JP5109290B2 - 電動機駆動制御システムおよびその制御方法 - Google Patents

電動機駆動制御システムおよびその制御方法 Download PDF

Info

Publication number
JP5109290B2
JP5109290B2 JP2006150110A JP2006150110A JP5109290B2 JP 5109290 B2 JP5109290 B2 JP 5109290B2 JP 2006150110 A JP2006150110 A JP 2006150110A JP 2006150110 A JP2006150110 A JP 2006150110A JP 5109290 B2 JP5109290 B2 JP 5109290B2
Authority
JP
Japan
Prior art keywords
voltage
loss
motor
control
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006150110A
Other languages
English (en)
Other versions
JP2007325351A5 (ja
JP2007325351A (ja
Inventor
賢樹 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006150110A priority Critical patent/JP5109290B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to PCT/JP2007/060944 priority patent/WO2007139126A1/ja
Priority to US11/802,523 priority patent/US7701156B2/en
Priority to EP07744363.8A priority patent/EP2023482B1/en
Priority to KR1020087031712A priority patent/KR101021256B1/ko
Priority to CN2007800202567A priority patent/CN101461130B/zh
Publication of JP2007325351A publication Critical patent/JP2007325351A/ja
Publication of JP2007325351A5 publication Critical patent/JP2007325351A5/ja
Application granted granted Critical
Publication of JP5109290B2 publication Critical patent/JP5109290B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/74Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors controlling two or more ac dynamo-electric motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/45Special adaptation of control arrangements for generators for motor vehicles, e.g. car alternators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/09PWM with fixed limited number of pulses per period
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/13Different type of waveforms depending on the mode of operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/912Pulse or frequency counter

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

この発明は、電動機駆動制御システムに関し、より特定的には直流電圧を可変制御可能なコンバータを含んで構成される電動機駆動制御システムに関する。
従来より、交流電動機を駆動する電動機駆動制御システムの一形式として、コンバータによって可変制御された直流電圧を、インバータによって交流電動機を駆動制御する交流電圧に変換する構成が用いられている(たとえば特許文献1および2)。
たとえば、特開2003−33071号公報(特許文献1)には、PAM(パルス振幅変調)回路としてのコンバータと、このPAM回路の出力電圧を交流電圧に変換するPWM(パルス幅変調)回路としてのインバータとを備えたモータ制御装置が開示されている。特に、特許文献1に開示されたモータ制御装置では、コンバータおよびインバータのスイッチング素子の耐久性を均等にすることによって、装置全体の寿命を向上させることが開示されている。
また、特開2003−116280号公報(特許文献2)に開示された駆動装置では、モータに要求される動力を電力変換して得られたバッテリ出力要求電力をバッテリの端子間電圧で除算してコンバータ内のリアクトルを流れる電流を演算する。そして、演算された電流に応じて、コンバータを構成するトランジスタのキャリア周波数を、コンバータ損失が最小となるように設定して、駆動装置のエネルギ効率を向上させることができる。
また、特開2003−348892号公報(特許文献3)および特開2001−238490号公報(特許文献4)には、直流電圧制御機能付きコンバータの出力を複数のモータ駆動回路(モータ制御機能付きインバータ)により共有して、複数のモータを効率よく制御するモータ制御装置が開示されている。特許文献3および4に開示された構成では、各インバータの通流率やモータ負荷等からコンバータが出力する直流電圧値を変更することが開示されている。
特開2003−33071号公報 特開2003−116280号公報 特開2003−348892号公報 特開2001−238490号公報
特許文献1〜4に開示されたような、可変制御されるコンバータの出力電圧をインバータにより交流電圧に変換して交流電動機を駆動する構成では、コンバータの出力電圧、すなわちインバータの直流リンク側電圧の電圧レベルに従って、システムの各構成要素での損失が変化するため、システム全体の効率も変化することが予想される。
しかしながら、特許文献1〜4には、上記のような構成の電動機駆動制御システムにおいて、システム全体の効率を考慮して、コンバータが可変制御する直流電圧値を定めることについては開示も示唆もされていない。
この発明は、このような問題点を解決するためになされたものであって、この発明の目的には、直流電圧を可変制御可能に構成されたコンバータおよびコンバータの出力電圧を交流電圧に変換するインバータを含む構成の電動機駆動制御システムにおいて、システム全体での電力損失が最小となるようにコンバータの出力電圧を適切に設定して、システムの全体効率を向上させることである。
この発明による電動機駆動制御システムは、直流電源と、コンバータと、インバータと、電圧設定手段とを備える。コンバータは、直流電源の出力電圧を昇圧可能に構成されて、直流電源の出力電圧を電圧指令値に従って可変制御して直流電源配線に出力するように構成される。インバータは、電動機が動作指令に従って作動するように、複数のスイッチング素子により直流電源配線上の直流電力と電動機を駆動する交流電力との間で電力変換を行なう。電圧設定手段は、コンバータの電圧指令値を設定する。さらに、電圧設定手段は、最小電圧設定手段と、第1から第4の損失推定手段と、最適電圧決定手段と、電圧指令発生手段とを含む。最小電圧設定手段は、記電動機の動作状態に基づき、電動機の誘起電圧に対応させて必要最小電圧を求める。第1の損失推定手段は、予め設定された損失特性に基づき直流電源での電力損失を推定する。第2の損失推定手段は、予め設定された損失特性に基づきコンバータでの電力損失を推定する。第3の損失推定手段は、予め設定された損失特性に基づきインバータでの電力損失を推定する。第4の損失推定手段は、予め設定された損失特性に基づき電動機での電力損失を推定する。最適電圧決定手段は、最小電圧設定手段により求められた必要最小電圧より高く、かつ、コンバータの出力上限電圧より低い電圧範囲内で、第1から第4の損失推定手段により推定された電力損失の総和が最小となる直流電源配線上の直流電圧に対応させて電圧指令値を発生する。
上記電動機駆動制御システムによれば、直流電源電圧を昇圧可能に構成されたコンバータおよび、このコンバータの出力電圧を電動機駆動制御用の交流電圧に変換するインバータを備えた構成において、直流電源、コンバータ、インバータおよび電動機のそれぞれででの電力損失推定に基づき、システム全体での電力損失の総和が最小値となるような最適電圧に対応させて、かつ、電動機の誘起電圧よりも高い範囲内でコンバータの出力電圧指令値を設定することができる。これにより、コンバータ出力電圧の適切な設定により、システムの全体効率を向上させることができる。
好ましくは、上記電動機駆動制御システムでは、インバータの制御手段は、電圧指令値に応じてインバータに対するスイッチング制御を行なう複数の制御方式を有し、この複数の制御方式のうち1つの制御方式を選択する制御方式選択手段を含む。そして、第3の損失推定手段は、制御方式ごとに設定された損失特性に基づき、電動機の回転数およびトルクならびに制御方式選択手段により選択される制御方式に応じて、インバータでの電力損失を推定する。
上記により、電動機の動作状態に応じてインバータの制御方式を切換える制御構成において、この制御方式ごとにインバータでの電力損失特性が異なる点を反映して、システム全体での電力損失をより正確に推定することができる。したがって、システムの全体効率を高めるためのコンバータ出力電圧の設定をより適切に行なうことができる。
さらに好ましくは、上記電動機駆動制御システムでは、複数の制御方式は、正弦波パルス幅変調制御、過変調パルス幅変調制御、および矩形波電圧制御とを含む。正弦波パルス幅変調制御は、電動機に印加される各相電圧が、電圧指令値に応じたパルス幅変調波形電圧となるようにインバータに対してスイッチング制御を行なう。過変調パルス幅変調制御は、電動機に印加される各相電圧が、正弦波パルス幅変調制御よりも変調率の高いパルス幅変調波形電圧となるようにインバータに対してスイッチング制御を行なう。矩形波電圧制御は、電動機に印加される各相電圧が、電圧指令値に応じた矩形波電圧となるようにインバータに対してスイッチング制御を行なう。
上記により、上記電動機駆動制御システムによれば、インバータの制御方式として、正弦波パルス幅変調方式、過変調パルス幅方式および矩形波電圧制御方式とを切換える制御構成において、コンバータ出力電圧の適切な設定により、システムの全体効率を向上させることができる。
あるいは好ましくは、上記電動機駆動制御システムでは、損失特性は、電動機の回転数およびトルクならびに直流電源配線上の直流電圧のうちの少なくとも1つに対する電力損失の変化を表わす。
上記電動機駆動制御システムによれば、電動機の回転数およびトルクならびにコンバータ出力電圧に対する電力損失特性を、直流電源、コンバータ、インバータ、電動機のそれぞれにおいて設定することにより、コンバータ出力電圧に応じたシステム全体での電力損失の総和の変化をより確実に推定することができる。これにより、システムの全体効率を高めるためのコンバータ出力電圧の設定をより適切に行なうことができる。
この発明によれば、直流電圧を可変制御可能に構成されたコンバータおよびコンバータの出力電圧を交流電圧に変換するインバータを含む構成の電動機駆動制御システムにおいて、コンバータの出力電圧を適切に設定することによって、システム全体での電力損失を最小として全体効率を向上させることができる。
以下において、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下図中の同一または相当部分には同一符号を付してその説明は原則的に繰返さないものとする。
図1は、本発明の実施の形態による電動機駆動制御システムが搭載される構成の一例として示されるハイブリッド車両100の構成を説明するブロック図である。
図1を参照して、ハイブリッド車両100は、エンジン110と、動力分割機構120と、モータジェネレータMG1,MG2と、減速機130と、駆動軸140および車輪(駆動輪)150を備える。ハイブリッド車両100は、さらに、モータジェネレータMG1,MG2を駆動制御するための、直流電圧発生部10♯と、平滑コンデンサC0と、インバータ20,30と、制御装置50とを備える。
エンジン110は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関により構成される。エンジン110には、冷却水の温度を検知する冷却水温センサ112が設けられる。冷却水温センサ112の出力は、制御装置50へ送出される。
動力分割機構120は、エンジン110の発生する動力を、駆動軸140への経路とモータジェネレータMG1への経路とに分割可能に構成される。動力分割機構120としては、サンギヤ、プラネタリギヤおよびリングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。たとえば、モータジェネレータMG1のロータを中空としてその中心にエンジン110のクランク軸を通すことで、動力分割機構120にエンジン110とモータジェネレータMG1,MG2とを機械的に接続することができる。具体的には、モータジェネレータMG1のロータをサンギヤに接続し、エンジン110の出力軸をプラネタリギヤに接続し、かつ、出力軸125をリングギヤに接続する。モータジェネレータMG2の回転軸とも接続された出力軸125は、減速機130を介して駆動輪150を回転駆動するための駆動軸140に接続される。なお、モータジェネレータMG2の回転軸に対する減速機をさらに組込んでもよい。
モータジェネレータMG1は、エンジン110によって駆動される発電機として動作し、かつ、エンジン110の始動を行なう電動機として動作するものとして、電動機および発電機の機能を併せ持つように構成される。
同様に、モータジェネレータMG2は、出力軸125および減速機130を介して、駆動軸140へ出力が伝達される車両駆動力発生用としてハイブリッド車両100に組込まれる。さらに、モータジェネレータMG2は、車輪150の回転方向と反対方向の出力トルクを発生することによって回生発電を行なうように電動機および発電機への機能を併せ持つように構成される。
次に、モータジェネレータMG1,MG2を駆動制御するための構成について説明する。
直流電圧発生部10♯は、走行用バッテリBと、平滑コンデンサC1と、昇降圧コンバータ15とを含む。走行用バッテリBは本発明における「直流電源」に対応し、昇降圧コンバータ15は、本発明での「コンバータ」に対応する。
走行用バッテリBとしては、ニッケル水素またはリチウムイオン等の二次電池を適用可能である。なお、以下、本実施の形態では、二次電池で構成された走行用バッテリBを「直流電源」とする構成について説明するが、走行用バッテリBに代えて、電気二重層キャパシタ等の蓄電装置を適用することも可能である。
走行用バッテリBが出力するバッテリ電圧Vbは電圧センサ10によって検知され、走行用バッテリBに入出力されるバッテリ電流Ibは電流センサ11によって検知される。さらに、走行用バッテリBには、温度センサ12が設けられる。なお、走行用バッテリBの温度が局所的に異なる可能性があるため、温度センサ12は、走行用バッテリBの複数箇所に設けてもよい。電圧センサ10、電流センサ11および温度センサ12によって検出された、バッテリ電圧Vb、バッテリ電流Ibおよびバッテリ温度Tbは、制御装置50へ出力される。
平滑コンデンサC1は、接地ライン5および電源ライン6の間に接続される。なお、走行用バッテリBの正極端子および電源ライン6の間、ならびに、走行用バッテリBの負極端子および接地ライン5の間には、車両運転時にオンされ、車両運転停止時にオフされるリレー(図示せず)が設けられる。
昇降圧コンバータ15(以下、単にコンバータとも称する)は、リアクトルL1と、スイッチング制御される電力用半導体スイッチング素子(以下、「スイッチング素子」と称する)Q1,Q2とを含む。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電源ライン6の間に接続される。また、平滑コンデンサC0は、電源ライン7および接地ライン5の間に接続される。
イッチング素子Q1およびQ2は、電源ライン7および接地ライン5の間に直列に接続される。電力用半導体スイッチング素子Q1およびQ2のオンオフは、制御装置50からのスイッチング制御信号S1およびS2によって制御される。
この発明の実施の形態において、スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。
インバータ20および30の直流電圧側は、共通の接地ライン5および電源ライン7を介して、コンバータ15と接続される。すなわち、電源ライン7は、本発明での「直流電源配線」に対応する。また、モータジェネレータMG1およびMG2は、本発明における「電動機」に対応し、インバータ20および30は、本発明での「インバータ」に対応する。
インバータ20は、電源ライン7および接地ライン5の間に並列に設けられる、U相アーム22と、V相アーム24と、W相アーム26とから成る。各相アームは、電源ライン7および接地ライン5の間に直列接続されたスイッチング素子から構成される。たとえば、U相アーム22は、スイッチング素子Q11,Q12から成り、V相アーム24は、スイッチング素子Q13,Q14から成り、W相アーム26は、スイッチング素子Q15,Q16から成る。また、スイッチング素子Q11〜Q16に対して、逆並列ダイオードD11〜D16がそれぞれ接続されている。スイッチング素子Q11〜Q16のオンオフは、制御装置50からのスイッチング制御信号S11〜S16によって制御される。
モータジェネレータMG1は、固定子に設けられたU相コイル巻線U1、V相コイル巻線V1およびW相コイル巻線W1と、図示しない回転子とを含む。U相コイル巻線U1、V相コイル巻線V1およびW相コイル巻線W1の一端は、中性点N1で互いに接続され、その他端は、インバータ20のU相アーム22、V相アーム24およびW相アーム26とそれぞれ接続される。インバータ20は、制御装置50からのスイッチング制御信号S11〜S16に応答したスイッチング素子Q11〜Q16のオンオフ制御(スイッチング制御)により、直流電圧発生部10♯およびモータジェネレータMG1の間での双方向の電力変換を行なう。
具体的には、インバータ20は、制御装置50によるスイッチング制御に従って、電源ライン7から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG1へ出力することができる。これにより、モータジェネレータMG1は、指定されたトルクを発生するように駆動される。また、インバータ20は、エンジン110の出力を受けてモータジェネレータMG1が発電した3相交流電圧を制御装置50によるスイッチング制御に従って直流電圧に変換し、その変換した直流電圧を電源ライン7へ出力することもできる。
インバータ30は、インバータ20と同様に構成されて、スイッチング制御信号S21〜S26によってオンオフ制御されるスイッチング素子Q21〜Q26および、逆並列ダイオードD21〜D26を含んで構成される。
モータジェネレータMG2は、モータジェネレータMG1と同様に構成されて、固定子に設けられたU相コイル巻線U2、V相コイル巻線V2およびW相コイル巻線W2と、図示しない回転子とを含む。モータジェネレータMG1と同様に、U相コイル巻線U2、V相コイル巻線V2およびW相コイル巻線W2の一端は、中性点N2で互いに接続され、その他端は、インバータ30のU相アーム32、V相アーム34およびW相アーム36とそれぞれ接続される。
インバータ30は、制御装置50からのスイッチング制御信号S21〜S26に応答したスイッチング素子Q21〜Q26のオンオフ制御(スイッチング制御)により、直流電圧発生部10♯およびモータジェネレータMG2の間での双方向の電力変換を行なう。
具体的には、インバータ30は、制御装置50によるスイッチング制御に従って、電源ライン7から受ける直流電圧を3相交流電圧に変換し、その変換した3相交流電圧をモータジェネレータMG2へ出力することができる。これにより、モータジェネレータMG2は、指定されたトルクを発生するように駆動される。また、インバータ30は、車両の回生制動時、車輪150からの回転力を受けてモータジェネレータMG2が発電した3相交流電圧を制御装置50によるスイッチング制御に従って直流電圧に変換し、その変換した直流電圧を電源ライン7へ出力することができる。
なお、ここでいう回生制動とは、ハイブリッド車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
モータジェネレータMG1,MG2の各々には電流センサ27および回転角センサ(レゾルバ)28が設けられる。三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ27は2相分のモータ電流(たとえば、V相電流ivおよびW相電流iw)を検出するように配置すれば足りる。回転角センサ28は、モータジェネレータMG1,MG2の図示しない回転子の回転角θを検出し、その検出した回転角θを制御装置50へ送出する。制御装置50では、回転角θに基づきモータジェネレータMG1,MG2の回転数Nmt(回転角速度ω)を算出することができる。なお、本発明の実施の形態では、「回転数」との文言は、特に説明がない限り単位時間当たり(代表的には毎分当たり)の回転数をいうものとする。
これらのセンサによって検出された、モータジェネレータMG1のモータ電流MCRT(1)およびロータ回転角θ(1)ならびに、モータジェネレータMG2のモータ電流MCRT(2)およびロータ回転角θ(2)は、制御装置50へ入力される。さらに、制御装置50は、モータ指令としての、モータジェネレータMG1のトルク指令値Tqcom(1)および回生動作を示す制御信号RGE(1)、ならびに、モータジェネレータMG2のトルク指令値Tqcom(2)および回生動作を示す制御信号RGE(2)の入力を受ける。
電子制御ユニット(ECU)で構成される制御装置50は、マイクロコンピュータ(図示せず)、RAM(Random Access Memory)51およびROM(Read Only Memory)52
を含んで構成され、所定のプログラム処理に従って、上位の電子制御ユニット(ECU)から入力されたモータ指令に従ってモータジェネレータMG1,MG2が動作するように、コンバータ15およびインバータ20,30のスイッチング制御のためのスイッチング制御信号S1,S2(コンバータ15)、S11〜S16(インバータ20)、およびS21〜S26(インバータ30)を生成する。
さらに、制御装置50には、走行用バッテリBに関する、充電率(SOC:State of Charge)や充放電制限を示す入力可能電力Win,Wout等の情報が入力される。これにより、制御装置50は、走行用バッテリBの過充電あるいは過放電が発生しないように、モータジェネレータMG1,MG2での消費電力および発電電力(回生電力)を必要に応じて制限する機能を有する。
また、本実施の形態では、単一の制御装置(ECU)50によってインバータ制御におけるスイッチング周波数を切換える機構について説明したが、複数の制御装置(ECU)の協調動作によって同様の制御構成を実現することも可能である。
次に、モータジェネレータMG1,MG2の駆動制御におけるコンバータ15およびインバータ20,30の動作について説明する。
コンバータ15の昇圧動作時には、制御装置50は、モータジェネレータMG1,MG2の運転状態に応じて直流電圧VH(インバータ20,30の直流側電圧に相当するこの直流電圧を、以下「システム電圧VH」とも称する)の電圧指令値VH♯(以下、システム電圧指令値VH♯とも称する)を設定し、システム電圧指令値VH♯および電圧センサ13の検出値に基づいて、コンバータ15の出力電圧がシステム電圧指令値VH♯と等しくなるようにスイッチング制御信号S1,S2を生成する。
コンバータ15は、昇圧動作時には、走行用バッテリBから供給された直流電圧(バッテリ電圧)Vbを昇圧したシステム電圧VHをインバータ20,30へ共通に供給する。より具体的には、制御装置50からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1,Q2のデューティ比(オン期間比率)が設定され、昇圧比は、デューティ比に応じたものとなる。
また、コンバータ15は、降圧動作時には、平滑コンデンサC0を介してインバータ20,30から供給された直流電圧(システム電圧)を降圧して走行用バッテリBを充電する。より具体的には、制御装置50からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。
平滑コンデンサC0は、コンバータ15からの直流電圧(システム電圧)を平滑化し、その平滑化した直流電圧をインバータ20,30へ供給する。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧VHを検出し、その検出値を制御装置50へ出力する。
インバータ30は、制御装置50からのスイッチング制御信号S21〜S26に応答したスイッチング素子Q21〜Q26のオンオフ動作(スイッチング動作)により、トルク指令値Tqcom(2)に従ったトルクが出力されるように、モータジェネレータMG2を駆動する。トルク指令値Tqcom(2)は、運転状況に応じたモータジェネレータMG2への出力(トルク×回転数)要求に従って、正値(Tqcom(2)>0)、零(Tqcom(2)=0)、または負値(Tqcom(2)<0)に適宜設定される。
特にハイブリッド車両の回生制動時には、モータジェネレータMG2のトルク指令値は負に設定される(Tqcom(2)<0)。この場合には、インバータ30は、スイッチング制御信号S21〜S26に応答したスイッチング動作により、モータジェネレータMG2が発電した交流電圧を直流電圧に変換し、その変換した直流電圧(システム電圧)を平滑コンデンサC0を介してコンバータ15へ供給する。
また、インバータ20は、上記のインバータ30の動作と同様に、制御装置50からのスイッチング制御信号S11〜S16に従ったスイッチング素子Q11〜Q16のオンオフ制御により、モータジェネレータMG1が指令値に従って動作するように電力変換を行なう。
このように、制御装置50がトルク指令値Tqcom(1),Tqcom(2)に従ってモータジェネレータMG1,MG2を駆動制御することにより、ハイブリッド車両100では、モータジェネレータMG2での電力消費による車両駆動力の発生、モータジェネレータMG1での発電による走行用バッテリBの充電電力またはモータジェネレータMG2の消費電力の発生、およびモータジェネレータMG2での回生制動動作(発電)による走行用バッテリBの充電電力の発生を、車両の運転状態に応じて適宜に実行できる。
次に、制御装置50によるインバータ20,30における電力変換制御について詳細に説明する。なお、以下に説明するインバータ制御は、インバータ20および30に共通するものである。
図2は、図1の電動機駆動制御システムで用いられるインバータ制御方式を説明する図である。
図2に示すように、本発明の実施の形態による電動機駆動制御システムでは、インバータ20,30による電動機制御について3つの制御方式を切換えて使用する。
正弦波PWM(パルス幅変調)制御は、一般的なPWM制御として用いられるものであり、各相アームにおけるスイッチング素子のオンオフを、正弦波状の電圧指令値と搬送波(代表的には、三角波)との電圧比較に従って制御する。この結果、上アーム素子のオン期間に対応するハイレベル期間と、下アーム素子のオン期間に対応するローレベル期間との集合について、一定期間内でその基本波成分が正弦波となるようにデューティ比が制御される。周知のように、正弦波PWM制御では、この基本波成分振幅をインバータの直流側電圧(すなわち、システム電圧VH)の0.61倍までしか高めることができない。
一方、矩形波電圧制御では、上記一定期間内で、ハイレベル期間およびローレベル期間の比が1:1の矩形波1パルス分をモータジェネレータMGに印加する。これにより、変調率は0.78まで高められる。
過変調PWM制御は、搬送波の振幅を縮小するようにを歪ませた上で上記正弦波PWM制御と同様のPWM制御を行なうものである。この結果、基本波成分を歪ませることができ、変調率を0.61〜0.78の範囲まで高めることができる。
モータジェネレータMG(MG1,MG2を総括的に表記するもの、以下同じ)では、回転数および/またはトルクが増加すると、逆起電力が増加して誘起電圧が高くなるため、その必要電圧が高くなる。これに伴い、コンバータ15の出力電圧(システム電圧VH)は、この必要電圧よりも高く設定する必要がある。その一方で、コンバータ15の昇圧には限界があり、その出力電圧には上限値(すなわち、最大システム電圧)が存在する。
したがって、必要電圧(誘起電圧)が最大システム電圧より低い領域では、正弦波PWM制御または過変調PWM制御による最大トルク制御が適用されて、ベクトル制御に従ったモータ電流制御によって出力トルクがトルク指令値Tqcomに制御される。
その一方で、モータ必要電圧(誘起電圧)が最大システム電圧に達すると、システム電圧VHを維持した上で弱め界磁制御に相当する矩形波電圧制御が適用される。矩形波電圧制御方式では、基本波成分の振幅が固定されるため矩形波パルスの電圧位相制御によってトルク制御が実行される。
なお、システム電圧VHが同一、すなわちインバータ20,30によりスイッチングされる直流電圧が同一の下で、同一のモータ電流を供給する場合には、インバータでのスイッチング損失は、単位時間内のスイッチング回数に依存する。したがって、このような同一条件の下では、正弦波PWM制御にてスイッチング損失が最大となり、矩形波電圧制御にてスイッチング損失が最小となり、過変調PWM制御ではスイッチング損失は両者の中間となる。
図3には、正弦波PWM制御方式および過変調PWM制御方式における制御ブロック図が示される。制御装置50に予め記憶されたプログラムを所定周期で実行することによって、図3に示したブロック図に従う電動機制御が実現される。
図3を参照して、PWM制御ブロック200は、電流指令生成部210と、座標変換部220,250と、回転数演算部230と、PI演算部240と、PWM信号生成部260とを含む。
電流指令生成部210は、予め作成されたマップ等に従って、トルク指令値Tqcom(Tqcom(1)およびTqcom(2)を総括的に表記するもの、以下同じ)に応じた、d軸電流指令値Idcomおよびq軸電流指令値Iqcomを生成する。
座標変換部220は、回転角センサ28によって検出されるモータジェネレータMGの回転角θを用いた座標変換(3相→2相)により、電流センサ27によって検出された相電流ivおよびW相電流iを基に、d軸電流idおよびq軸電流iqを算出する。回転数演算部230は、回転角センサ28からの出力に基づいて、モータジェネレータMGの回転数Nmt(または回転角速度ω)を演算する。
PI演算部240には、d軸電流の指令値に対する偏差ΔId(ΔId=Idcom−id)およびq軸電流の指令値に対する偏差ΔIq(ΔIq=Iqcom−iq)が入力される。PI演算部240は、d軸電流偏差ΔIdおよびq軸電流偏差ΔIqのそれぞれについて、所定ゲインによるPI演算を行なって制御偏差を求め、この制御偏差に応じたd軸電圧指令値Vd♯およびq軸電圧指令値Vq♯を生成する。
座標変換部250は、モータジェネレータMGの回転角θを用いた座標変換(2相→3相)によって、d軸電圧指令値Vd♯およびq軸電圧指令値Vq♯をU相、V相、W相の各相電圧指令値Vu,Vv,Vwに変換する。なお、d軸,q軸電圧指令値Vd♯,Vq♯から各相電圧指令値Vu,Vv,Vwへの変換には、システム電圧VHも反映される。
PWM信号生成部260は、各相における電圧指令値Vu,Vv,Vwと所定の搬送波との比較に基づいて、図1に示したスイッチング制御信号S11〜S16(S21〜S26)を生成する。
インバータ20(30)が、PWM制御ブロック200によって生成されたスイッチング制御信号S11〜S16(S21〜S26)に従ってスイッチング制御されることにより、モータジェネレータMGに対してトルク指令値Tqcomに従ったトルクを出力するための交流電圧が印加される。なお、上述のように、過変調PWM制御方式時には、PWM信号生成部260におけるPWM変調時に用いられる搬送波が、正弦波PWM制御方式時の一般的なものから切換えられる。
上記のように、正弦波PWM制御方式、過変調PWM制御方式および矩形波電圧制御方式の選択については、変調率が考慮される。このため、本発明の実施の形態に従う電動機駆動制御システムでは、必要とされる変調率に応じて制御方式を選択するために、電圧指令値発生部300、電圧指令振幅算出部320、変調率演算部330および制御方式選択部340がさらに設けられる。
電圧指令値発生部300は、モータジェネレータMG1,MG2の動作状態(トルク、回転数)に応じて、システム電圧VHの電圧指令値VH♯を設定する。なお、電圧指令値VH♯については、後程詳細に説明する。
電圧指令振幅算出部320は、PI演算部240によって生成されたd軸電圧指令値Vd♯およびq軸電圧指令値Vq♯、ならびに電圧位相φ(d軸を基準とした電圧位相)を用いて、下記(1),(2)式に従って線間電圧振幅Vampを算出する。
Vamp=|Vd♯|・cosφ+|Vq♯|・sinφ …(1)
tanφ=Vq♯/Vd♯ …(2)
変調率演算部330は、電圧指令振幅算出部320によって算出された線間電圧振幅Vampと、システム電圧の電圧指令値VH♯とから、下記(3)式に従って実際の変調率Kmdを算出する。
Kmd=Vamp/VH♯…(3)
制御方式選択部340は、変調率演算部330によって算出された変調率Kmdを実現可能な制御方式を、正弦波PWM制御および過変調PWM制御、ならびに矩形波電圧制御のうちから選択する。
PWM信号生成部350は、電圧センサ10および13によって検出されたバッテリ電圧Vbおよびシステム電圧VHの検出値に基づき、コンバータ15の出力電圧が電圧指令値VH♯に一致するように、所定のPWM制御方式に従って、スイッチング制御信号S1,S2を生成する。
図4には、矩形波電圧制御時における制御ブロック図が示される。上述のように、矩形波電圧制御は、変調率演算部330により演算された変調率Kmdが過変調PWM制御では実現されない場合に選択される。図4に示したブロック図に従う矩形波電圧制御についても、制御装置50に予め記憶されたプログラムを所定周期で実行することによって実現される。
図4を参照して、矩形波電圧制御ブロック400は、電力演算部410と、トルク演算部420と、PI演算部430と、矩形波発生器440と、信号発生部450とを含む。
電力演算部410は、電流センサ27によるV相電流ivおよびW相電流iwから求められる各相電流と、各相(U相,V相、W相)電圧Vu,Vv,Vwとにより、下記(4)式に従ってモータ供給電力Pmtを算出する。
Pmt=iu・Vu+iv・Vv+iw・Vw …(4)
トルク演算部420は、電力演算部410によって求められたモータ電力Pmtおよび回転角センサ28によって検出されるモータジェネレータMGの回転角θから算出される角速度ωを用いて、下記(5)式に従ってトルク推定値Tqを算出する。
Tq=Pmt/ω …(5)
PI演算部430へは、トルク指令値Tqcomに対するトルク偏差ΔTq(ΔTq=Tqcom−Tq)が入力される。PI演算部430は、トルク偏差ΔTqについて所定ゲインによるPI演算を行なって制御偏差を求め、求められた制御偏差に応じて矩形波電圧の位相φvを設定する。具体的には、正トルク発生(Tqcom>0)時には、トルク不足時には電圧位相を進める一方で、トルク過剰時には電圧位相を遅らせるように電圧位相φvが制御される。また、負トルク発生(Tqcom<0)時には、トルク不足時には電圧位相を遅らせる一方で、トルク過剰時には電圧位相を進めるように電圧位相φvが制御される。
矩形波発生器440は、PI演算部430によって設定された電圧位相φvに従って、各相電圧指令値(矩形波パルス)Vu,Vv,Vwを発生する。信号発生部450は、各相電圧指令値Vu,Vv,Vwに従ってスイッチング制御信号S11〜S16(S21〜S26)を発生する。インバータ20(30)がスイッチング制御信号S11〜S16(S21〜S26)に従ったスイッチング動作を行なうことにより、電圧位相φvに従った矩形波パルスが、モータの各相電圧として印加される。
このように、矩形波制御方式時には、トルク(電力)のフィードバック制御により、モータジェネレータMGのトルク制御を行なうことができる。ただし、矩形波制御方式ではモータ印加電圧の操作量が位相のみとなるので、モータ印加電圧の振幅および位相を操作量とできるPWM制御方式と比較して、その制御応答性は低下する。
次に、本発明の実施の形態による電動機駆動制御システムでの特徴点であるシステム電圧指令値VH♯の設定について詳細に説明する。
図5は、本発明の実施の形態によるシステム電圧指令値設定を説明するフローチャートである。
図5を参照して、制御装置50は、制御装置50は、ステップS100により、車両状態(車速、ペダル操作等)に応じて、モータジェネレータMG1,MG2への出力要求(回転数×トルク)に従って、トルク指令値Tqcom(1),Tqcom(2)を設定する。
制御装置50は、さらに、ステップS110により、モータジェネレータMG1の回転数およびトルク指令値Tqcom(1)に従い、モータジェネレータMG1の誘起電圧に対応させて必要電圧Vmg1を算出する。同様に、制御装置50は、ステップS120により、モータジェネレータMG2の回転数およびトルク指令値Tqcom(2)に従い、モータジェネレータMG2の誘起電圧に対応させて必要電圧Vmg2を算出する。
ここで、モータジェネレータMGでは、回転数および/またはトルクが増加すると、逆起電力が増加して誘起電圧が高くなる。したがって、ステップS110およびS120では、必要電圧Vmg1およびVmg2は、モータジェネレータMG1およびMG2の誘起電圧以上にそれぞれ設定される。
すなわち、図6に示されるように、モータジェネレータMGのトルクおよび回転数に応じて、具体的には、高回転数・高トルクの領域になるに従って、必要電圧Vmg1およびVmg2は、相対的に高く設定される。たとえば、モータジェネレータMG1,MG2のそれぞれについて、図6の特性を反映したマップをトルク指令値Tqcomおよび回転数Nmtを引数として参照することにより、ステップS110,S120における必要電圧Vmg1,Vmg2の算出を実行できる。
再び図5を参照して、続いて制御装置50は、ステップS130により、ステップS110およびS120でそれぞれ算出されたMG1必要電圧Vmg1およびMG2必要電圧Vmg2の最大値である必要最小電圧VHminを算出する。すなわち、必要最小電圧VHminは、モータジェネレータMG1,MG2の誘起電圧よりも高く設定される。
制御装置50は、ステップS140により、ステップS130で求めた必要最小電圧VHminから、コンバータ15の最大出力電圧VHmaxの電圧範囲内(以下この電圧範囲を「候補電圧範囲」とも称する)において、複数の候補電圧VH(1)〜VH(n)を設定する。ここで、nは2以上の整数である。そして、初期値として変数i=1にセットされる。なお、候補電圧VH(1)〜VH(n)の個数および/または電圧間隔については、固定値としてもよく、モータジェネレータMG1、MG2の動作状態に応じて可変に設定してもよい。また、候補電圧VH(1)〜VH(n)の電圧間隔についても、必ずしも等間隔に限定されないものとする。
さらに、制御装置50は、ステップS150により、候補電圧VH(i)における走行用バッテリBでの電力損失(バッテリ損失)Plbを推定する。同様に、制御装置50は、ステップS152により、候補電圧VH(i)におけるコンバータ15での電力損失(コンバータ損失)Plcvを推定する。さらに、制御装置50は、ステップS154により、候補電圧VH(i)におけるインバータ20,30での電力損失(インバータ損失)Pliv1,Pliv2を推定する。さらに、制御装置50は、ステップS156により、候補電圧VH(i)におけるモータジェネレータMG1,MG2での電力損失(MG損失)Plmg1,Plmg2を推定する。
制御装置50は、ステップS150、S152、S154およびS156でそれぞれ推定された、バッテリ損失Plb、コンバータ損失Plcv、インバータ損失Pliv1,Pliv2およびMG損失Plmg1,Plmg2の総計である、電力損失の総和Pltを算出する(ステップS160)。そして、制御装置50は、ステップS162およびS165による繰り返し処理により、候補電圧VH(1)〜VH(n)のそれぞれについて、システム全体での電力損失の総和Pltを算出する。
そして、制御装置50は、ステップS170により、電力損失の総和Pltが最小となる候補電圧VH(j)を、候補電圧VH(1)〜VH(n)の中から策定する。そして、制御装置50は、ステップS180により、候補電圧VH(j)に基づき最適電圧VHoptを算出する。この際に、上記候補電圧VH(j)をそのまま最適電圧VHoptとしてもよく、あるいは、候補電圧VH(j)と隣接の候補電圧VH(j−1)またはVH(j+1)との補間により、最適電圧VHoptを算出してもよい。
そして、制御装置50は、ステップS180で求めた最適電圧VHoptに従い電圧指令値VH♯を設定する(ステップS190)。基本的には、VH♯=VHoptに設定される。これにより、電動機制御システム全体での電力損失の総和が最小となるようなシステム電圧VHが得られるように、システム電圧指令値VH♯が設定される。
なお、図5のフローチャートでは図示を省略しているが、ステップS130によって求められた必要最小電圧VHminがコンバータ15の最大出力電圧VHmaxと等しい場合には、システム電圧VHの自由度が存在しないので、ステップS140〜S190の処理を省略して、電圧指令値VH♯=VHmax(=VHmin)に設定される。
次に、電動機制御システムの各構成要素における電力損失推定の詳細について順次説明する。
バッテリ損失Plbは、主に内部抵抗でのジュール損失であり、内部抵抗値rおよびバッテリ電流Ibを用いてIb・r2で示される。
図7に示すように、バッテリ電流Ibは、平均電流(直流成分)Ibaveにリップル電流(交流成分)ΔIbrが重畳されたものとなる。このリップル電流ΔIbrは、システム電圧VHおよびバッテリ電圧Vbの電圧差|VH−Vb|に応じて増大する。
図8に示すように、バッテリ損失Plbは、平均電流(直流)Ibaveの二乗に比例した電力損失Plb1と、交流電流成分ΔIbrの二乗に比例した電力損失Plb2の和で示される。ここで、リップル電流による電力損失Plb2は、上記電圧差|VH−Vb|の上昇に応じて増加する。
したがって、バッテリ損失Plbは、バッテリ平均電流(直流)Ibave、すなわちMG1,MG2の動作状態(トルク×回転数)と、電圧差|VH−Vb|とに基づいて推定できる。
ここで、平均電流Ibaveとバッテリ電圧Vbとの積で示されるバッテリからの入出力電力は、各モータジェネレータMGでの消費電力または発電電力の総和に対応し、システム電圧VHに依存して変化するものではない。したがって、電圧指令値VH♯の最適値を策定するために評価されるべきバッテリ損失Plbとしては、主にPlb2を考慮すればよい。
したがって、バッテリ損失Plbについては、電圧差|VH−Vb|を引数とする、図8の特性を反映したマップを予め作成することにより、候補電圧VH(i)に対するバッテリ損失Plbの変化を推定することができる。
コンバータ15での損失は、主に、スイッチング素子Q1,Q2での損失と、リアクトルL1での損失との和となる。いずれも、コンバータ通過電流(すなわちバッテリ電流Ib)が小さいほど、かつシステム電圧VHが低いほど損失が小さくなる。また、リップル電流ΔIbrが増大すると、電流の二乗に依存する損失が増加するので、電圧差|VH−Vb|がコンバータ損失Plcvを決めるファクタの1つとなる。
図9を参照して、コンバータ損失Plcvは、基本的には、バッテリ電流Ibの二乗に応じたものとなる。したがって、図9に示すように、コンバータ損失Plcvは、基本的にはバッテリ電流Ibの平均電流Ibaveの二乗に比例した値となり、かつ電圧差|VH−Vb|の上昇に従って増大する。
したがって、コンバータ損失Plcvについても、バッテリ平均電流)Ibave、すなわちMG1,MG2の動作状態(トルク×回転数)と、電圧差|VH−Vb|とに基づいて推定できる。上述のように、バッテリ平均電流Ibaveは、システム電圧VHに依存して変化するものではない。このため、電圧指令値VH♯の最適値を策定するために評価されるべきコンバータ損失Pcnvについては、電圧差|VH−Vb|を引数とする、図9の特性を反映したマップを予め作成することにより、候補電圧VH(i)に対するコンバータ損失Plcvの変化を推定することができる。
インバータ20,30でのインバータ損失は、主にスイッチング素子でのオン損失およびスイッチング損失であり、スイッチング素子を流れる電流が小さいほど、かつシステム電圧VHが低いほど小さくなる。
図10に示すように、インバータ20,30による電動機制御方式は、低回転数の領域500では正弦波PWM制御が選択され、回転数が上昇するに従ってより大きな変調率が必要とされるのに従い、領域510では過変調PWM制御が選択され、さらに高回転数の領域520では、矩形波電圧制御が用いられる。たとえば、一定トルクT1の出力時において、MG回転数の上昇に伴い、MG回転数=N1近傍で正弦波PWM制御から過変調PWM制御へ制御方式が切換えられ、さらに回転数が上昇すると、回転数=N2近傍で過変調PWM制御から矩形波電圧制御へ制御方式が切換えられる。
このとき、システム電圧VHを上記必要最小電圧VHminに対応して決定すると、システム電圧VHは、回転数の上昇に応じて、バッテリ電圧Vbからコンバータ15の最大出力電圧VHmaxまで上昇していく。そして、MG回転数≧N2の領域では、必要最小電圧VHminが最大出力電圧VHmaxに達するので、システム電圧VHの設定自由度が失われる。
ここで、インバータ電力損失Pliv1(またはPliv2)は、MG回転数が回転数N0〜N1の領域、すなわち正弦波PWM制御が適用されている領域では、同一トルク(T1)出力時には、システム電圧VHの上昇に応じて各スイッチング素子のスイッチング電圧が上昇することにより、スイッチング損失が増大する。これに伴って、インバータ損失Pliv1(またはPliv2)が増加する。
しかしながら、回転数N1を境に、制御方式が正弦波PWM制御から、単位時間内のスイッチング回数が相対的に少ない過変調PWM制御に切換わることにより、MG回転数の上昇に伴ってシステム電圧VHがさらに上昇するにもかかわらず、インバータ損失Pliv1(またはPliv2)は減少する。
さらに回転数が上昇していくと、システム電圧VHの上昇に伴う各スイッチング素子でのスイッチング損失の増大により、インバータ損失Pliv1(またはPliv2)は徐々に増加する。また、システム電圧VHがコンバータ最大出力電圧VHmaxに達して矩形波電圧制御が適用される領域では、モータジェネレータMGでの誘起電圧を抑制するために弱め界磁制御を行なってインバータ効率を低下させる必要が生じるので、単位時間当りのスイッチング回数は減少するが、インバータ損失Pliv1(またはPliv2)は徐々に増加していく。
一方、モータジェネレータMG1,MG2でのMG損失は、各相コイル巻線に流れる電流によって発生する銅損と、鉄心部の磁束変化によって発生する鉄損の和となる。このため、各相コイル巻線を流れる電流が小さいほどMG損失も小さくなる。
したがって、一般的にはモータジェネレータMG1,MG2でのMG損失については、モータの動作状態(回転数およびトルク)に基づいて推定することができる。
たとえば、図11には、ある一定回転数の下での、システム電圧および出力トルクと、インバータ20およびモータジェネレータMG1による電力損失の和Pliv1+Plmg1(およびインバータ30およびモータジェネレータMGによる損失の和Pliv2+Plmg2)との関係が示される。図11では、上述した適用される制御方式の差異を考慮に入れて、モータジェネレータMGの回転数、トルク(トルク指令値)およびシステム電圧に基づいて、インバータ損失およびMG損失を推定するマップを予め設定可能であることを示している。この際に、インバータ損失は、モータジェネレータMGの動作状態、(すなわち、回転数およびトルク指令値)に対応させて選択されるべき制御方式を予め設定しておくことによって推定できる。
この結果、図12に示すように、主にモータジェネレータMG1の回転数・トルク(トルク指令値Tqcom(1))、モータジェネレータMG2の回転数・トルク(トルク指令値Tqcom(2))、およびシステム電圧VHのうちの少なくとも1つを引数として、バッテリ損失Plbを推定するバッテリ損失推定部550、コンバータ損失Plcvを推定するコンバータ損失推定部560、インバータ損失Pinv1およびPinv2を推定するインバータ損失推定部570、ならびにモータジェネレータMG1,MG2でのMG損失Plmg1,Plmg2を推定するMG損失推定部580を構成することができる。
たとえば、バッテリ損失推定部550内には、図8に示した特性に基づくマップ555を予め作成しておき、当該マップ555の参照により、そのときのモータジェネレータMG1,MG2の動作状態およびシステム電圧VHの候補電圧VH(i)におけるバッテリ損失Plbを推定することができる。
同様に、コンバータ損失推定部560内には、図9に示した特性に基づくマップ565を予め作成しておき、当該マップ565の参照により、そのときのモータジェネレータMG1,MG2の動作状態およびシステム電圧VHの候補電圧VH(i)におけるコンバータ損失Plcvを推定することができる。
なお、上述のように、バッテリ損失Plbを推定するマップ555および、コンバータ損失Plcvを推定するマップ565については、電圧差|VH−Vb|、あるいはシステム電圧VH(候補電圧VH(i))を引数とするマップを構成することも可能である。
また、図11に示した特性を反映したマップ575を構成することにより、モータジェネレータMG1,MG2の動作状態(回転数・トルク)および候補電圧VH(i)を引数として、インバータ損失およびMG損失の和Plmg1+Pliv1(またはPlmg2+Pliv2)を推定するように、インバータ損失推定部570およびMG損失推定部580を一体的に構成することができる。
あるいは、インバータ損失推定部570は、上述した制御方式をさらに反映してインバータ損失Pliv1(Pliv2)を推定するように構成してもよい。
図13を参照して、インバータ損失推定部570♯は、MG損失推定部580とは独立して構成される。上記のように、MG損失推定部580は、モータジェネレータMG1(MG2)の動作状態(回転数・トルク)を引数とする、銅損および鉄損の推定に基づくマップ85により構成される。MG損失推定部580は、マップ585の参照により、モータジェネレータMG1(MG2)の動作状態(回転数・トルク)に基づき、MG損失Plmg1およびPlmg2を推定する。
インバータ損失推定部570♯は、制御方式ごとに設けられたマップ575a,575b,575cと、出力切換部576とを含む。
マップ575aは、正弦波PWM制御時における、対応のモータジェネレータMG1(またはMG2)の動作状態(回転数・トルク)およびシステム電圧(候補電圧VH(i))を引数として、主にスイッチング素子でのスイッチング損失を反映したインバータ損失Pliv1(Pliv2)を推定するように構成される。
同様に、マップ575bは、過変調PWM制御時における、対応のモータジェネレータMG1(またはMG2)の動作状態(回転数・トルク)およびシステム電圧(候補電圧VH(i))を引数として、主にスイッチング素子でのスイッチング損失を反映したインバータ損失Pliv1(Pliv2)を推定するように構成される。
また、マップ575cは、矩形波電圧制御時における、対応のモータジェネレータMG1(またはMG2)の動作状態(回転数・トルク)およびシステム電圧(候補電圧VH(i))を引数として、主にスイッチング素子でのスイッチング損失を反映したインバータ損失Pliv1(Pliv2)を推定するように構成される。
出力切換部576は、制御方式選択部340の出力に応じて、現在選択されている制御方式に応じて、マップ575a,575b,575cから1つのマップを選択する。これにより、出力切換部576より選択されたマップの参照結果に基づき、インバータ損失Pliv1(Pliv2)が推定される。
図13に示した構成では、モータジェネレータMG1,MG2の特性ばらつき(代表的には、回転子に装着される永久磁石の磁性ばらつき)等により、実際の制御動作時における制御方式の切換り点(回転数・トルク)が、設計と異なるものとなった場合にも、インバータ損失をより高精度に推定することができる。
以上説明したように、本発明の実施の形態による電動機駆動制御システムでは、モータジェネレータMG1,MG2の最小必要電圧が確保される電圧領域において、直流電源(バッテリ)、コンバータ、インバータおよびモータジェネレータMGのそれぞれでの電力損失推定に基づき、システム全体での電力損失の総和が最小となるような最適電圧にシステム電圧VHを設定することができる。これにより、電動機駆動制御システムの全体効率を向上させることができる。この結果、この電動機駆動制御システムを搭載したハイブリッド車両では、燃費向上を図ることができる。
特に、インバータ損失の推定に制御方式を反映することによって、システム電圧VHの変化に対する電動機駆動制御システム全体損失の推定をより高精度に実行することができる。この結果、システム電圧VHの設定をさらに最適化して、電動機駆動制御システムの全体効率をより確実に向上させることができる。
ここで、本実施の形態において、図5のステップS100〜S130は、本発明での「最小電圧設定手段」に対応し、図5のステップS150または図12のバッテリ損失推定部550は、本発明での「第1の損失推定手段」に対応し、図5のステップS152または図12のコンバータ損失推定部560は、本発明での「第2の損失推定手段」に対応する。また、図5のステップS154または図12のインバータ損失推定部570は、本発明での「第3の損失推定手段」に対応し、図5のステップS156または図12のMG損失推定部580は、本発明における「第4の損失推定手段」に対応する。さらに、図5のステップS160〜S180は、本発明での「最適電圧設定手段」に対応し、図5のステップS160,S170は、本発明での「電圧指令設定手段」に対応する。
なお、この実施の形態において、バッテリ損失、コンバータ損失、インバータ損失およびMG損失の算出例は代表的なものを示したに過ぎず、その他の方式あるいはその他の変数に基づいて、これらの損失を推定する構成とすることも可能である。この際にも、図5に示したフローチャートに従って、各構成要素での損失推定値を総和してシステム全体の電力損失が最低となるシステム電圧VHを策定することにより、最適電圧VHoptを算出しこれに見合った電圧指令値VH♯を設定することができる。
また、バッテリ損失、コンバータ損失、インバータ損失およびMG損失のうちの、システム電圧VHの変化に対する変化度合いが大きい一部のものに絞って、電力損失推定およびその総和を求める制御構成としてもよい。この場合には、演算負荷を軽減した上でシステム電圧VHの設定を適正化できる。
また、本発明の実施の形態では、ハイブリッド車両に搭載される電動機駆動制御システムについて代表的に例示したが、本発明の適用はこのようなケースに限定されるものではない。すなわち、本発明に従うモータ駆動システムは、電気自動車に代表されるハイブリッド車両以外の電動車両に搭載される電動機駆動制御システムに適用することも可能である。また、直流電圧を可変制御可能なコンバータを含む構成の電動機駆動制御システムであれば、駆動制御されるモータジェネレータ(または、電動機・発電機)の個数や種類また、モータジェネレータ(電動機)により駆動される負荷を限定することなく、本発明の適用が可能である。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明の実施の形態による電動機駆動制御システムが搭載される構成の一例として示されるハイブリッド車両の構成を説明するブロック図である。 図1の電動機駆動制御システムで用いられるインバータ制御方式を説明する図である。 正弦波PWM制御および過変調PWM制御における制御ブロック図である。 矩形波制御時における制御ブロック図である。 本発明の実施の形態による電動機駆動制御システムにおけるシステム電圧指令値設定を説明するフローチャートである。 モータジェネレータのトルクおよび回転数と必要電圧(誘起電圧)との関係を示す概念図である。 バッテリ電流の形態を示す概略波形図である。 バッテリ損失の変化特性を説明する概念図である。 コンバータ損失の変化特性を説明する概念図である。 インバータ損失の変化特性を説明する概念図である。 インバータ損失およびMG損失の和の変化特性の例を説明する概念図である。 本発明の実施の形態による電動機駆動制御システムの各構成要素での電力損失推定例を説明するブロック図である。 本発明の実施の形態による電動機駆動制御システムの各構成要素での電力損失推定の他の例を説明するブロック図である。
符号の説明
5 接地ライン、6,7 電源ライン、10♯ 直流電圧発生部、10,13 電圧センサ、11 電流センサ、12 温度センサ、15 昇降圧コンバータ、20,30 インバータ、22,32 U相アーム、24,34 V相アーム、26,36 W相アーム、27 電流センサ、28 回転角センサ、50 制御装置(ECU)、100 ハイブリッド車両、110 エンジン、112 冷却水温センサ、120 動力分割機構、125 出力軸、130 減速機、140 駆動軸、150 車輪(駆動輪)、200 PWM制御ブロック、210 電流指令生成部、220,250 座標変換部、230 回転数演算部、240 PI演算部、260,450 PWM信号生成部(インバータ)、300 電圧指令値発生部、320 電圧指令振幅算出部、330 変調率演算部、340 制御方式選択部、350 PWM信号生成部(コンバータ)、400 矩形波電圧制御ブロック、410 電力演算部、420 トルク演算部、430 PI演算部、440 矩形波発生器、500 正弦波PWM制御領域、510 過変調制御領域、520 矩形波電圧制御領域、550 バッテリ損失推定部、555,565,575,575a,575b,575c 損失推定マップ、560 コンバータ損失推定部、570 インバータ損失推定部、576 出力切換部、580 MG損失推定部、B 走行用バッテリ、C0,C1 平滑コンデンサ、D1,D2,D11〜D16,D21〜D26 逆並列ダイオード、Ib バッテリ電流、Ibave バッテリ平均電流、id d軸電流、Idcom d軸電流指令値、iq q軸電流、Iqcom q軸電流指令値、iu,iv,iw 三相電流、Kmd 変調率、L1 リアクトル、MCRT モータ電流、MG1,MG2 モータジェネレータ、N1,N2 中性点、Nmt MG回転数、Pcnv コンバータ損失、Plb(Plb1+Plb2) バッテリ損失、Plcv コンバータ損失、Pliv1,Pinv2 インバータ損失、Plmg1,Plmg2 MG損失、Pmt モータ供給電力、Q1,Q2,Q11〜Q16,Q21〜Q26 スイッチング素子(電力用半導体スイッチング素子)、S1,S2,S11〜S16,S21〜S26 スイッチング制御信号、Tqcom,Tqcom(1),Tqcom(2) トルク指令値、U1,U2,V1,V2,W1,W2 コイル巻線(モータジェネレータ)、Vb バッテリ電圧、Vd d軸電圧指令値、VH システム電圧、VH♯ システム電圧指令値、VH(i) 候補電圧、VHmax コンバータ最大出力電圧、VHmin 必要最小電圧、VHopt 最適電圧、Vmg1,Vmg2 必要電圧(モータジェネレータ)、Vq q軸電圧指令値、Vu,Vv,Vw 各相電圧指令値、ΔIbr リップル電流(バッテリ電流)、ΔId d軸電流偏差、ΔIq q軸電流偏差、θ 回転角(モータジェネレータ)、φv 電圧位相、ω 回転角速度(モータジェネレータ)。

Claims (12)

  1. 直流電源と、
    前記直流電源の出力電圧を昇圧可能に構成されて、前記直流電源の出力電圧を電圧指令値に従って可変制御して直流電源配線に出力するように構成されたコンバータと、
    電動機が動作指令に従って作動するように、複数のスイッチング素子により前記直流電源配線上の直流電力と前記電動機を駆動する交流電力との間で電力変換を行なうインバータと、
    前記コンバータの前記電圧指令値を設定する制御装置とを備え、
    前記制御装置は、
    予め設定された損失特性に基づき、前記直流電源配線上の直流電圧および前記電動機の動作状態に対する前記直流電源での電力損失を推定する第1の損失推定手段と、
    予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記コンバータでの電力損失を推定する第2の損失推定手段と、
    予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記インバータでの電力損失を推定する第3の損失推定手段と、
    前記電動機の現在の動作状態における前記電動機の誘起電圧に対応させて必要最小電圧を求めるとともに、前記必要最小電圧以上、かつ、前記コンバータの出力上限電圧以下の候補電圧範囲内で、複数の前記直流電圧に対して前記電動機の現在の動作状態に基づいて前記第1から第3の損失推定手段により推定された電力損失の合計を含む総和電力損失を算出することによって、当該総和電力損失が最小となる前記直流電圧を策定し、策定した直流電圧に従って前記電圧指令値を設定する電圧指令値発生手段とを含む、電動機駆動制御システム。
  2. 前記制御装置は、
    予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記電動機での電力損失を推定する第4の損失推定手段をさらに含み、
    前記電圧指令値発生手段は、
    前記電動機の現在の動作状態に基づいて前記第1から第4の損失推定手段により推定された電力損失の合計を含む前記総和電力損失を算出し、かつ、前記候補電圧範囲内で前記総和電力損失が最小となる前記直流電圧を策定するとともに、策定した直流電圧に従って前記電圧指令値を設定する、請求項1記載の電動機駆動制御システム。
  3. 前記インバータに対するスイッチング制御は、複数の制御方式から1つの制御方式を選択して実行され、
    前記第3の損失推定手段は、前記制御方式ごとに設定された前記損失特性に基づき、前記電動機の回転数およびトルクならびに選択された制御方式に応じて、前記インバータでの電力損失を推定する、請求項1記載の電動機駆動制御システム。
  4. 前記複数の制御方式は、
    前記電動機に印加される各相電圧が、前記電圧指令値に応じたパルス幅変調波形電圧となるように前記インバータに対してスイッチング制御を行なう正弦波パルス幅変調制御と、
    前記電動機に印加される各相電圧が、前記正弦波パルス幅変調制御よりも変調率の高い前記パルス幅変調波形電圧となるように前記インバータに対してスイッチング制御を行なう過変調パルス幅変調制御と、
    前記電動機に印加される各相電圧が、前記電圧指令値に応じた矩形波電圧となるように前記インバータに対してスイッチング制御を行なう矩形波電圧制御とを含む、請求項3記載の電動機駆動制御システム。
  5. 前記損失特性は、前記電動機の回転数およびトルクならびに前記直流電源配線上の直流電圧のうちの少なくとも1つに対する前記電力損失の変化を表わす、請求項1記載の電動機駆動制御システム。
  6. 前記電圧指令値発生手段は、前記必要最小電圧と前記出力上限電圧とが異なる場合に、前記候補電圧範囲内に複数個の候補電圧を設定するとともに、前記直流電圧を前記複数個の候補電圧のそれぞれとしたときの前記総和電力損失を前記第1から前記第3の損失推定手段による推定に従って算出し、かつ、その算出結果に基づいて前記総和電力損失が最小となる前記直流電圧を策定する、請求項1記載の電動機駆動制御システム。
  7. 電動機駆動制御システムの制御方法であって、
    前記電動機駆動制御システムは、
    直流電源と、
    前記直流電源の出力電圧を昇圧可能に構成されて、前記直流電源の出力電圧を電圧指令値に従って可変制御して直流電源配線に出力するように構成されたコンバータと、
    電動機が動作指令に従って作動するように、複数のスイッチング素子により前記直流電源配線上の直流電力と前記電動機を駆動する交流電力との間で電力変換を行なうインバータとを備え、
    前記制御方法は、
    予め設定された損失特性に基づき、前記直流電源配線上の直流電圧および前記電動機の動作状態に対する前記直流電源での電力損失を推定するステップと、
    予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記コンバータでの電力損失を推定するステップと、
    予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記インバータでの電力損失を推定するステップと、
    前記電動機の現在の動作状態における前記電動機の誘起電圧に対応させて必要最小電圧を求めるステップと、
    前記必要最小電圧以上、かつ、前記コンバータの出力上限電圧以下の候補電圧範囲内で、複数の前記直流電圧に対して前記電動機の現在の動作状態に基づいて推定された、前記直流電源、前記コンバータおよび前記インバータでの電力損失の合計を含む総和電力損失を算出することによって、当該総和電力損失が最小となる前記直流電圧を策定するステップと、
    策定した直流電圧に従って前記電圧指令値を設定するステップとを備える、電動機駆動制御システムの制御方法。
  8. 予め設定された損失特性に基づき、前記直流電圧および前記電動機の動作状態に対する前記電動機での電力損失を推定するステップをさらに備え、
    前記策定するステップは、前記電動機の現在の動作状態に基づいて推定された、前記直流電源、前記コンバータ、前記インバータおよび前記電動機での電力損失の合計を含む前記総和電力損失を算出し、かつ、前記候補電圧範囲内で前記総和電力損失が最小となる前記直流電圧を策定する、請求項7記載の電動機駆動制御システムの制御方法。
  9. 前記インバータに対するスイッチング制御は、複数の制御方式から1つの制御方式を選択して実行され、
    前記インバータでの電力損失を推定するステップは、前記制御方式ごとに設定された前記損失特性に基づき、前記電動機の回転数およびトルクならびに前記選択された制御方式に応じて、前記インバータでの電力損失を推定する、請求項7記載の電動機駆動制御システムの制御方法。
  10. 前記複数の制御方式は、
    前記電動機に印加される各相電圧が、前記電圧指令値に応じたパルス幅変調波形電圧となるように前記インバータに対してスイッチング制御を行なう正弦波パルス幅変調制御と、
    前記電動機に印加される各相電圧が、前記正弦波パルス幅変調制御よりも変調率の高い前記パルス幅変調波形電圧となるように前記インバータに対してスイッチング制御を行なう過変調パルス幅変調制御と、
    前記電動機に印加される各相電圧が、前記電圧指令値に応じた矩形波電圧となるように前記インバータに対してスイッチング制御を行なう矩形波電圧制御とを含む、請求項9記載の電動機駆動制御システムの制御方法。
  11. 前記損失特性は、前記電動機の回転数およびトルクならびに前記直流電源配線上の直流電圧のうちの少なくとも1つに対する前記電力損失の変化を表わす、請求項7記載の電動機駆動制御システムの制御方法。
  12. 前記策定するステップは、前記必要最小電圧と前記出力上限電圧とが異なる場合に、前記候補電圧範囲内に複数個の候補電圧を設定するとともに、前記直流電圧を前記複数個の候補電圧のそれぞれとしたときの、前記直流電源、前記コンバータおよび前記インバータでの電力損失の推定に基づく前記総和電力損失を算出し、かつ、その算出結果に基づいて前記総和電力損失が最小となる前記直流電圧を策定する、請求項7記載の電動機駆動制御システムの制御方法。
JP2006150110A 2006-05-30 2006-05-30 電動機駆動制御システムおよびその制御方法 Active JP5109290B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006150110A JP5109290B2 (ja) 2006-05-30 2006-05-30 電動機駆動制御システムおよびその制御方法
US11/802,523 US7701156B2 (en) 2006-05-30 2007-05-23 Electric motor drive control system and control method thereof
EP07744363.8A EP2023482B1 (en) 2006-05-30 2007-05-23 Motor driving control system and its control method
KR1020087031712A KR101021256B1 (ko) 2006-05-30 2007-05-23 전동기구동제어시스템 및 그 제어방법
PCT/JP2007/060944 WO2007139126A1 (ja) 2006-05-30 2007-05-23 電動機駆動制御システムおよびその制御方法
CN2007800202567A CN101461130B (zh) 2006-05-30 2007-05-23 电动机驱动控制系统及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006150110A JP5109290B2 (ja) 2006-05-30 2006-05-30 電動機駆動制御システムおよびその制御方法

Publications (3)

Publication Number Publication Date
JP2007325351A JP2007325351A (ja) 2007-12-13
JP2007325351A5 JP2007325351A5 (ja) 2009-03-26
JP5109290B2 true JP5109290B2 (ja) 2012-12-26

Family

ID=38778644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006150110A Active JP5109290B2 (ja) 2006-05-30 2006-05-30 電動機駆動制御システムおよびその制御方法

Country Status (6)

Country Link
US (1) US7701156B2 (ja)
EP (1) EP2023482B1 (ja)
JP (1) JP5109290B2 (ja)
KR (1) KR101021256B1 (ja)
CN (1) CN101461130B (ja)
WO (1) WO2007139126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523133B2 (en) 2015-11-04 2019-12-31 Mitsubishi Electric Corporation Vehicular motor control device and vehicular motor control method

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408312B2 (en) * 2004-03-24 2008-08-05 Mitsubishi Electric Corporation Control device for permanent magnet synchronous motor
DE102005044174A1 (de) * 2005-09-16 2007-03-22 Bayerische Motoren Werke Ag Abstandsbezogenes Fahrgeschwindigkeitsregelsystem
JP4407679B2 (ja) * 2006-08-25 2010-02-03 マツダ株式会社 ハイブリッド車両の制御装置
JP4984236B2 (ja) * 2007-04-17 2012-07-25 株式会社デンソー 電気自動車の制御装置
JP4274271B2 (ja) * 2007-07-26 2009-06-03 トヨタ自動車株式会社 電圧変換装置
TW200909822A (en) * 2007-08-17 2009-03-01 Delta Electronics Inc Measuring apparatus for power loss of magnetic device
JP2009142117A (ja) * 2007-12-10 2009-06-25 Ihi Corp モータ電力供給装置とこれを生産する方法
JP4353304B2 (ja) * 2008-02-19 2009-10-28 トヨタ自動車株式会社 モータ駆動制御装置
JP4453765B2 (ja) 2008-02-26 2010-04-21 トヨタ自動車株式会社 ハイブリッド車およびその制御方法
JP4424427B2 (ja) 2008-03-18 2010-03-03 トヨタ自動車株式会社 車両の制御装置および制御方法
JP2009227080A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp 動力出力装置やこれを備える車両および駆動装置並びにこれらの制御方法
US8179705B2 (en) * 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
JP5217741B2 (ja) * 2008-07-31 2013-06-19 トヨタ自動車株式会社 システム作動制御装置
JP2010089719A (ja) * 2008-10-10 2010-04-22 Toyota Motor Corp ハイブリッド車両の電源システム
JP5065223B2 (ja) * 2008-10-17 2012-10-31 トヨタ自動車株式会社 車両制御システム
JP4329880B1 (ja) * 2009-01-14 2009-09-09 トヨタ自動車株式会社 交流電動機の制御装置および電動車両
JP5438328B2 (ja) * 2009-01-26 2014-03-12 トヨタ自動車株式会社 車両のモータ制御システム
FR2944166B1 (fr) * 2009-04-03 2011-03-18 Sagem Defense Securite Circuit d'alimentation d'un moteur et organe de commande de vol equipe d'un tel circuit
JP5526975B2 (ja) * 2009-05-13 2014-06-18 株式会社安川電機 電動機の制御装置及びその制御方法
US8575875B2 (en) * 2009-05-27 2013-11-05 Toyota Jidosha Kabushiki Kaisha Control device for voltage converter, vehicle equipped with the same, and control method for voltage converter
US8624534B2 (en) 2009-06-22 2014-01-07 Aisin Aw Co., Ltd. Control device for electric motor driving apparatus
JP5493568B2 (ja) * 2009-08-06 2014-05-14 株式会社デンソー 電動機駆動装置及び電動機駆動装置の制御方法ならびに電動装置
JP5297953B2 (ja) 2009-09-08 2013-09-25 トヨタ自動車株式会社 電動車両の電動機駆動システム
US8373372B2 (en) * 2009-09-25 2013-02-12 Ut-Battelle, Llc Electrical motor/generator drive apparatus and method
CN102648578A (zh) * 2009-12-08 2012-08-22 三菱电机株式会社 电力变换装置
EP2552005A1 (en) * 2010-03-26 2013-01-30 Mitsubishi Electric Corporation Power conversion device
JP5505042B2 (ja) * 2010-03-31 2014-05-28 株式会社豊田自動織機 中性点昇圧方式の直流−三相変換装置
US8796960B2 (en) * 2010-04-21 2014-08-05 Toyota Jidosha Kabushiki Kaisha Control device for motor drive system and vehicle incorporating the same
CN102893512B (zh) * 2010-06-15 2015-09-09 株式会社Ihi 具有相同负载模式的装置的省电力驱动装置及方法
JP5549864B2 (ja) * 2010-06-15 2014-07-16 株式会社Ihi 同一負荷パターンを有する装置の省電力駆動装置及び方法
WO2012039258A1 (ja) * 2010-09-24 2012-03-29 日産自動車株式会社 インバータ制御装置及びインバータ制御方法
WO2012105021A1 (ja) * 2011-02-03 2012-08-09 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
FR2975242B1 (fr) * 2011-05-13 2013-04-26 Michelin Soc Tech Dispositif et procede de gestion du freinage electrique d'un vehicule
JP5172992B2 (ja) * 2011-06-02 2013-03-27 ファナック株式会社 直流変換部の最大出力計算部を備えたモータ駆動装置
EP2728739A4 (en) * 2011-06-30 2016-06-29 Toyota Motor Co Ltd ENGINE CONTROL DEVICE, VEHICLE THEREFOR AND METHOD FOR CONTROLLING AN ENGINE CONTROL DEVICE
JP2013034315A (ja) * 2011-08-02 2013-02-14 Fuji Electric Co Ltd インバータの制御装置
JP5661008B2 (ja) 2011-09-06 2015-01-28 トヨタ自動車株式会社 モータ制御システム
JP5893876B2 (ja) * 2011-09-13 2016-03-23 トヨタ自動車株式会社 モータ制御システム
JP5781875B2 (ja) * 2011-09-14 2015-09-24 トヨタ自動車株式会社 回転電機制御システム
US8816627B2 (en) * 2011-11-10 2014-08-26 Mitsubishi Electric Research Laboratories, Inc. Energy efficient motion control system
KR101283892B1 (ko) * 2011-12-07 2013-07-08 기아자동차주식회사 친환경 차량에서 dc-dc컨버터 제어장치 및 방법
JP6024209B2 (ja) * 2012-05-29 2016-11-09 株式会社豊田自動織機 バッテリの充電器制御システム
JP5972060B2 (ja) * 2012-06-15 2016-08-17 東芝三菱電機産業システム株式会社 ドライブシステムの制御装置
FR2994899B1 (fr) * 2012-08-29 2014-09-12 Renault Sa Procede de pilotage d'une machine electrique limitant les pertes energetiques
US20140121867A1 (en) * 2012-11-01 2014-05-01 GM Global Technology Operations LLC Method of controlling a hybrid powertrain with multiple electric motors to reduce electrical power losses and hybrid powertrain configured for same
JP5910752B2 (ja) 2012-11-13 2016-04-27 トヨタ自動車株式会社 昇圧コンバータの制御装置
WO2014076749A1 (ja) 2012-11-13 2014-05-22 トヨタ自動車株式会社 昇圧コンバータの制御装置
JP2014121215A (ja) * 2012-12-18 2014-06-30 Honda Motor Co Ltd 負荷駆動制御装置
JP2014128052A (ja) * 2012-12-25 2014-07-07 Toyota Motor Corp 車両の制御装置
JP5955761B2 (ja) 2012-12-25 2016-07-20 トヨタ自動車株式会社 車両の制御装置
TWI509941B (zh) * 2013-06-05 2015-11-21 Universal Scient Ind Shanghai 電壓調節器、其運作方法以及電壓調節系統
JP2015014278A (ja) * 2013-07-08 2015-01-22 ヤマハ発動機株式会社 始動発電機及びその制御方法
JP6119475B2 (ja) 2013-07-15 2017-04-26 株式会社ジェイテクト 車載用モータ制御装置
CN104333291B (zh) * 2013-07-22 2017-08-04 西门子公司 电机驱动控制装置及控制方法
US9484733B1 (en) * 2013-09-11 2016-11-01 Western Digital Technologies, Inc. Power control module for data storage device
JP6084914B2 (ja) * 2013-09-24 2017-02-22 トヨタ自動車株式会社 電力供給システム
KR101451787B1 (ko) * 2014-06-19 2014-10-21 국방과학연구소 전기추진 차량의 고효율 전력변환 제어방법
US9783185B2 (en) 2014-08-19 2017-10-10 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US9889752B2 (en) 2014-08-19 2018-02-13 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US9399407B2 (en) * 2014-08-19 2016-07-26 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
US9878632B2 (en) 2014-08-19 2018-01-30 General Electric Company Vehicle propulsion system having an energy storage system and optimized method of controlling operation thereof
KR102227848B1 (ko) * 2014-10-23 2021-03-15 현대모비스 주식회사 하이브리드 전기 차량의 구동 시스템 및 이 시스템의 pwm 캐리어 신호의 위상 제어 방법
EP3043467A1 (de) * 2015-01-12 2016-07-13 Siemens Aktiengesellschaft Regelung einer Antriebsvorrichtung
JP6406108B2 (ja) 2015-04-15 2018-10-17 株式会社デンソー モータ制御システムの制御装置
JP6080996B1 (ja) * 2016-03-01 2017-02-15 三菱電機株式会社 電動機駆動システム
JP6143905B1 (ja) 2016-03-08 2017-06-07 三菱電機株式会社 回転電機駆動装置の制御装置
JP6380435B2 (ja) 2016-03-16 2018-08-29 トヨタ自動車株式会社 車両用太陽電池システム
KR101856317B1 (ko) 2016-04-18 2018-05-10 현대자동차주식회사 차량의 컨버터 제어방법 및 시스템
JP6451692B2 (ja) * 2016-05-13 2019-01-16 トヨタ自動車株式会社 自動車
JP2018014822A (ja) * 2016-07-20 2018-01-25 株式会社リコー 画像形成装置、電力供給方法、およびプログラム
JPWO2018025344A1 (ja) * 2016-08-03 2018-09-20 三菱電機株式会社 電気掃除機
US20180105157A1 (en) * 2016-10-14 2018-04-19 Ford Global Technologies, Llc System and method for controlling electrified vehicles
KR101956991B1 (ko) * 2016-11-25 2019-03-12 현대자동차주식회사 듀얼 인버터의 제어 방법
JP6741904B2 (ja) * 2016-12-09 2020-08-19 株式会社デンソー 駆動装置および自動車
JP2019054673A (ja) 2017-09-15 2019-04-04 トヨタ自動車株式会社 電源装置
CN109937531B (zh) * 2017-10-18 2020-10-02 日立江森自控空调有限公司 电力转换装置及冷冻空调机器
US20200026269A1 (en) * 2018-07-19 2020-01-23 Aurora Flight Sciences Corporation Performance monitoring system for an electric drive system
JP6907171B2 (ja) 2018-09-25 2021-07-21 株式会社Soken 回転電機の駆動装置
JP6858893B1 (ja) * 2020-01-07 2021-04-14 三菱電機株式会社 回転電機装置の制御装置
JP6907364B1 (ja) * 2020-03-06 2021-07-21 日立Astemo株式会社 モータ制御装置
JP6997236B2 (ja) * 2020-03-06 2022-01-17 本田技研工業株式会社 モータ制御装置
CN114070133B (zh) * 2020-08-04 2023-09-15 美的威灵电机技术(上海)有限公司 驱动装置、控制方法、电器设备和存储介质
CN112422018A (zh) * 2020-11-03 2021-02-26 睿驰电装(大连)电动系统有限公司 电驱系统效率标定方法、装置和电动汽车
JP7388391B2 (ja) * 2021-04-23 2023-11-29 トヨタ自動車株式会社 燃料電池システム及び飛行体
CN113300651A (zh) * 2021-06-18 2021-08-24 合肥巨一动力系统有限公司 一种电机控制器直流母线电压优化控制方法
KR102585257B1 (ko) * 2022-01-26 2023-10-05 호남대학교 산학협력단 차량에 추가장착 가능한 승차감 향상을 위한 가감속 제어 시스템 모듈
DE102022132523A1 (de) 2022-12-07 2024-06-13 HORIBA Europe GmbH, Zweigniederlassung Darmstadt Antriebs- und Belastungssystem für eine rotierende elektrische Maschine, Prüfstand sowie elektrischer Belastungs- und Antriebsstrang

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373195A (en) 1992-12-23 1994-12-13 General Electric Company Technique for decoupling the energy storage system voltage from the DC link voltage in AC electric drive systems
JP2000032799A (ja) * 1998-07-07 2000-01-28 Hitachi Ltd 回転電機の制御装置及び制御方法
JP3472522B2 (ja) 2000-02-21 2003-12-02 株式会社日立製作所 複数モータの制御装置、電力変換装置、インバータモジュール、コンバータモジュール
JP2003033071A (ja) 2001-07-18 2003-01-31 Nissan Motor Co Ltd モータ制御装置
JP3692993B2 (ja) 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
JP3906843B2 (ja) * 2002-01-16 2007-04-18 トヨタ自動車株式会社 電圧変換装置の制御装置および電圧変換方法並びに記憶媒体,プログラム,駆動システムおよび駆動システムを搭載する車輌
JP2004208409A (ja) * 2002-12-25 2004-07-22 Denso Corp 車両用動力制御装置
US6831429B2 (en) * 2003-03-10 2004-12-14 Visteon Global Technologies, Inc. Prediction of available torque and power from battery-powered traction motor
JP2003348892A (ja) 2003-04-21 2003-12-05 Hitachi Ltd 複数モータの制御装置、電力変換装置、インバータモジュール、コンバータモジュール
JP4280573B2 (ja) * 2003-07-31 2009-06-17 トヨタ自動車株式会社 負荷駆動装置
JP4364651B2 (ja) 2004-01-07 2009-11-18 三菱電機株式会社 昇圧装置及びモータ制御装置
WO2005076433A1 (ja) * 2004-02-03 2005-08-18 Toyota Jidosha Kabushiki Kaisha ハイブリッド燃料電池システム及びその電圧変換制御方法
JP2005269723A (ja) * 2004-03-17 2005-09-29 Nissan Motor Co Ltd 電動機駆動制御装置
US7149618B2 (en) * 2004-05-15 2006-12-12 General Motors Corporation Cost structure method including fuel economy and engine emission considerations
JP2006020418A (ja) * 2004-07-01 2006-01-19 Nissan Motor Co Ltd モータ制御装置及びその制御方法
US7846704B2 (en) * 2004-07-23 2010-12-07 National Institute Of Advanced Industrial Science And Technology Flap endonuclease mutants
JP4571480B2 (ja) * 2004-11-04 2010-10-27 本田技研工業株式会社 電動モータの制御装置
JP4635703B2 (ja) * 2005-05-02 2011-02-23 トヨタ自動車株式会社 モータ駆動システムの制御装置
JP4797476B2 (ja) * 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
JP4483749B2 (ja) * 2005-09-12 2010-06-16 株式会社デンソー 電力変換回路の制御装置
US7847437B2 (en) * 2007-07-30 2010-12-07 Gm Global Technology Operations, Inc. Efficient operating point for double-ended inverter system
US8406970B2 (en) * 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8285431B2 (en) * 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8010247B2 (en) * 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8396634B2 (en) * 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8200383B2 (en) * 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US8346449B2 (en) * 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US8374758B2 (en) * 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8504259B2 (en) * 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8126624B2 (en) * 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US7988594B2 (en) * 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8112207B2 (en) * 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8073601B2 (en) * 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10523133B2 (en) 2015-11-04 2019-12-31 Mitsubishi Electric Corporation Vehicular motor control device and vehicular motor control method

Also Published As

Publication number Publication date
EP2023482A4 (en) 2017-07-19
CN101461130A (zh) 2009-06-17
KR20090015151A (ko) 2009-02-11
EP2023482A1 (en) 2009-02-11
CN101461130B (zh) 2012-05-09
WO2007139126A1 (ja) 2007-12-06
KR101021256B1 (ko) 2011-03-11
EP2023482B1 (en) 2020-04-22
US7701156B2 (en) 2010-04-20
US20070278986A1 (en) 2007-12-06
JP2007325351A (ja) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5109290B2 (ja) 電動機駆動制御システムおよびその制御方法
JP4232789B2 (ja) 内燃機関の停止制御装置および停止制御方法
US7893637B2 (en) Motor drive system
US8639405B2 (en) Electric motor drive system for an electric vehicle
JP5454685B2 (ja) モータ駆動装置およびそれを搭載する車両
KR102026849B1 (ko) 자동차
US9166511B2 (en) Control system for AC motor
JP5303030B2 (ja) 電圧変換装置の制御装置、それを搭載した車両および電圧変換装置の制御方法
US20150032311A1 (en) Three-phase inverter control for electrified vehicles
JP2012110189A (ja) 電動車両の電気システムおよびその制御方法
JP2014128052A (ja) 車両の制御装置
JP5955761B2 (ja) 車両の制御装置
JP2010246207A (ja) 交流電動機の制御装置
CN108482102B (zh) 混合动力驱动系统
JP2009201250A (ja) モータの制御装置
US8148927B2 (en) Alternating-current motor control apparatus
JP2022048448A (ja) 車両
JP5290048B2 (ja) 車両のモータ制御システム
JP5277846B2 (ja) 交流電動機の制御システム
JP2017070048A (ja) 電動機駆動制御システム
JP2013017324A (ja) 電源システムおよびその制御方法
JP2010088240A (ja) 交流電動機の制御システム
JP2017112726A (ja) 交流電動機の制御システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5109290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250