong Surgical prosthesis for repairing a hernia
JP4503725B2 (en) 1999-05-17 2010-07-14 オリンパス株式会社 Endoscopic treatment device
AU5150600A (en) 1999-05-18 2000-12-05 Vascular Innovations, Inc. Tissue punch
US6921412B1 (en) 1999-05-18 2005-07-26 Cryolife, Inc. Self-supporting, shaped, three-dimensional biopolymeric materials and methods
US6547786B1 (en) 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
US6063020A (en) 1999-05-21 2000-05-16 Datex-Ohmeda, Inc. Heater door safety interlock for infant warming apparatus
US6762339B1 (en) 1999-05-21 2004-07-13 3M Innovative Properties Company Hydrophilic polypropylene fibers having antimicrobial activity
US6454781B1 (en) 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
DE19924311A1 (en) 1999-05-27 2000-11-30 Walter A Rau Clip cutting device to cut body tissue and place staple on at least one side of cut line; has clamp head with staples and pressure plate part, with collagen and fibrin fleece underlay covering staples
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
US6409724B1 (en) 1999-05-28 2002-06-25 Gyrus Medical Limited Electrosurgical instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
US6491201B1 (en) 2000-02-22 2002-12-10 Power Medical Interventions, Inc. Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6981941B2 (en) 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US8292888B2 (en) 2001-04-20 2012-10-23 Tyco Healthcare Group Lp Bipolar or ultrasonic surgical device
US6517565B1 (en) 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US8229549B2 (en) 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US6223833B1 (en) 1999-06-03 2001-05-01 One World Technologies, Inc. Spindle lock and chipping mechanism for hammer drill
EP1058177A1 (en) 1999-06-04 2000-12-06 Alps Electric Co., Ltd. Input device for game machine
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
US6273902B1 (en) 1999-06-18 2001-08-14 Novare Surgical Systems, Inc. Surgical clamp having replaceable pad
SE519023C2 (en) 1999-06-21 2002-12-23 Micromuscle Ab Catheter-borne microsurgical tool kit
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
FR2795301B1 (en) 1999-06-25 2001-08-31 Prec ENDOSCOPIC SURGERY INSTRUMENT
US6257351B1 (en) 1999-06-29 2001-07-10 Microaire Surgical Instruments, Inc. Powered surgical instrument having locking systems and a clutch mechanism
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6175290B1 (en) 1999-06-30 2001-01-16 Gt Development Corporation Contactless stalk mounted control switch
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
US6355699B1 (en) 1999-06-30 2002-03-12 Ethicon, Inc. Process for manufacturing biomedical foams
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6104304A (en) 1999-07-06 2000-08-15 Conexant Systems, Inc. Self-test and status reporting system for microcontroller-controlled devices
US6117158A (en) 1999-07-07 2000-09-12 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
JP3293802B2 (en) 1999-07-07 2002-06-17 エスエムシー株式会社 Chuck with position detection function
US6168605B1 (en) 1999-07-08 2001-01-02 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
JP2001035827A (en) 1999-07-16 2001-02-09 Memc Kk High concentration ozone water, preparation method thereof and cleaning method using the same
RU2161450C1 (en) 1999-07-22 2001-01-10 Каншин Николай Николаевич Surgical suturing device
US6402766B2 (en) 1999-07-23 2002-06-11 Ethicon, Inc. Graft fixation device combination
US6436110B2 (en) 1999-07-23 2002-08-20 Ethicon, Inc. Method of securing a graft using a graft fixation device
US7285131B1 (en) 1999-07-28 2007-10-23 Cardica, Inc. System for performing anastomosis
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US7303570B2 (en) 1999-07-28 2007-12-04 Cardica, Inc. Anastomosis tool having a connector holder
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US7063712B2 (en) 2001-04-27 2006-06-20 Cardica, Inc. Anastomosis method
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
DE19935725C2 (en) 1999-07-29 2003-11-13 Wolf Gmbh Richard Medical instrument, especially a rectoscope
DE19935904C1 (en) 1999-07-30 2001-07-12 Karlsruhe Forschzent Applicator tip of a surgical applicator for placing clips / clips for the connection of tissue
US20020116063A1 (en) 1999-08-02 2002-08-22 Bruno Giannetti Kit for chondrocyte cell transplantation
US6527785B2 (en) 1999-08-03 2003-03-04 Onux Medical, Inc. Surgical suturing instrument and method of use
AU6517900A (en) 1999-08-03 2001-02-19 Smith & Nephew, Inc. Controlled release implantable devices
US6788018B1 (en) 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
US6767352B2 (en) 1999-08-03 2004-07-27 Onux Medical, Inc. Surgical suturing instrument and method of use
IT1307263B1 (en) 1999-08-05 2001-10-30 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT WITH RESTENOSIS ANTAGONIST ACTION, RELATED KIT AND COMPONENTS.
AU6519100A (en) 1999-08-05 2001-03-05 Biocardia, Inc. A system and method for delivering thermally sensitive and reverse-thermal gelation matrials
JP4859317B2 (en) 1999-08-06 2012-01-25 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム Drug release biodegradable fiber implant
US6358197B1 (en) 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US6666860B1 (en) 1999-08-24 2003-12-23 Olympus Optical Co., Ltd. Electric treatment system
WO2000002432A2 (en) 1999-08-24 2000-01-20 Lehmann, Martin Method and device for testing filter cartridges
DE19941859C2 (en) 1999-09-02 2002-06-13 Siemens Audiologische Technik Digital hearing aid
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6387092B1 (en) 1999-09-07 2002-05-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
DE50014373D1 (en) 1999-09-09 2007-07-12 Tuebingen Scient Medical Gmbh SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE INTERVENTIONS
US6077290A (en) 1999-09-10 2000-06-20 Tnco, Incorporated Endoscopic instrument with removable front end
US6104162A (en) 1999-09-11 2000-08-15 Sainsbury; Simon R. Method and apparatus for multi-power source for power tools
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US6636412B2 (en) 1999-09-17 2003-10-21 Taser International, Inc. Hand-held stun gun for incapacitating a human target
US7075770B1 (en) 1999-09-17 2006-07-11 Taser International, Inc. Less lethal weapons and methods for halting locomotion
US6356072B1 (en) 1999-09-24 2002-03-12 Jacob Chass Hall effect sensor of displacement of magnetic core
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
JP2001087272A (en) 1999-09-24 2001-04-03 Motoko Iwabuchi Automatic suturing unit for excising living body tissue
US6458142B1 (en) 1999-10-05 2002-10-01 Ethicon Endo-Surgery, Inc. Force limiting mechanism for an ultrasonic surgical instrument
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
CA2322061A1 (en) 1999-10-05 2001-04-05 Anil K. Nalagatla Stapling instrument having two staple forming surfaces
US6206903B1 (en) 1999-10-08 2001-03-27 Intuitive Surgical, Inc. Surgical tool with mechanical advantage
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
WO2001026559A1 (en) 1999-10-14 2001-04-19 Atropos Limited A retractor
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US6320123B1 (en) 1999-10-20 2001-11-20 Steven S. Reimers System and method for shielding electrical components from electromagnetic waves
US6780151B2 (en) 1999-10-26 2004-08-24 Acmi Corporation Flexible ureteropyeloscope
US6749560B1 (en) 1999-10-26 2004-06-15 Circon Corporation Endoscope shaft with slotted tube
US6471659B2 (en) 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
EP1095627A1 (en) 1999-10-27 2001-05-02 Everest Medical Corporation Electrosurgical probe for surface treatment
DE19951940C2 (en) 1999-10-28 2001-11-29 Karlsruhe Forschzent Clamping device that can be used endoscopically
US6716215B1 (en) 1999-10-29 2004-04-06 Image-Guided Neurologics Cranial drill with sterile barrier
SE515391C2 (en) 1999-11-08 2001-07-23 Tagmaster Ab Identification tag and reader with interference protection
DE19954497C1 (en) 1999-11-11 2001-04-19 Norbert Lemke Electrical apparatus operating device for use in sterile area uses magnetic field device within sterile device cooperating with magnetic field sensor outside sterile area
US6666846B1 (en) 1999-11-12 2003-12-23 Edwards Lifesciences Corporation Medical device introducer and obturator and methods of use
DE19955412A1 (en) 1999-11-18 2001-05-23 Hilti Ag Drilling and chiseling device
GB9927338D0 (en) 1999-11-18 2000-01-12 Gyrus Medical Ltd Electrosurgical system
US6324339B1 (en) 1999-11-29 2001-11-27 Eveready Battery Company, Inc. Battery pack including input and output waveform modification capability
US6494896B1 (en) 1999-11-30 2002-12-17 Closure Medical Corporation Applicator for laparoscopic or endoscopic surgery
US20020022810A1 (en) 1999-12-07 2002-02-21 Alex Urich Non-linear flow restrictor for a medical aspiration system
US6184655B1 (en) 1999-12-10 2001-02-06 Stryker Corporation Battery charging system with internal power manager
US6352532B1 (en) 1999-12-14 2002-03-05 Ethicon Endo-Surgery, Inc. Active load control of ultrasonic surgical instruments
US6736825B2 (en) 1999-12-14 2004-05-18 Integrated Vascular Interventional Technologies, L C (Ivit Lc) Paired expandable anastomosis devices and related methods
TW429637B (en) 1999-12-17 2001-04-11 Synergy Scientech Corp Electrical energy storage device
US6428487B1 (en) 1999-12-17 2002-08-06 Ethicon Endo-Surgery, Inc. Surgical biopsy system with remote control for selecting an operational mode
US6432065B1 (en) 1999-12-17 2002-08-13 Ethicon Endo-Surgery, Inc. Method for using a surgical biopsy system with remote control for selecting and operational mode
USD535657S1 (en) 1999-12-20 2007-01-23 Apple Computer, Inc. User interface for computer display
US6254619B1 (en) 1999-12-28 2001-07-03 Antoine Garabet Microkeratome
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
RU2181566C2 (en) 2000-01-10 2002-04-27 Дубровский Аркадий Вениаминович Controllable pivoting mechanism
US6361546B1 (en) 2000-01-13 2002-03-26 Endotex Interventional Systems, Inc. Deployable recoverable vascular filter and methods for use
US6770078B2 (en) 2000-01-14 2004-08-03 Peter M. Bonutti Movable knee implant and methods therefor
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US6699214B2 (en) 2000-01-19 2004-03-02 Scimed Life Systems, Inc. Shear-sensitive injectable delivery system
US20030205029A1 (en) 2000-01-20 2003-11-06 Chapolini Robert J. Method and apparatus for introducing a non-sterile component into a sterile device
HU225908B1 (en) 2000-01-24 2007-12-28 Ethicon Endo Surgery Europe Surgical circular stapling head
US6193129B1 (en) 2000-01-24 2001-02-27 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
DE10003020C2 (en) 2000-01-25 2001-12-06 Aesculap Ag & Co Kg Bipolar barrel instrument
US6377011B1 (en) 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US20010034530A1 (en) 2000-01-27 2001-10-25 Malackowski Donald W. Surgery system
US6429611B1 (en) 2000-01-28 2002-08-06 Hui Li Rotary and linear motor
DE10004264C2 (en) 2000-02-01 2002-06-13 Storz Karl Gmbh & Co Kg Device for the intracorporeal, minimally invasive treatment of a patient
CN1302754C (en) 2000-02-04 2007-03-07 康曼德公司 Surgical clip applier
GB0002849D0 (en) 2000-02-08 2000-03-29 Gyrus Medical Ltd An electrosurgical instrument and an electosurgery system including such an instrument
US20040181219A1 (en) 2000-02-08 2004-09-16 Gyrus Medical Limited Electrosurgical instrument and an electrosugery system including such an instrument
US6758846B2 (en) 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
US20040068307A1 (en) 2000-02-08 2004-04-08 Gyrus Medical Limited Surgical instrument
GB0223348D0 (en) 2002-10-08 2002-11-13 Gyrus Medical Ltd A surgical instrument
US6756705B2 (en) 2000-02-10 2004-06-29 Tri-Tech., Inc Linear stepper motor
US7963964B2 (en) 2000-02-10 2011-06-21 Santilli Albert N Surgical clamp assembly with electrodes
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6306149B1 (en) 2000-02-15 2001-10-23 Microline, Inc. Medical clip device with cyclical pusher mechanism
US6569171B2 (en) 2001-02-28 2003-05-27 Microline, Inc. Safety locking mechanism for a medical clip device
US6911033B2 (en) 2001-08-21 2005-06-28 Microline Pentax Inc. Medical clip applying device
DE10007919C2 (en) 2000-02-21 2003-07-17 Wolf Gmbh Richard Forceps for free preparation of tissue in a body cavity
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
EP1259173B1 (en) 2000-02-22 2011-08-31 Tyco Healthcare Group LP An electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US6488197B1 (en) 2000-02-22 2002-12-03 Power Medical Interventions, Inc. Fluid delivery device for use with anastomosing resecting and stapling instruments
US6348061B1 (en) 2000-02-22 2002-02-19 Powermed, Inc. Vessel and lumen expander attachment for use with an electromechanical driver device
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
GB0004179D0 (en) 2000-02-22 2000-04-12 Gyrus Medical Ltd Tissue resurfacing
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6723091B2 (en) 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US6533157B1 (en) 2000-02-22 2003-03-18 Power Medical Interventions, Inc. Tissue stapling attachment for use with an electromechanical driver device
US7335199B2 (en) 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
US6603050B2 (en) 2000-02-23 2003-08-05 Uxb International, Inc. Destruction of energetic materials
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
WO2001062173A2 (en) 2000-02-25 2001-08-30 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6273897B1 (en) 2000-02-29 2001-08-14 Ethicon, Inc. Surgical bettress and surgical stapling apparatus
US20030070683A1 (en) 2000-03-04 2003-04-17 Deem Mark E. Methods and devices for use in performing pulmonary procedures
EP1416861B1 (en) 2000-03-06 2008-12-03 Tyco Healthcare Group Lp Apparatus for performing a bypass procedure in a digestive system
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6763307B2 (en) 2000-03-06 2004-07-13 Bioseek, Inc. Patient classification
US6423079B1 (en) 2000-03-07 2002-07-23 Blake, Iii Joseph W Repeating multi-clip applier
USD455758S1 (en) 2000-03-08 2002-04-16 Ethicon Endo-Surgery, Inc. Operational mode icon for a display screen of a control unit for a surgical device
US6663623B1 (en) 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
US6525499B2 (en) 2000-03-15 2003-02-25 Keihin Corporation System for controlling vehicle power sliding door
US7819799B2 (en) 2000-03-16 2010-10-26 Immersion Medical, Inc. System and method for controlling force applied to and manipulation of medical instruments
US6510854B2 (en) 2000-03-16 2003-01-28 Gyrus Medical Limited Method of treatment of prostatic adenoma
IL139788A (en) 2000-11-20 2006-10-05 Minelu Zonnenschein Stapler for endoscopes
MXPA02008996A (en) 2000-03-16 2004-10-15 Medigus Ltd Fundoplication apparatus and method.
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
US9314339B2 (en) 2000-03-27 2016-04-19 Formae, Inc. Implants for replacing cartilage, with negatively-charged hydrogel surfaces and flexible matrix reinforcement
DE10015398A1 (en) 2000-03-28 2001-10-11 Bosch Gmbh Robert Electrical device, especially hand-held tool, has connection point for transfer of information via information link for evaluation in power supply unit
JP2001276091A (en) 2000-03-29 2001-10-09 Toshiba Corp Medical manipulator
US6778846B1 (en) 2000-03-30 2004-08-17 Medtronic, Inc. Method of guiding a medical device and system regarding same
US6802822B1 (en) 2000-03-31 2004-10-12 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a flexible link
EP1272117A2 (en) 2000-03-31 2003-01-08 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
WO2005018428A2 (en) 2000-04-03 2005-03-03 Neoguide Systems, Inc. Activated polymer articulated instruments and methods of insertion
US6984203B2 (en) 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
IL135571A0 (en) 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
US6517528B1 (en) 2000-04-13 2003-02-11 Scimed Life Systems, Inc. Magnetic catheter drive shaft clutch
JP4716594B2 (en) 2000-04-17 2011-07-06 オリンパス株式会社 Endoscope
USD445745S1 (en) 2000-04-18 2001-07-31 Honda Giken Kogyo Kabushiki Kaisha Indicator icon for a vehicle display screen
US6415542B1 (en) 2000-04-19 2002-07-09 International Business Machines Corporation Location-based firearm discharge prevention
RU2187249C2 (en) 2000-04-27 2002-08-20 Общество с ограниченной ответственностью "ЭНДОМЕДИУМ+" Surgical instrument
US6905498B2 (en) 2000-04-27 2005-06-14 Atricure Inc. Transmural ablation device with EKG sensor and pacing electrode
AU2001253654A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. Vibration sensitive ablation apparatus and method
US6412639B1 (en) 2000-04-28 2002-07-02 Closure Medical Corporation Medical procedure kit having medical adhesive
US6387114B2 (en) 2000-04-28 2002-05-14 Scimed Life Systems, Inc. Gastrointestinal compression clips
DE10058796A1 (en) 2000-05-09 2001-11-15 Heidelberger Druckmasch Ag Saddle stitcher with separate drives
FR2808674B1 (en) 2000-05-12 2002-08-02 Cie Euro Etude Rech Paroscopie GASTROPLASTY RING WITH GRIPPED LEGS
US6305891B1 (en) 2000-05-15 2001-10-23 Mark S. Burlingame Fastening device and a spacer, and a method of using the same
US7510566B2 (en) 2000-05-19 2009-03-31 Coapt Systems, Inc. Multi-point tissue tension distribution device and method, a chin lift variation
US7172615B2 (en) 2000-05-19 2007-02-06 Coapt Systems, Inc. Remotely anchored tissue fixation device
US6485503B2 (en) 2000-05-19 2002-11-26 Coapt Systems, Inc. Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6805273B2 (en) 2002-11-04 2004-10-19 Federico Bilotti Surgical stapling instrument
DE10026683C2 (en) 2000-05-30 2003-07-10 Ethicon Endo Surgery Europe Surgical stapling device
US6602262B2 (en) 2000-06-02 2003-08-05 Scimed Life Systems, Inc. Medical device having linear to rotation control
US6883199B1 (en) 2000-06-06 2005-04-26 Koninklijke Philips Electronics, N.V. Short-life power toothbrush for trial use
AU2001275511A1 (en) 2000-06-07 2001-12-17 Stereotaxis, Inc. Guide for medical devices
GB0014059D0 (en) 2000-06-09 2000-08-02 Chumas Paul D Method and apparatus
US6492785B1 (en) 2000-06-27 2002-12-10 Deere & Company Variable current limit control for vehicle electric drive system
DE10031436A1 (en) 2000-06-28 2002-01-10 Alexander Von Fuchs Anti-slip protection for a housing head of medical instruments
US6863694B1 (en) 2000-07-03 2005-03-08 Osteotech, Inc. Osteogenic implants derived from bone
JP3789733B2 (en) 2000-07-06 2006-06-28 アルプス電気株式会社 Compound operation switch
DE10033344B4 (en) 2000-07-08 2011-04-07 Robert Bosch Gmbh Method and device for evaluating a sensor signal
US6660008B1 (en) 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
JP3897962B2 (en) 2000-07-19 2007-03-28 株式会社モリタ製作所 Identification-type instrument body, identification-type adapter, identification-type tube, and medical device using these
DK1309277T3 (en) 2000-07-20 2008-10-06 Kinetic Surgical Llc Hand-activated articulated surgical tool
US20100241137A1 (en) 2000-07-20 2010-09-23 Mark Doyle Hand-actuated articulating surgical tool
EP1303222A1 (en) 2000-07-21 2003-04-23 Atropos Limited A cannula
US6447799B1 (en) 2000-07-24 2002-09-10 Joseph M. Ullman Thromboplastic system
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
US6392854B1 (en) 2000-07-27 2002-05-21 Motorola, Inc. Method and system for testing continuity of a motor and associated drive circuitry
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US6902560B1 (en) 2000-07-27 2005-06-07 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6585664B2 (en) 2000-08-02 2003-07-01 Ethicon Endo-Surgery, Inc. Calibration method for an automated surgical biopsy device
US8366787B2 (en) 2000-08-04 2013-02-05 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
JP5162782B2 (en) 2000-08-07 2013-03-13 株式会社小松製作所 Work machine display
JP2002054903A (en) 2000-08-10 2002-02-20 Nippon Densan Corp Displacement detecting device
JP2002051974A (en) 2000-08-14 2002-02-19 Fuji Photo Optical Co Ltd Endoscope manipulator
GB0020461D0 (en) 2000-08-18 2000-10-11 Oliver Crispin Consulting Ltd Improvements in and relating to the robotic positioning of a work tool to a sensor
US6533723B1 (en) 2000-08-25 2003-03-18 Ge Marquette Medical Systems, Inc. Multiple-link cable management apparatus
US6876850B2 (en) 2000-08-30 2005-04-05 Sony Corporation Communication apparatus and communication method
US6830174B2 (en) 2000-08-30 2004-12-14 Cerebral Vascular Applications, Inc. Medical instrument
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
US20040093024A1 (en) 2000-09-01 2004-05-13 James Lousararian Advanced wound site management systems and methods
GB0021799D0 (en) 2000-09-05 2000-10-18 Gyrus Medical Ltd Electrosurgery system
US20020029032A1 (en) 2000-09-07 2002-03-07 Eva Arkin Fluorescent surgical hardware and surgical supplies for improved visualization
JP2002078674A (en) 2000-09-08 2002-03-19 Fuji Photo Optical Co Ltd Curved surface structure of endoscope
DE60144328D1 (en) 2000-09-08 2011-05-12 Abbott Vascular Inc Surgical clamp
US6712773B1 (en) 2000-09-11 2004-03-30 Tyco Healthcare Group Lp Biopsy system
JP4297603B2 (en) 2000-09-19 2009-07-15 株式会社トップ Surgical stapler
ATE369800T1 (en) 2000-09-24 2007-09-15 Medtronic Inc MOTOR CONTROL SYSTEM FOR A SURGICAL HANDPIECE
WO2002026143A1 (en) 2000-09-27 2002-04-04 Applied Medical Resources Surgical apparatus with detachable handle assembly
JP4014792B2 (en) 2000-09-29 2007-11-28 株式会社東芝 manipulator
US6755843B2 (en) 2000-09-29 2004-06-29 Olympus Optical Co., Ltd. Endoscopic suturing device
CA2424109C (en) 2000-10-04 2011-03-29 Synthes (U.S.A.) Device for supplying an electro-pen with electrical energy
US7007176B2 (en) 2000-10-10 2006-02-28 Primarion, Inc. System and method for highly phased power regulation using adaptive compensation control
US6817508B1 (en) 2000-10-13 2004-11-16 Tyco Healthcare Group, Lp Surgical stapling device
WO2003079909A2 (en) 2002-03-19 2003-10-02 Tyco Healthcare Group, Lp Surgical fastener applying apparatus
DE60135920D1 (en) 2000-10-13 2008-11-06 Tyco Healthcare SURGICAL INSTRUMENT FOR PUTTING BRACES
US7407076B2 (en) 2000-10-13 2008-08-05 Tyco Healthcare Group Lp Surgical stapling device
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
US6773438B1 (en) 2000-10-19 2004-08-10 Ethicon Endo-Surgery Surgical instrument having a rotary lockout mechanism
US6551333B2 (en) 2000-10-19 2003-04-22 Ethicon Endo-Surgery, Inc. Method for attaching hernia mesh
US7485124B2 (en) 2000-10-19 2009-02-03 Ethicon Endo-Surgery, Inc. Surgical instrument having a fastener delivery mechanism
WO2002034108A2 (en) 2000-10-19 2002-05-02 Applied Medical Resources Corporation Surgical access apparatus and method
US7273483B2 (en) 2000-10-20 2007-09-25 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
US20040267310A1 (en) 2000-10-20 2004-12-30 Racenet David C Directionally biased staple and anvil assembly for forming the staple
US6945981B2 (en) 2000-10-20 2005-09-20 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
US6908472B2 (en) 2000-10-20 2005-06-21 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
US7665995B2 (en) 2000-10-23 2010-02-23 Toly Christopher C Medical training simulator including contact-less sensors
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6913608B2 (en) 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US20020188287A1 (en) 2001-05-21 2002-12-12 Roni Zvuloni Apparatus and method for cryosurgery within a body cavity
US6605090B1 (en) 2000-10-25 2003-08-12 Sdgi Holdings, Inc. Non-metallic implant devices and intra-operative methods for assembly and fixation
US6793661B2 (en) 2000-10-30 2004-09-21 Vision Sciences, Inc. Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms
GB0026586D0 (en) 2000-10-31 2000-12-13 Gyrus Medical Ltd An electrosurgical system
FR2815842B1 (en) 2000-10-31 2003-05-09 Assist Publ Hopitaux De Paris MECHANICAL STAPLER FOR RECTUM SURGERY
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
JP2002149860A (en) 2000-11-07 2002-05-24 Japan Institute Of Plant Maintenance Maintenance and management method for facility in manufacturing business and maintenance and management support system
JP2002143078A (en) 2000-11-08 2002-05-21 Olympus Optical Co Ltd Outside tube for endoscope
US6749600B1 (en) 2000-11-15 2004-06-15 Impulse Dynamics N.V. Braided splittable catheter sheath
US6506197B1 (en) 2000-11-15 2003-01-14 Ethicon, Inc. Surgical method for affixing a valve to a heart using a looped suture combination
JP3822433B2 (en) 2000-11-16 2006-09-20 オリンパス株式会社 TREATMENT TOOL, TREATMENT TOOL CONTROL DEVICE AND MEDICAL TREATMENT SYSTEM
US6498480B1 (en) 2000-11-22 2002-12-24 Wabash Technologies, Inc. Magnetic non-contacting rotary transducer
US6520971B1 (en) 2000-11-27 2003-02-18 Scimed Life Systems, Inc. Full thickness resection device control handle
US8286845B2 (en) 2000-11-27 2012-10-16 Boston Scientific Scimed, Inc. Full thickness resection device control handle
US6821282B2 (en) 2000-11-27 2004-11-23 Scimed Life Systems, Inc. Full thickness resection device control handle
JP2002159500A (en) 2000-11-28 2002-06-04 Koseki Ika Kk Ligament fixing system
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
US6899915B2 (en) 2000-11-29 2005-05-31 President And Fellows Of Harvard College Methods and compositions for culturing a biological tooth
JP2002170622A (en) 2000-11-30 2002-06-14 Sumitomo Wiring Syst Ltd Connector
US6398795B1 (en) 2000-11-30 2002-06-04 Scimed Life Systems, Inc. Stapling and cutting in resectioning for full thickness resection devices
US6439446B1 (en) 2000-12-01 2002-08-27 Stephen J. Perry Safety lockout for actuator shaft
US6569085B2 (en) 2001-08-16 2003-05-27 Syntheon, Llc Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US6588931B2 (en) 2000-12-07 2003-07-08 Delphi Technologies, Inc. Temperature sensor with flexible circuit substrate
EP1341484B1 (en) 2000-12-08 2009-05-06 Osteotech, Inc. Implant for orthopedic applications
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US6852330B2 (en) 2000-12-21 2005-02-08 Depuy Mitek, Inc. Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20020127265A1 (en) 2000-12-21 2002-09-12 Bowman Steven M. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6406440B1 (en) 2000-12-21 2002-06-18 Ethicon Endo-Surgery, Inc. Specimen retrieval bag
US20020185514A1 (en) 2000-12-22 2002-12-12 Shane Adams Control module for flywheel operated hand tool
KR100498302B1 (en) 2000-12-27 2005-07-01 엘지전자 주식회사 Copacity variable motor for linear compressor
US6503259B2 (en) 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
US7041868B2 (en) 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Bioabsorbable wound dressing
US6840938B1 (en) 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US6667825B2 (en) 2001-01-03 2003-12-23 Santa Fe Science And Technology, Inc. Stable conjugated polymer electrochromic devices incorporating ionic liquids
US6482200B2 (en) 2001-01-03 2002-11-19 Ronald D. Shippert Cautery apparatus and method
AU2002251732A1 (en) 2001-01-04 2002-08-28 Becomm Corporation Universal media bar for controlling different types of media
EP1349492A2 (en) 2001-01-04 2003-10-08 Medtronic, Inc. Implantable medical device with sensor
US7037314B2 (en) 2001-01-09 2006-05-02 Armstrong David N Multiple band ligator and anoscope system and method for using same
US20020133131A1 (en) 2001-01-09 2002-09-19 Krishnakumar Rangachari Absorbent material incorporating synthetic fibers and process for making the material
IL156876A0 (en) 2001-01-11 2004-02-08 Given Imaging Ltd Device and system for in-vivo procedures
US6439439B1 (en) 2001-01-12 2002-08-27 Telios Orthopedic Systems, Inc. Bone cement delivery apparatus and hand-held fluent material dispensing apparatus
US6494885B1 (en) 2001-01-17 2002-12-17 Avtar S. Dhindsa Endoscopic stone extraction device with rotatable basket
US6695774B2 (en) 2001-01-19 2004-02-24 Endactive, Inc. Apparatus and method for controlling endoscopic instruments
JP4121730B2 (en) 2001-01-19 2008-07-23 富士通コンポーネント株式会社 Pointing device and portable information device
US6620161B2 (en) 2001-01-24 2003-09-16 Ethicon, Inc. Electrosurgical instrument with an operational sequencing element
EP1357844B1 (en) 2001-01-24 2008-06-25 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
US20020134811A1 (en) 2001-01-29 2002-09-26 Senco Products, Inc. Multi-mode power tool utilizing attachment
ES2304430T3 (en) 2001-01-29 2008-10-16 The Acrobot Company Limited ROBOTS WITH ACTIVE LIMITATION.
US20020103494A1 (en) 2001-01-31 2002-08-01 Pacey John Allen Percutaneous cannula delvery system for hernia patch
JP4202138B2 (en) 2001-01-31 2008-12-24 レックス メディカル インコーポレイテッド Apparatus and method for stapling and ablating gastroesophageal tissue
US8313496B2 (en) 2001-02-02 2012-11-20 Lsi Solutions, Inc. System for endoscopic suturing
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US9050192B2 (en) 2001-02-05 2015-06-09 Formae, Inc. Cartilage repair implant with soft bearing surface and flexible anchoring device
JP3939158B2 (en) 2001-02-06 2007-07-04 オリンパス株式会社 Endoscope device
US6723109B2 (en) 2001-02-07 2004-04-20 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
US6302743B1 (en) 2001-02-09 2001-10-16 Pen-Li Chiu Electric outlet assembly with rotary receptacles
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US7008433B2 (en) 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
EP1303228B1 (en) 2001-02-15 2012-09-26 Hansen Medical, Inc. Flexible surgical instrument
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
DE10108732A1 (en) 2001-02-23 2002-09-05 Philips Corp Intellectual Pty Device with a magnetic position sensor
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
DE60115192T2 (en) 2001-02-26 2006-08-10 Ethicon, Inc. Biocompatible composite foam
CA2766682A1 (en) 2001-02-27 2002-09-06 Tyco Healthcare Group Lp External mixer assembly
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
US7139016B2 (en) 2001-02-28 2006-11-21 Eastman Kodak Company Intra-oral camera system with chair-mounted display
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US20020135474A1 (en) 2001-03-21 2002-09-26 Sylliassen Douglas G. Method and device for sensor-based power management of a consumer electronic device
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
JP2002282269A (en) 2001-03-28 2002-10-02 Gc Corp Pin for fixing dental tissue regenerated membrane
US6861954B2 (en) 2001-03-30 2005-03-01 Bruce H. Levin Tracking medical products with integrated circuits
US7097644B2 (en) 2001-03-30 2006-08-29 Ethicon Endo-Surgery, Inc. Medical device with improved wall construction
US20030181900A1 (en) 2002-03-25 2003-09-25 Long Gary L. Endoscopic ablation system with a plurality of electrodes
US6769590B2 (en) 2001-04-02 2004-08-03 Susan E. Vresh Luminal anastomotic device and method
JP4388745B2 (en) 2001-04-03 2009-12-24 タイコ ヘルスケア グループ リミテッド パートナーシップ Surgical stapling device for performing annular anastomosis
US6605669B2 (en) 2001-04-03 2003-08-12 E. I. Du Pont De Nemours And Company Radiation-curable coating compounds
EP1385441A2 (en) 2001-04-05 2004-02-04 John Martin Heasley General field isolation rubber dam
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
US7090673B2 (en) 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
WO2002080796A1 (en) 2001-04-06 2002-10-17 Sherwood Services Ag Vessel sealer and divider with non-conductive stop members
US7101372B2 (en) 2001-04-06 2006-09-05 Sherwood Sevices Ag Vessel sealer and divider
DE10117597C1 (en) 2001-04-07 2002-11-28 Itt Mfg Enterprises Inc Switch
US6638285B2 (en) 2001-04-16 2003-10-28 Shlomo Gabbay Biological tissue strip and system and method to seal tissue
JP2002314298A (en) 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Device for packaging electronic component
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US6994708B2 (en) 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US7824401B2 (en) 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
EP1381302B1 (en) 2001-04-20 2008-06-18 Power Medical Interventions, Inc. Imaging device
US6620111B2 (en) 2001-04-20 2003-09-16 Ethicon Endo-Surgery, Inc. Surgical biopsy device having automatic rotation of the probe for taking multiple samples
US20040110439A1 (en) 2001-04-20 2004-06-10 Chaikof Elliot L Native protein mimetic fibers, fiber networks and fabrics for medical use
US7351258B2 (en) 2001-04-20 2008-04-01 The Research Foundation Of State University Of New York At Stony Brook Apparatus and method for fixation of vascular grafts
US7578825B2 (en) 2004-04-19 2009-08-25 Acumed Llc Placement of fasteners into bone
BR0209198A (en) 2001-04-26 2004-06-08 Control Delivery Sys Inc Synthesis methods of phenol-containing compounds
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US20020158593A1 (en) 2001-04-27 2002-10-31 Henderson Jeffery L. Circuit for controlling dynamic braking of a motor shaft in a power tool
US7225959B2 (en) 2001-04-30 2007-06-05 Black & Decker, Inc. Portable, battery-powered air compressor for a pneumatic tool system
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
US6586898B2 (en) 2001-05-01 2003-07-01 Magnon Engineering, Inc. Systems and methods of electric motor control
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
DE10121305A1 (en) 2001-05-02 2002-12-12 Ethicon Endo Surgery Europe Surgical instrument
EP1389958B1 (en) 2001-05-06 2008-10-29 Stereotaxis, Inc. System for advancing a catheter
US6503257B2 (en) 2001-05-07 2003-01-07 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
US6592597B2 (en) 2001-05-07 2003-07-15 Ethicon Endo-Surgery, Inc. Adhesive for attaching buttress material to a surgical fastening device
US6827725B2 (en) 2001-05-10 2004-12-07 Gyrus Medical Limited Surgical instrument
EP1385439A1 (en) 2001-05-10 2004-02-04 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
US6588277B2 (en) 2001-05-21 2003-07-08 Ethicon Endo-Surgery Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade
US6630047B2 (en) 2001-05-21 2003-10-07 3M Innovative Properties Company Fluoropolymer bonding composition and method
US20050010158A1 (en) 2001-05-24 2005-01-13 Brugger James M. Drop-in blood treatment cartridge with filter
US6766957B2 (en) 2001-05-25 2004-07-27 Sony Corporation Optical device for bar-code reading, method for manufacturing an optical device, and light projection/receiving package
US6558400B2 (en) 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
EP2067451B1 (en) 2001-06-07 2013-11-20 Kaltenbach & Voigt GmbH Medical or dental instrument and/or care device and/or system for the medical or dental instrument
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
WO2002102226A2 (en) 2001-06-14 2002-12-27 Suturtek Incorporated Apparatus and method for surgical suturing with thread management
US7371403B2 (en) 2002-06-14 2008-05-13 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
DE20121753U1 (en) 2001-06-15 2003-04-17 BEMA GmbH + Co. KG Endochirurgische Instrumente, 78576 Emmingen-Liptingen Handle for a surgical instrument comprises a locking device having a sliding element attached to one handle part and axially moving in a clamping housing attached to the other handle part
US20030040670A1 (en) 2001-06-15 2003-02-27 Assaf Govari Method for measuring temperature and of adjusting for temperature sensitivity with a medical device having a position sensor
USD465226S1 (en) 2001-06-18 2002-11-05 Bellsouth Intellecutal Property Corporation Display screen with a user interface icon
US20030009154A1 (en) 2001-06-20 2003-01-09 Whitman Michael P. Method and system for integrated medical tracking
CA2814279C (en) 2001-06-22 2015-12-29 Tyco Healthcare Group Lp Electro-mechanical surgical device with data memory unit
US7000911B2 (en) 2001-06-22 2006-02-21 Delaware Capital Formation, Inc. Motor pack for automated machinery
US6726706B2 (en) 2001-06-26 2004-04-27 Steven Dominguez Suture tape and method for use
US20050182298A1 (en) 2002-12-06 2005-08-18 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US20060178556A1 (en) 2001-06-29 2006-08-10 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
CA2451824C (en) 2001-06-29 2015-02-24 Intuitive Surgical, Inc. Platform link wrist mechanism
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US7607189B2 (en) 2004-07-14 2009-10-27 Colgate-Palmolive Oral care implement
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
JP3646162B2 (en) 2001-07-04 2005-05-11 独立行政法人産業技術総合研究所 Transplant for cartilage tissue regeneration
CN2488482Y (en) 2001-07-05 2002-05-01 天津市华志计算机应用有限公司 Joint locking mechanism for mechanical arm
JP2004534591A (en) 2001-07-09 2004-11-18 タイコ ヘルスケア グループ エルピー Right angle clip applier device and method
US6696814B2 (en) 2001-07-09 2004-02-24 Tyco Electronics Corporation Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
WO2003007805A2 (en) 2001-07-16 2003-01-30 Depuy Products, Inc. Cartilage repair apparatus and method
US20050027307A1 (en) 2001-07-16 2005-02-03 Schwartz Herbert Eugene Unitary surgical device and method
US8025896B2 (en) 2001-07-16 2011-09-27 Depuy Products, Inc. Porous extracellular matrix scaffold and method
EP1277548B1 (en) 2001-07-19 2006-05-17 HILTI Aktiengesellschaft Bolt driving tool with setting depth control
IL144446A0 (en) 2001-07-19 2002-05-23 Prochon Biotech Ltd Plasma protein matrices and methods for their preparation
US7510534B2 (en) 2001-07-20 2009-03-31 Ethicon Endo-Surgery, Inc. Method for operating biopsy device
JP3646163B2 (en) 2001-07-31 2005-05-11 国立大学法人 東京大学 Active forceps
DE20112837U1 (en) 2001-08-02 2001-10-04 Aesculap AG & Co. KG, 78532 Tuttlingen Forceps or tweezers shaped surgical instrument
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
EP1285633B1 (en) 2001-08-07 2006-12-13 Universitair Medisch Centrum Utrecht Device for connecting a surgical instrument to a stable basis
JP4235105B2 (en) 2001-08-07 2009-03-11 並木精密宝石株式会社 Magnetic microencoder and micromotor
EP2314233B1 (en) 2001-08-08 2013-06-12 Stryker Corporation A surgical tool system with an intermediate attachment located between the handpiece and an accessory or an implant, the attachment able to transmit energy from the handpiece to the accessory or the implant and the transmission of data signals from the accessory or implant to the handpiece
DE10139153A1 (en) 2001-08-09 2003-02-27 Ingo F Herrmann Disposable endoscope sheath
US6592608B2 (en) 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
IES20010748A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device and Method
DE50207516D1 (en) 2001-08-10 2006-08-24 Roche Diagnostics Gmbh PROCESS FOR PRODUCING PROTEIN-LOADED MICROPARTICLES
JP3926119B2 (en) 2001-08-10 2007-06-06 株式会社東芝 Medical manipulator
US6705503B1 (en) 2001-08-20 2004-03-16 Tricord Solutions, Inc. Electrical motor driven nail gun
US6692507B2 (en) 2001-08-23 2004-02-17 Scimed Life Systems, Inc. Impermanent biocompatible fastener
US7563862B2 (en) 2001-08-24 2009-07-21 Neuren Pharmaceuticals Limited Neural regeneration peptides and methods for their use in treatment of brain damage
WO2004078051A2 (en) 2001-08-27 2004-09-16 Gyrus Medial Limited Electrosurgical system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
US7344532B2 (en) 2001-08-27 2008-03-18 Gyrus Medical Limited Electrosurgical generator and system
GB0425051D0 (en) 2004-11-12 2004-12-15 Gyrus Medical Ltd Electrosurgical generator and system
DE60239778D1 (en) 2001-08-27 2011-06-01 Gyrus Medical Ltd Electrosurgical device
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
US6629988B2 (en) 2001-08-28 2003-10-07 Ethicon, Inc. Composite staple for completing an anastomosis
US6755338B2 (en) 2001-08-29 2004-06-29 Cerebral Vascular Applications, Inc. Medical instrument
US20030045835A1 (en) 2001-08-30 2003-03-06 Vascular Solutions, Inc. Method and apparatus for coagulation and closure of pseudoaneurysms
NL1018874C2 (en) 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Surgical instrument.
US6747121B2 (en) 2001-09-05 2004-06-08 Synthes (Usa) Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
JP2003070804A (en) 2001-09-05 2003-03-11 Olympus Optical Co Ltd Remote medical support system
JP4857504B2 (en) 2001-09-10 2012-01-18 マックス株式会社 Electric stapler staple detection mechanism
US6799669B2 (en) 2001-09-13 2004-10-05 Siemens Vdo Automotive Corporation Dynamic clutch control
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
GB2379878B (en) 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
DE10147145C2 (en) 2001-09-25 2003-12-18 Kunz Reiner Multi-function instrument for micro-invasive surgery
JP3557186B2 (en) 2001-09-26 2004-08-25 三洋電機株式会社 DC-DC converter
US6578751B2 (en) 2001-09-26 2003-06-17 Scimed Life Systems, Inc. Method of sequentially firing staples using springs and a rotary or linear shutter
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
JP4450622B2 (en) 2001-09-28 2010-04-14 アンジオ ダイナミクス インコーポレイテッド Impedance-controlled tissue peeling device and method
SE523684C2 (en) 2001-10-04 2004-05-11 Isaberg Rapid Ab Control device for a drive motor in a stapler
ES2763929T3 (en) 2001-10-05 2020-06-01 Covidien Lp Surgical stapling device
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface
US6957758B2 (en) 2001-10-05 2005-10-25 Tyco Healthcare Group, Lp Tilt top anvil for a surgical fastener device
CA2457564C (en) 2001-10-05 2009-04-07 Surmodics, Inc. Particle immobilized coatings and uses thereof
ES2529325T3 (en) 2001-10-05 2015-02-19 Covidien Lp Adjustment method of surgical stapling device
US6835173B2 (en) 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7052454B2 (en) 2001-10-20 2006-05-30 Applied Medical Resources Corporation Sealed surgical access device
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US20030216732A1 (en) 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
WO2003054849A1 (en) 2001-10-23 2003-07-03 Immersion Corporation Method of using tactile feedback to deliver silent status information to a user of an electronic device
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
US6677687B2 (en) 2001-10-23 2004-01-13 Sun Microsystems, Inc. System for distributing power in CPCI computer architecture
FR2831417B1 (en) 2001-10-30 2004-08-06 Eurosurgical SURGICAL INSTRUMENT
JP2003135473A (en) 2001-11-01 2003-05-13 Mizuho Co Ltd Active forceps for endoscopic surgery
AUPR865901A0 (en) 2001-11-02 2002-01-24 Poly Systems Pty Ltd Projectile firing device
US6716223B2 (en) 2001-11-09 2004-04-06 Micrus Corporation Reloadable sheath for catheter system for deploying vasoocclusive devices
FR2832262A1 (en) 2001-11-09 2003-05-16 France Telecom METHOD AND DEVICE FOR SUPPLYING ELECTRICAL ENERGY TO AN APPARATUS
US8089509B2 (en) 2001-11-09 2012-01-03 Karl Storz Imaging, Inc. Programmable camera control unit with updatable program
US6471106B1 (en) 2001-11-15 2002-10-29 Intellectual Property Llc Apparatus and method for restricting the discharge of fasteners from a tool
US6997935B2 (en) 2001-11-20 2006-02-14 Advanced Medical Optics, Inc. Resonant converter tuning for maintaining substantially constant phaco handpiece power under increased load
US6993200B2 (en) 2001-11-20 2006-01-31 Sony Corporation System and method for effectively rendering high dynamic range images
GB2382226A (en) 2001-11-20 2003-05-21 Black & Decker Inc Switch mechanism for a power tool
JP2003164066A (en) 2001-11-21 2003-06-06 Hitachi Koki Co Ltd Battery pack
US6605078B2 (en) 2001-11-26 2003-08-12 Scimed Life Systems, Inc. Full thickness resection device
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
DE10158246C1 (en) 2001-11-28 2003-08-21 Ethicon Endo Surgery Europe Surgical stapling instrument
US6671185B2 (en) 2001-11-28 2003-12-30 Landon Duval Intelligent fasteners
AU2002349652A1 (en) 2001-11-29 2003-06-10 Max Co., Ltd. Electric stapler
CA2466812C (en) 2001-12-04 2012-04-03 Michael P. Whitman System and method for calibrating a surgical instrument
US7542807B2 (en) 2001-12-04 2009-06-02 Endoscopic Technologies, Inc. Conduction block verification probe and method of use
US7591818B2 (en) 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
US10098640B2 (en) * 2001-12-04 2018-10-16 Atricure, Inc. Left atrial appendage devices and methods
US7331968B2 (en) 2004-06-14 2008-02-19 Ethicon Endo-Surgery, Inc. Endoscopic clip applier with threaded clip
US7918867B2 (en) 2001-12-07 2011-04-05 Abbott Laboratories Suture trimmer
US20030121586A1 (en) 2001-12-11 2003-07-03 3M Innovative Properties Company Tack-on-pressure films for temporary surface protection and surface modification
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
GB2383006A (en) 2001-12-13 2003-06-18 Black & Decker Inc Mechanism for use in a power tool and a power tool including such a mechanism
US6723087B2 (en) 2001-12-14 2004-04-20 Medtronic, Inc. Apparatus and method for performing surgery on a patient
US7122028B2 (en) 2001-12-19 2006-10-17 Allegiance Corporation Reconfiguration surgical apparatus
US6974462B2 (en) 2001-12-19 2005-12-13 Boston Scientific Scimed, Inc. Surgical anchor implantation device
US6939358B2 (en) 2001-12-20 2005-09-06 Gore Enterprise Holdings, Inc. Apparatus and method for applying reinforcement material to a surgical stapler
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
WO2003053289A1 (en) 2001-12-21 2003-07-03 Simcha Milo Implantation system for annuloplasty rings
RU2225170C2 (en) 2001-12-25 2004-03-10 Дубровский Аркадий Вениаминович Instrument having rotation device
US6942662B2 (en) 2001-12-27 2005-09-13 Gyrus Group Plc Surgical Instrument
GB0130975D0 (en) 2001-12-27 2002-02-13 Gyrus Group Plc A surgical instrument
US20060264929A1 (en) 2001-12-27 2006-11-23 Gyrus Group Plc Surgical system
GB0425842D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
AU2002358220B2 (en) 2001-12-27 2008-09-25 Gyrus Medical Limited A surgical instrument
US6729119B2 (en) 2001-12-28 2004-05-04 The Schnipke Family Limited Liability Company Robotic loader for surgical stapling cartridge
US6913594B2 (en) 2001-12-31 2005-07-05 Biosense Webster, Inc. Dual-function catheter handle
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US6740030B2 (en) 2002-01-04 2004-05-25 Vision Sciences, Inc. Endoscope assemblies having working channels with reduced bending and stretching resistance
AU2002359847A1 (en) 2002-01-09 2003-07-30 Neoguide Systems, Inc Apparatus and method for endoscopic colectomy
DE60335080D1 (en) 2002-01-16 2011-01-05 Toyota Motor Co Ltd TESTING PROCEDURE, STORAGE MEDIUM, PROGRAM, DRIVE
EP1471844A2 (en) 2002-01-16 2004-11-03 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6869435B2 (en) 2002-01-17 2005-03-22 Blake, Iii John W Repeating multi-clip applier
US6999821B2 (en) 2002-01-18 2006-02-14 Pacesetter, Inc. Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same
US7091412B2 (en) 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
DE10203282A1 (en) 2002-01-29 2003-08-21 Behrens Ag Friedrich Joh Fasteners and process for its manufacture
ATE500777T1 (en) 2002-01-30 2011-03-15 Tyco Healthcare SURGICAL IMAGING DEVICE
US7530985B2 (en) 2002-01-30 2009-05-12 Olympus Corporation Endoscopic suturing system
US20030149406A1 (en) 2002-02-07 2003-08-07 Lucie Martineau Multi-layer dressing as medical drug delivery system
US7501198B2 (en) 2002-02-07 2009-03-10 Linvatec Corporation Sterile transfer battery container
EP1474045B1 (en) 2002-02-13 2016-12-07 Applied Medical Resources Corporation Tissue fusion/welder apparatus
EP1336392A1 (en) 2002-02-14 2003-08-20 John S. Geis Body vessel support and catheter system
US7494499B2 (en) 2002-02-15 2009-02-24 Olympus Corporation Surgical therapeutic instrument
US6524180B1 (en) 2002-02-19 2003-02-25 Maury Simms Adjustable duct assembly for fume and dust removal
AU2003211376A1 (en) 2002-02-20 2003-09-09 New X-National Technology K.K. Drug administration method
US7400752B2 (en) 2002-02-21 2008-07-15 Alcon Manufacturing, Ltd. Video overlay system for surgical apparatus
US6646307B1 (en) 2002-02-21 2003-11-11 Advanced Micro Devices, Inc. MOSFET having a double gate
US6847190B2 (en) 2002-02-26 2005-01-25 Linvatec Corporation Method and apparatus for charging sterilizable rechargeable batteries
US6747300B2 (en) 2002-03-04 2004-06-08 Ternational Rectifier Corporation H-bridge drive utilizing a pair of high and low side MOSFETs in a common insulation housing
US8010180B2 (en) 2002-03-06 2011-08-30 Mako Surgical Corp. Haptic guidance system and method
US7206626B2 (en) 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for haptic sculpting of physical objects
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
USD473239S1 (en) 2002-03-08 2003-04-15 Dca Design International Limited Portion of a display panel with a computer icon image
US7289139B2 (en) 2002-03-12 2007-10-30 Karl Storz Imaging, Inc. Endoscope reader
GB0206208D0 (en) 2002-03-15 2002-05-01 Gyrus Medical Ltd A surgical instrument
US7660988B2 (en) 2002-03-18 2010-02-09 Cognomina, Inc. Electronic notary
EP2322077A1 (en) 2002-03-18 2011-05-18 Optim, Inc. Identifying the status of a reusable instrument
USD484243S1 (en) 2002-03-22 2003-12-23 Gyrus Ent L.L.C. Surgical tool blade holder
USD484595S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
USD478986S1 (en) 2002-03-22 2003-08-26 Gyrus Ent L.L.C. Surgical tool
USD478665S1 (en) 2002-03-22 2003-08-19 Gyrus Ent L.L.C. Disposable trigger
US7247161B2 (en) 2002-03-22 2007-07-24 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
USD484596S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
USD484977S1 (en) 2002-03-22 2004-01-06 Gyrus Ent L.L.C. Surgical tool blade holder
US7137981B2 (en) 2002-03-25 2006-11-21 Ethicon Endo-Surgery, Inc. Endoscopic ablation system with a distally mounted image sensor
JP4071642B2 (en) 2002-03-25 2008-04-02 株式会社リコー Paper processing apparatus and image forming system
US7128748B2 (en) 2002-03-26 2006-10-31 Synovis Life Technologies, Inc. Circular stapler buttress combination
WO2003086507A1 (en) 2002-04-09 2003-10-23 Yushin Medical Co., Ltd Indwelling fecal diverting device
JP2003300416A (en) 2002-04-10 2003-10-21 Kyowa Sangyo Kk Vehicle sunvisor
WO2003086206A1 (en) 2002-04-11 2003-10-23 Tyco Healthcare Group, Lp Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
US7377928B2 (en) 2002-04-15 2008-05-27 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
EP1494601B1 (en) 2002-04-15 2012-01-11 Tyco Healthcare Group LP Instrument introducer
US7517356B2 (en) 2002-04-16 2009-04-14 Tyco Healthcare Group Lp Surgical stapler and method
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US6846811B2 (en) 2002-04-22 2005-01-25 Wisconsin Alumni Research Foundation (20S) 1α-hydroxy-2α-methyl and 2β-methyl-19-nor-vitamin D3 and their uses
CN105326478A (en) 2002-04-22 2016-02-17 马尔西奥·马克·阿布雷乌 Apparatus and method for measuring biologic parameters
WO2003090631A1 (en) 2002-04-24 2003-11-06 Surgical Connections, Inc. Resection and anastomosis devices and methods
US8241308B2 (en) 2002-04-24 2012-08-14 Boston Scientific Scimed, Inc. Tissue fastening devices and processes that promote tissue adhesion
US7161580B2 (en) 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
JP4431404B2 (en) 2002-04-25 2010-03-17 タイコ ヘルスケア グループ エルピー Surgical instruments including microelectromechanical systems (MEMS)
WO2003090628A1 (en) 2002-04-25 2003-11-06 Terumo Kabushiki Kaisha Organism tissue suturing apparatus
US6692692B2 (en) 2002-04-29 2004-02-17 Eric J. Stetzel Dental drill sterilization through application of high amperage current
US6969385B2 (en) 2002-05-01 2005-11-29 Manuel Ricardo Moreyra Wrist with decoupled motion transmission
US7674270B2 (en) 2002-05-02 2010-03-09 Laparocision, Inc Apparatus for positioning a medical instrument
AU2003228858A1 (en) 2002-05-02 2003-11-17 Scimed Life Systems, Inc. Energetically-controlled delivery of biologically active material from an implanted medical device
WO2003094740A1 (en) 2002-05-08 2003-11-20 Radi Medical Systems Ab Dissolvable medical sealing device
CN1457139A (en) 2002-05-08 2003-11-19 精工爱普生株式会社 Stabilized voltage swtich supply with overpressure output protective circuit and electronic device
CN1625457A (en) 2002-05-09 2005-06-08 龟山俊之 Cartridge for stapler and stapler
ES2540098T3 (en) 2002-05-10 2015-07-08 Covidien Lp Surgical stapling device that has a material applicator set for wound closure
US7207471B2 (en) 2002-05-10 2007-04-24 Tyco Healthcare Group Lp Electrosurgical stapling apparatus
US6736854B2 (en) 2002-05-10 2004-05-18 C. R. Bard, Inc. Prosthetic repair fabric with erosion resistant edge
EP1503671B1 (en) 2002-05-10 2006-10-11 Tyco Healthcare Group Lp Wound closure material applicator and stapler
TWI237916B (en) 2002-05-13 2005-08-11 Sun Bridge Corp Cordless device system
WO2003094747A1 (en) 2002-05-13 2003-11-20 Tyco Healthcare Group, Lp Surgical stapler and disposable loading unit having different size staples
US20040158261A1 (en) 2002-05-15 2004-08-12 Vu Dinh Q. Endoscopic device for spill-proof laparoscopic ovarian cystectomy
US20040254455A1 (en) 2002-05-15 2004-12-16 Iddan Gavriel J. Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
US7968569B2 (en) 2002-05-17 2011-06-28 Celgene Corporation Methods for treatment of multiple myeloma using 3-(4-amino-1-oxo-1,3-dihydro-isoindol-2-yl)-piperidine-2,6-dione
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US6638297B1 (en) 2002-05-30 2003-10-28 Ethicon Endo-Surgery, Inc. Surgical staple
US6769594B2 (en) 2002-05-31 2004-08-03 Tyco Healthcare Group, Lp End-to-end anastomosis instrument and method for performing same
US6989034B2 (en) 2002-05-31 2006-01-24 Ethicon, Inc. Attachment of absorbable tissue scaffolds to fixation devices
US7056330B2 (en) 2002-05-31 2006-06-06 Ethicon Endo-Surgery, Inc. Method for applying tissue fastener
US20030225439A1 (en) 2002-05-31 2003-12-04 Cook Alonzo D. Implantable product with improved aqueous interface characteristics and method for making and using same
US6543456B1 (en) 2002-05-31 2003-04-08 Ethicon Endo-Surgery, Inc. Method for minimally invasive surgery in the digestive system
US7004174B2 (en) 2002-05-31 2006-02-28 Neothermia Corporation Electrosurgery with infiltration anesthesia
US6861142B1 (en) 2002-06-06 2005-03-01 Hills, Inc. Controlling the dissolution of dissolvable polymer components in plural component fibers
EP1369208B1 (en) 2002-06-07 2008-04-23 Black & Decker Inc. A power tool provided with a locking mechanism
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US20050137454A1 (en) 2002-06-13 2005-06-23 Usgi Medical Corp. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US7717873B2 (en) 2002-06-14 2010-05-18 Mcneil-Ppc, Inc. Applicator device for suppositories and the like
ES2278167T3 (en) 2002-06-14 2007-08-01 Power Medical Interventions, Inc. DEVICE FOR CLAMPING, CUTTING AND STAPLING FABRIC.
EP1719461B1 (en) 2002-06-17 2009-06-03 Tyco Healthcare Group Lp Annular support structures
ES2268384T3 (en) 2002-06-17 2007-03-16 Tyco Healthcare Group Lp ANNULAR SUPPORT STRUCTURES.
US7063671B2 (en) 2002-06-21 2006-06-20 Boston Scientific Scimed, Inc. Electronically activated capture device
US20030234194A1 (en) 2002-06-21 2003-12-25 Clark Dan Warren Protective shield for a patient control unit
RU2284160C2 (en) 2002-06-24 2006-09-27 Аркадий Вениаминович Дубровский Device for rotating remote control instrument
US6635838B1 (en) 2002-06-24 2003-10-21 Brent A. Kornelson Switch actuating device and method of mounting same
US7112214B2 (en) 2002-06-25 2006-09-26 Incisive Surgical, Inc. Dynamic bioabsorbable fastener for use in wound closure
GB2390024B (en) 2002-06-27 2005-09-21 Gyrus Medical Ltd Electrosurgical system
US7699856B2 (en) 2002-06-27 2010-04-20 Van Wyk Robert A Method, apparatus, and kit for thermal suture cutting
US9126317B2 (en) 2002-06-27 2015-09-08 Snap-On Incorporated Tool apparatus system and method of use
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
AUPS322702A0 (en) 2002-06-28 2002-07-18 Cochlear Limited Cochlear implant electrode array
US8287561B2 (en) 2002-06-28 2012-10-16 Boston Scientific Scimed, Inc. Balloon-type actuator for surgical applications
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US20040006340A1 (en) 2002-07-02 2004-01-08 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue
JP4405401B2 (en) 2002-07-03 2010-01-27 アボット ヴァスキュラー デヴァイシス Surgical stapling apparatus
US6932218B2 (en) 2002-07-03 2005-08-23 Monica Rich Kosann Photography Llc Folding photo case
US20040006335A1 (en) 2002-07-08 2004-01-08 Garrison Lawrence L. Cauterizing surgical saw
US7029439B2 (en) 2002-07-09 2006-04-18 Welch Allyn, Inc. Medical diagnostic instrument
US7035762B2 (en) 2002-07-11 2006-04-25 Alcatel Canada Inc. System and method for tracking utilization data for an electronic device
US20060089535A1 (en) 2002-07-11 2006-04-27 Dan Raz Piston-actuated endoscopic steering system
US20040006860A1 (en) 2002-07-15 2004-01-15 Haytayan Harry M. Method and apparatus for attaching structural components with fasteners
US20040166169A1 (en) 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US7769427B2 (en) 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US7054696B2 (en) 2002-07-18 2006-05-30 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord
KR20050037557A (en) 2002-07-22 2005-04-22 아스펜 에어로겔, 인코퍼레이티드 Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same
IL150853A0 (en) 2002-07-22 2003-02-12 Niti Medical Technologies Ltd Imppoved intussusception and anastomosis apparatus
JP4046569B2 (en) 2002-07-30 2008-02-13 オリンパス株式会社 Surgical instrument
AU2003269931A1 (en) 2002-07-31 2004-02-16 Tyco Heathcare Group, Lp Tool member cover and cover deployment device
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US7179223B2 (en) 2002-08-06 2007-02-20 Olympus Optical Co., Ltd. Endoscope apparatus having an internal channel
JP4142369B2 (en) 2002-08-07 2008-09-03 オリンパス株式会社 Endoscopic treatment system
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
US6720734B2 (en) 2002-08-08 2004-04-13 Datex-Ohmeda, Inc. Oximeter with nulled op-amp current feedback
US9271753B2 (en) 2002-08-08 2016-03-01 Atropos Limited Surgical device
US7155316B2 (en) 2002-08-13 2006-12-26 Microbotics Corporation Microsurgical robot system
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US20040044295A1 (en) 2002-08-19 2004-03-04 Orthosoft Inc. Graphical user interface for computer-assisted surgery
US7494460B2 (en) 2002-08-21 2009-02-24 Medtronic, Inc. Methods and apparatus providing suction-assisted tissue engagement through a minimally invasive incision
WO2004019803A1 (en) 2002-08-28 2004-03-11 Heribert Schmid Dental treatment system
US20040044364A1 (en) 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US6981978B2 (en) 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7174636B2 (en) 2002-09-04 2007-02-13 Scimed Life Systems, Inc. Method of making an embolic filter
WO2004021868A2 (en) 2002-09-06 2004-03-18 C.R. Bard, Inc. External endoscopic accessory control system
US20040049121A1 (en) 2002-09-06 2004-03-11 Uri Yaron Positioning system for neurological procedures in the brain
AU2003270549A1 (en) 2002-09-09 2004-03-29 Brian Kelleher Device and method for endoluminal therapy
US6925849B2 (en) 2002-09-10 2005-08-09 Acco Brands, Inc. Stapler anvil
US6895176B2 (en) 2002-09-12 2005-05-17 General Electric Company Method and apparatus for controlling electronically commutated motor operating characteristics
US8298161B2 (en) 2002-09-12 2012-10-30 Intuitive Surgical Operations, Inc. Shape-transferring cannula system and method of use
US7096972B2 (en) 2002-09-17 2006-08-29 Orozco Jr Efrem Hammer drill attachment
JP3680050B2 (en) 2002-09-18 2005-08-10 株式会社東芝 Medical manipulator and control method thereof
GB0221707D0 (en) 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US8454628B2 (en) 2002-09-20 2013-06-04 Syntheon, Llc Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease
US7033378B2 (en) 2002-09-20 2006-04-25 Id, Llc Surgical fastener, particularly for the endoluminal treatment of gastroesophageal reflux disease (GERD)
US7001408B2 (en) 2002-09-20 2006-02-21 Ethicon Endo-Surgery,Inc. Surgical device with expandable member
US6814154B2 (en) 2002-09-23 2004-11-09 Wen San Chou Power tool having automatically selective driving direction
US7256695B2 (en) 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
AU2003272658A1 (en) 2002-09-26 2004-04-19 Bioaccess, Inc. Orthopedic medical device with unitary components
US7837687B2 (en) 2002-09-27 2010-11-23 Surgitech, Llc Surgical assembly for tissue removal
AU2002368279A1 (en) 2002-09-27 2004-05-04 Aesculap Ag And Co. Kg Set of instruments for performing a surgical operation
MXPA05003010A (en) 2002-09-30 2005-06-22 Sightline Techn Ltd Piston-actuated endoscopic tool.
US7326203B2 (en) 2002-09-30 2008-02-05 Depuy Acromed, Inc. Device for advancing a functional element through tissue
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
US20040068161A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Thrombolysis catheter
JP4049217B2 (en) 2002-10-02 2008-02-20 イーメックス株式会社 Conductive polymer molded article and apparatus using laminate
US6836611B2 (en) 2002-10-03 2004-12-28 J. W. Speaker Corporation Light guide and lateral illuminator
EP1759641B1 (en) 2002-10-04 2011-04-13 Tyco Healthcare Group LP Surgical stapler with universal articulation and tissue pre-clamp
CA2500796C (en) 2002-10-04 2011-03-15 Tyco Healthcare Group, Lp Tool assembly for surgical stapling device
AU2003279854B2 (en) 2002-10-04 2008-12-18 Covidien Lp Tool assembly for a surgical stapling device
WO2004032766A2 (en) 2002-10-04 2004-04-22 Tyco Healthcare Group Lp Surgical stapling device
US7083626B2 (en) 2002-10-04 2006-08-01 Applied Medical Resources Corporation Surgical access device with pendent valve
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
WO2004032760A2 (en) 2002-10-04 2004-04-22 Tyco Healthcare Group, Lp Pneumatic powered surgical stapling device
US7135027B2 (en) 2002-10-04 2006-11-14 Baxter International, Inc. Devices and methods for mixing and extruding medically useful compositions
US7041088B2 (en) 2002-10-11 2006-05-09 Ethicon, Inc. Medical devices having durable and lubricious polymeric coating
US20040070369A1 (en) 2002-10-11 2004-04-15 Makita Corporation Adapters for battery chargers
US6958035B2 (en) 2002-10-15 2005-10-25 Dusa Pharmaceuticals, Inc Medical device sheath apparatus and method of making and using same
US7023159B2 (en) 2002-10-18 2006-04-04 Black & Decker Inc. Method and device for braking a motor
US8100872B2 (en) 2002-10-23 2012-01-24 Tyco Healthcare Group Lp Medical dressing containing antimicrobial agent
US20040092992A1 (en) 2002-10-23 2004-05-13 Kenneth Adams Disposable battery powered rotary tissue cutting instruments and methods therefor
JP2006512427A (en) 2002-10-28 2006-04-13 タイコ ヘルスケア グループ エルピー Fast-curing composition
JP4086621B2 (en) 2002-10-28 2008-05-14 株式会社トップ Surgical instrument handle structure
US6923093B2 (en) 2002-10-29 2005-08-02 Rizwan Ullah Tool drive system
US20040085180A1 (en) 2002-10-30 2004-05-06 Cyntec Co., Ltd. Current sensor, its production substrate, and its production process
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US20090149871A9 (en) 2002-11-01 2009-06-11 Jonathan Kagan Devices and methods for treating morbid obesity
US7037344B2 (en) 2002-11-01 2006-05-02 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US8070743B2 (en) 2002-11-01 2011-12-06 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US8142515B2 (en) 2002-11-04 2012-03-27 Sofradim Production Prosthesis for reinforcement of tissue structures
US20040218451A1 (en) 2002-11-05 2004-11-04 Said Joe P. Accessible user interface and navigation system and method
US6884392B2 (en) 2002-11-12 2005-04-26 Minntech Corporation Apparatus and method for steam reprocessing flexible endoscopes
US6951562B2 (en) 2002-11-13 2005-10-04 Ralph Fritz Zwirnmann Adjustable length tap and method for drilling and tapping a bore in bone
AU2003302020B2 (en) 2002-11-14 2008-01-31 Ethicon Endo-Surgery, Inc. Methods and devices for detecting tissue cells
US20050256452A1 (en) 2002-11-15 2005-11-17 Demarchi Thomas Steerable vascular sheath
DE10253572A1 (en) 2002-11-15 2004-07-29 Vega Grieshaber Kg Wireless communication
US7211092B2 (en) 2002-11-19 2007-05-01 Pilling Weck Incorporated Automated-feed surgical clip applier and related methods
CN1486667A (en) 2002-11-22 2004-04-07 Endoscope system with disposable sheath
DE60331463D1 (en) 2002-11-22 2010-04-08 Tyco Healthcare Medical system with pods
US20040101822A1 (en) 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
DE10257760A1 (en) 2002-11-26 2004-06-17 Stefan Koscher Surgical instrument
US20040102783A1 (en) 2002-11-27 2004-05-27 Sutterlin Chester E. Powered Kerrison-like Rongeur system
EP1590517A4 (en) 2002-11-29 2010-03-10 John R Liddicoat Apparatus and method for manipulating tissue
KR100486596B1 (en) 2002-12-06 2005-05-03 엘지전자 주식회사 Apparatus and control method for driving of reciprocating compressor
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
AU2003289246B2 (en) 2002-12-16 2007-10-04 Gunze Limited Medical film
JP2006510457A (en) 2002-12-17 2006-03-30 アプライド メディカル リソーシーズ コーポレイション Surgical staples / clips and appliers
AU2003302983A1 (en) 2002-12-18 2004-07-09 Koninklijke Philips Electronics N.V. Magnetic position sensor
US20040122419A1 (en) 2002-12-18 2004-06-24 Ceramoptec Industries, Inc. Medical device recognition system with write-back feature
US7348763B1 (en) 2002-12-20 2008-03-25 Linvatec Corporation Method for utilizing temperature to determine a battery state
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US7343920B2 (en) 2002-12-20 2008-03-18 Toby E Bruce Connective tissue repair system
US20040147909A1 (en) 2002-12-20 2004-07-29 Gyrus Ent L.L.C. Surgical instrument
US7249267B2 (en) 2002-12-21 2007-07-24 Power-One, Inc. Method and system for communicating filter compensation coefficients for a digital power control system
US6863924B2 (en) 2002-12-23 2005-03-08 Kimberly-Clark Worldwide, Inc. Method of making an absorbent composite
US6931830B2 (en) 2002-12-23 2005-08-23 Chase Liao Method of forming a wire package
US7131445B2 (en) 2002-12-23 2006-11-07 Gyrus Medical Limited Electrosurgical method and apparatus
US20040119185A1 (en) 2002-12-23 2004-06-24 Chen Ching Hsi Method for manufacturing opened-cell plastic foams
GB0230055D0 (en) 2002-12-23 2003-01-29 Gyrus Medical Ltd Electrosurgical method and apparatus
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
JP4160381B2 (en) 2002-12-27 2008-10-01 ローム株式会社 Electronic device having audio output device
JP2004208922A (en) 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
US7455687B2 (en) 2002-12-30 2008-11-25 Advanced Cardiovascular Systems, Inc. Polymer link hybrid stent
US7914561B2 (en) 2002-12-31 2011-03-29 Depuy Spine, Inc. Resilient bone plate and screw system allowing bi-directional assembly
JP2004209042A (en) 2003-01-06 2004-07-29 Olympus Corp Ultrasonic treatment apparatus
US7195627B2 (en) 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
EP1782741A3 (en) 2003-01-09 2008-11-05 Gyrus Medical Limited An electrosurgical generator
GB0426648D0 (en) 2004-12-03 2005-01-05 Gyrus Medical Ltd An electrosurgical generator
US7287682B1 (en) 2003-01-20 2007-10-30 Hazem Ezzat Surgical device and method
US20040143297A1 (en) 2003-01-21 2004-07-22 Maynard Ramsey Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment
US7028570B2 (en) 2003-01-21 2006-04-18 Honda Motor Co., Ltd. Transmission
US6821284B2 (en) 2003-01-22 2004-11-23 Novare Surgical Systems, Inc. Surgical clamp inserts with micro-tractive surfaces
US6960220B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Hoop design for occlusion device
US6852122B2 (en) 2003-01-23 2005-02-08 Cordis Corporation Coated endovascular AAA device
US20040225186A1 (en) 2003-01-29 2004-11-11 Horne Guy E. Composite flexible endoscope insertion shaft with tubular substructure
US7341591B2 (en) 2003-01-30 2008-03-11 Depuy Spine, Inc. Anterior buttress staple
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
JP2004229976A (en) 2003-01-31 2004-08-19 Nippon Zeon Co Ltd Forceps type electrical operative instrument
EP2263833B1 (en) 2003-02-05 2012-01-18 Makita Corporation Power tool with a torque limiter using only rotational angle detecting means
US7067038B2 (en) 2003-02-06 2006-06-27 The Procter & Gamble Company Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
US7354502B2 (en) 2003-02-06 2008-04-08 The Procter & Gamble Company Method for making a fibrous structure comprising cellulosic and synthetic fibers
US20090318557A1 (en) 2003-12-22 2009-12-24 Stockel Richard F Dermatological compositions
DE602004030998D1 (en) 2003-02-07 2011-02-24 Max Co Ltd CLAMP FILLING DEVICE, STAPLER AND CASSETTE
DE602004015729D1 (en) 2003-02-11 2008-09-25 Olympus Corp ABOUT TUBE
CN100442622C (en) 2003-02-18 2008-12-10 美商波特-凯博公司 Over current protective amperage control for battery of electric tool
JP4469843B2 (en) 2003-02-20 2010-06-02 コヴィディエン アクチェンゲゼルシャフト Motion detector for controlling electrosurgical output
US20040167572A1 (en) 2003-02-20 2004-08-26 Roth Noah M. Coated medical devices
US7083615B2 (en) 2003-02-24 2006-08-01 Intuitive Surgical Inc Surgical tool having electrocautery energy supply conductor with inhibited current leakage
WO2004075721A2 (en) 2003-02-25 2004-09-10 Spectragenics, Inc. Self-contained, diode-laser-based dermatologic treatment apparatus and metod
CN100453052C (en) 2003-02-25 2009-01-21 伊西康内外科公司 Biopsy device with variable speed cutter advance
US7025732B2 (en) 2003-02-25 2006-04-11 Ethicon Endo-Surgery, Inc. Biopsy device with variable speed cutter advance
JP4231707B2 (en) 2003-02-25 2009-03-04 オリンパス株式会社 Capsule medical device
EP2604215B1 (en) 2003-02-25 2017-10-11 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus and method
US7476237B2 (en) 2003-02-27 2009-01-13 Olympus Corporation Surgical instrument
US7331340B2 (en) 2003-03-04 2008-02-19 Ivax Corporation Medicament dispensing device with a display indicative of the state of an internal medicament reservoir
DE602004009293T2 (en) 2003-03-05 2008-07-10 Gyrus Medical Ltd., St. Mellons ELECTRO-SURGICAL GENERATOR AND SYSTEM
US7368124B2 (en) 2003-03-07 2008-05-06 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US8197837B2 (en) 2003-03-07 2012-06-12 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
IL154814A0 (en) 2003-03-09 2003-10-31 Edward G Shifrin Sternal closure system, method and apparatus therefor
FR2852226B1 (en) 2003-03-10 2005-07-15 Univ Grenoble 1 LOCALIZED MEDICAL INSTRUMENT WITH ORIENTABLE SCREEN
US7126879B2 (en) 2003-03-10 2006-10-24 Healthtrac Systems, Inc. Medication package and method
US20060064086A1 (en) 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
US6971988B2 (en) 2003-03-17 2005-12-06 Tyco Healthcare Group, Lp Endoscopic tissue removal apparatus and method
CA2433205A1 (en) 2003-03-18 2004-09-18 James Alexander Keenan Drug delivery, bodily fluid drainage, and biopsy device with enhanced ultrasonic visibility
US6928902B1 (en) 2003-03-20 2005-08-16 Luis P. Eyssallenne Air powered wrench device with pivotable head and method of using
US20060041188A1 (en) 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US20040193189A1 (en) 2003-03-25 2004-09-30 Kortenbach Juergen A. Passive surgical clip
EP1605840B1 (en) 2003-03-26 2011-01-05 Tyco Healthcare Group LP Energy stored in spring with controlled release
DE10314072B4 (en) 2003-03-28 2009-01-15 Aesculap Ag Surgical instrument
US7014640B2 (en) 2003-03-28 2006-03-21 Depuy Products, Inc. Bone graft delivery device and method of use
JP3752494B2 (en) 2003-03-31 2006-03-08 株式会社東芝 Master-slave manipulator, control device and control method thereof
JP3944108B2 (en) 2003-03-31 2007-07-11 株式会社東芝 Power transmission mechanism and manipulator for medical manipulator
US7295893B2 (en) 2003-03-31 2007-11-13 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7527632B2 (en) 2003-03-31 2009-05-05 Cordis Corporation Modified delivery device for coated medical devices
DE10324844A1 (en) 2003-04-01 2004-12-23 Tuebingen Scientific Surgical Products Gmbh Surgical instrument with instrument handle and zero point adjustment
DE10330604A1 (en) 2003-04-01 2004-10-28 Tuebingen Scientific Surgical Products Gmbh Surgical instrument
DE10314827B3 (en) 2003-04-01 2004-04-22 Tuebingen Scientific Surgical Products Gmbh Surgical instrument used in minimal invasive surgery comprises an effector-operating gear train having a push bar displaceably arranged in a tubular shaft and lying in contact with a push bolt interacting with an engaging element
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20040243163A1 (en) 2003-04-02 2004-12-02 Gyrus Ent L.L.C Surgical instrument
US20040199181A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Surgical device for anastomosis
US20040197375A1 (en) 2003-04-02 2004-10-07 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20070010702A1 (en) 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US20040204735A1 (en) 2003-04-11 2004-10-14 Shiroff Jason Alan Subcutaneous dissection tool incorporating pharmacological agent delivery
US6754959B1 (en) 2003-04-15 2004-06-29 Guiette, Iii William E. Hand-held, cartridge-actuated cutter
US20050116673A1 (en) 2003-04-18 2005-06-02 Rensselaer Polytechnic Institute Methods and systems for controlling the operation of a tool
PT1616549E (en) 2003-04-23 2012-11-12 Otsuka Pharma Co Ltd Drug solution filling plastic ampoule and process for producing the same
CN100515381C (en) 2003-04-23 2009-07-22 株式会社大塚制药工厂 Drug solution filling plastic ampoule and production method therefor
EP1619996B1 (en) 2003-04-25 2012-12-05 Applied Medical Resources Corporation Steerable kink-resistant sheath
US9597078B2 (en) 2003-04-29 2017-03-21 Covidien Lp Surgical stapling device with dissecting tip
TWI231076B (en) 2003-04-29 2005-04-11 Univ Nat Chiao Tung Evanescent-field optical amplifiers and lasers
US8714429B2 (en) 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
US20040243151A1 (en) 2003-04-29 2004-12-02 Demmy Todd L. Surgical stapling device with dissecting tip
RU32984U1 (en) 2003-04-30 2003-10-10 Институт экспериментальной ветеринарии Сибири и Дальнего Востока СО РАСХН CUTIMETER
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
CA2522372C (en) 2003-05-06 2012-08-07 Enpath Medical, Inc. Rotatable lead introducer
JP4391762B2 (en) 2003-05-08 2009-12-24 オリンパス株式会社 Surgical instrument
US6722550B1 (en) 2003-05-09 2004-04-20 Illinois Tool Works Inc. Fuel level indicator for combustion tools
DE60312050T2 (en) 2003-05-09 2007-10-25 Tyco Healthcare Group Lp, Norwalk ANASTOMOSIS CLAMP WITH FLUID DISPENSER CAPILLARY
US7404449B2 (en) 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
US7025775B2 (en) 2003-05-15 2006-04-11 Applied Medical Resources Corporation Surgical instrument with removable shaft apparatus and method
US7815565B2 (en) 2003-05-16 2010-10-19 Ethicon Endo-Surgery, Inc. Endcap for use with an endoscope
US7615003B2 (en) 2005-05-13 2009-11-10 Ethicon Endo-Surgery, Inc. Track for medical devices
US7615005B2 (en) 2003-05-16 2009-11-10 Ethicon Endo-Surgery, Inc. Medical apparatus for use with an endoscope
WO2004102824A1 (en) 2003-05-19 2004-11-25 Telefonaktiebolaget L M Ericsson (Publ) Determination of a channel estimate of a transmission channel
US20070010838A1 (en) 2003-05-20 2007-01-11 Shelton Frederick E Iv Surgical stapling instrument having a firing lockout for an unclosed anvil
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7286850B2 (en) 2003-05-20 2007-10-23 Agere Systems Inc. Wireless communication module system and method for performing a wireless communication
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
US8100824B2 (en) 2003-05-23 2012-01-24 Intuitive Surgical Operations, Inc. Tool with articulation lock
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
NL1023532C2 (en) 2003-05-26 2004-11-29 Innosource B V Speed control for a brushless DC motor.
US7413563B2 (en) 2003-05-27 2008-08-19 Cardia, Inc. Flexible medical device
US6921397B2 (en) 2003-05-27 2005-07-26 Cardia, Inc. Flexible delivery device
US7583063B2 (en) 2003-05-27 2009-09-01 Pratt & Whitney Canada Corp. Architecture for electric machine
US6965183B2 (en) 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
EP1633245B1 (en) 2003-05-28 2007-06-06 Koninklijke Philips Electronics N.V. Device including moveable support for examining persons
DE10325393B3 (en) 2003-05-28 2005-01-05 Karl Storz Gmbh & Co. Kg retractor
JP3521910B1 (en) 2003-05-29 2004-04-26 清輝 司馬 External forceps channel device for endoscope
US7346344B2 (en) 2003-05-30 2008-03-18 Aol Llc, A Delaware Limited Liability Company Identity-based wireless device configuration
US6796921B1 (en) 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool
US20040247415A1 (en) 2003-06-04 2004-12-09 Mangone Peter G. Slotted fastener and fastening method
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
WO2004110553A1 (en) 2003-06-09 2004-12-23 The University Of Cincinnati Actuation mechanisms for a heart actuation device
US7043852B2 (en) 2003-06-09 2006-05-16 Mitutoyo Corporation Measuring instrument
WO2005006939A2 (en) 2003-06-11 2005-01-27 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
DE10326677A1 (en) 2003-06-13 2005-01-20 Zf Friedrichshafen Ag planetary gear
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US20060052825A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant alloy
US7905902B2 (en) 2003-06-16 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical implant with preferential corrosion zone
US20040254590A1 (en) 2003-06-16 2004-12-16 Hoffman Gary H. Method and instrument for the performance of stapled anastamoses
US7862546B2 (en) 2003-06-16 2011-01-04 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral moveable retention members
US20060052824A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
US20040260315A1 (en) 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
AU2012200594B2 (en) 2003-06-17 2014-03-27 Covidien Lp Surgical stapling device
US7159750B2 (en) 2003-06-17 2007-01-09 Tyco Healtcare Group Lp Surgical stapling device
WO2004112652A2 (en) 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
JP4665432B2 (en) 2003-06-20 2011-04-06 日立工機株式会社 Combustion power tool
US7168604B2 (en) 2003-06-20 2007-01-30 Tyco Healthcare Group Lp Surgical stapling device
US20060154546A1 (en) 2003-06-25 2006-07-13 Andover Coated Products, Inc. Air permeable pressure-sensitive adhesive tapes
SE526852C2 (en) 2003-06-26 2005-11-08 Kongsberg Automotive Ab Method and arrangement for controlling DC motor
GB0314863D0 (en) 2003-06-26 2003-07-30 Univ Dundee Medical apparatus and method
JP2005013573A (en) 2003-06-27 2005-01-20 Olympus Corp Electronic endoscope system
DE10328934B4 (en) 2003-06-27 2005-06-02 Christoph Zepf Motor drive for surgical instruments
US6998816B2 (en) 2003-06-30 2006-02-14 Sony Electronics Inc. System and method for reducing external battery capacity requirement for a wireless card
DE102004063606B4 (en) 2004-02-20 2015-10-22 Carl Zeiss Meditec Ag Holding device, in particular for a medical-optical instrument, with a device for active vibration damping
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US7147648B2 (en) 2003-07-08 2006-12-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Device for cutting and holding a cornea during a transplant procedure
US7126303B2 (en) 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US7042184B2 (en) 2003-07-08 2006-05-09 Board Of Regents Of The University Of Nebraska Microrobot for surgical applications
US20050010213A1 (en) 2003-07-08 2005-01-13 Depuy Spine, Inc. Attachment mechanism for surgical instrument
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US7213736B2 (en) 2003-07-09 2007-05-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
US6786382B1 (en) 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US7931695B2 (en) 2003-07-15 2011-04-26 Kensey Nash Corporation Compliant osteosynthesis fixation plate
US7066879B2 (en) 2003-07-15 2006-06-27 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
EP1498077B8 (en) 2003-07-15 2005-12-28 University Of Dundee Medical gripping and/or cutting instrument
KR100582697B1 (en) 2003-07-16 2006-05-23 동경 엘렉트론 주식회사 Transportation apparatus and drive mechanism
AU2004259237B2 (en) 2003-07-16 2009-10-22 Covidien Lp Surgical stapling device with tissue tensioner
US7183737B2 (en) 2003-07-17 2007-02-27 Asmo Co., Ltd. Motor control device and motor control method
WO2005007208A1 (en) 2003-07-17 2005-01-27 Gunze Limited Suture prosthetic material for automatic sewing device
JP4124041B2 (en) 2003-07-18 2008-07-23 日立工機株式会社 DC power supply with charging function
US7712182B2 (en) 2003-07-25 2010-05-11 Milwaukee Electric Tool Corporation Air flow-producing device, such as a vacuum cleaner or a blower
US7121773B2 (en) 2003-08-01 2006-10-17 Nitto Kohki Co., Ltd. Electric drill apparatus
US20050032511A1 (en) 2003-08-07 2005-02-10 Cardiac Pacemakers, Inc. Wireless firmware download to an external device
JP4472395B2 (en) 2003-08-07 2010-06-02 オリンパス株式会社 Ultrasonic surgery system
FI120333B (en) 2003-08-20 2009-09-30 Bioretec Oy A porous medical device and a method of making it
JP3853807B2 (en) 2003-08-28 2006-12-06 本田技研工業株式会社 Sound vibration analysis apparatus, sound vibration analysis method, computer-readable recording medium recording sound vibration analysis program, and program for sound vibration analysis
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US7686201B2 (en) 2003-09-01 2010-03-30 Tyco Healthcare Group Lp Circular stapler for hemorrhoid operations
JP4190983B2 (en) 2003-09-04 2008-12-03 ジョンソン・エンド・ジョンソン株式会社 Staple device
CA2439536A1 (en) 2003-09-04 2005-03-04 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
JP4722849B2 (en) 2003-09-12 2011-07-13 マイルストーン サイアンティフィック インク Drug injection device that identifies tissue using pressure sensing
US20050058890A1 (en) 2003-09-15 2005-03-17 Kenneth Brazell Removable battery pack for a portable electric power tool
EP2311520B1 (en) 2003-09-15 2014-12-03 Apollo Endosurgery, Inc. Implantable device fastening system
US7547312B2 (en) 2003-09-17 2009-06-16 Gore Enterprise Holdings, Inc. Circular stapler buttress
US20050059997A1 (en) 2003-09-17 2005-03-17 Bauman Ann M. Circular stapler buttress
US20090325859A1 (en) 2003-09-19 2009-12-31 Northwestern University Citric acid polymers
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
DE20321117U1 (en) 2003-09-29 2005-12-22 Robert Bosch Gmbh Cordless drill/driver, comprising spring supported switch extending across full front of handle
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7083075B2 (en) 2003-09-29 2006-08-01 Ethicon Endo-Surgery, Inc. Multi-stroke mechanism with automatic end of stroke retraction
US7094202B2 (en) 2003-09-29 2006-08-22 Ethicon Endo-Surgery, Inc. Method of operating an endoscopic device with one hand
US7000819B2 (en) 2003-09-29 2006-02-21 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US20050070929A1 (en) 2003-09-30 2005-03-31 Dalessandro David A. Apparatus and method for attaching a surgical buttress to a stapling apparatus
US20050075561A1 (en) 2003-10-01 2005-04-07 Lucent Medical Systems, Inc. Method and apparatus for indicating an encountered obstacle during insertion of a medical device
US7202576B1 (en) 2003-10-03 2007-04-10 American Power Conversion Corporation Uninterruptible power supply systems and enclosures
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7533906B2 (en) 2003-10-14 2009-05-19 Water Pik, Inc. Rotatable and pivotable connector
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US20060161050A1 (en) 2003-10-15 2006-07-20 John Butler A surgical sealing device
US7029435B2 (en) 2003-10-16 2006-04-18 Granit Medical Innovation, Llc Endoscope having multiple working segments
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
USD509589S1 (en) 2003-10-17 2005-09-13 Tyco Healthcare Group, Lp Handle for surgical instrument
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US8806973B2 (en) 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
US7296722B2 (en) 2003-10-17 2007-11-20 Tyco Healthcare Group Lp Surgical fastener applying apparatus with controlled beam deflection
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
ES2387016T3 (en) 2003-10-17 2012-09-11 Tyco Healthcare Group Lp Surgical stapling device
CA2542532C (en) 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
US20050090817A1 (en) 2003-10-22 2005-04-28 Scimed Life Systems, Inc. Bendable endoscopic bipolar device
AU2003284929B2 (en) 2003-10-23 2010-07-22 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US20050112139A1 (en) 2003-10-23 2005-05-26 Nmk Research, Llc Immunogenic composition and method of developing a vaccine based on factor H binding sites
US20070018958A1 (en) 2003-10-24 2007-01-25 Tavakoli Seyed M Force reflective robotic control system and minimally invasive surgical device
US7190147B2 (en) 2003-10-24 2007-03-13 Eagle-Picher Technologies, Llc Battery with complete discharge device
AU2004284018C1 (en) 2003-10-28 2010-10-07 Ibex Industries Limited Powered hand tool
US7842028B2 (en) 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
US7338513B2 (en) 2003-10-30 2008-03-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7686826B2 (en) 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
BRPI0416114A (en) 2003-10-30 2007-01-02 Mcneil Ppc Inc composite materials comprising metal charged nanoparticles
US7147650B2 (en) 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
JP2005131211A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
JP2005131163A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131173A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
JP2005131164A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131212A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope and endoscope device
US20050096683A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool
JP2005137423A (en) 2003-11-04 2005-06-02 Olympus Corp External channel for endoscope and branch member for external channel
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
AU2004289336B2 (en) 2003-11-12 2010-07-29 Applied Medical Resources Corporation Surgical instrument having jaw spines
WO2005050378A2 (en) 2003-11-18 2005-06-02 Burke Robert M Ii System for regulating access to and distributing content in a network
DE10353846A1 (en) 2003-11-18 2005-06-16 Maquet Gmbh & Co. Kg Method of preparation of equipment intended for the performance of medical or surgical procedures
US6899593B1 (en) 2003-11-18 2005-05-31 Dieter Moeller Grinding apparatus for blending defects on turbine blades and associated method of use
JP4594612B2 (en) 2003-11-27 2010-12-08 オリンパス株式会社 Insertion aid
GB0327904D0 (en) 2003-12-02 2004-01-07 Qinetiq Ltd Gear change mechanism
US8389588B2 (en) 2003-12-04 2013-03-05 Kensey Nash Corporation Bi-phasic compressed porous reinforcement materials suitable for implant
US8133500B2 (en) 2003-12-04 2012-03-13 Kensey Nash Bvf Technology, Llc Compressed high density fibrous polymers suitable for implant
US8257393B2 (en) 2003-12-04 2012-09-04 Ethicon, Inc. Active suture for the delivery of therapeutic fluids
GB2408936B (en) 2003-12-09 2007-07-18 Gyrus Group Plc A surgical instrument
US7439354B2 (en) 2003-12-11 2008-10-21 E.I. Du Pont De Nemours And Company Process for preparing amide acetals
US7378817B2 (en) 2003-12-12 2008-05-27 Microsoft Corporation Inductive power adapter
US7375493B2 (en) 2003-12-12 2008-05-20 Microsoft Corporation Inductive battery charger
WO2005058731A2 (en) 2003-12-12 2005-06-30 Automated Merchandising Systems Inc. Adjustable storage rack for a vending machine
US20050131457A1 (en) 2003-12-15 2005-06-16 Ethicon, Inc. Variable stiffness shaft
US7604118B2 (en) 2003-12-15 2009-10-20 Panasonic Corporation Puncture needle cartridge and lancet for blood collection
US7091191B2 (en) 2003-12-19 2006-08-15 Ethicon, Inc. Modified hyaluronic acid for use in musculoskeletal tissue repair
EP1701672A4 (en) 2003-12-19 2011-04-27 Osteotech Inc Tissue-derived mesh for orthopedic regeneration
US8221424B2 (en) 2004-12-20 2012-07-17 Spinascope, Inc. Surgical instrument for orthopedic surgery
JP4552435B2 (en) 2003-12-22 2010-09-29 住友化学株式会社 Oxime production method
US7742036B2 (en) 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
JP4398716B2 (en) 2003-12-24 2010-01-13 呉羽テック株式会社 Highly stretchable nonwoven fabric provided with a clear embossed pattern and method for producing the same
US8590764B2 (en) 2003-12-24 2013-11-26 Boston Scientific Scimed, Inc. Circumferential full thickness resectioning device
CN1634601A (en) 2003-12-26 2005-07-06 吉林省中立实业有限公司 Method for sterilizing medical appliance
US7134587B2 (en) 2003-12-30 2006-11-14 Ethicon Endo-Surgery, Inc. Knife retraction arm for a curved cutter stapler
US7207472B2 (en) 2003-12-30 2007-04-24 Ethicon Endo-Surgery, Inc. Cartridge with locking knife for a curved cutter stapler
US7147140B2 (en) 2003-12-30 2006-12-12 Ethicon Endo - Surgery, Inc. Cartridge retainer for a curved cutter stapler
US6988650B2 (en) 2003-12-30 2006-01-24 Ethicon Endo-Surgery, Inc. Retaining pin lever advancement mechanism for a curved cutter stapler
US7147139B2 (en) 2003-12-30 2006-12-12 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
US7549563B2 (en) 2003-12-30 2009-06-23 Ethicon Endo-Surgery, Inc. Rotating curved cutter stapler
US20050143759A1 (en) 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis
US20050139636A1 (en) 2003-12-30 2005-06-30 Schwemberger Richard F. Replaceable cartridge module for a surgical stapling and cutting instrument
US7204404B2 (en) 2003-12-30 2007-04-17 Ethicon Endo-Surgery, Inc. Slotted pins guiding knife in a curved cutter stapler
US7766207B2 (en) 2003-12-30 2010-08-03 Ethicon Endo-Surgery, Inc. Articulating curved cutter stapler
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
TWI228850B (en) 2004-01-14 2005-03-01 Asia Optical Co Inc Laser driver circuit for burst mode and making method thereof
WO2005076640A1 (en) 2004-01-16 2005-08-18 U.S. Thermoelectric Consortium Wireless communications apparatus and method
GB2410161B (en) 2004-01-16 2008-09-03 Btg Int Ltd Method and system for calculating and verifying the integrity of data in data transmission system
US7219980B2 (en) 2004-01-21 2007-05-22 Silverbrook Research Pty Ltd Printhead assembly with removable cover
ATE489897T1 (en) 2004-01-23 2010-12-15 Allergan Inc FASTENING SYSTEM FOR AN IMPLANTABLE DEVICE AND METHOD OF USE
JP2005211455A (en) 2004-01-30 2005-08-11 Olympus Corp Surgical excision apparatus
US20050171522A1 (en) 2004-01-30 2005-08-04 Christopherson Mark A. Transurethral needle ablation system with needle position indicator
US7204835B2 (en) 2004-02-02 2007-04-17 Gyrus Medical, Inc. Surgical instrument
DE102004005709A1 (en) 2004-02-05 2005-08-25 Polydiagnost Gmbh Endoscope with a flexible probe
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
JP4845382B2 (en) 2004-02-06 2011-12-28 キヤノン株式会社 Image processing apparatus, control method therefor, computer program, and computer-readable storage medium
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
KR100855957B1 (en) 2004-02-09 2008-09-02 삼성전자주식회사 Solid state image sensing device compensating brightness of the side display area and driving method thereof
JP4680939B2 (en) 2004-02-10 2011-05-11 シネコー・エルエルシー Therapeutic intravascular delivery system
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
GB0403020D0 (en) 2004-02-11 2004-03-17 Pa Consulting Services Portable charging device
WO2005079295A2 (en) 2004-02-12 2005-09-01 Ndi Medical, Llc Portable assemblies, systems and methods for providing functional or therapeutic neuromuscular stimulation
ES2377496T3 (en) 2004-02-17 2012-03-28 Tyco Healthcare Group Lp Surgical stapling device with a locking mechanism
US20100191292A1 (en) 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
EP1563793B1 (en) 2004-02-17 2007-06-13 Tyco Healthcare Group Lp Surgical stapling apparatus
ES2285587T3 (en) 2004-02-17 2007-11-16 Tyco Healthcare Group Lp SURGICAL ENGRAVING DEVICE WITH LOCKING MECHANISM.
DE602005000938T2 (en) 2004-02-17 2008-01-17 Tyco Healthcare Group Lp, Norwalk Surgical stapler with locking mechanism
US7886952B2 (en) 2004-02-17 2011-02-15 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
GB2451776B (en) 2004-02-17 2009-04-08 Cook Biotech Inc Medical devices and methods useful for applying bolster material
US20050182443A1 (en) 2004-02-18 2005-08-18 Closure Medical Corporation Adhesive-containing wound closure device and method
US7086267B2 (en) 2004-02-18 2006-08-08 Frank W. Dworak Metal-forming die and method for manufacturing same
US6953138B1 (en) 2004-02-18 2005-10-11 Frank W. Dworak Surgical stapler anvil with nested staple forming pockets
US20050187545A1 (en) 2004-02-20 2005-08-25 Hooven Michael D. Magnetic catheter ablation device and method
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US20050186240A1 (en) 2004-02-23 2005-08-25 Ringeisen Timothy A. Gel suitable for implantation and delivery system
GB2411527B (en) 2004-02-26 2006-06-28 Itt Mfg Enterprises Inc Electrical connector
JP2005279253A (en) 2004-03-02 2005-10-13 Olympus Corp Endoscope
US20050209614A1 (en) 2004-03-04 2005-09-22 Fenter Felix W Anastomosis apparatus and methods with computer-aided, automated features
EP1720480A1 (en) 2004-03-05 2006-11-15 Hansen Medical, Inc. Robotic catheter system
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US8252009B2 (en) 2004-03-09 2012-08-28 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US9028511B2 (en) 2004-03-09 2015-05-12 Ethicon Endo-Surgery, Inc. Devices and methods for placement of partitions within a hollow body organ
US8449560B2 (en) 2004-03-09 2013-05-28 Satiety, Inc. Devices and methods for placement of partitions within a hollow body organ
WO2005084556A1 (en) 2004-03-10 2005-09-15 Olympus Corporation Treatment tool for surgery
WO2005087125A2 (en) 2004-03-10 2005-09-22 Depuy International Ltd Orthopaedic operating systems, methods, implants and instruments
JP4610934B2 (en) 2004-06-03 2011-01-12 オリンパス株式会社 Surgical instrument
US20050203550A1 (en) 2004-03-11 2005-09-15 Laufer Michael D. Surgical fastener
GB2412232A (en) 2004-03-15 2005-09-21 Ims Nanofabrication Gmbh Particle-optical projection system
US7118528B1 (en) 2004-03-16 2006-10-10 Gregory Piskun Hemorrhoids treatment method and associated instrument assembly including anoscope and cofunctioning tissue occlusion device
CA2796946C (en) 2004-03-18 2015-06-02 Contipi Ltd. Apparatus for the prevention of urinary incontinence in females
FI20040415A (en) 2004-03-18 2005-09-19 Stora Enso Oyj Prepared food packaging and process for its preparation
CA2560070C (en) 2004-03-19 2012-10-23 Tyco Healthcare Group Lp Anvil assembly with improved cut ring
US8181840B2 (en) 2004-03-19 2012-05-22 Tyco Healthcare Group Lp Tissue tensioner assembly and approximation mechanism for surgical stapling device
US7093492B2 (en) 2004-03-19 2006-08-22 Mechworks Systems Inc. Configurable vibration sensor
EP1734858B1 (en) 2004-03-22 2014-07-09 BodyMedia, Inc. Non-invasive temperature monitoring device
JP4727158B2 (en) 2004-03-23 2011-07-20 オリンパス株式会社 Endoscope system
DE102004014011A1 (en) 2004-03-23 2005-10-20 Airtec Pneumatic Gmbh Multifunctional therapy device for shock wave or massage therapy comprises a module with a housing containing a rear and a front cylinder head and a cylinder tube, a piston, a control unit, a piston rod, and an adaptable treatment head
TWI234339B (en) 2004-03-25 2005-06-11 Richtek Techohnology Corp High-efficiency voltage transformer
EP1584300A3 (en) 2004-03-30 2006-07-05 Kabushiki Kaisha Toshiba Manipulator apparatus
DE102004015667B3 (en) 2004-03-31 2006-01-19 Sutter Medizintechnik Gmbh Bipolar double jointed instrument
US7331403B2 (en) 2004-04-02 2008-02-19 Black & Decker Inc. Lock-out for activation arm mechanism in a power tool
EP1591208A1 (en) 2004-04-02 2005-11-02 BLACK & DECKER INC. Electronic fastening tool
US7036680B1 (en) 2004-04-07 2006-05-02 Avery Dennison Corporation Device for dispensing plastic fasteners
JP2005296412A (en) 2004-04-13 2005-10-27 Olympus Corp Endoscopic treatment apparatus
US7566300B2 (en) 2004-04-15 2009-07-28 Wilson-Cook Medical, Inc. Endoscopic surgical access devices and methods of articulating an external accessory channel
US6960107B1 (en) 2004-04-16 2005-11-01 Brunswick Corporation Marine transmission with a cone clutch used for direct transfer of torque
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7758612B2 (en) 2004-04-27 2010-07-20 Tyco Healthcare Group Lp Surgery delivery device and mesh anchor
US7377918B2 (en) 2004-04-28 2008-05-27 Gyrus Medical Limited Electrosurgical method and apparatus
US7098794B2 (en) 2004-04-30 2006-08-29 Kimberly-Clark Worldwide, Inc. Deactivating a data tag for user privacy or tamper-evident packaging
CA2562096A1 (en) 2004-05-03 2005-11-24 Ams Research Corporation Surgical implants and related methods
US7348875B2 (en) 2004-05-04 2008-03-25 Battelle Memorial Institute Semi-passive radio frequency identification (RFID) tag with active beacon
CA2828619C (en) 2004-05-05 2018-09-25 Direct Flow Medical, Inc. Prosthetic valve with an elastic stent and a sealing structure
US7736374B2 (en) 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US20050251063A1 (en) 2004-05-07 2005-11-10 Raghuveer Basude Safety device for sampling tissue
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US8251891B2 (en) 2004-05-14 2012-08-28 Nathan Moskowitz Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms
JP2005328882A (en) 2004-05-18 2005-12-02 Olympus Corp Treatment instrument for endoscope, and endoscopic system
US7260431B2 (en) 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
GB2414185A (en) 2004-05-20 2005-11-23 Gyrus Medical Ltd Morcellating device using cutting electrodes on end-face of tube
JP2005335432A (en) 2004-05-24 2005-12-08 Nissan Motor Co Ltd Rear wheel steering control device
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US7450991B2 (en) 2004-05-28 2008-11-11 Advanced Neuromodulation Systems, Inc. Systems and methods used to reserve a constant battery capacity
US7828808B2 (en) 2004-06-07 2010-11-09 Novare Surgical Systems, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
DE102004027850A1 (en) 2004-06-08 2006-01-05 Henke-Sass Wolf Gmbh Bendable section of an introducer tube of an endoscope and method for its manufacture
US7695493B2 (en) 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
US7446131B1 (en) 2004-06-10 2008-11-04 The United States Of America As Represented By The Secretary Of Agriculture Porous polymeric matrices made of natural polymers and synthetic polymers and optionally at least one cation and methods of making
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
GB2415140A (en) 2004-06-18 2005-12-21 Gyrus Medical Ltd A surgical instrument
US20050283226A1 (en) 2004-06-18 2005-12-22 Scimed Life Systems, Inc. Medical devices
US7331406B2 (en) 2004-06-21 2008-02-19 Duraspin Products Llc Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control
USD530339S1 (en) 2004-06-23 2006-10-17 Cellco Partnership Animated icon for a cellularly communicative electronic device
USD511525S1 (en) 2004-06-24 2005-11-15 Verizon Wireless Icon for the display screen of a cellulary communicative electronic device
US7229408B2 (en) 2004-06-30 2007-06-12 Ethicon, Inc. Low profile surgical retractor
US7367485B2 (en) 2004-06-30 2008-05-06 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary transmission
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
EP3278763B1 (en) 2004-07-02 2020-08-05 Discus Dental, LLC Illumination system for dentistry applications
US7443547B2 (en) 2004-07-03 2008-10-28 Science Forge, Inc. Portable electronic faxing, scanning, copying, and printing device
US7966236B2 (en) 2004-07-07 2011-06-21 Ubs Financial Services Inc. Method and system for real time margin calculation
US7485133B2 (en) 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
JP4257270B2 (en) 2004-07-14 2009-04-22 オリンパス株式会社 Biological tissue suturing method and biological tissue suturing device
US20060020258A1 (en) 2004-07-20 2006-01-26 Medtronic, Inc. Surgical apparatus with a manually actuatable assembly and a method of operating same
US20090078736A1 (en) 2004-07-26 2009-03-26 Van Lue Stephen J Surgical stapler with magnetically secured components
RU42750U1 (en) 2004-07-26 2004-12-20 Альбертин Сергей Викторович DEVICE FOR DOSED SUBMISSION OF SUBSTANCES
US8075476B2 (en) 2004-07-27 2011-12-13 Intuitive Surgical Operations, Inc. Cannula system and method of use
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8057508B2 (en) 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
US7410086B2 (en) 2004-07-28 2008-08-12 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for circular stapler
US7513408B2 (en) 2004-07-28 2009-04-07 Ethicon Endo-Surgery, Inc. Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
CA2512948C (en) 2004-07-28 2013-10-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US7914551B2 (en) 2004-07-28 2011-03-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
US7879070B2 (en) 2004-07-28 2011-02-01 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US7857183B2 (en) 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
AU2005203215B2 (en) 2004-07-28 2011-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7354447B2 (en) 2005-11-10 2008-04-08 Ethicon Endo-Surgery, Inc. Disposable loading unit and surgical instruments including same
US7210609B2 (en) 2004-07-30 2007-05-01 Tools For Surgery, Llc Stapling apparatus having a curved anvil and driver
DE102004038414A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for operating a surgical machine
DE202004012389U1 (en) 2004-07-30 2004-09-30 Aesculap Ag & Co. Kg Surgical machine has brushless electric motor with space vector pulse width modulation control using rotor position sensing by reverse EMF during coil disconnection
DE102004038415A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for controlling and / or regulating a surgical machine
EP2292794A3 (en) 2004-08-06 2011-07-06 Genentech, Inc. Death receptor (DR) antibody for pharmaceutical use and assays employing biomarkers for predicting sensitivity of cells to said antibody
CN2716900Y (en) 2004-08-09 2005-08-10 陈永 Novel feeling mouse
US7779737B2 (en) 2004-08-12 2010-08-24 The Chisel Works, LLC. Multi-axis panel saw
CA2576441A1 (en) 2004-08-17 2006-03-02 Tyco Healthcare Group Lp Stapling support structures
ES2378996T3 (en) 2004-08-19 2012-04-19 Tyco Healthcare Group Lp Water swellable copolymers and articles and coating made therefrom
US7182239B1 (en) 2004-08-27 2007-02-27 Myers Stephan R Segmented introducer device for a circular surgical stapler
JP4976296B2 (en) 2004-08-31 2012-07-18 サージカル ソリューションズ リミテッド ライアビリティ カンパニー Medical device having a bent shaft
US8657808B2 (en) 2004-08-31 2014-02-25 Medtronic, Inc. Surgical apparatus including a hand-activated, cable assembly and method of using same
DE102004042886A1 (en) 2004-09-04 2006-03-30 Roche Diagnostics Gmbh Lancet device for creating a puncture wound
WO2006029092A1 (en) 2004-09-05 2006-03-16 Gateway Plastics, Inc. Closure for a container
US7128254B2 (en) 2004-09-07 2006-10-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
KR100646762B1 (en) 2004-09-10 2006-11-23 인하대학교 산학협력단 A staple for operation and a stapler for operation provided with the same
MX2007002841A (en) 2004-09-10 2007-04-30 Ethicon Endo Surgery Inc Surgical stapling instrument.
US7162758B2 (en) 2004-09-14 2007-01-16 Skinner Lyle J Multipurpose gripping tool
CA2581009C (en) 2004-09-15 2011-10-04 Synthes (U.S.A.) Calibrating device
JP2006081687A (en) 2004-09-15 2006-03-30 Max Co Ltd Medical stapler
US7391164B2 (en) 2004-09-15 2008-06-24 Research In Motion Limited Visual notification methods for candy-bar type cellphones
US8123764B2 (en) 2004-09-20 2012-02-28 Endoevolution, Llc Apparatus and method for minimally invasive suturing
GB0519252D0 (en) 2005-09-21 2005-10-26 Dezac Ltd Laser hair removal device
US7540872B2 (en) 2004-09-21 2009-06-02 Covidien Ag Articulating bipolar electrosurgical instrument
US7336184B2 (en) 2004-09-24 2008-02-26 Intel Corporation Inertially controlled switch and RFID tag
US20070187857A1 (en) 2004-09-30 2007-08-16 Riley Susan L Methods for making and using composites, polymer scaffolds, and composite scaffolds
AU2005289311B2 (en) 2004-09-30 2011-03-03 Covalon Technologies Inc. Non-adhesive elastic gelatin matrices
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
FR2876020B1 (en) 2004-10-06 2007-03-09 Sofradim Production Sa APPARATUS FOR STORAGE, DISTRIBUTION AND INSTALLATION OF SURGICAL ATTACHES
US20120046547A1 (en) 2004-10-06 2012-02-23 Guided Therapy Systems, Llc System and method for cosmetic treatment
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
EP2875786B1 (en) 2004-10-08 2017-02-01 Covidien LP Apparatus for applying surgical clips
US7819886B2 (en) 2004-10-08 2010-10-26 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US8409222B2 (en) 2004-10-08 2013-04-02 Covidien Lp Endoscopic surgical clip applier
ES2547214T3 (en) 2004-10-08 2015-10-02 Covidien Lp An endoscopic clip or surgical clip applicator
US7846155B2 (en) 2004-10-08 2010-12-07 Ethicon Endo-Surgery, Inc. Handle assembly having hand activation for use with an ultrasonic surgical instrument
WO2006044581A2 (en) 2004-10-13 2006-04-27 Medtronic, Inc. Single-use transurethral needle ablation device
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
AU2005295807B2 (en) 2004-10-18 2011-09-01 Covidien Lp Annular adhesive structure
JP5043670B2 (en) 2004-10-18 2012-10-10 タイコ ヘルスケア グループ リミテッド パートナーシップ Extraluminal sealant applicator
US8016849B2 (en) 2004-10-18 2011-09-13 Tyco Healthcare Group Lp Apparatus for applying wound treatment material using tissue-penetrating needles
AU2005295477B2 (en) 2004-10-18 2011-11-24 Covidien Lp Structure for applying sprayable wound treatment material
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US8097017B2 (en) 2004-10-18 2012-01-17 Tyco Healthcare Group Lp Surgical fasteners coated with wound treatment materials
US7717313B2 (en) 2004-10-18 2010-05-18 Tyco Healthcare Group Lp Surgical apparatus and structure for applying sprayable wound treatment material
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
CN201515238U (en) 2004-10-18 2010-06-23 布莱克和戴克公司 Cordless electric tool system and battery pack used in same
US7455682B2 (en) 2004-10-18 2008-11-25 Tyco Healthcare Group Lp Structure containing wound treatment material
DE102004052204A1 (en) 2004-10-19 2006-05-04 Karl Storz Gmbh & Co. Kg Deflectible endoscopic instrument
EP2345430B1 (en) 2004-10-20 2015-11-25 Ethicon, Inc. A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
EP1809194B1 (en) 2004-10-20 2012-04-25 AtriCure Inc. Surgical clamp
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
US20060087746A1 (en) 2004-10-22 2006-04-27 Kenneth Lipow Remote augmented motor-sensory interface for surgery
US20060086032A1 (en) 2004-10-27 2006-04-27 Joseph Valencic Weapon and input device to record information
DE602005022927D1 (en) 2004-11-02 2010-09-23 Medtronic Inc DATA-TRANSMISSION TECHNIQUES IN AN IMPLANTABLE MEDICAL DEVICE
US20060097699A1 (en) 2004-11-05 2006-05-11 Mathews Associates, Inc. State of charge indicator for battery
KR20060046933A (en) 2004-11-12 2006-05-18 노틸러스효성 주식회사 Multi-protecting device of personal identification number-pad module
US20060106369A1 (en) 2004-11-12 2006-05-18 Desai Jaydev P Haptic interface for force reflection in manipulation tasks
CN2738962Y (en) 2004-11-15 2005-11-09 胡建坤 Electric shaver and electric shaver with charger
US7641671B2 (en) 2004-11-22 2010-01-05 Design Standards Corporation Closing assemblies for clamping device
US9700334B2 (en) 2004-11-23 2017-07-11 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
WO2006073581A2 (en) 2004-11-23 2006-07-13 Novare Surgical Systems, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
US7182763B2 (en) 2004-11-23 2007-02-27 Instrasurgical, Llc Wound closure device
GB0425843D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
CA2526541C (en) 2004-12-01 2013-09-03 Tyco Healthcare Group Lp Novel biomaterial drug delivery and surface modification compositions
US7255012B2 (en) 2004-12-01 2007-08-14 Rosemount Inc. Process fluid flow device with variable orifice
JP2006158525A (en) 2004-12-03 2006-06-22 Olympus Medical Systems Corp Ultrasonic surgical apparatus, and method of driving ultrasonic treatment instrument
US7328829B2 (en) 2004-12-13 2008-02-12 Niti Medical Technologies Ltd. Palm size surgical stapler for single hand operation
US7121446B2 (en) 2004-12-13 2006-10-17 Niti Medical Technologies Ltd. Palm-size surgical stapler for single hand operation
US7568619B2 (en) 2004-12-15 2009-08-04 Alcon, Inc. System and method for identifying and controlling ophthalmic surgical devices and components
US7384403B2 (en) 2004-12-17 2008-06-10 Depuy Products, Inc. Wireless communication system for transmitting information from a medical device
US7678121B1 (en) 2004-12-23 2010-03-16 Cardica, Inc. Surgical stapling tool
US7896869B2 (en) 2004-12-29 2011-03-01 Depuy Products, Inc. System and method for ensuring proper medical instrument use in an operating room
US20060142772A1 (en) 2004-12-29 2006-06-29 Ralph James D Surgical fasteners and related implant devices having bioabsorbable components
US7611474B2 (en) 2004-12-29 2009-11-03 Ethicon Endo-Surgery, Inc. Core sampling biopsy device with short coupled MRI-compatible driver
US8182422B2 (en) 2005-12-13 2012-05-22 Avantis Medical Systems, Inc. Endoscope having detachable imaging device and method of using
US7118020B2 (en) 2005-01-05 2006-10-10 Chung-Heng Lee Stapler
US7419321B2 (en) 2005-01-05 2008-09-02 Misha Tereschouk Hand applicator of encapsulated liquids
JP4681961B2 (en) 2005-01-14 2011-05-11 オリンパスメディカルシステムズ株式会社 Surgical instrument
US7713542B2 (en) 2005-01-14 2010-05-11 Ada Foundation Three dimensional cell protector/pore architecture formation for bone and tissue constructs
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US20060161185A1 (en) 2005-01-14 2006-07-20 Usgi Medical Inc. Methods and apparatus for transmitting force to an end effector over an elongate member
EP1847225B1 (en) 2005-01-26 2011-12-21 Suzhou Touchstone International Medical Science Co., Ltd. Surgical stapler having a stapling head with a rotatable cutter
WO2006081491A2 (en) 2005-01-27 2006-08-03 Vector Surgical Surgical marker
US20060173470A1 (en) 2005-01-31 2006-08-03 Oray B N Surgical fastener buttress material
US20060176031A1 (en) 2005-02-04 2006-08-10 Ess Technology, Inc. Dual output switching regulator and method of operation
US8007440B2 (en) 2005-02-08 2011-08-30 Volcano Corporation Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions
WO2006085389A1 (en) 2005-02-09 2006-08-17 Johnson & Johnson Kabushiki Kaisha Stapling instrument
EP1690638A1 (en) 2005-02-09 2006-08-16 BLACK & DECKER INC. Power tool gear-train and torque overload clutch therefor
JP2006218129A (en) 2005-02-10 2006-08-24 Olympus Corp Surgery supporting system
GB2423199B (en) 2005-02-11 2009-05-13 Pa Consulting Services Power supply systems for electrical devices
JP2008530915A (en) 2005-02-11 2008-08-07 ラダテック インコーポレイテッド Microstrip patch antenna suitable for high temperature environment
JP2006218228A (en) 2005-02-14 2006-08-24 Olympus Corp Battery unit, battery device having the same, medical instrument and endoscope
US20060180633A1 (en) 2005-02-17 2006-08-17 Tyco Healthcare Group, Lp Surgical staple
US7559452B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US7572285B2 (en) 2005-02-18 2009-08-11 Smiths Medical Asd, Inc. System for providing actuated optimal inflation to multiple temperature regulated blankets and method therefor
US7654431B2 (en) 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7559450B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
US7780054B2 (en) 2005-02-18 2010-08-24 Ethicon Endo-Surgery, Inc. Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US7784662B2 (en) 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
GB2423931B (en) 2005-03-03 2009-08-26 Michael John Radley Young Ultrasonic cutting tool
US7674263B2 (en) 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
US20060217729A1 (en) 2005-03-09 2006-09-28 Brasseler Usa Medical Llc Surgical apparatus and tools for same
US20060206100A1 (en) 2005-03-09 2006-09-14 Brasseler Usa Medical Llc Surgical apparatus and power module for same, and a method of preparing a surgical apparatus
US20060201989A1 (en) 2005-03-11 2006-09-14 Ojeda Herminio F Surgical anvil and system for deploying the same
US7064509B1 (en) 2005-03-14 2006-06-20 Visteon Global Technologies, Inc. Apparatus for DC motor position detection with capacitive ripple current extraction
AU2012200178B2 (en) 2005-03-15 2013-07-11 Covidien Lp Anastomosis composite gasket
US20070203510A1 (en) 2006-02-28 2007-08-30 Bettuchi Michael J Annular disk for reduction of anastomotic tension and methods of using the same
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
US7431230B2 (en) 2005-03-16 2008-10-07 Medtronic Ps Medical, Inc. Apparatus and method for bone morselization for surgical grafting
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
EP1885258A2 (en) 2005-03-17 2008-02-13 Stryker Corporation Surgical tool arrangement
CN2796654Y (en) 2005-03-21 2006-07-19 强生(上海)医疗器材有限公司 Linear cutting and suturing instrument
US7116100B1 (en) 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
WO2006100658A2 (en) 2005-03-22 2006-09-28 Atropos Limited A surgical instrument
US20060252993A1 (en) 2005-03-23 2006-11-09 Freed David I Medical devices and systems
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
JP2006271697A (en) 2005-03-29 2006-10-12 Fujinon Corp Electronic endoscope
EP1707153B1 (en) 2005-03-29 2012-02-01 Kabushiki Kaisha Toshiba Manipulator
US9138226B2 (en) 2005-03-30 2015-09-22 Covidien Lp Cartridge assembly for a surgical stapling device
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
JP4857585B2 (en) 2005-04-04 2012-01-18 日立工機株式会社 Cordless power tool
US7780055B2 (en) 2005-04-06 2010-08-24 Tyco Healthcare Group Lp Loading unit having drive assembly locking mechanism
US7408310B2 (en) 2005-04-08 2008-08-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
US7211979B2 (en) 2005-04-13 2007-05-01 The Broad Of Trustees Of The Leland Stanford Junior University Torque-position transformer for task control of position controlled robots
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US7699860B2 (en) 2005-04-14 2010-04-20 Ethicon Endo-Surgery, Inc. Surgical clip
US7731724B2 (en) 2005-04-14 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical clip advancement and alignment mechanism
WO2006113394A2 (en) 2005-04-15 2006-10-26 Surgisense Corporation Surgical instruments with sensors for detecting tissue properties, and systems using such instruments
JP4892546B2 (en) 2005-04-16 2012-03-07 アエスキュラップ アーゲー Surgical machine and method for controlling and / or adjusting surgical machine
JP4958896B2 (en) 2005-04-21 2012-06-20 アスマティックス,インコーポレイテッド Control method and apparatus for energy delivery
CA2603773A1 (en) 2005-04-26 2006-11-02 Rimon Therapeutics Ltd. Pro-angiogenic polymer scaffolds
WO2006116392A2 (en) 2005-04-27 2006-11-02 The Regents Of The University Of Michigan Particle-containing complex porous materials
US7837694B2 (en) 2005-04-28 2010-11-23 Warsaw Orthopedic, Inc. Method and apparatus for surgical instrument identification
US20060244460A1 (en) 2005-04-29 2006-11-02 Weaver Jeffrey S System and method for battery management
DE102005020377B4 (en) 2005-05-02 2021-08-12 Robert Bosch Gmbh Method for operating an electric machine tool
US8084001B2 (en) 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
US20090177226A1 (en) 2005-05-05 2009-07-09 Jon Reinprecht Bioabsorbable Surgical Compositions
US20100100124A1 (en) 2005-05-05 2010-04-22 Tyco Healthcare Group Lp Bioabsorbable surgical composition
US20100012703A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US20100016888A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US20060252990A1 (en) 2005-05-06 2006-11-09 Melissa Kubach Systems and methods for endoscope integrity testing
US7418078B2 (en) 2005-05-06 2008-08-26 Siemens Medical Solutions Usa, Inc. Spot-size effect reduction
US7806871B2 (en) 2005-05-09 2010-10-05 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
JP4339275B2 (en) 2005-05-12 2009-10-07 株式会社エスティック Method and apparatus for controlling impact type screw fastening device
US20060258904A1 (en) 2005-05-13 2006-11-16 David Stefanchik Feeding tube and track
US7648457B2 (en) 2005-05-13 2010-01-19 Ethicon Endo-Surgery, Inc. Method of positioning a device on an endoscope
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
CA2547095C (en) 2005-05-17 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapler having a plastic closure plate
US7557534B2 (en) 2005-05-17 2009-07-07 Milwaukee Electric Tool Corporation Power tool, battery, charger and method of operating the same
US7415827B2 (en) 2005-05-18 2008-08-26 United Technologies Corporation Arrangement for controlling fluid jets injected into a fluid stream
DE102005000062A1 (en) 2005-05-18 2006-11-23 Hilti Ag Electrically operated tacker
US7682561B2 (en) 2005-05-19 2010-03-23 Sage Products, Inc. Needleless hub disinfection device and method
US20060263444A1 (en) 2005-05-19 2006-11-23 Xintian Ming Antimicrobial composition
US8840876B2 (en) 2005-05-19 2014-09-23 Ethicon, Inc. Antimicrobial polymer compositions and the use thereof
US20060264832A1 (en) 2005-05-20 2006-11-23 Medtronic, Inc. User interface for a portable therapy delivery device
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8157815B2 (en) 2005-05-20 2012-04-17 Neotract, Inc. Integrated handle assembly for anchor delivery system
US20060261763A1 (en) 2005-05-23 2006-11-23 Masco Corporation Brushed motor position control based upon back current detection
DE602006010849D1 (en) 2005-05-25 2010-01-14 Gyrus Medical Inc OPERATION INSTRUMENT
US20060271042A1 (en) 2005-05-26 2006-11-30 Gyrus Medical, Inc. Cutting and coagulating electrosurgical forceps having cam controlled jaw closure
DE202005009061U1 (en) 2005-05-31 2006-10-12 Karl Storz Gmbh & Co. Kg Clip and clip setter for closing blood vessels
JP2006334029A (en) 2005-05-31 2006-12-14 Olympus Medical Systems Corp Surgical operation apparatus
US7722610B2 (en) 2005-06-02 2010-05-25 Tyco Healthcare Group Lp Multiple coil staple and staple applier
US20060291981A1 (en) 2005-06-02 2006-12-28 Viola Frank J Expandable backspan staple
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
AU2006255303B2 (en) 2005-06-03 2011-12-15 Covidien Lp Battery powered surgical instrument
US7909191B2 (en) 2005-06-03 2011-03-22 Greatbatch Ltd. Connectable instrument trays for creating a modular case
WO2006133154A1 (en) 2005-06-06 2006-12-14 Lutron Electronics Co., Inc. Method and apparatus for quiet variable motor speed control
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
TW200642841A (en) 2005-06-08 2006-12-16 Nanoforce Technologies Corp After glow lighting film having UV filtering and explosion-proof
US7265374B2 (en) 2005-06-10 2007-09-04 Arima Computer Corporation Light emitting semiconductor device
US7295907B2 (en) 2005-06-14 2007-11-13 Trw Automotive U.S. Llc Recovery of calibrated center steering position after loss of battery power
EP1736112B1 (en) 2005-06-20 2011-08-17 Heribert Schmid Medical device
US7655003B2 (en) 2005-06-22 2010-02-02 Smith & Nephew, Inc. Electrosurgical power control
EP2241270B1 (en) 2005-06-28 2012-10-10 Stryker Corporation Control assembly for a motorized surgical tool that contains a sensor that monitors the state of the motor rotor
US7898198B2 (en) 2005-06-29 2011-03-01 Drs Test & Energy Management, Llc Torque controller in an electric motor
KR100846472B1 (en) 2005-06-29 2008-07-17 엘지전자 주식회사 Linear Motor
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
USD605201S1 (en) 2005-07-01 2009-12-01 Roche Diagnostics Operations, Inc. Image for a risk evaluation system for a portion of a computer screen
US20080312686A1 (en) 2005-07-01 2008-12-18 Abbott Laboratories Antimicrobial closure element and closure element applier
KR100751733B1 (en) 2005-07-07 2007-08-24 한국과학기술연구원 Method of preparing porous polymer scaffold for tissue engineering using gel spinning technique
JP4879645B2 (en) 2005-07-12 2012-02-22 ローム株式会社 Motor drive device and electric apparatus using the same
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US8409175B2 (en) 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
US20070055228A1 (en) 2005-07-22 2007-03-08 Berg Howard K Ultrasonic scalpel device
US7554343B2 (en) 2005-07-25 2009-06-30 Piezoinnovations Ultrasonic transducer control method and system
US7597699B2 (en) 2005-07-25 2009-10-06 Rogers William G Motorized surgical handpiece
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
JP4336386B2 (en) 2005-07-26 2009-09-30 エシコン エンド−サージェリー,インク. Surgical stapling and cutting device and method of using the device
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US8123523B2 (en) 2005-07-26 2012-02-28 Angstrom Manufacturing, Inc. Prophy angle and adapter
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US7479608B2 (en) 2006-05-19 2009-01-20 Ethicon Endo-Surgery, Inc. Force switch
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8679154B2 (en) 2007-01-12 2014-03-25 Ethicon Endo-Surgery, Inc. Adjustable compression staple and method for stapling with adjustable compression
CN101262984B (en) 2005-07-27 2012-06-06 Tyco医疗健康集团 Staple pocket arrangement for surgical stapler
CA2617122C (en) 2005-07-27 2013-12-10 Power Medical Interventions, Inc. Shaft, e.g., for an electro-mechanical surgical device
CN101522359B (en) 2005-07-27 2013-03-13 Tyco医疗健康集团 System and method for forming staple pockets of a surgical stapler
AU2006276044B2 (en) 2005-07-29 2010-02-11 W. L. Gore & Associates, Inc. Highly porous self-cohered web materials having haemostatic properties
US8048503B2 (en) 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US7655584B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US7655288B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US20070155010A1 (en) 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US20070026039A1 (en) 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US20070027551A1 (en) 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US7604668B2 (en) 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US20070026040A1 (en) 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
AU2005335074A1 (en) 2005-08-01 2007-02-08 Laboratorios Miret, S.A. Preservative systems comprising cationic surfactants
US20070027468A1 (en) 2005-08-01 2007-02-01 Wales Kenneth S Surgical instrument with an articulating shaft locking mechanism
JP4675709B2 (en) 2005-08-03 2011-04-27 株式会社リコー Optical scanning apparatus and image forming apparatus
US7641092B2 (en) 2005-08-05 2010-01-05 Ethicon Endo - Surgery, Inc. Swing gate for device lockout in a curved cutter stapler
US7559937B2 (en) 2005-08-09 2009-07-14 Towertech Research Group Surgical fastener apparatus and reinforcing material
US7101187B1 (en) 2005-08-11 2006-09-05 Protex International Corp. Rotatable electrical connector
US7407075B2 (en) 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US7401721B2 (en) 2005-08-15 2008-07-22 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US7398908B2 (en) 2005-08-15 2008-07-15 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US8579178B2 (en) 2005-08-15 2013-11-12 Covidien Lp Surgical stapling instruments including a cartridge having multiple staples sizes
US7388484B2 (en) 2005-08-16 2008-06-17 Honeywell International Inc. Conductive tamper switch for security devices
DE102005038919A1 (en) 2005-08-17 2007-03-15 BSH Bosch und Siemens Hausgeräte GmbH Electric motor kitchen appliance with electrical or electronic interlock
JP4402629B2 (en) 2005-08-19 2010-01-20 オリンパスメディカルシステムズ株式会社 Ultrasonic coagulation and incision device
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US20070191868A1 (en) 2005-08-25 2007-08-16 Microline Pentax Inc. Indicating system for clip applying device
US20080177392A1 (en) 2005-08-30 2008-07-24 Williams Michael S Closed system artificial intervertebral disc
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US7500979B2 (en) 2005-08-31 2009-03-10 Ethicon Endo-Surgery, Inc. Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7673781B2 (en) 2005-08-31 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling device with staple driver that supports multiple wire diameter staples
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
CN2815700Y (en) 2005-09-01 2006-09-13 煜日升电子(深圳)有限公司 Electric book binding machine
US20070051375A1 (en) 2005-09-06 2007-03-08 Milliman Keith L Instrument introducer
US7778004B2 (en) 2005-09-13 2010-08-17 Taser International, Inc. Systems and methods for modular electronic weaponry
WO2007033379A2 (en) 2005-09-14 2007-03-22 Neoguide Systems, Inc. Methods and apparatus for performing transluminal and other procedures
CA2520413C (en) 2005-09-21 2016-10-11 Sherwood Services Ag Bipolar forceps with multiple electrode array end effector assembly
US7472815B2 (en) 2005-09-21 2009-01-06 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with collapsible features for controlling staple height
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
US7772725B2 (en) 2005-09-22 2010-08-10 Eastman Kodak Company Apparatus and method for current control in H-Bridge load drivers
EP1767163A1 (en) 2005-09-22 2007-03-28 Sherwood Services AG Bipolar forceps with multiple electrode array end effector assembly
US7691106B2 (en) 2005-09-23 2010-04-06 Synvasive Technology, Inc. Transverse acting surgical saw blade
US7451904B2 (en) 2005-09-26 2008-11-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
JP4927371B2 (en) 2005-09-28 2012-05-09 興和株式会社 Intraocular lens
US7357287B2 (en) 2005-09-29 2008-04-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having preloaded firing assistance mechanism
US8079950B2 (en) 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
DE102005047320A1 (en) 2005-09-30 2007-04-05 Biotronik Crm Patent Ag Detector for atrial flicker and flutter
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561473C (en) 2005-09-30 2014-07-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
US20080190989A1 (en) 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US20070078484A1 (en) 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
US7635074B2 (en) 2005-10-04 2009-12-22 Tyco Healthcare Group Lp Staple drive assembly
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
CA2625734C (en) 2005-10-14 2013-02-19 Applied Medical Resources Corporation Method of making a hand access laparoscopic device
AU2006228045B2 (en) 2005-10-14 2011-11-24 Covidien Lp Apparatus for laparoscopic or endoscopic procedures
CA2563147C (en) 2005-10-14 2014-09-23 Tyco Healthcare Group Lp Surgical stapling device
US8266232B2 (en) 2005-10-15 2012-09-11 International Business Machines Corporation Hardware processing of commands within virtual client computing environment
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20070173870A2 (en) 2005-10-18 2007-07-26 Jaime Zacharias Precision Surgical System
US7966269B2 (en) 2005-10-20 2011-06-21 Bauer James D Intelligent human-machine interface
DE602006018510D1 (en) 2005-10-21 2011-01-05 Stryker Corp SYSTEM AND METHOD FOR RECHARGING A HARSH ENVIRONMENT EXPOSED BATTERY
US20070244471A1 (en) 2005-10-21 2007-10-18 Don Malackowski System and method for managing the operation of a battery powered surgical tool and the battery used to power the tool
US20070103437A1 (en) 2005-10-26 2007-05-10 Outland Research, Llc Haptic metering for minimally invasive medical procedures
US8080004B2 (en) 2005-10-26 2011-12-20 Earl Downey Laparoscopic surgical instrument
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
EP1780867B1 (en) 2005-10-28 2016-11-30 Black & Decker Inc. Battery pack for cordless power tools
EP1780825B1 (en) 2005-10-31 2018-08-29 Black & Decker, Inc. Battery pack and internal component arrangement within the battery pack for cordless power tool system
US7656131B2 (en) 2005-10-31 2010-02-02 Black & Decker Inc. Methods of charging battery packs for cordless power tool systems
CN101030709A (en) 2005-11-01 2007-09-05 布莱克和戴克公司 Recharging battery group and operation system
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US20070106113A1 (en) 2005-11-07 2007-05-10 Biagio Ravo Combination endoscopic operative delivery system
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
CN2868212Y (en) 2005-11-11 2007-02-14 钟李宽 Random-replaceable laparoscope surgical forceps
EP1973595B1 (en) 2005-11-15 2018-10-31 The Johns Hopkins University An active cannula for bio-sensing and surgical intervention
US7272002B2 (en) 2005-11-16 2007-09-18 Adc Dsl Systems, Inc. Auxiliary cooling methods and systems for electrical device housings
US7896895B2 (en) 2005-11-23 2011-03-01 Ethicon Endo-Surgery, Inc. Surgical clip and applier device and method of use
US7651017B2 (en) 2005-11-23 2010-01-26 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
US9446226B2 (en) 2005-12-07 2016-09-20 Ramot At Tel-Aviv University Ltd. Drug-delivering composite structures
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
US8190238B2 (en) 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
CN2868208Y (en) 2005-12-14 2007-02-14 苏州天臣国际医疗科技有限公司 Tubular binding instrument having automatic safety unit
US20070135686A1 (en) 2005-12-14 2007-06-14 Pruitt John C Jr Tools and methods for epicardial access
WO2007075844A1 (en) 2005-12-20 2007-07-05 Intuitive Surgical, Inc. Telescoping insertion axis of a robotic surgical system
US8672922B2 (en) 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
US7464845B2 (en) 2005-12-22 2008-12-16 Welcome Co., Ltd. Hand-held staple gun having a safety device
RU61114U1 (en) 2005-12-23 2007-02-27 Мирзакарим Санакулович Норбеков DEVICE FOR THE DEVELOPMENT OF BRAIN ACTIVITY
US7936142B2 (en) 2005-12-26 2011-05-03 Nitto Kohki Co., Ltd. Portable drilling device
US20100145146A1 (en) 2005-12-28 2010-06-10 Envisionier Medical Technologies, Inc. Endoscopic digital recording system with removable screen and storage device
WO2007074430A1 (en) 2005-12-28 2007-07-05 Given Imaging Ltd. Device, system and method for activation of an in vivo device
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
TWI288526B (en) 2005-12-30 2007-10-11 Yen Sun Technology Corp Speed transmission control circuit of a brushless DC motor
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US7553173B2 (en) 2005-12-30 2009-06-30 Click, Inc. Vehicle connector lockout apparatus and method of using same
USD552623S1 (en) 2006-01-04 2007-10-09 Microsoft Corporation User interface for a portion of a display screen
US7835823B2 (en) 2006-01-05 2010-11-16 Intuitive Surgical Operations, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
US7955257B2 (en) 2006-01-05 2011-06-07 Depuy Spine, Inc. Non-rigid surgical retractor
KR100752548B1 (en) 2006-01-10 2007-08-29 (주)이앤아이 Hybrid motor and controlling apparatus and method controlling thereof
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
DE102006001677B3 (en) 2006-01-12 2007-05-03 Gebr. Brasseler Gmbh & Co. Kg Surgical connection device e.g. for removable connection of hand piece to surgical instrument, has recess in which coupling part of instrument can be inserted and at wall on inside of recess resting recess is provided
US20120064483A1 (en) 2010-09-13 2012-03-15 Kevin Lint Hard-wired and wireless system with footswitch for operating a dental or medical treatment apparatus
US20070173872A1 (en) 2006-01-23 2007-07-26 Ethicon Endo-Surgery, Inc. Surgical instrument for cutting and coagulating patient tissue
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US7705559B2 (en) 2006-01-27 2010-04-27 Stryker Corporation Aseptic battery with a removal cell cluster, the cell cluster configured for charging in a socket that receives a sterilizable battery
EP1981406B1 (en) 2006-01-27 2016-04-13 Suturtek Incorporated Apparatus for tissue closure
US20070198039A1 (en) 2006-01-27 2007-08-23 Wilson-Cook Medical, Inc. Intragastric device for treating obesity
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7891531B1 (en) 2006-01-31 2011-02-22 Ward Gary L Sub-miniature surgical staple cartridge
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US20110295295A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument having recording capabilities
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7595642B2 (en) 2006-02-01 2009-09-29 Qualcomm Incorporated Battery management system for determining battery charge sufficiency for a task
US7422138B2 (en) 2006-02-01 2008-09-09 Ethicon Endo-Surgery, Inc. Elliptical intraluminal surgical stapler for anastomosis
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US8062236B2 (en) 2006-02-02 2011-11-22 Tyco Healthcare Group, Lp Method and system to determine an optimal tissue compression time to implant a surgical element
EP1837041A1 (en) 2006-03-20 2007-09-26 Tissuemed Limited Tissue-adhesive materials
GB0602192D0 (en) 2006-02-03 2006-03-15 Tissuemed Ltd Tissue-adhesive materials
EP1815950A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
WO2007092852A2 (en) 2006-02-06 2007-08-16 Mynosys Cellular Devices, Inc. Microsurgical cutting instruments
US20070185545A1 (en) 2006-02-06 2007-08-09 Medtronic Emergency Response Systems, Inc. Post-download patient data protection in a medical device
DE102006005998B4 (en) 2006-02-08 2008-05-08 Schnier, Dietmar, Dr. Nut with at least two parts
US20070190110A1 (en) 2006-02-10 2007-08-16 Pameijer Cornelis H Agents and devices for providing blood clotting functions to wounds
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
WO2007098220A2 (en) 2006-02-20 2007-08-30 Black & Decker Inc. Dc motor with dual commutator bar set and selectable series and parallel connected coils
US20070208375A1 (en) 2006-02-23 2007-09-06 Kouji Nishizawa Surgical device
JP4910423B2 (en) 2006-02-27 2012-04-04 ソニー株式会社 Battery pack, electronic device, and battery remaining amount detection method
US8500628B2 (en) 2006-02-28 2013-08-06 Olympus Endo Technology America, Inc. Rotate-to-advance catheterization system
US20070208359A1 (en) 2006-03-01 2007-09-06 Hoffman Douglas B Method for stapling tissue
US20070207010A1 (en) 2006-03-03 2007-09-06 Roni Caspi Split nut with magnetic coupling
US8706316B1 (en) 2006-03-14 2014-04-22 Snap-On Incorporated Method and system for enhanced scanner user interface
US7955380B2 (en) 2006-03-17 2011-06-07 Medtronic Vascular, Inc. Prosthesis fixation apparatus and methods
US7771396B2 (en) 2006-03-22 2010-08-10 Ethicon Endo-Surgery, Inc. Intubation device for enteral feeding
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8348959B2 (en) 2006-03-23 2013-01-08 Symmetry Medical Manufacturing, Inc. Angled surgical driver
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US20110163146A1 (en) 2006-03-23 2011-07-07 Ortiz Mark S Surgical Stapling And Cuttting Device
JP4689511B2 (en) 2006-03-24 2011-05-25 株式会社エヌ・ティ・ティ・ドコモ Portable base station equipment
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US7836400B2 (en) 2006-03-31 2010-11-16 Research In Motion Limited Snooze support for event reminders
US20090020958A1 (en) 2006-03-31 2009-01-22 Soul David F Methods and apparatus for operating an internal combustion engine
WO2007123770A2 (en) 2006-03-31 2007-11-01 Automated Medical Instruments, Inc. System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or therapeutic device
US7635922B2 (en) 2006-04-03 2009-12-22 C.E. Niehoff & Co. Power control system and method
JP4102409B2 (en) 2006-04-03 2008-06-18 オリンパス株式会社 Suture and ligature applier
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US8926506B2 (en) 2009-03-06 2015-01-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8485970B2 (en) 2008-09-30 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical access device
CA2648283A1 (en) 2006-04-07 2007-10-18 Societe De Commercialisation Des Produits De La Recherche Appliquee Socp Ra Sciences Et Genie S.E.C. Integrated cement delivery system for bone augmentation procedures and methods
ES2394111T3 (en) 2006-04-11 2013-01-21 Tyco Healthcare Group Lp Wound dressings with antimicrobial and zinc-containing agents
KR101019341B1 (en) 2006-04-11 2011-03-07 닛본 세이고 가부시끼가이샤 Electric power steering device and method of assembling the same
US7741273B2 (en) 2006-04-13 2010-06-22 Warsaw Orthopedic, Inc. Drug depot implant designs
US20070243227A1 (en) 2006-04-14 2007-10-18 Michael Gertner Coatings for surgical staplers
US7450010B1 (en) 2006-04-17 2008-11-11 Tc License Ltd. RFID mutual authentication verification session
US8267849B2 (en) 2006-04-18 2012-09-18 Wazer David E Radioactive therapeutic fastening instrument
WO2007133329A2 (en) 2006-04-20 2007-11-22 Illinois Tool Works Inc. Fastener-driving tool having trigger control mechanism for alternatively permitting bump firing and sequential firing modes of operation
US20070246505A1 (en) 2006-04-24 2007-10-25 Medical Ventures Inc. Surgical buttress assemblies and methods of uses thereof
US8518024B2 (en) 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US7650185B2 (en) 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US7278563B1 (en) 2006-04-25 2007-10-09 Green David T Surgical instrument for progressively stapling and incising tissue
JP4566943B2 (en) 2006-04-26 2010-10-20 株式会社マキタ Charger
US20090081313A1 (en) 2006-04-28 2009-03-26 Biomagnesium Systems Ltd. Biodegradable Magnesium Alloys and Uses Thereof
EP2012697A4 (en) 2006-04-29 2010-07-21 Univ Texas Devices for use in transluminal and endoluminal surgery
JP5148598B2 (en) 2006-05-03 2013-02-20 ラプトール リッジ, エルエルシー Tissue closure system and method
WO2007129121A1 (en) 2006-05-08 2007-11-15 Tayside Health Board Device and method for improved surgical suturing
US20070262592A1 (en) 2006-05-08 2007-11-15 Shih-Ming Hwang Mounting plate for lock and lock therewith
JP4829005B2 (en) 2006-05-12 2011-11-30 テルモ株式会社 manipulator
US10028789B2 (en) 2006-05-19 2018-07-24 Mako Surgical Corp. Method and apparatus for controlling a haptic device
EP2842500B1 (en) 2006-05-19 2020-09-09 Ethicon Endo-Surgery, Inc. Surgical device
CA2975797C (en) 2006-05-19 2020-06-30 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
WO2007137304A2 (en) 2006-05-19 2007-11-29 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
WO2007137243A2 (en) 2006-05-19 2007-11-29 Applied Medical Resources Corporation Surgical stapler
US8105350B2 (en) 2006-05-23 2012-01-31 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7586289B2 (en) 2006-05-23 2009-09-08 Ultralife Corporation Complete discharge device
US20070275035A1 (en) 2006-05-24 2007-11-29 Microchips, Inc. Minimally Invasive Medical Implant Devices for Controlled Drug Delivery
US20070276409A1 (en) 2006-05-25 2007-11-29 Ethicon Endo-Surgery, Inc. Endoscopic gastric restriction methods and devices
US20080039746A1 (en) 2006-05-25 2008-02-14 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
WO2007138571A2 (en) 2006-06-01 2007-12-06 Mor Research Applications Ltd. Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation
CA2608791C (en) 2006-06-02 2013-11-12 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US7615067B2 (en) 2006-06-05 2009-11-10 Cambridge Endoscopic Devices, Inc. Surgical instrument
IL176133A0 (en) 2006-06-05 2006-10-05 Medigus Ltd Stapler
US7530984B2 (en) 2006-06-05 2009-05-12 Medigus Ltd. Transgastric method for carrying out a partial fundoplication
US8419717B2 (en) 2006-06-13 2013-04-16 Intuitive Surgical Operations, Inc. Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
US9561045B2 (en) 2006-06-13 2017-02-07 Intuitive Surgical Operations, Inc. Tool with rotation lock
KR101477125B1 (en) 2006-06-13 2014-12-29 인튜어티브 서지컬 인코포레이티드 Minimally invasive surgical system
US8551076B2 (en) 2006-06-13 2013-10-08 Intuitive Surgical Operations, Inc. Retrograde instrument
US20070286892A1 (en) 2006-06-13 2007-12-13 Uri Herzberg Compositions and methods for preventing or reducing postoperative ileus and gastric stasis in mammals
DE202007003114U1 (en) 2006-06-13 2007-06-21 Olympus Winter & Ibe Gmbh Medical forceps has a removable tool that fits into a retaining sleeve that has a snap action element that prevents rotation
EP2029213A2 (en) 2006-06-14 2009-03-04 Cornova, Inc. Method and apparatus for identifying and treating myocardial infarction
US8491603B2 (en) 2006-06-14 2013-07-23 MacDonald Dettwiller and Associates Inc. Surgical manipulator
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
WO2007149841A2 (en) 2006-06-20 2007-12-27 Aortx, Inc. Torque shaft and torque drive
DE502006006482C5 (en) 2006-06-21 2017-08-17 Steffpa Gmbh DEVICE FOR INTRODUCING AND POSITIONING SURGICAL INSTRUMENTS
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8974542B2 (en) 2006-06-27 2015-03-10 University of Pittsburgh—of the Commonwealth System of Higher Education Biodegradable elastomeric patch for treating cardiac or cardiovascular conditions
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
DE602006009914D1 (en) 2006-06-29 2009-12-03 Univ Dundee Medical instrument for gripping an object, in particular a needle holder
US20080200835A1 (en) 2006-06-30 2008-08-21 Monson Gavin M Energy Biopsy Device for Tissue Penetration and Hemostasis
US20080003196A1 (en) 2006-06-30 2008-01-03 Jonn Jerry Y Absorbable cyanoacrylate compositions
US7391173B2 (en) 2006-06-30 2008-06-24 Intuitive Surgical, Inc Mechanically decoupled capstan drive
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
WO2008003560A1 (en) 2006-07-03 2008-01-10 Novo Nordisk A/S Coupling for injection devices
JP4157574B2 (en) 2006-07-04 2008-10-01 オリンパスメディカルシステムズ株式会社 Surgical instrument
EP2423298A1 (en) 2006-07-06 2012-02-29 Nippon Oil Corporation Compressor oil composition
EP1875870B1 (en) 2006-07-07 2009-12-02 Ethicon Endo-Surgery, Inc. A surgical stapling instrument.
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
DE102006031971A1 (en) 2006-07-11 2008-01-17 Karl Storz Gmbh & Co. Kg Medical instrument
US7993360B2 (en) 2006-07-11 2011-08-09 Arthrex, Inc. Rotary shaver with improved connection between flexible and rigid rotatable tubes
CA2592221C (en) 2006-07-11 2014-10-07 Tyco Healthcare Group Lp Skin staples with thermal properties
FR2903696B1 (en) 2006-07-12 2011-02-11 Provence Technologies PROCESS FOR PURIFYING DIAMINOPHENOTHIAZIUM COMPOUNDS
RU61122U1 (en) 2006-07-14 2007-02-27 Нина Васильевна Гайгерова SURGICAL STAPER
IL176889A0 (en) 2006-07-16 2006-10-31 Medigus Ltd Devices and methods for treating morbid obesity
WO2008011351A2 (en) 2006-07-19 2008-01-24 Boston Scientific Scimed, Inc. Apparatus for tissue resection
DE102007020583B4 (en) 2006-07-19 2012-10-11 Erbe Elektromedizin Gmbh Electrode device with an impedance measuring device and method for producing such an electrode device
US7748632B2 (en) 2006-07-25 2010-07-06 Hand Held Products, Inc. Portable data terminal and battery therefor
WO2008013863A2 (en) 2006-07-26 2008-01-31 Cytori Therapeutics, Inc. Generation of adipose tissue and adipocytes
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US7441684B2 (en) 2006-08-02 2008-10-28 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with audible and visual feedback features
US20080030170A1 (en) 2006-08-03 2008-02-07 Bruno Dacquay Safety charging system for surgical hand piece
JP4755047B2 (en) 2006-08-08 2011-08-24 テルモ株式会社 Working mechanism and manipulator
CA2659365A1 (en) 2006-08-09 2008-02-21 Coherex Medical, Inc. Methods, systems and devices for reducing the size of an internal tissue opening
US20080042861A1 (en) 2006-08-16 2008-02-21 Bruno Dacquay Safety battery meter system for surgical hand piece
US7708758B2 (en) 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
CN200942099Y (en) 2006-08-17 2007-09-05 苏州天臣国际医疗科技有限公司 Insurance mechanism for binding instrument
DE102006038515A1 (en) 2006-08-17 2008-02-21 Karl Storz Gmbh & Co. Kg Medical tubular shaft instrument
US7674253B2 (en) 2006-08-18 2010-03-09 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
US20080051833A1 (en) 2006-08-25 2008-02-28 Vincent Gramuglia Suture passer and method of passing suture material
US20080196253A1 (en) 2006-08-28 2008-08-21 Richard Simon Ezra Precision knife and blade dispenser for the same
US20080125749A1 (en) 2006-08-29 2008-05-29 Boston Scientific Scimed, Inc. Self-powered medical devices
DE102006041951B4 (en) 2006-08-30 2022-05-05 Deltatech Controls Usa, Llc Switch
KR20090045142A (en) 2006-08-30 2009-05-07 로무 가부시키가이샤 Motor drive circuit, drive method, and motor unit and electronic device using the motor unit
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
US20080071328A1 (en) 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US8982195B2 (en) 2006-09-07 2015-03-17 Abbott Medical Optics Inc. Digital video capture system and method with customizable graphical overlay
US8403196B2 (en) 2006-09-08 2013-03-26 Covidien Lp Dissection tip and introducer for surgical instrument
US20080065153A1 (en) 2006-09-08 2008-03-13 Warsaw Orthopedic, Inc. Surgical staple
US8136711B2 (en) 2006-09-08 2012-03-20 Tyco Healthcare Group Lp Dissection tip and introducer for surgical instrument
JP5148092B2 (en) 2006-09-11 2013-02-20 オリンパスメディカルシステムズ株式会社 Energy surgical device
CN100464715C (en) 2006-09-11 2009-03-04 苏州天臣国际医疗科技有限公司 Surgical binding instrument binding mechanism
US8794496B2 (en) 2006-09-11 2014-08-05 Covidien Lp Rotating knob locking mechanism for surgical stapling device
US8944069B2 (en) 2006-09-12 2015-02-03 Vidacare Corporation Assemblies for coupling intraosseous (IO) devices to powered drivers
US7648519B2 (en) 2006-09-13 2010-01-19 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7780663B2 (en) 2006-09-22 2010-08-24 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US20100133317A1 (en) 2006-09-29 2010-06-03 Shelton Iv Frederick E Motor-Driven Surgical Cutting And Fastening Instrument with Tactile Position Feedback
US20200038018A1 (en) 2006-09-29 2020-02-06 Ethicon Llc End effector for use with a surgical fastening instrument
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US20080082114A1 (en) 2006-09-29 2008-04-03 Mckenna Robert H Adhesive Mechanical Fastener for Lumen Creation Utilizing Tissue Necrosing Means
US20190269402A1 (en) 2006-09-29 2019-09-05 Ethicon Llc Surgical staple having a deformable member with a non-circular cross-sectional geometry
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US8708210B2 (en) 2006-10-05 2014-04-29 Covidien Lp Method and force-limiting handle mechanism for a surgical instrument
US8246637B2 (en) 2006-10-05 2012-08-21 Tyco Healthcare Group Lp Flexible endoscopic stitching devices
DE102006047204B4 (en) 2006-10-05 2015-04-23 Erbe Elektromedizin Gmbh Tubular shaft instrument
US20080085296A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Methods for reduction of post operative ileus.
US7481348B2 (en) 2006-10-06 2009-01-27 Tyco Healthcare Group Lp Surgical instrument with articulating tool assembly
US7845535B2 (en) 2006-10-06 2010-12-07 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
ATE435613T1 (en) 2006-10-06 2009-07-15 Ethicon Endo Surgery Inc IMPROVEMENTS TO AN APPLICATOR FOR APPLYING ANASTOMOTIC RINGS
US20080086078A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Devices for reduction of post operative ileus
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
US8807414B2 (en) 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
US8721640B2 (en) 2006-10-06 2014-05-13 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
DE102006047882B3 (en) 2006-10-10 2007-08-02 Rasmussen Gmbh Pluggable connection arrangement for hose and pipe or tube, uses leaf-spring ring for latching into annular groove
US7736254B2 (en) 2006-10-12 2010-06-15 Intuitive Surgical Operations, Inc. Compact cable tension tender device
US20080091072A1 (en) 2006-10-13 2008-04-17 Terumo Kabushiki Kaisha Manipulator
EP1913881B1 (en) 2006-10-17 2014-06-11 Covidien LP Apparatus for applying surgical clips
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US8226635B2 (en) 2006-10-23 2012-07-24 Boston Scientific Scimed, Inc. Device for circulating heated fluid
US8157793B2 (en) 2006-10-25 2012-04-17 Terumo Kabushiki Kaisha Manipulator for medical use
JP5085996B2 (en) 2006-10-25 2012-11-28 テルモ株式会社 Manipulator system
JP5198014B2 (en) 2006-10-25 2013-05-15 テルモ株式会社 Medical manipulator
EP1915963A1 (en) 2006-10-25 2008-04-30 The European Atomic Energy Community (EURATOM), represented by the European Commission Force estimation for a minimally invasive robotic surgery system
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
US8028883B2 (en) 2006-10-26 2011-10-04 Tyco Healthcare Group Lp Methods of using shape memory alloys for buttress attachment
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US8822934B2 (en) 2006-11-03 2014-09-02 Accuray Incorporated Collimator changer
US8368327B2 (en) 2006-11-03 2013-02-05 Koninklijke Philips Electronics N.V. System and method for maintaining performance of battery-operated toothbrushes
US20080129253A1 (en) 2006-11-03 2008-06-05 Advanced Desalination Inc. Battery energy reclamation apparatus and method thereby
JP2008114339A (en) 2006-11-06 2008-05-22 Terumo Corp Manipulator
US7780685B2 (en) 2006-11-09 2010-08-24 Ethicon Endo-Surgery, Inc. Adhesive and mechanical fastener
US7708180B2 (en) 2006-11-09 2010-05-04 Ethicon Endo-Surgery, Inc. Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
US7946453B2 (en) 2006-11-09 2011-05-24 Ethicon Endo-Surgery, Inc. Surgical band fluid media dispenser
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US8834498B2 (en) 2006-11-10 2014-09-16 Ethicon Endo-Surgery, Inc. Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners
US20080114250A1 (en) 2006-11-10 2008-05-15 Penrith Corporation Transducer array imaging system
US7935130B2 (en) 2006-11-16 2011-05-03 Intuitive Surgical Operations, Inc. Two-piece end-effectors for robotic surgical tools
US9011439B2 (en) 2006-11-20 2015-04-21 Poly-Med, Inc. Selectively absorbable/biodegradable, fibrous composite constructs and applications thereof
WO2008061566A1 (en) 2006-11-23 2008-05-29 Tte Germany Gmbh Power failure detection circuit
CN200984209Y (en) 2006-11-24 2007-12-05 苏州天臣国际医疗科技有限公司 Nail anvil molding groove of the chirurgery binding instrument
US20080140159A1 (en) 2006-12-06 2008-06-12 Transoma Medical, Inc. Implantable device for monitoring biological signals
US8114100B2 (en) 2006-12-06 2012-02-14 Ethicon Endo-Surgery, Inc. Safety fastener for tissue apposition
US20080154299A1 (en) 2006-12-08 2008-06-26 Steve Livneh Forceps for performing endoscopic surgery
US7871440B2 (en) 2006-12-11 2011-01-18 Depuy Products, Inc. Unitary surgical device and method
US8062306B2 (en) 2006-12-14 2011-11-22 Ethicon Endo-Surgery, Inc. Manually articulating devices
CN200991269Y (en) 2006-12-20 2007-12-19 张红 Reload-unit structure of alimentary tract stapler
US7434716B2 (en) 2006-12-21 2008-10-14 Tyco Healthcare Group Lp Staple driver for articulating surgical stapler
EP2094173B1 (en) 2006-12-21 2016-03-30 Doheny Eye Institute Disposable vitrectomy handpiece
US8292801B2 (en) 2006-12-22 2012-10-23 Olympus Medical Systems Corp. Surgical treatment apparatus
CN201001747Y (en) 2006-12-25 2008-01-09 苏州天臣国际医疗科技有限公司 Illuminable round tubular surgical operation binding instrument
CN201029899Y (en) 2007-01-05 2008-03-05 苏州天臣国际医疗科技有限公司 Micro-wound surgery side stitching apparatus
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US20110174861A1 (en) 2007-01-10 2011-07-21 Shelton Iv Frederick E Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US8840603B2 (en) 2007-01-10 2014-09-23 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8827133B2 (en) 2007-01-11 2014-09-09 Ethicon Endo-Surgery, Inc. Surgical stapling device having supports for a flexible drive mechanism
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
AU2011218702B2 (en) 2007-01-12 2013-06-06 Ethicon Endo-Surgery, Inc Adjustable compression staple and method for stapling with adjustable compression
WO2008089404A2 (en) 2007-01-19 2008-07-24 Synovis Life Technologies, Inc. Circular stapler anvil introducer
CN101611524B (en) 2007-01-25 2013-12-11 永备电池有限公司 Portable power supply
US7753246B2 (en) 2007-01-31 2010-07-13 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US20110125149A1 (en) 2007-02-06 2011-05-26 Rizk El-Galley Universal surgical function control system
US7789883B2 (en) 2007-02-14 2010-09-07 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
US20080200934A1 (en) 2007-02-15 2008-08-21 Fox William D Surgical devices and methods using magnetic force to form an anastomosis
WO2008101228A2 (en) 2007-02-15 2008-08-21 Hansen Medical, Inc. Robotic medical instrument system
US20080200911A1 (en) 2007-02-15 2008-08-21 Long Gary L Electrical ablation apparatus, system, and method
US20080200755A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Method and device for retrieving suture tags
US20080200933A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Surgical devices and methods for forming an anastomosis between organs by gaining access thereto through a natural orifice in the body
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
CA2621045A1 (en) 2007-02-16 2008-08-16 Serge Dube Build-up monitoring system for refrigerated enclosures
US20080200762A1 (en) 2007-02-16 2008-08-21 Stokes Michael J Flexible endoscope shapelock
US7430675B2 (en) 2007-02-16 2008-09-30 Apple Inc. Anticipatory power management for battery-powered electronic device
EP1961433A1 (en) 2007-02-20 2008-08-27 National University of Ireland Galway Porous substrates for implantation
US9265559B2 (en) 2007-02-25 2016-02-23 Avent, Inc. Electrosurgical method
US7682367B2 (en) 2007-02-28 2010-03-23 Tyco Healthcare Group Lp Surgical stapling apparatus
JP5096020B2 (en) 2007-03-02 2012-12-12 オリエンタルモーター株式会社 Inductance load control device
EP1983312B1 (en) 2007-03-05 2018-02-28 LG Electronics Inc. Automatic Liquid Dispenser And Refrigerator With The Same
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
CA2680148C (en) 2007-03-06 2015-09-01 Tyco Healthcare Group Lp Surgical stapling apparatus
EP2131750B1 (en) 2007-03-06 2016-05-04 Covidien LP Wound closure material
US20100076489A1 (en) 2007-03-06 2010-03-25 Joshua Stopek Wound closure material
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US9888924B2 (en) 2007-03-06 2018-02-13 Covidien Lp Wound closure material
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
US20110016960A1 (en) 2007-03-13 2011-01-27 Franck Debrailly Device For Detecting Angular Position, Electric Motor, Steering Column And Reduction Gear
EP2131879B1 (en) 2007-03-13 2019-10-09 Smith & Nephew, Inc. Internal fixation devices
US20150127021A1 (en) 2007-03-13 2015-05-07 Longevity Surgical, Inc. Devices for reconfiguring a portion of the gastrointestinal tract
EP2338325B1 (en) 2007-03-14 2018-05-16 Robert Bosch GmbH Cutting tools
US8590762B2 (en) 2007-03-15 2013-11-26 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configurations
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US20110052660A1 (en) 2007-03-16 2011-03-03 Board Of Regents Of The University Of Texas System Ceramic scaffolds for bone repair
US8308725B2 (en) 2007-03-20 2012-11-13 Minos Medical Reverse sealing and dissection instrument
US7776065B2 (en) 2007-03-20 2010-08-17 Symmetry Medical New Bedford Inc End effector mechanism for a surgical instrument
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8205780B2 (en) 2007-03-22 2012-06-26 Tyco Healthcare Group Lp Apparatus for forming variable height surgical fasteners
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8142200B2 (en) 2007-03-26 2012-03-27 Liposonix, Inc. Slip ring spacer and method for its use
AU2008230841B2 (en) 2007-03-26 2013-09-12 Covidien Lp Endoscopic surgical clip applier
US8608745B2 (en) 2007-03-26 2013-12-17 DePuy Synthes Products, LLC System, apparatus, and method for cutting bone during an orthopaedic surgical procedure
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US7490749B2 (en) 2007-03-28 2009-02-17 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with manually retractable firing member
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8496153B2 (en) 2007-03-29 2013-07-30 Covidien Lp Anvil-mounted dissecting tip for surgical stapling device
US8377044B2 (en) 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US7630841B2 (en) 2007-03-30 2009-12-08 Texas Instruments Incorporated Supervising and sequencing commonly driven power supplies with digital information
AU2008233166B2 (en) 2007-03-30 2013-05-16 Covidien Lp Laparoscopic port assembly
US7923144B2 (en) 2007-03-31 2011-04-12 Tesla Motors, Inc. Tunable frangible battery pack system
USD570868S1 (en) 2007-04-02 2008-06-10 Tokyo Electron Limited Computer generated image for a display panel or screen
US20080242939A1 (en) 2007-04-02 2008-10-02 William Johnston Retractor system for internal in-situ assembly during laparoscopic surgery
JP5006093B2 (en) 2007-04-03 2012-08-22 テルモ株式会社 Manipulator system and control device
JP5090045B2 (en) 2007-04-03 2012-12-05 テルモ株式会社 Manipulator and control method thereof
US20080249608A1 (en) 2007-04-04 2008-10-09 Vipul Dave Bioabsorbable Polymer, Bioabsorbable Composite Stents
JP4728996B2 (en) 2007-04-04 2011-07-20 三菱電機株式会社 Particle beam therapy apparatus and particle beam irradiation dose calculation method
FR2914554B1 (en) 2007-04-05 2009-07-17 Germitec Soc Par Actions Simpl METHOD OF MONITORING THE USE OF A MEDICAL DEVICE.
US20090270895A1 (en) 2007-04-06 2009-10-29 Interlace Medical, Inc. Low advance ratio, high reciprocation rate tissue removal device
US8006885B2 (en) 2007-04-09 2011-08-30 Tyco Healthcare Group Lp Surgical stapling apparatus with powered retraction
EP2144660A4 (en) 2007-04-09 2016-05-04 Creative Surgical Llc Frame device
WO2008127968A2 (en) 2007-04-11 2008-10-23 Tyco Healthcare Group Lp Surgical clip applier
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US20080255663A1 (en) 2007-04-13 2008-10-16 Akpek Esen K Artificial Cornea and Method of Making Same
USD582934S1 (en) 2007-04-13 2008-12-16 Samsung Electronics Co., Ltd. Transitional video image display for portable phone
EP2508141A1 (en) 2007-04-16 2012-10-10 Smith & Nephew, Inc. Powered surgical system
US7839109B2 (en) 2007-04-17 2010-11-23 Lutron Electronics Co., Inc. Method of controlling a motorized window treatment
US7708182B2 (en) 2007-04-17 2010-05-04 Tyco Healthcare Group Lp Flexible endoluminal surgical instrument
US8323271B2 (en) 2007-04-20 2012-12-04 Doheny Eye Institute Sterile surgical tray
WO2008131357A1 (en) 2007-04-20 2008-10-30 Doheny Eye Institute Independent surgical center
DE102007019409B3 (en) 2007-04-23 2008-11-13 Lösomat Schraubtechnik Neef Gmbh power wrench
JP4668946B2 (en) 2007-04-25 2011-04-13 株式会社デンソー On-vehicle air conditioner operation unit and on-vehicle air conditioner control apparatus using the same
EP1986123A1 (en) 2007-04-27 2008-10-29 Italdata Ingegneria Dell'Idea S.p.A. Data survey device, integrated with an anti-tamper system
US8028882B2 (en) 2007-05-01 2011-10-04 Tyco Healthcare Group Anvil position detector for a surgical stapler
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
JP2007289715A (en) 2007-05-07 2007-11-08 Olympus Corp Ultrasonic diagnostic and therapeutic system
CA2891011A1 (en) 2007-05-07 2008-11-13 Tyco Healthcare Group Lp Variable size-uniform compression staple assembly
US20080281171A1 (en) 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
JP4348714B2 (en) 2007-05-10 2009-10-21 シャープ株式会社 Data transmission system and data transmission method
US7931660B2 (en) 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
US20080294179A1 (en) 2007-05-12 2008-11-27 Balbierz Daniel J Devices and methods for stomach partitioning
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US9545258B2 (en) 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
US8910846B2 (en) 2007-05-17 2014-12-16 Covidien Lp Gear driven knife drive mechanism
US7981102B2 (en) 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US20080293910A1 (en) 2007-05-24 2008-11-27 Tyco Healthcare Group Lp Adhesive formulatiions
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US20080297287A1 (en) 2007-05-30 2008-12-04 Magnetecs, Inc. Magnetic linear actuator for deployable catheter tools
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US7939152B2 (en) 2007-06-01 2011-05-10 M-Tech Corporation Heat-shrinkable anti-fomitic device
KR101349639B1 (en) 2007-06-04 2014-01-09 타이코 일렉트로닉스 저팬 지.케이. A memory card and a SIM card mounting socket having a sensing switch
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7780309B2 (en) 2007-06-05 2010-08-24 Eveready Battery Company, Inc. Preparedness flashlight
US8016841B2 (en) 2007-06-11 2011-09-13 Novus Scientific Pte. Ltd. Mesh implant with an interlocking knitted structure
US8899460B2 (en) 2007-06-12 2014-12-02 Black & Decker Inc. Magazine assembly for nailer
CA2633869A1 (en) 2007-06-12 2008-12-12 Tyco Healthcare Group Lp Surgical fastener
US8852208B2 (en) 2010-05-14 2014-10-07 Intuitive Surgical Operations, Inc. Surgical system instrument mounting
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
US7588175B2 (en) 2007-06-18 2009-09-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with improved firing system
USD578644S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
US7441685B1 (en) 2007-06-22 2008-10-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a return mechanism
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US7597229B2 (en) 2007-06-22 2009-10-06 Ethicon Endo-Surgery, Inc. End effector closure system for a surgical stapling instrument
US7604150B2 (en) 2007-06-22 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an anti-back up mechanism
WO2009002828A2 (en) 2007-06-22 2008-12-31 Medical Components, Inc. Tearaway sheath assembly with hemostasis valve
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US20090004455A1 (en) 2007-06-27 2009-01-01 Philippe Gravagna Reinforced composite implant
CN101873834B (en) 2007-06-29 2012-12-05 伊西康内外科公司 Washer for use with a surgical stapling instrument
US8093572B2 (en) 2007-06-29 2012-01-10 Accuray Incorporated Integrated variable-aperture collimator and fixed-aperture collimator
US10219832B2 (en) 2007-06-29 2019-03-05 Actuated Medical, Inc. Device and method for less forceful tissue puncture
CA2698728C (en) 2007-06-29 2016-08-02 Ethicon Endo-Surgery, Inc. Washer for use with a surgical stapling instrument
DE102007031008A1 (en) 2007-07-04 2009-01-08 Braun Gmbh Device with electrical device and charging station
US7600663B2 (en) 2007-07-05 2009-10-13 Green David T Apparatus for stapling and incising tissue
US8758366B2 (en) 2007-07-09 2014-06-24 Neotract, Inc. Multi-actuating trigger anchor delivery system
WO2009009684A1 (en) 2007-07-10 2009-01-15 Osteotech, Inc. Delivery system
US8348972B2 (en) 2007-07-11 2013-01-08 Covidien Lp Surgical staple with augmented compression area
US7967791B2 (en) 2007-07-23 2011-06-28 Ethicon Endo-Surgery, Inc. Surgical access device
JP2009028157A (en) 2007-07-25 2009-02-12 Terumo Corp Medical manipulator system
KR101540920B1 (en) 2007-07-26 2015-08-03 사노피 파스퇴르 리미티드 Antigen-adjuvant compositions and methods
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
JP5042738B2 (en) 2007-07-30 2012-10-03 テルモ株式会社 Working mechanism and cleaning method of medical manipulator
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US7747146B2 (en) 2007-08-08 2010-06-29 Allegro Microsystems, Inc. Motor controller having a multifunction port
US7787256B2 (en) 2007-08-10 2010-08-31 Gore Enterprise Holdings, Inc. Tamper respondent system
US20090048589A1 (en) 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
EP2626006B1 (en) 2007-08-14 2019-10-09 Koninklijke Philips N.V. Robotic instrument systems utilizing optical fiber sensors
US8202549B2 (en) 2007-08-14 2012-06-19 The Regents Of The University Of California Mesocellular oxide foams as hemostatic compositions and methods of use
JP5475662B2 (en) 2007-08-15 2014-04-16 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Modular and segmented medical devices and related systems
US7556185B2 (en) 2007-08-15 2009-07-07 Tyco Healthcare Group Lp Surgical instrument with flexible drive mechanism
US7714334B2 (en) 2007-08-16 2010-05-11 Lin Peter P W Polarless surface mounting light emitting diode
JP2009050288A (en) 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
US9005238B2 (en) 2007-08-23 2015-04-14 Covidien Lp Endoscopic surgical devices
US8465515B2 (en) 2007-08-29 2013-06-18 Ethicon Endo-Surgery, Inc. Tissue retractors
US7967181B2 (en) 2007-08-29 2011-06-28 Tyco Healthcare Group Lp Rotary knife cutting systems
KR101387404B1 (en) 2007-08-30 2014-04-21 삼성전자주식회사 Apparatus of controlling digital image processing apparatus and method thereof
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
US8579897B2 (en) 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
JP2009056164A (en) 2007-08-31 2009-03-19 Terumo Corp Medical manipulator system
US8262655B2 (en) 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US7988026B2 (en) 2007-09-06 2011-08-02 Cardica, Inc. Endocutter with staple feed
FR2920683B1 (en) 2007-09-06 2010-02-12 Pellenc Sa MULTIPURPOSE ELECTROPORTATIVE DEVICES.
US8257386B2 (en) 2007-09-11 2012-09-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US8556151B2 (en) 2007-09-11 2013-10-15 Covidien Lp Articulating joint for surgical instruments
US8317790B2 (en) 2007-09-14 2012-11-27 W. L. Gore & Associates, Inc. Surgical staple line reinforcements
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
JP2009084281A (en) 2007-09-18 2009-04-23 Ethicon Endo Surgery Inc Method for reduction of post-operative ileus
US7513407B1 (en) 2007-09-20 2009-04-07 Acuman Power Tools Corp. Counterforce-counteracting device for a nailer
EP2233081B2 (en) 2007-09-21 2018-03-28 Covidien LP Surgical device
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
AU2008302043B2 (en) 2007-09-21 2013-06-27 Covidien Lp Surgical device
US8678263B2 (en) 2007-09-24 2014-03-25 Covidien Lp Materials delivery system for stapling device
US9597080B2 (en) 2007-09-24 2017-03-21 Covidien Lp Insertion shroud for surgical instrument
US8721666B2 (en) 2007-09-26 2014-05-13 Ethicon, Inc. Method of facial reconstructive surgery using a self-anchoring tissue lifting device
US20090088659A1 (en) 2007-09-27 2009-04-02 Immersion Corporation Biological Sensing With Haptic Feedback
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US20090132400A1 (en) 2007-09-28 2009-05-21 Verizon Services Organization Inc. Data metering
US9050120B2 (en) 2007-09-30 2015-06-09 Intuitive Surgical Operations, Inc. Apparatus and method of user interface with alternate tool mode for robotic surgical tools
US8084969B2 (en) 2007-10-01 2011-12-27 Allegro Microsystems, Inc. Hall-effect based linear motor controller
US9707003B2 (en) 2007-10-02 2017-07-18 Covidien Lp Articulating surgical instrument
US8285367B2 (en) 2007-10-05 2012-10-09 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation associated with a reservoir
US7945798B2 (en) 2007-10-03 2011-05-17 Lenovo (Singapore) Pte. Ltd. Battery pack for portable computer
US20110022032A1 (en) 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US10271844B2 (en) 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US10500309B2 (en) 2007-10-05 2019-12-10 Cook Biotech Incorporated Absorbable adhesives and their formulation for use in medical applications
JP5403783B2 (en) 2007-10-05 2014-01-29 コヴィディエン リミテッド パートナーシップ Surgical stapler with articulation mechanism
ES2426767T3 (en) 2007-10-08 2013-10-25 Gore Enterprise Holdings, Inc. Apparatus for supplying a reinforcement of surgical staple lines
US20120289979A1 (en) 2007-10-08 2012-11-15 Sherif Eskaros Apparatus for Supplying Surgical Staple Line Reinforcement
US8044536B2 (en) 2007-10-10 2011-10-25 Ams Research Corporation Powering devices having low and high voltage circuits
US8992409B2 (en) 2007-10-11 2015-03-31 Peter Forsell Method for controlling flow in a bodily organ
US20090099579A1 (en) 2007-10-16 2009-04-16 Tyco Healthcare Group Lp Self-adherent implants and methods of preparation
US7945792B2 (en) 2007-10-17 2011-05-17 Spansion Llc Tamper reactive memory device to secure data from tamper attacks
EP3225209B1 (en) 2007-10-17 2023-05-24 Davol, Inc. Fixating means between a mesh and mesh deployment means especially useful for hernia repair surgeries
US8142425B2 (en) 2007-10-30 2012-03-27 Hemostatix Medical Techs, LLC Hemostatic surgical blade, system and method of blade manufacture
JP5364255B2 (en) 2007-10-31 2013-12-11 テルモ株式会社 Medical manipulator
US20090118762A1 (en) 2007-10-31 2009-05-07 Lawrence Crainch Disposable cartridge for use in a gastric volume reduction procedure
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
CA2703953C (en) 2007-10-31 2015-04-28 Cordis Corporation Vascular closure device
US20090112234A1 (en) 2007-10-31 2009-04-30 Lawrence Crainich Reloadable laparoscopic fastener deploying device for use in a gastric volume reduction procedure
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
US7954687B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
JP2009115640A (en) 2007-11-07 2009-05-28 Honda Motor Co Ltd Navigation apparatus
CA2704380A1 (en) 2007-11-08 2009-05-14 Ceapro Inc. Avenanthramide-containing compositions
US8425600B2 (en) 2007-11-14 2013-04-23 G. Patrick Maxwell Interfaced medical implant assembly
US8125168B2 (en) 2007-11-19 2012-02-28 Honeywell International Inc. Motor having controllable torque
US20090131819A1 (en) 2007-11-20 2009-05-21 Ritchie Paul G User Interface On Biopsy Device
CA2705896C (en) 2007-11-21 2019-01-08 Smith & Nephew Plc Wound dressing
HUE049431T2 (en) 2007-11-21 2020-09-28 Smith & Nephew Wound dressing
WO2009067649A2 (en) 2007-11-21 2009-05-28 Ethicon Endo-Surgery, Inc. Bipolar forceps having a cutting element
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
DE102007057033A1 (en) 2007-11-27 2009-05-28 Robert Bosch Gmbh Electrically drivable hand tool machine
US20090143855A1 (en) 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
JP5283209B2 (en) 2007-11-29 2013-09-04 マニー株式会社 Medical staples
JP5377944B2 (en) 2007-11-30 2013-12-25 住友ベークライト株式会社 Gastrostomy sheath, sheathed dilator, gastrostomy sheath with insertion aid, gastrostomy catheter kit
US7772720B2 (en) 2007-12-03 2010-08-10 Spx Corporation Supercapacitor and charger for secondary power
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8338726B2 (en) 2009-08-26 2012-12-25 Covidien Ag Two-stage switch for cordless hand-held ultrasonic cautery cutting device
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8419758B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8435257B2 (en) 2007-12-03 2013-05-07 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US8319002B2 (en) 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
JP5235394B2 (en) 2007-12-06 2013-07-10 株式会社ハーモニック・エイディ Switchable rotary drive
WO2009073815A1 (en) 2007-12-06 2009-06-11 Cpair, Inc. Cpr system with feed back instruction
US8180458B2 (en) 2007-12-17 2012-05-15 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
EP2234547B1 (en) 2007-12-21 2017-10-18 Smith & Nephew, Inc. Surgical drilling aimer
US20090171147A1 (en) 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
TWI348086B (en) 2008-01-02 2011-09-01 Mstar Semiconductor Inc Dc power converter and mode-switching method
US8727199B2 (en) 2008-01-03 2014-05-20 Covidien Lp Surgical stapler
JP5116490B2 (en) 2008-01-08 2013-01-09 株式会社マキタ Motor control device and electric tool using the same
JP5535084B2 (en) 2008-01-10 2014-07-02 コヴィディエン リミテッド パートナーシップ Imaging system for a surgical device
US8647258B2 (en) 2008-01-10 2014-02-11 Covidien Lp Apparatus for endoscopic procedures
US20090181290A1 (en) 2008-01-14 2009-07-16 Travis Baldwin System and Method for an Automated Battery Arrangement
US8031069B2 (en) 2008-01-14 2011-10-04 Oded Yair Cohn Electronic security seal and system
US8490851B2 (en) 2008-01-15 2013-07-23 Covidien Lp Surgical stapling apparatus
WO2009091497A2 (en) 2008-01-16 2009-07-23 John Hyoung Kim Minimally invasive surgical instrument
JP5583601B2 (en) 2008-01-25 2014-09-03 スミス アンド ネフュー ピーエルシー Multi-layer scaffold
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US20090192534A1 (en) 2008-01-29 2009-07-30 Ethicon Endo-Surgery, Inc. Sensor trigger
JP2011510750A (en) 2008-01-29 2011-04-07 クライマン、ギルバート・エイチ Drug delivery device, kit and methods thereof
US8006365B2 (en) 2008-01-30 2011-08-30 Easylap Ltd. Device and method for applying rotary tacks
CN101219648B (en) 2008-01-31 2010-12-08 北京经纬恒润科技有限公司 Car lamp steering driving mechanism
US20100249947A1 (en) 2009-03-27 2010-09-30 Evera Medical, Inc. Porous implant with effective extensibility and methods of forming an implant
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8870867B2 (en) 2008-02-06 2014-10-28 Aesculap Ag Articulable electrosurgical instrument with a stabilizable articulation actuator
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US7905381B2 (en) 2008-09-19 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with cutting member arrangement
US8348129B2 (en) 2009-10-09 2013-01-08 Ethicon Endo-Surgery, Inc. Surgical stapler having a closure mechanism
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
JP5496520B2 (en) 2008-02-14 2014-05-21 エシコン・エンド−サージェリィ・インコーポレイテッド Motorized cutting and fastening device with control circuit to optimize battery use
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US20090206133A1 (en) 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Articulatable loading units for surgical stapling and cutting instruments
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US8047100B2 (en) 2008-02-15 2011-11-01 Black & Decker Inc. Tool assembly having telescoping fastener support
US20090206125A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Packaging for attaching buttress material to a surgical stapling instrument
RU2488359C2 (en) 2008-02-15 2013-07-27 Этикон Эндо-Серджери, Инк. Supporting material with activated binding substance
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US8398673B2 (en) 2008-02-15 2013-03-19 Surgical Innovations V.O.F. Surgical instrument for grasping and cutting tissue
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US20090206137A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Disposable loading units for a surgical cutting and stapling instrument
JP5529047B2 (en) 2008-02-18 2014-06-25 テキサス スコティッシュ ライト ホスピタル フォー チルドレン Tool and method for external fixed support adjustment
JP5377991B2 (en) 2008-02-26 2013-12-25 テルモ株式会社 manipulator
JP2009207260A (en) 2008-02-27 2009-09-10 Denso Corp Motor controller
US8733611B2 (en) 2008-03-12 2014-05-27 Covidien Lp Ratcheting mechanism for surgical stapling device
US8118206B2 (en) 2008-03-15 2012-02-21 Surgisense Corporation Sensing adjunct for surgical staplers
US20090234273A1 (en) 2008-03-17 2009-09-17 Alfred Intoccia Surgical trocar with feedback
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
US8491581B2 (en) 2008-03-19 2013-07-23 Covidien Ag Method for powering a surgical instrument
US8328802B2 (en) 2008-03-19 2012-12-11 Covidien Ag Cordless medical cauterization and cutting device
US8197501B2 (en) 2008-03-20 2012-06-12 Medtronic Xomed, Inc. Control for a powered surgical instrument
JP2009226028A (en) 2008-03-24 2009-10-08 Terumo Corp Manipulator
EP2272235B1 (en) 2008-03-25 2018-05-30 Alcatel Lucent Methods and entities using ipsec esp to support security functionality for udp-based oma enablers
US20090247901A1 (en) 2008-03-25 2009-10-01 Brian Zimmer Latching side removal spacer
US8136713B2 (en) 2008-03-25 2012-03-20 Tyco Healthcare Group Lp Surgical stapling instrument having transducer effecting vibrations
US20090242610A1 (en) 2008-03-26 2009-10-01 Shelton Iv Frederick E Disposable loading unit and surgical instruments including same
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US20090248100A1 (en) 2008-03-28 2009-10-01 Defibtech, Llc System and Method for Conditioning a Lithium Battery in an Automatic External Defibrillator
US8808164B2 (en) 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US20090247368A1 (en) 2008-03-31 2009-10-01 Boson Technology Co., Ltd. Sports health care apparatus with physiological monitoring function
ES2651687T3 (en) 2008-03-31 2018-01-29 Applied Medical Resources Corporation Electrosurgical system with a memory module
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
US9895813B2 (en) 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
JP2009240605A (en) 2008-03-31 2009-10-22 Gc Corp Cell engineering support and its manufacturing method
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US8534527B2 (en) 2008-04-03 2013-09-17 Black & Decker Inc. Cordless framing nailer
JP5301867B2 (en) 2008-04-07 2013-09-25 オリンパスメディカルシステムズ株式会社 Medical manipulator system
JP5145103B2 (en) 2008-04-08 2013-02-13 ローム株式会社 Inverter, control circuit thereof, control method, and liquid crystal display device using the same
DE102008018158A1 (en) 2008-04-10 2009-10-15 Aesculap Ag Ligature clip magazine and bearing body for use in this
US8231040B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US8100310B2 (en) 2008-04-14 2012-01-24 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US7926691B2 (en) 2008-04-14 2011-04-19 Tyco Healthcare Group, L.P. Variable compression surgical fastener cartridge
US20090255974A1 (en) 2008-04-14 2009-10-15 Tyco Healthcare Group Lp Single loop surgical fastener apparatus for applying variable compression
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US20090261141A1 (en) 2008-04-18 2009-10-22 Stratton Lawrence D Ergonomic stapler and method for setting staples
US8021375B2 (en) 2008-04-21 2011-09-20 Conmed Corporation Surgical clip applicator
US20090262078A1 (en) 2008-04-21 2009-10-22 David Pizzi Cellular phone with special sensor functions
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8028884B2 (en) 2008-04-22 2011-10-04 Tyco Healthcare Group Lp Cartridge for applying varying amounts of tissue compression
EP2271275B1 (en) 2008-05-05 2012-06-27 Stryker Corporation Powered surgical tool with a memory, conductors over which power and memory interrogation signals are applied to the tool and an isolation circuit that prevents the power signals from adversely affecting the memory
US7997468B2 (en) 2008-05-05 2011-08-16 Tyco Healthcare Group Lp Surgical instrument with clamp
CA2665017A1 (en) 2008-05-05 2009-11-05 Tyco Healthcare Group Lp Surgical instrument with sequential clamping and cutting
DE102008001664B4 (en) 2008-05-08 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medical robot and method for meeting the performance requirement of a medical robot
US8967446B2 (en) 2008-05-09 2015-03-03 Covidien Lp Variable compression surgical fastener cartridge
EP2116272B1 (en) 2008-05-09 2013-04-03 Greatbatch Ltd. Bi-directional sheath deflection mechanism
US8464922B2 (en) 2008-05-09 2013-06-18 Covidien Lp Variable compression surgical fastener cartridge
US9016541B2 (en) 2008-05-09 2015-04-28 Covidien Lp Varying tissue compression with an anvil configuration
US8795308B2 (en) 2008-05-09 2014-08-05 Elmer Valin Laparoscopic gastric and intestinal trocar
US8186556B2 (en) 2008-05-09 2012-05-29 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US8091756B2 (en) 2008-05-09 2012-01-10 Tyco Healthcare Group Lp Varying tissue compression using take-up component
JP5145113B2 (en) 2008-05-09 2013-02-13 Hoya株式会社 Endoscope operation part
US8409079B2 (en) 2008-05-14 2013-04-02 Olympus Medical Systems Corp. Electric bending operation device and medical treatment system including electric bending operation device
US8273404B2 (en) 2008-05-19 2012-09-25 Cordis Corporation Extraction of solvents from drug containing polymer reservoirs
US20090290016A1 (en) 2008-05-20 2009-11-26 Hoya Corporation Endoscope system
DE112009001239T5 (en) 2008-05-21 2011-04-07 Cook Biotech, Inc., West Lafayette Apparatus and methods for attaching reinforcing materials to surgical fasteners
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US8179705B2 (en) 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
WO2009154976A2 (en) 2008-05-27 2009-12-23 Maquet Cardiovascular Llc Surgical instrument and method
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
RU2498998C2 (en) 2008-05-30 2013-11-20 ИксБиотеч, Инк. ANTIBODIES TO INTERLEUKIN-1α, AND ITS APPLICATION METHODS
US8016176B2 (en) 2008-06-04 2011-09-13 Tyco Healthcare Group, Lp Surgical stapling instrument with independent sequential firing
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US20090306639A1 (en) 2008-06-06 2009-12-10 Galil Medical Ltd. Cryoprobe incorporating electronic module, and system utilizing same
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
WO2009151064A1 (en) 2008-06-10 2009-12-17 株式会社マキタ Circular saw
JP5512663B2 (en) 2008-06-12 2014-06-04 エシコン・エンド−サージェリィ・インコーポレイテッド Partially reusable surgical stapler
US8267951B2 (en) 2008-06-12 2012-09-18 Ncontact Surgical, Inc. Dissecting cannula and methods of use thereof
US8007513B2 (en) 2008-06-12 2011-08-30 Ethicon Endo-Surgery, Inc. Partially reusable surgical stapler
US20110091515A1 (en) 2008-06-12 2011-04-21 Ramot At Tel-Aviv University Ltd. Drug-eluting medical devices
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US9396669B2 (en) 2008-06-16 2016-07-19 Microsoft Technology Licensing, Llc Surgical procedure capture, modelling, and editing interactive playback
US20140100558A1 (en) 2012-10-05 2014-04-10 Gregory P. Schmitz Micro-articulated surgical instruments using micro gear actuation
US7543730B1 (en) 2008-06-24 2009-06-09 Tyco Healthcare Group Lp Segmented drive member for surgical instruments
DE102008002641A1 (en) 2008-06-25 2009-12-31 Biotronik Vi Patent Ag Fiber strand and implantable support body with a fiber strand
US8414469B2 (en) 2008-06-27 2013-04-09 Intuitive Surgical Operations, Inc. Medical robotic system having entry guide controller with instrument tip velocity limiting
US8011551B2 (en) 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus
US20100005035A1 (en) 2008-07-02 2010-01-07 Cake Financial Corporation Systems and Methods for a Cross-Linked Investment Trading Platform
DE102008040061A1 (en) 2008-07-02 2010-01-07 Robert Bosch Gmbh Power tool
AU2009268582B2 (en) 2008-07-08 2014-08-07 Covidien Lp Surgical attachment for use with a robotic surgical system
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US8834465B2 (en) 2008-07-15 2014-09-16 Immersion Corporation Modular tool with signal feedback
US8487487B2 (en) 2008-07-15 2013-07-16 Ethicon Endo-Surgery, Inc. Magnetostrictive actuator of a medical ultrasound transducer assembly, and a medical ultrasound handpiece and a medical ultrasound system having such actuator
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US9186221B2 (en) 2008-07-16 2015-11-17 Intuitive Surgical Operations Inc. Backend mechanism for four-cable wrist
US8074858B2 (en) 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
WO2010011661A1 (en) 2008-07-21 2010-01-28 Atricure, Inc. Apparatus and methods for occluding an anatomical structure
WO2010009536A1 (en) 2008-07-21 2010-01-28 Kirk Schroeder Portable power supply device
US20100022824A1 (en) 2008-07-22 2010-01-28 Cybulski James S Tissue modification devices and methods of using the same
US20110088921A1 (en) 2008-07-25 2011-04-21 Sylvain Forgues Pneumatic hand tool rotational speed control method and portable apparatus
US20100023024A1 (en) 2008-07-25 2010-01-28 Zeiner Mark S Reloadable laparoscopic fastener deploying device with disposable cartridge for use in a gastric volume reduction procedure
US9061392B2 (en) 2008-07-25 2015-06-23 Sylvain Forgues Controlled electro-pneumatic power tools and interactive consumable
US8317437B2 (en) 2008-08-01 2012-11-27 The Boeing Company Adaptive positive feed drilling system
US8968355B2 (en) 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8801752B2 (en) 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US8109426B2 (en) 2008-08-12 2012-02-07 Tyco Healthcare Group Lp Surgical tilt anvil assembly
US8413661B2 (en) 2008-08-14 2013-04-09 Ethicon, Inc. Methods and devices for treatment of obstructive sleep apnea
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8465475B2 (en) 2008-08-18 2013-06-18 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
US7954688B2 (en) 2008-08-22 2011-06-07 Medtronic, Inc. Endovascular stapling apparatus and methods of use
US8532747B2 (en) 2008-08-22 2013-09-10 Devicor Medical Products, Inc. Biopsy marker delivery device
WO2010022329A1 (en) 2008-08-22 2010-02-25 Zevex, Inc. Removable adapter for phacoemulsification handpiece having irrigation and aspiration fluid paths
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
JP2010054718A (en) 2008-08-27 2010-03-11 Sony Corp Display device
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8834353B2 (en) 2008-09-02 2014-09-16 Olympus Medical Systems Corp. Medical manipulator, treatment system, and treatment method
US20100057118A1 (en) 2008-09-03 2010-03-04 Dietz Timothy G Ultrasonic surgical blade
US8113405B2 (en) 2008-09-03 2012-02-14 Tyco Healthcare Group, Lp Surgical instrument with indicator
US20100051668A1 (en) 2008-09-03 2010-03-04 Milliman Keith L Surgical instrument with indicator
US20120125792A1 (en) 2008-09-08 2012-05-24 Mayo Foundation For Medical Education And Research Devices, kits and methods for surgical fastening
WO2010028701A1 (en) 2008-09-09 2010-03-18 , Olympus Winter & Ibe Gmbh Laparoscope having adjustable shaft
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
CN101669833A (en) 2008-09-11 2010-03-17 苏州天臣国际医疗科技有限公司 Automatic purse-string device
US8047236B2 (en) 2008-09-12 2011-11-01 Boston Scientific Scimed, Inc. Flexible conduit with locking element
EP2361042B1 (en) 2008-09-12 2016-11-30 Ethicon Endo-Surgery, Inc. Ultrasonic device for fingertip control
EP2163209A1 (en) 2008-09-15 2010-03-17 Zhiqiang Weng Lockout mechanism for a surgical stapler
US7837080B2 (en) 2008-09-18 2010-11-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with device for indicating when the instrument has cut through tissue
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US8290883B2 (en) 2008-09-18 2012-10-16 Honda Motor Co., Ltd. Learning system and learning method comprising an event list database
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
BRPI0903919B8 (en) 2008-09-19 2021-06-22 Ethicon Endo Surgery Inc staple cartridge and surgical stapler
BRPI0904975B1 (en) 2008-09-19 2019-09-10 Ethicon Endo Surgery Inc surgical stapler
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US8360298B2 (en) 2008-09-23 2013-01-29 Covidien Lp Surgical instrument and loading unit for use therewith
US8628544B2 (en) 2008-09-23 2014-01-14 Covidien Lp Knife bar for surgical instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
JP2010075242A (en) 2008-09-24 2010-04-08 Terumo Corp Medical manipulator
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
JP5475262B2 (en) 2008-10-01 2014-04-16 テルモ株式会社 Medical manipulator
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8808308B2 (en) 2008-10-13 2014-08-19 Alcon Research, Ltd. Automated intraocular lens injector device
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US20100094340A1 (en) 2008-10-15 2010-04-15 Tyco Healthcare Group Lp Coating compositions
US8287487B2 (en) 2008-10-15 2012-10-16 Asante Solutions, Inc. Infusion pump system and methods
US7918377B2 (en) 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
JP2010098844A (en) 2008-10-16 2010-04-30 Toyota Motor Corp Power supply system of vehicle
US9889230B2 (en) 2008-10-17 2018-02-13 Covidien Lp Hemostatic implant
US20100100123A1 (en) 2008-10-17 2010-04-22 Confluent Surgical, Inc. Hemostatic implant
US8063619B2 (en) 2008-10-20 2011-11-22 Dell Products L.P. System and method for powering an information handling system in multiple power states
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9370341B2 (en) 2008-10-23 2016-06-21 Covidien Lp Surgical retrieval apparatus
CN101721236A (en) 2008-10-29 2010-06-09 苏州天臣国际医疗科技有限公司 Surgical cutting and binding apparatus
US8561617B2 (en) 2008-10-30 2013-10-22 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
KR101075363B1 (en) 2008-10-31 2011-10-19 정창욱 Surgical Robot System Having Tool for Minimally Invasive Surgery
WO2010049540A1 (en) 2008-10-31 2010-05-06 Dsm Ip Assets B.V. Improved composition for making a dairy product
US8231042B2 (en) 2008-11-06 2012-07-31 Tyco Healthcare Group Lp Surgical stapler
EP2346541A2 (en) 2008-11-07 2011-07-27 Sofradim Production Medical implant including a 3d mesh of oxidized cellulose and a collagen sponge
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
WO2010057018A2 (en) 2008-11-14 2010-05-20 Cole Isolation Technique, Llc Follicular dissection device and method
US8657821B2 (en) 2008-11-14 2014-02-25 Revascular Therapeutics Inc. Method and system for reversibly controlled drilling of luminal occlusions
TWI414713B (en) 2008-11-24 2013-11-11 Everlight Electronics Co Ltd Led lamp device manufacturing method
US7886951B2 (en) 2008-11-24 2011-02-15 Tyco Healthcare Group Lp Pouch used to deliver medication when ruptured
US8539866B2 (en) 2008-12-01 2013-09-24 Castrax, L.L.C. Method and apparatus to remove cast from an individual
USD600712S1 (en) 2008-12-02 2009-09-22 Microsoft Corporation Icon for a display screen
GB0822110D0 (en) 2008-12-03 2009-01-07 Angiomed Ag Catheter sheath for implant delivery
GB2466180B (en) 2008-12-05 2013-07-10 Surgical Innovations Ltd Surgical instrument, handle for a surgical instrument and surgical instrument system
US8348837B2 (en) 2008-12-09 2013-01-08 Covidien Lp Anoscope
US8034363B2 (en) 2008-12-11 2011-10-11 Advanced Technologies And Regenerative Medicine, Llc. Sustained release systems of ascorbic acid phosphate
USD607010S1 (en) 2008-12-12 2009-12-29 Microsoft Corporation Icon for a portion of a display screen
US20100331856A1 (en) 2008-12-12 2010-12-30 Hansen Medical Inc. Multiple flexible and steerable elongate instruments for minimally invasive operations
US8060250B2 (en) 2008-12-15 2011-11-15 GM Global Technology Operations LLC Joint-space impedance control for tendon-driven manipulators
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US8245594B2 (en) 2008-12-23 2012-08-21 Intuitive Surgical Operations, Inc. Roll joint and method for a surgical apparatus
US8770460B2 (en) 2008-12-23 2014-07-08 George E. Belzer Shield for surgical stapler and method of use
US8374723B2 (en) 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
US8632539B2 (en) 2009-01-14 2014-01-21 Covidien Lp Vessel sealer and divider
US8281974B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare, Group LP Surgical stapler with suture locator
WO2010083110A1 (en) 2009-01-16 2010-07-22 Rhaphis Medical, Inc. Surgical suturing latch
US20100180711A1 (en) 2009-01-19 2010-07-22 Comau, Inc. Robotic end effector system and method
US20120330329A1 (en) 2011-06-21 2012-12-27 Harris Jason L Methods of forming a laparoscopic greater curvature plication using a surgical stapler
US8833219B2 (en) 2009-01-26 2014-09-16 Illinois Tool Works Inc. Wire saw
US9713468B2 (en) 2009-01-26 2017-07-25 Ethicon Endo-Surgery, Inc. Surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold
US20100191262A1 (en) 2009-01-26 2010-07-29 Harris Jason L Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US8228048B2 (en) 2009-01-30 2012-07-24 Hewlett-Packard Development Company, L.P. Method and system of regulating voltages
US8037591B2 (en) 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8523900B2 (en) 2009-02-03 2013-09-03 Terumo Kabushiki Kaisha Medical manipulator
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US20120007442A1 (en) 2009-02-06 2012-01-12 Mark Rhodes Rotary data and power transfer system
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
JP2012517287A (en) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド Improvement of driven surgical stapler
US8245899B2 (en) 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
US20110024478A1 (en) 2009-02-06 2011-02-03 Shelton Iv Frederick E Driven Surgical Stapler Improvements
US8453913B2 (en) * 2009-02-06 2013-06-04 Covidien Lp Anvil for surgical stapler
CN102316823B (en) 2009-02-11 2016-06-08 新加坡南洋理工大学 Multi-layered surgical prosthesis
USD622286S1 (en) 2009-02-11 2010-08-24 Ricoh Company, Ltd. Portion of liquid crystal panel with icon image
WO2010093955A1 (en) 2009-02-12 2010-08-19 Osteotech,Inc. Segmented delivery system
US8708211B2 (en) 2009-02-12 2014-04-29 Covidien Lp Powered surgical instrument with secondary circuit board
US20100204717A1 (en) 2009-02-12 2010-08-12 Cardica, Inc. Surgical Device for Multiple Clip Application
US20100298636A1 (en) 2009-02-19 2010-11-25 Salvatore Castro Flexible rigidizing instruments
US8349987B2 (en) 2009-02-19 2013-01-08 Covidien Lp Adhesive formulations
JP2010193994A (en) 2009-02-24 2010-09-09 Fujifilm Corp Clip package, multiple clip system, and mechanism for preventing mismatch of the multiple clip system
WO2010098871A2 (en) 2009-02-26 2010-09-02 Amir Belson Improved apparatus and methods for hybrid endoscopic and laparoscopic surgery
US8393516B2 (en) 2009-02-26 2013-03-12 Covidien Lp Surgical stapling apparatus with curved cartridge and anvil assemblies
US9030169B2 (en) 2009-03-03 2015-05-12 Robert Bosch Gmbh Battery system and method for system state of charge determination
JP5431749B2 (en) 2009-03-04 2014-03-05 テルモ株式会社 Medical manipulator
US20100228250A1 (en) 2009-03-05 2010-09-09 Intuitive Surgical Operations, Inc. Cut and seal instrument
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8356740B1 (en) 2009-03-09 2013-01-22 Cardica, Inc. Controlling compression applied to tissue by surgical tool
US8317071B1 (en) 2009-03-09 2012-11-27 Cardica, Inc. Endocutter with auto-feed buttress
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US7918376B1 (en) 2009-03-09 2011-04-05 Cardica, Inc. Articulated surgical instrument
US8397973B1 (en) 2009-03-09 2013-03-19 Cardica, Inc. Wide handle for true multi-fire surgical stapler
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8007370B2 (en) 2009-03-10 2011-08-30 Cobra Golf, Inc. Metal injection molded putter
JP5177683B2 (en) 2009-03-12 2013-04-03 株式会社リコー Image reading apparatus and copying machine
JP4875117B2 (en) 2009-03-13 2012-02-15 株式会社東芝 Image processing device
DE102009013034B4 (en) 2009-03-16 2015-11-19 Olympus Winter & Ibe Gmbh Autoclavable charging device for an energy store of a surgical instrument and method for charging a rechargeable energy store in an autoclaved surgical instrument or for an autoclaved surgical instrument
US8366719B2 (en) 2009-03-18 2013-02-05 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
JP5292155B2 (en) 2009-03-27 2013-09-18 Tdkラムダ株式会社 Power supply control device, power supply device, and power supply control method
US20100249497A1 (en) 2009-03-30 2010-09-30 Peine William J Surgical instrument
US8092443B2 (en) 2009-03-30 2012-01-10 Medtronic, Inc. Element for implantation with medical device
US8110208B1 (en) 2009-03-30 2012-02-07 Biolife, L.L.C. Hemostatic compositions for arresting blood flow from an open wound or surgical site
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8226553B2 (en) 2009-03-31 2012-07-24 Ethicon Endo-Surgery, Inc. Access device with insert
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
JP2010239817A (en) 2009-03-31 2010-10-21 Brother Ind Ltd Information display device
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US9277969B2 (en) 2009-04-01 2016-03-08 Covidien Lp Microwave ablation system with user-controlled ablation size and method of use
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
KR101132659B1 (en) 2009-04-02 2012-04-02 한국과학기술원 A Laparoscopic Surgical Instrument with 4 Degree of Freedom
BRPI1013655A8 (en) 2009-04-03 2018-10-09 Univ Leland Stanford Junior device and surgical method
US9050176B2 (en) 2009-04-03 2015-06-09 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
WO2010114635A2 (en) 2009-04-03 2010-10-07 Romans Matthew L Absorbable surgical staple
WO2010114633A1 (en) 2009-04-03 2010-10-07 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
US8257251B2 (en) 2009-04-08 2012-09-04 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8419635B2 (en) 2009-04-08 2013-04-16 Ethicon Endo-Surgery, Inc. Surgical access device having removable and replaceable components
US8444549B2 (en) 2009-04-16 2013-05-21 Covidien Lp Self-steering endoscopic device
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US8377052B2 (en) 2009-04-17 2013-02-19 Domain Surgical, Inc. Surgical tool with inductively heated regions
US20100274160A1 (en) 2009-04-22 2010-10-28 Chie Yachi Switching structure and surgical equipment
US8922163B2 (en) 2009-04-24 2014-12-30 Murray MacDonald Automated battery and data delivery system
AU2010241740B9 (en) 2009-04-27 2015-10-01 Intersect Ent, Inc. Devices and methods for treating pain associated with tonsillectomies
WO2010126129A1 (en) 2009-04-30 2010-11-04 テルモ株式会社 Medical manipulator
US9192430B2 (en) 2009-05-01 2015-11-24 Covidien Lp Electrosurgical instrument with time limit circuit
US8631992B1 (en) 2009-05-03 2014-01-21 Cardica, Inc. Feeder belt with padded staples for true multi-fire surgical stapler
US9038881B1 (en) 2009-05-05 2015-05-26 Cardica, Inc. Feeder belt actuation mechanism for true multi-fire surgical stapler
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
US8365975B1 (en) 2009-05-05 2013-02-05 Cardica, Inc. Cam-controlled knife for surgical instrument
US8328064B2 (en) 2009-05-06 2012-12-11 Covidien Lp Pin locking mechanism for a surgical instrument
US8523881B2 (en) 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8324585B2 (en) 2009-05-11 2012-12-04 General Electric Company Digital image detector
US20100292540A1 (en) 2009-05-12 2010-11-18 Hess Christopher J Surgical retractor and method
US8728099B2 (en) 2009-05-12 2014-05-20 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
JP5428515B2 (en) 2009-05-15 2014-02-26 マックス株式会社 Electric stapler and motor driving method of electric stapler
US9023069B2 (en) 2009-05-18 2015-05-05 Covidien Lp Attachable clamp for use with surgical instruments
US8308043B2 (en) 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
WO2010134913A1 (en) 2009-05-20 2010-11-25 California Institute Of Technology Endoscope and system and method of operation thereof
WO2010138538A1 (en) 2009-05-26 2010-12-02 Zimmer, Inc. Handheld tool for driving a bone pin into a fractured bone
US9004339B1 (en) 2009-05-26 2015-04-14 Cardica, Inc. Cartridgizable feeder belt for surgical stapler
US8070034B1 (en) 2009-05-29 2011-12-06 Cardica, Inc. Surgical stapler with angled staple bays
US8418909B2 (en) 2009-06-02 2013-04-16 Covidien Lp Surgical instrument and method for performing a resection
US9383881B2 (en) 2009-06-03 2016-07-05 Synaptics Incorporated Input device and method with pressure-sensitive layer
US8056789B1 (en) 2009-06-03 2011-11-15 Cardica, Inc. Staple and feeder belt configurations for surgical stapler
US9086875B2 (en) 2009-06-05 2015-07-21 Qualcomm Incorporated Controlling power consumption of a mobile device based on gesture recognition
US20100310623A1 (en) 2009-06-05 2010-12-09 Laurencin Cato T Synergetic functionalized spiral-in-tubular bone scaffolds
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US8821514B2 (en) 2009-06-08 2014-09-02 Covidien Lp Powered tack applier
CH701320B1 (en) 2009-06-16 2013-10-15 Frii S A A device for resection treatments / endoscopic tissue removal.
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8701960B1 (en) 2009-06-22 2014-04-22 Cardica, Inc. Surgical stapler with reduced clamp gap for insertion
US8087562B1 (en) 2009-06-22 2012-01-03 Cardica, Inc. Anvil for surgical instrument
USD604325S1 (en) 2009-06-26 2009-11-17 Microsoft Corporation Animated image for a portion of a display screen
US8784404B2 (en) 2009-06-29 2014-07-22 Carefusion 2200, Inc. Flexible wrist-type element and methods of manufacture and use thereof
US9463260B2 (en) 2009-06-29 2016-10-11 Covidien Lp Self-sealing compositions
EP2275902A3 (en) 2009-07-03 2014-07-09 Nikon Corporation Electronic device and method controlling electronic power supply
KR101180665B1 (en) 2009-07-03 2012-09-07 주식회사 이턴 Hybrid surgical robot system and control method thereof
CN101940844A (en) 2009-07-03 2011-01-12 林翠琼 Analog dog tail oscillator
EP2451367B1 (en) 2009-07-08 2020-01-22 Edge Systems Corporation Devices for treating the skin using time-release substances
US8146790B2 (en) 2009-07-11 2012-04-03 Tyco Healthcare Group Lp Surgical instrument with safety mechanism
US8276802B2 (en) 2009-07-11 2012-10-02 Tyco Healthcare Group Lp Surgical instrument with double cartridge and anvil assemblies
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
IN2012DN00339A (en) 2009-07-15 2015-08-21 Ethicon Endo Surgery Inc
US20110011916A1 (en) 2009-07-16 2011-01-20 New York University Anastomosis device
USD606992S1 (en) 2009-07-21 2009-12-29 Micro-Star Int'l Co., Ltd. Laptop computer
US8328062B2 (en) 2009-07-21 2012-12-11 Covidien Lp Surgical instrument with curvilinear tissue-contacting surfaces
US8143520B2 (en) 2009-07-22 2012-03-27 Paul Cutler Universal wall plate thermometer
US8205779B2 (en) 2009-07-23 2012-06-26 Tyco Healthcare Group Lp Surgical stapler with tactile feedback system
US20110021871A1 (en) 2009-07-27 2011-01-27 Gerry Berkelaar Laparoscopic surgical instrument
CA2755763A1 (en) 2009-07-29 2011-02-03 Hitachi Koki Co., Ltd. Impact tool
JP5440766B2 (en) 2009-07-29 2014-03-12 日立工機株式会社 Impact tools
US20110025311A1 (en) 2009-07-29 2011-02-03 Logitech Europe S.A. Magnetic rotary system for input devices
FR2948594B1 (en) 2009-07-31 2012-07-20 Dexterite Surgical ERGONOMIC AND SEMI-AUTOMATIC MANIPULATOR AND INSTRUMENT APPLICATIONS FOR MINI-INVASIVE SURGERY
EP2281506B1 (en) 2009-08-03 2013-01-16 Fico Mirrors, S.A. Method and system for determining an individual's state of attention
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8172004B2 (en) 2009-08-05 2012-05-08 Techtronic Power Tools Technology Limited Automatic transmission for a power tool
US10383629B2 (en) 2009-08-10 2019-08-20 Covidien Lp System and method for preventing reprocessing of a powered surgical instrument
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
DE202009011312U1 (en) 2009-08-11 2010-12-23 C. & E. Fein Gmbh Hand tool with an oscillation drive
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
US20110036891A1 (en) 2009-08-11 2011-02-17 Tyco Healthcare Group Lp Surgical stapler with visual positional indicator
US8459524B2 (en) 2009-08-14 2013-06-11 Covidien Lp Tissue fastening system for a medical device
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US20110046667A1 (en) 2009-08-17 2011-02-24 Patrick John Culligan Apparatus for housing a plurality of needles and method of use therefor
US9271718B2 (en) 2009-08-18 2016-03-01 Karl Storz Gmbh & Co. Kg Suturing and ligating method
US9265500B2 (en) 2009-08-19 2016-02-23 Covidien Lp Surgical staple
US8387848B2 (en) 2009-08-20 2013-03-05 Covidien Lp Surgical staple
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
JP2011079510A (en) 2009-09-10 2011-04-21 Makita Corp Electric vehicle
US8258745B2 (en) 2009-09-10 2012-09-04 Syntheon, Llc Surgical sterilizer with integrated battery charging device
TWI394362B (en) 2009-09-11 2013-04-21 Anpec Electronics Corp Method of driving dc motor and related circuit for avoiding reverse current
US20110066156A1 (en) 2009-09-14 2011-03-17 Warsaw Orthopedic, Inc. Surgical Tool
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
US9168144B2 (en) 2009-09-14 2015-10-27 Evgeny Rivin Prosthesis for replacement of cartilage
DE102009041329A1 (en) 2009-09-15 2011-03-24 Celon Ag Medical Instruments Combined Ultrasonic and HF Surgical System
DE102009042411A1 (en) 2009-09-21 2011-03-31 Richard Wolf Gmbh Medical instrument
CN102549473B (en) 2009-09-29 2015-04-22 奥林巴斯株式会社 Endoscope system
JP2011072574A (en) 2009-09-30 2011-04-14 Terumo Corp Medical manipulator
WO2011041488A2 (en) 2009-09-30 2011-04-07 Mayo Foundation For Medical Education And Research Tissue capture and occlusion systems and methods
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US8470355B2 (en) 2009-10-01 2013-06-25 Covidien Lp Mesh implant
US8970507B2 (en) 2009-10-02 2015-03-03 Blackberry Limited Method of waking up and a portable electronic device configured to perform the same
US8257634B2 (en) 2009-10-06 2012-09-04 Tyco Healthcare Group Lp Actuation sled having a curved guide member and method
US8236011B2 (en) 2009-10-06 2012-08-07 Ethicon Endo-Surgery, Inc. Method for deploying fasteners for use in a gastric volume reduction procedure
US8430892B2 (en) 2009-10-06 2013-04-30 Covidien Lp Surgical clip applier having a wireless clip counter
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US8496154B2 (en) 2009-10-08 2013-07-30 Covidien Lp Pair of double staple pusher in triple row stapler
US10194904B2 (en) 2009-10-08 2019-02-05 Covidien Lp Surgical staple and method of use
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
EP2679175A1 (en) 2009-10-09 2014-01-01 Ethicon Endo-Surgery, Inc. Surgical instrument
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US9060776B2 (en) 2009-10-09 2015-06-23 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US8152041B2 (en) 2009-10-14 2012-04-10 Tyco Healthcare Group Lp Varying tissue compression aided by elastic members
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US8523042B2 (en) 2009-10-21 2013-09-03 The General Hospital Corporation Apparatus and method for preserving a tissue margin
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US20110095064A1 (en) 2009-10-22 2011-04-28 Taylor Walter J Fuel level monitoring system for combustion-powered tools
US8322590B2 (en) 2009-10-28 2012-12-04 Covidien Lp Surgical stapling instrument
US8413872B2 (en) 2009-10-28 2013-04-09 Covidien Lp Surgical fastening apparatus
US8430292B2 (en) 2009-10-28 2013-04-30 Covidien Lp Surgical fastening apparatus
JPWO2011052391A1 (en) 2009-10-28 2013-03-21 オリンパスメディカルシステムズ株式会社 Medical device
EP2394593B1 (en) 2009-10-28 2014-02-12 Olympus Medical Systems Corp. High-frequency surgery device
KR20120101021A (en) 2009-10-29 2012-09-12 프로시다이안 인코포레이티드 Bone graft material
US8657175B2 (en) 2009-10-29 2014-02-25 Medigus Ltd. Medical device comprising alignment systems for bringing two portions into alignment
US8398633B2 (en) 2009-10-30 2013-03-19 Covidien Lp Jaw roll joint
US8225979B2 (en) 2009-10-30 2012-07-24 Tyco Healthcare Group Lp Locking shipping wedge
US8357161B2 (en) 2009-10-30 2013-01-22 Covidien Lp Coaxial drive
US20120220990A1 (en) 2009-11-04 2012-08-30 Koninklijke Philips Electronics N.V. Disposable tip with sheath
US8418907B2 (en) 2009-11-05 2013-04-16 Covidien Lp Surgical stapler having cartridge with adjustable cam mechanism
US20110112517A1 (en) 2009-11-06 2011-05-12 Peine Willliam J Surgical instrument
US20110112530A1 (en) 2009-11-06 2011-05-12 Keller Craig A Battery Powered Electrosurgery
US8162138B2 (en) 2009-11-09 2012-04-24 Containmed, Inc. Universal surgical fastener sterilization caddy
US8186558B2 (en) 2009-11-10 2012-05-29 Tyco Healthcare Group Lp Locking mechanism for use with loading units
EP3381397B1 (en) 2009-11-13 2020-01-08 Intuitive Surgical Operations Inc. Motor interface for parallel drive shafts within an independently rotating member
BR112012011424B1 (en) 2009-11-13 2020-10-20 Intuitive Surgical Operations, Inc surgical instrument
EP4059460A1 (en) 2009-11-13 2022-09-21 Intuitive Surgical Operations, Inc. Surgical tool with a compact wrist
US9259275B2 (en) 2009-11-13 2016-02-16 Intuitive Surgical Operations, Inc. Wrist articulation by linked tension members
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8235272B2 (en) 2009-11-20 2012-08-07 Tyco Healthcare Group Lp Surgical stapling device with captive anvil
JP5073733B2 (en) 2009-11-30 2012-11-14 シャープ株式会社 Storage battery forced discharge mechanism and safety switch device
JP5211022B2 (en) 2009-11-30 2013-06-12 株式会社日立製作所 Lithium ion secondary battery
US8167622B2 (en) 2009-12-02 2012-05-01 Mig Technology Inc. Power plug with a freely rotatable delivery point
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
FR2953752B1 (en) 2009-12-11 2012-01-20 Prospection & Inventions INTERNAL COMBUSTION ENGINE FIXING TOOL WITH SINGLE CHAMBER OPENING AND CLOSING
GB2476461A (en) 2009-12-22 2011-06-29 Neosurgical Ltd Laparoscopic surgical device with jaws biased closed
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
US8714430B2 (en) 2009-12-31 2014-05-06 Covidien Lp Indicator for surgical stapler
US8261958B1 (en) 2010-01-06 2012-09-11 Cardica, Inc. Stapler cartridge with staples frangibly affixed thereto
GB2490447A (en) 2010-01-07 2012-10-31 Black & Decker Inc Power screwdriver having rotary input control
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
US8313509B2 (en) 2010-01-19 2012-11-20 Covidien Lp Suture and retainer assembly and SULU
EP2525740A4 (en) 2010-01-21 2016-01-20 Orthalign Inc Systems and methods for joint replacement
US8469254B2 (en) 2010-01-22 2013-06-25 Covidien Lp Surgical instrument having a drive assembly
US10911515B2 (en) 2012-05-24 2021-02-02 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
EP2526883A4 (en) 2010-01-22 2017-07-12 Olympus Corporation Treatment tool, treatment device, and treatment method
ES2662543T3 (en) 2010-01-26 2018-04-06 Artack Medical (2013) Ltd. Articulated medical instrument
US8322901B2 (en) 2010-01-28 2012-12-04 Michelotti William M Illuminated vehicle wheel with bearing seal slip ring assembly
US9510925B2 (en) 2010-02-02 2016-12-06 Covidien Lp Surgical meshes
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
US8911426B2 (en) 2010-02-08 2014-12-16 On Demand Therapeutics, Inc. Low-permeability, laser-activated drug delivery device
JP5432761B2 (en) 2010-02-12 2014-03-05 株式会社マキタ Electric tool powered by multiple battery packs
US20110199225A1 (en) 2010-02-15 2011-08-18 Honeywell International Inc. Use of token switch to indicate unauthorized manipulation of a protected device
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
CN101779977B (en) 2010-02-25 2011-12-14 上海创亿医疗器械技术有限公司 Nail bin for surgical linear cut stapler
US8403832B2 (en) 2010-02-26 2013-03-26 Covidien Lp Drive mechanism for articulation of a surgical instrument
EP2538841A2 (en) 2010-02-26 2013-01-02 Myskin, Inc. Analytic methods of tissue evaluation
US20110218400A1 (en) 2010-03-05 2011-09-08 Tyco Healthcare Group Lp Surgical instrument with integrated wireless camera
US20110218550A1 (en) 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
AU2011200961B2 (en) 2010-03-12 2014-05-29 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
EP2548529B1 (en) 2010-03-15 2018-10-24 Karl Storz SE & Co. KG Medical manipulator
US8575880B2 (en) 2010-03-17 2013-11-05 Alan Lyndon Grantz Direct current motor with independently driven and switchable stators
US8288984B2 (en) 2010-03-17 2012-10-16 Tai-Her Yang DC brushless motor drive circuit with speed variable-voltage
US20110172495A1 (en) 2010-03-26 2011-07-14 Armstrong David N Surgical retractor
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
DE102010013150A1 (en) 2010-03-27 2011-09-29 Volkswagen Ag Device for thermal insulation of e.g. lead acid battery utilized in engine component of hybrid car, has battery arranged at distance from inner surfaces of base part, side panel and upper part of housing
WO2011122516A1 (en) 2010-03-30 2011-10-06 テルモ株式会社 Medical manipulator system
US20110241597A1 (en) 2010-03-30 2011-10-06 Lin Engineering H-bridge drive circuit for step motor control
US8894654B2 (en) 2010-03-31 2014-11-25 Smart Medical Devices, Inc. Depth controllable and measurable medical driver devices and methods of use
US8074859B2 (en) 2010-03-31 2011-12-13 Tyco Healthcare Group Lp Surgical instrument
CN201719298U (en) 2010-04-01 2011-01-26 江苏瑞安贝医疗器械有限公司 Free handle anti-dropping mechanism for straight line cutting anastomat
USD667018S1 (en) 2010-04-02 2012-09-11 Kewaunee Scientific Corporation Display screen of a biological safety cabinet with graphical user interface
US20120265220A1 (en) 2010-04-06 2012-10-18 Pavel Menn Articulating Steerable Clip Applier for Laparoscopic Procedures
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US9722334B2 (en) 2010-04-07 2017-08-01 Black & Decker Inc. Power tool with light unit
US8662370B2 (en) 2010-04-08 2014-03-04 Hidehisa Thomas Takei Introducer system and assembly for surgical staplers
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
EP2377477B1 (en) 2010-04-14 2012-05-30 Tuebingen Scientific Medical GmbH Surgical instrument with elastically moveable instrument head
US8734831B2 (en) 2010-04-16 2014-05-27 Snu R&Db Foundation Method for manufacturing a porous ceramic scaffold having an organic/inorganic hybrid coating layer containing a bioactive factor
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
WO2011139916A2 (en) 2010-04-29 2011-11-10 Angiotech Pharmaceuticals, Inc. High-density self-retaining sutures, manufacturing equipment and methods
US20110271186A1 (en) 2010-04-30 2011-11-03 John Colin Owens Visual audio mixing system and method thereof
US8562592B2 (en) 2010-05-07 2013-10-22 Ethicon Endo-Surgery, Inc. Compound angle laparoscopic methods and devices
US20110275901A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Laparoscopic devices with articulating end effectors
US20110276083A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Bendable shaft for handle positioning
US8646674B2 (en) 2010-05-11 2014-02-11 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
US8464925B2 (en) 2010-05-11 2013-06-18 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
CN101828940A (en) 2010-05-12 2010-09-15 苏州天臣国际医疗科技有限公司 Flexural linear closed cutter
US8603077B2 (en) 2010-05-14 2013-12-10 Intuitive Surgical Operations, Inc. Force transmission for robotic surgical instrument
US8958860B2 (en) 2010-05-17 2015-02-17 Covidien Lp Optical sensors for intraoperative procedures
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
JP5085684B2 (en) 2010-05-19 2012-11-28 オリンパスメディカルシステムズ株式会社 Treatment instrument system and manipulator system
DE102010029100A1 (en) 2010-05-19 2011-11-24 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one discharge lamp and at least one LED
JP5534327B2 (en) 2010-05-19 2014-06-25 日立工機株式会社 Electric tool
US20110293690A1 (en) 2010-05-27 2011-12-01 Tyco Healthcare Group Lp Biodegradable Polymer Encapsulated Microsphere Particulate Film and Method of Making Thereof
US9091588B2 (en) 2010-05-28 2015-07-28 Prognost Systems Gmbh System and method of mechanical fault detection based on signature detection
USD666209S1 (en) 2010-06-05 2012-08-28 Apple Inc. Display screen or portion thereof with graphical user interface
KR101095099B1 (en) 2010-06-07 2011-12-16 삼성전기주식회사 Flat type vibration motor
US9144455B2 (en) 2010-06-07 2015-09-29 Just Right Surgical, Llc Low power tissue sealing device and method
FR2961087B1 (en) 2010-06-09 2013-06-28 Allflex Europ TOOL FOR SAMPLING AN ANIMAL TISSUE SAMPLE.
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
WO2011156776A2 (en) 2010-06-10 2011-12-15 The Regents Of The University Of California Smart electric vehicle (ev) charging and grid integration apparatus and methods
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US20120130217A1 (en) 2010-11-23 2012-05-24 Kauphusman James V Medical devices having electrodes mounted thereon and methods of manufacturing therefor
US20110313894A1 (en) 2010-06-18 2011-12-22 Dye Alan W System and Method for Surgical Pack Manufacture, Monitoring, and Tracking
US8596515B2 (en) 2010-06-18 2013-12-03 Covidien Lp Staple position sensor system
US8302323B2 (en) 2010-06-21 2012-11-06 Confluent Surgical, Inc. Hemostatic patch
EP2397309A1 (en) 2010-06-21 2011-12-21 Envision Energy (Denmark) ApS A Wind Turbine and a Shaft for a Wind Turbine
WO2011162753A1 (en) 2010-06-23 2011-12-29 Mako Sugical Corp. Inertially tracked objects
US8366559B2 (en) 2010-06-23 2013-02-05 Lenkbar, Llc Cannulated flexible drive shaft
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
US20110315413A1 (en) 2010-06-25 2011-12-29 Mako Surgical Corp. Kit-Of Parts for Multi-Functional Tool, Drive Unit, and Operating Members
USD650789S1 (en) 2010-06-25 2011-12-20 Microsoft Corporation Display screen with in-process indicator
US20120004636A1 (en) 2010-07-02 2012-01-05 Denny Lo Hemostatic fibrous material
KR101143469B1 (en) 2010-07-02 2012-05-08 에스케이하이닉스 주식회사 Output enable signal generation circuit of semiconductor memory
EP2405439B1 (en) 2010-07-07 2013-01-23 Crocus Technology S.A. Magnetic device with optimized heat confinement
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012006306A2 (en) 2010-07-08 2012-01-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012149480A2 (en) 2011-04-29 2012-11-01 University Of Southern California Systems and methods for in vitro and in vivo imaging of cells on a substrate
US20120016413A1 (en) 2010-07-14 2012-01-19 Ethicon Endo-Surgery, Inc. Surgical fastening devices comprising rivets
JP2012023847A (en) 2010-07-14 2012-02-02 Panasonic Electric Works Co Ltd Rechargeable electrical apparatus
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8439246B1 (en) 2010-07-20 2013-05-14 Cardica, Inc. Surgical stapler with cartridge-adjustable clamp gap
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US9011437B2 (en) 2010-07-23 2015-04-21 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8663270B2 (en) 2010-07-23 2014-03-04 Conmed Corporation Jaw movement mechanism and method for a surgical tool
WO2012013577A1 (en) 2010-07-26 2012-02-02 Laboratorios Miret, S.A. Composition for coating medical devices containing lae and a polycationic amphoteric polymer
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US8801734B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Circular stapling instruments with secondary cutting arrangements and methods of using same
JP5686236B2 (en) 2010-07-30 2015-03-18 日立工機株式会社 Electric tools and electric tools for screw tightening
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8900267B2 (en) 2010-08-05 2014-12-02 Microline Surgical, Inc. Articulable surgical instrument
CN102378503A (en) 2010-08-06 2012-03-14 鸿富锦精密工业(深圳)有限公司 Electronic device combination
US8852199B2 (en) 2010-08-06 2014-10-07 Abyrx, Inc. Method and device for handling bone adhesives
US8675820B2 (en) 2010-08-10 2014-03-18 Varian Medical Systems, Inc. Electronic conical collimator verification
EP2417925B1 (en) 2010-08-12 2016-12-07 Immersion Corporation Electrosurgical tool having tactile feedback
CN101912284B (en) 2010-08-13 2012-07-18 李东瑞 Arc-shaped cutting anastomat
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
CA2945596C (en) 2010-08-25 2018-12-04 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
WO2012033860A1 (en) 2010-09-07 2012-03-15 Boston Scientific Scimed, Inc. Self-powered ablation catheter for renal denervation
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
US20130131651A1 (en) 2010-09-24 2013-05-23 Ethicon Endo-Surgery, Inc. Features providing linear actuation through articulation joint in surgical instrument
US9545253B2 (en) 2010-09-24 2017-01-17 Ethicon Endo-Surgery, Llc Surgical instrument with contained dual helix actuator assembly
US9402682B2 (en) 2010-09-24 2016-08-02 Ethicon Endo-Surgery, Llc Articulation joint features for articulating surgical device
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
WO2012050926A2 (en) 2010-09-29 2012-04-19 Dexcom, Inc. Advanced continuous analyte monitoring system
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
BR112013007717B1 (en) 2010-09-30 2020-09-24 Ethicon Endo-Surgery, Inc. SURGICAL CLAMPING SYSTEM
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US8393514B2 (en) 2010-09-30 2013-03-12 Ethicon Endo-Surgery, Inc. Selectively orientable implantable fastener cartridge
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
CN102440813B (en) 2010-09-30 2013-05-08 上海创亿医疗器械技术有限公司 Endoscopic surgical cutting anastomat with chain joints
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
AU2011307293B2 (en) 2010-09-30 2014-02-06 Ethicon Endo-Surgery, Inc. Compressible fastener cartridge
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
CN103384500B (en) 2010-09-30 2016-05-18 伊西康内外科公司 There is the surgery suturing appliance of interchangeable nail bin structure
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US20120248169A1 (en) 2010-09-30 2012-10-04 Ethicon Endo-Surgery, Inc. Methods for forming tissue thickness compensator arrangements for surgical staplers
US8740038B2 (en) 2010-09-30 2014-06-03 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a releasable portion
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US9750502B2 (en) * 2010-10-01 2017-09-05 Covidien Lp Surgical stapling device for performing circular anastomosis and surgical staples for use therewith
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8998061B2 (en) 2010-10-01 2015-04-07 Covidien Lp Surgical fastener applying apparatus
EP2621390A2 (en) 2010-10-01 2013-08-07 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
JP5636247B2 (en) 2010-10-06 2014-12-03 Hoya株式会社 Electronic endoscope processor and electronic endoscope apparatus
WO2012050564A1 (en) 2010-10-12 2012-04-19 Hewlett-Packard Development Company, L.P. Supplying power to an electronic device using multiple power sources
US20110225105A1 (en) 2010-10-21 2011-09-15 Ford Global Technologies, Llc Method and system for monitoring an energy storage system for a vehicle for trip planning
US9039694B2 (en) 2010-10-22 2015-05-26 Just Right Surgical, Llc RF generator system for surgical vessel sealing
US20120109186A1 (en) 2010-10-29 2012-05-03 Parrott David A Articulating laparoscopic surgical instruments
US8568425B2 (en) 2010-11-01 2013-10-29 Covidien Lp Wire spool for passing of wire through a rotational coupling
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US9526921B2 (en) 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US20120116261A1 (en) 2010-11-05 2012-05-10 Mumaw Daniel J Surgical instrument with slip ring assembly to power ultrasonic transducer
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US8308041B2 (en) * 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US20120123463A1 (en) 2010-11-11 2012-05-17 Moises Jacobs Mechanically-guided transoral bougie
JP6063387B2 (en) 2010-11-15 2017-01-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Separation of instrument shaft roll and end effector actuation in surgical instruments
US8480703B2 (en) 2010-11-19 2013-07-09 Covidien Lp Surgical device
US20120175398A1 (en) 2010-11-22 2012-07-12 Mayo Foundation For Medical Education And Research Stapling apparatus and methods of assembling or operating the same
US8679093B2 (en) 2010-11-23 2014-03-25 Microchips, Inc. Multi-dose drug delivery device and method
KR20120059105A (en) 2010-11-30 2012-06-08 현대자동차주식회사 Water drain apparatus of mounting high voltage battery pack in vehicle
WO2012072133A1 (en) 2010-12-01 2012-06-07 Ethicon Endo-Surgery, Inc. A surgical stapling device and a method for anchoring a liner to a hollow organ
JP5530911B2 (en) 2010-12-02 2014-06-25 Hoya株式会社 Zoom electronic endoscope
US9731410B2 (en) 2010-12-02 2017-08-15 Makita Corporation Power tool
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
CN102038532A (en) 2010-12-07 2011-05-04 苏州天臣国际医疗科技有限公司 Nail bin assembly
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
DE102010053811A1 (en) 2010-12-08 2012-06-14 Moog Gmbh Fault-proof actuation system
US8714352B2 (en) 2010-12-10 2014-05-06 Covidien Lp Cartridge shipping aid
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
CN101991453B (en) 2010-12-10 2012-07-18 苏州天臣国际医疗科技有限公司 Linear type cutting seaming device
CN201949071U (en) 2010-12-10 2011-08-31 苏州天臣国际医疗科技有限公司 Linear type cutting suturing device
CN101991452B (en) 2010-12-10 2012-07-04 苏州天臣国际医疗科技有限公司 Linear type surgical stapling apparatus
US20120239068A1 (en) 2010-12-10 2012-09-20 Morris James R Surgical instrument
FR2968564B1 (en) 2010-12-13 2013-06-21 Perouse Medical MEDICAL DEVICE FOR INPUT IN CONTACT WITH TISSUE OF A PATIENT AND ASSOCIATED MANUFACTURING METHOD.
US8540735B2 (en) 2010-12-16 2013-09-24 Apollo Endosurgery, Inc. Endoscopic suture cinch system
US8736212B2 (en) 2010-12-16 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method of automatic detection and prevention of motor runaway
CN201879759U (en) 2010-12-21 2011-06-29 南京迈迪欣医疗器械有限公司 Cartridge device of disposable rotary cutting anastomat capable of controlling tissue thickness
JP5770306B2 (en) 2010-12-24 2015-08-26 アーオー テクノロジー アクチエンゲゼルシャフト Surgical instruments
US9124097B2 (en) 2010-12-29 2015-09-01 International Safety And Development, Inc. Polarity correcting device
CN102228387B (en) 2010-12-29 2012-11-07 北京中法派尔特医疗设备有限公司 Numerically controlled surgical stapling apparatus
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
DE102011002404A1 (en) 2011-01-03 2012-07-05 Robert Bosch Gmbh Hand machine tool power supply unit
JP2012143283A (en) 2011-01-07 2012-08-02 Tomato Inc:Kk Optical beauty instrument and handpiece used for it
DE102012100086A1 (en) 2011-01-07 2012-08-02 Z-Medical Gmbh & Co. Kg Surgical instrument
JP5648488B2 (en) 2011-01-12 2015-01-07 株式会社リコー Optical scanning apparatus and image forming apparatus
SG193008A1 (en) 2011-01-14 2013-10-30 New Hope Ventures Surgical stapling device and method
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
KR20120114308A (en) 2011-01-25 2012-10-16 파나소닉 주식회사 Battery module and battery assembly for use therein
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
EP3964146B1 (en) 2011-01-31 2023-10-18 Boston Scientific Scimed Inc. Medical devices having releasable coupling
US9730717B2 (en) 2011-02-03 2017-08-15 Karl Storz Gmbh & Co. Kg Medical manipulator system
US8336754B2 (en) 2011-02-04 2012-12-25 Covidien Lp Locking articulation mechanism for surgical stapler
US8348124B2 (en) 2011-02-08 2013-01-08 Covidien Lp Knife bar with geared overdrive
KR102182874B1 (en) 2011-02-15 2020-11-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems for indicating a clamping prediction
EP3278744B1 (en) 2011-02-15 2021-10-20 Intuitive Surgical Operations, Inc. Indicator for knife location in a stapling or vessel sealing instrument
WO2012112249A1 (en) 2011-02-15 2012-08-23 Intuitive Surgical Operations, Inc. Systems for detecting clamping or firing failure
EP2675387B1 (en) 2011-02-15 2018-04-25 Intuitive Surgical Operations, Inc. Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
US9393017B2 (en) 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
EP2675369B1 (en) 2011-02-15 2015-07-15 Zimmer Surgical SA Battery housing for powered surgical tool
EP3300678A1 (en) 2011-02-18 2018-04-04 Intuitive Surgical Operations Inc. Fusing and cutting surgical instrument and related methods
KR101964579B1 (en) 2011-02-18 2019-04-03 디퍼이 신테스 프로덕츠, 인코포레이티드 Tool with integrated navigation and guidance system and related apparatus and methods
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
US8968340B2 (en) 2011-02-23 2015-03-03 Covidien Lp Single actuating jaw flexible endolumenal stitching device
US9585672B2 (en) 2011-02-25 2017-03-07 Thd S.P.A. Device for implanting a prosthesis in a tissue
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US8985240B2 (en) 2011-03-11 2015-03-24 Stanley D. Winnard Handheld drive device
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8556935B1 (en) 2011-03-15 2013-10-15 Cardica, Inc. Method of manufacturing surgical staples
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US20120234895A1 (en) 2011-03-15 2012-09-20 Ethicon Endo-Surgery, Inc. Surgical staple cartridges and end effectors with vessel measurement arrangements
WO2012127462A1 (en) 2011-03-22 2012-09-27 Human Extensions Ltd. Motorized surgical instruments
US8575895B2 (en) 2011-03-29 2013-11-05 Rally Manufacturing, Inc. Method and device for voltage detection and charging of electric battery
US20120253328A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Combined presentation unit for reposable battery operated surgical system
WO2012135721A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Ultrasonic surgical instruments
US10729458B2 (en) 2011-03-30 2020-08-04 Covidien Lp Ultrasonic surgical instruments
US20140330579A1 (en) 2011-03-31 2014-11-06 Healthspot, Inc. Medical Kiosk and Method of Use
US20120251861A1 (en) 2011-03-31 2012-10-04 De Poan Pneumatic Corp. Shock proof structure of battery pack for receiving battery cell
US9370362B2 (en) 2011-04-07 2016-06-21 Wake Forest University Health Sciences Surgical staplers with tissue protection and related methods
WO2012141679A1 (en) 2011-04-11 2012-10-18 Hassan Chandra Surgical technique(s) and/or device(s)
DE102011007121A1 (en) 2011-04-11 2012-10-11 Karl Storz Gmbh & Co. Kg Handling device for a micro-invasive-surgical instrument
CA3022254C (en) 2011-04-15 2020-04-28 Covidien Ag Battery powered hand-held ultrasonic surgical cautery cutting device
US9131950B2 (en) 2011-04-15 2015-09-15 Endoplus, Inc. Laparoscopic instrument
EP2600440B1 (en) 2011-04-18 2016-06-08 Huawei Device Co., Ltd. Battery, battery component and subscriber equipment
US9655615B2 (en) 2011-04-19 2017-05-23 Dextera Surgical Inc. Active wedge and I-beam for surgical stapler
US9021684B2 (en) 2011-04-19 2015-05-05 Tyco Electronics Corporation Method of fabricating a slip ring component
WO2012143913A2 (en) 2011-04-21 2012-10-26 Novogate Medical Ltd Tissue closure device and method of delivery and uses thereof
US8631990B1 (en) 2011-04-25 2014-01-21 Cardica, Inc. Staple trap for surgical stapler
JP5839828B2 (en) 2011-04-25 2016-01-06 キヤノン株式会社 Image forming apparatus, image forming apparatus control method, and program
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
EP3537565A1 (en) 2011-04-28 2019-09-11 ZOLL Circulation, Inc. Battery management system for control of lithium cells
EP2702666A4 (en) 2011-04-28 2014-10-29 Zoll Circulation Inc Viral distribution of battery management parameters
EP3561995A1 (en) 2011-04-28 2019-10-30 ZOLL Circulation, Inc. System and method for tracking and archiving battery performance data
AU2012201645B2 (en) 2011-04-29 2015-04-16 Covidien Lp Surgical stapling apparatus
CN102125450B (en) 2011-04-29 2012-07-25 常州市康迪医用吻合器有限公司 Cutter stapler for surgery
MX2013012593A (en) 2011-04-29 2014-08-21 Selecta Biosciences Inc Tolerogenic synthetic nanocarriers to reduce antibody responses.
CA2834503C (en) 2011-04-29 2019-06-11 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler
US9901412B2 (en) 2011-04-29 2018-02-27 Vanderbilt University Dexterous surgical manipulator and method of use
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
JP6180405B2 (en) 2011-05-03 2017-08-16 エンドーシー コーポレイションEndosee Corporation Methods and apparatus for hysteroscopy and endometrial biopsy
US9820741B2 (en) 2011-05-12 2017-11-21 Covidien Lp Replaceable staple cartridge
JP5816457B2 (en) 2011-05-12 2015-11-18 オリンパス株式会社 Surgical device
US20120289811A1 (en) 2011-05-13 2012-11-15 Tyco Healthcare Group Lp Mask on monitor hernia locator
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
FR2975534B1 (en) 2011-05-19 2013-06-28 Electricite De France METAL-AIR ACCUMULATOR WITH PROTECTION DEVICE FOR THE AIR ELECTRODE
US20120296342A1 (en) 2011-05-22 2012-11-22 Kathleen Haglund Wendelschafer Electric hand-held grooming tool
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
US9295784B2 (en) 2011-05-25 2016-03-29 Sanofi-Aventis Deutschland Gmbh Medicament delivery device with cap
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10542978B2 (en) 2011-05-27 2020-01-28 Covidien Lp Method of internally potting or sealing a handheld medical device
KR102109615B1 (en) 2011-05-31 2020-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Positive control of robotic surgical instrument end effector
US8870912B2 (en) 2011-05-31 2014-10-28 Intuitive Surgical Operations, Inc. Surgical instrument with single drive input for two end effector mechanisms
CN103561667B (en) 2011-05-31 2016-08-17 直观外科手术操作公司 Grasping force control in robotic surgery apparatus
CN102217963A (en) 2011-06-08 2011-10-19 刘忠臣 Sandwiched stapler type alimentary tract anastomosis dissecting sealer
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
US9561030B2 (en) 2011-06-14 2017-02-07 Changzhou Kangdi Medical Stapler Co., Ltd. Surgical staple and staple pocket for forming kidney-shaped staple
US8715302B2 (en) 2011-06-17 2014-05-06 Estech, Inc. (Endoscopic Technologies, Inc.) Left atrial appendage treatment systems and methods
CN102835977A (en) 2011-06-21 2012-12-26 达华国际股份有限公司 Minimal invasion medical device
WO2012178075A2 (en) 2011-06-24 2012-12-27 Abbott Laboratories Tamper-evident packaging
CN106913366B (en) 2011-06-27 2021-02-26 内布拉斯加大学评议会 On-tool tracking system and computer-assisted surgery method
US9498231B2 (en) 2011-06-27 2016-11-22 Board Of Regents Of The University Of Nebraska On-board tool tracking system and methods of computer assisted surgery
US8763876B2 (en) 2011-06-30 2014-07-01 Covidien Lp Surgical instrument and cartridge for use therewith
US20130012983A1 (en) 2011-07-08 2013-01-10 Tyco Healthcare Group Lp Surgical Instrument with Flexible Shaft
EP2731517A2 (en) 2011-07-11 2014-05-21 Medical Vision Research & Development AB Status control for electrically powered surgical tool systems
EP2734121A2 (en) 2011-07-11 2014-05-28 Agile Endosurgery, Inc. Articulated surgical tool
WO2013009795A1 (en) 2011-07-13 2013-01-17 Cook Medical Technologies Llc Foldable surgical retractor
US9521996B2 (en) 2011-07-13 2016-12-20 Cook Medical Technologies Llc Surgical retractor device
US8960521B2 (en) 2011-07-15 2015-02-24 Covidien Lp Loose staples removal system
CA2841961C (en) 2011-07-20 2021-01-26 International Paper Company Substrate for wallboard joint tape and process for making same
US8603135B2 (en) 2011-07-20 2013-12-10 Covidien Lp Articulating surgical apparatus
US8574263B2 (en) 2011-07-20 2013-11-05 Covidien Lp Coaxial coil lock
US20130023910A1 (en) 2011-07-21 2013-01-24 Solomon Clifford T Tissue-identifying surgical instrument
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
EP2737593B1 (en) 2011-07-26 2023-11-22 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
WO2013016554A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for physical security of power storage devices in vehicles
US10512459B2 (en) 2011-07-27 2019-12-24 William Casey Fox Bone staple, instrument and method of use and manufacturing
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
US9724095B2 (en) 2011-08-08 2017-08-08 Covidien Lp Surgical fastener applying apparatus
US20130041292A1 (en) 2011-08-09 2013-02-14 Tyco Healthcare Group Lp Customizable Haptic Assisted Robot Procedure System with Catalog of Specialized Diagnostic Tips
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
KR20130017624A (en) 2011-08-11 2013-02-20 주식회사 모바수 Apparatus for holding articulative structure
WO2013027200A2 (en) 2011-08-21 2013-02-28 M.S.T. Medical Surgery Technologies Ltd. Device and method for asissting laparoscopic surgery - rule based approach
US9375206B2 (en) 2011-08-25 2016-06-28 Endocontrol Surgical instrument with disengageable handle
US8956342B1 (en) 2011-09-01 2015-02-17 Microaire Surgical Instruments Llc Method and device for ergonomically and ambidextrously operable surgical device
AU2012301718B2 (en) 2011-09-02 2017-06-15 Stryker Corporation Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing
US9198661B2 (en) 2011-09-06 2015-12-01 Ethicon Endo-Surgery, Inc. Stapling instrument comprising a plurality of staple cartridges stored therein
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
USD677273S1 (en) 2011-09-12 2013-03-05 Microsoft Corporation Display screen with icon
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
WO2013040079A1 (en) 2011-09-13 2013-03-21 Dose Medical Corporation Intraocular physiological sensor
DE102011113127B4 (en) 2011-09-14 2015-05-13 Olaf Storz Medical handset and power unit
DE102011113126B4 (en) 2011-09-14 2015-05-13 Olaf Storz Power unit and medical hand-held device
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
US20140249573A1 (en) 2011-09-20 2014-09-04 A.A. Cash Technology Ltd. Methods and devices for occluding blood flow to an organ
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
USD680646S1 (en) 2011-09-23 2013-04-23 Ethicon Endo-Surgery, Inc. Circular stapler
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US8911448B2 (en) 2011-09-23 2014-12-16 Orthosensor, Inc Device and method for enabling an orthopedic tool for parameter measurement
CA2849477A1 (en) 2011-09-30 2013-04-04 Covidien Lp Implantable devices having swellable grip members
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9629652B2 (en) 2011-10-10 2017-04-25 Ethicon Endo-Surgery, Llc Surgical instrument with clutching slip ring assembly to power ultrasonic transducer
US8585721B2 (en) 2011-10-12 2013-11-19 Covidien Lp Mesh fixation system
DE102011084499A1 (en) 2011-10-14 2013-04-18 Robert Bosch Gmbh tool attachment
US9153994B2 (en) 2011-10-14 2015-10-06 Welch Allyn, Inc. Motion sensitive and capacitor powered handheld device
US8931679B2 (en) 2011-10-17 2015-01-13 Covidien Lp Surgical stapling apparatus
US9060794B2 (en) 2011-10-18 2015-06-23 Mako Surgical Corp. System and method for robotic surgery
US20130096568A1 (en) 2011-10-18 2013-04-18 Warsaw Orthopedic, Inc. Modular tool apparatus and method
US9370400B2 (en) 2011-10-19 2016-06-21 Ethicon Endo-Surgery, Inc. Clip applier adapted for use with a surgical robot
US8968308B2 (en) 2011-10-20 2015-03-03 Covidien Lp Multi-circuit seal plates
JP6234932B2 (en) 2011-10-24 2017-11-22 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Medical instruments
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US20130098970A1 (en) 2011-10-25 2013-04-25 David Racenet Surgical Apparatus and Method for Endoluminal Surgery
US8418908B1 (en) 2011-10-26 2013-04-16 Covidien Lp Staple feeding and forming apparatus
EP3165176B1 (en) 2011-10-26 2018-12-26 Intuitive Surgical Operations, Inc. Cartridge status and presence detection
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
CN104039251B (en) 2011-10-26 2017-09-08 直观外科手术操作公司 Surgical operating instrument with overall scalpel blade
WO2013063522A2 (en) 2011-10-26 2013-05-02 Reid Robert Cyrus Surgical instrument motor pack latch
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
JP2013099120A (en) 2011-10-31 2013-05-20 Sanyo Electric Co Ltd Charger, battery pack attachment unit, and battery pack unit
JP5855423B2 (en) 2011-11-01 2016-02-09 オリンパス株式会社 Surgery support device
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
WO2013063674A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
CN202313537U (en) * 2011-11-07 2012-07-11 苏州天臣国际医疗科技有限公司 Staple cartridge component for linear stapling and cutting device
US20130123816A1 (en) 2011-11-10 2013-05-16 Gerald Hodgkinson Hydrophilic medical devices
US9486213B2 (en) 2011-11-14 2016-11-08 Thd Lap Ltd. Drive mechanism for articulating tacker
US8992042B2 (en) 2011-11-14 2015-03-31 Halma Holdings, Inc. Illumination devices using natural light LEDs
US20130131477A1 (en) 2011-11-15 2013-05-23 Oneeros, Inc. Pulse oximetry system
EP2779921B1 (en) 2011-11-15 2019-03-27 Intuitive Surgical Operations, Inc. Surgical instrument with stowing knife blade
US8968312B2 (en) 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
JP5420802B2 (en) 2011-11-16 2014-02-19 オリンパスメディカルシステムズ株式会社 Medical equipment
DE102011086826A1 (en) 2011-11-22 2013-05-23 Robert Bosch Gmbh System with a hand tool battery and at least one hand tool battery charger
US9486186B2 (en) 2011-12-05 2016-11-08 Devicor Medical Products, Inc. Biopsy device with slide-in probe
WO2013087092A1 (en) 2011-12-13 2013-06-20 Ethicon Endo-Surgery, Inc. An applier and a method for anchoring a lining to a hollow organ
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9119615B2 (en) 2011-12-15 2015-09-01 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9113879B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9603599B2 (en) 2011-12-16 2017-03-28 Ethicon Endo-Surgery, Llc Feature to reengage safety switch of tissue stapler
CN103169493A (en) 2011-12-20 2013-06-26 通用电气公司 Device and method for guiding ultraphonic probe and ultraphonic system
CN202568350U (en) 2011-12-21 2012-12-05 常州市康迪医用吻合器有限公司 Clamping thickness adjustment mechanism for surgical linear cut stapler
US8920368B2 (en) 2011-12-22 2014-12-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-user touch-based control of a remote catheter guidance system (RCGS)
CN202426586U (en) 2011-12-22 2012-09-12 苏州天臣国际医疗科技有限公司 Nail cabinet for surgical suture cutter
USD701238S1 (en) 2011-12-23 2014-03-18 Citrix Systems, Inc. Display screen with animated graphical user interface
CA2796525A1 (en) 2011-12-23 2013-06-23 Covidien Lp Apparatus for endoscopic procedures
JP5361983B2 (en) 2011-12-27 2013-12-04 株式会社東芝 Information processing apparatus and control method
US9220502B2 (en) 2011-12-28 2015-12-29 Covidien Lp Staple formation recognition for a surgical device
WO2013101485A1 (en) 2011-12-29 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
CN202397539U (en) 2011-12-29 2012-08-29 瑞奇外科器械(中国)有限公司 Surgical suturing machine and suturing nail drive thereof
CN202489990U (en) 2011-12-30 2012-10-17 苏州天臣国际医疗科技有限公司 Linear sewing and cutting device for surgery
US9186148B2 (en) 2012-01-05 2015-11-17 Ethicon Endo-Surgery, Inc. Tissue stapler anvil feature to prevent premature jaw opening
US9168042B2 (en) 2012-01-12 2015-10-27 Covidien Lp Circular stapling instruments
US8894647B2 (en) 2012-01-13 2014-11-25 Covidien Lp System and method for performing surgical procedures with a reusable instrument module
US9636091B2 (en) 2012-01-13 2017-05-02 Covidien Lp Hand-held electromechanical surgical system
USD736792S1 (en) 2012-01-13 2015-08-18 Htc Corporation Display screen with graphical user interface
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
US9326812B2 (en) 2012-01-25 2016-05-03 Covidien Lp Portable surgical instrument
US20130211244A1 (en) 2012-01-25 2013-08-15 Surgix Ltd. Methods, Devices, Systems, Circuits and Associated Computer Executable Code for Detecting and Predicting the Position, Orientation and Trajectory of Surgical Tools
US9098153B2 (en) 2012-02-01 2015-08-04 Qualcomm Technologies, Inc. Touch panel excitation using a drive signal having time-varying characteristics
WO2013116869A1 (en) 2012-02-02 2013-08-08 Transenterix, Inc. Mechanized multi-instrument surgical system
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
USD686244S1 (en) 2012-02-23 2013-07-16 JVC Kenwood Corporation Display screen with an animated dial for a wireless communication device
USD725674S1 (en) 2012-02-24 2015-03-31 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
US20130231661A1 (en) 2012-03-01 2013-09-05 Hasan M. Sh. Sh. Alshemari Electrosurgical midline clamping scissors
KR101965892B1 (en) 2012-03-05 2019-04-08 삼성디스플레이 주식회사 DC-DC Converter and Organic Light Emitting Display Device Using the same
ES2422332B1 (en) 2012-03-05 2014-07-01 Iv�n Jes�s ARTEAGA GONZ�LEZ Surgical device
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
WO2013134411A1 (en) 2012-03-06 2013-09-12 Briteseed, Llc Surgical tool with integrated sensor
JP2013188812A (en) 2012-03-13 2013-09-26 Hitachi Koki Co Ltd Impact tool
WO2013138481A1 (en) 2012-03-13 2013-09-19 Medtronic Xomed, Inc. Surgical system including powered rotary-type handpiece
US9113881B2 (en) 2012-03-16 2015-08-25 Covidien Lp Travel clip for surgical staple cartridge
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US20130256373A1 (en) 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
EP3275378B1 (en) 2012-03-28 2019-07-17 Ethicon LLC Tissue thickness compensator comprising a plurality of capsules
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
JP2015513978A (en) 2012-04-04 2015-05-18 カーディカ インコーポレイテッド Surgical staple cartridge having a bendable tip
US9526563B2 (en) 2012-04-06 2016-12-27 Covidien Lp Spindle assembly with mechanical fuse for surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
WO2013155052A1 (en) 2012-04-09 2013-10-17 Facet Technologies, Llc Push-to-charge lancing device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
WO2013152452A1 (en) 2012-04-09 2013-10-17 Intel Corporation Parallel processing image data having top-left dependent pixels
AU2013201737B2 (en) 2012-04-09 2014-07-10 Covidien Lp Surgical fastener applying apparatus
US9113887B2 (en) 2012-04-10 2015-08-25 Covidien Lp Electrosurgical generator
EP3066991B1 (en) 2012-04-11 2018-09-19 Covidien LP Apparatus for endoscopic procedures
EP2838439A4 (en) 2012-04-18 2015-11-25 Cardica Inc Safety lockout for surgical stapler
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
US9539726B2 (en) 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US8818523B2 (en) 2012-04-25 2014-08-26 Medtronic, Inc. Recharge of an implantable device in the presence of other conductive objects
KR101800189B1 (en) 2012-04-30 2017-11-23 삼성전자주식회사 Apparatus and method for controlling power of surgical robot
US9331721B2 (en) 2012-04-30 2016-05-03 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for continuous time signal processing
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
DE102012207707A1 (en) 2012-05-09 2013-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Minimally invasive instrument for robotic surgery
WO2013169873A1 (en) 2012-05-09 2013-11-14 Boston Scientific Scimed, Inc. Bushing arm deformation mechanism
US9180223B2 (en) 2012-05-10 2015-11-10 The Trustees Of The Stevens Institute Of Technology Biphasic osteochondral scaffold for reconstruction of articular cartilage
JP6224089B2 (en) 2012-05-23 2017-11-01 ストライカー・コーポレイション Surgical power instrument assembly having an instrument unit and a separate battery and control module for energizing and controlling the instrument unit
US8973805B2 (en) 2012-05-25 2015-03-10 Covidien Lp Surgical fastener applying apparatus including a knife guard
AU2013203675B2 (en) 2012-05-31 2014-11-27 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9681884B2 (en) 2012-05-31 2017-06-20 Ethicon Endo-Surgery, Llc Surgical instrument with stress sensor
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US20130327552A1 (en) 2012-06-08 2013-12-12 Black & Decker Inc. Power tool having multiple operating modes
US10039440B2 (en) 2012-06-11 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for cleaning a minimally invasive instrument
US20130334280A1 (en) 2012-06-14 2013-12-19 Covidien Lp Sliding Anvil/Retracting Cartridge Reload
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US11589771B2 (en) 2012-06-21 2023-02-28 Globus Medical Inc. Method for recording probe movement and determining an extent of matter removed
USD692916S1 (en) 2012-06-22 2013-11-05 Mako Surgical Corp. Display device or portion thereof with graphical user interface
US9641122B2 (en) 2012-06-26 2017-05-02 Johnson Controls Technology Company HVAC actuator with automatic end stop recalibration
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
JP6633391B2 (en) 2012-06-28 2020-01-22 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Fiber optic sensor guided navigation for blood vessel visualization and monitoring
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
CN104487005B (en) 2012-06-28 2017-09-08 伊西康内外科公司 Empty squeeze latching member
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9220570B2 (en) 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
CN103747745B (en) 2012-06-29 2016-02-24 捷锐士阿希迈公司 For the blade-retaining mechanisms of operating theater instruments
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
AU2013286733B2 (en) 2012-07-02 2017-09-14 Boston Scientific Scimed, Inc. Stapler for forming multiple tissue plications
KR101721742B1 (en) 2012-07-03 2017-03-30 쿠카 레보라토리즈 게엠베하 Surgical instrument arrangement and drive train arrangement for a surgical instrument, in particular a robot-guided surgical instrument, and surgical instrument
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US9955965B2 (en) 2012-07-09 2018-05-01 Covidien Lp Switch block control assembly of a medical device
US9110587B2 (en) 2012-07-13 2015-08-18 Samsung Electronics Co., Ltd. Method for transmitting and receiving data between memo layer and application and electronic device using the same
KR20150036650A (en) 2012-07-16 2015-04-07 미라빌리스 메디카 인코포레이티드 Human interface and device for ultrasound guided treatment
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US10194907B2 (en) 2012-07-18 2019-02-05 Covidien Lp Multi-fire stapler with electronic counter, lockout, and visual indicator
US9572576B2 (en) 2012-07-18 2017-02-21 Covidien Lp Surgical apparatus including surgical buttress
AU2013206807A1 (en) 2012-07-18 2014-02-06 Covidien Lp Apparatus for endoscopic procedures
US9554796B2 (en) 2012-07-18 2017-01-31 Covidien Lp Multi-fire surgical stapling apparatus including safety lockout and visual indicator
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
EP2877105A1 (en) 2012-07-26 2015-06-03 Smith&Nephew, Inc. Knotless anchor for instability repair
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9161769B2 (en) 2012-07-30 2015-10-20 Covidien Lp Endoscopic instrument
KR101359053B1 (en) 2012-08-14 2014-02-06 정창욱 Apparatus for holding articulative structure
US9468447B2 (en) 2012-08-14 2016-10-18 Insurgical, LLC Limited-use tool system and method of reprocessing
AU2013206804B2 (en) 2012-08-15 2017-12-07 Covidien Lp Buttress attachment to degradable polymer zones
US9277957B2 (en) 2012-08-15 2016-03-08 Ethicon Endo-Surgery, Inc. Electrosurgical devices and methods
US8690893B2 (en) 2012-08-16 2014-04-08 Coloplast A/S Vaginal manipulator head with tissue index and head extender
CN102783741B (en) 2012-08-16 2014-10-15 东华大学 Multistage-spreading heat-dissipation fire-proof heat-insulation composite fabric, preparation method and application
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9610068B2 (en) 2012-08-29 2017-04-04 Boston Scientific Scimed, Inc. Articulation joint with bending member
US9131957B2 (en) 2012-09-12 2015-09-15 Gyrus Acmi, Inc. Automatic tool marking
US9713474B2 (en) 2012-09-17 2017-07-25 The Cleveland Clinic Foundation Endoscopic stapler
CN102885641B (en) 2012-09-18 2015-04-01 上海逸思医疗科技有限公司 Improved performer for surgical instruments
JP6082553B2 (en) 2012-09-26 2017-02-15 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Brake release mechanism and medical manipulator having the same
JP2014069252A (en) 2012-09-28 2014-04-21 Hitachi Koki Co Ltd Power tool
US20140094681A1 (en) 2012-10-02 2014-04-03 Covidien Lp System for navigating surgical instruments adjacent tissue of interest
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US10842357B2 (en) 2012-10-10 2020-11-24 Moskowitz Family Llc Endoscopic surgical system
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US10478182B2 (en) 2012-10-18 2019-11-19 Covidien Lp Surgical device identification
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US20140115229A1 (en) 2012-10-19 2014-04-24 Lsi Corporation Method and system to reduce system boot loader download time for spi based flash memories
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9265585B2 (en) 2012-10-23 2016-02-23 Covidien Lp Surgical instrument with rapid post event detection
USD686240S1 (en) 2012-10-25 2013-07-16 Advanced Mediwatch Co., Ltd. Display screen with graphical user interface for a sports device
WO2014065066A1 (en) 2012-10-26 2014-05-01 Totsu Katsuyuki Automatic screw tightening control method and device
US9368991B2 (en) 2012-10-30 2016-06-14 The Board Of Trustees Of The University Of Alabama Distributed battery power electronics architecture and control
JP5154710B1 (en) 2012-11-01 2013-02-27 株式会社テクノプロジェクト Medical image exchange system, image relay server, medical image transmission system, and medical image reception system
JP6364013B2 (en) 2012-11-02 2018-07-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Self-conflict drive for medical devices
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
EP2923656A4 (en) 2012-11-20 2016-07-13 Olympus Corp Tissue ablation apparatus
USD748668S1 (en) 2012-11-23 2016-02-02 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
CN103829981A (en) 2012-11-26 2014-06-04 天津瑞贝精密机械技术研发有限公司 Electric endoscope anastomat
CN103841802B (en) 2012-11-27 2017-04-05 华硕电脑股份有限公司 Electronic installation
US9289207B2 (en) 2012-11-29 2016-03-22 Ethicon Endo-Surgery, Llc Surgical staple with integral pledget for tip deflection
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
USD729274S1 (en) 2012-11-30 2015-05-12 Google Inc. Portion of a display screen with icon
US9566062B2 (en) 2012-12-03 2017-02-14 Ethicon Endo-Surgery, Llc Surgical instrument with secondary jaw closure feature
KR102076233B1 (en) 2012-12-05 2020-02-11 가부시키가이샤 아이피솔루션즈 Facility-management-system control interface
US20140158747A1 (en) 2012-12-06 2014-06-12 Ethicon Endo-Surgery, Inc. Surgical stapler with varying staple widths along different circumferences
US9050100B2 (en) 2012-12-10 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument with feedback at end effector
US9445808B2 (en) 2012-12-11 2016-09-20 Ethicon Endo-Surgery, Llc Electrosurgical end effector with tissue tacking features
US8815594B2 (en) 2012-12-12 2014-08-26 Southwest Research Institute Hybrid tissue scaffold for tissue engineering
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
CN102973300B (en) 2012-12-13 2014-10-15 常州市新能源吻合器总厂有限公司 Tissue clamping member of linear cutting anastomat and nail granary of tissue clamping member
KR101484208B1 (en) 2012-12-14 2015-01-21 현대자동차 주식회사 The motor velocity compensating device of the fuel cell vehicle and sensor, the motor velocity compensating method thereof
US9445816B2 (en) 2012-12-17 2016-09-20 Ethicon Endo-Surgery, Llc Circular stapler with selectable motorized and manual control
WO2014096989A1 (en) 2012-12-17 2014-06-26 Koninklijke Philips N.V. A device and method for preparing extrudable food products
USD741895S1 (en) 2012-12-18 2015-10-27 2236008 Ontario Inc. Display screen or portion thereof with graphical user interface
CN103860225B (en) 2012-12-18 2016-03-09 苏州天臣国际医疗科技有限公司 Linear seam cutting device
AU2013266989A1 (en) 2012-12-19 2014-07-03 Covidien Lp Buttress attachment to the cartridge surface
US9470297B2 (en) 2012-12-19 2016-10-18 Covidien Lp Lower anterior resection 90 degree instrument
US9566065B2 (en) 2012-12-21 2017-02-14 Cardica, Inc. Apparatus and methods for surgical stapler clamping and deployment
JP6024446B2 (en) 2012-12-22 2016-11-16 日立工機株式会社 Impact tools
DE102012025393A1 (en) 2012-12-24 2014-06-26 Festool Group Gmbh & Co. Kg Electric device in the form of a hand-held machine tool or a suction device
US20140181710A1 (en) 2012-12-26 2014-06-26 Harman International Industries, Incorporated Proximity location system
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
CN103908313A (en) 2012-12-29 2014-07-09 苏州天臣国际医疗科技有限公司 Surgical operating instrument
GB2509523A (en) 2013-01-07 2014-07-09 Anish Kumar Mampetta Surgical instrument with flexible members and a motor
USD750129S1 (en) 2013-01-09 2016-02-23 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9204881B2 (en) 2013-01-11 2015-12-08 Covidien Lp Buttress retainer for EEA anvil
US9522003B2 (en) 2013-01-14 2016-12-20 Intuitive Surgical Operations, Inc. Clamping instrument
US9675354B2 (en) 2013-01-14 2017-06-13 Intuitive Surgical Operations, Inc. Torque compensation
US10265090B2 (en) 2013-01-16 2019-04-23 Covidien Lp Hand held electromechanical surgical system including battery compartment diagnostic display
MX364730B (en) 2013-01-18 2019-05-06 Ethicon Endo Surgery Inc Motorized surgical instrument.
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US20140207124A1 (en) 2013-01-23 2014-07-24 Ethicon Endo-Surgery, Inc. Surgical instrument with selectable integral or external power source
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
CN104936746B (en) 2013-01-24 2017-06-09 日立工机株式会社 Electric tool
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9149325B2 (en) 2013-01-25 2015-10-06 Ethicon Endo-Surgery, Inc. End effector with compliant clamping jaw
US20140209658A1 (en) 2013-01-25 2014-07-31 Covidien Lp Foam application to stapling device
US9028510B2 (en) 2013-02-01 2015-05-12 Olympus Medical Systems Corp. Tissue excision method
JP6293793B2 (en) 2013-02-08 2018-03-14 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical end effector having a removable material layer and the same material layer
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US20140224857A1 (en) 2013-02-08 2014-08-14 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a compressible portion
CA2900330C (en) 2013-02-08 2020-12-22 Ethicon Endo-Surgery, Inc. Multiple thickness implantable layers for surgical stapling devices
JP5733332B2 (en) 2013-02-13 2015-06-10 株式会社豊田自動織機 Battery module
USD759063S1 (en) 2013-02-14 2016-06-14 Healthmate International, LLC Display screen with graphical user interface for an electrotherapy device
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9867615B2 (en) 2013-02-28 2018-01-16 Ethicon Llc Surgical instrument with articulation lock having a detenting binary spring
US9622746B2 (en) 2013-02-28 2017-04-18 Ethicon Endo-Surgery, Llc Distal tip features for end effector of surgical instrument
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US9839421B2 (en) 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
US9795379B2 (en) 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
US9808248B2 (en) 2013-02-28 2017-11-07 Ethicon Llc Installation features for surgical instrument end effector cartridge
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US10092292B2 (en) * 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9186142B2 (en) 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
RU2663713C2 (en) 2013-03-01 2018-08-08 Этикон Эндо-Серджери, Инк. Rotary powered surgical instruments with multiple degrees of freedom
BR112015021082B1 (en) 2013-03-01 2022-05-10 Ethicon Endo-Surgery, Inc surgical instrument
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
MX368026B (en) 2013-03-01 2019-09-12 Ethicon Endo Surgery Inc Articulatable surgical instruments with conductive pathways for signal communication.
JP2014194211A (en) 2013-03-01 2014-10-09 Aisan Ind Co Ltd Electric vacuum pump
US9483095B2 (en) 2013-03-04 2016-11-01 Abbott Medical Optics Inc. Apparatus and method for providing a modular power supply with multiple adjustable output voltages
US10561432B2 (en) 2013-03-05 2020-02-18 Covidien Lp Pivoting screw for use with a pair of jaw members of a surgical instrument
AU2014200501B2 (en) 2013-03-07 2017-08-24 Covidien Lp Powered surgical stapling device
US9706993B2 (en) 2013-03-08 2017-07-18 Covidien Lp Staple cartridge with shipping wedge
RU2675082C2 (en) 2013-03-12 2018-12-14 Этикон Эндо-Серджери, Инк. Powered surgical instruments with firing system lockout arrangements
USD711905S1 (en) 2013-03-12 2014-08-26 Arthrocare Corporation Display screen for electrosurgical controller with graphical user interface
US9936951B2 (en) 2013-03-12 2018-04-10 Covidien Lp Interchangeable tip reload
US9254170B2 (en) 2013-03-13 2016-02-09 Ethicon Endo-Surgery, Inc. Electrosurgical device with disposable shaft having modular subassembly
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
EP3135225B1 (en) 2013-03-13 2019-08-14 Covidien LP Surgical stapling apparatus
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9814463B2 (en) 2013-03-13 2017-11-14 Covidien Lp Surgical stapling apparatus
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9566064B2 (en) 2013-03-13 2017-02-14 Covidien Lp Surgical stapling apparatus
EP2967564B1 (en) 2013-03-14 2018-09-12 Applied Medical Resources Corporation Surgical stapler with partial pockets
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US9592056B2 (en) 2013-03-14 2017-03-14 Covidien Lp Powered stapling apparatus
US9655613B2 (en) 2013-03-14 2017-05-23 Dextera Surgical Inc. Beltless staple chain for cartridge and cartridgeless surgical staplers
US20140276730A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Surgical instrument with reinforced articulation section
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9867620B2 (en) 2013-03-14 2018-01-16 Covidien Lp Articulation joint for apparatus for endoscopic procedures
JP6114583B2 (en) 2013-03-14 2017-04-12 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator
US8961191B2 (en) 2013-03-15 2015-02-24 Garmin Switzerland Gmbh Electrical connector for pedal spindle
ES2728023T3 (en) 2013-03-15 2019-10-21 Applied Med Resources Surgical stapler with rotating shaft drive mechanism
US20140263558A1 (en) 2013-03-15 2014-09-18 Cardica, Inc. Extended curved tip for surgical apparatus
US9722236B2 (en) 2013-03-15 2017-08-01 General Atomics Apparatus and method for use in storing energy
KR102257034B1 (en) 2013-03-15 2021-05-28 에스알아이 인터내셔널 Hyperdexterous surgical system
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
EP2976033A4 (en) 2013-03-19 2016-12-14 Surgisense Corp Apparatus, systems and methods for determining tissue oxygenation
FR3003660B1 (en) 2013-03-22 2016-06-24 Schneider Electric Ind Sas MAN-MACHINE DIALOGUE SYSTEM
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US20140291379A1 (en) 2013-03-27 2014-10-02 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a cutting member path
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US20140303660A1 (en) 2013-04-04 2014-10-09 Elwha Llc Active tremor control in surgical instruments
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US10258322B2 (en) 2013-04-17 2019-04-16 Maruho Medical, Inc. Method and apparatus for passing suture
JP2016516534A (en) 2013-04-25 2016-06-09 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical instrument control input visualization field
USD741882S1 (en) 2013-05-01 2015-10-27 Viber Media S.A.R.L. Display screen or a portion thereof with graphical user interface
US20140330298A1 (en) 2013-05-03 2014-11-06 Ethicon Endo-Surgery, Inc. Clamp arm features for ultrasonic surgical instrument
US9687233B2 (en) 2013-05-09 2017-06-27 Dextera Surgical Inc. Surgical stapling and cutting apparatus—deployment mechanisms, systems and methods
US9237900B2 (en) 2013-05-10 2016-01-19 Ethicon Endo-Surgery, Inc. Surgical instrument with split jaw
WO2014186632A1 (en) 2013-05-15 2014-11-20 Cardica, Inc. Surgical stapling and cutting apparatus, clamp mechanisms, systems and methods
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9240740B2 (en) 2013-05-30 2016-01-19 The Boeing Company Active voltage controller for an electric motor
US10722292B2 (en) 2013-05-31 2020-07-28 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
USD742893S1 (en) 2013-06-09 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
USD740851S1 (en) 2013-06-10 2015-10-13 Apple Inc. Display screen or portion thereof with icon
USD742894S1 (en) 2013-06-10 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
DE102013106277A1 (en) 2013-06-17 2014-12-18 Aesculap Ag Surgical clip applicator
US10117654B2 (en) 2013-06-18 2018-11-06 Covidien Lp Method of emergency retraction for electro-mechanical surgical devices and systems
US20140367445A1 (en) 2013-06-18 2014-12-18 Covidien Lp Emergency retraction for electro-mechanical surgical devices and systems
TWM473838U (en) 2013-06-19 2014-03-11 Mouldex Co Ltd Rotary medical connector
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9351728B2 (en) 2013-06-28 2016-05-31 Covidien Lp Articulating apparatus for endoscopic procedures
US10085746B2 (en) 2013-06-28 2018-10-02 Covidien Lp Surgical instrument including rotating end effector and rotation-limiting structure
US9757129B2 (en) 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
KR101550600B1 (en) 2013-07-10 2015-09-07 현대자동차 주식회사 Hydraulic circuit for automatic transmission
JP6157258B2 (en) 2013-07-26 2017-07-05 オリンパス株式会社 Manipulator and manipulator system
USD757028S1 (en) 2013-08-01 2016-05-24 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
US10828089B2 (en) 2013-08-02 2020-11-10 Biosense Webster (Israel) Ltd. Catheter with improved irrigated tip electrode having two-piece construction, and method of manufacturing therefor
USD749623S1 (en) 2013-08-07 2016-02-16 Robert Bosch Gmbh Display screen with an animated graphical user interface
CN104337556B (en) 2013-08-09 2016-07-13 瑞奇外科器械(中国)有限公司 Curved rotation control apparatus and surgical operating instrument
JP6090576B2 (en) 2013-08-19 2017-03-08 日立工機株式会社 Electric tool
CN106028966B (en) 2013-08-23 2018-06-22 伊西康内外科有限责任公司 For the firing member restoring device of powered surgical instrument
WO2015025493A1 (en) 2013-08-23 2015-02-26 日本電産コパル電子株式会社 Damping mechanism
US20150053737A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. End effector detection systems for surgical instruments
USD740414S1 (en) 2013-08-30 2015-10-06 Karl Storz Gmbh & Co. Kg Operation handle for medical manipulator system
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
WO2015032797A1 (en) 2013-09-03 2015-03-12 Frank Wenger Intraluminal stapler
WO2015035178A2 (en) 2013-09-06 2015-03-12 Brigham And Women's Hospital, Inc. System and method for a tissue resection margin measurement device
US9220508B2 (en) 2013-09-06 2015-12-29 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
USD751082S1 (en) 2013-09-13 2016-03-08 Airwatch Llc Display screen with a graphical user interface for an email application
US20140018832A1 (en) 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Method For Applying A Surgical Clip Having A Compliant Portion
US20140014707A1 (en) 2013-09-16 2014-01-16 Ethicon Endo-Surgery, Inc. Surgical Stapling Instrument Having An Improved Coating
US20140014704A1 (en) 2013-09-16 2014-01-16 Ethicon Endo-Surgery, Inc. Medical Device Having An Improved Coating
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US10172636B2 (en) 2013-09-17 2019-01-08 Ethicon Llc Articulation features for ultrasonic surgical instrument
US10271840B2 (en) 2013-09-18 2019-04-30 Covidien Lp Apparatus and method for differentiating between tissue and mechanical obstruction in a surgical instrument
USD768152S1 (en) 2013-09-20 2016-10-04 ACCO Brands Corporation Display screen including a graphical user interface
US20150088547A1 (en) 2013-09-22 2015-03-26 Ricoh Company, Ltd. Mobile Information Gateway for Home Healthcare
CN203564287U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string forceps
US20180132849A1 (en) 2016-11-14 2018-05-17 Ethicon Endo-Surgery, Llc Staple forming pocket configurations for circular surgical stapler anvil
CN203564285U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string clamp
US9936949B2 (en) 2013-09-23 2018-04-10 Ethicon Llc Surgical stapling instrument with drive assembly having toggle features
US10478189B2 (en) 2015-06-26 2019-11-19 Ethicon Llc Method of applying an annular array of staples to tissue
US20150088127A1 (en) 2013-09-24 2015-03-26 Covidien Lp Aseptic bag to encapsulate an energy source of a surgical instrument
WO2015046349A1 (en) 2013-09-27 2015-04-02 オリンパスメディカルシステムズ株式会社 Treatment tool and treatment system
US20140175150A1 (en) 2013-10-01 2014-06-26 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User of A Surgical Instrument
USD749128S1 (en) 2013-10-04 2016-02-09 Microsoft Corporation Display screen with icon
CN104580654B (en) 2013-10-09 2019-05-10 中兴通讯股份有限公司 A kind of method of terminal and electronics waterproof
JP2016530968A (en) 2013-10-10 2016-10-06 ジャイラス エーシーエムアイ インク Laparoscopic forceps assembly
US9295565B2 (en) 2013-10-18 2016-03-29 Spine Wave, Inc. Method of expanding an intradiscal space and providing an osteoconductive path during expansion
CN203597997U (en) 2013-10-31 2014-05-21 山东威瑞外科医用制品有限公司 Nail bin of anastomat and anastomat
US11504346B2 (en) 2013-11-03 2022-11-22 Arizona Board Of Regents On Behalf Of The University Of Arizona Redox-activated pro-chelators
US9936950B2 (en) 2013-11-08 2018-04-10 Ethicon Llc Hybrid adjunct materials for use in surgical stapling
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US20150134077A1 (en) 2013-11-08 2015-05-14 Ethicon Endo-Surgery, Inc. Sealing materials for use in surgical stapling
US9907600B2 (en) 2013-11-15 2018-03-06 Ethicon Llc Ultrasonic anastomosis instrument with piezoelectric sealing head
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
USD750122S1 (en) 2013-12-04 2016-02-23 Medtronic, Inc. Display screen or portion thereof with graphical user interface
USD746854S1 (en) 2013-12-04 2016-01-05 Medtronic, Inc. Display screen or portion thereof with graphical user interface
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
CN105813582B (en) 2013-12-11 2019-05-28 柯惠Lp公司 Wrist units and clamp assemblies for robotic surgical system
US9782193B2 (en) 2013-12-11 2017-10-10 Medos International Sàrl Tissue shaving device having a fluid removal path
CN105813580B (en) 2013-12-12 2019-10-15 柯惠Lp公司 Gear train for robotic surgical system
WO2015095333A1 (en) 2013-12-17 2015-06-25 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
USD744528S1 (en) 2013-12-18 2015-12-01 Aliphcom Display screen or portion thereof with animated graphical user interface
USD769930S1 (en) 2013-12-18 2016-10-25 Aliphcom Display screen or portion thereof with animated graphical user interface
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
USD775336S1 (en) 2013-12-23 2016-12-27 Ethicon Endo-Surgery, Llc Surgical fastener
US9687232B2 (en) 2013-12-23 2017-06-27 Ethicon Llc Surgical staples
US20150173789A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable shaft arrangements
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
WO2015099067A1 (en) * 2013-12-27 2015-07-02 オリンパス株式会社 Treatment tool handle and treatment tool
CN203736251U (en) 2013-12-30 2014-07-30 瑞奇外科器械(中国)有限公司 Support of flexible driving element, end effector and surgical operating instrument
CN103750872B (en) 2013-12-31 2016-05-11 苏州天臣国际医疗科技有限公司 Straight line stitching instrument cutter sweep
CN103690212B (en) 2013-12-31 2015-08-12 上海创亿医疗器械技术有限公司 There is the surgical linear anastomat from changing cutter function
US20150201918A1 (en) 2014-01-02 2015-07-23 Osseodyne Surgical Solutions, Llc Surgical Handpiece
CN203693685U (en) 2014-01-09 2014-07-09 杨宗德 High-speed automatic stop vertebral plate drill
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
US9629627B2 (en) 2014-01-28 2017-04-25 Coviden Lp Surgical apparatus
US9802033B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Surgical devices having controlled tissue cutting and sealing
US9700312B2 (en) 2014-01-28 2017-07-11 Covidien Lp Surgical apparatus
CN203815517U (en) 2014-01-29 2014-09-10 上海创亿医疗器械技术有限公司 Surgical anastomotic nail forming groove with nail bending groove
USD787548S1 (en) 2014-02-10 2017-05-23 What Watch Ag Display screen or portion thereof with animated graphical user interface
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
USD758433S1 (en) 2014-02-11 2016-06-07 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9707005B2 (en) 2014-02-14 2017-07-18 Ethicon Llc Lockout mechanisms for surgical devices
US9974541B2 (en) 2014-02-14 2018-05-22 Covidien Lp End stop detection
CN106028930B (en) 2014-02-21 2021-10-22 3D集成公司 Kit comprising a surgical instrument
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
USD756373S1 (en) 2014-02-21 2016-05-17 Aliphcom Display screen or portion thereof with graphical user interface
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
USD755196S1 (en) 2014-02-24 2016-05-03 Kennedy-Wilson, Inc. Display screen or portion thereof with graphical user interface
BR112016019398B1 (en) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE AND FASTENER CARTRIDGE
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20150238118A1 (en) 2014-02-27 2015-08-27 Biorasis, Inc. Detection of the spatial location of an implantable biosensing platform and method thereof
CN103829983A (en) 2014-03-07 2014-06-04 常州威克医疗器械有限公司 Anti-skid cartridge with different staple heights
WO2015134755A2 (en) 2014-03-07 2015-09-11 Ubiquiti Networks, Inc. Devices and methods for networked living and work spaces
WO2015138708A1 (en) 2014-03-12 2015-09-17 Proximed, Llc Surgical guidance systems, devices, and methods
US9861261B2 (en) 2014-03-14 2018-01-09 Hrayr Karnig Shahinian Endoscope system and method of operation thereof
JP6204858B2 (en) 2014-03-25 2017-09-27 富士フイルム株式会社 Touch panel module and electronic device
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20180132850A1 (en) 2014-03-26 2018-05-17 Ethicon Llc Surgical instrument comprising a sensor system
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
CN111184577A (en) 2014-03-28 2020-05-22 直观外科手术操作公司 Quantitative three-dimensional visualization of an instrument in a field of view
US9724096B2 (en) 2014-03-29 2017-08-08 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
AU2015241267A1 (en) 2014-03-29 2016-10-20 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10420577B2 (en) 2014-03-31 2019-09-24 Covidien Lp Apparatus and method for tissue thickness sensing
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US10610313B2 (en) 2014-03-31 2020-04-07 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission
WO2015151098A2 (en) 2014-04-02 2015-10-08 M.S.T. Medical Surgery Technologies Ltd. An articulated structured light based-laparoscope
US9675405B2 (en) 2014-04-08 2017-06-13 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9980769B2 (en) 2014-04-08 2018-05-29 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9918730B2 (en) 2014-04-08 2018-03-20 Ethicon Llc Methods and devices for controlling motorized surgical devices
WO2015154188A1 (en) 2014-04-09 2015-10-15 The University Of British Columbia Drill cover and chuck mechanism
BR112016023698B1 (en) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc FASTENER CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US11055980B2 (en) 2014-04-16 2021-07-06 Murata Vios, Inc. Patient care and health information management systems and methods
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
USD756377S1 (en) 2014-04-17 2016-05-17 Google Inc. Portion of a display panel with an animated computer icon
US20150297200A1 (en) 2014-04-17 2015-10-22 Covidien Lp End of life transmission system for surgical instruments
DE102015201574A1 (en) 2014-04-17 2015-10-22 Robert Bosch Gmbh battery device
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US10133248B2 (en) 2014-04-28 2018-11-20 Covidien Lp Systems and methods for determining an end of life state for surgical devices
CN106456202A (en) 2014-04-30 2017-02-22 范德比尔特大学 Surgical grasper
USD786280S1 (en) 2014-05-01 2017-05-09 Beijing Qihoo Technology Company Limited Display screen with a graphical user interface
US10175127B2 (en) 2014-05-05 2019-01-08 Covidien Lp End-effector force measurement drive circuit
US9872722B2 (en) 2014-05-05 2018-01-23 Covidien Lp Wake-up system and method for powered surgical instruments
US9861366B2 (en) 2014-05-06 2018-01-09 Covidien Lp Ejecting assembly for a surgical stapler
US9675368B2 (en) 2014-05-07 2017-06-13 Stmicroelectronics Asia Pacific Pte Ltd. Touch panel scanning method, circuit and system
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
USD754679S1 (en) 2014-05-08 2016-04-26 Express Scripts, Inc. Display screen with a graphical user interface
CN103981635B (en) 2014-05-09 2017-01-11 浙江省纺织测试研究院 Preparation method of porous fiber non-woven fabric
CN106687052B (en) 2014-05-15 2019-12-10 柯惠Lp公司 Surgical fastener applying apparatus
US9901341B2 (en) 2014-05-16 2018-02-27 Covidien Lp Surgical instrument
JP2015217112A (en) 2014-05-16 2015-12-07 キヤノン株式会社 Movable type radiographic device and movable type radiation generation device
US9668734B2 (en) 2014-05-16 2017-06-06 Covidien Lp In-situ loaded stapler
JP1517663S (en) 2014-05-30 2015-02-16
USD771112S1 (en) 2014-06-01 2016-11-08 Apple Inc. Display screen or portion thereof with graphical user interface
WO2015187107A1 (en) 2014-06-05 2015-12-10 Eae Elektri̇k Asansör Endüstri̇si̇ İnşaat Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Rotary connection mechanism carrying cable in the wind turbines
US10251725B2 (en) 2014-06-09 2019-04-09 Covidien Lp Authentication and information system for reusable surgical instruments
US9924946B2 (en) * 2014-06-10 2018-03-27 Ethicon Llc Devices and methods for sealing staples in tissue
US9848871B2 (en) 2014-06-10 2017-12-26 Ethicon Llc Woven and fibrous materials for reinforcing a staple line
US10172611B2 (en) 2014-06-10 2019-01-08 Ethicon Llc Adjunct materials and methods of using same in surgical methods for tissue sealing
ES2861258T3 (en) 2014-06-11 2021-10-06 Applied Med Resources Circumferential Shot Surgical Stapler
US9918714B2 (en) 2014-06-13 2018-03-20 Cook Medical Technologies Llc Stapling device and method
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9987099B2 (en) 2014-06-18 2018-06-05 Covidien Lp Disposable housings for encasing handle assemblies
US20150366585A1 (en) 2014-06-18 2015-12-24 Matthieu Olivier Lemay Tension-limiting temporary epicardial pacing wire extraction device
US9471969B2 (en) 2014-06-23 2016-10-18 Exxonmobil Upstream Research Company Methods for differential image quality enhancement for a multiple detector system, systems and use thereof
US10456132B2 (en) 2014-06-25 2019-10-29 Ethicon Llc Jaw opening feature for surgical stapler
US10064620B2 (en) 2014-06-25 2018-09-04 Ethicon Llc Method of unlocking articulation joint in surgical stapler
US9999423B2 (en) 2014-06-25 2018-06-19 Ethicon Llc Translatable articulation joint unlocking feature for surgical stapler
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US10335147B2 (en) 2014-06-25 2019-07-02 Ethicon Llc Method of using lockout features for surgical stapler cartridge
US10292701B2 (en) 2014-06-25 2019-05-21 Ethicon Llc Articulation drive features for surgical stapler
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10561418B2 (en) 2014-06-26 2020-02-18 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US20150374372A1 (en) 2014-06-26 2015-12-31 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
USD753167S1 (en) 2014-06-27 2016-04-05 Opower, Inc. Display screen of a communications terminal with graphical user interface
DE102014009893B4 (en) 2014-07-04 2016-04-28 gomtec GmbH End effector for an instrument
US10064649B2 (en) 2014-07-07 2018-09-04 Covidien Lp Pleated seal for surgical hand or instrument access
JP6265859B2 (en) 2014-07-28 2018-01-24 オリンパス株式会社 Treatment instrument drive
US10717179B2 (en) 2014-07-28 2020-07-21 Black & Decker Inc. Sound damping for power tools
US10058395B2 (en) 2014-08-01 2018-08-28 Intuitive Surgical Operations, Inc. Active and semi-active damping in a telesurgical system
WO2016021268A1 (en) 2014-08-04 2016-02-11 オリンパス株式会社 Surgical instrument
CA2958570C (en) 2014-08-20 2017-11-28 Synaptive Medical (Barbados) Inc. Intra-operative determination of dimensions for fabrication of artificial bone flap
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US20160051316A1 (en) 2014-08-25 2016-02-25 Ethicon Endo-Surgery, Inc. Electrosurgical electrode mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
USD762659S1 (en) 2014-09-02 2016-08-02 Apple Inc. Display screen or portion thereof with graphical user interface
US9943312B2 (en) 2014-09-02 2018-04-17 Ethicon Llc Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9700320B2 (en) 2014-09-02 2017-07-11 Ethicon Llc Devices and methods for removably coupling a cartridge to an end effector of a surgical device
US9848877B2 (en) 2014-09-02 2017-12-26 Ethicon Llc Methods and devices for adjusting a tissue gap of an end effector of a surgical device
US9788835B2 (en) 2014-09-02 2017-10-17 Ethicon Llc Devices and methods for facilitating ejection of surgical fasteners from cartridges
US9795380B2 (en) 2014-09-02 2017-10-24 Ethicon Llc Devices and methods for facilitating closing and clamping of an end effector of a surgical device
US10004500B2 (en) 2014-09-02 2018-06-26 Ethicon Llc Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
US9413128B2 (en) 2014-09-04 2016-08-09 Htc Corporation Connector module having a rotating element disposed within and rotatable relative to a case
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
CN204092074U (en) 2014-09-05 2015-01-14 瑞奇外科器械(中国)有限公司 The driving device of surgical operating instrument and surgical operating instrument
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US20160069449A1 (en) 2014-09-08 2016-03-10 Nidec Copal Electronics Corporation Thin-type gear motor and muscle force assisting device using thin-type gear motor
WO2016037529A1 (en) 2014-09-12 2016-03-17 瑞奇外科器械(中国)有限公司 End effector and staple magazine assembly thereof, and surgical operation instrument
KR20240042093A (en) 2014-09-15 2024-04-01 어플라이드 메디컬 리소시스 코포레이션 Surgical stapler with self-adjusting staple height
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN204158440U (en) 2014-09-26 2015-02-18 重庆康美唯外科器械有限公司 Linear anastomat suturing nail chamber structure
CN204158441U (en) * 2014-09-26 2015-02-18 重庆康美唯外科器械有限公司 Pin chamber of straight anastomat structure
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
US10603128B2 (en) 2014-10-07 2020-03-31 Covidien Lp Handheld electromechanical surgical system
USD766261S1 (en) 2014-10-10 2016-09-13 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9974539B2 (en) 2014-10-15 2018-05-22 Ethicon Llc Surgical instrument battery pack with voltage polling
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
USD780803S1 (en) 2014-10-16 2017-03-07 Orange Research, Inc. Display panel portion with icon
USD761309S1 (en) 2014-10-17 2016-07-12 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
EP3103381A4 (en) 2014-10-20 2017-11-15 Olympus Corporation Solid-state imaging device and electronic endoscope provided with solid-state imaging device
US10729443B2 (en) 2014-10-21 2020-08-04 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
US10085750B2 (en) 2014-10-22 2018-10-02 Covidien Lp Adapter with fire rod J-hook lockout
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP6010269B1 (en) * 2014-11-11 2016-10-19 オリンパス株式会社 Treatment tool and treatment system
USD772905S1 (en) 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with graphical user interface
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
CN112263293B (en) 2014-12-10 2024-08-02 爱德华兹生命科学股份公司 Multiple-firing fixture and methods of use and manufacture thereof
USD777773S1 (en) 2014-12-11 2017-01-31 Lenovo (Beijing) Co., Ltd. Display screen or portion thereof with graphical user interface
WO2016100682A1 (en) 2014-12-17 2016-06-23 Maquet Cardiovascular Llc Surgical device
JP6518766B2 (en) 2014-12-17 2019-05-22 コヴィディエン リミテッド パートナーシップ Surgical stapling device with firing indicator
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
USD785794S1 (en) 2014-12-23 2017-05-02 Gyrus Acmi, Inc. Adapter for a surgical device
ES2971142T3 (en) 2014-12-30 2024-06-03 Touchstone Int Medical Science Co Ltd Stapling head and suturing and cutting apparatus set for endoscopic surgery
WO2016107585A1 (en) 2014-12-30 2016-07-07 苏州天臣国际医疗科技有限公司 Nail head assembly and suturing and cutting apparatus for endoscopic surgery
CN104490440B (en) 2014-12-30 2016-09-14 苏州天臣国际医疗科技有限公司 Surgical operating instrument
US9775611B2 (en) 2015-01-06 2017-10-03 Covidien Lp Clam shell surgical stapling loading unit
AU2016200084B2 (en) 2015-01-16 2020-01-16 Covidien Lp Powered surgical stapling device
EP3865081A1 (en) 2015-01-20 2021-08-18 Talon Medical, LLC Tissue engagement devices and systems
USD798319S1 (en) 2015-02-02 2017-09-26 Scanmaskin Sverige Ab Portion of an electronic display panel with changeable computer-generated screens and icons
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
US10034668B2 (en) 2015-02-19 2018-07-31 Covidien Lp Circular knife blade for linear staplers
USD791784S1 (en) 2015-02-20 2017-07-11 Google Inc. Portion of a display panel with a graphical user interface with icons
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
EP3261702A2 (en) 2015-02-26 2018-01-03 Stryker Corporation Surgical instrument with articulation region
USD767624S1 (en) 2015-02-26 2016-09-27 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
US10130367B2 (en) 2015-02-26 2018-11-20 Covidien Lp Surgical apparatus
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
USD770515S1 (en) 2015-02-27 2016-11-01 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
BR112017018222A2 (en) 2015-02-27 2018-04-17 Ethicon Llc surgical instrument system comprising an inspection station
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9855040B2 (en) 2015-03-04 2018-01-02 Covidien Lp Surgical stapling loading unit having articulating jaws
US20160256159A1 (en) 2015-03-05 2016-09-08 Covidien Lp Jaw members and methods of manufacture
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) * 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
CN204636451U (en) 2015-03-12 2015-09-16 葛益飞 Arteriovenous is cut and stapling apparatus
US10159506B2 (en) 2015-03-16 2018-12-25 Ethicon Llc Methods and devices for actuating surgical instruments
US10092290B2 (en) 2015-03-17 2018-10-09 Covidien Lp Surgical instrument, loading unit for use therewith and related methods
US9918717B2 (en) 2015-03-18 2018-03-20 Covidien Lp Pivot mechanism for surgical device
US9883843B2 (en) 2015-03-19 2018-02-06 Medtronic Navigation, Inc. Apparatus and method of counterbalancing axes and maintaining a user selected position of a X-Ray scanner gantry
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10568621B2 (en) 2015-03-25 2020-02-25 Ethicon Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10863984B2 (en) 2015-03-25 2020-12-15 Ethicon Llc Low inherent viscosity bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
US10136891B2 (en) 2015-03-25 2018-11-27 Ethicon Llc Naturally derived bioabsorbable polymer gel adhesive for releasably attaching a staple buttress to a surgical stapler
US10349939B2 (en) 2015-03-25 2019-07-16 Ethicon Llc Method of applying a buttress to a surgical stapler
US10172617B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
USD832301S1 (en) 2015-03-30 2018-10-30 Creed Smith Display screen or portion thereof with animated graphical user interface
US10390825B2 (en) 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
AU2016243992B2 (en) 2015-04-03 2019-02-21 Conmed Corporation Autoclave tolerant battery powered motorized surgical hand piece tool and motor control method
US10016656B2 (en) 2015-04-07 2018-07-10 Ohio State Innovation Foundation Automatically adjustable treadmill control system
USD768167S1 (en) 2015-04-08 2016-10-04 Anthony M Jones Display screen with icon
US10226239B2 (en) 2015-04-10 2019-03-12 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US10226274B2 (en) 2015-04-16 2019-03-12 Ethicon Llc Ultrasonic surgical instrument with articulation joint having plurality of locking positions
US10111698B2 (en) 2015-04-16 2018-10-30 Ethicon Llc Surgical instrument with rotatable shaft having plurality of locking positions
US10029125B2 (en) 2015-04-16 2018-07-24 Ethicon Llc Ultrasonic surgical instrument with articulation joint having integral stiffening members
WO2016171395A1 (en) 2015-04-20 2016-10-27 주식회사 메디튤립 Surgical linear stapler
WO2016171947A1 (en) 2015-04-22 2016-10-27 Covidien Lp Handheld electromechanical surgical system
US20160314712A1 (en) 2015-04-27 2016-10-27 KindHeart, Inc. Telerobotic surgery system for remote surgeon training using robotic surgery station and remote surgeon station and associated methods
US10117650B2 (en) 2015-05-05 2018-11-06 Covidien Lp Adapter assembly and loading units for surgical stapling devices
US10299789B2 (en) 2015-05-05 2019-05-28 Covidie LP Adapter assembly for surgical stapling devices
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
EP4245227A3 (en) * 2015-05-08 2024-01-17 Bolder Surgical, LLC Surgical stapler
CA2930309C (en) 2015-05-22 2019-02-26 Covidien Lp Surgical instruments and methods for performing tonsillectomy, adenoidectomy, and other surgical procedures
US10349941B2 (en) 2015-05-27 2019-07-16 Covidien Lp Multi-fire lead screw stapling device
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
USD772269S1 (en) 2015-06-05 2016-11-22 Apple Inc. Display screen or portion thereof with graphical user interface
USD764498S1 (en) 2015-06-07 2016-08-23 Apple Inc. Display screen or portion thereof with graphical user interface
US10201381B2 (en) 2015-06-11 2019-02-12 Conmed Corporation Hand instruments with shaped shafts for use in laparoscopic surgery
KR101719208B1 (en) 2015-06-17 2017-03-23 주식회사 하이딥 Touch pressure detectable touch input device including display module
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
USD769315S1 (en) 2015-07-09 2016-10-18 Monthly Gift Inc. Display screen or portion thereof with graphical user interface
EP3145419B1 (en) 2015-07-21 2019-11-27 3dintegrated ApS Cannula assembly kit, trocar assembly kit and minimally invasive surgery system
US10201348B2 (en) 2015-07-28 2019-02-12 Ethicon Llc Surgical stapler cartridge with compression features at staple driver edges
US10045782B2 (en) 2015-07-30 2018-08-14 Covidien Lp Surgical stapling loading unit with stroke counter and lockout
US10194913B2 (en) 2015-07-30 2019-02-05 Ethicon Llc Surgical instrument comprising systems for assuring the proper sequential operation of the surgical instrument
US11154300B2 (en) 2015-07-30 2021-10-26 Cilag Gmbh International Surgical instrument comprising separate tissue securing and tissue cutting systems
USD768709S1 (en) 2015-07-31 2016-10-11 Gen-Probe Incorporated Display screen or portion thereof with animated graphical user interface
USD763277S1 (en) 2015-08-06 2016-08-09 Fore Support Services, Llc Display screen with an insurance authorization/preauthorization dashboard graphical user interface
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
USD803234S1 (en) 2015-08-26 2017-11-21 General Electric Company Display screen or portion thereof with graphical user interface
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
USD770476S1 (en) 2015-08-27 2016-11-01 Google Inc. Display screen with animated graphical user interface
US10130738B2 (en) 2015-08-31 2018-11-20 Ethicon Llc Adjunct material to promote tissue growth
US9829698B2 (en) 2015-08-31 2017-11-28 Panasonic Corporation Endoscope
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10245034B2 (en) 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
EP3344165B1 (en) 2015-09-03 2020-12-30 Stryker Corporation Powered surgical drill with integral depth gauge that includes a probe that slides over the drill bit
CA2998456A1 (en) 2015-09-15 2017-03-23 Alfacyte Ltd Compositions and methods relating to the treatment of diseases
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US20170079642A1 (en) 2015-09-23 2017-03-23 Ethicon Endo-Surgery, Llc Surgical stapler having magnetic field-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10182813B2 (en) 2015-09-29 2019-01-22 Ethicon Llc Surgical stapling instrument with shaft release, powered firing, and powered articulation
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10085810B2 (en) 2015-10-02 2018-10-02 Ethicon Llc User input device for robotic surgical system
US10342535B2 (en) 2015-10-15 2019-07-09 Ethicon Llc Method of applying staples to liver and other organs
US10226251B2 (en) 2015-10-15 2019-03-12 Ethicon Llc Surgical staple actuating sled with actuation stroke having minimized distance relative to distal staple
US10265073B2 (en) 2015-10-15 2019-04-23 Ethicon Llc Surgical stapler with terminal staple orientation crossing center line
US11141159B2 (en) 2015-10-15 2021-10-12 Cilag Gmbh International Surgical stapler end effector with multi-staple driver crossing center line
USD788140S1 (en) 2015-10-16 2017-05-30 Nasdaq, Inc. Display screen or portion thereof with animated graphical user interface
USD788123S1 (en) 2015-10-20 2017-05-30 23Andme, Inc. Display screen or portion thereof with a graphical user interface for conveying genetic information
USD788792S1 (en) 2015-10-28 2017-06-06 Technogym S.P.A. Portion of a display screen with a graphical user interface
US10772632B2 (en) 2015-10-28 2020-09-15 Covidien Lp Surgical stapling device with triple leg staples
US10517592B2 (en) 2015-10-29 2019-12-31 Ethicon Llc Surgical stapler buttress assembly with adhesion to wet end effector
US10441286B2 (en) 2015-10-29 2019-10-15 Ethicon Llc Multi-layer surgical stapler buttress assembly
US10357248B2 (en) 2015-10-29 2019-07-23 Ethicon Llc Extensible buttress assembly for surgical stapler
US10433839B2 (en) 2015-10-29 2019-10-08 Ethicon Llc Surgical stapler buttress assembly with gel adhesive retainer
US10251649B2 (en) 2015-10-29 2019-04-09 Ethicon Llc Surgical stapler buttress applicator with data communication
US10314588B2 (en) 2015-10-29 2019-06-11 Ethicon Llc Fluid penetrable buttress assembly for a surgical stapler
US10499918B2 (en) 2015-10-29 2019-12-10 Ethicon Llc Surgical stapler buttress assembly with features to interact with movable end effector components
WO2017079044A1 (en) 2015-11-06 2017-05-11 Intuitive Surgical Operations, Inc. Knife with mechanical fuse
DE102015221998B4 (en) 2015-11-09 2019-01-17 Siemens Healthcare Gmbh A method of assisting a finder in locating a target structure in a breast, apparatus and computer program
CN108135665B (en) 2015-11-11 2021-02-05 直观外科手术操作公司 Reconfigurable end effector architecture
WO2017083129A1 (en) 2015-11-13 2017-05-18 Intuitive Surgical Operations, Inc. Stapler anvil with compliant tip
WO2017083989A1 (en) 2015-11-16 2017-05-26 Ao Technology Ag Surgical power drill including a measuring unit suitable for bone screw length determination
US10617411B2 (en) 2015-12-01 2020-04-14 Covidien Lp Adapter assembly for surgical device
CN108289686B (en) 2015-12-03 2021-03-16 波士顿科学国际有限公司 Electric knife hemostatic clamp
US10111660B2 (en) 2015-12-03 2018-10-30 Covidien Lp Surgical stapler flexible distal tip
USD803235S1 (en) 2015-12-04 2017-11-21 Capital One Services, Llc Display screen with a graphical user interface
USD789384S1 (en) 2015-12-09 2017-06-13 Facebook, Inc. Display screen with animated graphical user interface
GB201521809D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Symmetrically arranged surgical instrument articulation
USD800766S1 (en) 2015-12-11 2017-10-24 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
USD795919S1 (en) 2015-12-17 2017-08-29 The Procter & Gamble Company Display screen with icon
US10624616B2 (en) 2015-12-18 2020-04-21 Covidien Lp Surgical instruments including sensors
USD864388S1 (en) 2015-12-21 2019-10-22 avateramedical GmBH Instrument unit
US10420554B2 (en) 2015-12-22 2019-09-24 Covidien Lp Personalization of powered surgical devices
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10561474B2 (en) 2015-12-31 2020-02-18 Ethicon Llc Surgical stapler with end of stroke indicator
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US10786248B2 (en) 2016-01-11 2020-09-29 Ethicon. Inc. Intra dermal tissue fixation device
WO2017123584A1 (en) 2016-01-11 2017-07-20 GYRUS ACMI, INC. (d/b/a OLYMPUS SURGICAL TECHNOLOGIES AMERICA) Forceps with tissue stops
GB201600546D0 (en) 2016-01-12 2016-02-24 Gyrus Medical Ltd Electrosurgical device
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
EP3192491B1 (en) 2016-01-15 2020-01-08 Evonik Operations GmbH Composition comprising polyglycerol esters and hydroxy-alkyl modified guar
KR20180100702A (en) 2016-01-29 2018-09-11 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems and Methods for Variable Speed Surgical Instruments
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
USD782530S1 (en) 2016-02-01 2017-03-28 Microsoft Corporation Display screen with animated graphical user interface
JP6619103B2 (en) 2016-02-04 2019-12-11 コヴィディエン リミテッド パートナーシップ Circular stapler with visual indicator mechanism
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10420559B2 (en) 2016-02-11 2019-09-24 Covidien Lp Surgical stapler with small diameter endoscopic portion
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10315566B2 (en) 2016-03-07 2019-06-11 Lg Electronics Inc. Vehicle control device mounted on vehicle and method for controlling the vehicle
USD800904S1 (en) 2016-03-09 2017-10-24 Ethicon Endo-Surgery, Llc Surgical stapling instrument
CN111329553B (en) 2016-03-12 2021-05-04 P·K·朗 Devices and methods for surgery
US10350016B2 (en) 2016-03-17 2019-07-16 Intuitive Surgical Operations, Inc. Stapler with cable-driven advanceable clamping element and dual distal pulleys
US10278703B2 (en) 2016-03-21 2019-05-07 Ethicon, Inc. Temporary fixation tools for use with circular anastomotic staplers
USD800742S1 (en) 2016-03-25 2017-10-24 Illumina, Inc. Display screen or portion thereof with graphical user interface
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
US10722233B2 (en) 2016-04-07 2020-07-28 Intuitive Surgical Operations, Inc. Stapling cartridge
ES2882141T3 (en) 2016-04-12 2021-12-01 Applied Med Resources Refill Stem Assembly for Surgical Stapler
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
USD786896S1 (en) 2016-04-29 2017-05-16 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US11076908B2 (en) 2016-06-02 2021-08-03 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
US20170348010A1 (en) 2016-06-03 2017-12-07 Orion Biotech Inc. Surgical drill and method of controlling the automatic stop thereof
USD790575S1 (en) 2016-06-12 2017-06-27 Apple Inc. Display screen or portion thereof with graphical user interface
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US10349963B2 (en) 2016-06-14 2019-07-16 Gyrus Acmi, Inc. Surgical apparatus with jaw force limiter
US20170360441A1 (en) 2016-06-15 2017-12-21 Covidien Lp Tool assembly for leak resistant tissue dissection
EP3293617B1 (en) 2016-06-16 2020-01-29 Shenzhen Goodix Technology Co., Ltd. Touch sensor, touch detection apparatus and detection method, and touch control device
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD819682S1 (en) 2016-06-29 2018-06-05 Rockwell Collins, Inc. Ground system display screen portion with transitional graphical user interface
USD813899S1 (en) 2016-07-20 2018-03-27 Facebook, Inc. Display screen with animated graphical user interface
USD845342S1 (en) 2016-08-02 2019-04-09 Smule, Inc. Display screen or portion thereof with graphical user interface
USD844667S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
USD844666S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
US10413373B2 (en) 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10500000B2 (en) 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
WO2018044997A1 (en) 2016-09-02 2018-03-08 Saudi Arabian Oil Company Controlling hydrocarbon production
USD806108S1 (en) 2016-10-07 2017-12-26 General Electric Company Display screen portion with graphical user interface for a healthcare command center computing system
CN107967874B (en) 2016-10-19 2020-04-28 元太科技工业股份有限公司 Pixel structure
JP7300795B2 (en) 2016-10-26 2023-06-30 メッドレスポンド インコーポレイテッド Systems and methods for synthetic interaction with users and devices
US10631857B2 (en) 2016-11-04 2020-04-28 Covidien Lp Loading unit for surgical instruments with low profile pushers
US11642126B2 (en) 2016-11-04 2023-05-09 Covidien Lp Surgical stapling apparatus with tissue pockets
USD819684S1 (en) 2016-11-04 2018-06-05 Microsoft Corporation Display screen with graphical user interface
US11116594B2 (en) 2016-11-08 2021-09-14 Covidien Lp Surgical systems including adapter assemblies for interconnecting electromechanical surgical devices and end effectors
USD820307S1 (en) 2016-11-16 2018-06-12 Airbnb, Inc. Display screen with graphical user interface for a video pagination indicator
US10736648B2 (en) 2016-11-16 2020-08-11 Ethicon Llc Surgical instrument with removable portion to facilitate cleaning
USD810099S1 (en) 2016-11-17 2018-02-13 Nasdaq, Inc. Display screen or portion thereof with graphical user interface
US10337148B2 (en) 2016-11-23 2019-07-02 Kimberly-Clark Worldwide, Inc. Hesperaloe tissue having improved cross-machine direction properties
US10881446B2 (en) 2016-12-19 2021-01-05 Ethicon Llc Visual displays of electrical pathways
USD841667S1 (en) 2016-12-19 2019-02-26 Coren Intellect LLC Display screen with employee survey graphical user interface
USD808989S1 (en) 2016-12-20 2018-01-30 Abbott Laboratories Display screen with graphical user interface
USD831676S1 (en) 2016-12-20 2018-10-23 Hancom, Inc. Display screen or portion thereof with icon
US10405932B2 (en) 2016-12-20 2019-09-10 Ethicon Llc Robotic endocutter drivetrain with bailout and manual opening
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168618A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US20180168609A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Firing assembly comprising a fuse
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
USD820867S1 (en) 2016-12-30 2018-06-19 Facebook, Inc. Display screen with animated graphical user interface
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10758231B2 (en) 2017-02-17 2020-09-01 Ethicon Llc Surgical stapler with bent anvil tip, angled staple cartridge tip, and tissue gripping features
US10813710B2 (en) 2017-03-02 2020-10-27 KindHeart, Inc. Telerobotic surgery system using minimally invasive surgical tool with variable force scaling and feedback and relayed communications between remote surgeon and surgery station
US10299790B2 (en) 2017-03-03 2019-05-28 Covidien Lp Adapter with centering mechanism for articulation joint
USD854032S1 (en) 2017-03-03 2019-07-16 Deere & Company Display screen with a graphical user interface
US11078945B2 (en) 2017-03-26 2021-08-03 Verb Surgical Inc. Coupler to attach robotic arm to surgical table
USD837244S1 (en) 2017-03-27 2019-01-01 Vudu, Inc. Display screen or portion thereof with interactive graphical user interface
USD837245S1 (en) 2017-03-27 2019-01-01 Vudu, Inc. Display screen or portion thereof with graphical user interface
USD819072S1 (en) 2017-03-30 2018-05-29 Facebook, Inc. Display panel of a programmed computer system with a graphical user interface
JP6557274B2 (en) 2017-03-31 2019-08-07 ファナック株式会社 Component mounting position guidance device, component mounting position guidance system, and component mounting position guidance method
US10765442B2 (en) 2017-04-14 2020-09-08 Ethicon Llc Surgical devices and methods for biasing an end effector to a closed configuration
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
JP1601498S (en) 2017-06-05 2018-04-09
USD836124S1 (en) 2017-06-19 2018-12-18 Abishkking Ltd. Display screen or portion thereof with a graphical user interface
US20180360456A1 (en) 2017-06-20 2018-12-20 Ethicon Llc Surgical instrument having controllable articulation velocity
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10639018B2 (en) 2017-06-27 2020-05-05 Ethicon Llc Battery pack with integrated circuit providing sleep mode to battery pack and associated surgical instrument
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10888369B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Systems and methods for controlling control circuits for independent energy delivery over segmented sections
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11065048B2 (en) 2017-06-28 2021-07-20 Cilag Gmbh International Flexible circuit arrangement for surgical fastening instruments
US10888325B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10813640B2 (en) 2017-06-28 2020-10-27 Ethicon Llc Method of coating slip rings
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11013552B2 (en) 2017-06-28 2021-05-25 Cilag Gmbh International Electrosurgical cartridge for use in thin profile surgical cutting and stapling instrument
US11129666B2 (en) 2017-06-28 2021-09-28 Cilag Gmbh International Shaft module circuitry arrangements
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
USD865796S1 (en) 2017-07-19 2019-11-05 Lenovo (Beijing) Co., Ltd. Smart glasses with graphical user interface
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
USD855634S1 (en) 2017-08-17 2019-08-06 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
USD831209S1 (en) 2017-09-14 2018-10-16 Ethicon Llc Surgical stapler cartridge
USD863343S1 (en) 2017-09-27 2019-10-15 Bigfoot Biomedical, Inc. Display screen or portion thereof with graphical user interface associated with insulin delivery
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD847199S1 (en) 2017-10-16 2019-04-30 Caterpillar Inc. Display screen with animated graphical user interface
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
USD848473S1 (en) 2017-11-01 2019-05-14 General Electric Company Display screen with transitional graphical user interface
USD839900S1 (en) 2017-11-06 2019-02-05 Shenzhen Valuelink E-Commerce Co., Ltd. Display screen with graphical user interface
JP1630005S (en) 2017-11-21 2019-04-22
AU201812807S (en) 2017-11-24 2018-06-14 Dyson Technology Ltd Display screen with graphical user interface
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US20190183502A1 (en) 2017-12-15 2019-06-20 Ethicon Llc Systems and methods of controlling a clamping member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US20190192147A1 (en) 2017-12-21 2019-06-27 Ethicon Llc Surgical instrument comprising an articulatable distal head
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
USD870742S1 (en) 2018-01-26 2019-12-24 Facebook, Inc. Display screen or portion thereof with animated user interface
US10210244B1 (en) 2018-02-12 2019-02-19 Asapp, Inc. Updating natural language interfaces by processing usage data
AU2019228507A1 (en) 2018-02-27 2020-08-13 Applied Medical Resources Corporation Surgical stapler having a powered handle
USD861035S1 (en) 2018-03-01 2019-09-24 Google Llc Display screen with animated icon
USD856359S1 (en) 2018-05-30 2019-08-13 Mindtronic Ai Co., Ltd. Vehicle display screen or portion thereof with an animated graphical user interface
US10973515B2 (en) 2018-07-16 2021-04-13 Ethicon Llc Permanent attachment means for curved tip of component of surgical stapling instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US20200054321A1 (en) 2018-08-20 2020-02-20 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments

Cited By (1402)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US12029423B2 (en) 2004-07-28 2024-07-09 Cilag Gmbh International Surgical stapling instrument comprising a staple cartridge
US12011165B2 (en) 2004-07-28 2024-06-18 Cilag Gmbh International Surgical stapling instrument comprising replaceable staple cartridge
US11998198B2 (en) 2004-07-28 2024-06-04 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11963679B2 (en) 2004-07-28 2024-04-23 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US11944299B2 (en) 2006-01-31 2024-04-02 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US11980366B2 (en) 2006-10-03 2024-05-14 Cilag Gmbh International Surgical instrument
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11918211B2 (en) 2007-01-10 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US12082806B2 (en) 2007-01-10 2024-09-10 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11937814B2 (en) 2007-01-10 2024-03-26 Cilag Gmbh International Surgical instrument for use with a robotic system
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US12004743B2 (en) 2007-01-10 2024-06-11 Cilag Gmbh International Staple cartridge comprising a sloped wall
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US11931032B2 (en) 2007-01-10 2024-03-19 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US12035906B2 (en) 2007-06-04 2024-07-16 Cilag Gmbh International Surgical instrument including a handle system for advancing a cutting member
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US11992208B2 (en) 2007-06-04 2024-05-28 Cilag Gmbh International Rotary drive systems for surgical instruments
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US12023024B2 (en) 2007-06-04 2024-07-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US11998200B2 (en) 2007-06-22 2024-06-04 Cilag Gmbh International Surgical stapling instrument with an articulatable end effector
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US12023025B2 (en) 2007-06-29 2024-07-02 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11925346B2 (en) 2007-06-29 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US11998206B2 (en) 2008-02-14 2024-06-04 Cilag Gmbh International Detachable motor powered surgical instrument
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US11986183B2 (en) 2008-02-14 2024-05-21 Cilag Gmbh International Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US11998194B2 (en) 2008-02-15 2024-06-04 Cilag Gmbh International Surgical stapling assembly comprising an adjunct applicator
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US12029415B2 (en) 2008-09-23 2024-07-09 Cilag Gmbh International Motor-driven surgical cutting instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11957795B2 (en) 2010-09-30 2024-04-16 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US11944292B2 (en) 2010-09-30 2024-04-02 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11918208B2 (en) 2011-05-27 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11974747B2 (en) 2011-05-27 2024-05-07 Cilag Gmbh International Surgical stapling instruments with rotatable staple deployment arrangements
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US12059154B2 (en) 2011-05-27 2024-08-13 Cilag Gmbh International Surgical instrument with detachable motor control unit
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US11918220B2 (en) 2012-03-28 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11918213B2 (en) 2012-06-28 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US11957345B2 (en) 2013-03-01 2024-04-16 Cilag Gmbh International Articulatable surgical instruments with conductive pathways for signal communication
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US11992214B2 (en) 2013-03-14 2024-05-28 Cilag Gmbh International Control systems for surgical instruments
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US11918209B2 (en) 2013-08-23 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US12053176B2 (en) 2013-08-23 2024-08-06 Cilag Gmbh International End effector detention systems for surgical instruments
US11911044B2 (en) 2013-12-17 2024-02-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US10987108B2 (en) 2013-12-17 2021-04-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US11759201B2 (en) 2013-12-23 2023-09-19 Cilag Gmbh International Surgical stapling system comprising an end effector including an anvil with an anvil cap
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11779327B2 (en) 2013-12-23 2023-10-10 Cilag Gmbh International Surgical stapling system including a push bar
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US11896223B2 (en) 2013-12-23 2024-02-13 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11950776B2 (en) 2013-12-23 2024-04-09 Cilag Gmbh International Modular surgical instruments
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11364028B2 (en) 2013-12-23 2022-06-21 Cilag Gmbh International Modular surgical system
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US11246587B2 (en) 2013-12-23 2022-02-15 Cilag Gmbh International Surgical cutting and stapling instruments
US11583273B2 (en) 2013-12-23 2023-02-21 Cilag Gmbh International Surgical stapling system including a firing beam extending through an articulation region
US11026677B2 (en) 2013-12-23 2021-06-08 Cilag Gmbh International Surgical stapling assembly
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US12023022B2 (en) 2014-03-26 2024-07-02 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US12023023B2 (en) 2014-03-26 2024-07-02 Cilag Gmbh International Interface systems for use with surgical instruments
US11812962B2 (en) 2014-03-29 2023-11-14 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US12053178B2 (en) 2014-03-29 2024-08-06 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11510672B2 (en) 2014-03-29 2022-11-29 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11717295B2 (en) 2014-03-29 2023-08-08 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11096686B2 (en) 2014-03-29 2021-08-24 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11633184B2 (en) 2014-03-29 2023-04-25 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US12089849B2 (en) 2014-04-16 2024-09-17 Cilag Gmbh International Staple cartridges including a projection
US11963678B2 (en) 2014-04-16 2024-04-23 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11944307B2 (en) 2014-04-16 2024-04-02 Cilag Gmbh International Surgical stapling system including jaw windows
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11974746B2 (en) 2014-04-16 2024-05-07 Cilag Gmbh International Anvil for use with a surgical stapling assembly
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11925353B2 (en) 2014-04-16 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US11918222B2 (en) 2014-04-16 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US12042147B2 (en) 2014-09-05 2024-07-23 Cllag GmbH International Smart cartridge wake up operation and data retention
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US12076017B2 (en) 2014-09-18 2024-09-03 Cilag Gmbh International Surgical instrument including a deployable knife
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US12016564B2 (en) 2014-09-26 2024-06-25 Cilag Gmbh International Circular fastener cartridges for applying radially expandable fastener lines
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US11931031B2 (en) 2014-10-16 2024-03-19 Cilag Gmbh International Staple cartridge comprising a deck including an upper surface and a lower surface
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US11918210B2 (en) 2014-10-16 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells
US12004741B2 (en) 2014-10-16 2024-06-11 Cilag Gmbh International Staple cartridge comprising a tissue thickness compensator
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11931038B2 (en) 2014-10-29 2024-03-19 Cilag Gmbh International Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US12114859B2 (en) 2014-12-10 2024-10-15 Cilag Gmbh International Articulatable surgical instrument system
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US12029419B2 (en) 2014-12-18 2024-07-09 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US12108950B2 (en) 2014-12-18 2024-10-08 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US12076018B2 (en) 2015-02-27 2024-09-03 Cilag Gmbh International Modular stapling assembly
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US11944338B2 (en) 2015-03-06 2024-04-02 Cilag Gmbh International Multiple level thresholds to modify operation of powered surgical instruments
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US11918212B2 (en) 2015-03-31 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US11510675B2 (en) 2015-08-26 2022-11-29 Cilag Gmbh International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
US12035915B2 (en) 2015-08-26 2024-07-16 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US11963682B2 (en) 2015-08-26 2024-04-23 Cilag Gmbh International Surgical staples comprising hardness variations for improved fastening of tissue
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10966724B2 (en) 2015-08-26 2021-04-06 Ethicon Llc Surgical staples comprising a guide
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US11051817B2 (en) 2015-08-26 2021-07-06 Cilag Gmbh International Method for forming a staple against an anvil of a surgical stapling instrument
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11589868B2 (en) 2015-09-02 2023-02-28 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11129430B2 (en) * 2015-09-09 2021-09-28 Gruppo Meccaniche Luciani S.R.L. Apparatus for applying studs
US11324620B2 (en) 2015-09-16 2022-05-10 Standard Bariatrics, Inc. Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US11944308B2 (en) 2015-09-30 2024-04-02 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11974772B2 (en) 2016-01-15 2024-05-07 Cilag GmbH Intemational Modular battery powered handheld surgical instrument with variable motor control limits
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11931028B2 (en) 2016-04-15 2024-03-19 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
USD948043S1 (en) 2016-06-24 2022-04-05 Cilag Gmbh International Surgical fastener
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US11786246B2 (en) 2016-06-24 2023-10-17 Cilag Gmbh International Stapling system for use with wire staples and stamped staples
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US12114914B2 (en) 2016-08-05 2024-10-15 Cilag Gmbh International Methods and systems for advanced harmonic energy
US11998230B2 (en) 2016-11-29 2024-06-04 Cilag Gmbh International End effector control and calibration
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US11992213B2 (en) 2016-12-21 2024-05-28 Cilag Gmbh International Surgical stapling instruments with replaceable staple cartridges
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US11000276B2 (en) 2016-12-21 2021-05-11 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US11931034B2 (en) 2016-12-21 2024-03-19 Cilag Gmbh International Surgical stapling instruments with smart staple cartridges
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US11957344B2 (en) 2016-12-21 2024-04-16 Cilag Gmbh International Surgical stapler having rows of obliquely oriented staples
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US12011166B2 (en) 2016-12-21 2024-06-18 Cilag Gmbh International Articulatable surgical stapling instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US12004745B2 (en) 2016-12-21 2024-06-11 Cilag Gmbh International Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11918215B2 (en) 2016-12-21 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD1039559S1 (en) 2017-06-20 2024-08-20 Cilag Gmbh International Display panel with changeable graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US12023029B2 (en) 2017-06-28 2024-07-02 Cilag Gmbh International Flexible circuit for surgical instruments
US11896221B2 (en) 2017-06-28 2024-02-13 Cilag GmbH Intemational Surgical cartridge system with impedance sensors
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD1018577S1 (en) 2017-06-28 2024-03-19 Cilag Gmbh International Display screen or portion thereof with a graphical user interface for a surgical instrument
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11974742B2 (en) 2017-08-03 2024-05-07 Cilag Gmbh International Surgical system comprising an articulation bailout
US11871927B2 (en) 2017-08-14 2024-01-16 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11911033B2 (en) 2017-08-14 2024-02-27 Standard Bariatrics, Inc. Stapling systems and methods for surgical devices and end effectors
US10966721B2 (en) 2017-08-14 2021-04-06 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11197672B2 (en) 2017-08-14 2021-12-14 Standard Bariatrics, Inc. Buttress systems and methods for surgical stapling devices and end effectors
US11559305B2 (en) 2017-08-14 2023-01-24 Standard Bariatrics, Inc. Stapling systems and methods for surgical devices and end effectors
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11998199B2 (en) 2017-09-29 2024-06-04 Cllag GmbH International System and methods for controlling a display of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10959744B2 (en) 2017-10-30 2021-03-30 Ethicon Llc Surgical dissectors and manufacturing techniques
US10772651B2 (en) 2017-10-30 2020-09-15 Ethicon Llc Surgical instruments comprising a system for articulation and rotation compensation
US11141160B2 (en) 2017-10-30 2021-10-12 Cilag Gmbh International Clip applier comprising a motor controller
US11045197B2 (en) 2017-10-30 2021-06-29 Cilag Gmbh International Clip applier comprising a movable clip magazine
US11413042B2 (en) 2017-10-30 2022-08-16 Cilag Gmbh International Clip applier comprising a reciprocating clip advancing member
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US12076011B2 (en) 2017-10-30 2024-09-03 Cilag Gmbh International Surgical stapler knife motion controls
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US12059218B2 (en) 2017-10-30 2024-08-13 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10980560B2 (en) 2017-10-30 2021-04-20 Ethicon Llc Surgical instrument systems comprising feedback mechanisms
US11925373B2 (en) 2017-10-30 2024-03-12 Cilag Gmbh International Surgical suturing instrument comprising a non-circular needle
US11103268B2 (en) 2017-10-30 2021-08-31 Cilag Gmbh International Surgical clip applier comprising adaptive firing control
US11602366B2 (en) 2017-10-30 2023-03-14 Cilag Gmbh International Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power
US10932806B2 (en) 2017-10-30 2021-03-02 Ethicon Llc Reactive algorithm for surgical system
US11759224B2 (en) 2017-10-30 2023-09-19 Cilag Gmbh International Surgical instrument systems comprising handle arrangements
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11819231B2 (en) 2017-10-30 2023-11-21 Cilag Gmbh International Adaptive control programs for a surgical system comprising more than one type of cartridge
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11071560B2 (en) 2017-10-30 2021-07-27 Cilag Gmbh International Surgical clip applier comprising adaptive control in response to a strain gauge circuit
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US12035983B2 (en) 2017-10-30 2024-07-16 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11207090B2 (en) 2017-10-30 2021-12-28 Cilag Gmbh International Surgical instruments comprising a biased shifting mechanism
US11026713B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical clip applier configured to store clips in a stored state
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11026712B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical instruments comprising a shifting mechanism
US11696778B2 (en) 2017-10-30 2023-07-11 Cilag Gmbh International Surgical dissectors configured to apply mechanical and electrical energy
US11291465B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Surgical instruments comprising a lockable end effector socket
US11109878B2 (en) 2017-10-30 2021-09-07 Cilag Gmbh International Surgical clip applier comprising an automatic clip feeding system
US11051836B2 (en) 2017-10-30 2021-07-06 Cilag Gmbh International Surgical clip applier comprising an empty clip cartridge lockout
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11648022B2 (en) 2017-10-30 2023-05-16 Cilag Gmbh International Surgical instrument systems comprising battery arrangements
US11793537B2 (en) 2017-10-30 2023-10-24 Cilag Gmbh International Surgical instrument comprising an adaptive electrical system
US11564703B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Surgical suturing instrument comprising a capture width which is larger than trocar diameter
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11963680B2 (en) 2017-10-31 2024-04-23 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US12076096B2 (en) 2017-12-19 2024-09-03 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11751958B2 (en) 2017-12-28 2023-09-12 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US12096916B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12096985B2 (en) 2017-12-28 2024-09-24 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11775682B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US12076010B2 (en) 2017-12-28 2024-09-03 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11779337B2 (en) 2017-12-28 2023-10-10 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11737668B2 (en) 2017-12-28 2023-08-29 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US12059169B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US12059124B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US12062442B2 (en) 2017-12-28 2024-08-13 Cilag Gmbh International Method for operating surgical instrument systems
US12053159B2 (en) 2017-12-28 2024-08-06 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US12048496B2 (en) 2017-12-28 2024-07-30 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US12042207B2 (en) 2017-12-28 2024-07-23 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US12035890B2 (en) 2017-12-28 2024-07-16 Cilag Gmbh International Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11712303B2 (en) 2017-12-28 2023-08-01 Cilag Gmbh International Surgical instrument comprising a control circuit
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11701185B2 (en) 2017-12-28 2023-07-18 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US12029506B2 (en) 2017-12-28 2024-07-09 Cilag Gmbh International Method of cloud based data analytics for use with the hub
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11696760B2 (en) 2017-12-28 2023-07-11 Cilag Gmbh International Safety systems for smart powered surgical stapling
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11382697B2 (en) 2017-12-28 2022-07-12 Cilag Gmbh International Surgical instruments comprising button circuits
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US12009095B2 (en) 2017-12-28 2024-06-11 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11998193B2 (en) 2017-12-28 2024-06-04 Cilag Gmbh International Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11969142B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11969216B2 (en) 2017-12-28 2024-04-30 Cilag Gmbh International Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11864845B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Sterile field interactive control displays
US11589932B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11601371B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11596291B2 (en) 2017-12-28 2023-03-07 Cilag Gmbh International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11179204B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11931110B2 (en) 2017-12-28 2024-03-19 Cilag Gmbh International Surgical instrument comprising a control system that uses input from a strain gage circuit
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11918302B2 (en) 2017-12-28 2024-03-05 Cilag Gmbh International Sterile field interactive control displays
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11890065B2 (en) 2017-12-28 2024-02-06 Cilag Gmbh International Surgical system to limit displacement
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11045591B2 (en) 2017-12-28 2021-06-29 Cilag Gmbh International Dual in-series large and small droplet filters
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11058498B2 (en) 2017-12-28 2021-07-13 Cilag Gmbh International Cooperative surgical actions for robot-assisted surgical platforms
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11903587B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Adjustment to the surgical stapling control based on situational awareness
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11114195B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Surgical instrument with a tissue marking assembly
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11399858B2 (en) 2018-03-08 2022-08-02 Cilag Gmbh International Application of smart blade technology
US11534196B2 (en) 2018-03-08 2022-12-27 Cilag Gmbh International Using spectroscopy to determine device use state in combo instrument
US11701139B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11707293B2 (en) 2018-03-08 2023-07-25 Cilag Gmbh International Ultrasonic sealing algorithm with temperature control
US11344326B2 (en) 2018-03-08 2022-05-31 Cilag Gmbh International Smart blade technology to control blade instability
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11839396B2 (en) 2018-03-08 2023-12-12 Cilag Gmbh International Fine dissection mode for tissue classification
US11844545B2 (en) 2018-03-08 2023-12-19 Cilag Gmbh International Calcified vessel identification
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11701162B2 (en) 2018-03-08 2023-07-18 Cilag Gmbh International Smart blade application for reusable and disposable devices
US11617597B2 (en) 2018-03-08 2023-04-04 Cilag Gmbh International Application of smart ultrasonic blade technology
US11389188B2 (en) 2018-03-08 2022-07-19 Cilag Gmbh International Start temperature of blade
US11298148B2 (en) 2018-03-08 2022-04-12 Cilag Gmbh International Live time tissue classification using electrical parameters
US11678901B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Vessel sensing for adaptive advanced hemostasis
US11678927B2 (en) 2018-03-08 2023-06-20 Cilag Gmbh International Detection of large vessels during parenchymal dissection using a smart blade
US11464532B2 (en) 2018-03-08 2022-10-11 Cilag Gmbh International Methods for estimating and controlling state of ultrasonic end effector
US11986233B2 (en) 2018-03-08 2024-05-21 Cilag Gmbh International Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11457944B2 (en) 2018-03-08 2022-10-04 Cilag Gmbh International Adaptive advanced tissue treatment pad saver mode
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11931027B2 (en) 2018-03-28 2024-03-19 Cilag Gmbh Interntional Surgical instrument comprising an adaptive control system
US11197668B2 (en) 2018-03-28 2021-12-14 Cilag Gmbh International Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
EP3912565A1 (en) 2018-03-28 2021-11-24 Ethicon LLC Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11986185B2 (en) 2018-03-28 2024-05-21 Cilag Gmbh International Methods for controlling a surgical stapler
WO2019186472A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Rotary driven firing members with different anvil and channel engagement features
WO2019186466A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US11406382B2 (en) 2018-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a lockout key configured to lift a firing member
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
WO2019186470A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
WO2019186438A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
WO2019186436A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Stapling instrument comprising a deactivatable lockout
WO2019186434A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout
WO2019186474A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11937817B2 (en) 2018-03-28 2024-03-26 Cilag Gmbh International Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
WO2019186431A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Staple cartridge comprising a lockout key configured to lift a firing member
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
WO2019186437A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical instrument comprising a jaw closure lockout
EP3895627A1 (en) 2018-03-28 2021-10-20 Ethicon LLC Surgical stapler cartridge comprising a lockout key
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
WO2019186467A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with improved rotary driven closure systems
WO2019186432A1 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
US11129611B2 (en) 2018-03-28 2021-09-28 Cilag Gmbh International Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein
WO2019186433A2 (en) 2018-03-28 2019-10-03 Ethicon Llc Surgical instrument comprising co-operating lockout features
WO2020039313A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical instruments with progressive jaw closure arrangements
EP3613362A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Reinforced deformable anvil tip for surgical stapler anvil
EP3613361A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical instruments with progressive jaw closure arrangements
EP3613355A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
EP3613357A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
EP3613359A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapler anvils with staple directing protrusions and tissue stability features
EP3613354A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Surgical stapling devices with improved closure members
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
WO2020039310A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
WO2020039314A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
WO2020039308A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Fabricating techniques for surgical stapler anvils
EP3613356A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
EP3613360A2 (en) 2018-08-20 2020-02-26 Ethicon LLC Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
EP3613368A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Switching arrangements for motor powered articulatable surgical instruments
EP3613358A1 (en) 2018-08-20 2020-02-26 Ethicon LLC Fabricating techniques for surgical stapler anvils
WO2020039306A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapler anvils with staple directing protrusions and tissue stability features
WO2020039316A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
WO2020039305A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
WO2020039315A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
WO2020039317A1 (en) 2018-08-20 2020-02-27 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
WO2020039309A2 (en) 2018-08-20 2020-02-27 Ethicon Llc Surgical stapling devices with improved closure members
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11957339B2 (en) 2018-08-20 2024-04-16 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US12076008B2 (en) 2018-08-20 2024-09-03 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US12121255B2 (en) 2018-08-24 2024-10-22 Cilag Gmbh International Electrical power output control based on mechanical forces
US11272931B2 (en) 2019-02-19 2022-03-15 Cilag Gmbh International Dual cam cartridge based feature for unlocking a surgical stapler lockout
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11517309B2 (en) 2019-02-19 2022-12-06 Cilag Gmbh International Staple cartridge retainer with retractable authentication key
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11298129B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11291444B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
US11298130B2 (en) 2019-02-19 2022-04-12 Cilag Gmbh International Staple cartridge retainer with frangible authentication key
US11331100B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Staple cartridge retainer system with authentication keys
US11331101B2 (en) 2019-02-19 2022-05-17 Cilag Gmbh International Deactivator element for defeating surgical stapling device lockouts
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11925350B2 (en) 2019-02-19 2024-03-12 Cilag Gmbh International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11291445B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical staple cartridges with integral authentication keys
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
EP3714803A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Articulation drive arrangements for surgical systems
EP3714804A2 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
EP3714806A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
WO2020194082A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Articulation drive arrangements for surgical systems
WO2020194084A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Fire drive arrangements for surgical systems
WO2020194085A1 (en) 2019-03-25 2020-10-01 Ethicon Llc Firing drive arrangements for surgical systems
WO2020194083A2 (en) 2019-03-25 2020-10-01 Ethicon Llc Firing drive arrangements for surgical systems
EP3714805A1 (en) 2019-03-25 2020-09-30 Ethicon LLC Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
WO2020222076A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
EP3733097A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Surgical instrument comprising an articulation pin having a retention head
EP3733079A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation control mapping for a surgical instrument
EP3733113A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
EP3733082A2 (en) 2019-04-30 2020-11-04 Ethicon LLC Intelligent firing associated with a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
WO2020222078A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation control mapping for a surgical instrument
WO2020222083A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Surgical instrument comprising an articulation pin having a retention head
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
WO2020222075A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
EP3733081A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation actuators for a surgical instrument
EP3733083A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Rotatable jaw tip for a surgical instrument
WO2020222080A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
EP3733084A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Articulation directional lights on a surgical instrument
EP3733080A1 (en) 2019-04-30 2020-11-04 Ethicon LLC Shaft rotation actuator on a surgical instrument
WO2020222074A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
WO2020222079A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Intelligent firing associated with a surgical instrument
WO2020222082A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Tissue stop for a surgical instrument
WO2020222081A1 (en) 2019-04-30 2020-11-05 Ethicon Llc Rotatable jaw tip for a surgical instrument
EP3738522A1 (en) 2019-04-30 2020-11-18 Ethicon LLC Tissue stop for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US12004740B2 (en) 2019-06-28 2024-06-11 Cilag Gmbh International Surgical stapling system having an information decryption protocol
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11173060B2 (en) 2019-11-04 2021-11-16 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
US11602449B2 (en) 2019-11-04 2023-03-14 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US12035913B2 (en) 2019-12-19 2024-07-16 Cilag Gmbh International Staple cartridge comprising a deployable knife
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US12076006B2 (en) 2019-12-30 2024-09-03 Cilag Gmbh International Surgical instrument comprising an orientation detection system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US12064109B2 (en) 2019-12-30 2024-08-20 Cilag Gmbh International Surgical instrument comprising a feedback control circuit
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11974801B2 (en) 2019-12-30 2024-05-07 Cilag Gmbh International Electrosurgical instrument with flexible wiring assemblies
US12082808B2 (en) 2019-12-30 2024-09-10 Cilag Gmbh International Surgical instrument comprising a control system responsive to software configurations
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US12053224B2 (en) 2019-12-30 2024-08-06 Cilag Gmbh International Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction
US11986201B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Method for operating a surgical instrument
US11986234B2 (en) 2019-12-30 2024-05-21 Cilag Gmbh International Surgical system communication pathways
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US12114912B2 (en) 2019-12-30 2024-10-15 Cilag Gmbh International Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode
US12023086B2 (en) 2019-12-30 2024-07-02 Cilag Gmbh International Electrosurgical instrument for delivering blended energy modalities to tissue
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US12064142B2 (en) 2020-06-30 2024-08-20 Standard Bariatrics, Inc. Systems, devices, and methods for preventing or reducing loss of insufflation during a laparoscopic surgical procedure
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US12064107B2 (en) 2020-07-28 2024-08-20 Cilag Gmbh International Articulatable surgical instruments with articulation joints comprising flexible exoskeleton arrangements
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11974741B2 (en) 2020-07-28 2024-05-07 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
WO2022090911A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090928A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
WO2022090930A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US12029421B2 (en) 2020-10-29 2024-07-09 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US12053175B2 (en) 2020-10-29 2024-08-06 Cilag Gmbh International Surgical instrument comprising a stowed closure actuator stop
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
WO2022090919A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
WO2022090926A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
WO2022090929A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
WO2022090922A2 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising sealable interface
WO2022090925A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
WO2022090913A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising a limited travel switch
WO2022090924A1 (en) 2020-10-29 2022-05-05 Cilag Gmbh International Surgical instrument comprising an articulation lock
US12076194B2 (en) 2020-10-29 2024-09-03 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US12016559B2 (en) 2020-12-02 2024-06-25 Cllag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11980362B2 (en) 2021-02-26 2024-05-14 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US12108951B2 (en) 2021-02-26 2024-10-08 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
WO2022180541A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022180520A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
WO2022180543A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Surgical instrument system comprising a power transfer coil
WO2022180529A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022180540A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
WO2022180519A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
WO2022180528A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
WO2022180537A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US12035911B2 (en) 2021-02-26 2024-07-16 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US12035912B2 (en) 2021-02-26 2024-07-16 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
WO2022180538A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US12035910B2 (en) 2021-02-26 2024-07-16 Cllag GmbH International Monitoring of internal systems to detect and track cartridge motion status
WO2022180539A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Distal communication array to tune frequency of rf systems
WO2022180533A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
WO2022180530A1 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensor array
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
WO2022180525A2 (en) 2021-02-26 2022-09-01 Cilag Gmbh International Staple cartridge comprising a sensing array and a temperature control system
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
WO2022200956A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising a firing lockout
WO2022200951A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising an implantable layer
WO2022200953A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
WO2022200952A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US12042146B2 (en) 2021-03-22 2024-07-23 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
WO2022200954A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
WO2022200955A1 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
WO2022200958A2 (en) 2021-03-22 2022-09-29 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US12023026B2 (en) 2021-03-22 2024-07-02 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11452574B1 (en) 2021-03-23 2022-09-27 Standard Bariatrics, Inc. Systems and methods for preventing tissue migration in surgical staplers
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US12102323B2 (en) 2021-03-24 2024-10-01 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising a floatable component
WO2022229872A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
WO2022229858A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising independently activatable segmented electrodes
US11857184B2 (en) 2021-04-30 2024-01-02 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
US11944295B2 (en) 2021-04-30 2024-04-02 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
US11931035B2 (en) 2021-04-30 2024-03-19 Cilag Gmbh International Articulation system for surgical instrument
WO2022229867A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising formation support features
WO2022229866A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Shaft system for surgical instrument
WO2022229864A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Interchangeable end effector reloads
WO2022229855A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to control therapeutic energy application to tissue based on cartridge and tissue parameters
WO2022229868A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical staple for use with combination electrosurgical instruments
US11918275B2 (en) 2021-04-30 2024-03-05 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229861A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with longitudinal sealing step
WO2022229869A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Articulation system for surgical instrument
WO2022229862A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical techniques for sealing, short circuit detection, and system determination of power level
WO2022229871A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
WO2022229857A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising end effector with energy sensitive resistance elements
US11826043B2 (en) 2021-04-30 2023-11-28 Cilag Gmbh International Staple cartridge comprising formation support features
WO2022229865A2 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Staple cartridge comprising staple drivers and stability supports
WO2022229870A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Electrosurgical adaptation techniques of energy modality for combination electrosurgical instruments based on shorting or tissue impedance irregularity
WO2022229860A1 (en) 2021-04-30 2022-11-03 Cilag Gmbh International Surgical systems configured to cooperatively control end effector function and application of therapeutic energy
WO2022238850A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Method for selecting a staple cartridge paired to the in situ environment
WO2022238841A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Packaging assemblies for surgical staple cartridges containing bioabsorbable staples
WO2022238840A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International System of surgical staple cartridges comprising absorbable staples
WO2022238847A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type
WO2022238846A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanism for delaying the absorption of the staple
WO2022238842A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staples comprising sufficient structural properties during a tissue healing window
WO2022238845A2 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Dissimilar staple cartridges with different bioabsorbable components
WO2022238848A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Staple cartridge comprising lubricated staples
US11890004B2 (en) 2021-05-10 2024-02-06 Cilag Gmbh International Staple cartridge comprising lubricated staples
US11998192B2 (en) 2021-05-10 2024-06-04 Cilag Gmbh International Adaptive control of surgical stapling instrument based on staple cartridge type
WO2022238843A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable staple comprising strain limiting features
WO2022238849A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Cartridge assemblies with absorbable metal staples and absorbable implantable adjuncts
WO2022238836A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Bioabsorbable staple comprising mechanisms for slowing the absorption of the staple
WO2022238844A1 (en) 2021-05-10 2022-11-17 Cilag Gmbh International Absorbable surgical staple comprising a coating
US11918217B2 (en) 2021-05-28 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
WO2022249092A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising an articulation control display
WO2022249099A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
WO2022249094A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a control system that controls a firiing stroke length
WO2022249088A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
WO2022249086A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
WO2022249091A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a mounted shaft orientation sensor
US11998201B2 (en) 2021-05-28 2024-06-04 Cilag CmbH International Stapling instrument comprising a firing lockout
WO2023067464A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Cable-driven actuation system for robotic surgical tool attachment
WO2023067458A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11980363B2 (en) 2021-10-18 2024-05-14 Cilag Gmbh International Row-to-row staple array variations
WO2023067459A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Anvil comprising an arrangement of forming pockets proximal to tissue stop
WO2023067463A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
WO2023067461A1 (en) 2021-10-18 2023-04-27 Cilag Gmbh International Row-to-row staple array variations
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US12089841B2 (en) 2021-10-28 2024-09-17 Cilag CmbH International Staple cartridge identification systems
WO2023073545A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Alternate means to establish resistive load force
WO2023073546A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical device with internal communication that combines multiple signals per wire
WO2023073543A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Surgical instrument cartridge with unique resistor for surgical instrument identification
WO2023073537A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Staple cartridge identification systems
WO2023073540A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Method and device for transmitting uart communications over a security short range wireless communication
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023073549A1 (en) 2021-10-28 2023-05-04 Cilag Gmbh International Electrical lead arrangements for surgical instruments
US12121256B2 (en) 2023-04-06 2024-10-22 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US12121234B2 (en) 2023-09-14 2024-10-22 Cilag Gmbh International Staple cartridge assembly comprising a compensator

Also Published As

Publication number Publication date
US10568625B2 (en) 2020-02-25
US10835246B2 (en) 2020-11-17
US10667811B2 (en) 2020-06-02
WO2018118243A2 (en) 2018-06-28
EP3338688A1 (en) 2018-06-27
US20180168634A1 (en) 2018-06-21
EP3338688B1 (en) 2020-07-01
US20180168632A1 (en) 2018-06-21
EP3338651A3 (en) 2018-08-22
EP3338681A1 (en) 2018-06-27
WO2018116021A1 (en) 2018-06-28
US10893864B2 (en) 2021-01-19
EP3338652B1 (en) 2020-06-24
WO2018118233A1 (en) 2018-06-28
US20180168629A1 (en) 2018-06-21
US20180168631A1 (en) 2018-06-21
WO2018118234A1 (en) 2018-06-28
EP3338659A1 (en) 2018-06-27
EP3338652A1 (en) 2018-06-27
EP3338651A2 (en) 2018-06-27
WO2018118243A3 (en) 2018-08-02
WO2018116019A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
US20210290232A1 (en) Surgical stapling instruments and staple-forming anvils
US10568625B2 (en) Staple cartridges and arrangements of staples and staple cavities therein
US11766260B2 (en) Methods of stapling tissue
US11701115B2 (en) Methods of stapling tissue
CN110114017B (en) Surgical stapling instrument and staple forming anvil
CN110167461B (en) Staple cartridge and arrangement of staples and staple cavities therein
CN110114018B (en) Surgical stapling instrument and staple forming anvil
CN110099643B (en) Staple cartridge and arrangement of staples and staple cavities therein
JP7571093B2 (en) End effector for use with a surgical stapler - Patents.com
CN110099641B (en) Staple cartridge and arrangement of staples and staple cavities therein

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHICON ENDO-SURGERY, LLC, PUERTO RICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHELTON, FREDERICK E., IV;HARRIS, JASON L.;VENDELY, MICHAEL J.;SIGNING DATES FROM 20170120 TO 20170213;REEL/FRAME:042601/0197

AS Assignment

Owner name: ETHICON LLC, PUERTO RICO

Free format text: CHANGE OF NAME;ASSIGNOR:ETHICON ENDO-SURGERY, LLC;REEL/FRAME:045644/0357

Effective date: 20161230

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CILAG GMBH INTERNATIONAL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056983/0569

Effective date: 20210405