JP5278700B2 - 光走査装置及び画像形成装置 - Google Patents

光走査装置及び画像形成装置 Download PDF

Info

Publication number
JP5278700B2
JP5278700B2 JP2009212691A JP2009212691A JP5278700B2 JP 5278700 B2 JP5278700 B2 JP 5278700B2 JP 2009212691 A JP2009212691 A JP 2009212691A JP 2009212691 A JP2009212691 A JP 2009212691A JP 5278700 B2 JP5278700 B2 JP 5278700B2
Authority
JP
Japan
Prior art keywords
light beam
scanning
light
optical
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009212691A
Other languages
English (en)
Other versions
JP2011064717A (ja
JP2011064717A5 (ja
Inventor
直樹 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2009212691A priority Critical patent/JP5278700B2/ja
Priority to US12/881,671 priority patent/US7969635B2/en
Priority to CN201010290885.5A priority patent/CN102023382B/zh
Publication of JP2011064717A publication Critical patent/JP2011064717A/ja
Publication of JP2011064717A5 publication Critical patent/JP2011064717A5/ja
Application granted granted Critical
Publication of JP5278700B2 publication Critical patent/JP5278700B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Lenses (AREA)

Description

本発明は、デジタル複写機、レーザプリンタ、レーザファクシミリ等の光走査装置、及びこれを用いた画像形成装置に関する。
レーザプリンタ等に関連して広く知られた光走査装置は一般に、光源側からの光ビームを光偏向器により偏向させ、fθレンズ等の走査光学系により被走査面に向けて集光して被走査面上に光スポットを形成し、この光スポットで被走査面を光走査(主走査)するように構成されている。被走査面の実体をなすものは光導電性の感光体等である感光媒体の感光面である。
また、フルカラー画像形成装置の一例として、4つの感光体を記録紙の搬送方向に配列し、これらの各感光体に対応した複数の光源装置から放射された光ビームの光束を1つの偏向手段により偏向走査し、各感光体に対応する複数の走査結像光学系により各感光体に同時に露光して潜像をつくり、これらの潜像をイエロー、マゼンタ、シアン、ブラックなどの各々異なる色の現像剤を使用する現像器で可視像化したのち、これらの可視像を同一の記録紙に順次重ね合わせて転写し定着することで、カラー画像を得られるように構成されている。このように、光走査装置と感光体の組み合わせを2組以上用いて、2色画像や多色画像、カラー画像等を得るようにした画像形成装置は「タンデム式画像形成装置」として知られている。このようなタンデム式画像形成装置として、複数の感光媒体が単一の光偏向器を共用する方式のものが開示されている。
その例は次のとおりである。
(1)略平行でかつ副走査方向に離れた複数の光束を偏向器に入射し、複数の光束に対応する複数の走査光学素子を副走査方向に並べて走査する(特許文献1)。
(2)偏向器の片側より光束を入射し、3枚構成の走査光学系L1,L2,L3で、このうち走査光学系L1,L2は異なる被走査面に向かう複数の光束が通過し、走査光学系L3は各被走査面毎に設けられている(特許文献2〜4)。
このように、複数の被走査面で光偏向器を共用すると、光偏向器の数を減らすことにより、画像形成装置をコンパクト化することが可能になる。
また、カラー画像形成装置の光走査装置において、単一の光偏向器として低コスト化を図る手段として、特許文献5に開示されているように、光偏向器の偏向反射面に副走査方向に角度を持って光ビームを入射させる斜入射光学系が知られている。前記斜入射光学系は、複数の光ビームがそれぞれ偏向反射面で偏向反射された後に、各々対応する被走査面(感光体)に、折返しミラーなどで分離され導かれる。この時、それぞれの光ビームの副走査方向の角度(光偏向器に斜入射する角度)は、前記ミラーで各光束が分離可能な角度に設定されている。
この斜入射光学系を用いることで、前記ミラーで各光束が分離可能な副走査方向の隣接する光ビームの間隔を、光偏光器を大型化させること(副走査方向へのポリゴンミラーの多段化、厚肉化)無しに実現可能となる。
更に近年では、画像形成装置の出力画像の高画質化に向けて、従来イエロー、マゼンタ、シアン、ブラックの4色に対応していた4つの被走査面(感光体)に対し、更に白などの色の数を増やしたり、透明なトナーを追加したりした画像形成装置が提案されている(特許文献6,7)。引用文献6,7では、感光体の数を増やすことなく対応しているが、現実的には感光体の周りで作像するモジュールを増やす事はスペース上問題があり、感光体を追加の色の分だけ増やして対応する事が望ましい。
また、フルカラー対応の光走査装置において、低コスト、省スペース、省エネルギー達成のため、斜入射光学系を用いることが望ましいが、その反面、斜め入射方式には「走査線曲がり」が大きいという問題がある。この走査線曲がり発生量は、前記各光ビームの副走査方向の斜入射角により異なり、各々の光ビームで描かれた潜像を各色のトナーにより重ね合わせ可視化した際に、色ずれとなって現れてしまう。
また、感光体を増加させた場合、従来の4つの感光体に対応する光走査装置以上に装置全体の低コスト化、及び小型化の課題が大きくなる。一般的に、光走査装置内の光学素子でポリゴンミラー部のコストは高く、コストの高い光偏向器を単一とした場合においても、対応する被走査面が1つ増える事により偏向する光ビームが増え、光偏向器上で複数の感光体に向かう光ビームが、最低でも副走査方向に3段水平に並ぶ事となり、光偏向器がより大型化するなどの問題がある。
本発明は、以上の従来技術における問題に鑑みてなされたものであり、光偏向器への斜入射角を小さく設定し、斜入射光学系特有の走査線曲りの増大、波面収差の増大を補正し、且つ低コスト、省スペース、省エネルギー達成する光走査装置の実現を第一の目的とする。
また、本発明は、4以上の被走査面に対応する光走査装置において、低コスト、低消費電力、小型化と、波面収差、走査線曲がりなどの光学特性を両立する光走査装置の実現を第二の目的とする。
また、本発明は、本発明の光走査装置を用いて、形成される画像の色ずれを低減し良好な画像品質を得ることのできる画像形成装置の実現を第三の目的とする。
前記課題を解決するために提供する本発明は、以下の通りである。
〔1〕 複数の光ビームを射出する光源装置と、前記複数の光ビームを偏向する光偏向器と、前記偏向された複数の光ビームそれぞれに対応して被走査面に集光する走査光学系と、前記複数の光ビームそれぞれに対応して走査光学系と被走査面の間の光路上に、主走査方向、副走査方向ともに屈折力を持たず、且つ入射する光ビームに対し該光ビームの進行方向に垂直な軸に対してある角度を持って傾いて配置される平板ガラスと、を備える光走査装置において、前記複数の光ビームには、前記光偏向器の反射面の法線に対し副走査方向にある角度を持って入射する光ビームB1と、前記光偏向器の反射面の法線に対し平行に入射する光ビームB2が含まれ、前記走査光学系には、前記複数の光ビームそれぞれに対応してレンズ面形状が副走査方向において非対称となる特殊面をもつ走査レンズがお互いに同一形状の個別レンズとして設けられており、前記光偏向器と被走査面の間の光路上に、前記光ビームB1,B2に対応する個別レンズ、平板ガラスのみを配置すると仮定した場合、前記光ビームB2に対応する個別レンズと前記光ビームB1に対応する個別レンズの光ビームの進行方向に対する副走査方向のレンズ面形状の向きが同一となり、前記光ビームB2に対応する前記平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向は、副走査方向において、前記光偏向器における前記光ビームB2の反射方向に対する前記光ビームB1の反射方向の傾け方向と同じであることを特徴とする光走査装置。
〔2〕 前記光ビームB2に対応する個別レンズと光ビームの進行方向に対する副走査方向のレンズ面形状の向きが同一となる個別レンズを用いた前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け方向は、前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向とは逆であることを特徴とする前記〔1〕記載の光走査装置。
〔3〕 前記光ビームB2に対応する個別レンズと光ビームの進行方向に対する副走査方向のレンズ面形状の向きが反転された個別レンズを用いた前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け方向は、前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向と同じあることを特徴とする前記〔1〕または〔2〕記載の光走査装置。
〔4〕 前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け角度は、前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け角度とその絶対値が等しいことを特徴とする前記〔2〕または〔3〕記載の光走査装置。
〔5〕 前記複数の光ビームには、前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の異なる側からそれぞれある角度を持ち該光偏向器に入射する複数の光ビームが含まれ、前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の一方の側からある角度を持って該光偏向器に入射する光ビームに対応する平板ガラスの該光ビームの進行方向に垂直な軸に対する傾け方向は、前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の他方の側からある角度を持って該光偏向器に入射する光ビームに対応する平板ガラスの該光ビームの進行方向に垂直な軸に対する傾け方向とは逆であることを特徴とする前記〔1〕記載の光走査装置。
〔6〕 前記光源装置は、複数の光ビームを射出するマルチビーム光源装置であることを特徴とする前記〔1〕〜〔5〕のいずれかに記載の光走査装置。
〔7〕 電子写真プロセスを実行することによって画像を形成する画像形成装置であって、電子写真プロセスの露光プロセスを実行する手段として前記〔1〕〜〔6〕のいずれかに記載の光走査装置を具備することを特徴とする画像形成装置。
本発明の光走査装置によれば、光偏向器への斜入射角を小さく設定し、斜入射光学系特有の走査線曲りの増大、波面収差の増大を補正し、且つ低コスト、省スペース、省エネルギー達成することができる。また4以上の被走査面に対応する光走査装置において、低コスト、低消費電力、小型化と、波面収差、走査線曲がりなどの光学特性を両立することが可能となる。
また、本発明の画像形成装置によれば、本発明の光走査装置を用いて、形成される画像の色ずれを低減と、良好な画像品質を実現することができる。
本発明に係る光走査装置の基本構成を示す概略図である。 対向走査方式の光走査装置の構成を示す断面図である。 光ビームのポリゴンミラーへの入射状態を示す断面図である。 光走査装置におけるポリゴンミラー、走査光学系、平板ガラス、感光体の配置関係を示す断面概略図である。 本発明に係る光走査装置の実施形態1におけるポリゴンミラー、走査光学系、平板ガラス、感光体の配置関係(1)を示す断面概略図である。 本発明に係る光走査装置の実施形態1におけるポリゴンミラー、走査光学系、平板ガラス、感光体の配置関係(2)を示す断面概略図である。 本発明に係る画像形成装置の構成(1)を示す断面概略図である。 本発明に係る画像形成装置の構成(2)を示す断面概略図である。 図8の画像形成装置に用いる光走査装置の構成を示す断面概略図である。
以下に、本発明に係る光走査装置及び画像形成装置の構成について図面を参照して説明する。
(実施形態1)
図1は、本発明に係る光走査装置の基本構成図であり、実施形態1の構成を説明するための概略図である。
本発明に係る光走査装置において、図1に示すように、光源としての半導体レーザ201から放射された発散性の光束(光ビームともいう)202はカップリングレンズ203により以後の光学系に適した光束形態に変換される。カップリングレンズ203により変換された光束形態は、平行光束であることも、弱い発散性あるいは弱い集束性の光束であることもできる。カップリングレンズ203からの光束202はアパーチャ204を通過してシリンドリカルレンズ103により副走査方向に集光され、回転するポリゴンミラー(回転多面鏡、光偏向器ともいう)104の偏向反射面(単に反射面ともいう)に入射する。ついで、偏向反射面により反射された光束202は、ポリゴンミラー104の等速回転とともに等角速度的に偏向し、第1レンズ105,第2レンズ106からなる走査光学系110を透過して、反射ミラー107で折り返されて感光体ドラム(単に感光体ともいう)101の被走査面上に集光する。これにより、偏向光束は被走査面上に光スポットを形成し、被走査面の光走査を行う。
なお、図2に示すような、対向走査方式の光走査装置におけるポリゴンミラー104では、図3(a)に示すが如く、各々対応する被走査面に向かう光束202を分離に必要な間隔Zを得るために2段化されたポリゴンミラーを使用している。このとき、ポリゴンミラーを2段化することなく一段で使用しても良いが、ポリゴンミラー104の副走査方向の厚さが厚くなり、空気との接触面積が増大して、風損の影響による消費電力アップ、騒音の増大、コストアップなどの問題が生じる。更に、高画質化に向け従来のシアン、マゼンタ、イエロー、ブラックの4色に対し、カラートナーの種類追加、もしくは透明トナーの採用などにより対応する感光体が増えた場合は、ポリゴンミラー104の副走査方向の厚さが、図3(b)の如くより厚くなり、高速化、低コスト化などへの課題は大きくなる。また、3段化した場合においても、ポリゴンミラー104の形状が複雑になり、加工時間もかかるため、低コスト化についての課題が特に大きくなる。
つぎに、ポリゴンミラー104の偏向反射面の法線に対し副走査方向にある角度で入射する光ビーム202a,202cと、該偏向反射面の法線に対して平行に入射する光ビーム202bを含む光走査装置について説明する。またここでは、実施例の1つとして、5つの感光体ドラムに対応する5本の光ビームを用いる光走査装置を前提に説明する。
図3(c)は、本発明の光走査装置におけるポリゴンミラー104周辺の断面図であり、光ビームのポリゴンミラー104への入射状態を示している。図3(c)に示す通り、感光体の数が1つ増えた場合において、ポリゴンミラー104において、一方の偏向反射面(図中左側)には2つの感光体に対応した2本の光ビーム202が入射し、他方の偏向反射面(図中右側)には3つの感光体に対応した3本の光ビーム202が入射している。なお、図3(c)において、図中上下方向が副走査方向である。このとき、図中右側の偏向反射面に入射する3本の光ビームのうち1本の光ビーム202bを、前記偏向反射面の法線に対し平行とすることで該偏向反射面への各光ビームの斜入射角を最も小さく設定可能となる。つまり、図3(c)においてポリゴンミラー104の左側の全ての光ビームに関して斜入射光学系(斜め入射光学系ともいう)として偶数の感光体に対応するものとし、ポリゴンミラー104の右側では一部の光ビームに関して水平光学系として奇数の感光体に対応するものとすることで、ポリゴンミラー104を1段の薄いものとすることを実現して、光走査装置を構成する部品でコスト比率の高い光偏向器のコストを下げ、消費電力や騒音を低減可能な、環境を考慮した光走査装置が提供可能となる。また、ポリゴンミラー104への光ビームの斜入射角を小さく設定させる事が可能となる。
つぎに、ポリゴンミラー104への斜入射光学系、すなわち斜め入射する光ビームに対応する走査光学系について説明する。
光源側からの光ビームは、ポリゴンミラー104の回転軸に直交する平面、あるいはポリゴンミラー104の偏向反射面の法線を含む水平面に対して傾いて入射する(これを斜め入射方式という)。従って、偏向反射面により反射された光ビームも、該平面(水平面)に対して傾いている。このようなポリゴンミラー104の回転軸に直交する平面に対し角度を有する光ビームは、光源装置である半導体レーザ201、カップリングレンズ203、シリンドリカルレンズ103の光軸を水平面に対して傾けて配置してポリゴンミラー104の偏向反射面に所望の角度に入射するようにしても良いし、折返しミラーを用いて光ビームを折り返して角度をつけて入射させるようにしても良い。また、シリンドリカルレンズ103の光軸を光ビームが進行する方向に対して副走査方向に傾けることで、偏向反射面に向かう光ビームに角度をつけても構わない。
ところで、従来の斜め入射方式において、ポリゴンミラー104の偏向反射面に水平入射する光ビームに対して、副走査方向にある角度を持って斜め入射させる光ビームは、走査光学系110のレンズに対して副走査方向に角度を持って入射することになることから、諸収差量が増大し光学性能が劣化する。
例えば、斜め入射方式には「走査線曲がり」が大きいという問題がある。この走査線曲がり発生量は、前記各光ビームの副走査方向の斜入射角により異なり、各々の光ビームで描かれた潜像を各色のトナーにより重ね合わせ可視化した際に、色ずれとなって現れてしまう。また、斜入射することにより、光束が走査レンズにねじれて入射することで、波面収差も増大し、特に周辺の像高で光学性能が著しく劣化し、ビームスポット径が太ってしまい、高画質化を妨げる要因となる。
走査線曲がりの発生について具体的に説明する。例えば、走査光学系110を構成する走査レンズ、特に副走査方向に強い屈折力を持つ走査レンズ(図1では第2レンズ106)の入射面の主走査方向の形状が、ポリゴンミラー104の偏向反射面の光ビームの反射点を中心とする円弧形状でない限り、主走査方向のレンズ高さによりポリゴンミラー104の偏向反射面から走査レンズ入射面までの距離は異なるようになる。通常、走査レンズを前記形状にすることは、光学性能を維持する上で困難である。つまり、図1(b)に示すように、通常の光ビーム202は、ポリゴンミラー104により偏向走査され、走査レンズである第2レンズ106の各像高の主走査断面において、レンズ面に対し垂直入射することはなく、主走査方向にある入射角を持って入射する。
ポリゴンミラー104の偏向反射面に対して通常の水平入射であれば、偏向反射面から走査レンズ入射面までの距離が異なっても、光ビーム202bは走査レンズに対し水平に進行するため、走査レンズ上での副走査方向の入射位置が異なることはなく、走査線曲がりの発生が生じない。しかし、ポリゴンミラー104の偏向反射面に副走査方向に角度を持って斜入射することにより、ポリゴンミラー104により偏向反射された光ビーム202a(あるいは202c)は、像高によりポリゴンミラー104の偏向反射面から走査レンズ入射面までの距離は異なるようになり、走査レンズ、例えば第2レンズ106への副走査方向の入射高さが周辺に行くほど中心より高い位置、もしくは低い位置に(光ビーム202a(あるいは202c)の副走査方向にもつ角度の方向により異なって)入射される。この結果、第2レンズ106の副走査方向に屈折力を持つ面を通過する際に、副走査方向に受ける屈折力が異なり走査線曲がりが発生することになる。
走査線曲がりが発生すると、これを補正する必要があるが、この走査線曲がりの補正には、走査レンズである第2レンズ106における被走査面側のレンズ面に特殊面を用いることが望ましい。
なお、ここで説明する特殊面は、副走査方向に曲率を持たない面であり、その副走査方向の傾きが主走査方向に異なる面を示す。すなわち、副走査方向において非対称の面形状を有する。また、その面形状は、以下の形状式(1)による。ただし、以下の形状式に限定されるものではなく、同一の面形状を別の形状式を用いて特定することも可能である。
X(Y,Z)=Y^2・Cm/{1+√[1-(1+K)・(Y・Cm)^2]}+ A・Y^4 + B・Y^6 + C・Y^8 + D・Y^10 + E・Y^12 ・・・ + Cs(Y)・Z^2/{1+√[1-(Cs(Y)・Z)^2]}+(F0+F1・Y+F2・Y^2+F3・Y^3+F4・Y^4+・・・)Z ・・・(1)
ここで、Cm=1/RY、Cs(Y)=1/RZとする。なお、光軸を含み、主走査方向に平行な平断面である「主走査断面」内の近軸曲率半径をRY、光軸から主走査方向の距離をY、高次係数をA,B,C,D・・・とし、主走査断面に直交する「副走査断面」内の近軸曲率半径をRZとしている。また、(F0+F1・Y+F2・Y^2+F3・Y^3+F4・Y^4+・・・)Zは、チルト量を表す部分であり、チルト量を持たないとき、F0,F1,F2,・・・は全て0である。また、F1,F2,・・・が0で無いとき、チルト量は、主走査方向に変化することになる。
このような特殊面により各像高に向かう光ビームの副走査方向の方向を、走査レンズの主走査方向に異なるチルト量を最適に与えることで走査線曲がりを補正することが可能となる。また、このとき光束が絞られているため、特殊面による波面収差の増大は極めて小さく抑える事が可能である。
つぎに、波面収差補正について説明を加える。
波面収差補正と走査線曲がりの補正を良好に行うために、走査レンズを少なくとも2枚で構成し、ポリゴンミラー(光偏向器)104に近い走査レンズ(少なくとも副走査方向に強い屈折力を持つ走査レンズより光偏向器側の走査レンズ、図1では第1レンズ105)で、周辺に向け副走査方向に凹のパワーが強くなる面を用い波面収差補正を行い、被走査面に近い走査レンズ(副走査方向に強い屈折力を持つ走査レンズ)の特殊面で走査線曲がり補正を行うように、それぞれの補正機能を分離することで、ビームスポット径の更なる小径化と走査線曲がりの低減を達成可能となる。もちろん、完全に機能分離させなければならないわけではなく、それぞれの面で、波面収差補正の一部、走査線曲がり補正の一部を受け持っても良いことは言うまでもない。
このような面構成の採用により、走査レンズの主走査方向に異なる負パワーを最適に与えることができ光ビーム内の光束のねじれを補正可能となる。また光束のねじれによる被走査面上での光束内の光線のばらつきを、被走査面側の走査レンズの入射位置を補正することで波面収差が良好になる。
本実施形態では、図4に示すようにあるいは後述する実施例に示すように、走査光学系110における走査レンズは2枚構成で、ポリゴンミラー104側の走査レンズである第1レンズ105は、2つの斜入射(斜入射角aの大きさは同じで符号のみ異なる)の光ビーム202a,202cで共用するレンズであり、被走査面側の走査レンズである第2レンズ106は光ビーム202a,202cごとに個別に配置されているレンズ(個別レンズ)である。個別レンズである第2レンズ106は、先の説明の特殊面を用い、主に走査線曲がりを補正しており、共用レンズである第1レンズ105は中心から周辺に向け副走査方向の負のパワーが強くなる面を用いており(詳細は後述する)、主に第2レンズ106への副走査方向の入射位置を調整し波面収差補正を行っている。
第2レンズ106は、ポリゴンミラー104へ斜入射する光ビーム202a,202cに対応して、該光ビーム202a,202cの斜入射角aの符号によらず同一形状であり、被走査面側の特殊面の配置は副走査方向の上下が反転するように配置される。図4における矢印方向は、その2つの第2レンズ106の配置方向が異なることを示している。つまり、点線で示す基準平面(水平面)に対し、第2レンズ106の特殊面の形状が対称となるように配置されることとなる。この結果、光ビーム202a,202cの斜入射の角度の符合が異なっていても、走査線曲りは良好に補正される事となる。
また波面収差についても、第1レンズ105を通過する位置が基準平面(水平面)に対し副走査方向に対称であれば、同様の補正効果を得るため波面収差も良好に補正されている事となる。
ところで、走査線曲がりの発生は、走査レンズと被走査面の間に配置される平板ガラス111によっても生じる。平板ガラス111は、走査レンズ105,106、ポリゴンミラー104などを配置する光学箱(光学ケーシング)内に、埃、トナーなどが入らないように防塵するために用いられるものである。また、平板ガラス111は、反射光が光源に戻り誤動作する事を防ぐため、副走査方向に角度を持って配置される。
このため、平板ガラス111内を透過する光路長が主走査方向で変化し走査線曲がりが発生してしまう。すなわち、平板ガラス111はパワーを持たないが、傾けて配置することで副走査方向に光束が並行シフトして射出され、そのシフト量が主走査方向に異なるため走査線曲がりが発生する。
つまり、前記特殊面にて光ビーム202a,202cの斜入射により発生する走査線曲がりを良好に補正しても、平板ガラス111を副走査方向に傾けて配置することで走査線曲がりは発生する。そこで、平板ガラス111で発生する走査線曲がりも特殊面で補正すれば、走査線曲がりの発生は良好に補正される事となる。
また、このとき本発明の通り、平板ガラス111の副走査方向への傾け方向を反転させる事で斜入射の角度の符合が異なっていても、走査線曲りは良好に補正することが可能である。
以上、走査レンズにおける特殊面の採用により、走査線曲り、波面収差など、斜入射光学系特有の光学特性劣化は補正可能であり、さらにポリゴンミラー104の偏向反射面の法線に対する角度(副走査方向に斜入射する角度)を小さくすることで、光学性能の劣化を小さく抑えることが可能となり、良好な光学性能を実現することができる。
また、本発明の実施形態では、更にポリゴンミラー104の偏向反射面の法線に対し副走査方向に角度を持つ光ビーム202a,202cと、該偏向反射面の法線に平行な光ビーム202bで、対応する被走査面に向かう光ビーム毎に個別に設ける第2レンズ106は同一形状のものとする。これにより、走査レンズの種類を多くする必要は無く、生産時に似ている走査レンズを管理する必要も無くコストアップする事を防ぐ事が可能となる。
しかしながら、前述の通り、斜入射により発生する走査線曲がりの補正を目的として第2レンズ106には特殊面を用いているため、ポリゴンミラー104の偏向反射面の法線に平行な光ビーム202bに対して使用すると、該第2レンズ106の特殊面にて走査線曲がりを発生させてしまう。ポリゴンミラー104の偏向反射面の法線に平行な光ビーム202bでは、元来走査線曲がりの発生は小さく(走査レンズに副走査方向に湾曲して入射する事が無い)補正すべき走査線曲りの発生が無いところ、特殊面により逆に走査線曲がりを発生させてしまう事となるためである。
そこで、本発明では、前記光偏向器(ポリゴンミラー104)と被走査面の間の光路上に、光ビーム202a,202bに対応する個別レンズ、平板ガラスのみを配置すると仮定した場合、光ビーム202bに対応する個別レンズ(第2レンズ106b)とビーム202aに対応する個別レンズ(第2レンズ106a)の光ビームの進行方向に対する副走査方向の断面形状の向き(前記特殊面の向き)が同一となり、光ビーム202bに対応する平板ガラス111の該光ビーム202bの進行方向に垂直な軸に対する傾け方向は、前記光偏向器(ポリゴンミラー104)における前記光ビーム202bの反射方向に対する前記光ビーム202aの反射方向の傾け方向と同じである。
すなわち、図5(a)に示すが如く、斜入射の光学系(光ビーム202aに対応する第1レンズ105,第2レンズ106a)と水平入射の光学系(光ビーム202bに対応する第1レンズ105,第2レンズ106b)において、第2レンズ106bの特殊面の配置方向が第2レンズ106aの特殊面と副走査方向において同じ場合(図では第2レンズの向きを表す矢印を同じ回転方向として表示している)、前記光ビーム202bに対応する平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方向は、光ビーム202bのポリゴンミラー104における反射方向を基準として、光ビーム202aのポリゴンミラー104における反射方向の副走査方向への傾け方向(図中矢印A方向)と同一回転方向、つまり図中左回転方向(ポリゴンミラー104を中心とした反時計回り方向)として配置される。
また、図5(b)に示すが如く、光ビーム202bに対応する第2レンズ106bの特殊面の配置方向が光ビーム202cに対応する第2レンズ106cの特殊面と副走査方向において同じ場合、平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方向は、光ビーム202bのポリゴンミラー104における反射方向を基準として、光ビーム202cのポリゴンミラー104における反射方向の副走査方向への傾け方向(図中矢印B方向)と同一回転方向、つまり図中右回転方向(ポリゴンミラー104を中心とした時計回り方向)として配置される。
このような構成とすることで、水平入射の光学系においても走査線曲がりは適切に補正されるようになる。
これはつぎの理由による。すなわち、斜入射光学系(光ビーム202a,202cに対応する光学系)で発生する走査線曲がりに対し、平板ガラスで発生する走査線曲がりは小さくキャンセルされる事は無く、該斜入射光学系においては平板ガラスがどちらに傾いていても、例えば第2レンズ106a、106cの特殊面で補正する方向に変化は無い。また、水平入射の光ビーム202bに対応して特殊面を持つ第2レンズ106bを配置した際に発生する走査線曲がりは、平板ガラス111bの傾け方向で大きさは変わるがその方向(上に凸の走査線曲がりか下に凸の走査線曲がりか)は変化しない。
つまり、水平入射の光ビーム202bに対応する平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方を調整することで、斜入射光学系における補正前の走査線曲がりと同方向の走査線曲がりを、前記光ビーム202bに対応する第2レンズ106bの特殊面などの補正面で発生する走査線曲がりをキャンセルする方向に発生させ、該第2レンズ106bによる影響を低減させるものである。
なおここでは、平板ガラスにおける厚みを2mm程度、傾ける量(傾け角度)も10〜30deg程度の現実的な値を前提として説明している。厚さを10mm以上など厚くすれば走査線曲がりの発生も大きくなり本説明の範疇ではなくなるが、コスト面、レイアウト性から考えて現実的ではない。
以上の説明の如く、水平入射と斜入射それぞれに対応する第2レンズ106の形状を同じとして共通化しても、平板ガラス111の光ビームの進行方向に垂直な軸に対する傾け方向を本実施形態の如く適切に設定することで、走査線曲がりを低減可能となり、画像形成装置における色ずれ低減が可能となる。更に、水平入射と斜入射の組み合わせにより、感光体の数が増えた場合にも装置を大型化することなく、低コスト、省スペース、省エネルギー達成する光走査装置の実現が可能となる。
なおここでは、水平入射と斜入射の組み合わせとして、感光体を5つにした例(光ビームを5本とした対向走査方式の光走査装置の例)を用いて説明したが、従来の4つの感光体に対応する光走査装置においても、斜入射と水平入射で個別レンズを共通化できる効果は同様である。また、感光対数がより増えた場合にも適用可能である。
実際の光走査装置においては走査光学系に折り返しミラーを適宜配置する構成が一般的であるが、本発明の適用に当っては、まず前記光偏向器(ポリゴンミラー104)と被走査面の間の光路上に、光ビーム202a,202bに対応する個別レンズ、平板ガラスのみを配置すると仮定した場合において、前述のように平板ガラス111の光ビームの進行方向に垂直な軸に対する傾け方向を設定し、ついで光学的な配置関係を維持しつつ折り返しミラーを配置するとよい。また、ポリゴンミラー104側に配置される共用レンズである第1レンズ105については、水平入射と斜入射で共通化することへの弊害は無い。その結果は実施例に示す通りである。
(実施形態2)
つぎに、図6に示すように、反射方向がポリゴンミラー104の偏向反射面の法線に対し副走査方向に角度を持つ光ビームのうち、ポリゴンミラー104の偏向反射面の法線に反射方向が平行な光ビーム202bにおける第2レンズ106bの特殊面と第2レンズ106aの特殊面の配置方向が副走査方向において同じとなる光ビーム202aに対応する平板ガラス111aの該光ビーム202aの進行方向に垂直な軸に対する傾け方向は、前記光ビーム202bに対応する平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方向とは逆とすることが好ましい。
また、ポリゴンミラー104の偏向反射面の法線に反射方向が平行な光ビーム202bにおける第2レンズ106bの特殊面と第2レンズ106cの特殊面の配置方向が副走査方向において逆となる光ビーム202cに対応する平板ガラス111cの該光ビーム202cの進行方向に垂直な軸に対する傾け方向は、前記光ビーム202bに対応する平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方向と同じであることが好ましい。
先に説明したように、水平入射の光ビーム202bに対応する光学系では、第2レンズ106bにより走査線曲がりが発生する。この曲り量は小さいほど良く、そのためには、第2レンズ106bの特殊面による走査線曲り補正量が小さいほどよい事となる。
このことは、引いては第2レンズ106a,106cは第2レンズ106bと同一形状のものとしていることから、第2レンズ106a,106cを用いている斜入射光学系で発生する走査線曲がりが小さい程よいこととなるが、そのためには、ポリゴンミラー104への斜入射の角度が小さい方がよい。したがって、前述したように、図3(c)に示すようなポリゴンミラー104に斜入射する光ビーム202a,202cと水平入射する光ビーム202bの組み合わせは非常に効果がある。
また更には、斜入射光学系における平板ガラス111a,111cの対応する光ビーム202a,202cの進行方向に垂直な軸に対する傾け方向と平板ガラス111bの該光ビーム202bの進行方向に垂直な軸に対する傾け方との関係を前述の通りにすることで、走査線曲がりの発生を小さくする事が可能である。それは次のような関係による。
まず、図6に示すが如く、斜入射の光学系と水平入射の光学系において、第2レンズ106bの特殊面の配置方向が第2レンズ106aの特殊面と副走査方向において同じ場合、平板ガラス111bの光ビーム202bの進行方向に垂直な軸に対する傾け方向は、光ビーム202bのポリゴンミラー104における反射方向を基準として、光ビーム202aのポリゴンミラー104における反射方向の副走査方向への傾け方向(図中矢印A方向)と同一回転方向とするが、このとき、平板ガラス111aの光ビーム202aの進行方向に垂直な軸に対する傾け方向は、平板ガラス111bの傾け方向と逆であることが好ましい。
一方、斜入射の光学系と水平入射の光学系において、第2レンズ106bの特殊面の配置方向が第2レンズ106cの特殊面と副走査方向において逆である場合、平板ガラス111bの光ビーム202bの進行方向に垂直な軸に対する傾け方向は、光ビーム202bのポリゴンミラー104における反射方向を基準として、光ビーム202cのポリゴンミラー104における反射方向の副走査方向への傾け方向(図中矢印B方向)と逆の回転方向とするが、このとき、平板ガラス111cの光ビーム202cの進行方向に垂直な軸に対する傾け方向は、平板ガラス111bの傾け方向と同じであることが好ましい。
前述のように、水平入射の平板ガラス111bは、第2レンズ106bで発生する走査線曲がりと逆向きの走査線曲がりを発生させるように配置されている。つまり、斜入射光学系において発生する走査線曲がりと同一の方向ということとなる。
そこで、斜入射光学系における平板ガラス111aの光ビーム202aの進行方向に垂直な軸に対する傾け方向は、水平入射の平板ガラス111bの光ビーム202bの進行方向に垂直な軸に対する傾け方向に対し逆にすることで、平板ガラス111aで発生する走査線曲がりの方向は、斜入射光学系で発生する走査線曲がりの方向と逆となる(斜入射光学系で発生する走査線曲がりを補正する方向となる)。
この結果、斜入射光学系で発生する走査線曲がりは小さくなり、第2レンズ106aで補正する走査線曲がりも小さくなる。この第2レンズ106aを水平入射光学系に第2レンズ106bとして配置した場合、水平入射光学系で発生する走査線曲がりは小さくなり、水平入射光学系に配置される平板ガラス111bでの補正がより有効となる。
このように、平板ガラス111bにより第2レンズ106bによる走査線曲がりを完全にキャンセルする事はその発生量の差から難しいが、平板ガラス111a,111bの前記傾け方向の関係を調整することで、第2レンズ106a,106bで補正する走査線曲がりの量を低減する事が可能となる。あるいは、平板ガラス111b,111cの前記傾け方向の関係を調整することで、第2レンズ106b,106cで補正する走査線曲がりの量を低減する事が可能となる。
なお、後述する実施例では、斜入射光学系の平板ガラス111aの光ビーム202aの進行方向に垂直な軸に対する傾け角度を10degとし、水平入射光学系の平板ガラス111bの光ビーム202bの進行方向に垂直な軸に対する傾け角度を平板ガラス111aとは逆方向に20degとしている。この結果、互いに走査線曲がりは、ほぼ0となり良好な特性が得られている。
また、平板ガラス111bの傾け量(傾け角度)は、斜入射光学系に対応する平板ガラス111aに対しその絶対値が等しい事が望ましい。斜入射光学系で、走査線曲がりが補正される方向に、平板ガラス111aを、問題の無い範囲で最大まで傾けた場合、第2レンズ106aで補正する走査線曲がりは最小となる。また、水平入射においては、第2レンズ106bで発生する走査線曲がりが小さく、同じく補正方向に問題の無い範囲で最大まで平板ガラス111bを傾ける事で残存する走査線曲がりは最小となる。
先に述べたように、平板ガラス111aで発生する走査線曲がりに対し、斜入射光学系の走査線曲がりを補正する特殊面などで発生する走査線曲がりは大きい。その傾向は、ポリゴンミラー104への斜入射角が大きくなると、特に顕著となる。すなわち、走査線曲がりを完全に補正しようとすると、斜入射光学系に対し水平入射光学系では平板ガラスを大きく傾ける必要があるが、ポリゴンミラー104への斜入射角が大きいと走査線曲がりの発生は大きく、個別レンズの補正量は大きくなってしまう。そのため、この結果として、水平入射光学系では個別レンズにより発生する走査線曲がりは増大してしまうことになる。そこで、本発明では、斜入射光学系において個別レンズの補正量を限界まで小さくするため、平板ガラスの傾きを予め限界値に設定するものであり、この結果、水平入射光学系で発生する個別レンズによる走査線曲がりは小さくなる。斜入射光学系で予め平板ガラスを限界まで傾けておき、水平入射光学系での個別レンズによる走査線曲がりの発生を抑制しても、水平入射光学系では平板ガラスを斜入射光学系の場合以上、つまり、限界を超えて傾ける必要が出てきてしまう。このため、おのずと平板ガラスの傾き量の絶対値は等しくなる(限界値)。その結果、斜入射角が大きい場合は、本発明の形態とすることで、水平入射での走査線曲がりを完全に補正する事は困難であっても、最小にする事が可能となる。
もちろん、斜入射角が小さい場合は、本実施形態にしなくても良いことは言うまでもない。
なお、本発明に係る光走査装置において、光源を、例えば複数の発光点を有する半導体レーザアレイや、単数の発光点もしくは複数の発光点を有する光源を複数用いたマルチビーム光源装置とし、複数の光ビームを感光体表面に同時に走査するように構成するとよい。こうすることにより、高速化、高密度化を図った光走査装置および画像形成装置を構成することができ、かかる光走査装置および画像形成装置を構成した場合も、これまで説明してきた効果と同様の効果を得ることができる。
次に、本発明に係る光走査装置を用いた画像形成装置の一実施の形態を、図7を参照しながら説明する。本実施の形態は、本発明に係る光走査装置をタンデム型フルカラーレーザプリンタに適用した例である。また、ここでは4つの感光体を有する画像形成装置の例を説明する。
画像形成ステーションとして、感光体ドラム901と、感光体ドラム901の周囲に感光体ドラム901表面を高圧に帯電する帯電チャージャ902、光走査装置100により記録された静電潜像に帯電したトナーを付着して顕像化する現像ローラ903、現像ローラ903にトナーを補給するトナーカートリッジ904、ドラムに残ったトナーを掻き取って備蓄するクリーニングケース905が配置される。感光体ドラム901へ光偏向器の走査により画像記録が行われる。
上記した画像形成ステーションは中間転写ベルト906の移動方向に並列され、イエロー、マゼンタ、シアン、ブラックのトナー画像が中間転写ベルト906上にタイミングを合わせて順次転写され、重ね合わされてカラー画像が形成される。各画像形成ステーションはトナー色が異なるだけで、基本的には同一構成である。
一方、記録紙は給紙トレイ907から給紙コロ908により供給され、レジストローラ対909により副走査方向の記録開始のタイミングに合わせて送りだされ、中間転写ベルト906からトナー画像が転写されて、定着ローラ910で定着して排紙ローラ912により排紙トレイ911に排出される。
つぎに、図8に5つの感光体を有する画像形成装置の構成例を示す。
図8の如く5つの感光体で構成される場合は、4つの画像形成ステーションは感光体ドラム901A,901C,901D,901Eを用いて図7の場合と同様に配置され、中間転写ベルト906を介して記録紙に転写される。また残り1つの画像形成ステーションは、5つ目の感光体ドラム901Bを中間転写ベルト906上の4色合成されたトナーを記録紙に転写する前に配置し、感光体ドラム901Bの周囲に感光体ドラム901B表面を高圧に帯電する帯電チャージャ、光走査装置200により記録された静電潜像に帯電したトナーを付着して顕像化する現像ローラ、現像ローラにトナーを補給するトナーカートリッジ、ドラムに残ったトナーを掻き取って備蓄するクリーニングケースが配置される。感光体ドラム901A〜901Eへ光偏向器の走査により画像記録が行われる。
画像形成に当っては、まず最初に5つ目の感光体ドラム901Bから1色だけ記録紙に直接転写し、その後中間転写ベルト906から4色のトナーを転写する構成となっている。この場合、独立配置される5つ目の感光体を、例えばブラックとすると、感光体上に転写されずに残ったトナーに他色の混色を防ぐことができ、トナーリサイクルが可能となる。ブラックとした理由は、カラー機においてもモノクロ画像の出力の頻度が高く、トナーリサイクルによる効果が大きく得られるためである。
図9に、図8の画像形成装置で用いられる光走査装置の構成を示す。
光走査装置200は、光学ケーシングの略中央にポリゴンミラー104を備え、該ポリゴンミラー104の図中右側に共用レンズである第1レンズ105A、個別レンズである106a,106b,106c、折り返しミラー107a,107b,107c,107c’を有する。また、ポリゴンミラー104の図中左側に共用レンズである第1レンズ105B、個別レンズである106d,106e、折り返しミラー107d,107e,107e’を有する。また、第2レンズ106a〜106eそれぞれと感光体ドラム901A〜901Eそれぞれとの間の光学ケーシングには不図示の平板ガラスが設けられている。
また、不図示の光源装置から射出された5本の光ビームはそれぞれ以下の経路を経て感光体ドラムに照射される。
(経路1)ポリゴンミラー104−第1レンズ105A−折り返しミラー107a−第2レンズ106a−平板ガラス111a−感光体ドラム901A
(経路2)ポリゴンミラー104−第1レンズ105A−第2レンズ106b−折り返しミラー107b−平板ガラス111b−感光体ドラム901B
(経路3)ポリゴンミラー104−第1レンズ105A−折り返しミラー107c−折り返しミラー107c’−第2レンズ106c−平板ガラス111c−感光体ドラム901C
(経路4)ポリゴンミラー104−第1レンズ105B−折り返しミラー107d−第2レンズ106d−平板ガラス111d−感光体ドラム901D
(経路5)ポリゴンミラー104−第1レンズ105B−折り返しミラー107e−折り返しミラー107e’−第2レンズ106e−平板ガラス111e−感光体ドラム901E
ここで、経路1,3〜5は、前記斜入射光学系に対応するものであり、経路2は前記水平入射光学系に対応するものである。これにより、5つの感光体に対応する光走査装置200において、これまで説明してきた本発明の効果が得られる。
なお、これまで説明してきた、平板ガラスの傾け方向などは、図5に記載するように感光体ドラムに光ビームを導くための、副走査方向への折返しミラーを省略した状態での方向とする。すなわち、実際の光走査装置において、折り返しミラーを省略し、ポリゴンミラー104と被走査面の間の光路上に、ポリゴンミラー104に水平入射する光ビーム,斜入射する光ビームそれぞれに対応する個別レンズ(走査レンズ)、平板ガラスのみを配置すると仮定したときの該平板ガラスの傾け方向を確認することにより、本発明の実施を検証することが可能である。
以下、本発明の光走査装置200に関する具体的な数値に基づく実施例を示す。なお、光源装置は図1に示す構成を前提とする。
(装置条件)
光源として用いられる半導体レーザ201は発光波長:780nmのもので、放射される発散性の光束はカップリングレンズ203(焦点距離(780nm):10mm)により「実質的な平行光束」に変換され、シリンドリカルレンズ103(入射面副走査方向曲率半径:74.9mm、肉厚:3mm)の作用により、ポリゴンミラー104の偏向反射面の位置に「主走査方向に長い線像」として結像する。
ポリゴンミラー(光偏向器)104は、内接円半径が13mmで6面の偏向反射面を持つポリゴンミラーを用いている。
偏向反射面の法線に対し、光ビーム202a(または202c)は副走査方向に1.46°の角度で斜めに入射され、主走査方向においては像高0に向かう光束に対し約60°で入射されている。カップリングレンズ203から射出された光束を規制するアパーチャ204は、主走査方向に4.8mm、副走査方向に1.18mmの矩形アパーチャを用いる。
面番号1、2で示される第1レンズ105は、偏向反射面に平行に配置され(レンズへの光束としては、副走査方向において±1.46°の角度で斜め入射する光ビーム202a,202cと垂直に入射する(偏向反射面に対し副走査方向において水平入射する)光ビーム202bがある)、複数の光ビームで共用される。偏向反射面に対し副走査方向の水平面に平行となる水平入射の光ビーム202bは、第1レンズ105の副走査方向略中心、斜入射(±1.46°)の光ビーム202a,202cは副走査方向の軸外を通過する。
面番号3、4で示される第2レンズ106は、レンズの光軸と入射光束を一致させて配置している(レンズに光束が斜め入射されないように各々±1.46°傾けて、水平入射ビームは第1レンズ105と同様に配置している)。
(レンズデータ)
表1に、第1レンズ105及び第2レンズ106のレンズデータを示す。
Figure 0005278700
なお、面番号2、3のレンズ面は主走査方向に副走査方向の曲率が変化する面であり、次式(2)で表される。
X(Y,Z)=Y^2・Cm/{1+√[1-(1+K)・(Y・Cm)^2]}+ A・Y^4 + B・Y^6 + C・Y^8 + D・Y^10 + E・Y^12 ・・・+ Cs(Y)・Z^2/{1+√[1-(Cs(Y)・Z)^2]} ・・・(2)
ここで、Cm=1/RY、Cs(Y)=1/RZ + aY + bY^2 + cY^3 + dY^4 + eY^5 + fY^6 + gY^7 + hY8 + iY^9 + jY^10・・・とする。なお、光軸を含み、主走査方向に平行な断面である「主走査断面」内の近軸曲率半径をRY、光軸から主走査方向の距離をY、高次係数をA,B,C,D・・・とし、主走査断面に直交する「副走査断面」内の近軸曲率半径をRZとする。
また、面番号1のレンズ面は、副走査方向に曲率は持たない。また、全ての面で主走査方向の形状は非円弧形状である。更に、面番号4のレンズ面は、前記説明の特殊面であり、走査線曲がりを補正している。
また、本発明の光走査装置において、斜入射光学系、水平入射光学系とも走査レンズのデータは表1に示すものとなる。但し、斜入射光学系においては、斜入射角度がそれぞれ+1.46°、−1.46°となる光ビーム202a,202cごとで、第2レンズ106における特殊面が副走査方向に反転される関係で配置される。この第2レンズ106が前述した走査光学系110における個別レンズとなる。
また、表2に各光学素子の配置関係を示す。表2における距離Xは、ポリゴンミラー104の回転軸に垂直な面に投影したときの光軸方向(第1レンズ105の光軸方向になる)の各レンズ面間の距離を示す。
Figure 0005278700
また、平板ガラス111aの対応する光ビーム202aの進行方向に垂直な軸に対する傾け角度を+10°、平板ガラス111bの対応する光ビーム202bの進行方向に垂直な軸に対する傾け角度を−20°、平板ガラス111cの対応する光ビーム202cの進行方向に垂直な軸に対する傾け角度を−10°とする。なお、光ビーム202aはポリゴンミラー104に対する斜入射角度+1.46°の光ビームであり、光ビーム202bはポリゴンミラー104に水平入射する光ビームであり、なお、光ビーム202cはポリゴンミラー104に対する斜入射角度−1.46°の光ビームである。
以上のレンズを適用する本実施例の光走査装置の副走査方向の断面構成は、図6に示す通りである。なお、表2に示す平板ガラス111a,111b,111cの傾け方向において、符号+は図6において右回転方向、符号−は左回転方向を意味する。なお、図6では、ポリゴンミラー104以降の光路について記載しており、ポリゴンミラー104に入射する光路は割愛している。
また、平板ガラス111a,111b,111cは割愛しているが、5つの感光体に対応する光走査装置200の構成例は、図9に示す通りである。この場合、図6の断面構成は、図9においてポリゴンミラー104の右側のみの構成を示している。
なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。
100,200 光走査装置
101,101A,101B,101C,101D、901,901A,901B,901C,901D,901E 感光体ドラム
103 シリンドリカルレンズ
104 ポリゴンミラー
105,105A,105B 第1レンズ(共用レンズ)
106,106A,106B,106a,106b,106c,106d,106e 第2レンズ(個別レンズ)
107,107A,107B,107a,107b,107c,107c’,107d,107e,107e’,108A,108B 折り返しミラー
110 走査光学系
111,111A,111B,111C,111D,111a,111b,111c 平板ガラス
121 同期検知センサ
201 半導体レーザ
202,202a,202b,202c 光ビーム(光束)
203 カップリングレンズ
204 アパーチャ
902 帯電チャージャ
903 現像ローラ
904 トナーカートリッジ
905 クリーニングケース
906 中間転写ベルト
906’ 転写ベルト
907 給紙トレイ
908 給紙コロ
909 レジストローラ対
910 定着ローラ
911 排紙トレイ
912 排紙ローラ
特開平9−54263号公報 特開2001−4948号公報 特開2001−10107号公報 特開2001−33720号公報 特開2003−5114号公報 特開2005−31223号公報 特開2005−37582号公報

Claims (7)

  1. 複数の光ビームを射出する光源装置と、前記複数の光ビームを偏向する光偏向器と、前記偏向された複数の光ビームそれぞれに対応して被走査面に集光する走査光学系と、前記複数の光ビームそれぞれに対応して走査光学系と被走査面の間の光路上に、主走査方向、副走査方向ともに屈折力を持たず、且つ入射する光ビームに対し該光ビームの進行方向に垂直な軸に対してある角度を持って傾いて配置される平板ガラスと、を備える光走査装置において、
    前記複数の光ビームには、前記光偏向器の反射面の法線に対し副走査方向にある角度を持って入射する光ビームB1と、前記光偏向器の反射面の法線に対し平行に入射する光ビームB2が含まれ、
    前記走査光学系には、前記複数の光ビームそれぞれに対応してレンズ面形状が副走査方向において非対称となる特殊面をもつ走査レンズがお互いに同一形状の個別レンズとして設けられており、
    前記光偏向器と被走査面の間の光路上に、前記光ビームB1,B2に対応する個別レンズ、平板ガラスのみを配置すると仮定した場合、
    前記光ビームB2に対応する個別レンズと前記光ビームB1に対応する個別レンズの光ビームの進行方向に対する副走査方向のレンズ面形状の向きが同一となり、
    前記光ビームB2に対応する前記平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向は、副走査方向において、前記光偏向器における前記光ビームB2の反射方向に対する前記光ビームB1の反射方向の傾け方向と同じであることを特徴とする光走査装置。
  2. 前記光ビームB2に対応する個別レンズと光ビームの進行方向に対する副走査方向のレンズ面形状の向きが同一となる個別レンズを用いた前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け方向は、前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向とは逆であることを特徴とする請求項1記載の光走査装置。
  3. 前記光ビームB2に対応する個別レンズと光ビームの進行方向に対する副走査方向のレンズ面形状の向きが反転された個別レンズを用いた前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け方向は、前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け方向と同じあることを特徴とする請求項1または2記載の光走査装置。
  4. 前記光ビームB2に対応する平板ガラスの該光ビームB2の進行方向に垂直な軸に対する傾け角度は、前記光ビームB1に対応する平板ガラスの該光ビームB1の進行方向に垂直な軸に対する傾け角度とその絶対値が等しいことを特徴とする請求項2または3記載の光走査装置。
  5. 前記複数の光ビームには、前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の異なる側からそれぞれある角度を持ち該光偏向器に入射する複数の光ビームが含まれ、
    前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の一方の側からある角度を持って該光偏向器に入射する光ビームに対応する平板ガラスの該光ビームの進行方向に垂直な軸に対する傾け方向は、前記光偏向器の反射面の法線を含む水平面を挟んで副走査方向の他方の側からある角度を持って該光偏向器に入射する光ビームに対応する平板ガラスの該光ビームの進行方向に垂直な軸に対する傾け方向とは逆であることを特徴とする請求項1記載の光走査装置。
  6. 前記光源装置は、複数の光ビームを射出するマルチビーム光源装置であることを特徴とする請求項1〜5のいずれかに記載の光走査装置。
  7. 電子写真プロセスを実行することによって画像を形成する画像形成装置であって、
    電子写真プロセスの露光プロセスを実行する手段として請求項1〜6のいずれかに記載の光走査装置を具備することを特徴とする画像形成装置。
JP2009212691A 2009-09-15 2009-09-15 光走査装置及び画像形成装置 Expired - Fee Related JP5278700B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009212691A JP5278700B2 (ja) 2009-09-15 2009-09-15 光走査装置及び画像形成装置
US12/881,671 US7969635B2 (en) 2009-09-15 2010-09-14 Optical scanning device and image forming apparatus using same
CN201010290885.5A CN102023382B (zh) 2009-09-15 2010-09-15 光扫描装置以及图像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009212691A JP5278700B2 (ja) 2009-09-15 2009-09-15 光走査装置及び画像形成装置

Publications (3)

Publication Number Publication Date
JP2011064717A JP2011064717A (ja) 2011-03-31
JP2011064717A5 JP2011064717A5 (ja) 2012-08-16
JP5278700B2 true JP5278700B2 (ja) 2013-09-04

Family

ID=43730293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009212691A Expired - Fee Related JP5278700B2 (ja) 2009-09-15 2009-09-15 光走査装置及び画像形成装置

Country Status (3)

Country Link
US (1) US7969635B2 (ja)
JP (1) JP5278700B2 (ja)
CN (1) CN102023382B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691528B2 (ja) 2011-01-07 2015-04-01 株式会社リコー 光走査装置及び画像形成装置
JP5761655B2 (ja) 2011-03-16 2015-08-12 株式会社リコー 光走査装置、画像形成装置、走査レンズ及び走査レンズの成形方法
JP5342041B2 (ja) * 2011-07-11 2013-11-13 キヤノン株式会社 マルチビーム走査光学装置の組立調整方法及び製造方法
JP6040457B2 (ja) * 2011-10-06 2016-12-07 コニカミノルタ株式会社 レーザー走査光学装置
JP5896117B2 (ja) 2011-12-13 2016-03-30 株式会社リコー 光走査装置および画像形成装置
JP6244663B2 (ja) 2012-07-05 2017-12-13 株式会社リコー 光走査装置及び画像形成装置
US9019333B2 (en) 2013-01-22 2015-04-28 Ricoh Company, Limited Optical scanning apparatus and image forming apparatus utilizing a rotational polygon mirror
JP6210293B2 (ja) 2013-10-09 2017-10-11 株式会社リコー 光走査装置及び画像形成装置
JP2015225139A (ja) 2014-05-27 2015-12-14 株式会社リコー 光走査装置及び画像形成装置
JP6388382B2 (ja) 2014-07-31 2018-09-12 キヤノン株式会社 走査光学装置及び画像形成装置
JP2017016006A (ja) 2015-07-03 2017-01-19 株式会社リコー 光走査装置、画像表示装置
US10852533B2 (en) 2015-12-10 2020-12-01 Ricoh Company, Ltd. Optical scanning device, image display device, and vehicle
JP7030576B2 (ja) * 2018-03-16 2022-03-07 キヤノン株式会社 光走査装置及び画像形成装置
CN111163240B (zh) * 2020-02-14 2024-10-18 威海华菱光电股份有限公司 接触式图像传感器及图像处理方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2523929B2 (ja) 1990-04-12 1996-08-14 松下電器産業株式会社 熱電装置及びその製造方法
JPH07294804A (ja) * 1993-09-22 1995-11-10 Ricoh Co Ltd 原稿読取用レンズ
JPH08313833A (ja) * 1995-05-18 1996-11-29 Toshiba Corp 光走査装置
JP3295281B2 (ja) 1995-08-10 2002-06-24 キヤノン株式会社 レーザー走査光学装置
JPH10111468A (ja) * 1996-10-07 1998-04-28 Sankyo Seiki Mfg Co Ltd 光走査装置
JP2001010107A (ja) * 1999-06-25 2001-01-16 Asahi Optical Co Ltd マルチビーム光源走査装置
JP2001004948A (ja) 1999-06-25 2001-01-12 Asahi Optical Co Ltd マルチビーム光源走査装置
JP3851469B2 (ja) * 1999-07-21 2006-11-29 ペンタックス株式会社 マルチビーム光源走査装置
JP4774157B2 (ja) * 2000-04-13 2011-09-14 株式会社リコー マルチビーム光源装置及び光走査装置
JP4148688B2 (ja) * 2001-03-07 2008-09-10 株式会社リコー マルチビーム走査装置
JP4454186B2 (ja) * 2001-06-20 2010-04-21 Hoya株式会社 走査光学系
US7050082B2 (en) * 2002-01-23 2006-05-23 Ricoh Company, Ltd. Image forming system employing effective optical scan-line control device
US6987593B2 (en) * 2002-03-08 2006-01-17 Ricoh Company, Ltd. Optical scanning device and image forming apparatus using the same
JP3607255B2 (ja) * 2002-03-25 2005-01-05 株式会社リコー 光走査装置および画像形成装置
JP2003322814A (ja) * 2002-05-01 2003-11-14 Ricoh Co Ltd 光走査装置、画像形成装置
JP4430314B2 (ja) * 2003-02-17 2010-03-10 株式会社リコー 光走査装置および画像形成装置
US7411712B2 (en) * 2003-03-19 2008-08-12 Ricoh Company, Limited Optical scanner and image formation apparatus
KR100510141B1 (ko) * 2003-05-21 2005-08-25 삼성전자주식회사 광 주사장치
JP4015065B2 (ja) * 2003-05-29 2007-11-28 株式会社リコー 光走査装置及び画像形成装置
US7277212B2 (en) * 2003-09-19 2007-10-02 Ricoh Company, Limited Optical scanning unit and image forming apparatus
JP2005140922A (ja) * 2003-11-05 2005-06-02 Ricoh Co Ltd 光走査装置、画像形成装置及び位置ずれ補正方法
JP2006030912A (ja) * 2004-07-21 2006-02-02 Brother Ind Ltd 画像形成装置及び走査ユニット
JP4663355B2 (ja) * 2005-03-11 2011-04-06 株式会社リコー 光走査装置および画像形成装置
JP2007010797A (ja) * 2005-06-28 2007-01-18 Ricoh Co Ltd 光走査装置および画像形成装置
JP4975983B2 (ja) * 2005-06-29 2012-07-11 株式会社リコー 光走査装置、マルチビーム光走査装置及び画像形成装置
JP4616118B2 (ja) * 2005-08-04 2011-01-19 株式会社リコー 光走査装置及び画像形成装置
JP4739996B2 (ja) * 2006-03-14 2011-08-03 株式会社リコー 光走査装置および画像形成装置
JP5037837B2 (ja) * 2006-03-15 2012-10-03 株式会社リコー 光走査装置および画像形成装置
JP4909653B2 (ja) * 2006-06-21 2012-04-04 株式会社リコー 光走査装置及び画像形成装置
US7729031B2 (en) * 2006-09-07 2010-06-01 Ricoh Company, Ltd. Light-source device, optical scanning device, and image forming apparatus
JP4842747B2 (ja) * 2006-09-20 2011-12-21 株式会社リコー 光走査装置、画像形成装置およびカラー画像形成装置
US8233209B2 (en) * 2007-01-31 2012-07-31 Ricoh Company, Limited Optical scanning device and image forming apparatus
US7924487B2 (en) * 2007-02-09 2011-04-12 Ricoh Company, Ltd. Optical scanning device and image forming apparatus
JP2009069507A (ja) * 2007-09-13 2009-04-02 Ricoh Co Ltd 光走査装置、および画像形成装置
JP2009157269A (ja) * 2007-12-27 2009-07-16 Ricoh Co Ltd 光走査装置・画像形成装置
JP5332669B2 (ja) * 2008-09-03 2013-11-06 株式会社リコー 光走査装置、および画像形成装置

Also Published As

Publication number Publication date
CN102023382A (zh) 2011-04-20
JP2011064717A (ja) 2011-03-31
US7969635B2 (en) 2011-06-28
US20110063704A1 (en) 2011-03-17
CN102023382B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5278700B2 (ja) 光走査装置及び画像形成装置
JP4663355B2 (ja) 光走査装置および画像形成装置
JP4430314B2 (ja) 光走査装置および画像形成装置
JP4616118B2 (ja) 光走査装置及び画像形成装置
JP4739996B2 (ja) 光走査装置および画像形成装置
JP4365582B2 (ja) 光走査装置および画像形成装置
JP2004085969A (ja) 光走査装置および画像形成装置
JP2009069507A (ja) 光走査装置、および画像形成装置
JP2011100007A (ja) 光走査装置および画像形成装置
JP2012098717A (ja) 光走査装置および画像形成装置
JP2008026410A (ja) 光走査装置、及びその光走査装置を備える光書込装置、並びにその光走査装置またはその光書込装置を備える画像形成装置
JP5089864B2 (ja) 光走査装置および画像形成装置
JP4460865B2 (ja) 光走査装置及びカラー画像形成装置
JP5168753B2 (ja) 光走査装置および画像形成装置、並びにレンズ
JP5019815B2 (ja) 光走査装置および画像形成装置
JP2007178748A (ja) 走査光学系、それを用いた走査光学装置および画像形成システム
JP2011039306A (ja) 光走査装置及び画像形成装置
JP2007316115A (ja) 走査光学装置及びそれを用いた画像形成装置
JP2006064876A (ja) 光走査装置及び画像形成装置
JP4181765B2 (ja) 画像形成装置
JP5949170B2 (ja) 光走査装置および画像形成装置
JP4744117B2 (ja) 光走査装置および画像形成装置
JP5315682B2 (ja) 光走査装置及び画像形成装置
JP4201315B2 (ja) 走査光学系および光走査装置および画像形成装置
JP2004226864A (ja) 光走査装置および画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R151 Written notification of patent or utility model registration

Ref document number: 5278700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees