US20060056115A1 - Magnetoresistance effect device and method of production of the same - Google Patents
Magnetoresistance effect device and method of production of the same Download PDFInfo
- Publication number
- US20060056115A1 US20060056115A1 US11/219,866 US21986605A US2006056115A1 US 20060056115 A1 US20060056115 A1 US 20060056115A1 US 21986605 A US21986605 A US 21986605A US 2006056115 A1 US2006056115 A1 US 2006056115A1
- Authority
- US
- United States
- Prior art keywords
- layer
- mgo
- magnetoresistance effect
- effect device
- barrier layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000000694 effects Effects 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 238000000034 method Methods 0.000 title claims description 17
- 230000005294 ferromagnetic effect Effects 0.000 claims abstract description 44
- 230000004888 barrier function Effects 0.000 claims abstract description 36
- 239000013078 crystal Substances 0.000 claims description 28
- 229910019236 CoFeB Inorganic materials 0.000 claims description 24
- 238000004544 sputter deposition Methods 0.000 claims description 22
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 80
- 239000000395 magnesium oxide Substances 0.000 description 40
- 239000010408 film Substances 0.000 description 29
- 230000005291 magnetic effect Effects 0.000 description 17
- 230000005415 magnetization Effects 0.000 description 13
- 239000000758 substrate Substances 0.000 description 12
- 238000000137 annealing Methods 0.000 description 5
- 229910019041 PtMn Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910003321 CoFe Inorganic materials 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001755 magnetron sputter deposition Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 230000005641 tunneling Effects 0.000 description 2
- 229910005435 FeTaN Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/14—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
- G11C11/15—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/01—Manufacture or treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/081—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/02—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
- G11C11/16—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
- G11C11/161—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3254—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F41/305—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
- H01F41/307—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/10—Magnetoresistive devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3204—Exchange coupling of amorphous multilayers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/18—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
Definitions
- the present invention relates to a magnetoresistance effect device and a method of production of the same, more particularly relates to a magnetoresistance effect device fabricated utilizing a simple sputtering film-formation method and having an extremely high magnetoresistance ratio and a method of production of the same.
- MRAMs magnetoresistive random access memories
- FIG. 4 shows the structure of the MRAM.
- 102 is a memory device, 103 a word line, and 104 a bit line.
- the large number of memory devices 102 are arranged at intersecting positions of the plurality of word lines 103 and plurality of bit lines 104 and are arranged in a lattice-like positional relationship. Each of the large number of memory devices 102 stores 1 bit of information.
- Each memory device 102 of the MRAM 101 is comprised of a magnetoresistance effect device for storing 1 bit of information, that is, a tunneling magnetoresistance (TMR) device 110 , and a transistor 106 having a switching function at the intersecting position of the word line 103 and bit line 104 .
- the main element in the memory device 102 is the TMR device 110 .
- the basic structure of the TMR device as shown in FIG. 6 , is a three-layer structure comprised of a bottom ferromagnetic metal electrode (bottom ferromagnetic layer) 107 /tunnel barrier layer 108 /top ferromagnetic metal electrode (top ferromagnetic layer) 109 .
- the TMR device 110 is therefore comprised of a pair of ferromagnetic layers 107 and 109 and a tunnel barrier layer 108 positioned between them.
- the required voltage is applied across the ferromagnetic layers 107 and 109 at the two sides of the tunnel barrier layer 108 to cause the flow of a predetermined current. In that state, an external magnetic field is applied.
- the electrical resistance of the TMR device becomes the minimum ((A) state: resistance value R P )
- the electrical resistance of the TMR device becomes the maximum ((B) state: resistance value R A ). Therefore, the TMR device 110 can take a parallel state and an anti-parallel state induced by an external magnetic field and store information as a change in resistance value.
- the difference between the resistance value R P of the “parallel state” and resistance value R A of the “anti-parallel state” has to be large.
- the magnetoresistance ratio (MR ratio) is used as the indicator.
- the MR ratio is defined as “(R A ⁇ R P ) ⁇ R P ”.
- the electrode materials of the ferromagnetic metal electrodes have been optimized, the method of production of the tunnel barrier layers have been modified, etc.
- Japanese Patent Publication (A) No. 2003-304010 and Japanese Patent Publication (A) No. 2004-63592 propose several optimum examples of use of Fe x Co y B z etc. for the material of the ferromagnetic metal electrode.
- the MR ratio of the TMR device disclosed in Japanese Patent Publication (A) No. 2003-304010 and Japanese Patent Publication (A) No. 2004-63592 is lower than about 70%. Further improvement of the MR ratio is necessary.
- An object of the present invention is to provide a magnetoresistance effect device having a high MR ratio, improving the mass producibility, and improving the practicality and a method of production of the same.
- One embodiment of the magnetoresistance effect device and method of production of the same according to the present invention are configured as follows to achieve the above object.
- This magnetoresistance effect device includes a multilayer structure comprised of a pair of ferromagnetic layers and a barrier layer positioned between them, wherein at least the part of at least one of the ferromagnetic layers contacting the barrier layer is amorphous, and the barrier layer is an MgO layer having a single crystal or highly oriented fiber-texture structure.
- the fiber-texture structure corresponds to assembly of poly-crystalline grains, in which the crystal structure is continuous across the layer thickness.
- the grain boundaries can be observed.
- Highly oriented means that the crystallographic orientation in the film thickness direction is very uniform, while there is no specific crystallographic orientation in the plane direction.
- the (001) crystal plane of MgO barrier layer lies parallel to the ferromagnetic layer surface.
- the MgO layer can be either single crystal or highly oriented fiber-texture structure.
- the barrier layer has a single crystal or highly oriented fiber-texture structure, the flow of current between the ferromagnetic layers can be made straight and the MR ratio can be made an extremely high value.
- the MgO layer is a single crystal layer formed by the sputtering method.
- an MgO layer with highly oriented fiber-texture structure also yield excellent properties.
- the intermediate barrier layer can be produced simply. This is suitable for mass production.
- the MgO layer is a single crystal layer formed using an MgO target and the sputtering method.
- the MgO layer can also be a highly oriented fiber-texture structure.
- the ferromagnetic layers are CoFeB layers.
- the method of production of a magnetoresistance effect device is a method of production of a magnetoresistance effect device including a multilayer structure comprised of a pair of ferromagnetic layers and a barrier layer positioned between them, comprising forming at least one ferromagnetic layer so that at least at least the part contacting the barrier layer is amorphous and forming the barrier layer having a single crystal or highly oriented fiber-texture structure by using the sputtering method.
- the MgO layer is formed by RF magnetron sputtering using an MgO target.
- the tunnel barrier layer forming the intermediate layer of the TMR device or other magnetoresistance effect device is an MgO layer having a single crystal or highly oriented fiber-texture structure
- the MR ratio can be made extremely high.
- a gigabit class ultra-high integrated MRAM can be realized.
- the a single crystal or highly oriented fiber-texture MgO layer by the sputtering method, it is possible to fabricate a magnetoresistance effect device suitable for mass production and having high practical applicability.
- FIG. 1 is a view of the structure of a magnetoresistance effect device (TMR device) according to an embodiment of the present invention
- FIG. 2 is a plan view of a system for fabricating a magnetoresistance effect device (TMR device) according to an embodiment of the present invention
- FIG. 3 is a graph of the pressure dependency of magnetic characteristics of a magnetoresistance effect device (TMR device) according to an embodiment of the present invention
- FIG. 4 is a partial perspective view of the principal structure of an MRAM
- FIG. 5 is a view of the structure of a memory device of an MRAM.
- FIG. 6 is a view for explaining the characteristics of a TMR device.
- FIG. 1 shows an example of the multilayer structure of a magnetoresistance effect device according to the present invention, in particular shows the multilayer structure of a TMR device.
- a substrate 11 is formed with a multilayer film comprised of for example nine layers forming the TMR device 10 .
- magnetic films etc. are stacked from the bottommost first layer to the topmost ninth layer with “Ta”, “PtMn”, “70CoFe”, “Ru”, “CoFeB”, “MgO”, “CoFeB”, “Ta”, and “Ru” in that order.
- the first layer (Ta: tantalum) is an undercoat layer
- the second layer (PtMn) is an anti-ferromagnetic layer.
- the layers from the third layer to the fifth layer form fixed magnetization layers.
- the substantive fixed magnetization layer is the fifth layer ferromagnetic layer comprised of “CoFeB”.
- the sixth layer (MgO: magnesium oxide) is an insulating layer forming a tunnel barrier layer.
- the seventh layer (CoFeB) is a ferromagnetic layer forming a free magnetization layer.
- the sixth layer (MgO) forms an intermediate layer between the pair of ferromagnetic arranged at the top and bottom.
- the eighth layer (Ta: tantalum) and the ninth layer (Ru: ruthenium) form hard mask layers.
- the fixed magnetization layer (fifth layer “CoFeB”), the tunnel barrier layer (sixth layer “MgO”), and free magnetization layer (seventh layer “CoFeB”) form the TMR device part 12 in the strict sense as a basic structure.
- the fixed magnetization layer fifth layer “CoFeB” and the free magnetization layer seventh layer “CoFeB” are known as amorphous ferromagnetic bodies in the as-deposited state.
- the tunnel barrier layer constituted by the MgO layer is formed so as to have a a single crystal or highly oriented fiber-texture structure across the thickness direction.
- the figures in parentheses at the layers indicate the thicknesses of the layers in units of “nm (nanometers)”.
- the thicknesses are examples. The invention is not limited to them.
- FIG. 2 is a schematic plan view of a system for producing a TMR device 10 .
- This system can produce a multilayer film including a plurality of magnetic fields and is a sputtering film-forming system for mass production.
- the magnetic multilayer film fabrication system 20 shown in FIG. 2 is a cluster type system provided with a plurality of film-forming chambers using the sputtering method.
- a transport chamber 22 provided with not shown robot loaders at the center position.
- the transport chamber 22 of the magnetic multilayer film fabrication system 20 is provided with two load/unload chambers 25 and 26 which load/unload substrates (silicon substrates) 11 . These load/unload chambers 25 and 26 are used alternately to enable fabrication of a multilayer film with a good productivity.
- the transport chamber 22 is surrounded with, for example, three film-forming chambers 27 A, 27 B, and 27 C and one etching chamber 28 .
- the etching chamber 28 the required surface of a TMR device 10 is etched.
- a gate valve 30 separating the two chambers and able to open/close the passage between them is provided. Note that each chamber is also provided with a not shown evacuation mechanism, gas introduction mechanism, power supply mechanism, etc.
- the film-forming chambers 27 A, 27 B, and 27 C of the magnetic multilayer film fabrication system 20 use the sputtering method to deposit the above-mentioned magnetic films on the substrate 11 successively from the bottom.
- the ceilings of the film-forming chambers 27 A, 27 B, and 27 C are provided with four or five targets ( 31 , 32 , 33 , 34 , 35 ), ( 41 , 42 , 43 , 44 , 45 ), and ( 51 , 52 , 53 , 54 ) arranged on suitable circumferences.
- Substrate holders positioned coaxially with the circumferences carry substrates on them.
- the target 31 is made of “Ta”, while the target 33 is made of “CoFeB”. Further, the target 41 is made of “PtMn”, the target 42 is made of “CoFe”, and the target 43 is made of “Ru”. Further, the target 51 is made of “MgO”.
- the above plurality of targets are provided suitably inclined so as to suitably face the substrate so as to efficiently deposit magnetic films of suitable formulations, but they may also be provided in states parallel to the substrate surface. Further, they are arranged to enable the plurality of targets and the substrate to relatively rotate.
- the film-forming chambers 27 A, 27 B, and 27 C are utilized to successively form films of the magnetic multilayer film shown in FIG. 1 on the substrate 11 by the sputtering method.
- the film-forming conditions of the TMR device part 12 forming the portion of the main elements of the present invention will be explained.
- the fixed magnetization layer (fifth layer “CoFeB”) is formed using a CoFeB 60/20/20 at % target at an Ar pressure of 0.03 Pa, a magnetron DC sputtering, and a sputtering rate of 0.64 ⁇ /sec.
- the tunnel barrier layer (sixth layer “MgO”) is formed using a MgO 50/50 at % target, a sputter gas of Ar, and a pressure changed in the range of 0.01 to 0.4 Pa.
- Magnetron RF sputtering is used to form the film at a sputtering rate of 0.14 ⁇ /sec.
- the free magnetization layer (seventh layer “CoFeB”) is formed under the same film-forming conditions as the fixed magnetization layer (fifth layer “CoFeB”).
- the film-forming speed of the MgO film was 0.14 ⁇ /sec, but the film may also be formed at a speed in the range of 0.01 to 1.0 ⁇ /sec.
- the TMR device 10 finished being formed with films by sputtering in the film-forming chambers 27 A, 27 B, and 27 C is annealed in a heat treatment oven.
- the annealing temperature is for example about 300° C.
- the annealing is performed in a magnetic field of for example 8 kOe (632 kA/m) for example for 4 hours. Due to this, the PtMn of the second layer of the TMR device 10 is given the required magnetization alignment.
- FIG. 3 shows the results of measurement of the magnetic characteristics of MgO.
- a high MR ratio is obtained over the entire measured range.
- a pressure of 0.05 Pa to 0.2 Pa a high MR ratio was obtained.
- the pressure on the substrate increases and the ion impact falls believed resulting in a reduction in film defects.
- the MR ratio increases and the tunnel resistance value (R A ) increases. This is believed to be due to formation of a good single crystal or highly oriented fiber-texture film and as a result the leakage current of the film is decreased.
- the tunnel resistance believed to be because the ion impact increases—resulting in an increase in defects of the MgO film.
- a cross-section of a sample was observed by a transmission electron microscope (TEM).
- TEM transmission electron microscope
- the MgO film had a single crystal or highly oriented fiber-texture structure over the entire layer from the bottom interface to the top interface and that the (001) plane of the MgO single crystal or highly oriented fiber-texture was oriented parallel to the interfaces.
- the CoFeB layer was formed in an amorphous state prior to annealing.
- This sample was formed by sandwiching the two sides of the MgO layer with ferromagnetic layers of amorphous CoFeB. But even if only one of the ferromagnetic layers was amorphous CoFeB, similar results are observed. Preferably, during deposition of MgO layer the bottom ferromagnetic layer was amorphous. Although the CoFeB ferromagnetic layers were initially amorphous prior to annealing, the CoFeB ferromagnetic layers became crystallized or partly crystallized when subjected to annealing at temperature higher than 300° C. for a few hours.
- the MgO layer sandwiched with crystallized CoFeB ferromagnetic layers, showed a single crystal or highly-oriented fiber texture with the (001) crystal plane of MgO barrier layer lies parallel to the ferromagnetic layer surface.
- an MgO target 51 was used as the target.
- the RF (high frequency) magnetron sputtering method was used.
- the reactive sputtering method may also be used to sputter the Mg target by a mixed gas of Ar and O 2 and form an MgO film.
- the MgO layer is a single crystal or highly oriented fiber-texture throughout the layer and has a single crystal or highly oriented fiber-texture structure with an (001) plane oriented parallel to the interfaces.
- the pair of ferromagnetic layers forming the TMR device part 12 may also be, instead of the CoFeB having an amorphous state, CoFeTaZr, CoTaZr, CoFeNbZr, CoFeZr, FeTaC, FeTaN, FeC, or other ferromagnetic layers having an amorphous state.
- the present invention contains subject matter related to Japanese Patent Application No. 2004-259280 filed on filed in the Japan Patent Office on Sep. 7, 2004, the entire contents of which being incorporated herein by reference.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Hall/Mr Elements (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Magnetic Heads (AREA)
- Semiconductor Memories (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/876,916 US20080055793A1 (en) | 2004-09-07 | 2007-10-23 | Magnetoresistance effect device |
US11/969,049 US8394649B2 (en) | 2004-09-07 | 2008-01-03 | Method of production of a magnetoresistance effect device |
US12/058,147 US20080180862A1 (en) | 2004-09-07 | 2008-03-28 | Method of production of a magnetoresistance effect device |
US12/983,514 US20110094875A1 (en) | 2004-09-07 | 2011-01-03 | Magnetoresistance effect device and method of production of the same |
US14/032,815 US8934290B2 (en) | 2004-09-07 | 2013-09-20 | Magnetoresistance effect device and method of production of the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-259280 | 2004-09-07 | ||
JP2004259280A JP4292128B2 (ja) | 2004-09-07 | 2004-09-07 | 磁気抵抗効果素子の製造方法 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/876,916 Division US20080055793A1 (en) | 2004-09-07 | 2007-10-23 | Magnetoresistance effect device |
US11/969,049 Division US8394649B2 (en) | 2004-09-07 | 2008-01-03 | Method of production of a magnetoresistance effect device |
US12/983,514 Continuation US20110094875A1 (en) | 2004-09-07 | 2011-01-03 | Magnetoresistance effect device and method of production of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060056115A1 true US20060056115A1 (en) | 2006-03-16 |
Family
ID=35326492
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/219,866 Abandoned US20060056115A1 (en) | 2004-09-07 | 2005-09-07 | Magnetoresistance effect device and method of production of the same |
US11/876,916 Abandoned US20080055793A1 (en) | 2004-09-07 | 2007-10-23 | Magnetoresistance effect device |
US11/969,049 Active 2026-06-22 US8394649B2 (en) | 2004-09-07 | 2008-01-03 | Method of production of a magnetoresistance effect device |
US12/058,147 Abandoned US20080180862A1 (en) | 2004-09-07 | 2008-03-28 | Method of production of a magnetoresistance effect device |
US12/983,514 Abandoned US20110094875A1 (en) | 2004-09-07 | 2011-01-03 | Magnetoresistance effect device and method of production of the same |
US14/032,815 Active US8934290B2 (en) | 2004-09-07 | 2013-09-20 | Magnetoresistance effect device and method of production of the same |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/876,916 Abandoned US20080055793A1 (en) | 2004-09-07 | 2007-10-23 | Magnetoresistance effect device |
US11/969,049 Active 2026-06-22 US8394649B2 (en) | 2004-09-07 | 2008-01-03 | Method of production of a magnetoresistance effect device |
US12/058,147 Abandoned US20080180862A1 (en) | 2004-09-07 | 2008-03-28 | Method of production of a magnetoresistance effect device |
US12/983,514 Abandoned US20110094875A1 (en) | 2004-09-07 | 2011-01-03 | Magnetoresistance effect device and method of production of the same |
US14/032,815 Active US8934290B2 (en) | 2004-09-07 | 2013-09-20 | Magnetoresistance effect device and method of production of the same |
Country Status (8)
Country | Link |
---|---|
US (6) | US20060056115A1 (zh) |
EP (3) | EP1633007B1 (zh) |
JP (1) | JP4292128B2 (zh) |
KR (6) | KR20060051048A (zh) |
CN (2) | CN101572184A (zh) |
AT (1) | ATE431969T1 (zh) |
DE (1) | DE602005014526D1 (zh) |
TW (3) | TWI536624B (zh) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060176735A1 (en) * | 2005-01-25 | 2006-08-10 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US20070025029A1 (en) * | 2005-07-28 | 2007-02-01 | Jun Hayakawa | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
US20070195592A1 (en) * | 2004-03-12 | 2007-08-23 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US20070253116A1 (en) * | 2006-04-28 | 2007-11-01 | Hiromasa Takahashi | Magnetic reading head |
US20070258170A1 (en) * | 2004-08-27 | 2007-11-08 | Shinji Yuasa | Magnetic Tunnel Junction Device and Method of Manufacturing the Same |
US20070264423A1 (en) * | 2006-05-11 | 2007-11-15 | Tdk Corporation | Manufacturing method of tunnel magnetoresistive effect element, manufacturing method of thin-film magnetic head, and manufacturing method of magnetic memory |
US20070297218A1 (en) * | 2006-06-14 | 2007-12-27 | International Business Machines Corporation | Magnetic tunnel junction with enhanced magnetic switching characteristics |
US20080006860A1 (en) * | 2002-04-09 | 2008-01-10 | Sony Corporation | Magnetoresistive effect element and magnetic memory device |
US20080055793A1 (en) * | 2004-09-07 | 2008-03-06 | Anelva Corporation | Magnetoresistance effect device |
US20080070063A1 (en) * | 2006-09-15 | 2008-03-20 | Fujitsu Limited | Exchange coupling film and magnetic device |
US20080074803A1 (en) * | 2006-09-11 | 2008-03-27 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head of magnetoresistance effect type with high resistance to external stress |
US20080124581A1 (en) * | 2006-11-27 | 2008-05-29 | Tdk Corporation | Tunnel magnetoresistive effect element and manufacturing method of tunnel magnetoresistive effect element |
US20080180857A1 (en) * | 2007-01-31 | 2008-07-31 | Fujitsu Limited | Tunnel magnetoresistance effect film and magnetic device |
US20090035462A1 (en) * | 2007-08-01 | 2009-02-05 | Chang Man Park | repeatability for rf mgo tmr barrier layer process by implementing ti pasting |
US20090148595A1 (en) * | 2006-03-03 | 2009-06-11 | Yoshinori Nagamine | Method of Manufacturing Magnetoresistance Effect Element and Apparatus for Manufacturing the Same |
US20100053824A1 (en) * | 2008-09-04 | 2010-03-04 | Fujitsu Limited | Magnetoresistive element |
US20100080894A1 (en) * | 2008-09-29 | 2010-04-01 | Canon Anelva Corporation | Fabricating method of magnetoresistive element, and storage medium |
US20100078310A1 (en) * | 2008-09-30 | 2010-04-01 | Canon Anelva Corporation | Fabricating method of magnetoresistive element, and storage medium |
US20100200394A1 (en) * | 2007-10-04 | 2010-08-12 | Canon Anelva Corporation | Vacuum thin film forming apparatus |
US20100213047A1 (en) * | 2007-10-04 | 2010-08-26 | Canon Anelva Corporation | High-frequency sputtering device |
US20100258430A1 (en) * | 2007-11-28 | 2010-10-14 | Ulvac, Inc. | Sputtering apparatus and film forming method |
US20110084348A1 (en) * | 2008-09-01 | 2011-04-14 | Canon Anelva Corporation | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method |
US20110134563A1 (en) * | 2009-12-08 | 2011-06-09 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive effect head having a multilayered pinned layer or free layer and systems thereof |
US20110143460A1 (en) * | 2008-09-09 | 2011-06-16 | Canon Anelva Corporation | Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method |
US20110163400A1 (en) * | 2008-03-06 | 2011-07-07 | Fuji Electric Holdings Co., Ltd. | Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element |
US20110227018A1 (en) * | 2008-09-08 | 2011-09-22 | Canon Anelva Corporation | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method |
US8278123B2 (en) | 2008-09-03 | 2012-10-02 | Canon Anelva Corporation | Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline MgO tunnel barrier |
US8318510B2 (en) | 2008-03-07 | 2012-11-27 | Canon Anelva Corporation | Method and apparatus for manufacturing magnetoresistive element |
US20130187248A1 (en) * | 2012-01-20 | 2013-07-25 | Renesas Electronics Corporation | Magnetoresistive effect element and magnetic memory |
US8837924B2 (en) | 2009-06-24 | 2014-09-16 | Canon Anelva Corporation | Vacuum heating/cooling apparatus and manufacturing method of magnetoresistance element |
US8956882B1 (en) | 2013-09-12 | 2015-02-17 | Kazuhiro Tomioka | Method of manufacturing magnetoresistive element |
US20150069542A1 (en) * | 2013-09-06 | 2015-03-12 | Makoto Nagamine | Magneto-resistive element and method of manufacturing the same |
US9039873B2 (en) | 2010-12-28 | 2015-05-26 | Canon Anelva Corporation | Manufacturing apparatus |
TWI514373B (zh) * | 2012-02-15 | 2015-12-21 | Ind Tech Res Inst | 上固定型垂直磁化穿隧磁阻元件 |
US9409824B2 (en) | 2012-11-07 | 2016-08-09 | Ngk Insulators, Ltd. | Ceramic material and sputtering target member |
US9425388B2 (en) | 2013-09-12 | 2016-08-23 | Kabushiki Kaisha Toshiba | Magnetic element and method of manufacturing the same |
US9475733B2 (en) | 2012-11-07 | 2016-10-25 | Ngk Insulators, Ltd. | Ceramic material and sputtering target member |
US20170084825A1 (en) * | 2015-09-18 | 2017-03-23 | Fujitsu Limited | Magnetic tunnel junction device and semiconductor memory device |
US9872624B2 (en) | 2013-09-20 | 2018-01-23 | Kabushiki Kaisha Toshiba | Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7696169B2 (en) * | 2003-06-06 | 2010-04-13 | The Feinstein Institute For Medical Research | Inhibitors of the interaction between HMGB polypeptides and toll-like receptor 2 as anti-inflammatory agents |
US7911832B2 (en) * | 2003-08-19 | 2011-03-22 | New York University | High speed low power magnetic devices based on current induced spin-momentum transfer |
JP2008078379A (ja) * | 2006-09-21 | 2008-04-03 | Alps Electric Co Ltd | トンネル型磁気検出素子の製造方法 |
US7751156B2 (en) * | 2006-09-29 | 2010-07-06 | Hitachi Global Storage Technologies Netherlands, B.V. | Dual-layer free layer in a tunneling magnetoresistance (TMR) element |
US7695761B1 (en) | 2006-12-21 | 2010-04-13 | Western Digital (Fremont), Llc | Method and system for providing a spin tunneling magnetic element having a crystalline barrier layer |
US7715156B2 (en) | 2007-01-12 | 2010-05-11 | Tdk Corporation | Tunnel magnetoresistive effect element and thin-film magnetic head with tunnel magnetoresistive effect read head element |
JP4885769B2 (ja) * | 2007-03-09 | 2012-02-29 | 株式会社アルバック | 磁気抵抗素子の製造方法、磁気デバイスの製造方法、磁気抵抗素子の製造装置および磁気デバイスの製造装置 |
US8559141B1 (en) | 2007-05-07 | 2013-10-15 | Western Digital (Fremont), Llc | Spin tunneling magnetic element promoting free layer crystal growth from a barrier layer interface |
US8174800B2 (en) | 2007-05-07 | 2012-05-08 | Canon Anelva Corporation | Magnetoresistive element, method of manufacturing the same, and magnetic multilayered film manufacturing apparatus |
JP2008306169A (ja) * | 2007-05-07 | 2008-12-18 | Canon Anelva Corp | 磁気抵抗素子、磁気抵抗素子の製造方法及び磁性多層膜作成装置 |
JP2009065040A (ja) * | 2007-09-07 | 2009-03-26 | National Institute Of Advanced Industrial & Technology | 磁性材料及びそれを用いた磁気抵抗素子 |
US8133745B2 (en) * | 2007-10-17 | 2012-03-13 | Magic Technologies, Inc. | Method of magnetic tunneling layer processes for spin-transfer torque MRAM |
US8545999B1 (en) | 2008-02-21 | 2013-10-01 | Western Digital (Fremont), Llc | Method and system for providing a magnetoresistive structure |
US8077436B2 (en) | 2008-03-20 | 2011-12-13 | Tdk Corporation | CPP-type magnetoresistance effect element having three magnetic layers |
JP2010102805A (ja) * | 2008-10-27 | 2010-05-06 | Hitachi Global Storage Technologies Netherlands Bv | トンネル接合型磁気抵抗効果ヘッド |
JP5133232B2 (ja) * | 2008-12-26 | 2013-01-30 | 株式会社アルバック | 成膜装置及び成膜方法 |
KR101584747B1 (ko) * | 2009-01-20 | 2016-01-13 | 삼성전자주식회사 | 자기 메모리 소자 |
US8183653B2 (en) | 2009-07-13 | 2012-05-22 | Seagate Technology Llc | Magnetic tunnel junction having coherent tunneling structure |
US8498084B1 (en) | 2009-07-21 | 2013-07-30 | Western Digital (Fremont), Llc | Magnetoresistive sensors having an improved free layer |
JP5588642B2 (ja) * | 2009-09-02 | 2014-09-10 | エイチジーエスティーネザーランドビーブイ | トンネル接合型磁気抵抗効果ヘッド及びその製造方法 |
US8194365B1 (en) | 2009-09-03 | 2012-06-05 | Western Digital (Fremont), Llc | Method and system for providing a read sensor having a low magnetostriction free layer |
TW201122124A (en) * | 2009-09-11 | 2011-07-01 | Ulvac Inc | Method and apparatus for forming thin film |
JP5576643B2 (ja) | 2009-12-10 | 2014-08-20 | エイチジーエスティーネザーランドビーブイ | トンネル接合型磁気抵抗効果素子、トンネル接合型磁気抵抗効果ヘッド、磁気記録再生装置、及びその製造方法 |
RU2451769C2 (ru) * | 2009-12-22 | 2012-05-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н.Ельцина" | Способ, устройство для получения многослойных пленок и многослойная структура, полученная с их использованием |
JP5502900B2 (ja) | 2009-12-28 | 2014-05-28 | キヤノンアネルバ株式会社 | 磁気抵抗素子の製造方法 |
US8692343B2 (en) * | 2010-04-26 | 2014-04-08 | Headway Technologies, Inc. | MR enhancing layer (MREL) for spintronic devices |
KR20130041089A (ko) * | 2010-06-21 | 2013-04-24 | 가부시키가이샤 알박 | 기판 반전 장치, 진공 성막 장치 및 기판 반전 방법 |
WO2012056808A1 (ja) | 2010-10-25 | 2012-05-03 | 日本碍子株式会社 | セラミックス材料、半導体製造装置用部材、スパッタリングターゲット部材及びセラミックス材料の製造方法 |
WO2012056807A1 (ja) | 2010-10-25 | 2012-05-03 | 日本碍子株式会社 | セラミックス材料、積層体、半導体製造装置用部材及びスパッタリングターゲット部材 |
KR101487635B1 (ko) * | 2010-12-22 | 2015-01-29 | 가부시키가이샤 아루박 | 터널 자기 저항 소자의 제조 방법 |
US8503135B2 (en) | 2011-09-21 | 2013-08-06 | Seagate Technology Llc | Magnetic sensor with enhanced magnetoresistance ratio |
US8710602B2 (en) | 2011-12-20 | 2014-04-29 | Samsung Electronics Co., Ltd. | Method and system for providing magnetic junctions having improved characteristics |
JP5895610B2 (ja) * | 2012-03-07 | 2016-03-30 | 富士通株式会社 | 磁気抵抗メモリおよび磁気抵抗メモリの製造方法 |
JP5935444B2 (ja) * | 2012-03-29 | 2016-06-15 | Tdk株式会社 | スピン伝導素子、及びスピン伝導を用いた磁気センサ及び磁気ヘッド |
JP5774568B2 (ja) | 2012-09-21 | 2015-09-09 | 株式会社東芝 | 半導体装置の製造方法 |
JP2014090109A (ja) * | 2012-10-31 | 2014-05-15 | Hitachi High-Technologies Corp | 磁気抵抗素子の製造方法 |
US9070381B1 (en) | 2013-04-12 | 2015-06-30 | Western Digital (Fremont), Llc | Magnetic recording read transducer having a laminated free layer |
JP6225835B2 (ja) * | 2013-08-28 | 2017-11-08 | 株式会社デンソー | 磁気抵抗素子およびそれを用いた磁気センサ |
KR102126975B1 (ko) | 2013-12-09 | 2020-06-25 | 삼성전자주식회사 | 자기 기억 소자 및 그 제조 방법 |
WO2016017047A1 (ja) * | 2014-07-28 | 2016-02-04 | キヤノンアネルバ株式会社 | 成膜方法、真空処理装置、半導体発光素子の製造方法、半導体発光素子、半導体電子素子の製造方法、半導体電子素子、照明装置 |
US11646143B2 (en) | 2019-05-21 | 2023-05-09 | International Business Machines Corporation | Magnetic multi-layers containing MgO sublayers as perpendicularly magnetized magnetic electrodes for magnetic memory technology |
KR20210006725A (ko) | 2019-07-09 | 2021-01-19 | 삼성전자주식회사 | 스퍼터링 장치 및 이를 이용한 반도체 장치의 제조 방법 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817366A (en) * | 1996-07-29 | 1998-10-06 | Tdk Corporation | Method for manufacturing organic electroluminescent element and apparatus therefor |
US6181537B1 (en) * | 1999-03-29 | 2001-01-30 | International Business Machines Corporation | Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers |
US20030128483A1 (en) * | 2001-10-12 | 2003-07-10 | Nec Corporation | Exchange coupling film, magneto-resistance effect device, magnetic head, and magnetic random access memory |
US20040082201A1 (en) * | 2002-10-29 | 2004-04-29 | Manish Sharma | Ultra-violet treatment of a tunnel barrier layer through an overlayer a tunnel junction device |
US20040136232A1 (en) * | 2002-09-30 | 2004-07-15 | Masanori Hosomi | Magnetoresistive element and magnetic memory unit |
US20040139914A1 (en) * | 2002-08-30 | 2004-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Fabrication system, light-emitting device and fabricating method of organic compound-containing layer |
US20040144995A1 (en) * | 2001-05-31 | 2004-07-29 | Taro Nagahama | Tunnel magnetoresistive element |
US20040234818A1 (en) * | 2003-05-20 | 2004-11-25 | Kiwamu Tanahashi | Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic storage apparatus using the same |
US20040257719A1 (en) * | 2001-10-12 | 2004-12-23 | Kazuhiro Ohba | Magnetoresistive effect element, magnetic memory element magnetic memory device and manufacturing methods thereof |
US6839206B2 (en) * | 2001-03-12 | 2005-01-04 | Kabushiki Kaisha Toshiba | Ferromagnetic double tunnel junction element with asymmetric energy band |
US20060216161A1 (en) * | 2002-06-18 | 2006-09-28 | Catherine Chaix | Material evaporation chamber with differential vacuum pumping |
US7149105B2 (en) * | 2004-02-24 | 2006-12-12 | Infineon Technologies Ag | Magnetic tunnel junctions for MRAM devices |
US7252852B1 (en) * | 2003-12-12 | 2007-08-07 | International Business Machines Corporation | Mg-Zn oxide tunnel barriers and method of formation |
US20070195592A1 (en) * | 2004-03-12 | 2007-08-23 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US20080055793A1 (en) * | 2004-09-07 | 2008-03-06 | Anelva Corporation | Magnetoresistance effect device |
Family Cites Families (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ZA849070B (en) * | 1983-12-07 | 1985-07-31 | Energy Conversion Devices Inc | Semiconducting multilayered structures and systems and methods for synthesizing the structures and devices incorporating the structures |
US5506063A (en) * | 1990-11-14 | 1996-04-09 | Nec Corporation | Soft magnetic film of iron and process of formation thereof |
JPH06196648A (ja) * | 1992-12-25 | 1994-07-15 | Fuji Xerox Co Ltd | 配向性強誘電体薄膜素子 |
US5945694A (en) * | 1997-01-31 | 1999-08-31 | Motorola, Inc. | Compound semiconductor device having reduced temperature variability |
JP3219713B2 (ja) * | 1997-02-07 | 2001-10-15 | アルプス電気株式会社 | 磁気抵抗効果素子の製造方法 |
US6201672B1 (en) * | 1999-04-26 | 2001-03-13 | International Business Machines Corporation | Spin valve sensor having improved interface between pinning layer and pinned layer structure |
JP3589346B2 (ja) * | 1999-06-17 | 2004-11-17 | 松下電器産業株式会社 | 磁気抵抗効果素子および磁気抵抗効果記憶素子 |
US6252750B1 (en) * | 1999-07-23 | 2001-06-26 | International Business Machines Corporation | Read head with file resettable double antiparallel (AP) pinned spin valve sensor |
US6275362B1 (en) * | 1999-07-30 | 2001-08-14 | International Business Machines Corporation | Magnetic read head having spin valve sensor with improved seed layer for a free layer |
WO2001056090A1 (fr) | 2000-01-28 | 2001-08-02 | Sharp Kabushiki Kaisha | Dispositif a magnetoresistance et procede de fabrication de celui-ci, base pour dispositif a magnetoresistance et procede de fabrication de celle-ci, et capteur a magnetoresistance |
JP2002050011A (ja) * | 2000-08-03 | 2002-02-15 | Nec Corp | 磁気抵抗効果素子、磁気抵抗効果ヘッド、磁気抵抗変換システム及び磁気記録システム |
JP2002167661A (ja) * | 2000-11-30 | 2002-06-11 | Anelva Corp | 磁性多層膜作製装置 |
JP3961777B2 (ja) | 2001-03-26 | 2007-08-22 | 株式会社東芝 | 磁気センサー |
JP4304568B2 (ja) | 2002-04-23 | 2009-07-29 | 独立行政法人産業技術総合研究所 | 平坦化トンネル磁気抵抗素子 |
JP2002359413A (ja) | 2001-05-31 | 2002-12-13 | National Institute Of Advanced Industrial & Technology | 強磁性トンネル磁気抵抗素子 |
JP3815601B2 (ja) | 2001-09-14 | 2006-08-30 | 独立行政法人産業技術総合研究所 | トンネル磁気抵抗素子および磁気ランダムアクセスメモリ |
DE10136806A1 (de) | 2001-07-27 | 2003-02-13 | Uvex Sports Gmbh & Co Kg | Sichtscheibe, insbesondere für Skibrillen o. dgl. und Verfahren zu deren Herstellung |
US6936903B2 (en) * | 2001-09-25 | 2005-08-30 | Hewlett-Packard Development Company, L.P. | Magnetic memory cell having a soft reference layer |
FR2830971B1 (fr) * | 2001-10-12 | 2004-03-12 | Commissariat Energie Atomique | Dispositif magnetoresistif a vanne de spin a performances ameliorees |
JP2003152239A (ja) * | 2001-11-12 | 2003-05-23 | Fujitsu Ltd | 磁気抵抗効果素子、及び、それを有する読み取りヘッド並びにドライブ |
US6674617B2 (en) * | 2002-03-07 | 2004-01-06 | International Business Machines Corporation | Tunnel junction sensor with a multilayer free-layer structure |
JP2003267750A (ja) | 2002-03-15 | 2003-09-25 | Nihon Yamamura Glass Co Ltd | 抵抗体被覆用ガラス組成物 |
JP4100025B2 (ja) | 2002-04-09 | 2008-06-11 | ソニー株式会社 | 磁気抵抗効果素子及び磁気メモリ装置 |
JP2004063592A (ja) | 2002-07-25 | 2004-02-26 | Sony Corp | 磁気抵抗効果素子および磁気メモリ装置 |
JP2004071897A (ja) * | 2002-08-07 | 2004-03-04 | Sony Corp | 磁気抵抗効果素子及び磁気メモリ装置 |
US6831312B2 (en) * | 2002-08-30 | 2004-12-14 | Freescale Semiconductor, Inc. | Amorphous alloys for magnetic devices |
JP2004128229A (ja) * | 2002-10-02 | 2004-04-22 | Nec Corp | 磁性メモリ及びその製造方法 |
US7318236B2 (en) | 2003-02-27 | 2008-01-08 | Microsoft Corporation | Tying a digital license to a user and tying the user to multiple computing devices in a digital rights management (DRM) system |
US7598555B1 (en) * | 2003-08-22 | 2009-10-06 | International Business Machines Corporation | MgO tunnel barriers and method of formation |
JP2005071555A (ja) | 2003-08-28 | 2005-03-17 | Sony Corp | ディスク装置及びこれを備えた電子機器 |
US20050110004A1 (en) * | 2003-11-24 | 2005-05-26 | International Business Machines Corporation | Magnetic tunnel junction with improved tunneling magneto-resistance |
US7270896B2 (en) * | 2004-07-02 | 2007-09-18 | International Business Machines Corporation | High performance magnetic tunnel barriers with amorphous materials |
US20060012926A1 (en) * | 2004-07-15 | 2006-01-19 | Parkin Stuart S P | Magnetic tunnel barriers and associated magnetic tunnel junctions with high tunneling magnetoresistance |
US7408749B2 (en) * | 2004-08-23 | 2008-08-05 | Hitachi Global Storage Technologies Netherlands B.V. | CPP GMR/TMR structure providing higher dR |
JPWO2006022183A1 (ja) * | 2004-08-27 | 2008-05-08 | 独立行政法人科学技術振興機構 | 磁気抵抗素子及びその製造方法 |
US7595967B1 (en) * | 2004-09-07 | 2009-09-29 | Western Digital (Fremont), Llp | Method for fabricating a spacer layer for a magnetoresistive element |
US7377025B2 (en) * | 2004-10-29 | 2008-05-27 | Headway Technologies, Inc. | Method of forming an improved AP1 layer for a TMR device |
US20060128038A1 (en) * | 2004-12-06 | 2006-06-15 | Mahendra Pakala | Method and system for providing a highly textured magnetoresistance element and magnetic memory |
US7443639B2 (en) * | 2005-04-04 | 2008-10-28 | International Business Machines Corporation | Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials |
JP2008263031A (ja) * | 2007-04-11 | 2008-10-30 | Toshiba Corp | 磁気抵抗効果素子とその製造方法、磁気抵抗効果素子を備えた磁気記憶装置とその製造方法 |
EP1986284B1 (en) * | 2007-04-23 | 2014-08-20 | Sumitomo Wiring Systems, Ltd. | A connector and an assembling method therefor |
JP2009124058A (ja) * | 2007-11-19 | 2009-06-04 | Fujitsu Ltd | 磁気抵抗効果素子の面積抵抗の測定方法 |
-
2004
- 2004-09-07 JP JP2004259280A patent/JP4292128B2/ja not_active Expired - Lifetime
-
2005
- 2005-09-05 DE DE602005014526T patent/DE602005014526D1/de active Active
- 2005-09-05 EP EP05077020A patent/EP1633007B1/en active Active
- 2005-09-05 AT AT05077020T patent/ATE431969T1/de not_active IP Right Cessation
- 2005-09-05 TW TW104101069A patent/TWI536624B/zh active
- 2005-09-05 TW TW101135284A patent/TWI504032B/zh active
- 2005-09-05 EP EP10150310A patent/EP2166581A3/en not_active Withdrawn
- 2005-09-05 TW TW094130390A patent/TWI390780B/zh active
- 2005-09-05 EP EP08159511A patent/EP1973178B1/en active Active
- 2005-09-06 KR KR1020050082694A patent/KR20060051048A/ko active Search and Examination
- 2005-09-07 US US11/219,866 patent/US20060056115A1/en not_active Abandoned
- 2005-09-07 CN CNA2009101180744A patent/CN101572184A/zh active Pending
- 2005-09-07 CN CN2005100987654A patent/CN1755963B/zh active Active
-
2007
- 2007-10-23 US US11/876,916 patent/US20080055793A1/en not_active Abandoned
-
2008
- 2008-01-03 US US11/969,049 patent/US8394649B2/en active Active
- 2008-03-28 US US12/058,147 patent/US20080180862A1/en not_active Abandoned
-
2009
- 2009-06-01 KR KR1020090048073A patent/KR20090071521A/ko not_active Application Discontinuation
-
2010
- 2010-02-24 KR KR1020100016839A patent/KR20100036294A/ko active Search and Examination
- 2010-02-24 KR KR1020100016838A patent/KR20100039310A/ko active Search and Examination
-
2011
- 2011-01-03 US US12/983,514 patent/US20110094875A1/en not_active Abandoned
-
2012
- 2012-04-12 KR KR1020120037829A patent/KR101234441B1/ko active IP Right Grant
- 2012-07-05 KR KR1020120073272A patent/KR101196511B1/ko active IP Right Grant
-
2013
- 2013-09-20 US US14/032,815 patent/US8934290B2/en active Active
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5817366A (en) * | 1996-07-29 | 1998-10-06 | Tdk Corporation | Method for manufacturing organic electroluminescent element and apparatus therefor |
US6181537B1 (en) * | 1999-03-29 | 2001-01-30 | International Business Machines Corporation | Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers |
US6839206B2 (en) * | 2001-03-12 | 2005-01-04 | Kabushiki Kaisha Toshiba | Ferromagnetic double tunnel junction element with asymmetric energy band |
US20040144995A1 (en) * | 2001-05-31 | 2004-07-29 | Taro Nagahama | Tunnel magnetoresistive element |
US20040257719A1 (en) * | 2001-10-12 | 2004-12-23 | Kazuhiro Ohba | Magnetoresistive effect element, magnetic memory element magnetic memory device and manufacturing methods thereof |
US20030128483A1 (en) * | 2001-10-12 | 2003-07-10 | Nec Corporation | Exchange coupling film, magneto-resistance effect device, magnetic head, and magnetic random access memory |
US20060216161A1 (en) * | 2002-06-18 | 2006-09-28 | Catherine Chaix | Material evaporation chamber with differential vacuum pumping |
US20040139914A1 (en) * | 2002-08-30 | 2004-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Fabrication system, light-emitting device and fabricating method of organic compound-containing layer |
US20040136232A1 (en) * | 2002-09-30 | 2004-07-15 | Masanori Hosomi | Magnetoresistive element and magnetic memory unit |
US6828260B2 (en) * | 2002-10-29 | 2004-12-07 | Hewlett-Packard Development Company, L.P. | Ultra-violet treatment of a tunnel barrier layer through an overlayer a tunnel junction device |
US20040082201A1 (en) * | 2002-10-29 | 2004-04-29 | Manish Sharma | Ultra-violet treatment of a tunnel barrier layer through an overlayer a tunnel junction device |
US20040234818A1 (en) * | 2003-05-20 | 2004-11-25 | Kiwamu Tanahashi | Perpendicular magnetic recording medium, manufacturing process of the same, and magnetic storage apparatus using the same |
US7252852B1 (en) * | 2003-12-12 | 2007-08-07 | International Business Machines Corporation | Mg-Zn oxide tunnel barriers and method of formation |
US7149105B2 (en) * | 2004-02-24 | 2006-12-12 | Infineon Technologies Ag | Magnetic tunnel junctions for MRAM devices |
US20070195592A1 (en) * | 2004-03-12 | 2007-08-23 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US20080055793A1 (en) * | 2004-09-07 | 2008-03-06 | Anelva Corporation | Magnetoresistance effect device |
US20080124454A1 (en) * | 2004-09-07 | 2008-05-29 | Anelva Corporation | Method Of Production Of A Magnetoresistance Effect Device |
US20080180862A1 (en) * | 2004-09-07 | 2008-07-31 | Anelva Corporation | Method of production of a magnetoresistance effect device |
Cited By (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080006860A1 (en) * | 2002-04-09 | 2008-01-10 | Sony Corporation | Magnetoresistive effect element and magnetic memory device |
US7700982B2 (en) * | 2002-04-09 | 2010-04-20 | Sony Corporation | Magnetoresistive effect element and magnetic memory device |
US9123463B2 (en) | 2004-03-12 | 2015-09-01 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US20100181632A1 (en) * | 2004-03-12 | 2010-07-22 | National Institute Of Advanced Industrial Science And Technology | Magnetic tunnel junction device and memory device including the same |
US11968909B2 (en) | 2004-03-12 | 2024-04-23 | Godo Kaisha Ip Bridge 1 | Method of manufacturing a magnetoresistive random access memory (MRAM) |
US7884403B2 (en) | 2004-03-12 | 2011-02-08 | Japan Science And Technology Agency | Magnetic tunnel junction device and memory device including the same |
US8319263B2 (en) | 2004-03-12 | 2012-11-27 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US20070195592A1 (en) * | 2004-03-12 | 2007-08-23 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US10367138B2 (en) | 2004-03-12 | 2019-07-30 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US20110031570A1 (en) * | 2004-03-12 | 2011-02-10 | Japan Science And Technology Agency | Magnetic tunnel junction device and method of manufacturing the same |
US10680167B2 (en) | 2004-03-12 | 2020-06-09 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US11233193B2 (en) | 2004-03-12 | 2022-01-25 | Japan Science And Technology Agency | Method of manufacturing a magnetorestive random access memeory (MRAM) |
US8405134B2 (en) | 2004-03-12 | 2013-03-26 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US11737372B2 (en) | 2004-03-12 | 2023-08-22 | Godo Kaisha Ip Bridge 1 | Method of manufacturing a magnetoresistive random access memory (MRAM) |
US9608198B2 (en) | 2004-03-12 | 2017-03-28 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US20070258170A1 (en) * | 2004-08-27 | 2007-11-08 | Shinji Yuasa | Magnetic Tunnel Junction Device and Method of Manufacturing the Same |
US20080055793A1 (en) * | 2004-09-07 | 2008-03-06 | Anelva Corporation | Magnetoresistance effect device |
US20080180862A1 (en) * | 2004-09-07 | 2008-07-31 | Anelva Corporation | Method of production of a magnetoresistance effect device |
US8394649B2 (en) | 2004-09-07 | 2013-03-12 | Canaon Anelva Corporation | Method of production of a magnetoresistance effect device |
US20080124454A1 (en) * | 2004-09-07 | 2008-05-29 | Anelva Corporation | Method Of Production Of A Magnetoresistance Effect Device |
US20060176735A1 (en) * | 2005-01-25 | 2006-08-10 | Shinji Yuasa | Magnetic tunnel junction device and method of manufacturing the same |
US20070025029A1 (en) * | 2005-07-28 | 2007-02-01 | Jun Hayakawa | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
US7468542B2 (en) * | 2005-07-28 | 2008-12-23 | Hitachi, Ltd. | Magnetoresistive device and nonvolatile magnetic memory equipped with the same |
US10629804B2 (en) * | 2006-03-03 | 2020-04-21 | Canon Anelva Corporation | Method of manufacturing magnetoresistive device |
US20090148595A1 (en) * | 2006-03-03 | 2009-06-11 | Yoshinori Nagamine | Method of Manufacturing Magnetoresistance Effect Element and Apparatus for Manufacturing the Same |
US8367156B2 (en) | 2006-03-03 | 2013-02-05 | Canon Anelva Corporation | Method of manufacturing magnetoresistive device and apparatus for manufacturing the same |
US20070253116A1 (en) * | 2006-04-28 | 2007-11-01 | Hiromasa Takahashi | Magnetic reading head |
US7969692B2 (en) | 2006-04-28 | 2011-06-28 | Hitachi, Ltd. | Magnetic reading head with first and second element units each including a ferromagnetic layer and each with a different spin-polarization |
US20070264423A1 (en) * | 2006-05-11 | 2007-11-15 | Tdk Corporation | Manufacturing method of tunnel magnetoresistive effect element, manufacturing method of thin-film magnetic head, and manufacturing method of magnetic memory |
US7535069B2 (en) * | 2006-06-14 | 2009-05-19 | International Business Machines Corporation | Magnetic tunnel junction with enhanced magnetic switching characteristics |
US20070297218A1 (en) * | 2006-06-14 | 2007-12-27 | International Business Machines Corporation | Magnetic tunnel junction with enhanced magnetic switching characteristics |
US7957109B2 (en) * | 2006-09-11 | 2011-06-07 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head of magnetoresistance effect type with high resistance to external stress |
US20080074803A1 (en) * | 2006-09-11 | 2008-03-27 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetic head of magnetoresistance effect type with high resistance to external stress |
US20080070063A1 (en) * | 2006-09-15 | 2008-03-20 | Fujitsu Limited | Exchange coupling film and magnetic device |
US20080124581A1 (en) * | 2006-11-27 | 2008-05-29 | Tdk Corporation | Tunnel magnetoresistive effect element and manufacturing method of tunnel magnetoresistive effect element |
US7978443B2 (en) | 2006-11-27 | 2011-07-12 | Tdk Corporation | Tunnel magnetoresistive effect element having a tunnel barrier layer of a crystalline insulation material and manufacturing method of tunnel magnetoresistive effect element |
US20080180857A1 (en) * | 2007-01-31 | 2008-07-31 | Fujitsu Limited | Tunnel magnetoresistance effect film and magnetic device |
US20090035462A1 (en) * | 2007-08-01 | 2009-02-05 | Chang Man Park | repeatability for rf mgo tmr barrier layer process by implementing ti pasting |
US8679301B2 (en) | 2007-08-01 | 2014-03-25 | HGST Netherlands B.V. | Repeatability for RF MgO TMR barrier layer process by implementing Ti pasting |
US9017535B2 (en) | 2007-10-04 | 2015-04-28 | Canon Anelva Corporation | High-frequency sputtering device |
US20100213047A1 (en) * | 2007-10-04 | 2010-08-26 | Canon Anelva Corporation | High-frequency sputtering device |
US20100200394A1 (en) * | 2007-10-04 | 2010-08-12 | Canon Anelva Corporation | Vacuum thin film forming apparatus |
US20100258430A1 (en) * | 2007-11-28 | 2010-10-14 | Ulvac, Inc. | Sputtering apparatus and film forming method |
US9680088B2 (en) | 2008-03-06 | 2017-06-13 | Iii Holdings 3, Llc | Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element |
US20110163400A1 (en) * | 2008-03-06 | 2011-07-07 | Fuji Electric Holdings Co., Ltd. | Ferromagnetic tunnel junction element and method of driving ferromagnetic tunnel junction element |
US8318510B2 (en) | 2008-03-07 | 2012-11-27 | Canon Anelva Corporation | Method and apparatus for manufacturing magnetoresistive element |
US20110084348A1 (en) * | 2008-09-01 | 2011-04-14 | Canon Anelva Corporation | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method |
US8278123B2 (en) | 2008-09-03 | 2012-10-02 | Canon Anelva Corporation | Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline MgO tunnel barrier |
US8081404B2 (en) * | 2008-09-04 | 2011-12-20 | Fujitsu Limited | Magnetoresistive element including an amorphous reference layer, a crystal layer, and a pinned layer |
US20100053824A1 (en) * | 2008-09-04 | 2010-03-04 | Fujitsu Limited | Magnetoresistive element |
US20110227018A1 (en) * | 2008-09-08 | 2011-09-22 | Canon Anelva Corporation | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method |
US20110143460A1 (en) * | 2008-09-09 | 2011-06-16 | Canon Anelva Corporation | Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method |
US20100080894A1 (en) * | 2008-09-29 | 2010-04-01 | Canon Anelva Corporation | Fabricating method of magnetoresistive element, and storage medium |
US20100078310A1 (en) * | 2008-09-30 | 2010-04-01 | Canon Anelva Corporation | Fabricating method of magnetoresistive element, and storage medium |
US8837924B2 (en) | 2009-06-24 | 2014-09-16 | Canon Anelva Corporation | Vacuum heating/cooling apparatus and manufacturing method of magnetoresistance element |
US20110134563A1 (en) * | 2009-12-08 | 2011-06-09 | Hitachi Global Storage Technologies Netherlands B.V. | Magnetoresistive effect head having a multilayered pinned layer or free layer and systems thereof |
US8514527B2 (en) | 2009-12-08 | 2013-08-20 | HGST Netherlands B.V. | Magnetoresistive effect head having a multilayered pinned layer and/or free layer having amorphous and crystalline layers, and systems thereof |
US9039873B2 (en) | 2010-12-28 | 2015-05-26 | Canon Anelva Corporation | Manufacturing apparatus |
US9752226B2 (en) | 2010-12-28 | 2017-09-05 | Canon Anelva Corporation | Manufacturing apparatus |
US9653677B2 (en) * | 2012-01-20 | 2017-05-16 | Renesas Electronics Corporation | Magnetoresistive effect element and magnetic memory |
US20130187248A1 (en) * | 2012-01-20 | 2013-07-25 | Renesas Electronics Corporation | Magnetoresistive effect element and magnetic memory |
TWI514373B (zh) * | 2012-02-15 | 2015-12-21 | Ind Tech Res Inst | 上固定型垂直磁化穿隧磁阻元件 |
TWI580809B (zh) * | 2012-11-07 | 2017-05-01 | Ngk Insulators Ltd | Ceramic materials and sputtering target parts |
US9475733B2 (en) | 2012-11-07 | 2016-10-25 | Ngk Insulators, Ltd. | Ceramic material and sputtering target member |
US9409824B2 (en) | 2012-11-07 | 2016-08-09 | Ngk Insulators, Ltd. | Ceramic material and sputtering target member |
US20150069542A1 (en) * | 2013-09-06 | 2015-03-12 | Makoto Nagamine | Magneto-resistive element and method of manufacturing the same |
US9209386B2 (en) * | 2013-09-06 | 2015-12-08 | Makoto Nagamine | Magneto-resistive element having a ferromagnetic layer containing boron |
US9425388B2 (en) | 2013-09-12 | 2016-08-23 | Kabushiki Kaisha Toshiba | Magnetic element and method of manufacturing the same |
US8956882B1 (en) | 2013-09-12 | 2015-02-17 | Kazuhiro Tomioka | Method of manufacturing magnetoresistive element |
US9872624B2 (en) | 2013-09-20 | 2018-01-23 | Kabushiki Kaisha Toshiba | Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel |
US10413198B2 (en) | 2013-09-20 | 2019-09-17 | Kabushiki Kaisha Toshiba | Strain sensing element, pressure sensor, microphone, blood pressure sensor, and touch panel |
US20170084825A1 (en) * | 2015-09-18 | 2017-03-23 | Fujitsu Limited | Magnetic tunnel junction device and semiconductor memory device |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8934290B2 (en) | Magnetoresistance effect device and method of production of the same | |
US20230060687A1 (en) | Dual Magnetic Tunnel Junction Devices For Magnetic Random Access Memory (Mram) | |
US7352021B2 (en) | Magnetic random access memory devices having titanium-rich lower electrodes with oxide layer and oriented tunneling barrier | |
US8492169B2 (en) | Magnetic tunnel junction for MRAM applications | |
US7443639B2 (en) | Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials | |
US8139325B2 (en) | Tunnel magnetoresistive thin film | |
US20100080894A1 (en) | Fabricating method of magnetoresistive element, and storage medium | |
US20100078310A1 (en) | Fabricating method of magnetoresistive element, and storage medium | |
JP4774082B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP2011138954A (ja) | 強磁性層の垂直磁化を用いた磁気トンネル接合デバイスの製造方法 | |
JP2012502447A (ja) | 非晶質または微結晶質MgOトンネル障壁に用いる優先グレイン成長強磁性シード層 | |
US20120199470A1 (en) | Mtj film and method for manufacturing the same | |
JP4774092B2 (ja) | 磁気抵抗効果素子およびそれを用いたmram | |
JP4902686B2 (ja) | 磁気抵抗効果素子の製造方法 | |
JP4774116B2 (ja) | 磁気抵抗効果素子 | |
JP2009044173A (ja) | 磁性多層膜形成装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DJAYAPRAWIRA, DAVID D.;TSUNEKAWA, KOJI;NAGAI, MOTONOBU;AND OTHERS;REEL/FRAME:017056/0922;SIGNING DATES FROM 20051020 TO 20051027 Owner name: ANELVA CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DJAYAPRAWIRA, DAVID D.;TSUNEKAWA, KOJI;NAGAI, MOTONOBU;AND OTHERS;REEL/FRAME:017056/0922;SIGNING DATES FROM 20051020 TO 20051027 |
|
AS | Assignment |
Owner name: CANON ANELVA CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:ANELVA CORPORATION;REEL/FRAME:021846/0685 Effective date: 20051001 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |