TWI390780B - 磁阻效應元件 - Google Patents

磁阻效應元件 Download PDF

Info

Publication number
TWI390780B
TWI390780B TW094130390A TW94130390A TWI390780B TW I390780 B TWI390780 B TW I390780B TW 094130390 A TW094130390 A TW 094130390A TW 94130390 A TW94130390 A TW 94130390A TW I390780 B TWI390780 B TW I390780B
Authority
TW
Taiwan
Prior art keywords
layer
strong magnetic
magnetoresistance effect
magnetic layer
mgo
Prior art date
Application number
TW094130390A
Other languages
English (en)
Other versions
TW200614556A (en
Inventor
David D Djayaprawira
Koji Tsunekawa
Motonobu Nagai
Hiroki Maehara
Shinji Yamagata
Naoki Watanabe
Shinji Yuasa
Original Assignee
Canon Anelva Corp
Nat Inst Of Advanced Ind Scien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp, Nat Inst Of Advanced Ind Scien filed Critical Canon Anelva Corp
Publication of TW200614556A publication Critical patent/TW200614556A/zh
Application granted granted Critical
Publication of TWI390780B publication Critical patent/TWI390780B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3204Exchange coupling of amorphous multilayers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Description

磁阻效應元件
本發明係關於磁阻效應元件及該製造方法,特別是,關於利用簡單的濺鍍成膜法而製作,具有極高的磁性阻抗比的磁阻效應元件及該製造方法。
近年來作為非揮發性記憶體,注目於被稱為MRAM(Magnetoresistive Random Access Memory磁阻式隨機存取記憶體)的磁性記憶體裝置,持續進入實用化階段。MRAM為構造簡單,容易十億位元級的超高積體化,因為利用磁矩的旋轉而使其產生記憶作用,所以可覆寫的次數非常大,而且,具有可將動作速度作為數奈秒程度的特性。
於第4圖表示MRAM的構造。於MRAM101,102為記憶體元件、103為字元線、104為位元線。多數的記憶體元件102的各個係被配置於複數的字元線103與複數的位元線104的各交點位置,配置於格子狀的位置關係。多數的記憶體元件102的各個為記憶1位元的資訊。
MRAM101的記憶體元件102,像第5圖所示的,由在字元線103與位元線104的交點位置,記憶1位元的資訊的磁阻效應元件亦即TMR元件110、和具有開關機能的電晶體106所構成。該當記憶體元件102的主要的要素係使用TMR(Tunneling Magneto resistance穿隧磁阻) 元件110之點上。TMR元件的基本的構造,如第6圖所示的,為由強磁性金屬電極(強磁性層)107/穿隧阻擋(穿隧障壁)層108/強磁性金屬電極(強磁性層)109所構成的三層的層積構造。TMR素子110係藉由一對的強磁性層107、109與位於其中間的穿隧阻擋層108而構成。
TMR元件110係像第6圖所示的,具有:於穿隧阻擋層108的兩側的強磁性層107、109之間施加必要電壓而流一定電流的狀態,驅動外部磁場,強磁性層107、109的磁化的方向為在平行相同時(稱「平行狀態」),TMR元件的電阻成為最小((A)的狀態:阻抗值Rp ),強磁性層的磁化的方向為在平行相反時(稱為「反平行狀態」),TMR元件的電阻係成為最大((B)的狀態:阻抗值RA )的特性。因此TMR元件110,可藉由外部磁場而作出平行狀態與反平行狀態,作為阻抗值變化而進行資訊的記憶。
關於以上的TMR元件,為了實現有實用性的十億位元級的MRAM,被要求「平行狀態」的阻抗值Rp 與「反平行狀態」的阻抗值RA 的差大。作為該指標使用磁性阻抗比(MR比)。MR比係定義為「(RA -Rp )÷Rp 」。
為了提高MR比,先前係進行強磁性金屬電極(強磁性層)的電極材料的最適化,或穿隧阻擋層的製造法的方法等。例如:在日本特開2003-304010號公報或日本特開2004-63592號公報,提案關於強磁性金屬電極(強磁 性層)的材料使用Fex Coy Bz 等幾個的最適例。
開示於上述日本特開2003-304010號公報及日本特開2004-63592號公報的TMR元件的MR比係大略比70%低,有更提高MR比的必要。
另外,在最近,關於使用MgO阻擋層的單結晶TMR薄膜,使用MBE和超高真空蒸鍍裝置而製作Fe/MgO/Fe的單結晶TMR薄膜,成為得到MR比88%的報告(湯浅新治,以外4名,(“High Tunnel Magnetoresistance at Room Temperaturein Fully Epitaxial Fe/MgO/Tunnel Junctions due to Coherent Spin-PoIarized Tunneling” 研究所、応用物理日本(奈米電子研究所,應用物理的日本期刊),2004年4月2日發行,第43卷、第4B號、P.L588-L590)。此TMR薄膜係具有完全磊晶的單結晶構造。
為了製作使用記載於上述的文獻的單結晶MgO阻擋層的單結晶TMR薄膜,有採用高價的MgO單結晶基板的必要。另外,藉由高價的MBE裝置之Fe膜的磊晶成長或藉由超高真空電子束蒸鍍的MgO的成膜等的高度的成膜技術成為必要,有成膜時間變長等的不適於量產性的問題。
本發明的目的係在提供具有高MR比、提高量產性,提高實用性的磁阻效應元件及該製造方法。
有關本發明的磁阻效應元件及該製造方法係為了達成上述目的,如以下的構成。
此磁阻效應元件,係包含由一對強磁性層和位於那些的中間的阻擋層所構成的層積構造;至少一方的強磁性層的至少接於阻擋層的部分為非晶形狀態,阻擋層為具有單結晶構造的MgO層為特徵。
如藉由上述磁阻效應元件,在阻擋層具有單結晶構造,強磁性層間的電流的流動成為可直進,成為能將該MR比作為非常高的值。
磁阻效應元件,理想為MgO層係以濺鍍法成膜的單結晶層。如藉由此構成,為中間層的阻擋層係可以簡單的方法製作,最適於量產。
磁阻效應元件,理想為MgO層係使用MgO靶材,而且以澱鍍法形成的單結晶層。
磁阻效應元件,理想為強磁性層為CoFeB層。
磁阻效應元件的製造方法,係包含由一對強磁性層和位於那些的中間的阻擋層所構成的層積構造的磁阻效應元件的製造方法;成膜至少接於阻擋層的部分為非晶形狀態的強磁性層,使用濺鍍法而製作具有單結晶構造的阻擋層的方法。
而且磁阻效應元件的製造方法,理想為在製作MgO層的濺鍍法,係使用MgO靶材,而且實施RF(高頻)磁控濺鍍。
如藉由本發明,因為TMR元件等的磁阻效應元件的 中間層之穿隧阻擋層為具有單結晶構造的MgO層,可極度提高MR比,將此作為MRAM的記憶體元件而利用時,可實現十億位元級的超高積體度。而且,藉由上述的單結晶MgO層以濺鍍法成膜,可製作適於量產性、實用性高的磁阻效應元件。
以下,根據添附圖面而說明本發明的合適的實施例。
第1圖係表示關於本發明的磁阻效應元件的層積構造的一例,表示TMR元件的層積構造。如藉由此TMR元件10,則於基板11上構成TMR元件10,例如形成9層的多層膜。在此9層多層膜,由最下層的第1層向最上層的第9層,以「Ta」、「PtMn」、「70CoFe」、「R u」、「CoFeB」、「MgO」、「CoFeB」、「Ta」、「Ru」的順序,層積磁性膜等。第1層(Ta:鉭)為基材層,第2層(PtMn)為反強磁性層。由第3層至第5層(70CoFe、Ru、CoFeB)所構成的層係形成磁化固定層。實質上的磁化固定層為由第5層的「CoFeB」所構成的強磁性層。第6層(MgO:氧化鎂)為絕緣層且為穿隧阻擋層。第7層(CoFeB)為強磁性層、磁化自由層。第6層(MgO)係形成位於該上下的一對強磁性層(CoFeB)之間的中間層。第8層(Ta:鉭)與第9層(Ru:釕)形成硬遮罩層。藉由上述的磁化固定層(第5層的「CoFeB」)與穿隧阻擋層(第6層的「MgO」)與磁化自由層(第7層的 「CoFeB」),形成作為基本的構造而在狹義的意味上之TMR元件部12。為磁化固定層的第5層的「CoFeB」與為磁化自由層的第7層的「CoFeB」係已知作為非晶形狀態的強磁性體。為穿隧阻擋層的MgO層係如經過厚度方向而具有單結晶構造的被形成。
而且,於第1圖,於各層記載於括弧中的數值係表示各層的厚度,單位為「nm(奈米)」。該當厚度係為一例,不限定於此。
接著,參照第2圖,說明製造具有上述的層積構造的TMR元件10的裝置和製造方法。第2圖為製造TMR素子10的裝置的概略的平面圖,本裝置為可製作包含複數的磁性膜之多層膜的裝置,為量產用的濺鍍成膜裝置。
表示於第2圖的磁性多層膜製作裝置20為叢集(cluster)型裝置,根據濺鍍法而具備複數的成膜室。在本裝置20係設置具備無圖示的機械手臂(robot)的搬送室22於中央位置。於磁性多層膜製作裝置20的搬送室22係設置2個裝載/卸載室25、26,藉由各個而進行基板(矽基板)11的搬入/搬出。藉由交互使用這些裝載/卸載室25、26,成為可生產性佳的製作多層膜的構成。
在上述的磁性多層膜製作裝置20係於搬送室22的周圍,例如:設置3個成膜室27A、27B、27C、和1個蝕刻室28。在蝕刻室28係蝕刻處理TMR元件10的必要表面。於各室之間係設置隔離兩室且按照必要為自由開閉的閘閥30。而且,於各室係附設無圖示的真空排氣機構、 氣體導入機構、電力供給機構等。
在磁性多層膜製作裝置20的成膜室27A、27B、27C的各個係藉由濺鍍法,於基板11之上將前述的各磁性膜由下側依序堆積。例如於成膜室27A,27B,27C的頂板部,各別配置,配置於適當的圓周上的4座或5座的靶材(31,32,33,34,35)、(41,42,43,44,45)、(51,52,53,54)。而且於位於與該當圓周同軸上的基板夾具上,配置基板。
於上述,例如:靶材31的材料為「Ta」、靶材33的材料為「CoFeB」。另外靶材41的材料為「PtMn」、靶材42的材料為「CoFe」、靶材43的材料為「Ru」。而且靶材51的材料為「MgO」。
上述的複數的靶材,係為了效率佳且使適切的組成的磁性膜堆積,在合適上係如朝向各基板的傾斜而設置,但以平行於基板面的狀態而設置亦佳。另外,複數的靶材與基板係根據如相對的旋轉的構成而配置。於具有上述的構成的裝置20,利用各成膜室27A、27B、27C,於基板11上,表示於第1圖的磁性多層膜藉由濺鍍法而依序成膜。
敘述本發明的主要的元件部之TMR元件部12的成膜條件。磁化固定層(第5層的「CoFeB」)係、使用CoFeB組成比60/20/20 at%的靶材,在Ar壓力0.03Pa、藉由磁控直流濺鍍,以濺鍍效率(Sputtering Rate)0.64Å/sec成膜。接著,穿隧阻擋層(第6層的「MgO」)係使用MgO組成比50/50 at%的靶材,作為濺鍍氣 體使用Ar(氬),壓力係在0.01~0.4Pa的範圍改變而成膜。藉由磁控高頻(RF)濺鍍而在濺鍍效率0.14Å/sec進行成膜。而且接著,將磁化自由層(第7層的「CoFeB」)以與磁化固定層(第5層的「CoFeB」)相同的成膜條件成膜。
在此實施例,MgO膜之成膜速度為0.14Å/sec,但在0.01~1.0Å/sec的範圍成膜亦無問題。
在成膜室27A、27B、27C的各個進行濺鍍成膜而結束層積的TMR元件10,係於熱處理爐,進行退火處理。此時,退火溫度係例如約300℃,例如8 kOe(632 kA/m)的磁場中,例如進行4小時退火處理。由此,施加於TMR元件10的第2層的PtMn必要的磁化。
於第3圖表示測定MgO的磁性特性的結果。於測定的全範圍得到了高MR比。特別是,在壓力為0.05Pa以上0.2Pa以下的範圍,可得高的MR比。於壓力為0.05Pa以上的範圍,基板上的壓力增加,離子衝擊下降的結果,推定為膜的缺陷減少。在壓力為0.05Pa以上,MR比增大,穿隧阻抗值(RA )增加。此係形成良好的單結晶膜的結果,推定膜的洩漏電流減少。一方面在0.05Pa以下的範圍,穿隧阻抗值(RA )下降,MR比亦下降。此係被認為離子衝擊增大的結果,MgO單結晶膜的缺陷增大。將樣本在剖面TEM觀察的結果,觀察到:於測定的壓力的全範圍,MgO膜係從下側的界面至上側的界面,具有經過全層的單結晶構造,於界面平行的MgO單結晶的(001) 面配向的情況。另外,CoFeB層係觀察到被形成至非晶形狀態。
此次的樣本,MgO層的兩側的強磁性層都以非晶形的CoFeB形成,但即使僅哪一方的強磁性層以非晶形的CoFeB形成,亦觀測到同樣的結果。此強磁性層係至少阻擋層連接的部分為如具有非晶形物質狀態則為充分。
一方面,在作為MgO層的兩側的強磁性層,形成具有多結晶構造的CoFe時,係於MgO層見到多數的轉移,不能得到良好的單結晶膜,為特性低。
此時,使用作為像前述的靶材之MgO靶材51,而且理想為適用RF(高頻)磁控濺鍍法。而且亦可使用反應式濺鍍法,將Mg靶材在Ar和O2 的混合氣體中濺鍍而形成MgO膜。
而且於上述,MgO層係經過全層為單結晶,(001)面為具有平行於界面的配向的單結晶構造。而且,形成TMR元件部12的一對的強磁性層係可替代具有非晶形狀態的CoFeB,使用CoFeTaZr、CoTaZr、CoFeNbZr、CoFeZr、FeTaC、FeTaN、FeC等的具有非晶形狀態的強磁性層。
關於在以上的實施例說明的構成、形狀、大小及配置關係,不過是於可理解、實施本發明的程度,概略上的表示,另外關於數值及各構成的組成(材質)係不過為例示。因而本發明係,不限定於說明的實施例,只要不逸脫表示於申請專利範圍的技術的思想的範圍,就可變更為各式 各樣的形態。
本開示係關於包含在2004年9月7日申請的日本專利申請第2004-259280號的主題,該開示內容係藉由明確的參照該全體而納入此處。
101‧‧‧MRAM
RA ‧‧‧阻抗值
Rp ‧‧‧阻抗值
10‧‧‧TMR元件
11‧‧‧基板
12‧‧‧TMR元件部
20‧‧‧磁性多層膜製作裝置
22‧‧‧搬送室
25‧‧‧裝載/卸載室
26‧‧‧裝載/卸載室
27A‧‧‧成膜室
27B‧‧‧成膜室
27C‧‧‧成膜室
28‧‧‧蝕刻室
30‧‧‧閘閥
31‧‧‧靶材
32‧‧‧靶材
33‧‧‧靶材
34‧‧‧靶材
35‧‧‧靶材
41‧‧‧靶材
42‧‧‧靶材
43‧‧‧靶材
44‧‧‧靶材
45‧‧‧靶材
51‧‧‧靶材
52‧‧‧靶材
53‧‧‧靶材
54‧‧‧靶材
102‧‧‧記憶體元件
103‧‧‧字元線
104‧‧‧位元線
106‧‧‧電晶體
107‧‧‧強磁性金屬電極(強磁性層)
108‧‧‧穿隧阻擋(穿隧障壁)層
109‧‧‧強磁性金屬電極(強磁性層)
110‧‧‧TMR元件
本發明的前述的目的及特徵,係關於被添附的下述圖面,由被施加的理想的實施例之接下來的技術而為明暸,第1圖係表示關於本發明的磁阻效應元件(TMR元件)的構造的圖,第2圖為製作關於本發明的磁阻效應元件(TMR元件)的裝置的平面圖,第3圖係表示關於本發明的磁阻效應元件(TMR元件)的磁性特性的壓力相依性的線圖,第4圖為表示MRAM的要部構造的部分立體圖,第5圖為表示MRAM的記憶體元件的構造的圖,第6圖(A)、(B)為說明TMR元件的特性的圖。
10‧‧‧TMR元件
11‧‧‧基板
12‧‧‧TMR元件部

Claims (3)

  1. 一種磁阻效應元件,包含:具有第1之強磁性層、第2之強磁性層、及位於該第1之強磁性層與第2之強磁性層的阻擋層之層積構造、以及位於該第1之強磁性層之側的基板的磁阻效應元件,其特徵係前述阻擋層係從與前述第1之強磁性層的界面,以至於與前述第2之強磁性層的界面,於層之厚度方向中,(001)面具有平行配向於界面之單結晶構造之氧化鎂,前述第1之強磁性層係含有CoFeB。
  2. 如申請專利範圍第1項之磁阻效應元件,其中,前述阻擋層係使用氧化鎂靶材,以濺鍍法成膜之層。
  3. 一種磁阻式隨機存取記憶體,具有:字元線、與前述字元線交叉配置之位元線、以及連接前述字元線與前述位元線間而配置之磁阻效應元件及電晶體的磁阻式隨機存取記憶體,其特徵係前述磁阻效應元件,係具有第1之強磁性層、第2之強磁性層、及位於該第1之強磁性層與第2之強磁性層間,從與前述第1之強磁性層的界面,以至於與前述第2之強磁性層的界面,於層之厚度方向中,(001)面具有平行配向於該層之界面之單結晶構造之氧化鎂的層積構造,前述第1之強磁性層係含有CoFeB。
TW094130390A 2004-09-07 2005-09-05 磁阻效應元件 TWI390780B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259280A JP4292128B2 (ja) 2004-09-07 2004-09-07 磁気抵抗効果素子の製造方法

Publications (2)

Publication Number Publication Date
TW200614556A TW200614556A (en) 2006-05-01
TWI390780B true TWI390780B (zh) 2013-03-21

Family

ID=35326492

Family Applications (3)

Application Number Title Priority Date Filing Date
TW101135284A TWI504032B (zh) 2004-09-07 2005-09-05 Method for manufacturing magnetoresistance effect elements
TW104101069A TWI536624B (zh) 2004-09-07 2005-09-05 Magnetoresistive element
TW094130390A TWI390780B (zh) 2004-09-07 2005-09-05 磁阻效應元件

Family Applications Before (2)

Application Number Title Priority Date Filing Date
TW101135284A TWI504032B (zh) 2004-09-07 2005-09-05 Method for manufacturing magnetoresistance effect elements
TW104101069A TWI536624B (zh) 2004-09-07 2005-09-05 Magnetoresistive element

Country Status (8)

Country Link
US (6) US20060056115A1 (zh)
EP (3) EP2166581A3 (zh)
JP (1) JP4292128B2 (zh)
KR (6) KR20060051048A (zh)
CN (2) CN1755963B (zh)
AT (1) ATE431969T1 (zh)
DE (1) DE602005014526D1 (zh)
TW (3) TWI504032B (zh)

Families Citing this family (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4100025B2 (ja) * 2002-04-09 2008-06-11 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置
US7696169B2 (en) * 2003-06-06 2010-04-13 The Feinstein Institute For Medical Research Inhibitors of the interaction between HMGB polypeptides and toll-like receptor 2 as anti-inflammatory agents
US7911832B2 (en) * 2003-08-19 2011-03-22 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
KR100867662B1 (ko) 2004-03-12 2008-11-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 자기저항소자, 터널 장벽층 및 자기저항소자의 제조방법
US20070258170A1 (en) * 2004-08-27 2007-11-08 Shinji Yuasa Magnetic Tunnel Junction Device and Method of Manufacturing the Same
JP4292128B2 (ja) * 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
JP2006210391A (ja) * 2005-01-25 2006-08-10 Japan Science & Technology Agency 磁気抵抗素子及びその製造方法
JP5096702B2 (ja) * 2005-07-28 2012-12-12 株式会社日立製作所 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP4782037B2 (ja) 2006-03-03 2011-09-28 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法及び製造装置
JP4731393B2 (ja) * 2006-04-28 2011-07-20 株式会社日立製作所 磁気再生ヘッド
JP2007305768A (ja) * 2006-05-11 2007-11-22 Tdk Corp トンネル磁気抵抗効果素子の製造方法、薄膜磁気ヘッドの製造方法及び磁気メモリの製造方法
US7535069B2 (en) * 2006-06-14 2009-05-19 International Business Machines Corporation Magnetic tunnel junction with enhanced magnetic switching characteristics
JP4673274B2 (ja) * 2006-09-11 2011-04-20 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 外部ストレス耐性の高い磁気抵抗効果型ヘッド
JP4923896B2 (ja) * 2006-09-15 2012-04-25 富士通株式会社 交換結合膜及び磁気デバイス
JP2008078379A (ja) * 2006-09-21 2008-04-03 Alps Electric Co Ltd トンネル型磁気検出素子の製造方法
US7751156B2 (en) * 2006-09-29 2010-07-06 Hitachi Global Storage Technologies Netherlands, B.V. Dual-layer free layer in a tunneling magnetoresistance (TMR) element
JP2008135432A (ja) * 2006-11-27 2008-06-12 Tdk Corp トンネル磁気抵抗効果素子及びその製造方法
US7695761B1 (en) 2006-12-21 2010-04-13 Western Digital (Fremont), Llc Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer
US7715156B2 (en) 2007-01-12 2010-05-11 Tdk Corporation Tunnel magnetoresistive effect element and thin-film magnetic head with tunnel magnetoresistive effect read head element
JP2008192634A (ja) * 2007-01-31 2008-08-21 Fujitsu Ltd トンネル磁気抵抗効果膜および磁気デバイス
JP4885769B2 (ja) * 2007-03-09 2012-02-29 株式会社アルバック 磁気抵抗素子の製造方法、磁気デバイスの製造方法、磁気抵抗素子の製造装置および磁気デバイスの製造装置
US8174800B2 (en) 2007-05-07 2012-05-08 Canon Anelva Corporation Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus
JP2008306169A (ja) * 2007-05-07 2008-12-18 Canon Anelva Corp 磁気抵抗素子、磁気抵抗素子の製造方法及び磁性多層膜作成装置
US8559141B1 (en) 2007-05-07 2013-10-15 Western Digital (Fremont), Llc Spin tunneling magnetic element promoting free layer crystal growth from a barrier layer interface
US8679301B2 (en) * 2007-08-01 2014-03-25 HGST Netherlands B.V. Repeatability for RF MgO TMR barrier layer process by implementing Ti pasting
JP2009065040A (ja) * 2007-09-07 2009-03-26 National Institute Of Advanced Industrial & Technology 磁性材料及びそれを用いた磁気抵抗素子
WO2009044474A1 (ja) * 2007-10-04 2009-04-09 Canon Anelva Corporation 真空薄膜形成加工装置
WO2009044473A1 (ja) 2007-10-04 2009-04-09 Canon Anelva Corporation 高周波スパッタリング装置
US8133745B2 (en) * 2007-10-17 2012-03-13 Magic Technologies, Inc. Method of magnetic tunneling layer processes for spin-transfer torque MRAM
WO2009069672A1 (ja) * 2007-11-28 2009-06-04 Ulvac, Inc. スパッタ装置及び成膜方法
US8545999B1 (en) 2008-02-21 2013-10-01 Western Digital (Fremont), Llc Method and system for providing a magnetoresistive structure
JPWO2009110119A1 (ja) * 2008-03-06 2011-07-14 富士電機ホールディングス株式会社 強磁性トンネル接合素子および強磁性トンネル接合素子の駆動方法
KR101271353B1 (ko) * 2008-03-07 2013-06-04 캐논 아네르바 가부시키가이샤 자기 저항 소자의 제조 방법 및 자기 저항 소자의 제조 장치
US8077436B2 (en) 2008-03-20 2011-12-13 Tdk Corporation CPP-type magnetoresistance effect element having three magnetic layers
JPWO2010023833A1 (ja) * 2008-09-01 2012-01-26 キヤノンアネルバ株式会社 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
WO2010026667A1 (en) 2008-09-03 2010-03-11 Canon Anelva Corporation Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline mgo tunnel barrier
JP2010062353A (ja) * 2008-09-04 2010-03-18 Fujitsu Ltd 磁気抵抗効果素子
WO2010026705A1 (ja) * 2008-09-08 2010-03-11 キヤノンアネルバ株式会社 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
WO2010029702A1 (ja) * 2008-09-09 2010-03-18 キヤノンアネルバ株式会社 磁気抵抗素子の製造方法、該製造方法に用いる記憶媒体
JP2010080806A (ja) * 2008-09-29 2010-04-08 Canon Anelva Corp 磁気抵抗素子の製造法及びその記憶媒体
JP2010109319A (ja) * 2008-09-30 2010-05-13 Canon Anelva Corp 磁気抵抗素子の製造法および記憶媒体
JP2010102805A (ja) * 2008-10-27 2010-05-06 Hitachi Global Storage Technologies Netherlands Bv トンネル接合型磁気抵抗効果ヘッド
JP5133232B2 (ja) * 2008-12-26 2013-01-30 株式会社アルバック 成膜装置及び成膜方法
KR101584747B1 (ko) * 2009-01-20 2016-01-13 삼성전자주식회사 자기 메모리 소자
WO2010150590A1 (ja) 2009-06-24 2010-12-29 キヤノンアネルバ株式会社 真空加熱冷却装置および磁気抵抗素子の製造方法
US8183653B2 (en) 2009-07-13 2012-05-22 Seagate Technology Llc Magnetic tunnel junction having coherent tunneling structure
US8498084B1 (en) 2009-07-21 2013-07-30 Western Digital (Fremont), Llc Magnetoresistive sensors having an improved free layer
JP5588642B2 (ja) * 2009-09-02 2014-09-10 エイチジーエスティーネザーランドビーブイ トンネル接合型磁気抵抗効果ヘッド及びその製造方法
US8194365B1 (en) 2009-09-03 2012-06-05 Western Digital (Fremont), Llc Method and system for providing a read sensor having a low magnetostriction free layer
WO2011030826A1 (ja) * 2009-09-11 2011-03-17 株式会社 アルバック 薄膜形成方法及び薄膜形成装置
JP2011123923A (ja) 2009-12-08 2011-06-23 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置
JP5576643B2 (ja) 2009-12-10 2014-08-20 エイチジーエスティーネザーランドビーブイ トンネル接合型磁気抵抗効果素子、トンネル接合型磁気抵抗効果ヘッド、磁気記録再生装置、及びその製造方法
RU2451769C2 (ru) * 2009-12-22 2012-05-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" Способ, устройство для получения многослойных пленок и многослойная структура, полученная с их использованием
CN102687297B (zh) 2009-12-28 2014-12-24 佳能安内华股份有限公司 磁阻元件的制造方法
US8692343B2 (en) * 2010-04-26 2014-04-08 Headway Technologies, Inc. MR enhancing layer (MREL) for spintronic devices
WO2011161745A1 (ja) * 2010-06-21 2011-12-29 株式会社アルバック 基板反転装置、真空成膜装置及び基板反転方法
WO2012056808A1 (ja) 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法
WO2012056807A1 (ja) 2010-10-25 2012-05-03 日本碍子株式会社 セラミックス材料、積層体、半導体製造装置用部材及びスパッタリングターゲット部材
WO2012086183A1 (ja) 2010-12-22 2012-06-28 株式会社アルバック トンネル磁気抵抗素子の製造方法
DE112011104627T5 (de) 2010-12-28 2013-10-02 Canon Anelva Corporation Fertigungsvorrichtung
US8503135B2 (en) 2011-09-21 2013-08-06 Seagate Technology Llc Magnetic sensor with enhanced magnetoresistance ratio
US8710602B2 (en) 2011-12-20 2014-04-29 Samsung Electronics Co., Ltd. Method and system for providing magnetic junctions having improved characteristics
JP5856490B2 (ja) 2012-01-20 2016-02-09 ルネサスエレクトロニクス株式会社 磁気抵抗効果素子及び磁気メモリ
TWI514373B (zh) * 2012-02-15 2015-12-21 Ind Tech Res Inst 上固定型垂直磁化穿隧磁阻元件
JP5895610B2 (ja) * 2012-03-07 2016-03-30 富士通株式会社 磁気抵抗メモリおよび磁気抵抗メモリの製造方法
JP5935444B2 (ja) * 2012-03-29 2016-06-15 Tdk株式会社 スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド
JP5774568B2 (ja) 2012-09-21 2015-09-09 株式会社東芝 半導体装置の製造方法
JP2014090109A (ja) * 2012-10-31 2014-05-15 Hitachi High-Technologies Corp 磁気抵抗素子の製造方法
JP6279482B2 (ja) 2012-11-07 2018-02-14 日本碍子株式会社 スパッタリングターゲット部材
KR102100850B1 (ko) 2012-11-07 2020-04-14 엔지케이 인슐레이터 엘티디 세라믹스 재료 및 스퍼터링 타겟 부재
US9070381B1 (en) 2013-04-12 2015-06-30 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
JP6225835B2 (ja) * 2013-08-28 2017-11-08 株式会社デンソー 磁気抵抗素子およびそれを用いた磁気センサ
US9209386B2 (en) * 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
US9425388B2 (en) 2013-09-12 2016-08-23 Kabushiki Kaisha Toshiba Magnetic element and method of manufacturing the same
US8956882B1 (en) 2013-09-12 2015-02-17 Kazuhiro Tomioka Method of manufacturing magnetoresistive element
JP6173854B2 (ja) 2013-09-20 2017-08-02 株式会社東芝 歪検知素子、圧力センサ、マイクロフォン、血圧センサ及びタッチパネル
KR102126975B1 (ko) 2013-12-09 2020-06-25 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
WO2016017047A1 (ja) * 2014-07-28 2016-02-04 キヤノンアネルバ株式会社 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、半導体電子素子の製造方法、半導体電子素子、照明装置
JP2017059740A (ja) * 2015-09-18 2017-03-23 富士通株式会社 磁気トンネル接合素子及び半導体記憶装置
US11646143B2 (en) 2019-05-21 2023-05-09 International Business Machines Corporation Magnetic multi-layers containing MgO sublayers as perpendicularly magnetized magnetic electrodes for magnetic memory technology
KR20210006725A (ko) 2019-07-09 2021-01-19 삼성전자주식회사 스퍼터링 장치 및 이를 이용한 반도체 장치의 제조 방법

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA849070B (en) * 1983-12-07 1985-07-31 Energy Conversion Devices Inc Semiconducting multilayered structures and systems and methods for synthesizing the structures and devices incorporating the structures
US5506063A (en) * 1990-11-14 1996-04-09 Nec Corporation Soft magnetic film of iron and process of formation thereof
JPH06196648A (ja) * 1992-12-25 1994-07-15 Fuji Xerox Co Ltd 配向性強誘電体薄膜素子
US5817366A (en) * 1996-07-29 1998-10-06 Tdk Corporation Method for manufacturing organic electroluminescent element and apparatus therefor
US5945694A (en) * 1997-01-31 1999-08-31 Motorola, Inc. Compound semiconductor device having reduced temperature variability
JP3219713B2 (ja) * 1997-02-07 2001-10-15 アルプス電気株式会社 磁気抵抗効果素子の製造方法
US6181537B1 (en) * 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
US6201672B1 (en) * 1999-04-26 2001-03-13 International Business Machines Corporation Spin valve sensor having improved interface between pinning layer and pinned layer structure
JP3589346B2 (ja) * 1999-06-17 2004-11-17 松下電器産業株式会社 磁気抵抗効果素子および磁気抵抗効果記憶素子
US6252750B1 (en) * 1999-07-23 2001-06-26 International Business Machines Corporation Read head with file resettable double antiparallel (AP) pinned spin valve sensor
US6275362B1 (en) * 1999-07-30 2001-08-14 International Business Machines Corporation Magnetic read head having spin valve sensor with improved seed layer for a free layer
WO2001056090A1 (fr) 2000-01-28 2001-08-02 Sharp Kabushiki Kaisha Dispositif a magnetoresistance et procede de fabrication de celui-ci, base pour dispositif a magnetoresistance et procede de fabrication de celle-ci, et capteur a magnetoresistance
JP2002050011A (ja) * 2000-08-03 2002-02-15 Nec Corp 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気抵抗変換システム及び磁気記録システム
JP2002167661A (ja) * 2000-11-30 2002-06-11 Anelva Corp 磁性多層膜作製装置
JP3576111B2 (ja) * 2001-03-12 2004-10-13 株式会社東芝 磁気抵抗効果素子
JP3961777B2 (ja) 2001-03-26 2007-08-22 株式会社東芝 磁気センサー
JP4304568B2 (ja) 2002-04-23 2009-07-29 独立行政法人産業技術総合研究所 平坦化トンネル磁気抵抗素子
JP2002359413A (ja) 2001-05-31 2002-12-13 National Institute Of Advanced Industrial & Technology 強磁性トンネル磁気抵抗素子
KR100886602B1 (ko) 2001-05-31 2009-03-05 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 터널자기저항소자
JP3815601B2 (ja) 2001-09-14 2006-08-30 独立行政法人産業技術総合研究所 トンネル磁気抵抗素子および磁気ランダムアクセスメモリ
DE10136806A1 (de) 2001-07-27 2003-02-13 Uvex Sports Gmbh & Co Kg Sichtscheibe, insbesondere für Skibrillen o. dgl. und Verfahren zu deren Herstellung
US6936903B2 (en) * 2001-09-25 2005-08-30 Hewlett-Packard Development Company, L.P. Magnetic memory cell having a soft reference layer
FR2830971B1 (fr) * 2001-10-12 2004-03-12 Commissariat Energie Atomique Dispositif magnetoresistif a vanne de spin a performances ameliorees
KR100954970B1 (ko) * 2001-10-12 2010-04-29 소니 주식회사 자기 저항 효과 소자, 자기 메모리 소자, 자기 메모리 장치 및 이들의 제조 방법
JP2003124541A (ja) * 2001-10-12 2003-04-25 Nec Corp 交換結合膜、磁気抵抗効果素子、磁気ヘッド及び磁気ランダムアクセスメモリ
JP2003152239A (ja) * 2001-11-12 2003-05-23 Fujitsu Ltd 磁気抵抗効果素子、及び、それを有する読み取りヘッド並びにドライブ
US6674617B2 (en) * 2002-03-07 2004-01-06 International Business Machines Corporation Tunnel junction sensor with a multilayer free-layer structure
JP2003267750A (ja) 2002-03-15 2003-09-25 Nihon Yamamura Glass Co Ltd 抵抗体被覆用ガラス組成物
JP4100025B2 (ja) 2002-04-09 2008-06-11 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置
FR2840925B1 (fr) * 2002-06-18 2005-04-01 Riber Chambre d'evaporation de materiaux sous vide a pompage differentiel
JP2004063592A (ja) 2002-07-25 2004-02-26 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004071897A (ja) * 2002-08-07 2004-03-04 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
US6831312B2 (en) * 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
TWI277363B (en) * 2002-08-30 2007-03-21 Semiconductor Energy Lab Fabrication system, light-emitting device and fabricating method of organic compound-containing layer
JP2004128015A (ja) 2002-09-30 2004-04-22 Sony Corp 磁気抵抗効果素子および磁気メモリ装置
JP2004128229A (ja) * 2002-10-02 2004-04-22 Nec Corp 磁性メモリ及びその製造方法
US6828260B2 (en) 2002-10-29 2004-12-07 Hewlett-Packard Development Company, L.P. Ultra-violet treatment of a tunnel barrier layer through an overlayer a tunnel junction device
US7318236B2 (en) 2003-02-27 2008-01-08 Microsoft Corporation Tying a digital license to a user and tying the user to multiple computing devices in a digital rights management (DRM) system
JP2004348777A (ja) * 2003-05-20 2004-12-09 Hitachi Ltd 垂直磁気記録媒体および磁気記録装置
US7598555B1 (en) * 2003-08-22 2009-10-06 International Business Machines Corporation MgO tunnel barriers and method of formation
JP2005071555A (ja) 2003-08-28 2005-03-17 Sony Corp ディスク装置及びこれを備えた電子機器
US20050110004A1 (en) * 2003-11-24 2005-05-26 International Business Machines Corporation Magnetic tunnel junction with improved tunneling magneto-resistance
US7252852B1 (en) * 2003-12-12 2007-08-07 International Business Machines Corporation Mg-Zn oxide tunnel barriers and method of formation
US7149105B2 (en) * 2004-02-24 2006-12-12 Infineon Technologies Ag Magnetic tunnel junctions for MRAM devices
KR100867662B1 (ko) * 2004-03-12 2008-11-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 자기저항소자, 터널 장벽층 및 자기저항소자의 제조방법
US7270896B2 (en) * 2004-07-02 2007-09-18 International Business Machines Corporation High performance magnetic tunnel barriers with amorphous materials
US20060012926A1 (en) * 2004-07-15 2006-01-19 Parkin Stuart S P Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance
US7408749B2 (en) * 2004-08-23 2008-08-05 Hitachi Global Storage Technologies Netherlands B.V. CPP GMR/TMR structure providing higher dR
US20070258170A1 (en) * 2004-08-27 2007-11-08 Shinji Yuasa Magnetic Tunnel Junction Device and Method of Manufacturing the Same
JP4292128B2 (ja) * 2004-09-07 2009-07-08 キヤノンアネルバ株式会社 磁気抵抗効果素子の製造方法
US7595967B1 (en) * 2004-09-07 2009-09-29 Western Digital (Fremont), Llp Method for fabricating a spacer layer for a magnetoresistive element
US7377025B2 (en) * 2004-10-29 2008-05-27 Headway Technologies, Inc. Method of forming an improved AP1 layer for a TMR device
US20060128038A1 (en) * 2004-12-06 2006-06-15 Mahendra Pakala Method and system for providing a highly textured magnetoresistance element and magnetic memory
US7443639B2 (en) * 2005-04-04 2008-10-28 International Business Machines Corporation Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
JP2008263031A (ja) * 2007-04-11 2008-10-30 Toshiba Corp 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法
EP1986284B1 (en) * 2007-04-23 2014-08-20 Sumitomo Wiring Systems, Ltd. A connector and an assembling method therefor
JP2009124058A (ja) * 2007-11-19 2009-06-04 Fujitsu Ltd 磁気抵抗効果素子の面積抵抗の測定方法

Also Published As

Publication number Publication date
KR101234441B1 (ko) 2013-02-18
US20080055793A1 (en) 2008-03-06
JP4292128B2 (ja) 2009-07-08
US20080180862A1 (en) 2008-07-31
EP2166581A8 (en) 2010-08-11
JP2006080116A (ja) 2006-03-23
US20080124454A1 (en) 2008-05-29
DE602005014526D1 (de) 2009-07-02
CN1755963B (zh) 2010-09-29
EP1633007A2 (en) 2006-03-08
US20060056115A1 (en) 2006-03-16
TWI536624B (zh) 2016-06-01
KR101196511B1 (ko) 2012-11-01
EP1973178B1 (en) 2012-10-24
KR20120055505A (ko) 2012-05-31
US8394649B2 (en) 2013-03-12
CN101572184A (zh) 2009-11-04
KR20100039310A (ko) 2010-04-15
ATE431969T1 (de) 2009-06-15
EP1973178A2 (en) 2008-09-24
US8934290B2 (en) 2015-01-13
TW201515293A (zh) 2015-04-16
EP2166581A3 (en) 2011-08-24
US20110094875A1 (en) 2011-04-28
KR20100036294A (ko) 2010-04-07
TW201304221A (zh) 2013-01-16
TW200614556A (en) 2006-05-01
US20140024140A1 (en) 2014-01-23
EP1973178A3 (en) 2009-07-08
KR20120090902A (ko) 2012-08-17
EP1633007B1 (en) 2009-05-20
KR20060051048A (ko) 2006-05-19
KR20090071521A (ko) 2009-07-01
EP2166581A2 (en) 2010-03-24
EP1633007A3 (en) 2007-08-29
CN1755963A (zh) 2006-04-05
TWI504032B (zh) 2015-10-11

Similar Documents

Publication Publication Date Title
TWI390780B (zh) 磁阻效應元件
US8139325B2 (en) Tunnel magnetoresistive thin film
US20100080894A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20100078310A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20110227018A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
JP4774082B2 (ja) 磁気抵抗効果素子の製造方法
US20110143460A1 (en) Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method
JP2011138954A (ja) 強磁性層の垂直磁化を用いた磁気トンネル接合デバイスの製造方法
US20110084348A1 (en) Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method
JPWO2010026725A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
JP4774092B2 (ja) 磁気抵抗効果素子およびそれを用いたmram
JPWO2010026703A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
JP4902686B2 (ja) 磁気抵抗効果素子の製造方法
WO2010026704A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体
JP4774116B2 (ja) 磁気抵抗効果素子
JP2009044173A (ja) 磁性多層膜形成装置
JPWO2010029701A1 (ja) 磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体