US20090047795A1 - Plasma processing apparatus, plasma processing method and storage medium - Google Patents
Plasma processing apparatus, plasma processing method and storage medium Download PDFInfo
- Publication number
- US20090047795A1 US20090047795A1 US12/192,388 US19238808A US2009047795A1 US 20090047795 A1 US20090047795 A1 US 20090047795A1 US 19238808 A US19238808 A US 19238808A US 2009047795 A1 US2009047795 A1 US 2009047795A1
- Authority
- US
- United States
- Prior art keywords
- plasma
- processing
- electrode
- power
- generating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000012545 processing Methods 0.000 title claims abstract description 176
- 238000003672 processing method Methods 0.000 title claims description 21
- 238000003860 storage Methods 0.000 title claims description 6
- 238000000034 method Methods 0.000 claims description 13
- 235000012431 wafers Nutrition 0.000 description 44
- 238000005530 etching Methods 0.000 description 38
- 150000002500 ions Chemical class 0.000 description 16
- 239000004065 semiconductor Substances 0.000 description 16
- 238000001020 plasma etching Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000005684 electric field Effects 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32146—Amplitude modulation, includes pulsing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32091—Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
Definitions
- the present invention relates to a technique for performing plasma processing on a target object; and, more particularly, to a capacitively coupled plasma processing apparatus, a plasma processing method and a storage medium storing a control program for executing the plasma processing method.
- a plasma is often used in processes, e.g., etching, deposition, oxidation, sputtering and the like, in order to allow a processing gas to react efficiently at a relatively low temperature.
- a capacitively coupled plasma processing apparatus is mainly used for a single-wafer plasma processing apparatus, especially a single-wafer plasma etching apparatus.
- an upper and a lower electrode are disposed in parallel with each other in a processing chamber as a vacuum chamber, and a target substrate (e.g., a semiconductor wafer, a glass substrate or the like) is mounted on the lower electrode.
- a radio frequency (RF) voltage is applied between the electrodes, and electrons are accelerated by an electric field formed between the electrodes by the application of the RF voltage.
- Plasma is generated due to ionization by collision between the electrons and the processing gas, and a desired microprocessing, e.g., etching, is performed on a substrate surface by radicals or ions in the plasma.
- the low pressure and low ion energy causes charging damage that has not occurred conventionally. That is, in the conventional apparatus having high ion energy, in-plane distribution of a plasma potential does not cause a critical problem. However, if the ion energy decreases at a lower pressure, the in-plane non-uniformity of the plasma potential easily causes charging damage of a gate oxide film.
- etching rate at a central portion of a wafer becomes higher and the etching rate at a peripheral portion of the wafer becomes lower.
- Japanese patent Laid-open Publication No. 2001-185542 and corresponding U.S. Pat. No. 6,624,084 describe an equipment including a current path correction means for correcting a current path part near an outer periphery of a wafer among RF current paths formed by a RF bias applied to the wafer so as to face a wafer facing surface of an opposite electrode or an impedance adjustment means for making am impedance up to a ground viewed from the RF bias almost uniform in the wafer surface. Accordingly, wafer in-plane uniformity of a self-bias generated by the RF bias application can be improved and, also, macro damage can be suppressed.
- charging damage in the plasma processing, there may occur charging damage as follows.
- the charge-up of the gate oxide film is caused by a local electric field produced by unbalance between ions and electrons in the wafer surface, which leads to dielectric breakdown.
- the ions are injected perpendicularly to the main surface of the wafer, whereas the electrons are injected thereto at an inclined angle. Accordingly, the balance of charges is locally disturbed, and charge-up occurs in random locations.
- the charging damage depends on a profile of an etching pattern as well as in-plane uniformity of a self-bias, and occurs in random locations. Therefore, the problem of charging damage cannot be effectively solved by the technique described in Japanese patent Laid-open Publication No. 2001-185542 and the corresponding U.S. Pat. No. 6,624,084.
- the present invention provides a plasma processing apparatus, method and a storage medium storing a control program for executing the plasma processing method for effectively preventing charging damage and improving stability and reliability of plasma processing and for enhancing the in-plane uniformity in the plasma processing.
- a plasma processing apparatus including: an evacuable processing chamber; a first electrode for mounting thereon a target object in the processing chamber; a second electrode facing the first electrode in parallel in the processing chamber; a processing gas supply unit for supplying desired processing gas to a processing space between the first electrode and the second electrode; a first radio frequency (RF) power supply unit for applying to at least one of the first and the second electrode a first RF power for generating a plasma from the processing gas; and a control unit for controlling the first RF power supply unit so that a first phase (period) at which the first RF power has a first amplitude for generating a plasma and a second phase (period) at which the first RF power has a second amplitude for generating substantially no plasma are alternately repeated at predetermined intervals.
- RF radio frequency
- the charging damage (dielectric breakdown) in the plasma processing depends on the amount of charges introduced or accumulated in the target object from the plasma and an insulating film is deteriorated or destroyed exponentially when the amount of the introduced or accumulated charges exceeds a threshold value.
- the charge-up of the insulating film occurs due to unbalance between ions and electrons injected or introduced into the target object, thereby producing a local electric field.
- the plasma generation as time elapses, the amount of charges by the charged-up and the intensity of the local electric field increases. Further, when the amount of charges exceeds the threshold value, the insulating film is damaged or destroyed.
- the second amplitude may be zero. Accordingly, the time at which the charge balance is recovered during the second period is minimized and, further, the plasma processing time can be shortened.
- the first phase at which the plasma is generated may be about 2 to 100 ⁇ sec per cycle, preferably about 2 to 50 ⁇ sec per cycle. Meanwhile, the second phase at which no-plasma is generated may be greater than or equal to about 2 ⁇ sec per cycle.
- a plasma processing apparatus including: an evacuable processing chamber; a first electrode for mounting thereon a target object in the processing chamber; a second electrode facing the first electrode in parallel in the processing chamber; a processing gas supply unit for supplying desired processing gas to a processing space between the first electrode and the second electrode; a first RF power supply unit for applying a first RF power to at least one of the first and the second electrode; and a control unit for controlling the first RF power supply unit so that a state where a plasma is generated from the processing gas in the processing chamber and a state where no plasma is generated are alternately repeated at predetermined intervals during processing of the target object.
- the state in which a plasma is generated from a processing gas (plasma generating state) and the state in which no plasma is generated (no-plasma generating state) are alternately repeated at predetermined intervals. Therefore, the time for continuously generating a plasma is shortened compared to the conventional plasma processing in which a plasma is continuously generated from start to end of the plasma processing, so that the amount of charges introduced from the plasma into the target object at a time or the amount of charges accumulated on the surface of the target object is reduced. Accordingly, the charging damage is hardly generated and, hence, it is possible to implement the stable plasma processing and improve the reliability of the plasma processing.
- the duration of the plasma generating state may be about 2 to 100 ⁇ sec per cycle, preferably about 2 to 50 ⁇ sec per cycle. Meanwhile, the duration of the no-plasma generating state may be greater than or equal to about 2 ⁇ sec per cycle.
- the first RF power may have a frequency of about 30 to 300 MHz. Further, the first RF power supply unit may apply the first RF power to the first electrode. Moreover, the plasma processing apparatus may further includes a second RF power supply unit for applying to at least one of the first electrode and the second electrode a second RF power for attracting ions in the plasma to the target object. In this case, the second RF power supply unit may apply the second RF power to the first electrode.
- a plasma processing method for performing a plasma process on a target object by generating a plasma of a processing gas in a processing space with the use of a plasma processing apparatus including: an evacuable processing chamber; a first electrode for mounting thereon the target object in the processing chamber; a second electrode facing the first electrode in parallel in the processing chamber; a processing gas supply unit for supplying desired processing gas to the processing space between the first electrode and the second electrode; and a first RF power supply unit for applying to at least one of the first and the second electrode a first RF power for generating a plasma from the processing gas, wherein a first phase at which the first RF power has a first amplitude for generating a plasma and a second phase at which the first RF power has a second amplitude for generating substantially no plasma are alternately repeated at predetermined intervals.
- the first phase at which the first RF power for plasma generation has the first amplitude for plasma generation and the second phase at which substantially no plasma is generated are alternately repeated at predetermined intervals.
- the time for continuously generating a plasma is shortened compared to the conventional plasma processing in which a RF power having an amplitude for plasma generation is continuously applied and, hence, the amount of charges introduced from the plasma to the target object at a time or the amount of charges accumulated on the surface of the target object is reduced.
- the charging damage is hardly generated and, hence, it is possible to implement the stable plasma processing and improve the reliability of the plasma processing.
- the second amplitude may be zero. Accordingly, in the second phase, the time at which no plasma is generated, i.e., at which the charge balance is recovered, is minimized and, further, the plasma processing time can be shortened. Further, the first phase at which plasma is generated may be about 2 to 100 ⁇ sec per cycle, preferably about 2 to 50 ⁇ sec per cycle. Meanwhile, the second phase at which no plasma is generated is greater than or equal to about 2 ⁇ sec per cycle.
- a plasma processing method for performing a plasma process on a target object by generating a plasma of a processing gas in a processing space with the use of a plasma processing apparatus including: an evacuable processing chamber; a first electrode for mounting thereon the target object in the processing chamber; a second electrode facing the first electrode in parallel in the processing chamber; a processing gas supply unit for supplying desired processing gas to the processing space between the first electrode and the second electrode; and a first RF power supply unit for applying a first RF power to at least one of the first and the second electrode, wherein a state where a plasma is generated from the processing gas in the processing chamber and a state where no-plasma is generated are alternately repeated at predetermined intervals during processing of the target object.
- the state in which a plasma is generated from a processing gas (plasma generating state) and the state in which no plasma is generated (no-plasma generating state) are alternately repeated at predetermined intervals. Therefore, the time for continuously generating a plasma is shortened compared to the conventional plasma processing in which a plasma is continuously generated from start to end of the plasma processing, so that the amount of charges introduced from the plasma to the target object at a time or the amount of charges accumulated on the surface of the target object is reduced. Accordingly, the charging damage is hardly generated and, hence, it is possible to implement the stable plasma processing and improve the reliability of the plasma processing.
- the duration of the plasma generating state may be about 2 to 100 ⁇ sec per cycle, preferably about 2 to 50 ⁇ sec per cycle. Meanwhile, the duration of the no-plasma generating state may be greater than or equal to about 2 ⁇ sec per cycle.
- the first RF power may have a frequency of about 30 to 300 MHz.
- the first RF power supply unit may apply the first RF power to the first electrode.
- the plasma processing apparatus may further include a second RF power supply unit for applying to at least one of the first electrode and the second electrode a second RF power for attracting ions in the plasma to the target object.
- the second RF power supply unit may apply the second RF power to the first electrode.
- a storage medium storing a computer-executable control program for controlling a plasma processing apparatus including: an evacuable processing chamber; a first electrode for mounting thereon a target object in the processing chamber; a second electrode facing the first electrode in parallel in the processing chamber; a processing gas supply unit for supplying desired processing gas to a processing space between the first electrode and the second electrode; and a first RF power supply unit for applying to at least one of the first and the second electrode a first RF power for generating a plasma from the processing gas, wherein, when executed, the control program controls the plasma processing apparatus to perform the plasma processing method of the third and the fourth aspect of the present invention.
- the plasma processing method and the storage medium storing a control program for executing the plasma processing method of the present invention enable to prevent charging damage effectively to improve stability and reliability of plasma processing and to enhance the in-plane uniformity in the plasma processing.
- FIG. 1 is a vertical cross sectional view showing a configuration of a plasma processing apparatus in accordance with an embodiment of the present invention
- FIG. 2 depicts characteristics of RF power with respect to time in pulse plasma
- FIG. 3 illustrates a waveform of a first RF power in the pulse plasma of FIG. 2 ;
- FIG. 4 describes an optimal range of a plasma generating period A and a no-plasma generating period B;
- FIG. 5 provides a schematic view of a device structure for testing resistance to charging damage
- FIGS. 6A to 6C depict comparison of occurrence of charging damage between a conventional case (comparative example) and the present invention.
- FIGS. 7A to 7C show comparison of occurrence of charging damage between a conventional case (comparative example) and the present invention.
- FIG. 1 shows a configuration of a plasma processing apparatus in accordance with an embodiment of the present invention.
- the plasma processing apparatus is configured as a capacitively coupled (parallel plate type) plasma etching apparatus wherein dual RF frequency powers are applied to a lower electrode, and has a cylindrical chamber (processing chamber) 10 made of a metal such as aluminum, stainless steel or the like.
- the chamber 10 is frame grounded.
- the susceptor 12 is made of, e.g., aluminum, and is supported by a cylindrical support 16 vertically extended from a bottom of the chamber 10 via an cylindrical insulating member 14 .
- an annular focus ring 18 made of, e.g., quartz or silicon, surrounds the top surface of the susceptor 12 .
- a gas exhaust path 20 is formed between an inner wall of the chamber 10 and the cylindrical support 16 .
- An annular baffle plate 22 is disposed at the entrance or in the middle of the gas exhaust path 20 and, also, a gas exhaust port 24 is provided at a bottom portion of the gas exhaust path 20 .
- a gas exhaust unit 28 is connected to the gas exhaust port 24 via a gas exhaust line 26 .
- the gas exhaust unit 28 has a vacuum pump, so that a processing space in the chamber 10 can be depressurized to a desired vacuum level.
- Attached to a sidewall of the chamber 10 is a gate valve 26 for opening and closing a loading/unloading port for the semiconductor wafer W.
- a first radio frequency (RF) power supply 32 for plasma generation is electrically connected to the susceptor 12 via a first matching unit (MU) 34 and a power feed rod 36 .
- the first RF power supply 32 applies a predetermined first RF power of, e.g., 100 MHz, to the lower electrode, i.e., the susceptor 12 .
- a shower head 38 to be described later as an upper electrode of a ground potential is installed in a ceiling portion of the chamber 10 . Accordingly, the first RF power from the first RF power supply 32 is applied between the susceptor 12 and the shower head 38 .
- a second RF power supply 70 for ion attraction is electrically connected to the susceptor 12 via a second matching unit (MU) 72 and a power feed rod 36 .
- the second RF power supply 70 applies a predetermined second RF power of, e.g., 3.2 MHz, to the susceptor 12 .
- the electrostatic chuck 40 Disposed on the top surface of the susceptor 12 is an electrostatic chuck 40 for supporting the semiconductor wafer W by an electrostatic attractive force.
- the electrostatic chuck 40 includes an electrode 40 a made of a conductive film embedded between a pair of insulating films 40 b and 40 c .
- a DC power supply 42 is electrically connected to the electrode 40 a via a switch 43 . By a Coulomb force generated by a DC voltage from the DC power supply 42 , the semiconductor wafer W can be attracted and held on the chuck.
- a coolant passageway 44 Installed in the susceptor 12 is a coolant passageway 44 extended in, e.g., a circumferential direction.
- a coolant of a predetermined temperature e.g., cooling water
- the processing temperature of the semiconductor wafer W on the electrostatic chuck 40 can be controlled by the temperature of the coolant.
- a heat transfer gas e.g., He gas
- a heat transfer gas supply unit 52 is supplied between the top surface of the electrostatic chuck 40 and the backside of the semiconductor wafer W via a gas supply line 54 .
- the shower head 38 on the ceiling portion includes an electrode plate 56 having a plurality of gas vent-holes 56 a in the bottom surface and an electrode supporting member 58 for detachably holding the electrode plate 56 .
- a buffer space 60 is provided in the electrode supporting member 58 , and a gas supply line 64 extending from a processing gas supply unit 62 is connected to a gas inlet opening 60 a of the buffer space 60 .
- a magnet 66 is annually or concentrically disposed around the chamber 10 .
- a vertical RF electric field is formed by the first RF power supply 32 in the gap between the shower head 38 and the susceptor 12 in the chamber 10 .
- a high density plasma can be generated around the surface of the susceptor 12 .
- a controller 68 controls an operation of each unit in the plasma etching apparatus such as the gas exhaust unit 28 , the first RF power supply 32 , the first matching unit 34 , the chiller unit 46 , the heat transfer gas supply unit 52 , the processing gas supply unit 62 , the second RF power supply 70 , the second matching unit 72 and the like.
- the controller 68 is connected to a host computer (not shown) and the like.
- the gate valve 30 is opened.
- a semiconductor wafer W to be processed is loaded into the chamber 10 to be mounted on the electrostatic chuck 40 .
- an etching gas (generally a gaseous mixture) from the processing gas supply unit 62 is introduced into the chamber 10 at a predetermined flow rate and flow rate ratio, and the pressure in the chamber 10 is set to be a preset value by the gas exhaust unit 28 .
- the first RF power from the first RF power supply 32 is supplied to the susceptor 12 with a predetermined power and, at the same time, the second RF power from the second RF power supply 70 is supplied to the susceptor 12 with a predetermined power.
- a DC voltage from the DC power supply 42 is applied to the electrode 40 a of the electrostatic chuck 40 , thus holding the semiconductor wafer W on the electrostatic chuck 40 .
- the etching gas injected from the shower head 38 is converted to a plasma between both electrodes 12 and 38 by the first RF discharge, and the main surface of the semiconductor wafer W is etched by radicals or ions generated by the plasma.
- the susceptor (lower electrode) 12 by applying the first RF power having a radio frequency (30 MHz or higher) higher than the conventional frequency from the first RF power supply 42 to the susceptor (lower electrode) 12 , a high-density plasma in a desirable dissociated state can be generated even at a lower pressure.
- the increase of the plasma density leads to the low ion energy, i.e., the decrease of the sheath potential (voltage) on the semiconductor wafer W (the low bias).
- the bias is reduced compared to the conventional case, the effect of the charging damage (dielectric breakdown) cannot be ignored.
- the charging damage occurs when the amount of charges introduced from the plasma to the semiconductor wafer W exceeds the threshold value. The amount of introduced charges is affected by the relative variation of the sheath potential in the surface of the wafer W.
- a sheath potential is high as several hundreds of voltages.
- the variation in the sheath potential is relatively small in the wafer surface and, also, the amount of electrons introduced into a gate electrode of the semiconductor wafer W does not exceed the threshold value.
- the sheath potential is low as several tens of voltages. Therefore, when the in-plane non-uniformity occurs in the plasma potential, the variation in the sheath potential is relatively large and, also, a large amount of electrons are easily introduced into the gate electrode. In addition, the charging damage easily occurs in accordance with the length of time at which the substrate surface is continuously exposed to the plasma.
- the charge-up may occur in the insulating film (e.g., the gate oxide film) on the substrate by the local unbalance between ions and electrons due to the in-plane non-uniformity of the plasma potential or the profile of the circuit pattern.
- the insulating film where the charge-up occurs, an electric field or a potential gradient in proportion to the amount of accumulated charges is established. If the amount of the accumulated charge exceeds the threshold value, the insulating film is damaged or destroyed in corresponding locations.
- the plasma generating state and the no-plasma generating state are alternately repeated at predetermined intervals so that the amount of charges introduced into the gate electrode or the amount of charges accumulated on the insulating film does not exceed the threshold value.
- the continuous plasma generation is performed for a short period of time at which the amount of introduced charges or the accumulated charges does not exceed the threshold value and, then, no-plasma generating state is set. Further, the plasma generating state and the plasma non-generating state are repeated intermittently.
- the first RF power supply 32 and the first matching unit 34 are controlled by the control unit 68 so that a first phase at which a first RF power has a peak value or a first amplitude at which a plasma is generated (i.e., an effective power) and a second phase at which the first RF power has a peak value or a second amplitude at which no plasma is generated (i.e., an ineffective power) can be alternately repeated at predetermined intervals.
- the present invention includes the case where the second amplitude is zero (i.e., the first RF power is not applied).
- the first RF power outputted from the first RF power supply 32 is modulated and applied to the susceptor 12 .
- power modulation there can be employed a pulse modulation shown in FIG. 2 .
- a period A indicates the plasma generating state
- a period B represents the no-plasma generating state.
- the first RF power having a first amplitude of about 500 W is applied to the RF electrode 12 .
- the first RF power has a second amplitude of 0 W. That is, the first RF power is alternately ON and OFF, generating a pulse plasma in the chamber 10 .
- the first RF has a waveform shown in FIG. 3 .
- the second amplitude in the no-plasma generating state is not limited to 0 W, and may be a power level at which substantially no plasma is generated.
- the first amplitude in the plasma generating state is not limited to 500 W, and may be set between about 100 W and about 2000 W depending on the processing conditions.
- the duration of the plasma generating period A and the no-plasma generating period B so that the amount of charges introduced to the gate electrode or the amount of charges accumulated on the gate oxide film does not exceed the threshold value.
- FIG. 4 illustrates desirable ranges of the plasma generating period A and the no-plasma generating period B in the case of applying the first RF power in a pulse shape as shown in FIG. 2 (the first amplitude of about 500 W and the second amplitude of 0 W).
- the plasma generating period A is longer than or equal to about 2 ⁇ sec or shorter than or equal to about 100 ⁇ sec, and also that the plasma non-generating period B is longer than or equal to about 2 ⁇ sec. Further, it is more preferable that the plasma generating period A is longer than or equal to about 2 ⁇ sec or shorter than or equal to about 50 ⁇ sec.
- the plasma generating period A is longer than about 100 ⁇ sec, the amount of introduced charges or the amount of accumulated charges exceeds the threshold value, and the charging damage occurs. Meanwhile, when the plasma generating period A is shorter than about 2 ⁇ sec, the plasma is generated unstably and, also, the efficiency of the plasma processing deteriorates.
- the no-plasma generating period B When the no-plasma generating period B is shorter than about 2 ⁇ sec, the plasma cannot be completely extinguished, which leads to a case similar to one where only the plasma generating period A is continued, i.e., the same case as the conventional plasma processing in which a plasma is continuously generated for a long period of time, so that the charging damage easily occurs. Even if the no-plasma generating period B is lengthened, the etching result is not affected.
- the plasma generating period A and the no-plasma generating period B are repeated at predetermined intervals. Therefore, the total etching time from start to end of the etching process becomes longer compared to the case of performing etching while maintaining the plasma generating state all the time.
- it is required to increase a duty ratio of the pulse plasma i.e., (the plasma generating period A)/ ⁇ (the plasma generating period A)+(the no-plasma generating period B) ⁇ . Accordingly, in view of increasing the etching efficiency, it is preferable to shorten the no-plasma generating period B although the upper limit of the plasma non-generating period B is not particularly defined in view of the etching result.
- the maximum length of the plasma generating period A and the minimum length of the no-plasma generating period B are about 100 ⁇ sec and about 2 p sec, respectively. Therefore, the maximum duty ratio at which the best etching efficiency is obtained is about 98%. Meanwhile, the minimum duty ratio is preferably about 50% in view of the etching efficiency. In other words, it is preferable that the plasma generating period A is equal to the no-plasma generating period B.
- the maximum duty ratio of 98% means that the etching time is reduced by 2% compared to the case where the etching is performed while continuously maintaining the plasma generating state from start to end of the processing. Accordingly, it is possible to reliably prevent the charging damage while obtaining the etching efficiency substantially same as that of the conventional plasma processing.
- the frequency of the power modulation i.e., the frequency of the pulse plasma
- the frequency of the power modulation is about 5 to 250 kHz.
- the minimum length of the plasma generating period A and that of the no-plasma generating period B are about 2 ⁇ sec. Accordingly, the shortest cycle is about 4 ⁇ sec, and the frequency at this time is set to about 250 kHz. Further, the maximum length of the plasma generating period A and that of the no-plasma generating period B are about 100 ⁇ sec. Therefore, the longest cycle is about 200 ⁇ sec, and the frequency at this time is set to about 5 kHz.
- the SiO 2 film 76 and a polysilicon film 78 are formed on a Si substrate 74 in that order, the SiO 2 film 76 including a gate oxide film corresponding portion 76 a having a thickness of about 4 nm and a device isolation region 76 b having a thickness of about 500 nm.
- a plurality of such devices are formed on the wafer in a matrix cell array.
- the area C of the device isolation region 76 b is set to be 10,000 or 100,000 times greater than the area D of the gate oxide film corresponding portion 76 a , and the charging damage readily occurs as in a conventional stress test.
- a wafer having a diameter of 300 mm was used as for a wafer.
- the plasma processing was performed by using the apparatus shown in FIG. 1 . At this time, the wafer was exposed to the plasma under the following conditions.
- Processing gas O 2 gas
- Processing time 100 seconds.
- the second RF power output from the second RF power supply 70 was not used (applied). At this time, a leakage current of each device was measured. When the leakage current was greater than or equal to about 1 ⁇ 10 ⁇ 9 ⁇ / ⁇ m 2 , it was considered that the dielectric breakdown has occurred. On the contrary, when the leakage current was smaller than that, it was considered that the dielectric breakdown has not occurred.
- FIGS. 6A to 6C and 7 A to 7 C show the test results.
- FIGS. 6A to 6C show the case where the area C of the device isolation region 76 b is 100,000 times larger than that of the gate oxide film corresponding portion 76 a
- FIGS. 7A to 7C show the case where the area C of the device isolation region 76 b is 10,000 times larger than that of the gate oxide film corresponding portion 76 a
- FIGS. 6A and 7A illustrate the wafers exposed to the conventional continuous plasma; FIGS.
- FIGS. 6B and 7B illustrate the wafers exposed to the pulse plasma under the conditions of the plasma generating period A of about 40 ⁇ sec, the duty ratio of about 20% and the modulation frequency (pulse frequency) of about 5 kHz; and FIGS. 6C and 7C illustrate the wafers exposed to the pulse plasma under the conditions of the plasma generating period A of about 5 ⁇ sec, the duty ratio of about 50% and the modulation frequency of about 100 kHz.
- a white region indicates a region where dielectric breakdown has not occurred, and a black region represents a region where dielectric breakdown has occurred.
- the production yield after the plasma generating period of about 40 ⁇ sec, and the production yield obtained after the plasma generating period of about 5 ⁇ sec were about 100 W. Further, the charging damage did not occur in any location in the wafer surface.
- the plasma generated by the first RF power outputted from the first RF power supply 32 has a higher density distribution at the central portion of the wafer and a lower density distribution at the peripheral portion of the wafer.
- a wafer having a diameter of 300 mm was used and an organic film on the wafer was etched.
- the plasma etching was carried out by using the plasma processing apparatus shown in FIG. 1 under the following conditions:
- Second RF power 200 W
- Processing time 30 seconds.
- the plasma generating period A by using the first RF power was set to 500 ⁇ sec
- the first RF power in the plasma generating period A was set to 1500 W
- the first RF power in the no-plasma generating period B was set to 0 W
- the duty ratio was set to 50%
- the modulation frequency (pulse plasma) was set to 1 kHz.
- the first RF power was set to 1500 W.
- any plasma can be used other than the pulse plasma as long as the plasma generating state and the no-plasma generating state are alternately repeated at predetermined intervals.
- the plasma processing apparatus in the above embodiment is of the type that the first RF power for plasma generation and the second RF power for ion attraction are applied to the susceptor 12 .
- an apparatus of a type in which an RF power for plasma generation is applied to the upper electrode In that case, an RF power for ion attraction can be applied to the lower electrode.
- the RF power for plasma generation has a frequency of about 30 MHz to 300 MHz.
- the present invention can be applied to other various plasma processing apparatuses for performing plasma CVD, plasma oxidation, plasma nitriding, sputtering and the like.
- the target object in the present invention is not limited to the semiconductor wafer, but may be one of various substrates for a flat panel display, a photo mask, a CD substrate, a printed circuit board or the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/192,388 US20090047795A1 (en) | 2007-08-17 | 2008-08-15 | Plasma processing apparatus, plasma processing method and storage medium |
US13/737,313 US8703002B2 (en) | 2007-08-17 | 2013-01-09 | Plasma processing apparatus, plasma processing method and storage medium |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007213170 | 2007-08-17 | ||
JP2007-213170 | 2007-08-17 | ||
US99180307P | 2007-12-03 | 2007-12-03 | |
US12/192,388 US20090047795A1 (en) | 2007-08-17 | 2008-08-15 | Plasma processing apparatus, plasma processing method and storage medium |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/737,313 Division US8703002B2 (en) | 2007-08-17 | 2013-01-09 | Plasma processing apparatus, plasma processing method and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090047795A1 true US20090047795A1 (en) | 2009-02-19 |
Family
ID=40111040
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/192,388 Abandoned US20090047795A1 (en) | 2007-08-17 | 2008-08-15 | Plasma processing apparatus, plasma processing method and storage medium |
US13/737,313 Active US8703002B2 (en) | 2007-08-17 | 2013-01-09 | Plasma processing apparatus, plasma processing method and storage medium |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/737,313 Active US8703002B2 (en) | 2007-08-17 | 2013-01-09 | Plasma processing apparatus, plasma processing method and storage medium |
Country Status (6)
Country | Link |
---|---|
US (2) | US20090047795A1 (zh) |
EP (1) | EP2026374B1 (zh) |
JP (2) | JP5514413B2 (zh) |
KR (2) | KR101181023B1 (zh) |
CN (2) | CN104810272A (zh) |
TW (1) | TWI460786B (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102299068A (zh) * | 2010-06-23 | 2011-12-28 | 东京毅力科创株式会社 | 基板处理方法 |
US20120289049A1 (en) * | 2011-05-10 | 2012-11-15 | Applied Materials, Inc. | Copper oxide removal techniques |
US20130126486A1 (en) * | 2011-11-22 | 2013-05-23 | Ryan Bise | Multi Zone Gas Injection Upper Electrode System |
CN103247511A (zh) * | 2012-02-14 | 2013-08-14 | 东京毅力科创株式会社 | 基板处理装置 |
US20140346040A1 (en) * | 2012-01-18 | 2014-11-27 | Tokyo Electron Limited | Substrate processing apparatus |
US20160247666A1 (en) * | 2015-02-23 | 2016-08-25 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
WO2019118601A1 (en) * | 2017-12-13 | 2019-06-20 | Applied Materials, Inc. | Spatial atomic layer deposition chamber with plasma pulsing to prevent charge damage |
US11594400B2 (en) * | 2011-11-23 | 2023-02-28 | Lam Research Corporation | Multi zone gas injection upper electrode system |
Families Citing this family (251)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101322539B1 (ko) * | 2009-08-07 | 2013-10-28 | 가부시끼가이샤교산세이사꾸쇼 | 펄스 변조 고주파 전력 제어 방법 및 펄스 변조 고주파 전원 장치 |
KR101123004B1 (ko) * | 2009-09-18 | 2012-03-12 | 주성엔지니어링(주) | 플라즈마 처리 장치 |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
JP5977509B2 (ja) | 2011-12-09 | 2016-08-24 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
JP5867701B2 (ja) | 2011-12-15 | 2016-02-24 | 東京エレクトロン株式会社 | プラズマ処理装置 |
JP5808012B2 (ja) | 2011-12-27 | 2015-11-10 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9401263B2 (en) * | 2013-09-19 | 2016-07-26 | Globalfoundries Inc. | Feature etching using varying supply of power pulses |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
JP6410592B2 (ja) * | 2014-12-18 | 2018-10-24 | 東京エレクトロン株式会社 | プラズマエッチング方法 |
JP6698033B2 (ja) * | 2014-12-25 | 2020-05-27 | 東京エレクトロン株式会社 | プラズマ処理装置およびプラズマ処理方法 |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
WO2017018077A1 (ja) * | 2015-07-24 | 2017-02-02 | 株式会社ユーテック | スパッタリング装置、膜の製造方法、SrRuO3-σ膜、強誘電体セラミックス及びその製造方法 |
JPWO2017018078A1 (ja) * | 2015-07-24 | 2018-06-14 | 株式会社ユーテック | スパッタリング装置及び絶縁膜の製造方法 |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
JP6498152B2 (ja) * | 2015-12-18 | 2019-04-10 | 東京エレクトロン株式会社 | エッチング方法 |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
JP6770868B2 (ja) * | 2016-10-26 | 2020-10-21 | 東京エレクトロン株式会社 | プラズマ処理装置のインピーダンス整合のための方法 |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
JP6697372B2 (ja) | 2016-11-21 | 2020-05-20 | キオクシア株式会社 | ドライエッチング方法及び半導体装置の製造方法 |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
JP2019073743A (ja) * | 2017-10-12 | 2019-05-16 | アドバンストマテリアルテクノロジーズ株式会社 | 成膜装置及び成膜方法 |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
CN111344522B (zh) | 2017-11-27 | 2022-04-12 | 阿斯莫Ip控股公司 | 包括洁净迷你环境的装置 |
KR102597978B1 (ko) | 2017-11-27 | 2023-11-06 | 에이에스엠 아이피 홀딩 비.브이. | 배치 퍼니스와 함께 사용하기 위한 웨이퍼 카세트를 보관하기 위한 보관 장치 |
CN110004424B (zh) * | 2018-01-05 | 2020-12-22 | 友威科技股份有限公司 | 连续式的镀膜装置 |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US11685991B2 (en) | 2018-02-14 | 2023-06-27 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
TWI811348B (zh) | 2018-05-08 | 2023-08-11 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
JP7175239B2 (ja) * | 2018-06-22 | 2022-11-18 | 東京エレクトロン株式会社 | 制御方法、プラズマ処理装置、プログラム及び記憶媒体 |
JP6846387B2 (ja) * | 2018-06-22 | 2021-03-24 | 東京エレクトロン株式会社 | プラズマ処理方法及びプラズマ処理装置 |
JP2021529254A (ja) | 2018-06-27 | 2021-10-28 | エーエスエム・アイピー・ホールディング・ベー・フェー | 金属含有材料ならびに金属含有材料を含む膜および構造体を形成するための周期的堆積方法 |
TWI815915B (zh) | 2018-06-27 | 2023-09-21 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料及包含含金屬材料的膜及結構之循環沉積方法 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
KR20200038184A (ko) | 2018-10-01 | 2020-04-10 | 에이에스엠 아이피 홀딩 비.브이. | 기판 유지 장치, 장치를 포함하는 시스템, 및 이를 이용하는 방법 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
TW202037745A (zh) | 2018-12-14 | 2020-10-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成裝置結構之方法、其所形成之結構及施行其之系統 |
TW202405220A (zh) | 2019-01-17 | 2024-02-01 | 荷蘭商Asm Ip 私人控股有限公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR20200091543A (ko) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TW202044325A (zh) | 2019-02-20 | 2020-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 填充一基板之一表面內所形成的一凹槽的方法、根據其所形成之半導體結構、及半導體處理設備 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
US11482533B2 (en) | 2019-02-20 | 2022-10-25 | Asm Ip Holding B.V. | Apparatus and methods for plug fill deposition in 3-D NAND applications |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
KR20200108248A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOCN 층을 포함한 구조체 및 이의 형성 방법 |
JP2020167398A (ja) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | ドアオープナーおよびドアオープナーが提供される基材処理装置 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
US11447864B2 (en) | 2019-04-19 | 2022-09-20 | Asm Ip Holding B.V. | Layer forming method and apparatus |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141002A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 배기 가스 분석을 포함한 기상 반응기 시스템을 사용하는 방법 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
KR20210018759A (ko) | 2019-08-05 | 2021-02-18 | 에이에스엠 아이피 홀딩 비.브이. | 화학물질 공급원 용기를 위한 액체 레벨 센서 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
TWI846966B (zh) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成光阻底層之方法及包括光阻底層之結構 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
TW202125596A (zh) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成氮化釩層之方法以及包括該氮化釩層之結構 |
KR20210080214A (ko) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
TW202142733A (zh) | 2020-01-06 | 2021-11-16 | 荷蘭商Asm Ip私人控股有限公司 | 反應器系統、抬升銷、及處理方法 |
JP2021109175A (ja) | 2020-01-06 | 2021-08-02 | エーエスエム・アイピー・ホールディング・ベー・フェー | ガス供給アセンブリ、その構成要素、およびこれを含む反応器システム |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
KR20210117157A (ko) | 2020-03-12 | 2021-09-28 | 에이에스엠 아이피 홀딩 비.브이. | 타겟 토폴로지 프로파일을 갖는 층 구조를 제조하기 위한 방법 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
TW202146831A (zh) | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
KR20210132576A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 나이트라이드 함유 층을 형성하는 방법 및 이를 포함하는 구조 |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202202649A (zh) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR20220010438A (ko) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | 포토리소그래피에 사용하기 위한 구조체 및 방법 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (ko) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
TW202217037A (zh) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 沉積釩金屬的方法、結構、裝置及沉積總成 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6473620A (en) * | 1987-09-14 | 1989-03-17 | Mitsubishi Electric Corp | Plasma applying device |
US5698062A (en) * | 1993-11-05 | 1997-12-16 | Tokyo Electron Limited | Plasma treatment apparatus and method |
US5997687A (en) * | 1996-08-23 | 1999-12-07 | Tokyo Electron Limited | Plasma processing apparatus |
US6009828A (en) * | 1995-02-17 | 2000-01-04 | Sharp Kabushiki Kaisha | Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method |
US6074518A (en) * | 1994-04-20 | 2000-06-13 | Tokyo Electron Limited | Plasma processing apparatus |
US6089181A (en) * | 1996-07-23 | 2000-07-18 | Tokyo Electron Limited | Plasma processing apparatus |
US6110287A (en) * | 1993-03-31 | 2000-08-29 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
US6165376A (en) * | 1997-01-16 | 2000-12-26 | Nissin Electric Co., Ltd. | Work surface treatment method and work surface treatment apparatus |
US6214162B1 (en) * | 1996-09-27 | 2001-04-10 | Tokyo Electron Limited | Plasma processing apparatus |
US20010022293A1 (en) * | 1999-12-27 | 2001-09-20 | Kenji Maeda | Plasma processing equipment and plasma processing method using the same |
US6372654B1 (en) * | 1999-04-07 | 2002-04-16 | Nec Corporation | Apparatus for fabricating a semiconductor device and method of doing the same |
US6433297B1 (en) * | 1999-03-19 | 2002-08-13 | Kabushiki Kaisha Toshiba | Plasma processing method and plasma processing apparatus |
US6562190B1 (en) * | 2000-10-06 | 2003-05-13 | Lam Research Corporation | System, apparatus, and method for processing wafer using single frequency RF power in plasma processing chamber |
JP2003197536A (ja) * | 2001-12-21 | 2003-07-11 | Sharp Corp | プラズマcvd装置、非晶質シリコン系薄膜及びその製造方法 |
US20040195216A1 (en) * | 2001-08-29 | 2004-10-07 | Strang Eric J. | Apparatus and method for plasma processing |
US20040221958A1 (en) * | 2003-05-06 | 2004-11-11 | Lam Research Corporation | RF pulsing of a narrow gap capacitively coupled reactor |
US20040242021A1 (en) * | 2003-05-28 | 2004-12-02 | Applied Materials, Inc. | Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy |
US20040250954A1 (en) * | 2003-06-12 | 2004-12-16 | Samsung Electronics Co., Ltd. | Plasma chamber |
US20050103441A1 (en) * | 2001-11-14 | 2005-05-19 | Masanobu Honda | Etching method and plasma etching apparatus |
US20050183822A1 (en) * | 2002-04-26 | 2005-08-25 | Tetsuo Ono | Plasma processing method and plasma processing apparatus |
US20050241762A1 (en) * | 2004-04-30 | 2005-11-03 | Applied Materials, Inc. | Alternating asymmetrical plasma generation in a process chamber |
US20060118044A1 (en) * | 2004-12-03 | 2006-06-08 | Shinji Himori | Capacitive coupling plasma processing apparatus |
US20080026488A1 (en) * | 2006-07-31 | 2008-01-31 | Ibm Corporation | Method and apparatus for detecting endpoint in a dry etching system by monitoring a superimposed DC current |
US20080230008A1 (en) * | 2007-03-21 | 2008-09-25 | Alexander Paterson | Plasma species and uniformity control through pulsed vhf operation |
US20100140221A1 (en) * | 2008-12-09 | 2010-06-10 | Tokyo Electron Limited | Plasma etching apparatus and plasma cleaning method |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5947733A (ja) * | 1982-09-13 | 1984-03-17 | Hitachi Ltd | プラズマプロセス方法および装置 |
JPH0793292B2 (ja) * | 1988-03-07 | 1995-10-09 | 株式会社日立製作所 | マイクロ波プラズマ処理方法及び装置 |
JP2851765B2 (ja) * | 1992-03-31 | 1999-01-27 | 松下電器産業株式会社 | プラズマ発生方法およびその装置 |
JP3201576B2 (ja) * | 1995-02-17 | 2001-08-20 | シャープ株式会社 | 半導体薄膜の製造方法及びその製造方法を用いたプラズマcvd装置 |
JP3700278B2 (ja) * | 1996-08-23 | 2005-09-28 | ソニー株式会社 | デュアルゲート構造を有する半導体装置の製造方法 |
JP3629705B2 (ja) * | 1997-06-06 | 2005-03-16 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US6093332A (en) * | 1998-02-04 | 2000-07-25 | Lam Research Corporation | Methods for reducing mask erosion during plasma etching |
JP2000269198A (ja) * | 1999-03-19 | 2000-09-29 | Toshiba Corp | プラズマ処理方法及びプラズマ処理装置 |
JP2001313284A (ja) * | 2000-02-21 | 2001-11-09 | Hitachi Ltd | プラズマ処理方法および装置 |
JP2001244250A (ja) * | 2000-03-01 | 2001-09-07 | Hitachi Ltd | 表面処理方法および装置 |
JP2001358129A (ja) * | 2000-06-16 | 2001-12-26 | Matsushita Electric Ind Co Ltd | プラズマ処理方法及びプラズマ処理装置 |
US6479391B2 (en) * | 2000-12-22 | 2002-11-12 | Intel Corporation | Method for making a dual damascene interconnect using a multilayer hard mask |
US6777037B2 (en) * | 2001-02-21 | 2004-08-17 | Hitachi, Ltd. | Plasma processing method and apparatus |
JP4112821B2 (ja) * | 2001-06-01 | 2008-07-02 | 松下電器産業株式会社 | プラズマ処理方法およびプラズマ処理装置 |
JP3927464B2 (ja) | 2002-04-26 | 2007-06-06 | 株式会社日立ハイテクノロジーズ | プラズマ処理方法 |
US6872666B2 (en) * | 2002-11-06 | 2005-03-29 | Intel Corporation | Method for making a dual damascene interconnect using a dual hard mask |
US7405521B2 (en) * | 2003-08-22 | 2008-07-29 | Lam Research Corporation | Multiple frequency plasma processor method and apparatus |
US20050224980A1 (en) * | 2004-03-31 | 2005-10-13 | Jihperng Leu | Interconnect adapted for reduced electron scattering |
US20050285269A1 (en) * | 2004-06-29 | 2005-12-29 | Yang Cao | Substantially void free interconnect formation |
JP5323303B2 (ja) | 2004-12-03 | 2013-10-23 | 東京エレクトロン株式会社 | プラズマ処理装置 |
CN100539000C (zh) * | 2004-12-03 | 2009-09-09 | 东京毅力科创株式会社 | 电容耦合型等离子体处理装置 |
JP2006196034A (ja) * | 2005-01-11 | 2006-07-27 | Hitachi Global Storage Technologies Netherlands Bv | 磁気ヘッドの製造方法 |
US7678529B2 (en) * | 2005-11-21 | 2010-03-16 | Shin-Etsu Chemical Co., Ltd. | Silicon-containing film forming composition, silicon-containing film serving as etching mask, substrate processing intermediate, and substrate processing method |
JP2007165512A (ja) * | 2005-12-13 | 2007-06-28 | Hitachi High-Technologies Corp | プラズマ処理装置 |
JP4827081B2 (ja) * | 2005-12-28 | 2011-11-30 | 東京エレクトロン株式会社 | プラズマエッチング方法およびコンピュータ読み取り可能な記憶媒体 |
US7883632B2 (en) * | 2006-03-22 | 2011-02-08 | Tokyo Electron Limited | Plasma processing method |
-
2008
- 2008-08-12 JP JP2008207948A patent/JP5514413B2/ja active Active
- 2008-08-14 KR KR1020080079816A patent/KR101181023B1/ko active IP Right Grant
- 2008-08-15 CN CN201510206545.2A patent/CN104810272A/zh active Pending
- 2008-08-15 TW TW097131282A patent/TWI460786B/zh active
- 2008-08-15 CN CNA2008101351936A patent/CN101370349A/zh active Pending
- 2008-08-15 US US12/192,388 patent/US20090047795A1/en not_active Abandoned
- 2008-08-18 EP EP08162504.8A patent/EP2026374B1/en active Active
-
2012
- 2012-02-06 KR KR1020120011804A patent/KR101434015B1/ko active IP Right Grant
-
2013
- 2013-01-09 US US13/737,313 patent/US8703002B2/en active Active
-
2014
- 2014-03-31 JP JP2014071719A patent/JP5836419B2/ja active Active
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6473620A (en) * | 1987-09-14 | 1989-03-17 | Mitsubishi Electric Corp | Plasma applying device |
US6110287A (en) * | 1993-03-31 | 2000-08-29 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
US5698062A (en) * | 1993-11-05 | 1997-12-16 | Tokyo Electron Limited | Plasma treatment apparatus and method |
US6074518A (en) * | 1994-04-20 | 2000-06-13 | Tokyo Electron Limited | Plasma processing apparatus |
US6009828A (en) * | 1995-02-17 | 2000-01-04 | Sharp Kabushiki Kaisha | Method for forming a thin semiconductor film and a plasma CVD apparatus to be used in the method |
US6089181A (en) * | 1996-07-23 | 2000-07-18 | Tokyo Electron Limited | Plasma processing apparatus |
US5997687A (en) * | 1996-08-23 | 1999-12-07 | Tokyo Electron Limited | Plasma processing apparatus |
US6214162B1 (en) * | 1996-09-27 | 2001-04-10 | Tokyo Electron Limited | Plasma processing apparatus |
US6165376A (en) * | 1997-01-16 | 2000-12-26 | Nissin Electric Co., Ltd. | Work surface treatment method and work surface treatment apparatus |
US6433297B1 (en) * | 1999-03-19 | 2002-08-13 | Kabushiki Kaisha Toshiba | Plasma processing method and plasma processing apparatus |
US6372654B1 (en) * | 1999-04-07 | 2002-04-16 | Nec Corporation | Apparatus for fabricating a semiconductor device and method of doing the same |
US20010022293A1 (en) * | 1999-12-27 | 2001-09-20 | Kenji Maeda | Plasma processing equipment and plasma processing method using the same |
US6562190B1 (en) * | 2000-10-06 | 2003-05-13 | Lam Research Corporation | System, apparatus, and method for processing wafer using single frequency RF power in plasma processing chamber |
US20040195216A1 (en) * | 2001-08-29 | 2004-10-07 | Strang Eric J. | Apparatus and method for plasma processing |
US20050103441A1 (en) * | 2001-11-14 | 2005-05-19 | Masanobu Honda | Etching method and plasma etching apparatus |
JP2003197536A (ja) * | 2001-12-21 | 2003-07-11 | Sharp Corp | プラズマcvd装置、非晶質シリコン系薄膜及びその製造方法 |
US20050183822A1 (en) * | 2002-04-26 | 2005-08-25 | Tetsuo Ono | Plasma processing method and plasma processing apparatus |
US20070184562A1 (en) * | 2002-04-26 | 2007-08-09 | Tetsuo Ono | Plasma Processing Method And Plasma Processing Apparatus |
US20040221958A1 (en) * | 2003-05-06 | 2004-11-11 | Lam Research Corporation | RF pulsing of a narrow gap capacitively coupled reactor |
US20040242021A1 (en) * | 2003-05-28 | 2004-12-02 | Applied Materials, Inc. | Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy |
US20060216944A1 (en) * | 2003-05-28 | 2006-09-28 | Kraus Philip A | Method and apparatus for plasma nitridation of gate dielectrics using amplitude modulated radio-frequency energy |
US20040250954A1 (en) * | 2003-06-12 | 2004-12-16 | Samsung Electronics Co., Ltd. | Plasma chamber |
US20050241762A1 (en) * | 2004-04-30 | 2005-11-03 | Applied Materials, Inc. | Alternating asymmetrical plasma generation in a process chamber |
US20060118044A1 (en) * | 2004-12-03 | 2006-06-08 | Shinji Himori | Capacitive coupling plasma processing apparatus |
US20080026488A1 (en) * | 2006-07-31 | 2008-01-31 | Ibm Corporation | Method and apparatus for detecting endpoint in a dry etching system by monitoring a superimposed DC current |
US20080230008A1 (en) * | 2007-03-21 | 2008-09-25 | Alexander Paterson | Plasma species and uniformity control through pulsed vhf operation |
US20100140221A1 (en) * | 2008-12-09 | 2010-06-10 | Tokyo Electron Limited | Plasma etching apparatus and plasma cleaning method |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102299068A (zh) * | 2010-06-23 | 2011-12-28 | 东京毅力科创株式会社 | 基板处理方法 |
US8685267B2 (en) * | 2010-06-23 | 2014-04-01 | Tokyo Electron Limited | Substrate processing method |
US20120289049A1 (en) * | 2011-05-10 | 2012-11-15 | Applied Materials, Inc. | Copper oxide removal techniques |
US8758638B2 (en) * | 2011-05-10 | 2014-06-24 | Applied Materials, Inc. | Copper oxide removal techniques |
US20130126486A1 (en) * | 2011-11-22 | 2013-05-23 | Ryan Bise | Multi Zone Gas Injection Upper Electrode System |
US10622195B2 (en) * | 2011-11-22 | 2020-04-14 | Lam Research Corporation | Multi zone gas injection upper electrode system |
US11594400B2 (en) * | 2011-11-23 | 2023-02-28 | Lam Research Corporation | Multi zone gas injection upper electrode system |
US10651012B2 (en) | 2012-01-18 | 2020-05-12 | Tokyo Electron Limited | Substrate processing method |
US20140346040A1 (en) * | 2012-01-18 | 2014-11-27 | Tokyo Electron Limited | Substrate processing apparatus |
TWI576913B (zh) * | 2012-02-14 | 2017-04-01 | Tokyo Electron Ltd | Substrate processing device |
US9390943B2 (en) * | 2012-02-14 | 2016-07-12 | Tokyo Electron Limited | Substrate processing apparatus |
US20130220547A1 (en) * | 2012-02-14 | 2013-08-29 | Tokyo Electron Limited | Substrate processing apparatus |
CN103247511A (zh) * | 2012-02-14 | 2013-08-14 | 东京毅力科创株式会社 | 基板处理装置 |
US20160247666A1 (en) * | 2015-02-23 | 2016-08-25 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
US9870898B2 (en) * | 2015-02-23 | 2018-01-16 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
US10707053B2 (en) | 2015-02-23 | 2020-07-07 | Tokyo Electron Limited | Plasma processing method and plasma processing apparatus |
WO2019118601A1 (en) * | 2017-12-13 | 2019-06-20 | Applied Materials, Inc. | Spatial atomic layer deposition chamber with plasma pulsing to prevent charge damage |
CN111433887A (zh) * | 2017-12-13 | 2020-07-17 | 应用材料公司 | 具有等离子体脉冲以防止电荷损坏的空间原子层沉积腔室 |
US10854428B2 (en) | 2017-12-13 | 2020-12-01 | Applied Materials, Inc. | Spatial atomic layer deposition chamber with plasma pulsing to prevent charge damage |
TWI753223B (zh) * | 2017-12-13 | 2022-01-21 | 美商應用材料股份有限公司 | 具有電漿脈衝以防止電荷損傷的基板處理腔室及方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20090018582A (ko) | 2009-02-20 |
KR101434015B1 (ko) | 2014-08-25 |
JP5514413B2 (ja) | 2014-06-04 |
JP2009071292A (ja) | 2009-04-02 |
CN101370349A (zh) | 2009-02-18 |
JP2014135512A (ja) | 2014-07-24 |
TWI460786B (zh) | 2014-11-11 |
KR20120042775A (ko) | 2012-05-03 |
JP5836419B2 (ja) | 2015-12-24 |
US20130122714A1 (en) | 2013-05-16 |
EP2026374A3 (en) | 2010-08-25 |
EP2026374B1 (en) | 2017-04-05 |
EP2026374A2 (en) | 2009-02-18 |
CN104810272A (zh) | 2015-07-29 |
KR101181023B1 (ko) | 2012-09-07 |
US8703002B2 (en) | 2014-04-22 |
TW200913056A (en) | 2009-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8703002B2 (en) | Plasma processing apparatus, plasma processing method and storage medium | |
US10804072B2 (en) | Plasma processing apparatus | |
US9659756B2 (en) | Plasma etching apparatus and plasma cleaning method | |
US9275836B2 (en) | Plasma processing apparatus and plasma processing method | |
US8651049B2 (en) | Plasma processing apparatus | |
US8440050B2 (en) | Plasma processing apparatus and method, and storage medium | |
US9039909B2 (en) | Plasma etching method, semiconductor device manufacturing method and computer-readable storage medium | |
KR101957911B1 (ko) | 플라즈마 처리 장치 | |
US7718007B2 (en) | Substrate supporting member and substrate processing apparatus | |
US9530666B2 (en) | Plasma etching method and plasma etching apparatus | |
US20120145186A1 (en) | Plasma processing apparatus | |
US20070227666A1 (en) | Plasma processing apparatus | |
US8157953B2 (en) | Plasma processing apparatus | |
US20070202701A1 (en) | Plasma etching apparatus and method | |
KR20170028849A (ko) | 포커스 링 및 기판 처리 장치 | |
US8034213B2 (en) | Plasma processing apparatus and plasma processing method | |
US10957515B2 (en) | Plasma processing method and plasma processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOKYO ELECTRON LIMITED, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUDO, TATSUO;HIMORI, SHINJI;IMAI, NORIAKI;AND OTHERS;REEL/FRAME:021529/0163 Effective date: 20080905 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |