JP7242791B2 - 3次元メモリデバイスのスルーアレイコンタクト構造 - Google Patents

3次元メモリデバイスのスルーアレイコンタクト構造 Download PDF

Info

Publication number
JP7242791B2
JP7242791B2 JP2021146800A JP2021146800A JP7242791B2 JP 7242791 B2 JP7242791 B2 JP 7242791B2 JP 2021146800 A JP2021146800 A JP 2021146800A JP 2021146800 A JP2021146800 A JP 2021146800A JP 7242791 B2 JP7242791 B2 JP 7242791B2
Authority
JP
Japan
Prior art keywords
region
alternating
structures
dielectric stack
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021146800A
Other languages
English (en)
Other versions
JP2021193742A (ja
Inventor
ジェンユ・ルー
ウェングアン・シー
グアンピン・ウー
シアンジン・ワン
バオヨウ・チェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangtze Memory Technologies Co Ltd
Original Assignee
Yangtze Memory Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710135329.2A external-priority patent/CN106920794B/zh
Priority claimed from CN201710135654.9A external-priority patent/CN107068687B/zh
Application filed by Yangtze Memory Technologies Co Ltd filed Critical Yangtze Memory Technologies Co Ltd
Publication of JP2021193742A publication Critical patent/JP2021193742A/ja
Priority to JP2023035716A priority Critical patent/JP2023076473A/ja
Application granted granted Critical
Publication of JP7242791B2 publication Critical patent/JP7242791B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/30EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region
    • H10B43/35EEPROM devices comprising charge-trapping gate insulators characterised by the memory core region with cell select transistors, e.g. NAND

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

(関連出願の相互参照)
本出願は、その全体が参照によって本明細書に組み込まれる、2017年3月8日に出願された中国特許出願第201710135654.9号および2017年3月8日に出願された中国特許出願第201710135329.2号への優先権を主張する。
本開示の実施形態は、3次元(3D)メモリデバイスおよびその製造方法に関する。
プレーナ型メモリセルは、プロセス技術、回路設計、プログラミングアルゴリズム、および製造プロセスを改善することによって、より小さいサイズにスケーリングされる。しかし、メモリセルの特徴サイズが下限に近づいたために、プレーナプロセスおよび製造技術は、難しく費用がかかるようになっている。結果として、プレーナ型メモリセルについてのメモリ密度は、上限に近づいている。
3Dメモリアーキテクチャは、プレーナ型メモリセルにおける密度限界に対処することができる。3Dメモリアーキテクチャは、メモリアレイと、メモリアレイとの間の信号を制御するための周辺デバイスとを含む。
3Dメモリデバイスのスルーアレイコンタクト(TAC)構造の実施形態およびその製造方法が本明細書で開示される。
少なくとも1つの周辺回路を有する基板と基板上に配設される交代層スタックとを含む3次元(3D)NANDメモリデバイスが開示される。交代層スタックは、複数の誘電体層対を含む交代誘電体スタックを含む第1の領域と、複数の導体/誘電体層対を有する交代導体/誘電体スタックを含む第2の領域と、ワード線方向の交代導体/誘電体層スタックの縁部上の階段構造を含む第3の領域とを含む。メモリデバイスは、第1の領域を第2の領域または第3の領域から横方向に分離するための交代層スタックを通って垂直に延びるバリア構造をさらに有する。各々が交代導体/誘電体スタックを通って垂直に延びる複数のチャネル構造および複数のスリット構造、ならびに各々が交代誘電体スタックを通って垂直に延びる第1の領域中の複数のスルーアレイコンタクトが含まれる。複数のスルーアレイコンタクトのうちの少なくとも1つは、少なくとも1つの周辺回路に電気的に接続される。
バリア構造は、酸化ケイ素および窒化ケイ素であってよい。複数の誘電体層対の各々は、酸化ケイ素層および窒化ケイ素層を含むことができ、複数の導体/誘電体層対の各々は、金属層および酸化ケイ素層を含む。複数の誘電体層対の数は少なくとも32である。複数の導体/誘電体層対の数は少なくとも32である。
複数のスリット構造が、交代導体/誘電体スタックを複数のメモリフィンガへと分割するため、ワード線方向に沿って横方向に延びる。
いくつかの実施形態では、バリア構造は、ワード線方向に沿って横方向に延びる。第1の領域は、バリア構造によって第2の領域から分離されて、2つの隣接するスリット構造の間に挟まれる。
いくつかの実施形態では、バリア構造は、ワード線方向と異なるビット線方向に沿って横方向に延び、第1の領域を第2の領域から横方向に分離する。ビット線方向は、ワード線方向に垂直であってよい。
ビット線方向におけるバリア構造によって囲まれた第1の領域の幅は、2つの隣接するスリット構造間の距離より広くてよい。バリア構造によって囲まれた第1の領域は、ワード線方向に、2つの上部選択性ゲート階段領域の間に挟まれる。各上部選択性ゲート階段領域中の交代導体/誘電体スタックの少なくとも上部2つの層は、階段構造を有する。少なくとも1つの導電層が、上部選択性ゲート階段領域中の階段構造上にあって、第2の領域中の交代導体/誘電体スタックの上方の、ワード線方向にバリア構造によって囲まれる第1の領域の両側にある上部選択ゲートを相互接続するように構成される。いくつかの実施形態では、少なくとも2つの第1の領域は、対応するバリア構造によって囲繞され、各第1の領域は、ビット線方向に沿って平行に延びる。
いくつかの実施形態では、複数の第1の領域を第2の領域から囲むための複数のバリア構造であって、複数の第1の領域がビット線方向に整列される。複数の第1の領域の各々は、ビット線方向に、2つの隣接するスリット構造の間に挟まれる。いくつかの実施形態では、複数の第1の領域が、ビット線方向に少なくとも2列に整列される。ビット線方向に2つの隣接するバリア構造によって挟まれる少なくとも1つのスリット構造が間隙を含み、隣接するメモリフィンガのワード線を相互接続するように構成される。
いくつかの実施形態では、第1の領域は、第3の領域からバリア構造によって分離される。バリア構造の開口は、ワード線方向における交代層スタックの縁部にある。いくつかの実施形態では、ビット線方向における第1の領域の幅は、2つの隣接するスリット構造間の距離より広い。いくつかの他の実施形態では、ビット線方向における第1の領域の幅は、第3の領域中の2つの隣接するスリット構造間の最大距離より狭い。
メモリデバイスは、バリア構造に隣接する複数のダミーチャネル構造をさらに含み、各ダミーチャネル構造は、交代導体/誘電体スタックを通して垂直に延びる。
開示されるものとして、3次元(3D)NANDメモリデバイスを形成するための方法をやはり含む。方法は、少なくとも1つの周辺回路を含む基板を形成するステップと、複数の誘電体層対を含む交代誘電体スタックを基板上に形成するステップであって、複数の誘電体層対の各々が第1の誘電体層および第1の誘電体層と異なる第2の誘電体層を含む、ステップと、交代誘電体スタックの縁部に階段構造を形成するステップと、各々が交代誘電体スタックを通して垂直に延びる複数のチャネル構造および少なくとも1つのバリア構造を形成するステップとを含む。少なくとも1つのバリア構造が、交代誘電体スタックを、少なくともバリア構造によって横方向に囲まれる少なくとも1つの第1の領域と第2の領域とに分離する。方法は、複数のスリットを形成して、スリットを通して、交代誘電体スタックの第2の部分における第1の誘電体層を導体層で置き換えて、複数の導体/誘電体層対を含む交代導体/誘電体スタックを形成するステップと、導電材料をスリットの中に堆積して、複数のスリット構造を形成するステップと、複数のスルーアレイコンタクトを第1の領域中に形成するステップであって、各スルーアレイコンタクトが交代誘電体スタックを通って垂直に延びて、複数のスルーアレイコンタクトのうちの少なくとも1つを少なくとも1つの周辺回路に電気的に接続するステップとをさらに含む。
基板を形成するステップは、ベース基板上に少なくとも1つの周辺回路を形成するステップと、複数のスルーアレイコンタクトのうちの少なくとも1つを少なくとも1つの周辺回路に電気的に接続するために少なくとも1つの相互接続構造を形成するステップと、少なくとも1つの周辺回路の上方にエピタキシャル基板を形成するステップとを含む。
いくつかの実施形態では、方法は、スリットを形成するステップの前に、各スリット構造を対応するドープ領域と接触させるように、複数のドープ領域をエピタキシャル基板の中に形成するステップをさらに含む。
いくつかの実施形態では、方法は、少なくとも1つの周辺回路と電子的に接続するため相互接続構造を露出させるために、少なくとも1つの第1の領域に対応するエピタキシャル基板中の少なくとも1つの開口を形成するステップと、少なくとも1つの開口を誘電体材料で充填するステップとをさらに含む。
いくつかの実施形態では、方法は、酸化ケイ素および窒化ケイ素を使用して少なくとも1つのバリア構造を形成するステップと、酸化ケイ素層および窒化ケイ素層を使用して少なくとも32対の誘電体層対を形成するステップと、金属層および酸化ケイ素層を使用して少なくとも32対の導体/誘電体層対を形成するステップとをさらに含む。
いくつかの実施形態では、方法は、交代導体/誘電体スタックを複数のメモリフィンガへと分割するため、ワード線方向に沿って横方向に延びる複数のスリット構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、第1の領域が2つの平行なバリア構造によって第2の領域から分離されて、2つの隣接するスリット構造の間に挟まれるように、ワード線方向に沿って横方向に延びる2つの平行なバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、第1の領域を第2の領域から横方向に分離するため、ワード線方向とは異なるビット線方向に沿って横方向に延びるバリア構造を形成するステップをさらに含む。いくつかの実施形態では、方法は、ワード線方向に垂直なビット線方向に沿って横方向に延びるバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、ビット線方向におけるバリア構造によって囲まれる第1の領域の幅が、2つの隣接するスリット構造の間の距離よりも広いようにバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、バリア構造に隣接する交代誘電体スタック中に第2の階段構造を形成するステップと、第2の領域中の交代導体/誘電体スタックの上方の、ワード線方向のバリア構造によって囲まれる第1の領域の両側にある上部選択ゲートを相互接続するために、バリア構造に隣接する階段構造上に少なくとも1つの導電層を形成するステップとをさらに含む。
いくつかの実施形態では、方法は、ビット線方向に沿って平行に延びる少なくとも2つの第1の領域を囲むため、少なくとも2つのバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、第2の領域から複数の第1の領域を囲むために複数のバリア構造を形成するステップをさらに含み、複数の第1の領域の各々がビット線方向に2つの隣接するスリット構造の間に挟まれるように、複数の第1の領域がビット線方向に整列される。
いくつかの実施形態では、方法は、複数のバリア構造によって囲まれる複数の第1の領域がビット線方向に少なくとも2列に整列されるように、複数のバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、隣接するメモリフィンガのワード線を相互接続するため、ビット線方向に2つの隣接するバリア構造によって挟まれる、少なくとも1つのスリット構造において間隙を形成するステップをさらに含む。
いくつかの実施形態では、方法は、階段構造中の第1の領域を交代スタックの縁部で分離するためのバリア構造を形成するステップをさらに含み、バリア構造の開口は、ワード線方向の交代層スタックの縁部にある。
いくつかの実施形態では、方法は、ビット線方向の第1の領域の幅が2つの隣接するスリット構造の間の距離よりも広いようにバリア構造を形成するステップをさらに含む。いくつかの実施形態では、方法は、ビット線方向の第1の領域の幅が第3の領域中の2つの隣接するスリット構造の間の最大距離よりも狭いようにバリア構造を形成するステップをさらに含む。
いくつかの実施形態では、方法は、バリア構造に隣接する複数のダミーチャネル構造であって、各ダミーチャネル構造が交代導体/誘電体スタックを通して垂直に延びる、複数のダミーチャネル構造を形成するステップをさらに含む。
本開示の他の態様は、本開示の記載、請求項、および図面に照らせば、当業者であれば理解することができる。
本明細書に組み込まれ、本明細書の一部を形成する添付図面は、本開示の実施形態を図示し、記載とともに、本開示の原理を説明して、当業者が本開示を作って使用することを可能にする役割をさらに果たす。
本開示のいくつかの実施形態に従った、平面図における例示的な3Dメモリデバイスを図示する概略図である。 本開示のいくつかの実施形態に従った、例示的なビット線スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、1つの例示的なワード線スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、別の例示的なワード線スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、別の例示的なワード線スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、別の例示的なワード線スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、1つの例示的な階段構造スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、別の例示的な階段構造スルーアレイコンタクト領域を含む3Dメモリデバイスの領域を図示する概略拡大平面図である。 本開示のいくつかの実施形態に従った、例示的な3Dメモリデバイスを図示する概略断面図である。 本開示のいくつかの実施形態に従った、3Dメモリデバイスを形成するための例示的な方法のフローチャートである。
本開示の実施形態は、添付図面を参照して記載されることになる。
特定の構成および配置が議論されるが、これは、説明の目的のためだけに行われることを理解されたい。本開示の精神および範囲から逸脱することなく、他の構成および配置を使用できることを、当業者なら認めるであろう。本開示が種々の他の用途で採用することもできることが、当業者には明らかであろう。
「1つの実施形態」、「一実施形態」、「例示的な実施形態」、「いくつかの実施形態」などへの本明細書における参照は、記載される実施形態が特定の特徴、構造、または特性を含む場合があるが、すべての実施形態が特定の特徴、構造、または特性を必ずしも含まない場合があることを示すことに留意されたい。その上、そのような語句は、必ずしも同じ実施形態のことをいうわけではない。さらに、特定の特徴、構造、または特性が一実施形態に関して記載されるとき、明示的に記載されるか否かに関係なく、他の実施形態に関するそのような特徴、構造、または特性を達成することは、当業者の知識内となる。
一般的に、用語は、少なくとも部分的に、文脈中の使用法から理解することができる。たとえば、本明細書で使用する「1つまたは複数」という用語は、少なくとも部分的に文脈に応じて、単数の意味で任意の特徴、構造、または特性を記載するために使用することができ、または複数の意味で特徴、構造、または特性の組合せを記載するために使用することができる。同様に、「a」、「an」、または「the」などの用語は、やはり、少なくとも部分的に文脈に応じて、単数の使用法を伝えること、または複数の使用法を伝えることと理解することができる。
本開示における、「~の上(on)」、「~の上方(above)」、および「~の上(over)」の意味は、最も広義で解釈されるべきであると容易に理解するべきであり、そのため、「~の上(on)」は、何かの「直接上(directly on)」を意味するだけでなく、その間に介在する特徴または層がある何かの「上(on)」の意味をやはり含み、その「~の上方(above)」、および「~の上(over)」は、何かの「上方(above)」、または「上(over)」の意味を意味するだけでなく、それらの間に介在する特徴または層なしの、何かの「上方(above)」、または「上(over)」(すなわち、何かの直接上)の意味をやはり含むことができることを容易に理解するべきである。
さらに、「~の下(beneath)」、「~の下方(below)」、「~より低い(lower)」、「~の上方(above)」、「~の上側(upper)」などの空間に関する用語は、本明細書では、図に図示されるときの、1つの要素または特徴の、別の要素または特徴に対する関係を記載するための記述をしやすいように使用する場合がある。空間に関する用語は、図に描かれる方位に加えて、使用または動作におけるデバイスの異なる方位を包含することが意図される。装置は、別様に向けられる(90度または他の方位に回転させられる)場合があり、本明細書で使用される空間に関する用語は、それにしたがって、同様に解釈される場合がある。
本明細書で使用する、「基板」という用語は、その上に後続の材料層が加えられる材料のことをいう。基板自体をパターン形成することができる。基板の上部に加えられる材料をパターン形成することができ、またはパターン形成しないままにすることができる。さらに、基板は、シリコン、ゲルマニウム、ガリウムヒ素、リン化インジウムなどといった、幅広い半導体材料を含むことができる。あるいは、基板は、ガラス、プラスチック、またはサファイアウェハなどといった、電気的に非導電性の材料から作ることができる。
本明細書で使用する、「層」という用語は、厚みを持った領域を含む材料部分のことをいう。層は、下にあるまたは上にある構造の全体の上に延在することができ、下にあるまたは上にある構造の範囲より小さい範囲を有する場合がある。さらに、連続的な構造の厚さより薄い厚さを有する、均質または不均質な連続的な構造の領域であってよい。たとえば、層は、連続的な構造の上面と底面の間の、または上面および底面の、水平面の任意の対の間に配置することができる。層は、水平、垂直、および/または先細面に沿って延在することができる。基板は、層であってよく、その中に1つまたは複数の層を含んでよく、ならびに/またはその上、その上方、および/もしくはその下方に1つまたは複数の層を有してよい。層は複数の層を含むことができる。たとえば、相互接続層が、1つまたは複数の導体およびコンタクト層(その中で、コンタクト、相互接続線、および/またはバイアが形成される)ならびに1つまたは複数の誘電体層を含むことができる。
本明細書で使用する、「公称/名目の(nominal/nominally)」という用語は、製品またはプロセスの設計フェーズの期間に設定される構成要素またはプロセス動作についての特性値またはパラメータの所望の、または目標の値、ならびに所望の値の上および/または下の値の範囲のことをいう。値の範囲は、製造プロセス中のわずかなばらつきまたは許容範囲に起因する場合がある。本明細書で使用する、「約」という用語は、主題の半導体デバイスに関連する特定の技術ノードに基づいて変わる場合がある所与の量の値を示す。特定の技術ノードに基づいて、「約」という用語は、たとえば、値の10~30%(たとえば、値の±10%、±20%、または±30%)内で変わる所与の量の値を示す場合がある。
本明細書で使用する「3Dメモリデバイス」という用語は、メモリ列が基板に対して垂直な方向に延びるように、横方向に配向された基板上の、垂直に配向されたメモリセルトランジスタの列(すなわち、NAND列などの「メモリ列」としての本明細書における領域)を有する半導体デバイスのことをいう。本明細書で使用する、「垂直/垂直に」という用語は、基板の横方向の面に対して名目上直角であることを意味する。
本開示に従った様々な実施形態は、(本明細書では「アレイデバイス」とも呼ばれる)メモリアレイのためのスルーアレイコンタクト(TAC)構造を有する3Dメモリデバイスを提供する。TAC構造は、限られた数のステップで(たとえば、単一のステップまたは2つのステップで)製造され、それによってプロセスの複雑さおよび製造コストを減らすため、メモリと様々な周辺回路および/または周辺デバイス(たとえば、ページバッファ、ラッチ、デコーダなど)との間の接触を可能にする。開示されるTACは、導体層と誘電体層が交代するスタックと比較して、そこにスルーホールを形成するためにより簡単にエッチングできる、交代誘電体層のスタックを通って形成される。
TACは、(たとえば、電源バスおよび金属配線のために)スタックされたアレイデバイスと周辺デバイスの間に、垂直の相互接続を実現し、それによって、金属の段を減らしてダイサイズを小さくすることができる。いくつかの実施形態では、TACは上部導体層および/または底部導体層における様々な線と相互接続することができ、このことは、アレイデバイスと異なる基板上に形成される周辺デバイスとを、順に形成するまたは向かい合わせてハイブリッドボンディングによって結合する3Dメモリアーキテクチャにとって好適である。いくつかの実施形態では、本明細書で開示されるスルーアレイコンタクト構造中のTACは、導体層と誘電体層が交代するスタックと比較して、そこにスルーホールを形成するためにより簡単にエッチングできる、交代誘電体層のスタックを通って形成され、それによってプロセスの複雑さおよび製造コストを減らす。
図1は、本開示のいくつかの実施形態に従った、平面図における例示的な3Dメモリデバイス100の概略図を図示する。3Dメモリデバイス100は、複数のチャネル構造領域(たとえば、下で様々な図に関して詳細に記載される、メモリプレーン、メモリブロック、メモリフィンガなど)を含むことができる一方、1つまたは複数のTAC構造を、2つの隣接するチャネル構造領域間に形成することができる。
図1に示されるように、3Dメモリデバイス100は、その各々が複数のメモリブロック115を含むことができる、4以上のメモリプレーン110を含むことができる。図1に図示される、3Dメモリデバイス100中のメモリプレーン110の配置および各メモリプレーン110中のメモリブロック115の配置は、単に例として使用され、本開示の範囲を制限しないことに留意されたい。
TAC構造は、3Dメモリデバイスのビット線方向(図では「BL」とラベル付けされる)に2つの隣接するメモリブロック115によって挟まれ、3Dメモリデバイスのワード線方向(図では「WL」とラベル付けされる)に沿って延びる1つまたは複数のビット線(BL)TAC領域160と、ワード線方向(WL)に2つの隣接するメモリブロック115によって挟まれ、ビット線方向(BL)に沿って延びる1つまたは複数のワード線(BL)TAC領域160と、各メモリプレーン110の縁部に配置される1つまたは複数の階段構造(SS)TAC領域180とを含むことができる。
いくつかの実施形態では、3Dメモリデバイス100は、3Dメモリデバイス100の縁部に線状に配置される複数のコンタクトパッド120を含むことができる。3Dメモリデバイス100を、任意の好適なデバイスおよび/または駆動電力を提供すること、制御信号を受信すること、応答信号を送信することなどを行うインターフェースに電気的に相互接続するため、相互接続コンタクトを使用することができる。
図2は、3Dメモリデバイスの例示的なビット線(BL)TAC領域160を含む、図1に示された領域130の拡大平面図を描く。図3A~図3Dは、3Dメモリデバイスの様々な例示的なワード線(WL)TAC領域170を含む、図1に示された領域140の拡大平面図を描く。図4Aおよび図4Bは、3Dメモリデバイスの様々な例示的な階段構造(SS)TAC領域180を含む、図1に示された領域150の拡大平面図を描く。
図2を参照すると、本開示のいくつかの実施形態に従った、3Dメモリデバイスの例示的なビット線(BL)TAC領域を含む、図1に示された領域130の拡大平面図が図示される。3Dメモリデバイスの領域200(すなわち、図1に示されるような領域130)は、2つのチャネル構造領域210(たとえば、BL方向に隣接するメモリブロック115)およびビット線(BL)TAC領域233(たとえば、図1に示されるようなBL TAC領域160)を含むことができる。
チャネル構造領域210は、各々が複数のスタックされたメモリセルを含むNAND列の部分である、チャネル構造212のアレイを含むことができる。チャネル構造212は、(下で詳細に記載される図5に関して断面図で図示される)3Dメモリデバイスの基板の面に垂直な方向、および/または「垂直方向」とも呼ばれる、平面図に垂直な方向に沿って配置される複数の導体層と誘電体層の対を通して延びる。
複数の導体/誘電体層対は、本明細書では、「交代導体/誘電体スタック」とも呼ばれる。交代導体/誘電体スタックにおける導体/誘電体層対の数(たとえば、32、64、または96)が、3Dメモリデバイス100の中のメモリセルの数を設定することができる。交代導体/誘電体スタック中の導体層と誘電体層は、垂直方向に交代する。言い換えると、交代導体/誘電体スタックの上部または底部のものを除き、各導体層は両側の2つの誘電体層により接することができ、各誘電体層は両側の2つの導体層により接することができる。
導体層は、限定しないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、多結晶シリコン(ポリシリコン)、ドープしたシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導電材料を含むことができる。誘電体層は、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。いくつかの実施形態では、導体層は、Wなどの金属層を含み、誘電体層は、酸化ケイ素を含む。
いくつかの実施形態では、BL TAC領域233は、BL方向に2つの隣接するチャネル構造領域210によって挟まれてよく、WL方向に延びることができる。TAC領域233は、3DメモリデバイスのBL TAC領域233の縁部と一緒にバリア構造224によって画定することができる。バリア構造224およびBL TAC領域233の縁部によって横方向が囲まれる、複数のTAC226をBL TAC領域233の中に形成することができる。いくつかの実施形態では、BL TAC領域233の中の複数のTAC226は、スイッチ経路指定のため、およびビット線容量を減らすために、交代誘電体スタックを貫通することができる。
交代誘電体スタックは、(下で詳細に記載される図5に関して断面図で図示される)3Dメモリデバイスの基板の面に垂直である垂直方向に沿って配置される複数の誘電体層対を含むことができる。各誘電体層対が、第1の誘電体層および第1の誘電体層と異なる第2の誘電体層を含む。いくつかの実施形態では、第1の誘電体層および第2の誘電体層の各々が、窒化ケイ素および酸化ケイ素を含む。交代誘電体スタック中の第1の誘電体層は、上で記載した交代導体/誘電体スタック中の誘電体層と同じであってよい。いくつかの実施形態では、交代誘電体スタック中の誘電体層対の数は、交代導体/誘電体スタック中の導体/誘電体層の数と同じである。
図2に示されるように、各チャネル構造領域210は、各々がWL方向に延びる1つまたは複数のスリット構造214を含むことができる。少なくともいくつかのスリット構造214は、チャネル構造領域210中のチャネル構造212のアレイにとって、共通のソースコンタクトとして機能することができる。スリット構造214は、3Dメモリデバイスを複数のメモリフィンガ242および/またはダミーメモリフィンガ246へと分割することもできる。上部選択ゲートカット255を各メモリフィンガ242の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。上部選択ゲートカット255は、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。
いくつかの実施形態では、ダミーチャネル構造222は、チャネル構造領域210の部分の中、たとえば、BL TAC領域233に隣接するダミーメモリフィンガ246の中にBL方向に形成される。ダミーチャネル構造222は、メモリアレイ構造のための機械的な支持を提供することができる。ダミーメモリフィンガ246はメモリ機能を有さず、したがって、ダミーメモリフィンガ246の中に、ビット線および関連する相互接続線は形成されない。
図3Aを参照すると、本開示のいくつかの実施形態に従った、3Dメモリデバイスの例示的なワード線(WL)TAC領域を含む、図1に示された領域140の拡大平面図が図示される。3Dメモリデバイスの領域300A(すなわち、図1に示される領域140)は、チャネル構造領域320、ワード線(WL)TAC領域372(たとえば、図1に示されるWL TAC領域170)、および上部選択性ゲート(TSG)階段領域330を含むことができる。
図3Aに示されるように、チャネル構造領域320は、各々が複数のスタックしたメモリセルを含む、チャネル構造312のアレイを含むことができる。TSG階段領域330は、平面図において、チャネル構造領域320の側部で、WL TAC領域372に隣接して配設することができる。すなわち、WL TAC領域372は、2つのTSG階段領域330によってWL方向に挟まれる。WL TAC領域372は、バリア構造324によって画定することができる。バリア構造324によって横方向が囲まれる、スイッチ経路指定のため、およびワード線容量を減らすために使用される複数のTAC326をWL TAC領域372の中に形成することができる。
いくつかの実施形態では、ダミーチャネル構造322がWL TAC領域372の外側に形成されて、メモリアレイ構造のための機械的な支持を提供する。ダミーチャネル構造322が、WL TAC領域372以外の任意の領域、たとえば、TSG階段領域330の中に、TSG階段領域330に隣接するチャネル構造領域320の縁部に沿って形成できることが理解される。チャネル構造312およびダミーチャネル構造322は交代導体/誘電体スタックを貫通する一方、TAC326は交代誘電体スタックを貫通することに留意されたい。
いくつかの実施形態では、各々がWL方向に延びる複数のスリット構造314は、3Dメモリデバイスを複数のメモリフィンガ342、344へと分割することができる。少なくともいくつかのスリット構造314は、チャネル構造領域320中のチャネル構造312のアレイにとって、共通のソースコンタクトとして機能することができる。スリット構造314の側壁は、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。スリット構造314の充填材料は、限定しないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、多結晶シリコン(ポリシリコン)、ドープしたシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導電材料を含むことができる。
上部選択ゲートカット355を各メモリフィンガ342、344の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。上部選択ゲートカット355は、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。
BL方向におけるWL TAC領域372の幅は、各メモリフィンガ342または344の幅より広くてよいことに留意されたい。すなわち、BL方向において、バリア構造324は、少なくとも2つの隣接するスリット構造314を横切ることができる。そのため、メモリフィンガ344の中のチャネル構造領域320の中の導電層を、バリア構造324によって完全にブロックすることができる。したがって、WL TAC領域372の両側のメモリフィンガ344の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートは、交代導体/誘電体スタック中の上部導体層によって相互接続されない。
WL TAC領域372の両側のメモリフィンガ344の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートを相互接続するために、TSG階段領域330は、WL TAC領域372によって分離されるメモリフィンガ344の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートと電気的な相互接続を行うための、階段構造状に(たとえば、上部の2から4段内に)形成される1つまたは複数の導電線(図3Aに図示せず)を含むことができる。
たとえば、WL TAC領域372によって切り離されるスリット構造314は、TSG階段領域330へと延びることができる。交代導体/誘電体スタック中の上部の2つの導体層が、片側階段構造を有することができる。コンタクトを有する1つまたは複数の相互接続層を片側階段構造上に形成して、チャネル構造領域320の中のチャネル構造312の上部選択性ゲートと、WL TAC領域372によって分離されるメモリフィンガ344の中のものとの間に、電気的な相互接続を実現することができる。
したがって、WL TAC領域372の両側の上部選択性ゲートを相互接続するTSG階段領域330を導入することによって、WL TAC領域372がBL方向に沿って延び、所望の数のTAC326を囲むのに十分なサイズを設けることができる。さらに、図1に示される各メモリプレーン110は、WL方向に配された複数のWL TAC領域372を含むことができる。すなわち、複数のメモリブロック115を、各メモリプレーン110の中でWL方向に配することができる。
図3Bを参照すると、本開示のいくつかの代替実施形態に従った、3Dメモリデバイスの別の例示的なワード線(WL)TAC領域を含む、図1に示された領域140の拡大平面図が図示される。3Dメモリデバイスの領域300B(すなわち、図1に示される領域140)は、チャネル構造領域320、ワード線(WL)TAC領域372を囲むダミーチャネル領域350(たとえば、図1に示されるWL TAC領域170)を含むことができる。
図3Bに示されるように、チャネル構造領域320は、各々が複数のスタックしたメモリセルを含む、チャネル構造312のアレイを含むことができる。ダミーチャネル領域350は、2つのチャネル構造領域320によってWL方向に挟まれる。WL TAC領域372は、ダミーチャネル領域350によって囲まれる。WL TAC領域372は、バリア構造324によって画定することができる。複数のTAC326を、バリア構造324によって横方向に囲まれるWL TAC領域372の中に形成することができる。
いくつかの実施形態では、ダミーチャネル構造322がWL TAC領域372の外側に形成されて、メモリアレイ構造のための機械的な支持を提供する。ダミーチャネル構造322が、WL TAC領域372以外の任意の領域、たとえば、ダミーチャネル領域350の中に、ダミーチャネル領域350に隣接するチャネル構造領域320の縁部に沿って形成できることが理解される。チャネル構造312およびダミーチャネル構造322は交代導体/誘電体スタックを貫通する一方、TAC326は交代誘電体スタックを貫通することに留意されたい。
いくつかの実施形態では、各々がWL方向に延びる複数のスリット構造314は、3Dメモリデバイスを複数のメモリフィンガ342、344へと分割することができる。上部選択ゲートカット355を各メモリフィンガ342、344の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。
BL方向におけるWL TAC領域372の幅は、各メモリフィンガ342または344の幅より広くてよいことに留意されたい。すなわち、BL方向において、バリア構造324は、少なくとも2つの隣接するスリット構造314を横切ることができる。そのため、メモリフィンガ344の中のチャネル構造領域320の中の導電層を、バリア構造324によって完全にブロックすることができる。したがって、WL TAC領域372の両側のメモリフィンガ344の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートは、交代導体/誘電体スタック中の上部導体層によって相互接続されない。
そのため、WL TAC領域372のそのような設計に関連するいくつかの実施形態では、1つのメモリプレーン110が、ただ2つのメモリブロック115をWL方向に含むことができる。WL TAC領域372は、2つのメモリブロック(すなわち、図3Bに示されるチャネル構造領域320)によって挟まれ、一方、WL方向のチャネル構造領域320の外側は、階段構造を有することができる(図3Bに図示せず)。こうして、WL TAC領域372の両側のメモリフィンガ344の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートは、3D NANDデバイスのメモリプレーン110の縁部上の階段構造を使用することによって相互接続することができる。そのような設計は、ジグザグのワード線デコーダ(X-DEC)の経路指定に好適な場合がある。
図3Cを参照すると、本開示のいくつかの代替実施形態に従った、3Dメモリデバイスの他の例示的なワード線(WL)TAC領域を含む、図1に示された領域140の拡大平面図が図示される。3Dメモリデバイスの領域300C(すなわち、図1に示される領域140)は、チャネル構造領域320、複数のワード線(WL)TAC領域376を囲むダミーチャネル領域350を含むことができる。
図3Cに示されるように、いくつかの実施形態では、各々がWL方向に延びる複数のスリット構造314は、3Dメモリデバイスを複数のメモリフィンガ342へと分割することができる。上部選択ゲートカット355を各メモリフィンガ342の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。
チャネル構造領域320は、各々が複数のスタックしたメモリセルを含む、チャネル構造312のアレイを含むことができる。ダミーチャネル領域350は、2つのチャネル構造領域320によってWL方向に挟まれる。BL方向に沿った列に配置される複数のWL TAC領域376は、ダミーチャネル領域350によって囲まれる。各WL TAC領域376は、バリア構造324によって画定することができる。複数のTAC326を、バリア構造324によって横方向に囲まれる各WL TAC領域376の中に形成することができる。
いくつかの実施形態では、BL方向における各WL TAC領域376の幅は、各メモリフィンガ342の幅より狭くてよい。すなわち、各WL TAC領域376のバリア構造324は、2つの隣接するスリット構造314の間に配置することができる。各WL TAC領域376のバリア構造324が、ダミーチャネル領域350中の導電層を完全にはブロックしないために、WL TAC領域376の両側の各メモリフィンガ342の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートは、ダミーチャネル領域350の中の交代導体/誘電体スタック中の上部導体層によって相互接続することができる。
いくつかの実施形態では、ダミーチャネル構造322がWL TAC領域376の外側に形成されて、メモリアレイ構造のための機械的な支持を提供する。ダミーチャネル構造322が、WL TAC領域376以外の任意の領域、たとえば、ダミーチャネル領域350の中に、ダミーチャネル領域350に隣接するチャネル構造領域320の縁部に沿って形成できることが理解される。チャネル構造312およびダミーチャネル構造322は交代導体/誘電体スタックを貫通する一方、TAC326は交代誘電体スタックを貫通することに留意されたい。
したがって、各メモリフィンガ342内に1つのWL TAC領域376を配設することによって、交代導体/誘電体スタックの中の上部導体層は、WL TAC領域376によってブロックされない場合がある。こうして、WL TAC領域376の両側の各メモリフィンガ342の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートをさらに相互接続するために、追加の構造は必要でない。したがって、複数のWL TAC領域376は、WL方向に沿って、各メモリフィンガ342の中に配置することができる。すなわち、メモリ110は、WL方向に複数のメモリブロック115を含むことができる。
図3Dを参照すると、本開示のいくつかの代替実施形態に従った、3Dメモリデバイスの他の例示的なワード線(WL)TAC領域を含む、図1に示された領域140の拡大平面図が図示される。3Dメモリデバイスの領域300D(すなわち、図1に示される領域140)は、チャネル構造領域320、複数のワード線(WL)TAC領域376を囲むダミーチャネル領域350を含むことができる。
図3Dに示されるように、いくつかの実施形態では、各々がWL方向に延びる複数のスリット構造314、316は、3Dメモリデバイスを複数のメモリフィンガ342へと分割することができる。いくつかの実施形態では、スリット構造314は、2つ以上のチャネル構造領域320および1つまたは複数のダミーチャネル領域350をずっと通ってWL方向に延びることができる。図3Dに示されるように、少なくとも1つのスリット構造316が、ダミーチャネル領域350の中に間隙318を含むことができる。上部選択ゲートカット355を各メモリフィンガ342の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。
チャネル構造領域320は、各々が複数のスタックしたメモリセルを含む、チャネル構造312のアレイを含むことができる。ダミーチャネル領域350は、2つのチャネル構造領域320によってWL方向に挟まれる。BL方向に沿った列に配置される複数のWL TAC領域376は、ダミーチャネル領域350によって囲まれる。各WL TAC領域376は、バリア構造324によって画定することができる。複数のTAC326を、バリア構造324によって横方向に囲まれる各WL TAC領域376の中に形成することができる。
いくつかの実施形態では、BL方向における各WL TAC領域376の幅は、各メモリフィンガ342の幅より狭くてよい。すなわち、各WL TAC領域376のバリア構造324は、2つの隣接するスリット構造314の間に配置することができる。各WL TAC領域376のバリア構造324が、ダミーチャネル領域350中の導電層を完全にはブロックしないために、WL TAC領域376の両側の各メモリフィンガ342の中の、2つのチャネル構造領域320の間のチャネル構造312の上部選択性ゲートは、ダミーチャネル領域350の中の交代導体/誘電体スタック中の上部導体層によって相互接続することができる。
いくつかの実施形態では、ダミーチャネル構造322がWL TAC領域376の外側に形成されて、メモリアレイ構造のための機械的な支持を提供する。ダミーチャネル構造322が、WL TAC領域376以外の任意の領域、たとえば、ダミーチャネル領域350の中に、ダミーチャネル領域350に隣接するチャネル構造領域320の縁部に沿って形成できることが理解される。チャネル構造312およびダミーチャネル構造322は交代導体/誘電体スタックを貫通する一方、TAC326は交代誘電体スタックを貫通することに留意されたい。
いくつかの実施形態では、1つまたは複数のスリット構造316は、ダミーチャネル領域350の中に間隙318を含むことができる。隣接するメモリフィンガ342の中のワード線は、間隙318を通過する導電線を使用することによって相互接続することができる。たとえば、図3Dに示されるように、メモリブロック115の縁部にあるスリット構造314は、2つ以上のチャネル構造領域320および1つまたは複数のダミーチャネル領域350をずっと通ってWL方向に延びることができ、一方、各メモリブロック115の内側のスリット構造316は、それぞれ、対応するダミーチャネル領域350の中に1つまたは複数の間隙318を含むことができる。そのため、同じメモリブロック115中のすべての上部選択ゲートおよび/またはワード線は、追加の構造なしに相互接続することができる。
したがって、メモリフィンガ342内にWL TAC領域376を配設することおよびスリット構造316の中に間隙318を設けることによって、交代導体/誘電体スタックの中の上部導体層は、WL TAC領域376によってブロックされない場合があり、隣接するメモリフィンガ342の中のワード線を相互接続することができる。したがって、複数のWL TAC領域376は、WL方向に沿って、各メモリフィンガ342の中に配置することができる。すなわち、メモリ110は、WL方向に複数のメモリブロック115を含むことができる。そのような構造は、高い集積レベルと、容易に製造できる簡単なレイアウトを有することができる。
図4Aを参照すると、本開示のいくつかの実施形態に従った、3Dメモリデバイスの例示的な階段構造(SS)TAC領域を含む、図1に示された領域150の拡大平面図が図示される。3Dメモリデバイスの領域400A(すなわち、図1に示される領域150)は、チャネル構造領域420、階段領域410、および階段構造(SS)TAC領域482を含むことができる。
チャネル構造領域420は、各々が複数のスタックしたメモリセルを含む、チャネル構造412のアレイを含むことができる。階段領域410は、階段構造および階段構造上に形成されるワード線コンタクト432のアレイを含むことができる。いくつかの実施形態では、SS TAC領域482は階段領域410の中にある。SS TAC領域482は、バリア構造424だけによって、または3Dメモリデバイスの階段領域410の縁部とともに画定することができる。複数のTAC426を、少なくともバリア構造424によって横方向に囲まれるSS TAC領域482の中に形成することができる。
図4Aに示されるように、いくつかの実施形態では、各々がWL方向に延びる複数のスリット構造414、416は、3Dメモリデバイスを複数のメモリフィンガ442、444へと分割することができる。いくつかの実施形態では、スリット構造414は、階段領域410の少なくとも一部の中へ、WL方向に延びることができる。少なくともいくつかのスリット構造416は、階段領域410の中に1つまたは複数の間隙418を含むことができる。上部選択ゲートカット455を各メモリフィンガ442、444の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。
いくつかの実施形態では、1つまたは複数のスリット構造416は、階段領域410の中に間隙418を含むことができる。隣接するメモリフィンガ442の中のワード線コンタクト432は、間隙418を通過する導電線を使用することによって相互接続することができる。たとえば、図4Aに示されるように、メモリブロック115の縁部にあるスリット構造414は、チャネル構造領域420および階段領域410をずっと通ってWL方向に延びることができ、一方、各メモリブロック115の内側のスリット構造416は、階段領域410の中に1つまたは複数の間隙418を含むことができる。そのため、同じメモリブロック115中のすべてのワード線コンタクト432は、追加の構造なしに相互接続することができる。
BL方向におけるSS TAC領域482の幅は、各メモリフィンガ442、444の幅より広くてよいことに留意されたい。すなわち、BL方向において、バリア構造424は、少なくとも2つの隣接するスリット構造414を横切ることができる。SS TAC領域482は、バリア構造424によって完全にブロックされるメモリフィンガ444に対応する階段領域410の一部の区域を占有するために、SS TAC領域482の中の階段構造は、メモリフィンガ444のためにワード線コンタクト432を形成するのではなく、むしろTAC426を形成するために使用される。したがって、メモリプレーン110の他の側のメモリフィンガ444に対応する階段構造(図4Bに図示せず)は、SS TAC領域482ではなく、むしろワード線コンタクト432を形成するために使用することができる。
したがって、SS TAC領域482のそのような設計に関連するいくつかの実施形態では、メモリプレーン110の両側のSS TAC領域482は、WL方向に重複しない。すなわち、1つのメモリフィンガは、最大で、1つのSS TAC領域482に対応する。そのような設計は、ジグザグのワード線デコーダ(X-DEC)の経路指定に好適な場合がある。さらに、SS TAC領域482の設計に関連するいくつかの実施形態では、図3Bに関して上に記載されるWL TAC領域372と同様に、同じ理由に起因して、SS TAC領域482とWL TAC領域372は、WL方向に重複しない。すなわち、1つのメモリフィンガは、最大で、1つのSS TAC領域482または1つのWL TAC領域372のいずれかに対応する。
図4Bを参照すると、本開示のいくつかの代替実施形態に従った、3Dメモリデバイスの他の例示的な階段構造(SS)TAC領域を含む、図1に示された領域150の拡大平面図が図示される。3Dメモリデバイスの領域400B(すなわち、図1に示される領域150)は、チャネル構造領域420、階段領域410、および複数の階段構造(SS)TAC領域484を含むことができる。
チャネル構造領域420は、各々が複数のスタックしたメモリセルを含む、チャネル構造412のアレイを含むことができる。階段領域410は、階段構造および階段構造上に形成されるワード線コンタクト432のアレイを含むことができる。いくつかの実施形態では、SS TAC領域484は階段領域410の中にある。各SS TAC領域484は、バリア構造424だけによって、または3Dメモリデバイスの階段領域410の縁部とともに画定することができる。複数のTAC426を、少なくともバリア構造424によって横方向に囲まれるSS TAC領域482の中に形成することができる。
図4Bに示されるように、いくつかの実施形態では、チャネル構造領域420の中で各々がWL方向に延びる複数のスリット構造414は、3Dメモリデバイスを複数のメモリフィンガ442へと分割することができる。上部選択ゲートカット455を各メモリフィンガ442の中間に配設して、メモリフィンガの上部選択ゲート(TSG)を2つの部分へと分割することができる。いくつかの実施形態では、スリット構造414は、階段領域410の少なくとも一部の中へ、WL方向に延びることができる。いくつかの実施形態では、階段領域410は、WL方向にスリット構造414と整列されない複数のスリット構造416をさらに含むことができる。すなわち、階段領域410中の隣接するスリット構造間の距離は不均一であってよい。いくつかの隣接するスリット構造対は、他の隣接するスリット構造対間の第2の距離よりも長い第1の距離を有することができる。
いくつかの実施形態では、各SS TAC領域484は、第1の距離を有する隣接するスリット構造対間に配置することができる。すなわち、BL方向におけるSS TAC領域484の幅は、第1の距離より狭くてよい。そのため、SS TAC領域484によって占有される空間以外に、第1の距離を有するそのような隣接するスリット構造対間の階段領域410が、ワード線コンタクト432を形成するための余分な空間を有することができる。
図5を参照すると、本開示のいくつかの実施形態に従った、例示的な3Dメモリデバイス500の概略断面図が図示される。3Dメモリデバイス500は、非モノリシック3Dメモリデバイスの部分であってよく、その構成要素(たとえば、周辺デバイスおよびアレイデバイス)は、異なる基板上に別個に形成することができる。たとえば、3Dメモリデバイス500は、図1に関して上で記載した、領域130、領域140、または領域150であってよい。
図5に示されるように、3Dメモリデバイス500は、基板570および基板570の上のアレイデバイスを含むことができる。3Dメモリデバイス500の中の構成要素の空間的な関係をさらに説明するために、X軸およびY軸が図5に加えられていることに留意されたい。基板570は、X方向(横方向、たとえば、WL方向またはBL方向)に横方向に延びる、2つの横面(たとえば、上面572および底面574)を含む。
本明細書で使用する、1つの構成要素(たとえば、層またはデバイス)が、半導体デバイス(たとえば、3Dメモリデバイス500)の別の構成要素(たとえば、層またはデバイス)の上(on)、上方(above)、または下方(below)にあるかは、基板がY方向における半導体デバイスの最も低い面に位置するときに、Y方向(垂直方向)における半導体デバイスの基板(たとえば、基板570)に対して決定される。図5に示される3Dメモリデバイス500の断面図は、BL方向およびY方向の面に沿っている。空間の関係を記載するための同じ概念が、本開示を通して適用される。
基板570は、アレイデバイスを支持するために使用することができ、回路基板530およびエピタキシャル基板540を含むことができる。回路基板530は、ベース基板510およびベース基板510の上方に形成される1つまたは複数の周辺回路(図5に図示せず)を含むことができる。ベース基板510は、シリコン(たとえば、単結晶シリコン、多結晶シリコン)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、またはそれらの任意の好適な組合せを含むことができる任意の好適な半導体材料を含むことができる。いくつかの実施形態では、ベース基板510は、研磨、湿式/乾式エッチング、化学機械研磨(CMP)、またはそれらの任意の組合せによって薄くされた、薄型基板(たとえば、半導体層)である。
回路基板530に作成される1つまたは複数の周辺回路は、ページバッファ、デコーダ、およびラッチなど、3Dメモリデバイス500の動作を容易にするために使用される、任意の好適なデジタル、アナログ、および/またはミックス信号周辺回路を含むことができる(図5に図示せず)。いくつかの実施形態では、回路基板530は、基板570の上方のアレイデバイスに1つまたは複数の周辺回路を電気的に接続するための、1つまたは複数の相互接続構造532をさらに含むことができる。1つまたは複数の相互接続構造532は、限定しないが、コンタクト、単層/多層バイア、導電層、プラグなどを含む、任意の好適な導電構造を含むことができる。
エピタキシャル基板540は、限定しないが、化学気相成長(CVD)、物理気相成長(PVD)、原子層堆積(ALD)、またはそれらの任意の組合せを含む堆積プロセスを使用することによって回路基板530上に形成することができる。エピタキシャル基板540は、たとえば、単結晶単層基板、多結晶シリコン(ポリシリコン)単層基板、ポリシリコンおよび金属多層基板などといった、単層基板または多層基板であってよい。さらに、アレイデバイスの1つまたは複数のスルーアレイコンタクト(TAC)構造に対応する、1つまたは複数の開口542をエピタキシャル基板540の領域に形成することができる。複数のTAC526は、回路基板530の中の1つまたは複数の相互接続構造532と電子的に接続するため、1つまたは複数の開口542を通過することができる。
いくつかの実施形態では、3Dメモリデバイス500は、メモリセルが、基板570の上方でY方向に延びる、チャネル構造のアレイの形で設けられるNAND型フラッシュメモリデバイスである(図5に図示せず)。アレイデバイスは、複数の導体層580Aと誘電体層580Bの対を含む、交代導体/誘電体スタック580を通って延びる複数のチャネル構造を含むことができる。交代導体/誘電体スタック580における導体/誘電体層対の数(たとえば、32、64、または96)が、3Dメモリデバイス500の中のメモリセルの数を設定することができる。
交代導体/誘電体スタック580中の導体層580Aと誘電体層580Bは、Y方向に交代する。言い換えると、交代導体/誘電体スタック580の上部または底部のものを除き、各導体層580Aは両側で2つの誘電体層580Bが接することができ、各誘電体層580Bは両側で2つの導体層580Aが接することができる。導体層580Aは、各々が同じ厚さを有すること、または異なる厚さを有することができる。同様に誘電体層580Bは、同じ厚さを有すること、または異なる厚さを有することができる。導体層580Aは、限定しないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、多結晶シリコン(ポリシリコン)、ドープしたシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導体材料を含むことができる。誘電体層580Bは、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。いくつかの実施形態では、導体層580Aは、Wなどの金属層を含み、誘電体層580Bは、酸化ケイ素を含む。
いくつかの実施形態では、アレイデバイスは、スリット構造514をさらに含む。各スリット構造514は、交代導体/誘電体スタック580を通してY方向に延びることができる。スリット構造514は、交代導体/誘電体スタック580を複数のブロックに分離するため、横方向に(すなわち、基板に平行に)延びることもできる。スリット構造514は、限定しないが、W、Co、Cu、Al、ケイ素化合物、またはそれらの任意の組合せを含む導体材料で充填されたスリットを含むことができる。スリット構造514は、交代導体/誘電体スタック580の中で囲む導体層580Aから充填された導体材料を電気的に絶縁するため、充填された導体材料と交代導体/誘電体スタック580の間に任意の好適な誘電体材料を有する誘電体層をさらに含むことができる。結果として、スリット構造514は、3Dメモリデバイス500を複数のメモリフィンガへと分離することができる(たとえば、平面図で図2、図3A~図3D、図4A~図4Bに示されるように)。
いくつかの実施形態では、スリット構造514は、同じアレイの共通ソースを共有する同じメモリフィンガ中のチャネル構造にとってのソースコンタクトとして機能する。スリット構造514は、したがって、複数のチャネル構造の「共通のソースコンタクト」と呼ぶことができる。いくつかの実施形態では、エピタキシャル基板540は、(所望のドープレベルのp型またはn型ドーパントを含む)ドープ領域544を含み、スリット構造514の下縁部が、エピタキシャル基板540のドープ領域544と接触する。
いくつかの実施形態では、交代誘電体スタック560は、エピタキシャル基板540上でバリア構造516によって横方向に囲まれる領域中に配置することができる。交代誘電体スタック560は、複数の誘電体層対を含むことができる。たとえば、交代誘電体スタック560は、第1の誘電体層560Aと、第1の誘電体層560Aとは異なる第2の誘電体層560Bとの交代スタックによって形成される。いくつかの実施形態では、第1の誘電体層560Aが窒化ケイ素を含み、第2の誘電体層560Bが酸化ケイ素を含む。交代誘電体スタック560中の第2の誘電体層560Bは、交代導体/誘電体スタック580中の誘電体層580Bと同じであってよい。いくつかの実施形態では、交代誘電体スタック560中の誘電体層対の数は、交代導体/誘電体スタック580中の導体/誘電体層対の数と同じである。
いくつかの実施形態では、Y方向に延びるバリア構造516は、交代導体/誘電体スタック580および交代誘電体スタック560を横方向に分離する。すなわち、バリア構造516は、交代導体/誘電体スタック580と交代誘電体スタック560の間の境界となってよい。交代誘電体スタック560は、少なくともバリア構造516によって横方向に囲むことができる。いくつかの実施形態では、バリア構造516は、交代誘電体スタック560を完全に囲むため、平面図において閉じた形状(たとえば、矩形、正方形、円など)である。たとえば、図3A~図3Dに示されるように、バリア構造324は、WL TAC領域372、376中で交代誘電体スタックを完全に囲むため、平面図において矩形形状である。いくつかの実施形態では、バリア構造516は、平面図では閉じた形状ではないが、アレイデバイスの1つまたは複数の縁部とともに、交代誘電体スタック560を囲むことができる。たとえば、図4Aおよび図4Bに示されるように、3Dメモリデバイスの縁部とともにバリア構造424が、SS TAC領域482、484中で交代誘電体スタックを囲む。
図5に示されるように、3Dメモリデバイス500は、各々が交代誘電体スタック560を通ってY方向に延びる複数のTAC526をさらに含む。TAC526は、複数の誘電体層対を含む、少なくともバリア構造516が横方向を囲まれる区域の内側だけに形成することができる。すなわち、TAC526は、誘電体層(たとえば、第1の誘電体層560Sおよび第2の誘電体層560B)を通って垂直に延びることができるが、いずれかの導体層(たとえば、導体層580A)は通らない。各TAC526は、交代誘電体スタック560の厚さ全体(たとえば、Y方向にすべての誘電体層対)を通って延びることができる。いくつかの実施形態では、TAC526は、開口542を通ってエピタキシャル基板540をさらに貫通し、相互接続構造532と電気的に接触する。
TAC526は、短くした相互接続経路で、電源バスの部分など、3Dメモリデバイス500との間で電気信号を搬送することができる。いくつかの実施形態では、TAC526は、1つまたは複数の相互接続構造532を通して、アレイデバイスと周辺デバイス(図5に図示せず)の間の電気的接続を実現することができる。TAC526は、交代誘電体スタック560に対する機械的な支持を提供することもできる。各TAC526は、交代誘電体スタック560を通る垂直開口を含むことができ、垂直開口は、限定しないが、W、Co、Cu、Al、ドープしたシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導体材料で充填される。いくつかの実施形態では、TAC526が(誘電体層によって囲む)交代誘電体スタック560の中に形成されるため、TAC526と交代誘電体スタック560の間の追加の誘電体層は絶縁目的では必要ない。
図6を参照すると、本開示のいくつかの実施形態に従った、3Dメモリデバイスを形成するための例示的な方法600の概略フローチャートが図示される。方法600に示される動作は網羅的でなく、説明される動作のいずれかの前、後、または間に、同様に他の動作を実施できることを理解されたい。
図6を参照すると、方法600は、動作602で開始し、動作602において、基板が形成される。いくつかの実施形態では、基板を形成するステップは、ベース基板を形成するステップと、基板上に少なくとも1つの周辺回路を形成するステップと、少なくとも1つの周辺回路と電子的に接触する少なくとも1つの相互接続構造を形成するステップと、少なくとも1つの周辺回路上にエピタキシャル基板を形成するステップとを含むことができる。
ベース基板は、シリコン(たとえば、単結晶シリコン、多結晶シリコン)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、またはそれらの任意の好適な組合せを含むことができる任意の好適な半導体材料を使用することによって形成することができる。いくつかの実施形態では、ベース基板を形成するステップは、研磨、湿式/乾式エッチング、化学機械研磨(CMP)、またはそれらの任意の組合せを含む薄化プロセスを含む。
1つまたは複数の周辺回路は、限定しないが、ページバッファ、デコーダ、およびラッチを含む、任意の好適なデジタル、アナログ、および/またはミックス信号周辺回路を含むことができる。いくつかの実施形態では、1つまたは複数の相互接続構造は、限定しないが、コンタクト、単層/多層バイア、導電層、プラグなどを含む、任意の好適な導電構造を含むことができる。
エピタキシャル基板は、限定しないが、化学気相成長(CVD)、物理気相成長(PVD)、原子層堆積(ALD)、またはそれらの任意の組合せを含む堆積プロセスを使用することによって1つまたは複数の周辺回路の上方に形成することができる。エピタキシャル基板は、たとえば、単結晶単層基板、多結晶シリコン(ポリシリコン)単層基板、ポリシリコンおよび金属多層基板などといった、単層基板または多層基板であってよい。
いくつかの実施形態では、エピタキシャル基板を形成するステップは、1つまたは複数の相互接続構造の少なくとも部分が1つまたは複数の開口によって露出されるように、1つまたは複数の開口を形成するステップをさらに含む。1つまたは複数の開口は、後続のプロセスで形成される、1つまたは複数のスルーアレイコンタクトTAC構造(たとえば、図2に示されるようなワード線(WL)TAC構造、図3A~図3Dに示されるようなビット線(BL)TAC構造、図4A~図4Bに示されるような階段構造(SS)TAC構造、)に対応することができる。1つまたは複数の開口は、誘電体材料で充填することができる。
方法600は動作604に進み、動作604において、交代誘電体スタックが基板上に形成される。いくつかの実施形態では、交代誘電体スタックを形成するために、複数の第1の誘電体層と第2の誘電体層の対を、基板上に形成することができる。いくつかの実施形態では、各誘電体層対は、窒化ケイ素の層および酸化ケイ素の層を含む。交代誘電体スタックは、限定しないが、CVD、PVD、ALD、またはそれらの任意の組合せを含む、1つまたは複数の薄膜堆積プロセスによって形成することができる。
方法600は動作606に進み、動作606において、交代誘電体スタックの1つまたは複数の縁部に階段構造が形成される。いくつかの実施形態では、複数の段を有する階段構造を形成するために、交代誘電体スタックの少なくとも片側に(横方向に)、トリムエッチプロセスを実施することができる。各段は、交代する第1の誘電体層と第2の誘電体層を有する1つまたは複数の誘電体層対を含むことができる。
方法600は、動作608に進み、複数のチャネル構造および1つまたは複数のバリア構造が形成される。各チャネル構造および各バリア構造は、交代誘電体スタックを通って垂直に延びることができる。
いくつかの実施形態では、チャネル構造を形成するための製造プロセスは、たとえば、湿式エッチングおよび/またはドライエッチングによって交代誘電体スタックを通って垂直に延びるチャネル孔を形成するステップを含む。いくつかの実施形態では、チャネル構造を形成するための製造プロセスは、半導体チャネル、および交代誘電体スタックの中の、半導体チャネルと誘電体層対の間のメモリ膜を形成するステップをさらに含む。半導体チャネルは、ポリシリコンなどの半導体材料を含むことができる。メモリ膜は、トンネリング層、貯蔵層、およびブロック層の組合せなどといった、複合誘電体層であってよい。
トンネリング層は、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、またはそれらの任意の組合せを含む誘電体材料を含むことができる。半導体チャネルからの電子または正孔が、トンネリング層を通って貯蔵層にトンネリングすることができる。貯蔵層は、メモリ動作のために電荷を貯蔵するための材料を含むことができる。貯蔵層の材料は、限定しないが、窒化ケイ素、シリコン酸窒化物、酸化ケイ素と窒化ケイ素の組合せ、またはそれらの任意の組合せを含む。ブロック層は、限定しないが、酸化ケイ素または酸化ケイ素/窒化ケイ素/酸化ケイ素(ONO)の組合せを含む誘電体材料を含むことができる。ブロック層は、酸化アルミニウム(Al)層などの、高k誘電体層をさらに含むことができる。半導体チャネルおよびメモリ膜は、ALD、CVD、PVD、任意の他の好適なプロセス、またはそれらの組合せなどの、1つまたは複数の薄膜堆積プロセスによって形成することができる。
いくつかの実施形態では、バリア構造を形成するための製造プロセスは、チャネル構造を形成するための製造プロセスと同様に同時に実施され、そのことによって、製造の複雑さおよび費用を減少させる。いくつかの実施形態では、チャネル構造を充填する材料と異なる材料でバリア構造を充填できるように、チャネル構造とバリア構造は、異なる製造ステップで形成される。
いくつかの実施形態では、バリア構造を形成する製造プロセスは、たとえば、湿式エッチングおよび/または乾式エッチングによって交代誘電体スタックを通って垂直に延びるトレンチを形成するステップを含む。トレンチが交代誘電体スタックを通って形成された後に、限定しないが、酸化ケイ素、窒化ケイ素、シリコン酸窒化物、酸化ケイ素/窒化ケイ素/酸化ケイ素(ONO)、酸化アルミニウム(Al)などまたはそれらの任意の組合せを含む誘電体材料でトレンチを充填するため、1つまたは複数の薄膜堆積プロセスを実施することができる。
1つまたは複数のバリア構造を形成することによって、交代誘電体スタックは、2つのタイプの領域、すなわち、(いくつかの実施形態では、交代誘電体スタックの縁部とともに)少なくともバリア構造によって各々が横方向に囲まれる1つまたは複数の内側領域と、チャネル構造および/またはワード線コンタクトを形成することができる外側領域とに分離することができる。各内側領域がエピタキシャル基板の中の開口に対応することに留意されたい。
いくつかの実施形態では、図2に関して上で記載したように、少なくとも1つの内側領域を使用して、BL TAC構造を形成することができる。そのため、そのような内側領域を囲むバリア構造は、WL方向に沿って延びる2つの平行なバリア壁を含むことができる。
いくつかの実施形態では、図3Aまたは図3Bに関して上で記載したように、少なくとも1つの内側領域を使用して、BL TAC構造を形成することができる。そのため、そのような内側領域を囲むバリア構造は、矩形形状を有することができる。BL方向におけるバリア構造の幅は、後続のプロセスで形成される2つの隣接するスリット構造間の距離よりも広くてよい。
いくつかの実施形態では、図3Cまたは図3Dに関して上で記載したように、少なくとも1つの内側領域を使用して、BL TAC構造を形成することができる。そのため、そのような内側領域を囲むバリア構造は、矩形形状を有することができる。BL方向におけるバリア構造の幅は、後続のプロセスで形成される2つの隣接するスリット構造間の距離よりも狭くてよい。
いくつかの実施形態では、図4Aに関して上で記載したように、少なくとも1つの内側領域を使用して、SS TAC構造を形成することができる。そのため、そのような内側領域を分離するためのバリア構造は、1つの開いた縁部が階段構造の縁部に面する矩形形状を有することができる。BL方向におけるバリア構造の幅は、後続のプロセスで形成される2つの隣接するスリット構造間の距離よりも広くてよい。
いくつかの実施形態では、図4Bに関して上で記載したように、少なくとも1つの内側領域を使用して、SS TAC構造を形成することができる。そのため、そのような内側領域を分離するためのバリア構造は、1つの開いた縁部が階段構造の縁部に面する矩形形状を有することができる。BL方向におけるバリア構造の幅は、後続のプロセスで階段領域の中に形成される2つの隣接するスリット構造間の最大距離よりも狭くてよい。
いくつかの実施形態では、ダミーチャネル構造は、チャネル構造と同時に形成することができる。ダミーチャネル構造は、交代層スタックを通って垂直に延びることができ、チャネル構造中のものと同じ材料で充填することができる。チャネル構造と異なり、3Dメモリデバイスの他の構成要素との電気的な接続を実現するためのコンタクトは、ダミーチャネル構造上に形成されない。したがって、ダミーチャネル構造は、3Dメモリデバイス中のメモリセルを形成するために使用することはできない。
方法600は動作610に進み、動作610において、複数のスリットが形成され、複数のスリットを通して、交代誘電体スタックの一部における第1の誘電体層が導体層で置き換えられる。たとえば、WL方向に延びる複数の平行なスリットを、外側区域の中の交代誘電体スタックを通して、誘電体(たとえば、酸化ケイ素および窒化ケイ素)の湿式エッチングおよび/または乾式エッチングによって最初に形成することができる。いくつかの実施形態では、次いで、スリットを通して、たとえば、イオン注入および/または熱拡散によって、各スリットの下方のエピタキシャル基板の中に、ドープ領域が形成される。いくつかの実施形態によれば、ドープ領域は、たとえばスリットの形成前といった、より早い製造ステージで形成できることが理解される。
いくつかの実施形態では、交代誘電体スタックの外側区域の中で、第1の誘電体層(たとえば、窒化ケイ素)を導体層(たとえば、W)で置き換える、ゲート置き換えプロセス(「ワード線置き換え」プロセスとしても知られている)のために、形成したスリットが使用される。ゲート置き換えは、バリア構造の形成に起因して、交代誘電体スタックの外側区域の中でだけ生じ、内側区域では生じないことに留意されたい。バリア構造は、交代誘電体スタックの内側区域の中の第1の誘電体層(たとえば、窒化ケイ素)のエッチングを防ぐことができる。というのは、バリア構造は、ゲート置き換えプロセスのエッチングステップでエッチングできない材料で充填されるためである。
結果として、ゲート置き換えプロセス後に、外側領域の中の交代誘電体スタックは、交代導体/誘電体スタックとなる。導体層との第1の誘電体層の置き換えは、第2の誘電体層(たとえば、酸化ケイ素)に対して選択的に第1の誘電体層(たとえば、窒化ケイ素)を湿式エッチングし、構造を導体層(たとえば、W)で充填することによって実施することができる。導体層は、PVD、CVD、ALD、任意の他の好適なプロセス、またはそれらの任意の組合せによって充填することができる。導体層は、限定しないが、W、Co、Cu、Al、ポリシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導体材料を含むことができる。
方法600は動作612に進み、動作612において、PVD、CVD、ALD、任意の他の好適なプロセス、またはそれらの任意の組合せによって、スリットの中に導体材料を充填すること(たとえば、堆積すること)によって、スリット構造が形成される。スリット構造は、限定しないが、W、Co、Cu、Al、ポリシリコン、ケイ素化合物、またはそれらの任意の組合せを含む導体材料を含むことができる。いくつかの実施形態では、絶縁目的のために、スリット構造の導体材料と、交代導体/誘電体スタック中のスリット構造を囲む導体層との間に、誘電体層(たとえば、酸化ケイ素層)が最初に形成される。スリット構造の下縁部は、ドープ領域と接触することができる。
方法600は動作614に進み、動作614において、交代誘電体スタックを通して複数のTACが形成される。TACは、最初に垂直開口を(たとえば、湿式エッチングおよび/または乾式エッチングにより)エッチングすること、その後、ALD、CVD、PVD、任意の他の好適なプロセス、またはそれらの任意の組合せを使用して開口を導体材料で充填することによって、1つまたは複数の内側領域に形成することができる。局部コンタクトを充填するために使用される導体材料は、限定しないが、W、Co、Cu、Al、ポリシリコン、ケイ素化合物、またはそれらの任意の組合せを含むことができる。いくつかの実施形態では、バリア層、接着層、および/またはシード層として機能するように開口を充填するため、他の導体材料がやはり使用される。
TACは、交代誘電体スタックの厚さ全体およびエピタキシャル基板中の開口に形成された誘電体層を通してエッチングすることによって形成することができる。交代誘電体スタックが酸化ケイ素および窒化ケイ素などの誘電体の交代層を含むため、TACの開口は、誘電体材料の深掘りエッチングによって(たとえば、深掘り反応性イオンエッチング(DRIE)プロセスまたは任意の好適な異方性エッチングプロセスによって)形成することができる。いくつかの実施形態では、TACは、エピタキシャル基板の開口を通してエピタキシャル基板を貫通する。TACの下縁部は、基板中の相互接続構造と接触することができる。そのため、TACは、基板中に形成される周辺デバイスと電気的に接続することができる。
いくつかの実施形態では、TACはゲート置き換え後に形成されるが、ゲート置き換えプロセスによって影響を受けない(交代導体/誘電体スタックに変わらない)交代誘電体スタックの区域を確保することによって、TACが依然として誘電体層を通して(いずれかの導体層を通過することなく)形成され、このことによって、製造プロセスを簡略化し、費用を減少させる。
本開示に従った様々な実施形態が、メモリアレイのためのスルーアレイコンタクト構造を有する3Dメモリデバイスを提供する。本明細書に開示されるスルーアレイコンタクト構造は、(たとえば、電源バスおよび金属配線のために)スタックされたアレイデバイスと周辺デバイスの間に垂直の相互接続を実現するためのTACを含み、それによって、金属の段を減らしてダイサイズを小さくすることができる。いくつかの実施形態では、本明細書で開示されるスルーアレイコンタクト構造中のTACは、導体層と誘電体層が交代するスタックと比較して、そこにスルーホールを形成するためにより簡単にエッチングできる、交代誘電体層のスタックを通って形成され、それによってプロセスの複雑さおよび製造コストを減らす。
したがって、本開示の一態様は、少なくとも1つの周辺回路を含む基板と基板上に配設される交代層スタックとを含む3次元(3D)NANDメモリデバイスを開示する。交代層スタックは、複数の誘電体層対を含む交代誘電体スタックを含む第1の領域と、複数の導体/誘電体層対を含む交代導体/誘電体スタックを含む第2の領域と、ワード線方向の交代導体/誘電体層スタックの縁部上の階段構造を含む第3の領域とを含む。メモリデバイスは、第1の領域を第2の領域または第3の領域から横方向に分離するための交代層スタックを通って垂直に延びるバリア構造と、各々が交代導体/誘電体スタックを通って垂直に延びる複数のチャネル構造および複数のスリット構造と、各々が交代誘電体スタックを通って垂直に延びる第1の領域中の複数のスルーアレイコンタクトとをさらに含む。複数のスルーアレイコンタクトのうちの少なくとも1つは、少なくとも1つの周辺回路に電気的に接続される。
本開示の別の態様は、3次元(3D)NANDメモリデバイスを形成するための方法を提供する。方法は、少なくとも1つの周辺回路を含む基板を形成するステップと、複数の誘電体層対を含む交代誘電体スタックを基板上に形成するステップであって、複数の誘電体層対の各々が第1の誘電体層および第1の誘電体層と異なる第2の誘電体層を含む、ステップと、交代誘電体スタックの縁部に階段構造を形成するステップと、各々が交代誘電体スタックを通して垂直に延びる複数のチャネル構造および少なくとも1つのバリア構造を形成するステップとを含む。少なくとも1つのバリア構造が、交代誘電体スタックを、少なくともバリア構造によって横方向に囲まれる少なくとも1つの第1の領域と第2の領域とに分離する。方法は、複数のスリットを形成して、スリットを通して、交代誘電体スタックの第2の部分における第1の誘電体層を導体層で置き換えて、複数の導体/誘電体層対を含む交代導体/誘電体スタックを形成するステップと、導電材料をスリットの中に堆積して、複数のスリット構造を形成するステップと、複数のスルーアレイコンタクトを第1の領域中に形成するステップであって、各スルーアレイコンタクトが交代誘電体スタックを通って垂直に延びて、複数のスルーアレイコンタクトのうちの少なくとも1つを少なくとも1つの周辺回路に電気的に接続するステップとをさらに含む。
特定の実施形態の上の記載は、本開示の一般的な性質を十分に明らかにしているので、本開示の一般概念から逸脱することなく、過度の実験を行うことなく、当業者の知識を適用することによって、他者が、様々な用途のために、そのような特定の実施形態を容易に変更および/または適応させることができる。したがって、本明細書に提示される教示および案内に基づいて、そのような適応および変更は、開示される実施形態の等価物の意味および範囲内となることが意図される。本明細書における語法または用語は、記載を目的としており、限定を目的としておらず、そのため、本明細書の用語または語法は、本教示および案内に照らして当業者によって解釈されるべきであることを理解されたい。
本開示の実施形態は、指定された機能の実装およびそれらの関係を説明する機能ビルディングブロックを用いて上で記載されている。これらの機能ビルディングブロックの境界は、記載の便宜のため、本明細書では任意に規定されている。指定された機能およびそれらの関係が適切に実施される限り、代わりの境界を規定することができる。
発明の概要および要約のセクションは、本発明者によって企図される、本開示の1つまたは複数だがすべてではない例示的な実施形態を記載することができ、したがって、何らかの方法で、本開示および添付した請求項を制限することは意図されていない。
本開示の広がりおよび範囲は、上述の例示的な実施形態のいずれかによって制限を受けるべきではなく、以下の請求項およびそれらの等価物にのみしたがって規定されるべきである。
100 3Dメモリデバイス
110 メモリプレーン
115 メモリブロック
120 コンタクトパッド
130 領域
140 領域
150 領域
160 ビット線(BL)TAC領域、ワード線(BL)TAC領域
170 ワード線(WL)TAC領域
180 階段構造(SS)TAC領域
200 領域
210 チャネル構造領域
212 チャネル構造
214 スリット構造
222 ダミーチャネル構造
224 バリア構造
226 TAC
233 ビット線(BL)TAC領域
242 メモリフィンガ
246 ダミーメモリフィンガ
255 上部選択ゲートカット
300A 領域
300B 領域
300C 領域
300D 領域
312 チャネル構造
314 スリット構造
316 スリット構造
318 間隙
320 チャネル構造領域
322 ダミーチャネル構造
314 バリア構造
326 TAC
330 上部選択性ゲート(TSG)階段領域
342 メモリフィンガ
344 メモリフィンガ
350 ダミーチャネル領域
355 上部選択ゲートカット
372 ワード線(WL)TAC領域
376 ワード線(WL)TAC領域
400A 領域
400B 領域
410 階段領域
414 スリット構造
416 スリット構造
418 間隙
420 チャネル構造領域
424 バリア構造
426 TAC
432 ワード線コンタクト
442 メモリフィンガ
444 メモリフィンガ
455 上部選択ゲートカット
482 階段構造(SS)TAC領域
484 階段構造(SS)TAC領域
500 3Dメモリデバイス
510 ベース基板
514 スリット構造
516 バリア構造
526 TAC
530 回路基板
532 相互接続構造
540 エピタキシャル基板
542 開口
544 ドープ領域
560 交代誘電体スタック
560A 第1の誘電体層
560B 第2の誘電体層
560S 第1の誘電体層
570 基板
572 上面
574 底面
580 交代導体/誘電体スタック
580A 導体層
580B 誘電体層
600 方法

Claims (17)

  1. 相互接続構造を備えた第1の基板と、
    前記第1の基板に配設された第2の基板と、
    垂直方向に配置される複数の誘電体層対を備える交代誘電体スタックと、
    前記垂直方向に配置される複数の導体/誘電体層対を備える交代導体/誘電体スタックと、
    ワード線方向に沿って横方向に延びる2つの平行なバリア構造を備えるバリア構造と、
    前記垂直方向において前記交代誘電体スタックを通って延び、周辺回路に電気的に接続される少なくとも1つのスルーアレイコンタクトと、
    を備え、
    前記交代誘電体スタックの複数の誘電体層対の積層面に平行な仮想平面における前記バリア構造の正射影が、閉じた形状ではなく、
    前記交代誘電体スタックが、前記2つの平行なバリア構造によって挟まれ、前記交代導体/誘電体スタックから分離され、
    前記少なくとも1つのスルーアレイコンタクトが、前記第2の基板を通って延び、前記相互接続構造に接続する、3次元(3D)NANDメモリデバイス。
  2. 前記バリア構造が、ビット線方向に沿って延び、前記2つの平行なバリア構造に接続されて、前記バリア構造を三面バリア構造にする第3のバリア構造をさらに備える、請求項1に記載のメモリデバイス。
  3. 前記交代誘電体スタック及び前記バリア構造が階段領域にある、請求項2に記載のメモリデバイス。
  4. チャネル構造領域をさらに備え、前記第3のバリア構造が、前記ワード線方向に沿って前記2つの平行なバリア構造と前記チャネル構造領域との間にある、請求項2又は3に記載のメモリデバイス。
  5. チャネル構造領域をさらに備え、前記第3のバリア構造が、前記三面バリア構造の開口部と比べて前記チャネル構造領域に近い、請求項2又は3に記載のメモリデバイス。
  6. 前記交代誘電体スタック及び前記バリア構造が、前記メモリデバイスの縁部領域にあり、前記第3のバリア構造が、前記三面バリア構造の開口部と比べて前記縁部領域から離れている、請求項2又は3に記載のメモリデバイス。
  7. ビット線方向に沿って前記2つの平行なバリア構造を接続するバリア構造がない、請求項1に記載のメモリデバイス。
  8. 前記垂直方向に交代導体/誘電体スタックを通って延びる複数のチャネル構造を備え、
    各々が前記交代導体/誘電体スタックを通って垂直に延びる複数のダミーチャネル構造を含み、前記2つの平行なバリア構造が、前記ビット線方向に沿って前記複数のダミーチャネル構造によって挟まれ、前記複数のダミーチャネル構造が、前記ビット線方向に沿って前記複数のチャネル構造に挟まれる、請求項7に記載のメモリデバイス。
  9. 前記バリア構造の高さが、前記交代誘電体スタックの厚さ及び前記交代導体/誘電体スタックの厚さよりも大きい、請求項1から8の何れか一項に記載のメモリデバイス。
  10. 前記バリア構造が、酸化ケイ素を含み、
    各誘電体層対が、酸化ケイ素層及び窒化ケイ素層を含み、
    各導体/誘電体層対が、金属層及び酸化ケイ素層を含む、請求項1からの何れか一項に記載のメモリデバイス。
  11. 各々が前記交代導体/誘電体スタックを通って垂直方向に延び、チャネル構造領域及び階段領域を通って前記ワード線方向に沿って横方向に延びる2つのスリット構造をさらに備え、前記バリア構造が、前記2つのスリット構造に挟まれる、請求項1から10の何れか一項に記載のメモリデバイス。
  12. 前記スリット構造の少なくとも1つが、前記階段領域において切断されている、請求項11に記載のメモリデバイス。
  13. 第1の複数のスリット構造及び第2の複数のスリット構造であって、各スリット構造が、前記交代導体/誘電体スタックを通って垂直方向に延び、前記ワード線方向に沿って横方向に延びる、第1の複数のスリット構造及び第2の複数のスリット構造をさらに備え、
    前記第1の複数のスリット構造が、前記ワード線方向において前記第2の複数のスリット構造と整列していない、請求項1から11の何れか一項に記載のメモリデバイス。
  14. 複数の誘電体層対を備える交代誘電体スタックを形成するステップであって、各誘電体層対が第1の誘電体層及び前記第1の誘電体層と異なる第2の誘電体層を備える、ステップと、
    前記交代誘電体スタックを通って垂直に延び、ワード線方向において横方向に延びる2つの平行なバリア構造を含むバリア構造を形成して、前記交代誘電体スタックを、前記平行なバリア構造によって挟まれた少なくとも第1の部分と前記平行なバリア構造の外側の第2の部分とに分離するステップと、
    前記交代誘電体スタックの第2の部分の第1の誘電体層を導体層で置き換えて、複数の導体/誘電体層対を含む交代導体/誘電体スタックを形成するステップと、
    周辺回路に電気的に接続するために、前記交代誘電体スタックの第1の部分を通って垂直に延びる少なくとも1つのスルーアレイコンタクトを形成するステップと、
    を含み、
    前記交代誘電体スタックの複数の誘電体層対の積層面に平行な仮想平面における前記バリア構造の正射影が、閉じた形状ではない、3次元(3D)NANDメモリデバイスを形成する方法であり、
    第1の基板に相互接続構造を形成するステップと、
    前記相互接続構造に第2の基板を配設するステップと、
    をさらに含み、
    前記少なくとも1つのスルーアレイコンタクトが、前記第2の基板を通って延び、前記相互接続構造に接続する、3次元(3D)NANDメモリデバイスを形成する方法
  15. 前記バリア構造が、ビット線方向に沿って延び、前記2つの平行なバリア構造に接続されて、前記バリア構造を三面バリア構造にする第3のバリア構造をさらに備える、請求項14に記載の方法。
  16. 前記交代誘電体スタック及び前記バリア構造が階段領域にある、請求項14又は15に記載の方法。
  17. 前記交代誘電体スタックの第2の部分の第1の誘電体層を前記導体層で置き換える前に、各々が前記交代誘電体スタックの第2の部分を通って垂直に延びる複数のチャネル構造を形成するステップをさらに含む、請求項14から16の何れか一項に記載の方法。
JP2021146800A 2017-03-08 2021-09-09 3次元メモリデバイスのスルーアレイコンタクト構造 Active JP7242791B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023035716A JP2023076473A (ja) 2017-03-08 2023-03-08 3次元メモリデバイスのスルーアレイコンタクト構造

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN201710135654.9 2017-03-08
CN201710135329.2 2017-03-08
CN201710135329.2A CN106920794B (zh) 2017-03-08 2017-03-08 一种3d nand存储器件及其制造方法
CN201710135654.9A CN107068687B (zh) 2017-03-08 2017-03-08 一种3d nand存储器件及其制造方法
JP2019570606A JP6978645B2 (ja) 2017-03-08 2018-03-01 3次元メモリデバイスのスルーアレイコンタクト構造

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019570606A Division JP6978645B2 (ja) 2017-03-08 2018-03-01 3次元メモリデバイスのスルーアレイコンタクト構造

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023035716A Division JP2023076473A (ja) 2017-03-08 2023-03-08 3次元メモリデバイスのスルーアレイコンタクト構造

Publications (2)

Publication Number Publication Date
JP2021193742A JP2021193742A (ja) 2021-12-23
JP7242791B2 true JP7242791B2 (ja) 2023-03-20

Family

ID=63448095

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019570606A Active JP6978645B2 (ja) 2017-03-08 2018-03-01 3次元メモリデバイスのスルーアレイコンタクト構造
JP2021146800A Active JP7242791B2 (ja) 2017-03-08 2021-09-09 3次元メモリデバイスのスルーアレイコンタクト構造
JP2023035716A Pending JP2023076473A (ja) 2017-03-08 2023-03-08 3次元メモリデバイスのスルーアレイコンタクト構造

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019570606A Active JP6978645B2 (ja) 2017-03-08 2018-03-01 3次元メモリデバイスのスルーアレイコンタクト構造

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023035716A Pending JP2023076473A (ja) 2017-03-08 2023-03-08 3次元メモリデバイスのスルーアレイコンタクト構造

Country Status (7)

Country Link
US (5) US10553604B2 (ja)
EP (1) EP3580783B1 (ja)
JP (3) JP6978645B2 (ja)
KR (3) KR20230117633A (ja)
CN (1) CN110114881B (ja)
TW (1) TWI665785B (ja)
WO (1) WO2018161836A1 (ja)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978645B2 (ja) 2017-03-08 2021-12-08 長江存儲科技有限責任公司Yangtze Memory Technologies Co., Ltd. 3次元メモリデバイスのスルーアレイコンタクト構造
CN106910746B (zh) * 2017-03-08 2018-06-19 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法、封装方法
KR102442933B1 (ko) * 2017-08-21 2022-09-15 삼성전자주식회사 3차원 반도체 장치
US10726921B2 (en) * 2017-09-19 2020-07-28 Sandisk Technologies Llc Increased terrace configuration for non-volatile memory
KR102619626B1 (ko) * 2018-06-12 2023-12-29 삼성전자주식회사 3차원 반도체 메모리 소자
KR102589663B1 (ko) * 2018-08-22 2023-10-17 삼성전자주식회사 3차원 반도체 메모리 소자
US10868032B2 (en) 2018-10-15 2020-12-15 Micron Technology, Inc. Dielectric extensions in stacked memory arrays
JP7304413B2 (ja) * 2018-10-18 2023-07-06 長江存儲科技有限責任公司 ジグザグスリット構造を有する三次元メモリデバイスおよびそれを形成するための方法
KR20200046576A (ko) * 2018-10-25 2020-05-07 삼성전자주식회사 비휘발성 메모리 장치, 수직형 낸드 플래시 메모리 장치 및 이를 포함하는 에스에스디 장치
CN111276486B (zh) 2018-12-07 2021-03-12 长江存储科技有限责任公司 新型3d nand存储器件及其形成方法
JP2022509274A (ja) 2019-02-18 2022-01-20 長江存儲科技有限責任公司 3d nandのページまたはブロックサイズおよび性能を向上させるためのチャネルホールおよびビット線アーキテクチャならびに方法
KR102650424B1 (ko) * 2019-02-25 2024-03-25 에스케이하이닉스 주식회사 반도체 메모리 장치
CN109997226A (zh) * 2019-02-26 2019-07-09 长江存储科技有限责任公司 三维存储器件及其形成方法
CN110121778B (zh) * 2019-03-04 2020-08-25 长江存储科技有限责任公司 三维存储器件
CN110062958B (zh) 2019-03-04 2020-05-26 长江存储科技有限责任公司 用于形成三维存储器件的方法
WO2020198944A1 (en) * 2019-03-29 2020-10-08 Yangtze Memory Technologies Co., Ltd. Memory stacks having silicon nitride gate-to-gate dielectric layers and methods for forming the same
US11189635B2 (en) 2019-04-01 2021-11-30 Applied Materials, Inc. 3D-NAND mold
TWI692018B (zh) * 2019-04-22 2020-04-21 旺宏電子股份有限公司 半導體結構及其形成方法
US11037944B2 (en) 2019-07-10 2021-06-15 Micron Technology, Inc. Memory arrays and methods used in forming a memory array comprising strings of memory cells and operative through-array-vias
KR20210013671A (ko) * 2019-07-15 2021-02-05 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그 제조방법
KR20210013790A (ko) * 2019-07-29 2021-02-08 삼성전자주식회사 반도체 메모리 장치
US10985179B2 (en) * 2019-08-05 2021-04-20 Micron Technology, Inc. Memory arrays and methods used in forming a memory array comprising strings of memory cells and operative through-array-vias
KR20210022797A (ko) * 2019-08-20 2021-03-04 삼성전자주식회사 반도체 장치
KR20210027938A (ko) * 2019-09-03 2021-03-11 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그 제조 방법
US11638377B2 (en) 2019-09-13 2023-04-25 Applied Materials, Inc. Self-aligned select gate cut for 3D NAND
WO2021056513A1 (en) 2019-09-29 2021-04-01 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices and methods for forming the same
CN110785846B (zh) 2019-09-29 2021-03-23 长江存储科技有限责任公司 三维存储器件及其形成方法
CN112635488A (zh) 2019-09-29 2021-04-09 长江存储科技有限责任公司 三维存储器件及其形成方法
KR20210043241A (ko) 2019-10-11 2021-04-21 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그의 제조 방법
WO2021097796A1 (en) 2019-11-22 2021-05-27 Yangtze Memory Technologies Co., Ltd. Contact structures having conductive portions in substrate in three-dimensional memory devices and methods for forming the same
CN111066146A (zh) * 2019-11-22 2020-04-24 长江存储科技有限责任公司 三维存储器件中的具有处于衬底内的导电部分的接触结构及其形成方法
KR20210083545A (ko) 2019-12-27 2021-07-07 삼성전자주식회사 씨오피 구조를 갖는 메모리 장치 및 이를 포함하는 메모리 패키지
CN111293121B (zh) * 2020-01-02 2021-08-13 长江存储科技有限责任公司 3d存储器件及其制造方法
KR20210091475A (ko) * 2020-01-14 2021-07-22 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그 제조 방법
US11342244B2 (en) * 2020-01-21 2022-05-24 Sandisk Technologies Llc Bonded assembly of semiconductor dies containing pad level across-die metal wiring and method of forming the same
JP2022528707A (ja) 2020-01-21 2022-06-15 長江存儲科技有限責任公司 3次元メモリデバイスの相互接続構造
US11587796B2 (en) 2020-01-23 2023-02-21 Applied Materials, Inc. 3D-NAND memory cell structure
CN111373532B (zh) * 2020-01-28 2021-02-23 长江存储科技有限责任公司 垂直存储器件
CN111316442B (zh) * 2020-01-28 2021-05-14 长江存储科技有限责任公司 三维存储器件及用于形成三维存储器件的方法
JP7459136B2 (ja) * 2020-01-28 2024-04-01 長江存儲科技有限責任公司 三次元メモリデバイス、および三次元メモリデバイスを形成するための方法
KR20210099348A (ko) * 2020-02-04 2021-08-12 에스케이하이닉스 주식회사 반도체 장치
US11380705B2 (en) * 2020-02-07 2022-07-05 Micron Technology, Inc. Integrated assemblies, and methods of forming integrated assemblies
CN111403406B (zh) * 2020-03-13 2023-05-05 长江存储科技有限责任公司 三维存储器及其制备方法
JP2021150296A (ja) * 2020-03-16 2021-09-27 キオクシア株式会社 半導体記憶装置
US11081443B1 (en) 2020-03-24 2021-08-03 Sandisk Technologies Llc Multi-tier three-dimensional memory device containing dielectric well structures for contact via structures and methods of forming the same
EP3931869B1 (en) * 2020-04-24 2023-12-06 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices with drain-select-gate cut structures and methods for forming the same
US11342245B2 (en) 2020-05-22 2022-05-24 Sandisk Technologies Llc Through-stack contact via structures for a three-dimensional memory device and methods of forming the same
US11355506B2 (en) * 2020-05-22 2022-06-07 Sandisk Technologies Llc Through-stack contact via structures for a three-dimensional memory device and methods of forming the same
US11367736B2 (en) 2020-05-22 2022-06-21 Sandisk Technologies Llc Through-stack contact via structures for a three-dimensional memory device and methods of forming the same
WO2021248426A1 (en) * 2020-06-12 2021-12-16 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory devices with drain select gate cut and methods for forming the same
US11437318B2 (en) 2020-06-12 2022-09-06 Micron Technology, Inc. Microelectronic devices including staircase structures, and related memory devices and electronic systems
US11930637B2 (en) 2020-06-19 2024-03-12 Applied Materials, Inc. Confined charge trap layer
DE102021111318A1 (de) * 2020-06-25 2021-12-30 Taiwan Semiconductor Manufacturing Co., Ltd. 3d-speicherarray-kontaktstrukturen
US11587919B2 (en) 2020-07-17 2023-02-21 Micron Technology, Inc. Microelectronic devices, related electronic systems, and methods of forming microelectronic devices
US11482536B2 (en) 2020-07-23 2022-10-25 Micron Technology, Inc. Electronic devices comprising memory pillars and dummy pillars including an oxide material, and related systems and methods
WO2022032469A1 (en) 2020-08-11 2022-02-17 Yangtze Memory Technologies Co., Ltd. Memory device and fabrication method thereof
KR20220033594A (ko) * 2020-09-08 2022-03-17 삼성전자주식회사 반도체 장치 및 이를 포함하는 데이터 저장 시스템
CN112534576A (zh) * 2020-11-04 2021-03-19 长江存储科技有限责任公司 用于三维存储设备中的中心阶梯结构的底部选择栅极触点
CN112331667B (zh) * 2020-11-10 2021-09-28 长江存储科技有限责任公司 三维存储器及其制造方法
WO2022133990A1 (en) 2020-12-25 2022-06-30 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device having source-select-gate cut structures and methods for forming the same
US11792988B2 (en) * 2021-08-09 2023-10-17 Sandisk Technologies Llc Three-dimensional memory device with separated contact regions and methods for forming the same
US11889694B2 (en) 2021-08-09 2024-01-30 Sandisk Technologies Llc Three-dimensional memory device with separated contact regions and methods for forming the same
EP4205175A4 (en) * 2021-11-18 2024-01-17 Yangtze Memory Tech Co Ltd THREE-DIMENSIONAL MEMORY DEVICE AND TRAINING METHOD THEREFOR

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126957A1 (en) 2011-11-21 2013-05-23 Masaaki Higashitani 3D Non-Volatile Memory With Metal Silicide Interconnect
US20150372101A1 (en) 2014-06-24 2015-12-24 Jae Goo Lee Semiconductor device
US20160064281A1 (en) 2014-08-26 2016-03-03 Sandisk Technologies Inc. Multiheight contact via structures for a multilevel interconnect structure
US20160163732A1 (en) 2014-12-09 2016-06-09 Joon-Sung LIM Semiconductor devices
US20160322381A1 (en) 2015-04-30 2016-11-03 Sandisk Technologies Inc. Multilevel memory stack structure employing support pillar structures
US20160336340A1 (en) 2015-05-12 2016-11-17 Ju Hak Song Semiconductor device
US20160351581A1 (en) 2015-05-26 2016-12-01 SK Hynix Inc. Semiconductor device and manufacturing method of the same
WO2017112014A1 (en) 2015-12-22 2017-06-29 Sandisk Technologies Llc Through-memory-level via structures for a three-dimensional memory device

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100806339B1 (ko) 2006-10-11 2008-02-27 삼성전자주식회사 3차원적으로 배열된 메모리 셀들을 구비하는 낸드 플래시메모리 장치 및 그 제조 방법
KR20120121177A (ko) * 2011-04-26 2012-11-05 에스케이하이닉스 주식회사 반도체 메모리 소자 및 그 제조방법
JP6140400B2 (ja) * 2011-07-08 2017-05-31 エスケーハイニックス株式会社SK hynix Inc. 半導体装置及びその製造方法
KR101845511B1 (ko) 2011-10-11 2018-04-05 삼성전자주식회사 수직 구조의 비휘발성 메모리 소자 제조 방법
KR20130044713A (ko) 2011-10-24 2013-05-03 에스케이하이닉스 주식회사 3차원 불휘발성 메모리 소자와, 이를 포함하는 메모리 시스템과, 그 제조방법
US8951859B2 (en) * 2011-11-21 2015-02-10 Sandisk Technologies Inc. Method for fabricating passive devices for 3D non-volatile memory
US8878278B2 (en) * 2012-03-21 2014-11-04 Sandisk Technologies Inc. Compact three dimensional vertical NAND and method of making thereof
KR101989514B1 (ko) 2012-07-11 2019-06-14 삼성전자주식회사 반도체 소자 및 그 제조 방법
KR101985936B1 (ko) 2012-08-29 2019-06-05 에스케이하이닉스 주식회사 불휘발성 메모리 소자와 그 제조방법
CN103680611B (zh) * 2012-09-18 2017-05-31 中芯国际集成电路制造(上海)有限公司 3d nand存储器以及制作方法
KR20140063147A (ko) * 2012-11-16 2014-05-27 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US9230987B2 (en) * 2014-02-20 2016-01-05 Sandisk Technologies Inc. Multilevel memory stack structure and methods of manufacturing the same
CN104051467B (zh) * 2013-03-13 2017-04-12 旺宏电子股份有限公司 具有增强的接触区的三维集成电路装置
KR20150116510A (ko) 2014-04-07 2015-10-16 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법
US9230974B1 (en) * 2014-08-26 2016-01-05 Sandisk Technologies Inc. Methods of selective removal of blocking dielectric in NAND memory strings
JP2016058552A (ja) 2014-09-09 2016-04-21 株式会社東芝 半導体装置の製造方法
US20160079252A1 (en) 2014-09-11 2016-03-17 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
CN104269407B (zh) 2014-09-16 2017-04-19 华中科技大学 一种非易失性高密度三维半导体存储器件及其制备方法
US9419135B2 (en) 2014-11-13 2016-08-16 Sandisk Technologies Llc Three dimensional NAND device having reduced wafer bowing and method of making thereof
KR102310511B1 (ko) * 2014-12-19 2021-10-08 삼성전자주식회사 반도체 소자 및 그 형성 방법
US9397046B1 (en) * 2015-04-29 2016-07-19 Sandisk Technologies Llc Fluorine-free word lines for three-dimensional memory devices
US10074661B2 (en) * 2015-05-08 2018-09-11 Sandisk Technologies Llc Three-dimensional junction memory device and method reading thereof using hole current detection
KR20160138765A (ko) 2015-05-26 2016-12-06 에스케이하이닉스 주식회사 슬리밍 구조물을 포함하는 반도체 메모리 장치
KR20160138883A (ko) * 2015-05-26 2016-12-06 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법
KR102378820B1 (ko) * 2015-08-07 2022-03-28 삼성전자주식회사 메모리 장치
KR20170027571A (ko) * 2015-09-02 2017-03-10 에스케이하이닉스 주식회사 반도체 장치 및 그 제조방법
US9401371B1 (en) * 2015-09-24 2016-07-26 Macronix International Co., Ltd. Sacrificial spin-on glass for air gap formation after bl isolation process in single gate vertical channel 3D NAND flash
US10269620B2 (en) * 2016-02-16 2019-04-23 Sandisk Technologies Llc Multi-tier memory device with through-stack peripheral contact via structures and method of making thereof
US9576967B1 (en) * 2016-06-30 2017-02-21 Sandisk Technologies Llc Method of suppressing epitaxial growth in support openings and three-dimensional memory device containing non-epitaxial support pillars in the support openings
CN106920794B (zh) * 2017-03-08 2018-11-30 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法
JP6978645B2 (ja) * 2017-03-08 2021-12-08 長江存儲科技有限責任公司Yangtze Memory Technologies Co., Ltd. 3次元メモリデバイスのスルーアレイコンタクト構造
CN107068687B (zh) * 2017-03-08 2018-10-12 长江存储科技有限责任公司 一种3d nand存储器件及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130126957A1 (en) 2011-11-21 2013-05-23 Masaaki Higashitani 3D Non-Volatile Memory With Metal Silicide Interconnect
US20150372101A1 (en) 2014-06-24 2015-12-24 Jae Goo Lee Semiconductor device
US20160064281A1 (en) 2014-08-26 2016-03-03 Sandisk Technologies Inc. Multiheight contact via structures for a multilevel interconnect structure
US20160163732A1 (en) 2014-12-09 2016-06-09 Joon-Sung LIM Semiconductor devices
US20160322381A1 (en) 2015-04-30 2016-11-03 Sandisk Technologies Inc. Multilevel memory stack structure employing support pillar structures
US20160336340A1 (en) 2015-05-12 2016-11-17 Ju Hak Song Semiconductor device
US20160351581A1 (en) 2015-05-26 2016-12-01 SK Hynix Inc. Semiconductor device and manufacturing method of the same
WO2017112014A1 (en) 2015-12-22 2017-06-29 Sandisk Technologies Llc Through-memory-level via structures for a three-dimensional memory device

Also Published As

Publication number Publication date
JP2021193742A (ja) 2021-12-23
KR20220000956A (ko) 2022-01-04
EP3580783A4 (en) 2020-11-18
JP6978645B2 (ja) 2021-12-08
US10910397B2 (en) 2021-02-02
EP3580783B1 (en) 2024-05-01
KR102346409B1 (ko) 2021-12-31
US20210126005A1 (en) 2021-04-29
US11545505B2 (en) 2023-01-03
US20200152653A1 (en) 2020-05-14
TWI665785B (zh) 2019-07-11
US20230005950A1 (en) 2023-01-05
EP3580783A1 (en) 2019-12-18
CN110114881B (zh) 2020-03-27
TW201901932A (zh) 2019-01-01
US10553604B2 (en) 2020-02-04
JP2023076473A (ja) 2023-06-01
CN110114881A (zh) 2019-08-09
JP2020513164A (ja) 2020-04-30
KR20190122824A (ko) 2019-10-30
US20230389323A1 (en) 2023-11-30
US11785776B2 (en) 2023-10-10
WO2018161836A1 (en) 2018-09-13
KR20230117633A (ko) 2023-08-08
US20190043879A1 (en) 2019-02-07
KR102561732B1 (ko) 2023-07-31

Similar Documents

Publication Publication Date Title
JP7242791B2 (ja) 3次元メモリデバイスのスルーアレイコンタクト構造
JP7335309B2 (ja) 3次元メモリデバイスのハイブリッドボンディングコンタクト構造

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7242791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150