PL149278B1 - Method of constructing a replicating vector for cloning - Google Patents

Method of constructing a replicating vector for cloning

Info

Publication number
PL149278B1
PL149278B1 PL1980225376A PL22537680A PL149278B1 PL 149278 B1 PL149278 B1 PL 149278B1 PL 1980225376 A PL1980225376 A PL 1980225376A PL 22537680 A PL22537680 A PL 22537680A PL 149278 B1 PL149278 B1 PL 149278B1
Authority
PL
Poland
Prior art keywords
fragment
growth hormone
human growth
gene
expression
Prior art date
Application number
PL1980225376A
Other languages
English (en)
Other versions
PL225376A1 (en
Inventor
David V Goeddel
Herbert L Heyneker
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26733870&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=PL149278(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of PL225376A1 publication Critical patent/PL225376A1/xx
Publication of PL149278B1 publication Critical patent/PL149278B1/pl

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/50Fusion polypeptide containing protease site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • C07K2319/75Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor containing a fusion for activation of a cell surface receptor, e.g. thrombopoeitin, NPY and other peptide hormones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S930/00Peptide or protein sequence
    • Y10S930/01Peptide or protein sequence
    • Y10S930/12Growth hormone, growth factor other than t-cell or b-cell growth factor, and growth hormone releasing factor; related peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Saccharide Compounds (AREA)

Description

OPIS PATENTOWY 149 278
POLSKA
RZECZPOSPOLITA
LUDOWA
Patent dodatkowy do patentu nr--Zgłoszono: 80 07 01 (P. 225376)
Int. Cl.4 C12n 15/00
Pierwszeństwo: 79 07 05 Stany Zjednoczone Ameryki
URZĄD
PATENTOWY
PRL
Zgłoszenie ogłoszono: 83 07 18
C 2 i i -·:
urzędu
Al. Niepodległości Warszawa
I I
.. νϋ Kr
Λ y: ;>
A·*
138
Opis patentowy opublikowano: 90 07 31
Twórcy wynalazku: David V. Goeddel, Herbert L. Heyneker
Uprawniony z patentu: Genentech, Inc., i San Francisco (Stany Zjednoczone Ameryki)'
Sposób konstruowania replikującego się wektora do klonowania
Przedmiotem wynalazku jest sposób konstruowania replikującego się wektora do klonowania, zwłaszcza plazmidu.
DNA, kwas dezoksyrybonukleinowy, który jest tworzywem genów, zawiera zarówno geny kodujące białka, czyli “strukturalne, jak i regiony kontrolne regulujące ekspresję genów kodujących przez zapewnienie miejsc przyłączania polimerazy DNA, informację dotyczącą miejsc przyłączania rybosomów itd. Ekspresja genu, czyli wytwarzanie polipeptydu polega na odbywającym się w organizmie procesie wielostopniowym, w którym: 1/enzym polimereza RNA zostaje zaktywowany w regionie kontrolnym, określanym w dalszej części opisu terminem „promotor, i przemieszcza się wzdłuż genu strukturalnego, a w toku tego procesu zakodowana w genie informacja ulega transkrypcji do informacyjnego kwasu rybonukleinowego /mRNA/, aż do zakończenia transkrypcji na jednym lub więcej kodonie „stop, 2/ informacja zawarta w mRNA ulega z udziałem rybosomów translacji do białka, którego sekwencję aminokwasów koduje dany gen, przy czym translacja zaczyna się na sygnale „start, najczęściej ATG, który w translacji odpowiada f-metioninie.
Zgodnie z kodem genetycznym, wyznacznikiem każdego aminokwasu jest DNA jako tryplet czyli „kodon składający się z trzech sąsiadujących ze sobą nukleotydów indywidualnie wybranych spośród adenozyny, tymidyny, cytydyny i guaniny, określanych w opisie symbolami A, T, C i G. Znajdują się one w kodującej nici lub kodującej sekwencji dwuniciowego DNA, podczas gdy pozostała, czyli „komplementarna nić utworzona jest z nukleotydów /„zasad/, które łączą się wiązaniami wodorowymi z odpowiadającymi im zasadami w nici kodującej. A jest komplementarna z T, a C z G. Te i inne zagadnienia stanowiące podstawę teoretyczną dziedziny, w której dokonano wynalazku wyczerpującego omówił Benjamin Levin w Gene Expression, 12 /1974/ i 3 /1977,/, John Wiley and Sons, N.Y.
Znane są różne sposoby rekombinacji DNA polegające na kształtowaniu sąsiadujących końców oddzielnych fragmentów DNA w celu ułatwienia łączenia. Termin łączenie oznacza proces
149 278 tworzenia się wiązań fosfodwuestrowych między sąsiadującymi nukleotydami, najczęściej za pomocą enzymu ligazy DNAT4. Tak więc, wolne końce mogą być połączone bezpośrednio. Alternatywnie, fragmenty zawierające komplementarne, pojedyncze nici na sąsiadujących końcach zostają korzystnie usytuowane przez tworzenie wiązań wodorowych dla następującego po tym łączenia. Takie pojedyncze nici, do których odnosi się termin lepkie końce, można tworzyć przez dodawanie nukleotydów do wolnych końców z użyciem terminalnej transferazy, a czasem po prostu przez działanie na wolny koniec jednej nici takim enzymem, jak λ— egzonukleaza. A wreszcie, co spotyka się najczęściej, można użyć endonukleaz restrykcyjnych, w niniejszym tekście określanych terminem „enzymy restrykcyjne, które rozszczepiają wiązanie fosfodwuestrowe w/i obok unikalnych sekwencji nukleotydów o długości około 4-6 par zasad /„miejsca restrykcyjne/. Znane są liczne enzymy restrykcyjne i ich miejsce rozpoznawania, co opisał np. R. J. Roberts, CRC Critical Reviews in Biochemistry, 123 /listopad 1976/. Wiele z nich tworzy oddzielone od siebie nacięcia, a przez to krótkie, komplementarne, jednoniciowe sekwencje na końcach dwuniciowych fragmentów. Jako sekwencje komplementarne, występujące, czyli będące końcami lepkimi mogą one ulec rekombinacji przez parowanie zasad. Gdy dwie odrębne cząsteczki zostają rozszczepione enzymem, to krzyżowe parowanie komplementarnych, pojedynczych nici tworzy nową cząsteczkę DNA, której można nadać integralność pod względem wiązań kowalencyjnych przez użycie ligazy w celu ponownego połączenia przecięć pojedynczych nici, pozostających w punkcie stapiania. Enzymy restrykcyjne tworzące jednakowo przecięte, czyli „wolne końce dwuniciowego DNA, który został rozszczepiony, umożliwiają rekombinację za pomocą DNA T4 z innymi sekwencjami o wolnych zakończeniach.
W opisie terminem „wektor do klonowania określa się dwuniciowy DNA o długości niechromosomalnej, zawierający nienaruszony replikon, czyli taki, który może ulegać replikacji gdy w wyniku transformacji znajdzie się w organizmie jednokomórkowym /„drobnoustrój/. Tak transformowany organizm określa się terminem „transformant. Obecnie zwykle używane wektory do klonowania otrzymuje się z wirusów i bakterii, a najczęściej są one pętlami bakteryjnego DNA zwanymi „plazmidami.
Postępy w biochemii w ostatnich latach doprowadziły do możliwości konstruowania rekombinowanych wektorów do klonowania, czyli plazmidów zawierających egzogenny DNA. Rekombinowany wektor włącza heterologiczny DNA, a więc DNA kodujący polipeptydy nie wytwarzane normalnie przez organizm poddany transformacji. Tak więc, plazmidy rozszczepia się enzymami restrykcyjnymi w celu uzyskania linearnego DNA o końcach nadających się do połączenia. Łączy się je z egzogennym genem mającym końce nadające się do połączenia w celu otrzymania biologicznie czynnej cząstki z nienaruszonym, replikonem o właściwościach fenotypowych użytecznych w selekcji transformantów. Cząstkę rekombinowaną wprowadza się do drobnoustroju przez transformację, a transformanty wyodrębnia się i klonuje w celu otrzymania dużych populacji zawierających kopie egzogennego genu oraz, w szczególnych przypadkach, w celu doprowadzenia do ekspresji białka, które koduje dany gen. Przegląd in extenso związanej z tym technologii i jej potencjalnych zastosowań znajduje się w Miles Intenational Symposium Series 10, Recombinant Molecules, Impacet on Science, wyd. Beers and Bosseff, Raven Press, N.Y. /1977/.
Oprócz użycia wektorów do klonowania w celu zwiększenia przez replikację zapasu genów przeprowadzono również ekspresje białek kodowanych przez te geny. Pierwszym takim przykładem było doprowadzenie do ekspresji w bakterii E.coli genu neurohormonu, somatostatyny, znajdującej się pod wpływem promotora lac /K. Itakura i wsp., Science, 198,1056 /1977/. Ostatnio doprowadzono w ten sam sposób do ekspresji łańcucha A i B ludzkiej insuliny, które połączono z utworzeniem hormonu /D.V.Goeddel i wsp., Proc. Natl. Acad. Sci, USA, 76, 106 /1979/. W każdym przypadku przez syntezę wytworzono całkowite geny. Enzymy proteolityczne zawarte w komórce mogłyby zawsze rozkładać pożądany produkt, czyniąc koniecznym wytwarzanie go w postaci sprężonej, np. z innym białkiem, które chroniłoby je przez kompartmentalizację i mogłyby zostać odszczepione poza komórkę z uzyskaniem przewidzianego produktu. Prace te są opisane w następujących brytyjskich opisach patentowych nr nr 2007 675 A, 2007 670 A, 2007 676 A oraz 2008123 A.
149 278
Podczas gdy sposób podejścia do zagadnienia w oparciu o gen syntetyczny okazał się użyteczny w szeregu przypadków dyskutowanych wyżej, to znaczne trudności powstały w przypadku produktów białkowych o dużo większej cząsteczce, np. hormon wzrostu, interferonu itp., których geny są odpowiednio bardziej złożone i w mniejszym stopniu nadają się do prostej syntezy. Jednocześnie byłoby pożądane doprowadzenie do ekspresji tych produktów bez sprzężonych białek, gdyż potrzeba ich ekspresji wymaga zmiany wykorzystania zasobów w organizmie bardziej przystosowanym do wytwarzania zamierzonego produktu.
Inni badacze przeprowadzili próby doprowadzenia do ekspresji genów otrzymanych nie na drodze syntezy organicznej, ale przez odwrotną transkrypcję odpowiedniego, pochodzącego z tkanki i oczyszczonego mRNA. W pracach tych napotkano dwa problemy. Po pierwsze, odwrotna transkryptaza może zakończyć transkrypcję z mRNA przed utworzeniem całkowitego cDNA kodującego nienaruszoną, pożądaną sekwencję aminokwasów. Tak np. Villa-Komaroff i wsp. otrzymali cDNA kodujący szczurzą proinsulinę, w którym brakowało kodonów dla pierwszych trzech aminokwasów prekursora insuliny /Proc. Natl. Acad. Sci. USA, 75,3727 /1978/. Po drugie, odwrotna transkrypcja mRNA kodującego polipeptydy ulegające ekspresji w postaci prekursorów pozwala uzyskać cDNA kodujący prekursory, a nie biologicznie czynne białko, które w komórce eukariotycznej powstaje wtedy, gdy sekwencje kierujące zostaną usunięte na drodze enzymatycznej. Jak dotychczas, nie stwierdzono istnienia komórek bakteryjnych wykazujących taką zdolność, więc transkrypty mRNA pozwalają uzyskać produkty ekspresji zawierające sekwencje kierujące, a nie biologicznie czynne białko jako takie /Villa Komaroff, j.w. /proinsulina szczurza/ i P.H. Seeburg i wsp., Naturę, 276, 795, /1978// /szczurzy prehormon wzrostu//.
Wreszcie, przeprowadzone przez innych autorów próby ekspresji przez bakterie ludzkich hormonów lub ich prekursorów, w oparciu o transkrypty mRNA, dały w wyniku tylko wytworzenie sprężonego białka bez widocznej podatności na rozszczepianie zewnątrzkomórkowe /np. Villa-Komaroff, jak wyżej /penicylinaza-proinsulma/, Seeburg, jak wyżej /β—laktamaza-prehormon wzrosną//.
Ludzki hormon wzrostu /„HGH“/jest wydzielany przez przysadkę. Składa się on ze 191 aminokwasów i z racji swego ciężaru cząsteczkowego wynoszącego około 21500 jest ponad trzykrotnie większy od insuliny. Aż do chwili opracowania sposobu według wynalazku ludzki hormon wzrostu można było otrzymywać laboratoryjną metodą ekstrakcji z ograniczonego ilościowo źródła, a mianowicie z przysadek mózgowych pochodzących z ludzkich zwłok. W konsekwencji, brak takiej substancji ograniczał zakres jej stosowania do leczenia karłowatości przysadkowej. Z realnej oceny wynika nawet, że pochodzący od ludzi HGH jest dostępny w ilości wystarczającej do zastosowania u nie więcej niż 50% chorych.
Podsumowując należy stwierdzić, że istnieje potrzeba opracowania nowego sposobu otrzymywania HGH i innych produktów polipeptydowych w znacznej ilości. Konieczność ta występuje szczególnie wyraźnie w przypadku polipeptydów o łańcuchach zbyt długich, aby istniała możliwość syntezy organicznej i w jej wyniku ekspresji przez drobnoustroje genów całkowicie syntetycznych. Ekspresja hormonów ssaków w oparciu o transkrypty mRNA stwarza możliwość uniknięcia , trudności związanych z metodą syntetyczną, ale jak dotychczas, pozwala ona na wytwarzanie przez drobnoustroje tylko biologicznie nieczynnych koniugatów, z których praktycznie nie można odszczepić pożądanego hormonu.
Sposób według wynalazku umożliwia przeprowadzenie ekspresji quasi-syntetycznych genów, w których odwrotna transkrypcja daje dużą część, korzystnie większość sekwencji kodującej, bez uciekania się do pracochłonnego konstruowania sekwencji, całkowicie na drodze syntezy, podczas gdy synteza pozostałej części sekwencji kodującej daje całkowity gen zdolny do ekspresji pożądanego polipeptydu, bez udziału biodezaktywujących sekwencji kierujących lub innego białka ubocznego. Alternatywnie, syntetyczna pozostałość może zapewnić koniugat oporny na proteolinę o takiej budowie, aby możliwe było zewnątrzkomórkowe odszczepienie ubocznego białka z uzyskaniem postaci biologicznie czynnej. Wektor skonstruowany sposobem według wynalazku umożliwia wytwarzanie przez drobnoustroje takich produktów, które dotychczas otrzymywano tylko w ograniczonej ilości, kosztowną metodą ekstrakcji z tkanki,niemożliwych do wytwarzania w skali przemysłowej. Sposób według wynalazku daje więc po raz pierwszy możliwość wykorzystania ekspresji przez bakterie ważnego leczniczo hormonu polipeptydowego, takiego jak ludzki hormon
149 278 wzrostu, bez wewnątrzkomórkowej proteoliny i konieczności kompartmentalizacji czynnej biologicznie postaci z ubocznym białkiem do momentu zewnątrz.komórkowego rozszczepienia. Ludzki hormon wzrostu otrzymany za pomocą wektora skonstruowanego sposobem według wynalazku ma zastosowanie do leczenia karłowatości przysadkowej, a także innych schorzeń, takich jak rozlane krwawienie żołądkowe, staw rzekomy, oparzenia, trudno gojące się rany, dystrefia, złamania kości.
Sposób konstruowania replikującego się wektora do klonowania, zdolnego w organizmie drobnoustroju . do ekspresji ludzkiego hormonu wzrostu, polegający na konstruowaniu genu przez syntezę chemiczną i odwrotną transkrypcję mRNA, a następnie włączenia do wektora do klonowania otrzymanego genu kodującego ludzki hormon wzrostu, znajdujący się pod kontrolą promotora ekspresji, według wynalazku polega na tym, że przez odwrotną transkrypcję z informacyjnego RNA otrzymuje się pierwszy fragment genu dla produktu ekspresji, który zawiera część sekwencji kodującej ludzki hormon wzrostu, a w przypadku gdy pierwszy fragment genu zawiera kodony, nie ulegające translacji usuwa się te kodony, a pozostawia się część sekwencji kodującej, przy czym otrzymany fragment pomimo to koduje produkt ekspresji inny niż ludzki hormon wzrostu, i na drodze chemicznej syntezy organicznej wytwarza się drugi lub następne fragmenty genu kodującego pozostałą część sekwencji ludzkiego hormonu wzrostu, przy czym przynajmniej jeden z syntetycznych fragmentów koduje aminową część końcową ludzkiego hormonu wzrostu, a następnie otrzymane fragmenty włącza się do zdolnego do replikacji wektora do klonowania, w prawidłowej względem siebie fazie odczytywania i pod kontrolą promotora ekspresji.
Na załączonych rysunkach fig. 1 przedstawia syntetyczny schemat konstrukcji fragmentu genu kodującego pierwsze 24 aminokwasy ludzkiego hormonu wzrostu, łącznie z sygnałem startu ATG i łącznikami użytymi do klonowania. Strzałki wskazują w kodującej, czyli górnej części nici /„U“/ i w komplementarnej, czyli niższej nici /„L“/ oligonukleotydy połączone z utworzeniem przedstawionego fragmentu, fig. 2 — łączenie oligopeptydów „U“ i „L“ z utworzeniem fragmentu genu przedstawionego na fig. 1 oraz jego insercję do plazmidowego wektora do klonowania, fig. 3 — sekwencję DNA /tylko nić kodującą/ fragmentu transkryptu przysadkowego mRNA tworzonego przez enzym restrykcyjny Hae III z ponumerowaniem kodowanych aminokwasów ludzkiego hormonu wzrostu.
Wskazano kluczowe miejsce restrykcyjne, takie jak w DNA, następujące po sygnale „stop“, dla nie ulegającego translacji mRNA. Fig. 4 na rysunku przedstawia konstrukcję wektora do klonowania fragmentu genu nie otrzymanego na drodze syntezy, kodującego aminokwasy ludzkiego hormonu wzrostu i konstrukcję tego fragmentu genu w postaci komplementarnego DNA przez odwrotną transkrypcję mRNA wyodrębnionego z ludzkiej przysadki jako źródła. Fig. 5 na rysunku przedstawia konstrukcję plazmidu, zdolnego do ekspresji w organizmie bakterii z wytworzeniem ludzkiego hormonu wzrostu zaczynającą się od plazmidów przedstawianych na fig. 2 i 4.
Sposób według wynalazku polega na kombinacji pojedynczego wektora do klonowania i więcej niż jednego fragmentu genu. W wyniku kombinacji kodują one z ekspresją pożądany produkt. Z tych fragmentów co najmniej jeden otrzymuje się przez odwrotną transkrypcję mRNA wyodrębnionego z tkanki, np. sposobem zastosowanym przez A. Ullricha i wsp., Science, 196,1313 /1977/. cDNA dostarcza zasadniczą częś, korzystnie przynajmniej większość kodonów pożądanego produktu, podczas gdy pozostałe części genu otrzymuje się syntetycznie. Fragmenty syntetyczne i fragmenty transkryptu mRNA klonuje się oddzielnie z zapewnieniem dostatecznej ilości do zastosowania w późniejszym etapie kombinacji.
Różne okoliczności wpływają na rozdzielenie kodonów produktu końcowego, np. między DNA syntetyczny a cDNA szczególnie sekwencji komplementarnego DNA oznaczoną np. metodą podaną przez Maxama i Gilberta w Proc. Natl. Acad. Sci, USA, 74,560 /1977/. Komplementarny DNA otrzymywany przez odwrotną transkrypcję będzie niezmiennie zawierał kodony przynajmniej karboksylowego końca produktu, jak również inne kodony odpowiadające mRNA nie ulegającemu translacji, następujące pod translacyjnym sygnale lub sygnałach „stop połączonych z końcem karboksylowym. Obecność DNA odpowiadającego mRNA nie ulegającemu translacji jest bardzo niekorzystne, chociaż nadmiernie długie sekwencje tego rodzaju można usunąć, np. przez rozszczepienie enzymem restrykcyjnym, w celu zachowania zasobów komórkowych zaangażo anych w replikacji i ekspresji DNA odpowiadającego produktowi. W poszczególnych przypadkach
149 278 cDNA będzie zawierać kodony odpowiadające całkowitej potrzebnej sekwencji aminokwasów, jak również uboczne kodony przed aminowym końcem produktu. Np. liczne o ile nie wszystkie hormony polipeptydowe ulegają ekspresji w postaci prekursorów z kierującymi, czyli sygnałowi sekwencjami białka związanego np. z transportem przez błonę komórkową. Przy ekspresji dotyczącej komórek eukariotycznych sekwencje te zostają enzymatycznie usunięte- tak, że hormon przedostający się do przestrzeni periplazmatycznej występuje w wolnej, biologicznie czynnej postaci.
Natomiast nie można liczyć na to, że komórki drobnoustrojów przeprowadzą ten proces i zgodnie z tym korzystne jest usunięcie sekwencji kodujących te sygnałowe, czyli kierujące sekwencje z transkryptu mRNA. W czasie tego usuwania traci się translacyjny sygnał startu i prawie stale usuwane są niektóre kodony produktu. Syntetyczny komponent quasi — syntetycznego genu przywraca te ostatnie kodony, jak również dostarcza nowego translacyjnego sygnału startu, jeżeli wektor do którego zostanie ostatecznie włączony hybrydowy gen jest pozbawiony prawidłowo usytuowanego sygnału startu.
Eliminację sekwencji kierującej z cDNA prehormonu wzrostu ułatwia dostępność miejsca restrykcyjnego w części kodującej hormon wzrostu. Tym niemniej sposób według wynalazku, może być praktycznie zastosowany bez względu na dostępność takiego miejsca, czyli w każdym przypadku bez względu na dostępność miejsca restrykcyjnego dostatecznie blisko aminowego końca wytwarzanego polipeptydu z uniknięciem niezbędnej ekstensywnej syntezy komponentów genu nie otrzymanych z mRNA. Tak więc, w jakimkolwiek cDNA kodującym polipeptyd i kierującą lub inną biodezaktywującą sekwencją, granica między tymi ostatnimi kodonami, a odnoszącymi się do dojrzałego polipeptydu będzie wynikać z sekwencji aminokwasów dojrzałego polipeptydu. Można łatwo przeprowadzić trawienie z otrzymaniem genu kodującego peptyd z wyboru, usuwając niepożądaną kierującą lub inną sekwencję. I tak, np. w przypadku cDNA takiego jak:
5' —a— | -bTTAAG CCCTG AGCGT...
AATTC GGGAC TACCA... itd
3' -c-* —d— w którym końcowy punkt trawienia wskazany jest przez strzałkę, można dobrać warunki reakcji trawienia egzonukleazą w celu usunięcia górnych sekwencji „a“ i „b“, podczas gdy trawienie nukleazą SI automatycznie wyeliminuje niższe sekwencje „c“ i „d“. Alternatywnie i dokładniej można działać polimerazą DNA w obecności trójfosforanów dezoksynukleotydów /„d/A, T, C, G/ TP“/. Tak więc, w poprzednim przykładzie polimeraza DNA w obecności dGTP usuwać będzie sekwencję „c“ /zatrzymując się na „G“/, nukleaza S1 będzie następnie trawić „a“, polimeraza DNA w obecności dTTP usunie „d“ /zatrzymując się na „T“/, po czym nukleaza SI usunie „b“ itd. Ogólne zasady podał A. Kornberg, DNA Synthesis, str. 87-88, W.H. Freeman Co., San Francisco /1974/.
Korzystniej można łatwo skonstruować miejsce restrykcyjne w dogodnym punkcie części cDNA kodującej produkt przez zastosowanie mieszanej syntezy reperacyjnej metodą A. Rezina i wsp., Proc. Natl. Acad. Sci. USA, 75,4268 /1978/. Za pomocą tej metody można podstawić jedną lub więcej zasad w istniejącej sekwencji DNA przy użyciu primerów zawierających mieszane podstawniki. Co najmniej 7 palindromowych sekwencji o długości czterech par zasad jest wybiórczo rozpoznawanych przez znane enzymy restrykcyjne, to jest AGCT, /Alu 1/, CCGG /Hpa 11/, CGCG /Tha 1/, GATC /Sau 3A/, GCGC /Hha/, GGCC /Hae III/ i TCGA /Taq 1/.
W przypadku gdy sekwencja cDNA zawiera sekwencję różniącą się od jednego z tych miejsc pojedynczą zasadą, co statystycznie jest wysoce prawdopodobne, synteza reperacyjna pozwoli uzyskać kopię cDNA zawierającą prawidłowo podstawioną zasadę, a przez to pożądane miejsce restrykcyjne. Przecięcie spowoduje usunięcie DNA odpowiadającego niepożądanej sekwencji kie6 149 278 rującej, a następnie na drodze syntezy wprowadzi się kodony konieczne do zejścia ekspresji całkowitego polipeptydu, np.:
Należy oczywiście zaznaczyć, że dłuższe miejsca restrykcyjne można, w razie potrzeby, włączyć w podobny sposób lub kolejne reperacje mogą tworzyć miejsca restrykcyjne o długości 4 par zasad, jeśli tylko 2 zasady spotykane w tym miejscu restrykcyjnym znajdują się w odpowiednim punkcie.
Z zastosowania okaże się dlaczego korzystna jest ekspresja nie tylko sekwencji aminokwasów produktu, lecz także, w pewnej mierze, białka ubocznego lub specyficznie zaprojektowanego. Cztery takie zastosowania można rozważyć jako przykłady. Po pierwsze, ąuasi-syntetyczny gen może reprezentować hapten lub inną immunologiczną determinantę, której nadano immunogenność przez sprzężenie z dodatkowym białkiem, dzięki czemu można wytwarzać szczepionki. Zagadnienie to omówiono w brytyjskim opisie patentowym nr 2008 123 A. Po drugie, z uwagi na bezpieczeństwo biologiczne może okazać się korzystne doprowadzenie do ekspresji produktu jako koniugatu z innym, biodezaktywującym białkiem tak dobranym, aby umożliwić pozakomórkowe rozszczepienie z uzyskaniem produktu w postaci biologicznie czynnej. Po trzecie, poniżej zostanie przedstawiony przykład, w którym transportowe polipeptydy sygnałowe będą poprzedzać produkt, umożliwiając jego wytwarzanie jako produktu wydzielanego przez błonę komórkową tak długo, aż peptyd sygnałowy zostanie następnie odszczepiony. Wreszcie można zastosować uboczny koniugat w celu umożliwienia specyficznego zewnątrzkomórkowego rozszczepienia, a to dla kompartmentalizacji produktu, który w innym przypadku byłby podatny na rozłożenie przez endogenne proteazy drobnoustroju - gospodarza. Co najmniej w ostatnich trzech przykładach syntetyczny fragment przedłużający cząsteczkę zastosowany w celu uzupełnienia kodującej sekwencji transkryptu mRNA może dodatkowo zawierać kodony sekwencji aminokwasów specyficznie podatnych na rozszczepienie w wyniku działania enzymów. Np. trypsyna i chymotrypsyna będzie specyficznie rozszczepiać wiązanie przy arg-arg lub lys-lys itd. /brytyjski opis patentowy nr 2008 123 A/.
Z powyższej części opisu widać, że najogólniej biorąc możliwe są różnorodne zastosowania sposobu według wynalazku i wszystkie one mają następujące wspólne cechy:
— stosuje się transkrypt mRNA kodujący dużą część sekwencji aminokwasów ludzkiego hormonu wzrostu, który jednak wywołując ekspresję samodzielnie, może powodować wytwarzanie innego polipeptydu, albo mniejszego albo większego, od ludzkiego hormonu wzrostu, — usuwa się kodony kodujące białko, odpowiadające sekwencjom aminokwasów innych niż w ludzkim hormonie wzrostu, — otrzymuje się na drodze syntezy organicznej fragment lub fragmenty genu kodujące pozostałą część sekwencji i — łączy się transkrypt mRNA i syntetyczny fragment lub fragmenty i włącza się do wektora do klonowania w prawidłowy względem siebie wzajemnie fazie odczytywania i pod kontrolą promotora ekspresji.
^sekwencja kierująca kodony odpowiadająces | [produktowi r·
U---a--------CAGG syntetyczny „a _|cDNA ia '1 Hpa II
GG -Ϊ------1 quasi-syntetyczny __nANA___| “kodony odpowiadające ---produktowi-mieszana syntezy reperacyjna ---CCGG -i----1
149 278
Oczywiście, produkt ekspresji będzie w każdym przypadku zaczynał się od aminokwasu kodowanego przez translacyjny sygnał startu, przy czym w przypadku ATG jest to f—metionina. Można oczekiwać, że będzie ona usunięta wewnątrzkomórkowo i w każdym przypadku bez naruszenia aktywności biologicznej końcowego produktu.
W poniższych przykładach zostanie omówione zastosowanie sposobu według wynalazku.
Przykład I. Klonowanie fragmentu Hae III transkryptu mRNA /fig. 3 i 4/.
Przeprowadza się preparatykę poliadenylowanego mRNA odpowiadającego ludzkiemu hormonowi wzrostu /HGH/ z nowotworów przysadki hormonalnie czynnych metodą A. Ullricha i wsp., Science, 196,1313 /1977/. Używając 5 pg tego RNA przygotowuje się 1,5 pg dwuniciowego /„ds“/ cDNA, w zasadzie metodą opisaną przez Wickensa i wsp., w J. Biol. Chem. 253, 2483 /1978/, z tym wyjątkiem, że w syntezie drugiej nici, zamiast polimerazy DNA I, używa się polimerazy RNA „Klenow fragment, patrz. H. Klenow, Proc. Natl. Acad. Sci. USA, 65, 168 /1970/. Układ miejsc restrykcyjnych w HGH jest taki, że miejsca restrykcyjne Hae ' III znajdują się w niekodującym regionie 3' i w sekwencji kodującej 23 i 24 aminokwas HGH, jak to przedstawiono na fig. 1. Działanie Hae III na ds cDNA HGH daje fragment o długości 551 par zasad /„b.p“/ kodujący aminokwasy HGH od 24 do 191. Tak więc, 90 ng cDNA poddaje się działaniu Hae III i elektrofoezie w 8% żelu poliakrylamidowym i eluuje się region o 530 b.p. Otrzymuje się około 1 ng cDNA.
Jako nośnik do klonowania cDNA wybiera się pBR322 przygotowany metodą F. Bolivara i wsp., Gene, 2, 95-113 /1977/. pBR322 został całkowicie scharakteryzowany, patrz J.G.Sutcliffe, Cold Spring Harbor Symposium, 43,70 /1978/. Jest on plazmidem replikującym się z dużą ilością kopii, który wykazuje oporność zarówno na ampicylinę jak i tetracyklinę, wynikającą z obecności odpowienich genów /na fig. 4 odpowiednio „ApR“ i „TcR“/ oraz zawiera . miejsca rozpoznawania enzymów restrykcyjnych Pst I, Eco RI i Hind III, jak to przedstawiono na tej figurze.
Produkty rozszczepienia zarówno Hae III jak i Pst I mają wolne zakończenia. Można zastosować metodę zakończeń GC opisaną przez A.C.Y. Chang i wsp., Naturę, 275, 617 /1978/, w celu połączenia produktu rozszczepienia pBR322 za pomocą Pst, o wolnych zakończeniach i transkryptu mRNA potraktowanego Hae III, a następnie włączyć fragment cDNA do miejsca Pst I w pBR322 w taki sposób, aby odtworzyć miejsca restrykcyjne Hae III /GGCC/ w cDNA przy odtworzeniu miejsc restrykcyjnych Pst I /CTGCAG/ na każdym z końców włączanego fragmentu.
Tak więc, używa się terminalnej transferazy dezoksynukleotydowej /TdT/ w celu dodania około 20 reszt dC na zakończenie 3' w sposób uprzednio opisany przez A. Y.A. Chang, j.w. 60 ngpBR322 potraktowanego Pst I poddaje się operacji z użyciem około reszt dC na zakończenie 3'. Stapianie ds cDNA zakończonego dC z nośnikiem DNA zakończonym dG przeprowadza się w objętości 130 μ\ 10 mM Tris-Hcl o pH 7,5, 100 mM NaCl, 0,25 mM EDTA. Mieszaninę ogrzewa się do temperatury 70°C, po czym pozwala się powoli ostygnąć do temperatury 37°C /12 godzin/, a następnie 20°C /6 godzin/, po czym używa do transformacji E.coli x 1776. Wyniki analizy sekwencji DNA plazmidu pHGH31 klonowanego w x 1776 metodą Maxama i Gilberta, Proc. Natl. Acad. Sci., USA, 74, 560 /1977./ potwierdzają obecność kodonów odpowiadających aminokwasom HGH 24-191, przedstawionym na fig. 3.
E.coli K-12 szczep x 1776 posiada genotyp F” tonA53 dapD8 minAl supE42 Δ40 /gal-uvrB/ A_minB2rfb-2nalA25 oms-2 thyA57xmetC65 oms-1 A29A>ioH-asd/cycB2cycAl HsdR2x 1776 uzyskał certifikat National Institutes of Health jako układ gospodarz-wektor EK2.
x 1776 potrzebuje kwasu dwuaminopimelinowego /DAP/ jako składnika niezbędnego i jest niezdolny do syntezy mukopolisacharydowego kwasu cholanowego. Tak więc w podłożu z niedoborem lub brakiem DAP następuje śmierć tego szczepu zależna od braku DAP, pomimo dostatecznej do podtrzymywania metabolizmu i wzrostu ilości składników pokarmowych. Potrzebuje on tyminy lub tymidyny i w podłożu z brakiem tyminy i tymidyny następuje śmierć tego szczepu z degradacją DNA zależna od braku tyminy, pomimo obecności składników pokarmowych w ilości dostatecznej do zachowania aktywności metabolicznej. x 1776 jest niezwykle wrażliwy na żółć i z tego powodu niezdolny do przeżycia pasaży jelita szczura. x 1776 jest niezwykle wrażliwy na detergenty, antybiotyki, leki i chemikalia. x 1776jest niezdolny do prowadzenia zarówno reperacji ciemnej, jak i fotoreaktywacji uszkodzeń spowodowanych przez UV i jest przez to o kilka rzędów wielkości bardziej wrażliwy na światło słoneczne od szczepu E.coli typu dzikiego. x 1776 jest
149 278 oporny na wiele fagów wywołujących transdukcję i jest koniugacyjnie upośledzony pod względem dziedziczenia wielu sprzęganych plazmidów związanych z zaistnieniem różnych mutacji. x 1776jest oporny na kwas nalidiksinowy, cykloserynę i trimetoprin. Leki te można więc dodać do podłoża w celu umożliwienia kontroli szczepu i zapobiegania transformacji zanieczyszczających drobnoustrojów w czasie jej prowadzenia.
Czas jednej generacji rozwijającego się x 1776 wynosi około 50 minut, zarówno w podłożu L jak i Penassay przy uzupełnieniu 100 //zg DAP/ml i 4//zg tymidyny/ ml i osiąga końcową gęstość komórek wynoszącą 8-10 X 108 komórek/ml w fazie stacjonarnej. Łagodne mieszanie przez obroty i wstrząsanie posuwisto-zwrotne w ciągu 1-2 minut powoduje odpowiednie zawieszenie komórek z utrzymaniem żywotności w 100%. Dodatkowo szczegóły odnoszące się do x 1776 ukazały się w pracy R. Curtisa i wsp. pt. Molecular Cloning of Recombinat DNA, wyd. Scott i Werner Academic Press /Nf.Y. 1977/, str. 99-177. x 1776 został zdeponowany w American Type Culture Collection pod numerem rejestracyjnym 31537 w dniu 3 lipca 1979 r. i jest dostępny bez ograniczeń.
Przykład II. Konstruowanie i klonowanie syntetycznego fragmentu genu /fig. 1 i 2/.
Strategia konstrukcji quasi-syntetycznego genu HGH obejmuje konstrukcję syntetycznego fragmentu zawierającego restrykcyjne miejsce rozszczepienia z wolnym zakończeniem w punkcie, w którym fragment byłby połączony z transkryptem mRNA. Tak więc, jak to uwidoczniono na fig. 1, syntetyczny gen odpowiadający pierwszym 24 aminokwasom HGH zawiera miejsce rozszczepienia Hae III po 23-cim aminokwasie. Przeciwległy koniec syntetycznego fragmentu jest zaopatrzony w „łącznik ułatwiający stapianie z jednoniciowym zakończeniem powstałym w wyniku restrykcyjnego rozszczepienia plazmidu, w którym transkrypt mRNA i syntetyczny fragment byłby ostatecznie połączone.
Jak to przedstawiono na fig. 1 koniec 5' dwuniciowego fragmentu ma ułatwiające konstrukcję plazmidu jednoniciowe lepkie końce tworzone przez endonukleazy restrykcyjne Eco RI i Hind III. Kodon metioniny z lewej strony zapewnia miejsce inicjacji translacji, 12 różnych oligonukleotydów, różniących się wielkością w zakresie od undekameru do keksadekameru, syntetyzuje się ulepszoną fosfotriestrową metodą opisaną przez R.Crea w Proc. Natl. Acad. Sci. USA, 75, 5765 /1978/. Nukleotydy te, a mianowicie Ui do He i Li do L6 wskazane są strzałkami.
U2 do Ue i L2 do Le fosforyluje się z użyciem kinazy polinukleotydowej T 4 i /y32-P/ ATP metodą opublikowaną przez D.V. Goeddela i wsp. w Proc. Natl. Acd. Sci. USA, 76,106 /1979/.
Przeprowadza się trzy oddzielne reakcje katalizowane ligazą T 4:10 /tg fragmentu Ui5'-OH łączy się z fosforylowym U2, L5 i Le łączy się fosforylowane U3, U4, L3 i L4 oraz 10/zg fragmentu Li 5'-OH łączy się z fosforylowym L2, U5 i U6. Reakcje łączenia prowadzi się w temperaturze 4°C przez 6 godzin w objętości 300μ\ 20mM Tris-HCl o pH 7,5, mM MgCl, 10 mM dwutiotreitolu, 0,5 mM ATP z użyciem 100 jednostek ligazy T 4. Następnie łączy się te trzy mieszaniny reakcyjne, dodając 100 jednostek ligazy T 4 i prowadzi się reakcję przez 12 godzin w temperaturze 20°C. Mieszaninę poddaje się wytrącaniu etanolem i elektroforezie w 10% żelu poliakrylamidowym. Pasmo migrujące tak jak pasmo o długości 84 par zasad wycina się z żelu i eluuje. 1 /zg pBR322 poddaje się działaniu Eco RT i Hind III, a następnie duży fragment wyodrębniony przez elektroforezę w żelu łączy się z syntetycznym DNA. Mieszaniny używa się do transformowania E. coli szczep 294 /koniec A, thi\ har”, hem//. Szczep 294 został zdeponowany 30 października 1978 r. w American Type Collection /ATTC nr 31 446/ i jest dostępny bez ograniczeń. Wyniki analizy sekwencji insercji Eco RI-Hind III z plazmidu pHGH3 z jednego z transformantów, przeprowadzonej metodą Maxama i Gilberta, j.w. potwierdziłyby budowę przedstawioną na fig. 1.
Przykład III. Konstruowanie plazmidu w celu doprowadzenia do bakteryjnej ekspresji HGH /fig. 5/.
Konstruuje się replikujący się plazmid zawierający syntetyczny fragment z pHGH3 i transkrypt mRNA z PHGH31, z użyciem zdolnego do ekspresji plazmidu pGH6, jak to przedstawiono na fig. 5. Zdolny do ekspresji plazmid zawierający tandemowe promotory lac, konstruuje się najpierw w sposób następujący. Fragment Eco RI o długości 285 par zasad zawierający fragment promotora lac UV5 o długości 95 zasad, wyodrębniony za pomocą fragmentu heterologicznego DNA o długości 95 par zasad, który wyodrębnia się z plazmidu pKB68, patrz K. Backman i wsp. Celi, tom 13, 65-71 /1978/. Fragment o 285 b.p. włącza się do miejsca Eco RI w pBR322 i klonuje pGHl wyodrębniony z promotorami zorientowanymi w kierunku i w prawidłowej fazie odczytywania z
149 278 genem oporności na tetracyklinę. Miejsce Eco RI dalsze od tego ostatniego genu niszczy się przez częściowe trawienie za pomocą Eco RI, reperuje powstające jednoniciowe zakończenia Eco RI za pomocą polimerazy DNA i dokonuje recyrkularyzacji plazmidu przez łączenie wolnych końców. Otrzymany plazmid pGH6 zawiera pojedyncze miejsce Eco RI prawidłowo usytuowane w odniesieniu do układu promotorowego, do którego całkowity gen HGH może zostać włączony.
W celu przygotowania syntetycznego fragmentu do łączenia z transkryptem mRNA rozszczepia się 10 //g pHGH3 za pomocą endonukleaz restrykcyjnych Eco RI i Hae III, a następnie wyodrębnia się za pomocą elektroforezy w 8% żelu poliakrylamidowym fragment o długości 77 par zasad zawierający sekwencję kodującą aminokwasy HGH od 1 do 23.
Następnie rozszczepia się za pomocą elektroforezy w żelu fragment o 551 b.p. odpowiadający sekwencji HGH i migrujący wspólnie z nim fragment pBR322 tworzony przez Hae III o 540 b.p. Następnie działanie Xma 1 rozszczepia tylko sekwencje HGH usuwając 39 par zasad z niekodującego regionu 3'. Powstający fragment o 512 b.p. oddziela się za pomocą elektroforezy w 6% żelu poliakrylamidowym od fragmentu pBR322 tworzonego przez Hae III o długości 540 b.p. 0,3 //g fragmentu Eco III — Hae III o 77 b.p. polimeryzuje się za pomocą ligazy T 4 prowadząc reakcję w objętości 16μ/1 przez 14 godziny w temperaturze 4°C. Mieszaninę ogrzewa się do 70°C przez 5 minut w celu inaktywacji ligazy, a następnie działa się na nią Eco III, w celu rozszczepienia fragmentów, które stały się dimerami w obrębie miejsc Eco RI, oraz Sma I, w celu rozszczepienia dimerów Xma
1. W wyniku otrzymuje się fragment o 591 b.p. z końcami: Eco Rl „lepkim i Sma 1 „wolnym. Po oczyszczeniu w 6% żelu poliakrylamidowym, otrzymuje się około 30 ng tego fragmentu. Należy zauważyć, żezdolnydo ekspresji plazmid pCH6 nie zawiera miejsca rozpoznawania Xma 1. Tym nie mniej Sma 1 rozpoznaje to samo miejsce co Xma 1 , ale dokonuje przecięcia w jego środku z uzyskaniem wolnych końców. Koniec fragmentu rozszczepionego Sma 1, otrzymanego z pHGH31, może być zgodnie z tym wolny i włączony do pGH6.
Na zdolny do ekspresji plazmid pGH6 zawierający tandem promotorów lac UV5, działa się kolejno Hind III, nukleazą S 1 i Eco RI i oczyszcza za pomocą elektroforezy w żelu. 50 ng powstałego nośnika o jednym końcu Eco RI lepkim i jednym końcu wolnym łączy się z 10 ng DNA HGH o 591 b.p. Po połączeniu mieszaniny reakcyjnej używa się do transformowania E.colix 1776. Kolonie selekcjonuje się przez naśladowanie tego naturalnego odstępu, przeprowadza się pCH 107 w pGH 107-1 za pomocą otwarcia tego pierwszego przy użyciu Eco RI, trawienie powstałych jednoniciowych końców endonukleazą SI i recyrkularyzacją przez łączenie wolnych końców za pomocą ligazy T4. Aczkolwiek powstający plazmid okazuje się również zdolny do ekspresji, niespodziewanie wykazuje ją, w bezpośrednim badaniu radioimmulogicznym, w stopniu mniejszym niż pGH 107.
Podczas gdy E.coli x 1776 jest korzystny w sposobie według wynalazku, wykonywanym w warunkach laboratoryjnych, to mógłby on wykazać ograniczoną jedynie przydatność praktyczną w dużej skali przemysłowej, pod względem wzrostu w obecności tetracykliny w stężeniu 12,5//g/mł. Godne uwagi jest to, że włączenie hybrydowego genu HGH do pGH6 niszczy promotor genu oporności na tetracyklinę, lecz tandem promotorów lac pozwala na odczytanie strukturalnego genu oporności na tetracyklinę, zachowując charakterystykę selekcyjną. Otrzymuje się około 400 transformantów.
Za pomocą hybrydyzacji z zastosowaniem filtrów metodą Grunsteina-EIognessa, Proc, Natl, Acad. Sci., USA, 72, 3961 /1975/ identyfikuje się 12 kolonii zawierających sekwencję HGH. Plazmidy wyodrębnione z trzech z tych kolonii wykazują oczekiwany układ miejsc restrykcyjnych po rozszczepieniu Hae III, Pvu II i Pst I. Określa się też sekwencję DNA jednego klonu, pHGH 107.
Ekspresję ludzkiego hormonu wzrostu w transformantach można łatwo stwierdzić przez bezpośrednie . badanie radioimmunologiczne, przeprowadzane za pomocą seryjnych rozcieńczeń supernatantów lizatów komórkowych, za pomocą zestawu Phadebas HGH PRIST /Pharmacia/.
W celu wykazania, że ekspresja HGH znajduje się pod kontrolą promotora lac, transformuje się za pomocą pGHG107 E.coli szczep D1210 lac + /laO + zly + /, z nadprodukcją represora lac. Znaczącego poziomu ekspresji HGH nie można stwierdzić przed dodaniem induktora IPTG /izopropylotiogalaktozyd/.
Usunięcie miejsca Eco RI w pGH107 prowadziłoby do utraty sygnału startowego ATG znajdującego się w takiej samej odległości od kodonów miejsca wiązania rybosomów promotora
149 278 lac, jaka istnieje w naturze między tymi kodonami a sygnałem startowym jJ-galaktozydazy i do stwierdzenia, czy można by było zwiększyć ekspresję z powodu ograniczeń celowo włączonych ze względu na bezpieczeństwo pod względem biologicznym. Przy odpowiednim poziomie ograniczeń raczej fizycznych niż biologicznych, można zastosować w operacjach na wielką skalę takie organizmy jak E.coli K-12 szczep 294, jw. oraz E.coli szczep RR1, genotyp: Pro_Leu~Thi_RB-recA + StrrLac y”. E.coli RR1 można otrzymać z E.coli HB101. Patrz. H.W. Boyer i wsp. J. Mol. Biol., 41,459-472/1969/ przez krzyżowanie z E.coli K12 szczep KL 16 jako dawcą Hfr. Patrz J. H. Miller, Experiments in Molecular Genetics /Cold Spring Harbor, New York, 1972/. Hodowlę E.coli RR1 zdeponowano w dniu 10 października 1978 r. w American Type Culture Collection, pod numerem rejestracyjnym ATCC 31 343 i jest dostępny bez ograniczeń. Podobnie w dniu 3 lipca 1979 r. zdeponowano w American Type Culture Collection hodowlę x ' 1776 /ATCC nr 31 537?/. Również 3 lipca 1979 r. zdeponowano w American Type Culture Collection plazmid pHGH107 /ATCC nr 40 01 , plazmid pGH6 /ATCC nr 40 012./, szczepx!l776 transformowany pHGH107 /ATCC nr 31 538/ i E.coli K12 szczep 294 transformowany pGH6 /ATCC nr 31539,/.
Organizmy otrzymane sposobem według wynalazku można zastosować w wytwarzaniu metodą fermentacyjną w skali przemysłowej ludzkiego hormonu wzrostu, uzyskując produkt w znacznej ilości i do zastosowań dotychczas niedostępnych. Np. hodowle transformantu E.coli mogą rozwijać się w wodnych podłożach w fermentorach stalowych lub innych przy standardowym napowietrzaniu i mieszaniu, w temperaturze około 37°C i w pH bliskim obojętnego, takim jak np. pH 7±0,3, z dostarczeneiem odpowiednich składników pokarmowych, takich jak węglowodan lub gliceryna, źródło azotu, takie jak siarczan amonowy, źródło potasu, takie jak fosforan potasowy, pierwiastki śladowe, siarczan magnezowy itp. Transformowane organizmy korzystnie wykazują jedną lub więcej selekcyjną cechę charakterystyczną, taką jak oporność na antybiotyki tak, że można narzucić ciśnienie selekcyjne w celu utrudnienia kompetetywnego wzrostu E.coli dzikiego typu. Np. w przypadku organizmu opornego na ampicylinę lub tetracyklinę można dodać antybiotyku do podłoża fermentacyjnego w celu wyeliminowania przez selekcję dzikiego typu organizmu, któremu brak oporności jako cechy charakterystycznej.
Po zakończeniu fermentacji odwirowuje się zawiesinę bakteryjną lub w inny sposób wydziela się biomasę z brzeczki pofermentacyjnej i poddaje się lizie środkami fizycznymi lub chemicznymi. Komórkowy debris usuwa się z supernantantu, po czym wyodrębnia i oczyszcza rozpuszczalny hormon wzrostu.
Ludzki hormon wzrostu z ekstraktów bakteryjnych można oczyścić stosując jedną z następujących metod, lub ich kombinację: 1/ frakcjonowanie polietylenoiminą, 2/ sączenie molekularne na Sephacryl S—20^, 3/ chromatografia jonowymienna na żywicy Biorex-70 lub na CM Sephadex, 4/ frakcjonowanie siarczanem amonowym i/lub zależne od pH, 5/ chromotografia powinowactwa z użyciem żywicy z przeciwciałami przygotowanej z wykorzystaniem IgG przeciw HGH otrzymanej od uodpornionych zwierząt wsobnych lub mieszańców i desorpcją w warunkach kwasowych lub słabo denaturujących.

Claims (3)

  1. Zastrzeżenia patentowe
    1. Sposóbkonssnuowama replikującego się wektora do kkonowama, z<l<^ll^^e^ow organizmie drobnoustroju do ekspresji ludzkiego hormonu wzrostu, polegający na konstruowaniu genu przez syntezę chemiczną i odwrotną transkrypcję mRNA, a następnie włączeniu do wektora do klonowania otrzymanego genu kodującego ludzki hormon wzrostu, znąjduąccy się pod kontrolą promotora ekspresji, znamienny tym, że przez odwrotną transkrypcję z informacyjnego RNA otrzymuje się pierwszy fragment genu dla produktu ekspresji, zawierający część sekwencji kodującej ludzki hormon wzrostu, a w przypadku, gdy pierwszy ' fragment genu zawiera kodony nie ulegające translacji usuwa się te kodony, a pozostawia się część sekwencji kodującej, przy czym otrzymany fragment pomimo to koduje produkt ekspresji inny niż ludzki hormon wzrostu, i na drodze chemicznej syntezy organicznej wytwarza się drugi lub następne fragmenty genu kodującego pozostałą część sekwencji ludzkiego hormonu wzrostu, przy czym przynajmniej jeden z syntety11
    149 278 cznych fragmentów koduje aminową część końcową ludzkiego hormonu wzrostu, a następnie otrzymane fragmenty włącza się do zdolnego do replikacji wektora do klonowania, w prawidłowej względem siebie wzajemnie fazie odczytywania i pod kontrolą promotora ekspresji.
  2. 2. Sposób według zastrz. 1, znamienny tym, że jako wektor do klonowania stosuje się plazmid bakteryjny. 3. Sposób według zastrz. 2, znamienny tym, że wytwarza się na drodze chemicznej syntetyczny fragment lub fragmenty kodujące aminową część końcową ludzkiego hormonu wzrostu, który dodatkowo koduje z ekspresją sekwencję aminokwasów nadającą się do specyficznego rozszczepiania, przy czym syntetyczny fragment lub fragmenty włącza się w kierunku i we wspólnej fazie odczytywania ze -zdolnymi do ekspresji kodonami kodującymi białka.
    4. Sposób według zastrz. '1, znamienny tym, że przez odwrotną transkrypcję wytwarza się pierwszy fragment zawierający większą część sekwencji kodującej ludzki hormon wzrostu.
    5. Sposób według zastrz. -2, znamienny tym, że fragment syntetyczny i fragment transkryptu informacyjnego RNA łączy się między sobą przed umieszczeniem ich w wektorze do klonowania i tworzy się przeciwległe końce syntetycznego fragmentu i fragmentu transkryptu jako jednoniciowe albo wolne, żeby ułatwić łączenie obu fragmentów w porządku prawidłowym pod względem ekspresji ludzkiego hormonu wzrostu.
    6. Sposób według zastrz.4, znamienny tym, że jako pierwszy wytwarza się fragment genu zawierający kodony nie ulegające transkrypcji, które usuwa się i otrzymuje fragment przez działanie enzymem restrykcyjnym Hae III.
    7. Sposób według zastrz. 6, znamienny tym, że fragment utworzony przez trawienie Hae III trawi się różnymi enzymami - restrykcyjnymi i odszczepia się kodony odpowiadające nie ulegającemu translacji informacyjnemu RNA, a jednocześnie wytwarza się jednoniciowe zakończenia na jednym z końców otrzymywanego fragmentu.
    8. Sposób według zastrz. 7, znamienny tym, że jako drugi enzym restrykcyjny stosuje się Xma I.
    9. Sposób według zastrz. 1, znamienny tym, że stosuje się fragmenty genu zawierającego głównie cDNA lub jego kopię.
    10. Sposób według zastrz. 2 albo 9, znamienny tym, że plazmidowi nadaje się oporność na co najmniej jeden antybiotyk.
    11. Sposób według zastrz. 10, znamienny tym, że wytwarza się plazmid bez promotora tet, wykazujący mimo to oporność na tetracyklinę.
    12. Sposób według zastrz. 11, znamienny tym, że gen kodujący ludzki hormon wzrostu umieszcza się tak, żeby znajdował się pod kontrolą tandemu promotorów lac.
    13. Sposób według zastrz. 12, znamienny tym, że jako plazmid stosuje się plazmid pHGH107.
    14. Sposób według zastrz. 12, znamienny tym, że jako plazmid stosuje się plazmid pHGH107-l.
    149 278 <
    <
    GCC UUU GAC ACC UAC CAG GAG UUU GAA GAA GCC UAU AUC CCA AAG GAA CAG AAG UAU UCA UUC CUG CAG AAC CCC CAG ACC UCC
    O ao
    3 O Ui X c o CL X X Φ X >. < (0 < o X o H X o o < x X x 3 o t-H X o (0 o 4J o o Φ X CO X < V 3) o X x > O X < 2C < x X U o u O V o CL O U φ o rn < X 3) (0 < U un o < < PU X < o U X o V x M x V x X (0 o X 3) V o X X >, < o k-U < W X X < -JJ X < X «ł O 00 X a. u C o 00 o 33 u o (0 < X < u o O a X o O o < < a o 3 x U x o V u 33 V X V o X x X X < X X w X O o Cu X O U 3 U C X u X C o o V X X X X O X o X O < O H < x 3) O o 3 O X O 00 x łu X o < i—l x lu o X < x o o O o < u H 3) o o 3 < M x O o 3 x x V o X < U o V 3) 33 X o H 3) P o X O o. x C υ 1— o U u 3 O 0 o (0 < (0 X V u V X u* < < < > x W X X o un 33 U o 3 < ΪΝ u X o V X V o V 3) o X o Os X 33 un X X o o X O o Pu 33
    «I β
    χ|
    C3
    O \O
    (0 < o U X C 33 O U o X u X < o V X C < X X < «— o X < X ω < < O -d H 33 O o c O u x 3 < C CJ (0 33 f— < u < X < C < X O o u < < X O X < O 33 e < x 3 X u o U Q łH < X x Φ 33 X < Φ O o u < X U X < ω < U < V X 00 X 3 o X O X u X 33 U X V 33 «— O H < Pu 33 < < X O O o 3 < ·— X O X X 3 < 3 o X < u 33 CM »—1 X V 33 i— < X o > X o X 1— C_ O o 3 x U 33 4-1 X C < i— o < V X V 33 --I O 33 X o CO < X < < o > O 00 X 00 O 3 X a. U Ui X Ui X Uu X Φ 33 0) X Φ X X X X X X U X X un X c X 3 X Ui X CL X 00 X X Φ 33 X X C X M X X X X U H X X X X X X Φ O C < c X C X Φ X X 33 < co X X X CO 33 Pu 33 X X X X X X o X c O Φ X co X C X Ul X X X ł— X •rl X r— X Pu X X X uu X X X X X Ui X X X X Ul X o X X X X 33 1— X Φ X 00 n X H < > U O X CC X > X O X o X 3 X c X Φ X Ui X Ui X »—l X co X 1— X Pu X Pu X O X X X m X Φ 33 3 X 3 X Ui X 00 X i—1 33 X «X X X X Ui X X X X X rj X E-i X X X Ul 33 3 X 3 X cx X 3 X Φ U Φ 33 Φ X (0 X Φ X cn 33 hJ O X X X X X 3 O CL X CL X Φ X Φ X X X Ui X 0) X X X X X O O Hi 33 X X (Lu X Pu X Ui X Uu O (0 X C X Ui X Φ X Φ X X X X X X X cn 33 CO 33 X X X X H X O X C O 3 X Ui X 3 X X 33 X Φ X Φ X 1— X Pu 33 X X X X co X X X 33 Φ c_> 3 X U X X X X t-H 33 Φ X X X «0 X o 33 '-d X X X H X > X 3 U 3 O CL X Ui X C X Φ 33 Φ 33 rn X X X X X X U X O X X H X X X
    GCCUCUCCUGGCC.
    Eco RI
    Pctl
    HiniTS.
    I mRNA ]pdnrotna transkryptaza
    Klanów Roli t
    d.s. CDNA oczyszczanie fragmentu o 551 bp z żelu \terminalna transferaza | ♦dGTP '
    HooTL cccc
    Odwrotna transferaza dCTP stapianie transformacja κ 1776
    ECO RI
    4.
    Ap ftoRI \68yszaanie fragmentu fragmentu o 77bp 2 ietu \pći2pclancef^mentu *»» *».» z ZeLu lioaza T4 oczyszczanie fragmentu nukLeazaSl lioaza T4 transformacja ί 17ro seLekcja pod mzgLęcLern
    Tc K fwRI
  3. 3.
    Pracownia Poligraficzna UP RP. Nakład 100 egz.
    Cena 1500 zł
PL1980225376A 1979-07-05 1980-07-01 Method of constructing a replicating vector for cloning PL149278B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US06/055,126 US4342832A (en) 1979-07-05 1979-07-05 Method of constructing a replicable cloning vehicle having quasi-synthetic genes

Publications (2)

Publication Number Publication Date
PL225376A1 PL225376A1 (en) 1983-07-18
PL149278B1 true PL149278B1 (en) 1990-01-31

Family

ID=26733870

Family Applications (1)

Application Number Title Priority Date Filing Date
PL1980225376A PL149278B1 (en) 1979-07-05 1980-07-01 Method of constructing a replicating vector for cloning

Country Status (42)

Country Link
US (7) US4342832A (pl)
EP (1) EP0022242B1 (pl)
JP (4) JPH0612996B2 (pl)
KR (2) KR830003574A (pl)
AR (1) AR244341A1 (pl)
AT (1) ATE82324T1 (pl)
AU (2) AU533697B2 (pl)
BE (1) BE884012A (pl)
BG (1) BG41135A3 (pl)
BR (1) BR8008736A (pl)
CA (2) CA1164375A (pl)
CH (1) CH661939A5 (pl)
CS (3) CS250652B2 (pl)
DD (3) DD210070A5 (pl)
DE (3) DE3050725C2 (pl)
DK (2) DK173503B1 (pl)
EG (1) EG14819A (pl)
ES (2) ES493149A0 (pl)
FI (2) FI850198L (pl)
FR (2) FR2460330B1 (pl)
GB (2) GB2121047B (pl)
GR (1) GR69320B (pl)
HK (3) HK87584A (pl)
IE (3) IE50460B1 (pl)
IL (3) IL60312A (pl)
IT (1) IT1131393B (pl)
KE (3) KE3451A (pl)
MX (1) MX172674B (pl)
MY (3) MY8500764A (pl)
NL (1) NL930114I2 (pl)
NO (2) NO167673C (pl)
NZ (2) NZ201312A (pl)
OA (1) OA06562A (pl)
PH (1) PH19814A (pl)
PL (1) PL149278B1 (pl)
PT (1) PT71487A (pl)
RO (1) RO93374B (pl)
SG (1) SG56984G (pl)
WO (1) WO1981000114A1 (pl)
YU (3) YU163580A (pl)
ZA (1) ZA803600B (pl)
ZW (1) ZW14180A1 (pl)

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342832A (en) * 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
US4898830A (en) * 1979-07-05 1990-02-06 Genentech, Inc. Human growth hormone DNA
US6455275B1 (en) 1980-02-25 2002-09-24 The Trustees Of Columbia University In The City Of New York DNA construct for producing proteinaceous materials in eucaryotic cells
CA1200773A (en) * 1980-02-29 1986-02-18 William J. Rutter Expression linkers
US4711843A (en) * 1980-12-31 1987-12-08 Cetus Corporation Method and vector organism for controlled accumulation of cloned heterologous gene products in Bacillus subtilis
IL59690A (en) * 1980-03-24 1983-11-30 Yeda Res & Dev Production of bovine growth hormone by microorganisms and modified microorganisms adapted to produce it
ZA811368B (en) * 1980-03-24 1982-04-28 Genentech Inc Bacterial polypedtide expression employing tryptophan promoter-operator
US4370417A (en) * 1980-04-03 1983-01-25 Abbott Laboratories Recombinant deoxyribonucleic acid which codes for plasminogen activator
US6610830B1 (en) 1980-07-01 2003-08-26 Hoffman-La Roche Inc. Microbial production of mature human leukocyte interferons
IE53166B1 (en) * 1980-08-05 1988-08-03 Searle & Co Synthetic urogastrone gene,corresponding plasmid recombinants,transformed cells,production thereof and urogastrone expression
US7101981B1 (en) 1980-08-26 2006-09-05 Regents Of The University Of California Bovine growth hormone recombinantly produced in E. coli
US4725549A (en) * 1980-09-22 1988-02-16 The Regents Of The University Of California Human and rat prolactin and preprolactin cloned genes
IL63916A0 (en) * 1980-09-25 1981-12-31 Genentech Inc Microbial production of human fibroblast interferon
NZ199722A (en) * 1981-02-25 1985-12-13 Genentech Inc Dna transfer vector for expression of exogenous polypeptide in yeast;transformed yeast strain
JPS57181098A (en) * 1981-04-30 1982-11-08 Japan Found Cancer Novel recombinant dna
US4801685A (en) * 1981-08-14 1989-01-31 Hoffmann-La Roche Inc. Microbial production of mature human leukocyte interferon K and L
US4810645A (en) * 1981-08-14 1989-03-07 Hoffmann-La Roche Inc. Microbial production of mature human leukocyte interferon K and L
US4880910A (en) * 1981-09-18 1989-11-14 Genentech, Inc. Terminal methionyl bovine growth hormone and its use
NZ201918A (en) * 1981-09-18 1987-04-30 Genentech Inc N-terminal methionyl analogues of bovine growth hormone
US5254463A (en) * 1981-09-18 1993-10-19 Genentech, Inc. Method for expression of bovine growth hormone
US5236831A (en) * 1981-12-29 1993-08-17 Kiowa Hakko Kogyo Co., Ltd. Amino acid synthesis in corynebacteria using E. coli genes
US4775622A (en) * 1982-03-08 1988-10-04 Genentech, Inc. Expression, processing and secretion of heterologous protein by yeast
US4665160A (en) * 1982-03-22 1987-05-12 Genentech, Inc. Novel human growth hormone like protein HGH-V encoded in the human genome
US4446235A (en) * 1982-03-22 1984-05-01 Genentech, Inc. Method for cloning human growth hormone varient genes
US6936694B1 (en) 1982-05-06 2005-08-30 Intermune, Inc. Manufacture and expression of large structural genes
US4652639A (en) * 1982-05-06 1987-03-24 Amgen Manufacture and expression of structural genes
GB2121054B (en) * 1982-05-25 1986-02-26 Lilly Co Eli Cloning vectors for expression of exogenous protein
US4778759A (en) * 1982-07-09 1988-10-18 Boyce, Thompson Institute For Plant Research, Inc. Genetic engineering in cyanobacteria
US4891315A (en) * 1982-10-25 1990-01-02 American Cyanamid Company Production of herpes simplex viral porteins
AU2038283A (en) * 1982-08-10 1984-03-07 Trustees Of Columbia University In The City Of New York, The The use of eucaryotic promoter sequences in the production ofproteinaceous materials
US4530904A (en) * 1982-09-03 1985-07-23 Eli Lilly And Company Method for conferring bacteriophage resistance to bacteria
JPS59501852A (ja) * 1982-09-16 1984-11-08 アムジエン 鳥類の成長ホルモン
CA1209501A (en) * 1982-09-16 1986-08-12 Nikos Panayotatos Expression vector
US4666839A (en) * 1982-12-01 1987-05-19 Amgen Methods and materials for obtaining microbial expression of polypeptides including bovine prolactin
JPS59106297A (ja) * 1982-12-07 1984-06-19 Rikagaku Kenkyusho ヒト生長ホルモンのカルボキシ末端遺伝子の合成法
DK55685A (da) * 1985-02-07 1986-08-08 Nordisk Gentofte Enzym eller enzymkompleks med proteolytisk aktivitet
US5618697A (en) * 1982-12-10 1997-04-08 Novo Nordisk A/S Process for preparing a desired protein
US4634678A (en) * 1982-12-13 1987-01-06 Molecular Genetics Research And Development Limited Partnership Plasmid cloning and expression vectors for use in microorganisms
GB8303383D0 (en) * 1983-02-08 1983-03-16 Biogen Nv Sequences recombinant dna molecules
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4859600A (en) * 1983-04-25 1989-08-22 Genentech, Inc. Recombinant procaryotic cell containing correctly processed human growth hormone
US4755465A (en) * 1983-04-25 1988-07-05 Genentech, Inc. Secretion of correctly processed human growth hormone in E. coli and Pseudomonas
IL71991A (en) * 1983-06-06 1994-05-30 Genentech Inc Preparation of human FGI and FGE in their processed form through recombinant AND tranology in prokaryotes
BG49718A3 (bg) * 1983-07-15 1992-01-15 Bio- Technology General Corp Метод за получаване на полипептид със супероксиддисмутазна активност
US4900811A (en) * 1983-07-21 1990-02-13 Scripps Clinic And Research Foundation Synthetic polypeptides corresponding to portions of proteinoids translated from brain-specific mRNAs, receptors, methods and diagnostics using the same
US5242798A (en) * 1983-07-21 1993-09-07 Scripps Clinic And Research Foundation Synthetic polypeptides corresponding to portions of proteinoids translated from brain-specific mRNAs, receptors, methods and diagnostics using the same
JPS60137291A (ja) * 1983-12-26 1985-07-20 Takeda Chem Ind Ltd 発現ベクター
CA1213537A (en) * 1984-05-01 1986-11-04 Canadian Patents And Development Limited - Societe Canadienne Des Brevets Et D'exploitation Limitee Polypeptide expression method
CA1272144A (en) * 1984-06-29 1990-07-31 Tamio Mizukami Fish growth hormone polypeptide
US5489529A (en) * 1984-07-19 1996-02-06 De Boer; Herman A. DNA for expression of bovine growth hormone
WO1986002068A1 (fr) * 1984-09-26 1986-04-10 Takeda Chemical Industries, Ltd. Separation mutuelle de proteines
US4680262A (en) * 1984-10-05 1987-07-14 Genentech, Inc. Periplasmic protein recovery
ATE78515T1 (de) * 1984-10-05 1992-08-15 Genentech Inc Dna, zellkulturen und verfahren zur sekretion von heterologen proteinen und periplasmische proteinrueckgewinnung.
NZ213759A (en) * 1984-10-19 1989-01-27 Genentech Inc Lhrh-ctp protein conjugates influencing prolactin fsh and lh release
US4645829A (en) * 1984-10-29 1987-02-24 Monsanto Company Method for separating polypeptides
US4861868A (en) 1985-02-22 1989-08-29 Monsanto Company Production of proteins in procaryotes
US4652630A (en) * 1985-02-22 1987-03-24 Monsanto Company Method of somatotropin naturation
DK151585D0 (da) * 1985-04-03 1985-04-03 Nordisk Gentofte Dna-sekvens
DE3683186D1 (de) * 1985-04-25 1992-02-13 Hoffmann La Roche Rekombinantes humaninterleukin-1.
ATE68013T1 (de) * 1985-07-05 1991-10-15 Whitehead Biomedical Inst Expression von fremdem genetischem material in epithelzellen.
US5041381A (en) 1986-07-03 1991-08-20 Schering Corporation Monoclonal antibodies against human interleukin-4 and hybridomas producing the same
US4892764A (en) * 1985-11-26 1990-01-09 Loctite Corporation Fiber/resin composites, and method of making the same
US5827826A (en) * 1986-03-03 1998-10-27 Rhone-Poulenc Rorer Pharmaceuticals Inc. Compositions of human endothelial cell growth factor
US5552528A (en) 1986-03-03 1996-09-03 Rhone-Poulenc Rorer Pharmaceuticals Inc. Bovine b-endothelial cell growth factor
EP0245218B1 (en) * 1986-05-07 1993-12-29 ENIRICERCHE S.p.A. A plasmid vector for expression in bacillus and used for cloning the structural gene which codes for the human growth hormone and a method of producing the hormone
EP0252588A3 (en) * 1986-05-12 1989-07-12 Smithkline Beecham Corporation Process for the isolation and purification of p. falciparum cs protein expressed in recombinant e. coli, and its use as a vaccine
US4806239A (en) * 1986-11-28 1989-02-21 Envirotech Corporation Apparatus for shifting filter plates in a filter press
JPS63159244A (ja) * 1986-12-23 1988-07-02 三菱マテリアル株式会社 二層の押出成形珪酸質―石灰質系成形品の製造方法
JPH0720436B2 (ja) * 1986-12-31 1995-03-08 株式会社ラッキー 合成遺伝子を使用したサケ成長ホルモンの製造方法
JPH02502604A (ja) * 1987-01-07 1990-08-23 アライド・コーポレーション ペプチドオリゴマーの微生物生産法
US4977089A (en) * 1987-01-30 1990-12-11 Eli Lilly And Company Vector comprising signal peptide-encoding DNA for use in Bacillus and other microorganisms
HUT51901A (en) * 1987-06-22 1990-06-28 Genetics Inst Process for production of new trombolitic ensimes
FR2624835B2 (fr) * 1987-08-05 1990-09-07 Hassevelde Roger Support ergonomique a creme glacee, a cuillere integree, transformable en tout autre objet apres son utilisation premiere
US5268267A (en) * 1987-08-21 1993-12-07 The General Hospital Corporation Method for diagnosing small cell carcinoma
IT1223577B (it) * 1987-12-22 1990-09-19 Eniricerche Spa Procedimento migliorato per la preparazione dell'ormone della crescita umano naturale in forma pura
JPH0231042U (pl) * 1988-08-19 1990-02-27
US5130422A (en) * 1988-08-29 1992-07-14 Monsanto Company Variant somatotropin-encoding DNA
EP0763543A2 (en) 1988-09-02 1997-03-19 The Rockefeller University A method for preparing an inflammatory cytokine (MIP-2) and diagnostic and therapeutic applications for the cytokine or its antibody
US5079230A (en) * 1988-09-12 1992-01-07 Pitman-Moore, Inc. Stable bioactive somatotropins
US5082767A (en) * 1989-02-27 1992-01-21 Hatfield G Wesley Codon pair utilization
US5075227A (en) * 1989-03-07 1991-12-24 Zymogenetics, Inc. Directional cloning
US4960301A (en) * 1989-03-27 1990-10-02 Fry Steven A Disposable liner for pickup truck beds
US5164180A (en) 1989-05-18 1992-11-17 Mycogen Corporation Bacillus thuringiensis isolates active against lepidopteran pests
US5266477A (en) * 1990-02-02 1993-11-30 Pitman-Moore, Inc. Monoclonal antibodies which differentiate between native and modified porcine somatotropins
CA2041446A1 (en) 1990-05-15 1991-11-16 August J. Sick Bacillus thuringiensis genes encoding novel dipteran-active toxins
US5849694A (en) * 1990-07-16 1998-12-15 Synenki; Richard M. Stable and bioactive modified porcine somatotropin and pharmaceutical compositions thereof
US5744139A (en) * 1991-06-28 1998-04-28 University Of Tennessee Research Corporation Insulin-like growth factor I (IGF-1) induced improvement of depressed T4/T8 ratios
US5202119A (en) * 1991-06-28 1993-04-13 Genentech, Inc. Method of stimulating immune response
US5591709A (en) * 1991-08-30 1997-01-07 Life Medical Sciences, Inc. Compositions and methods for treating wounds
HUT67319A (en) * 1991-08-30 1995-03-28 Life Medical Sciences Inc Compositions for treating wounds
US5317012A (en) * 1991-10-04 1994-05-31 The University Of Tennessee Research Corporation Human growth hormone induced improvement in depressed T4/T8 ratio
FR2686899B1 (fr) 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant.
AU5446494A (en) * 1992-10-22 1994-05-09 Sloan-Kettering Institute For Cancer Research Growth hormone fragment hgh 108-129
DE69434492T2 (de) 1993-03-10 2006-07-13 Smithkline Beecham Corp. Phosphodiesterase des menschlichen gehirns
FR2738842B1 (fr) * 1995-09-15 1997-10-31 Rhone Poulenc Rorer Sa Molecule d'adn circulaire a origine de replication conditionnelle, leur procede de preparation et leur utilisation en therapie genique
GB9526733D0 (en) * 1995-12-30 1996-02-28 Delta Biotechnology Ltd Fusion proteins
US5760187A (en) * 1996-02-22 1998-06-02 Mitsui Toatsu Chemicals, Inc. Purification process of a human growth hormone
JP3794748B2 (ja) * 1996-03-04 2006-07-12 第一アスビオファーマ株式会社 メタノール代謝系を有する微生物の培養法
WO1998007830A2 (en) 1996-08-22 1998-02-26 The Institute For Genomic Research COMPLETE GENOME SEQUENCE OF THE METHANOGENIC ARCHAEON, $i(METHANOCOCCUS JANNASCHII)
MX9605082A (es) 1996-10-24 1998-04-30 Univ Autonoma De Nuevo Leon Levaduras metilotroficas modificadas geneticamente para la produccion y secrecion de hormona de crecimiento humano.
JP2001510989A (ja) * 1996-11-01 2001-08-07 スミスクライン・ビーチャム・コーポレイション 新規コーディング配列
US6068991A (en) * 1997-12-16 2000-05-30 Bristol-Myers Squibb Company High expression Escherichia coli expression vector
PT1040192E (pt) 1997-12-18 2006-12-29 Monsanto Technology Llc Plantas transgénicas resistentes a insectos e métodos para melhoramento da actividade 8-endotoxina contra insectos
US6087128A (en) 1998-02-12 2000-07-11 Ndsu Research Foundation DNA encoding an avian E. coli iss
ATE408631T1 (de) 1998-03-31 2008-10-15 Tonghua Gantech Biotechnology Chimäres protein welches eine intramolekulare chaperon-ähnliche sequenz enthält und dessen anwendung zur insulinproduktion
US6512162B2 (en) 1998-07-10 2003-01-28 Calgene Llc Expression of eukaryotic peptides in plant plastids
US6271444B1 (en) 1998-07-10 2001-08-07 Calgene Llc Enhancer elements for increased translation in plant plastids
EP1115424A1 (de) 1998-08-28 2001-07-18 Febit Ferrarius Biotechnology GmbH Verfahren und messeinrichtung zur bestimmung einer vielzahl von analyten in einer probe
WO2000049142A1 (de) 1999-02-19 2000-08-24 Febit Ferrarius Biotechnology Gmbh Verfahren zur herstellung von polymeren
US6946265B1 (en) 1999-05-12 2005-09-20 Xencor, Inc. Nucleic acids and proteins with growth hormone activity
US6187750B1 (en) 1999-08-25 2001-02-13 Everyoung Technologies, Inc. Method of hormone treatment for patients with symptoms consistent with multiple sclerosis
AT408721B (de) 1999-10-01 2002-02-25 Cistem Biotechnologies Gmbh Pharmazeutische zusammensetzung enthaltend ein antigen
GB9924351D0 (en) 1999-10-14 1999-12-15 Brennan Frank Immunomodulation methods and compositions
US6562790B2 (en) 2000-02-05 2003-05-13 Chein Edmund Y M Hormone therapy methods and hormone products for abating coronary artery blockage
EP2275557A1 (en) 2000-04-12 2011-01-19 Human Genome Sciences, Inc. Albumin fusion proteins
US6995246B1 (en) * 2000-10-19 2006-02-07 Akzo Nobel N.V. Methods for removing suspended particles from soluble protein solutions
CA2430934C (en) 2000-12-01 2011-06-21 Takeda Chemical Industries, Ltd. A method of producing sustained-release preparations of a bioactive substance using high-pressure gas
US20030049731A1 (en) * 2000-12-05 2003-03-13 Bowdish Katherine S. Engineered plasmids and their use for in situ production of genes
US20020164712A1 (en) * 2000-12-11 2002-11-07 Tonghua Gantech Biotechnology Ltd. Chimeric protein containing an intramolecular chaperone-like sequence
CA2446739A1 (en) * 2001-05-25 2002-12-05 Human Genome Sciences, Inc. Chemokine beta-1 fusion proteins
US6720538B2 (en) * 2001-06-18 2004-04-13 Homedics, Inc. Thermostat variation compensating knob
ES2411007T3 (es) 2001-10-10 2013-07-04 Novo Nordisk A/S Remodelación y glicoconjugación de péptidos
US20030171285A1 (en) * 2001-11-20 2003-09-11 Finn Rory F. Chemically-modified human growth hormone conjugates
CA2484556A1 (en) 2001-12-21 2003-07-24 Human Genome Sciences, Inc. Albumin fusion proteins
EP2990417A1 (en) 2001-12-21 2016-03-02 Human Genome Sciences, Inc. Albumin insulin fusion protein
US7611700B2 (en) * 2002-09-09 2009-11-03 Hanall Pharmaceuticals, Co., Ltd. Protease resistant modified interferon alpha polypeptides
TWI281864B (en) * 2002-11-20 2007-06-01 Pharmacia Corp N-terminally monopegylated human growth hormone conjugates and process for their preparation
RU2233879C1 (ru) * 2002-12-17 2004-08-10 Институт биоорганической химии им. академиков М.М.Шемякина и Ю.А.Овчинникова РАН Рекомбинантная плазмидная днк pes1-6, кодирующая полипептид соматотропин, и штамм escherichia coli bl 21(de3)/pes1-6-продуцент рекомбинантного соматотропина
SG176314A1 (en) 2002-12-31 2011-12-29 Altus Pharmaceuticals Inc Human growth hormone crystals and methods for preparing them
EP1594530A4 (en) 2003-01-22 2006-10-11 Human Genome Sciences Inc HYBRID PROTEINS OF ALBUMIN
EP1597299A2 (en) * 2003-02-19 2005-11-23 Pharmacia Corporation Carbonate esters of polyethylene glycol activated by means of oxalate esters
WO2004099244A2 (en) * 2003-05-09 2004-11-18 Pharmexa A/S Immunogenic human tnf alpha analogues with reduced cytotoxicity and methods of their preparation
BRPI0507169A (pt) 2004-02-02 2007-06-26 Ambrx Inc polipeptìdeos do hormÈnio de crescimento humano modificados e seu usos
EA200601793A1 (ru) * 2004-06-23 2007-02-27 Ю Эс Ви ЛИМИТЕД Химерный гормон роста человека, полученный из изоформы плаценты и гипофиза, и способы получения указанной химеры
US20060024288A1 (en) * 2004-08-02 2006-02-02 Pfizer Inc. tRNA synthetase fragments
US8282921B2 (en) * 2004-08-02 2012-10-09 Paul Glidden tRNA synthetase fragments
US7998930B2 (en) 2004-11-04 2011-08-16 Hanall Biopharma Co., Ltd. Modified growth hormones
CN103520735B (zh) * 2004-12-22 2015-11-25 Ambrx公司 包含非天然编码的氨基酸的人生长激素配方
MX2007007591A (es) 2004-12-22 2007-07-25 Ambrx Inc Metodos para expresion y purificacion de hormona de crecimiento humano recombinante.
ATE542920T1 (de) 2004-12-22 2012-02-15 Ambrx Inc Modifiziertes menschliches wachstumshormon
US9187546B2 (en) 2005-04-08 2015-11-17 Novo Nordisk A/S Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants
JP2008543855A (ja) 2005-06-13 2008-12-04 ライジェル ファーマシューティカルズ, インコーポレイテッド 変形性骨疾患を処置するための方法および組成物
US8030271B2 (en) * 2005-07-05 2011-10-04 Emisphere Technologies, Inc. Compositions and methods for buccal delivery of human growth hormone
US20100010068A1 (en) * 2005-08-19 2010-01-14 Binhai Ren Liver-directed gene therapy
EP2339014B1 (en) 2005-11-16 2015-05-27 Ambrx, Inc. Methods and compositions comprising non-natural amino acids
US20090023629A1 (en) * 2005-12-23 2009-01-22 Altus Pharmaceuticals Inc. Compositions comprising polycation-complexed protein crystals and methods of treatment using them
DE102006039479A1 (de) 2006-08-23 2008-03-06 Febit Biotech Gmbh Programmierbare Oligonukleotidsynthese
WO2008076819A2 (en) 2006-12-18 2008-06-26 Altus Pharmaceuticals Inc. Human growth hormone formulations
US20080260820A1 (en) * 2007-04-19 2008-10-23 Gilles Borrelly Oral dosage formulations of protease-resistant polypeptides
WO2009014782A2 (en) * 2007-04-27 2009-01-29 Dow Global Technologies Inc. Improved production and in vivo assembly of soluble recombinant icosahedral virus-like particles
CA2684923C (en) 2007-05-02 2015-01-06 Merial Limited Dna plasmids having improved expression and stability
AU2008275911A1 (en) * 2007-07-19 2009-01-22 Arizona Board of Regents, a body corporate acting for and on behalf of Arizona State University Self- anchoring MEMS intrafascicular neural electrode
US7939447B2 (en) * 2007-10-26 2011-05-10 Asm America, Inc. Inhibitors for selective deposition of silicon containing films
MX2010008632A (es) 2008-02-08 2010-08-30 Ambrx Inc Leptina-polipeptidos modificados y sus usos.
PL3050576T3 (pl) 2008-04-29 2021-10-25 Ascendis Pharma Endocrinology Division A/S Pegylowane związki rekombinowanego ludzkiego hormonu wzrostu
CN103255130B (zh) * 2008-04-30 2015-12-23 斯特莱科生物有限公司 高纯度质粒dna制备物及其制备方法
BRPI0914300B8 (pt) * 2008-06-25 2021-05-25 Braasch Biotech Llc vacina para tratamento de obesidade
CN102105163B (zh) 2008-06-25 2014-12-10 布拉施生物技术有限责任公司 氯霉素乙酰转移酶(cat)-缺陷型促生长素抑制素融合蛋白及其用途
US20110046060A1 (en) 2009-08-24 2011-02-24 Amunix Operating, Inc., Coagulation factor IX compositions and methods of making and using same
PL2393828T3 (pl) 2009-02-03 2017-06-30 Amunix Operating Inc. Wydłużone rekombinowane polipeptydy i zawierające je kompozycje
US8703717B2 (en) * 2009-02-03 2014-04-22 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
WO2010096394A2 (en) 2009-02-17 2010-08-26 Redwood Biosciences, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
WO2010094772A1 (en) 2009-02-20 2010-08-26 Febit Holding Gmbh Synthesis of sequence-verified nucleic acids
US9849188B2 (en) 2009-06-08 2017-12-26 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
BR112012014721B1 (pt) 2009-12-15 2022-06-28 Ascendis Pharma Endocrinology Division A/S Composições de hormônio do crescimento, seus métodos de fabricação, recipiente e kit
SG181769A1 (en) 2009-12-21 2012-07-30 Ambrx Inc Modified porcine somatotropin polypeptides and their uses
CN107674121A (zh) 2009-12-21 2018-02-09 Ambrx 公司 经过修饰的牛促生长素多肽和其用途
EP2536749A1 (en) 2010-02-17 2012-12-26 Elona Biotechnologies Methods for preparing human growth hormone
EP2446898A1 (en) 2010-09-30 2012-05-02 Laboratorios Del. Dr. Esteve, S.A. Use of growth hormone to enhance the immune response in immunosuppressed patients
CN103415621A (zh) 2011-01-14 2013-11-27 雷德伍德生物科技股份有限公司 醛标记免疫球蛋白多肽及其使用方法
RU2473556C1 (ru) * 2011-07-14 2013-01-27 Закрытое акционерное общество "ГЕНЕРИУМ" Промышленный способ получения и очистки рекомбинантного гормона роста человека из телец включения
SG10201609345QA (en) 2012-02-07 2017-01-27 Global Bio Therapeutics Inc Compartmentalized method of nucleic acid delivery and compositions and uses thereof
CN119192402A (zh) 2012-02-15 2024-12-27 比奥贝拉蒂治疗公司 因子viii组合物及其制备和使用方法
WO2013123457A1 (en) 2012-02-15 2013-08-22 Biogen Idec Ma Inc. Recombinant factor viii proteins
BR112014023869A2 (pt) 2012-03-26 2017-07-18 Pronutria Inc proteínas nutritivas carregadas e métodos
US9598474B2 (en) 2012-03-26 2017-03-21 Axcella Health, Inc. Nutritive fragments, proteins and methods
JP2015519878A (ja) 2012-03-26 2015-07-16 プロニュートリア・インコーポレイテッドPronutria, Inc. 栄養断片、タンパク質、および方法
US9605040B2 (en) 2012-03-26 2017-03-28 Axcella Health Inc. Nutritive proteins and methods
US9457096B2 (en) 2012-07-06 2016-10-04 Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Concet) Protozoan variant-specific surface proteins (VSP) as carriers for oral drug delivery
ES2733911T3 (es) 2013-08-08 2019-12-03 Global Bio Therapeutics Inc Dispositivo de sujeción para procedimientos minimamente invasivos
WO2015023891A2 (en) 2013-08-14 2015-02-19 Biogen Idec Ma Inc. Factor viii-xten fusions and uses thereof
US9878004B2 (en) 2013-09-25 2018-01-30 Axcella Health Inc. Compositions and formulations for treatment of gastrointestinal tract malabsorption diseases and inflammatory conditions and methods of production and use thereof
IL251906B2 (en) 2014-11-18 2024-04-01 Ascendis Pharma Endocrinology Div A/S Novel polymeric hgh prodrugs
US12016903B2 (en) 2014-11-21 2024-06-25 Ascendis Pharma Endocrinology Division A/S Long-acting growth hormone treatment
CA2994547A1 (en) 2015-08-03 2017-02-09 Bioverativ Therapeutics Inc. Factor ix fusion proteins and methods of making and using same
EP3448885A4 (en) 2016-04-26 2020-01-08 R.P. Scherer Technologies, LLC ANTIBODY CONJUGATES AND METHOD FOR THE PRODUCTION AND USE THEREOF
US12161696B2 (en) 2016-12-02 2024-12-10 Bioverativ Therapeutics Inc. Methods of treating hemophilic arthropathy using chimeric clotting factors
TW202015723A (zh) 2018-05-18 2020-05-01 美商百歐維拉提夫治療公司 治療a型血友病的方法
KR20210024082A (ko) 2018-06-25 2021-03-04 제이씨알 파마 가부시키가이샤 단백질 함유 수성 액제
CN109486847B (zh) * 2018-12-17 2021-03-02 江南大学 基于人工串联启动子的枯草芽孢杆菌高效诱导表达系统
CN113573698A (zh) 2019-03-04 2021-10-29 阿森迪斯药物内分泌股份有限公司 与每日生长激素相比具有优异功效的长效生长激素剂型
CN120958034A (zh) 2023-02-23 2025-11-14 微肽技术有限公司 用于产生和纯化肽的方法和组合物

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3853832A (en) * 1971-04-27 1974-12-10 Harmone Res Foundation Synthetic human pituitary growth hormone and method of producing it
US3853833A (en) * 1971-04-27 1974-12-10 Hormone Res Foundation Synthetic human growth-promoting and lactogenic hormones and method of producing same
GB1521032A (en) * 1974-08-08 1978-08-09 Ici Ltd Biological treatment
US4237224A (en) * 1974-11-04 1980-12-02 Board Of Trustees Of The Leland Stanford Jr. University Process for producing biologically functional molecular chimeras
NL7607683A (nl) * 1976-07-12 1978-01-16 Akzo Nv Werkwijze ter bereiding van nieuwe peptiden en peptide-derivaten en de toepassing hiervan.
US4190495A (en) * 1976-09-27 1980-02-26 Research Corporation Modified microorganisms and method of preparing and using same
US4363877B1 (en) * 1977-09-23 1998-05-26 Univ California Recombinant dna transfer vectors
NZ187300A (en) * 1977-05-27 1982-08-17 Univ California Dna transfer vector and micro-organism modified to contain a nucleotide sequence equivalent to the gene of a higher organism
CH630089A5 (de) * 1977-09-09 1982-05-28 Ciba Geigy Ag Verfahren zur herstellung von siliciummodifizierten imidyl-phthalsaeurederivaten.
JPS5449837A (en) * 1977-09-19 1979-04-19 Kobashi Kogyo Kk Safety apparatus of soil block making machine
ZA782933B (en) * 1977-09-23 1979-05-30 Univ California Purification of nucleotide sequences suitable for expression in bacteria
US4407948A (en) * 1977-09-23 1983-10-04 The Regents Of The University Of California Purification of nucleotide sequences suitable for expression in bacteria
US4321365A (en) * 1977-10-19 1982-03-23 Research Corporation Oligonucleotides useful as adaptors in DNA cloning, adapted DNA molecules, and methods of preparing adaptors and adapted molecules
BR7807288A (pt) * 1977-11-08 1979-06-12 Genentech Inc Processo para sintese de polinucleotidos
DE2862496D1 (en) * 1977-11-08 1989-06-29 Genentech Inc Method for polypeptide production involving expression of a heterologous gene, recombinant microbial cloning vehicle containing said gene and bacterial culture transformed by said cloning vehicle
US4356270A (en) * 1977-11-08 1982-10-26 Genentech, Inc. Recombinant DNA cloning vehicle
SK723878A3 (en) * 1977-11-08 1996-03-06 Genentech Inc Recombinant plasmide method
US4366246A (en) * 1977-11-08 1982-12-28 Genentech, Inc. Method for microbial polypeptide expression
CA1215921A (en) * 1977-11-08 1986-12-30 Arthur D. Riggs Method and means for microbial polypeptide expression
US4652525A (en) * 1978-04-19 1987-03-24 The Regents Of The University Of California Recombinant bacterial plasmids containing the coding sequences of insulin genes
US4565785A (en) * 1978-06-08 1986-01-21 The President And Fellows Of Harvard College Recombinant DNA molecule
US4411994A (en) * 1978-06-08 1983-10-25 The President And Fellows Of Harvard College Protein synthesis
IE48385B1 (en) * 1978-08-11 1984-12-26 Univ California Synthesis of a eucaryotic protein by a microorganism
DE2963374D1 (en) * 1978-10-10 1982-09-09 Univ Leland Stanford Junior Recombinant dna, method for preparing it and production of foreign proteins by unicellular hosts containing it
US4332892A (en) * 1979-01-15 1982-06-01 President And Fellows Of Harvard College Protein synthesis
IE52036B1 (en) * 1979-05-24 1987-05-27 Univ California Non-passageable viruses
ZA802992B (en) * 1979-06-01 1981-10-28 Univ California Human pre-growth hormone
US4898830A (en) * 1979-07-05 1990-02-06 Genentech, Inc. Human growth hormone DNA
US4342832A (en) * 1979-07-05 1982-08-03 Genentech, Inc. Method of constructing a replicable cloning vehicle having quasi-synthetic genes
GR70279B (pl) * 1979-09-12 1982-09-03 Univ California
IL59690A (en) * 1980-03-24 1983-11-30 Yeda Res & Dev Production of bovine growth hormone by microorganisms and modified microorganisms adapted to produce it
GR79124B (pl) * 1982-12-22 1984-10-02 Genentech Inc
US4859600A (en) * 1983-04-25 1989-08-22 Genentech, Inc. Recombinant procaryotic cell containing correctly processed human growth hormone
CA1267615A (en) * 1984-08-27 1990-04-10 Dan Hadary Method for recovering purified growth hormones from genetically engineered microorganisms

Also Published As

Publication number Publication date
WO1981000114A1 (en) 1981-01-22
NO167673C (no) 1991-11-27
EP0022242B1 (en) 1992-11-11
SG56984G (en) 1985-03-08
MY8500764A (en) 1985-12-31
HK87584A (en) 1984-11-16
JPH02478A (ja) 1990-01-05
US4634677A (en) 1987-01-06
KE3446A (en) 1984-10-05
AU574351B2 (en) 1988-07-07
FI850198A7 (fi) 1985-01-16
GB2055382B (en) 1983-10-19
IL69492A (en) 1985-04-30
NZ201312A (en) 1983-09-30
IT1131393B (it) 1986-06-18
BR8008736A (pt) 1981-04-28
FI850198A0 (fi) 1985-01-16
CS254973B2 (en) 1988-02-15
NO167674B (no) 1991-08-19
NO860680L (no) 1981-02-20
DK172132B1 (da) 1997-11-24
EP0022242A3 (en) 1982-04-07
AU2583484A (en) 1984-07-12
DK173503B1 (da) 2001-01-15
AU1838883A (en) 1984-01-05
DK251490A (da) 1990-10-18
ES8105386A1 (es) 1981-05-16
NO810608L (no) 1981-02-20
HK87384A (en) 1984-11-16
PT71487A (en) 1980-08-01
DD210071A5 (de) 1984-05-30
GR69320B (pl) 1982-05-14
US4342832A (en) 1982-08-03
AU5949880A (en) 1981-01-15
ES8205265A1 (es) 1982-06-01
IE50461B1 (en) 1986-04-30
AR244341A1 (es) 1993-10-29
JP2622479B2 (ja) 1997-06-18
FR2518572B1 (fr) 1985-08-23
OA06562A (fr) 1981-07-31
US5795745A (en) 1998-08-18
MY8500765A (en) 1985-12-31
YU163580A (en) 1984-02-29
NL930114I1 (nl) 1993-10-18
KR830003574A (ko) 1983-06-21
JPH0612996B2 (ja) 1994-02-23
DD157343A5 (de) 1982-11-03
DK97381A (da) 1981-03-04
EG14819A (en) 1985-03-31
PH19814A (en) 1986-07-08
KE3451A (en) 1984-10-05
FR2460330B1 (fr) 1985-07-19
CS270884A2 (en) 1987-07-16
NL930114I2 (nl) 1994-10-17
JPH08242881A (ja) 1996-09-24
NZ194043A (en) 1983-09-30
NO167673B (no) 1991-08-19
ZW14180A1 (en) 1980-09-10
FI802030A7 (fi) 1981-01-06
BG41135A3 (bg) 1987-04-15
BE884012A (fr) 1980-12-29
DE3023627A1 (de) 1981-01-22
NO167674C (no) 1991-11-27
US4601980A (en) 1986-07-22
CS250652B2 (en) 1987-05-14
GB2121047A (en) 1983-12-14
CA1164375A (en) 1984-03-27
GB2055382A (en) 1981-03-04
IE801214L (en) 1981-01-05
US4604359A (en) 1986-08-05
US4658021A (en) 1987-04-14
HK87484A (en) 1984-11-16
YU121183A (en) 1984-02-29
PL225376A1 (en) 1983-07-18
CH661939A5 (de) 1987-08-31
AU533697B2 (en) 1983-12-08
CS250655B2 (en) 1987-05-14
IL69492A0 (en) 1983-11-30
DE3050725C2 (pl) 1988-03-10
DD210070A5 (de) 1984-05-30
JPH0648987B2 (ja) 1994-06-29
CA1202256A (en) 1986-03-25
ES499043A0 (es) 1982-06-01
US5424199A (en) 1995-06-13
DK251490D0 (da) 1990-10-18
ATE82324T1 (de) 1992-11-15
KE3450A (en) 1984-10-05
FI850198L (fi) 1985-01-16
ZA803600B (en) 1981-07-29
JPH05268970A (ja) 1993-10-19
IT8023070A0 (it) 1980-06-26
MX172674B (es) 1994-01-06
DE3050722C2 (pl) 1987-09-24
FR2518572A1 (fr) 1983-06-24
IL60312A (en) 1985-04-30
FR2460330A1 (fr) 1981-01-23
IE50462B1 (en) 1986-04-30
RO93374A (ro) 1988-01-30
KR870000701B1 (ko) 1987-04-07
RO93374B (ro) 1988-01-31
ES493149A0 (es) 1981-05-16
IL60312A0 (en) 1980-09-16
GB2121047B (en) 1984-06-06
IE842193L (en) 1981-01-05
JPS5621596A (en) 1981-02-28
IE50460B1 (en) 1986-04-30
MY8500763A (en) 1985-12-31
EP0022242A2 (en) 1981-01-14
YU121283A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
PL149278B1 (en) Method of constructing a replicating vector for cloning
US4898830A (en) Human growth hormone DNA
US5888808A (en) Bacterial polypeptide expression employing tryptophan promoter-operator
EP0035384B1 (en) Deoxynucleotide linkers to be attached to a cloned dna coding sequence
EP0075444A2 (en) Methods and products for facile microbial expression of DNA sequences
EP0067540B1 (en) Microbial gene promoter/operators
US5093251A (en) Cassette method of gene synthesis
US4992367A (en) Enhanced expression of human interleukin-2 in mammalian cells
EP0123928A2 (en) Recombinant DNA coding for a polypeptide displaying milk clotting activity
CA2076320C (en) Process for producing peptide
NZ194786A (en) Nucleotide sequences coding for human proinsulin or human preproinsulin;transformed microorganisms;production of human insulin
EP0159123B1 (en) Vectors for expressing bovine growth hormone derivatives
EP0218651B1 (en) A dna sequence
EP0040466B1 (en) Adaptor molecules for dna and their application to synthesis of gene-derived products
IE53607B1 (en) Expression vectors
JP2525413B2 (ja) L−フェニルアラニン・アンモニアリア−ゼ発現用組換え体プラスミド及び該プラスミドを有する形質転換株
GB2121048A (en) Microbial expression of quasi- synthetic genes
EP0232544A2 (en) Process for producing physiologically active substances
JPH01104180A (ja) 魚類の成長ホルモン遺伝子、該遺伝子の組換え体プラスミド、該組換え体プラスミドを含む徴生物、該徴生物による魚類の成長ホルモンの製法及び該成長ホルモンによる魚類の成育促進法