WO2012039258A1 - インバータ制御装置及びインバータ制御方法 - Google Patents

インバータ制御装置及びインバータ制御方法 Download PDF

Info

Publication number
WO2012039258A1
WO2012039258A1 PCT/JP2011/069913 JP2011069913W WO2012039258A1 WO 2012039258 A1 WO2012039258 A1 WO 2012039258A1 JP 2011069913 W JP2011069913 W JP 2011069913W WO 2012039258 A1 WO2012039258 A1 WO 2012039258A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
inverter
abnormality
detection
guaranteed
Prior art date
Application number
PCT/JP2011/069913
Other languages
English (en)
French (fr)
Inventor
智志 中村
弘道 川村
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201180045926.7A priority Critical patent/CN103141022B/zh
Priority to JP2012534979A priority patent/JP5522262B2/ja
Priority to EP11826704.6A priority patent/EP2621079B1/en
Priority to US13/816,377 priority patent/US8976560B2/en
Publication of WO2012039258A1 publication Critical patent/WO2012039258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0038Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an inverter control device and an inverter control method.
  • DC voltage detecting means for detecting a DC voltage for driving the motor, current detecting means for detecting the current of the motor, the value of the DC voltage detected by the DC voltage detecting means and the current detecting means
  • Control means for controlling the motor PWM or rectangular wave based on the value of the measured current and a failure detecting device for detecting an abnormality of the DC voltage detecting means, and the abnormality detecting device detects abnormality of the DC voltage detecting means.
  • a motor control system is known in which the DC voltage detection means outputs the lowest value among the values that can be taken by the inverter input voltage to the current command value generation section and the PWM signal generation section of the control means. (Patent Document 1).
  • the reference voltage for determining the PWM signal is fixed to the minimum value, so that the fluctuation of the pulse width of the PWM signal becomes large, and the control There was a problem of lack of stability.
  • the problem to be solved by the present invention is to provide an inverter control device and an inverter control method capable of stably controlling an inverter when an abnormality of the voltage detecting means is detected.
  • the detection voltage of the voltage detection means for generating the control signal of the switching element is set to the lower limit of the guaranteed voltage range that ensures the performance of the inverter.
  • the above-mentioned problem is solved by fixing the second guaranteed voltage, which is higher than the first guaranteed voltage set based on the region.
  • the control signal for the switching element is generated based on the second guaranteed voltage that is higher than the first guaranteed voltage.
  • the fluctuation range is suppressed and the inverter can be stably controlled.
  • FIG. 1 is a block diagram of an inverter control apparatus according to an embodiment of the invention. Although detailed illustration is omitted, when the inverter control device of this example is provided in an electric vehicle, the three-phase AC power permanent magnet motor 8 is driven as a travel drive source and is coupled to the axle of the electric vehicle.
  • the motor control apparatus of this example is applicable also to vehicles other than electric vehicles, such as a hybrid vehicle (HEV), for example.
  • HEV hybrid vehicle
  • the inverter control device of this example is a control device that controls the operation of the motor 8, and is a current-voltage map 1, a current controller 2, a coordinate converter 3, a PWM (Pulse Width Modulation) converter 4, Battery 5, inverter 6, current sensor 7, magnetic pole position detector 9, coordinate converter 10, rotation speed calculator 11, LPF (Low Pass Filter) 12, voltage detector 13, and abnormality detector 14 and a voltage fixing unit 15.
  • the current voltage map 1 includes a torque command value (T * ) input from the outside as an output target value of the motor 8, an angular frequency ( ⁇ ) of the motor 8 which is an output of the rotation speed calculator 11, and a battery. 5 is input to the inverter 6 and the detection voltage (V dc ) detected by the voltage detector 13 is input.
  • the torque command value (T * ), the angular frequency ( ⁇ ), and the voltage (V dc ) are used as indexes, and the dq axis current command value (i * d , i * q ) and the dq axis non-interference voltage.
  • a map for outputting command values (V * d_dcpl , V * q_dcpl ) is stored.
  • the map outputs optimum command values that minimize the loss of the inverter 6 and the loss of the motor 8 with respect to the input of the torque command value (T * ), the angular frequency ( ⁇ ), and the voltage (V dc ). It is corresponded as follows.
  • the current-voltage map 1 refers to the map, and the dq-axis current command value (i * d ) corresponding to the input torque command value (T * ), angular frequency ( ⁇ ) and voltage (V dc ).
  • V * d_dcpl , V * q_dcpl non-interference voltage command values
  • the dq-axis non-interacting voltage command value (V * d_dcpl, V * q_dcpl ) for, when a current flows through the d-axis and q-axis interference voltage .omega.L q i q is the .omega.L d i d q-axis in the d-axis occurs Therefore , the dq-axis non-interference voltage command values (V * d_dcpl , V * q_dcpl ) are voltages for canceling the interference voltage.
  • L d represents the d-axis reactance
  • L q represents the q-axis reactance.
  • the current command values (i * d , i * q ) and the voltage command values (V * d_dcpl , V * q_dcpl ) correspond to the target values of the alternating current output from the inverter 6 to the motor 8, and will be described later. Based on the command value, the pulse width of the switching element is determined, and the output power of the inverter 6 is determined.
  • the LPF 12 receives the dq axis non-interference voltage command values (V * d_dcpl , V * q_dcpl ), cuts the high frequency band, and outputs the voltage command values (V * d_dcpl_flt , V * q_dcpl_flt ).
  • Current controller 2 is input with the dq-axis current command value (i * d, i * q ), voltage command value (V * d_dcpl_flt, V * q_dcpl_flt ) and dq-axis current (i d, i q), the control operation To output dq axis voltage command values (V * d , V * q ).
  • the coordinate converter 3 receives the dq-axis voltage command value (V * d , V * q ) and the detected value ⁇ of the magnetic pole position detector 9 as input, and uses the following equation (1) to calculate the dq of the rotating coordinate system.
  • the shaft voltage command values (V * d , V * q ) are converted into voltage command values (V * u , V * v , V * w ) for the u, v, and w axes in the fixed coordinate system.
  • the PWM converter 4 generates a control signal for the switching element of the inverter 6 based on the input voltage command values (V * u , V * v , V * w ), and outputs the control signal to the inverter 6.
  • the switching element is switched on and off based on a PWM pulse signal.
  • PWM converter 4 using Equation (2), and converts the voltage command value (V * u, V * v , V * w) to UVW-phase pulse width (t u, t v, t w) to.
  • T o represents the PWM carrier cycle.
  • the battery 5 is a DC power source including a secondary battery, and serves as a power source for the vehicle in this example.
  • the inverter 6 is configured by a three-phase inverter circuit in which a plurality of circuits in which switching elements (not shown) such as MOSFETs and IGBTs are connected in pairs are connected. A control signal having a pulse width (t u , t v , t w ) is input to each switching element. Then, the DC voltage of the DC power supply is converted into AC voltage (V u , V v , V w ) by the switching operation of the switching element, and is input to the motor 8. When the motor 8 operates as a generator, the inverter 6 converts the AC voltage output from the motor 8 into a DC voltage and outputs it to the battery 5. Thereby, the battery 5 is charged.
  • the current sensor 7 is provided for each of the U phase and the V phase, detects a phase current (i u , i v ), and outputs it to the coordinate converter 10.
  • the w-phase current is not detected by the current sensor 7. Instead, the coordinate converter 10 uses the following equation (3) based on the input phase current (i u , i v ) after correction. , W-phase current is calculated.
  • the w-phase current may be detected by the current sensor 7 provided in the w-phase.
  • the motor 8 is a multi-phase motor and is connected to the inverter 6.
  • the motor 8 also operates as a generator.
  • the magnetic pole position detector 9 is a detector that is provided in the motor 8 and detects the position of the magnetic pole of the motor 8, and outputs the detected value ( ⁇ ) to the rotational speed calculator 11.
  • the rotation speed calculator 11 calculates the angular frequency ( ⁇ ) of the motor 8 from the detection value ( ⁇ ) of the magnetic pole position detector 9.
  • the coordinate converter 10 is a control unit that performs three-phase to two-phase conversion.
  • the phase current (i u , i v , i w ) and the detected value ⁇ of the magnetic pole position detector 9 are input as
  • the phase current (i u , i v , i w ) in the fixed coordinate system is converted into the phase current ( id , i q ) in the rotating coordinate system.
  • the inverter control device of this example performs control by a current control loop having a predetermined gain.
  • the voltage detector 13 is a sensor that detects DC power input from the battery 5 to the inverter 6, and outputs the detected voltage to the current-voltage map 1, the PWM converter 4, and the abnormality detector 14.
  • the abnormality detector 14 detects a failure of the voltage detector 14 based on the detection voltage of the voltage detector 13, and outputs an abnormal signal indicating an abnormality of the voltage detector 13 when the voltage detector 13 is broken. Transmit to the voltage fixing unit 15.
  • the abnormality detector 14 detects the abnormality of the voltage detector 13 by, for example, the following method.
  • the battery 12 includes a plurality of battery cells (not shown) connected in series, and a cell controller (not shown) for managing the voltage of the battery cell is connected to each battery cell.
  • the cell controller detects the voltage of the connected battery cell. Since the voltage of the battery 12 can be calculated by taking the sum of the detection voltages of the respective cell controllers, the portion of each cell controller that detects the voltage corresponds to the voltage detector 13.
  • the abnormality detector 14 compares the detection voltages of the cell controllers, and the abnormality of the voltage detection function of the cell controller can be detected from the comparison result. For example, the abnormality detector 14 calculates the average voltage of the detection voltages of each cell controller, and calculates the voltage difference between the average voltage and each detection voltage.
  • the detection voltage of the cell controller in which an abnormality has occurred takes an abnormal voltage value, and the voltage difference from the average voltage is larger than other normal voltage differences. Therefore, the abnormality may be detected from the voltage difference.
  • the voltage fixing unit 15 fixes the detection voltage (V dc ) input from the voltage detector 13 to the current voltage map 1 to the reference voltage (V dc — l ) when an abnormality signal is received from the abnormality detector 14.
  • the detection voltage (V dc ) input from the voltage detector 13 to the PWM converter 4 is fixed to the reference voltage (V dc — h ).
  • the reference voltage (V dc — l ) is the lowest voltage value that can be taken by the DC voltage input to the inverter 6, and is a voltage value set based on a lower limit region for ensuring the operation of the inverter 6.
  • the range of the input voltage that ensures the control operation is preset in the design stage.
  • the range of the input voltage that guarantees the control operation indicates a performance guarantee voltage range defined by the performance guarantee voltage or an operation guarantee voltage range prescribed by the operation guarantee voltage.
  • the performance guarantee voltage range is a voltage range that guarantees the performance of the inverter 6 within the voltage range.
  • the operation guaranteed voltage range is a voltage range in which the performance of the inverter 6 cannot be guaranteed within the voltage range, but the operation of the inverter 6 can be performed without failing. Indicates a wider voltage range than the range.
  • the reference voltage (V dc — l ) is set to the lowest voltage in the guaranteed performance voltage range.
  • the reference voltage (V dc — l ) is set to the lowest voltage in the guaranteed operating voltage range.
  • the reference voltage (V dc — l ) does not necessarily have to be a voltage value equal to the lowest voltage value in the performance guarantee voltage range or the operation guarantee voltage range, and may be a voltage value higher than the lowest voltage. That is, the reference voltage (V dc — l ) may be set based on the lower limit region of the performance guarantee voltage range or the operation guarantee voltage range.
  • the reference voltage (V dc_h ) is set to the highest voltage in the performance guarantee voltage range.
  • the reference voltage (V dc_h ) is set to the highest voltage in the guaranteed operating voltage range.
  • the reference voltage (V dc — h ) does not necessarily have to be a voltage value equal to the highest voltage value in the performance guarantee voltage range or the operation guarantee voltage range, and may be a voltage value lower than the highest voltage value.
  • the reference voltage (V dc — h ) is set to a voltage that is at least higher than the reference voltage (V dc — l ). That is, it may be set based on the upper limit region of the performance guarantee voltage range or the operation guarantee voltage range. However, the upper limit region is set to a voltage region higher than the lower limit region.
  • the DC voltage of the battery 5 is not input as it is to the current-voltage map 1, but the reference voltage (V dc — l ) is input.
  • the voltage-current map 1 is based on the stored reference voltage (V dc — l ).
  • the dq-axis current command value (i * d , i * q ) and the dq-axis non-interference voltage command value (V * d_dcpl , V * q_dcpl ) are calculated with reference.
  • the voltage input to the current voltage map 1 becomes a reference voltage (V dc — l ) lower than the DC voltage of the battery 5. Therefore, the voltage / current map 1 does not output a command value with reference to a voltage larger than the actual voltage of the battery 5, and power shortage in the inverter 6 can be prevented.
  • the DC voltage of the battery 5 is not input to the PWM converter 4 as it is, but the reference voltage (V dc_h ) is input, and the PWM converter 4 is connected to the inverter 6 based on the reference voltage (V dc_h ).
  • the voltage (V dc ) input to the PWM converter 4 is at the denominator position. Therefore, when the denominator is set to a small value, fluctuations in the pulse width (t u , t v , t w ) with respect to fluctuations in the voltage command values (V * u , V * v , V * w ) growing.
  • the fluctuation width of the pulse width (t u , t v , t w ) becomes the largest when the voltage input to the PWM converter 4 is fixed to the lowest voltage in the guaranteed voltage range.
  • the pulse width of the control signal does not frequently fluctuate frequently, so that the loop gain becomes low and control stability can be achieved.
  • the input voltage to the PWM converter 4 is compared. Is fixed to the upper limit value (400V) of the guaranteed voltage range, the control indicated by the magnitude of the fluctuation of the pulse width with respect to the voltage command value (V * u , V * v , V * w ) in a predetermined range
  • the stability is improved about twice.
  • the detection voltage (V dc ) input to the current voltage map 1 by the voltage fixing unit 15 is used as the reference voltage.
  • V dc_l the detection voltage input to the PWM converter 4 (V dc)
  • V dc_h a reference voltage (V dc_h) than the reference voltage
  • the current-voltage map 1 does not calculate a command value with reference to a voltage higher than the actual voltage of the battery 5, so that it is possible to avoid a shortage of power in the inverter 6.
  • the fluctuation of the pulse width of the control signal generated by the PWM converter 4 can be suppressed, it is possible to prevent the loop gain from being high and to increase the gain margin. As a result, the control Stability can be improved.
  • the inverter control device of this example is for ensuring high response.
  • the circuit is designed so that the loop gain is increased and the gain margin is small. And there is no margin of the DC voltage of the battery 5 with respect to the output voltage of the inverter 6, and the inverter control apparatus of this example operates at a high modulation rate.
  • the abnormality detector 14 detects an abnormality of the voltage detector 13 as described above, the gain margin can be increased while avoiding the power shortage in the inverter 6. Even when the circuit is designed so as to cope with the responsiveness and the widening of the operation range of the inverter 6, it is possible to prevent the control from becoming unstable when the voltage detector 13 is abnormal.
  • the detection voltage (V dc ) input to the WM converter 4 by the voltage fixing unit 15 is used as the guaranteed voltage range of the inverter 6.
  • the reference voltage (V dc — h ) set based on the upper limit region is fixed.
  • the reference voltage (V dc — l ) in this example corresponds to the lower limit voltage of the performance guarantee voltage or the lower limit voltage of the operation guarantee voltage
  • the reference voltage (V dc — h ) is the upper limit voltage of the performance guarantee voltage, or Corresponds to the voltage of the guaranteed operating voltage condition.
  • the reference voltage (V dc — l ) is made to correspond to a voltage that is equal to or lower than the lower limit voltage of the guaranteed performance voltage and equal to or higher than the lower limit voltage of the guaranteed operating voltage
  • the reference voltage (V dc — h ) is It may be set in correspondence with a voltage that is not less than the upper limit voltage of the performance guarantee voltage and not more than the upper limit voltage of the operation guarantee voltage.
  • the voltage detector 13 of this example corresponds to the “voltage detection means” of the present invention
  • the current voltage map 1 is the “target value calculation means”
  • the current controller 2 the coordinate converter 3 and the PWM converter 4 are “inverters”.
  • the abnormality detector 14 corresponds to the “abnormality detection means”
  • the voltage fixing unit 15 corresponds to the “voltage fixing means”.
  • the reference voltage (V dc — 1 ) in this example corresponds to the “first guaranteed voltage” of the present invention
  • the reference voltage (V dc — h ) corresponds to the “second guaranteed voltage” of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 直流電源から入力される直流電力を交流電力に変換するインバータ6の直流電圧を検出する電圧検出手段と、電圧検出手段の検出電圧に基づき、インバータ6から出力される交流電流の目標値を算出する目標値算出手段と、検出電圧と前記目標値に基づき、インバータ6に含まれるスイッチング素子の制御信号を生成し、インバータ6を制御するインバータ制御手段と、電圧検出手段の異常を検出する異常検出手段と、異常検出手段により前記異常を検出した場合に、目標値を算出するための検出電圧を、インバータ6の性能を保障する保障電圧範囲の下限領域に基づき設定される第1の保障電圧に固定し、制御信号を生成するための検出電圧を、第1の保障電圧より高い電圧である第2の保障電圧に固定する電圧固定手段とを備えるインバータ制御措置。

Description

インバータ制御装置及びインバータ制御方法
 本発明は、インバータ制御装置及びインバータ制御方法に関するものである。
 モータを駆動するための直流電圧を検出する直流電圧検出手段と、当該モータの電流を検出する電流検出手段と、当該直流電圧検出手段により検出された直流電圧の値と前記電流検出手段により検出された電流の値とに基づいて、モータPWM制御又は矩形波制御する制御手段と、当該直流電圧検出手段の異常を検出する故障検出装置とを備え、当該故障検出装置により当該直流電圧検出手段の異常を検出した場合、当該直流電圧検出手段により、インバータ入力電圧が取りうる値のうち最低値を、当該制御手段の電流指令値発生部及びPWM信号発生部に出力するモータ制御システムが知られている(特許文献1)。
特開2005-117756号公報
 しかしながら、故障検出装置により当該直流電圧検出手段の異常を検出した場合に、PWM信号を決定するための基準電圧が当該最低値に固定されるため、PWM信号のパルス幅の変動が大きくなり、制御の安定性に欠けるという問題があった。
 本発明が解決しようとする課題は、電圧検出手段の異常を検出した場合に、インバータを安定して制御することができるインバータ制御装置及びインバータ制御方法を提供することである。
 本発明は、異常検出手段により電圧検出手段の異常を検出した場合に、スイッチング素子の制御信号を生成するための、当該電圧検出手段の検出電圧を、インバータの性能を保障する保障電圧範囲の下限領域に基づき設定される第1の保障電圧より高い電圧である第2の保障電圧に固定することによって上記課題を解決する。
 本発明によれば、電圧検出手段の異常を検出した場合に、第1の保障電圧より高い電圧である第2の保障電圧に基づいて、スイッチング素子の制御信号が生成されるため、当該制御信号の変動幅が抑制され、インバータを安定して制御することができる、という効果を奏する。
本発明の実施形態に係るインバータ制御装置のブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
 図1は、発明の実施形態に係るインバータ制御装置のブロック図である。詳細な図示は省略するが、本例のインバータ制御装置を電気自動車に設ける場合に、三相交流電力の永久磁石モータ8は、走行駆動源として駆動し、電気自動車の車軸に結合されている。なお本例のモータ制御装置は、例えばハイブリッド自動車(HEV)等の電気自動車以外の車両にも適用可能である。
 本例のインバータ制御装置は、モータ8の動作を制御する制御装置であって、電流電圧マップ1と、電流制御器2と、座標変換器3と、PWM(Pulse Width Modulation)変換器4と、バッテリ5と、インバータ6と、電流センサ7と、磁極位置検出器9と、座標変換器10と、回転数演算器11と、LPF(Low Pass Filter)12、電圧検出器13と、異常検出器14と、電圧固定部15と、を備える。
 電流電圧マップ1には、モータ8の出力目標値として外部より入力されるトルク指令値(T)と、回転数演算器11の出力である、モータ8の角周波数(ω)、及び、バッテリ5からインバータ6に入力され、電圧検出器13により検出される検出電圧(Vdc)が入力される。電流電圧マップ1には、トルク指令値(T)、角周波数(ω)、電圧(Vdc)を指標として、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を出力するためのマップが格納されている。当該マップは、トルク指令値(T)、角周波数(ω)及び電圧(Vdc)の入力に対して、インバータ6の損失及びモータ8の損失を最小限に抑える最適な指令値を出力するよう対応づけられている。電流電圧マップ1は、当該マップを参照することにより、入力されたトルク指令値(T)、角周波数(ω)及び電圧(Vdc)に対応する、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を算出し、出力する。ここで、dq軸は、回転座標系の成分を示している。dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)について、d軸及びq軸に電流が流れると、d軸にはωLq軸にはωLの干渉電圧が発生するため、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)は当該干渉電圧を打ち消すための電圧である。なお、Lはd軸のリアクタンスを、Lはq軸のリアクタンスを示す。また電流指令値(i 、i )及び電圧指令値(V d_dcpl、V q_dcpl)は、インバータ6からモータ8に出力される交流電流の目標値に相当し、後述するように、当該指令値に基づいて、スイッチング素子のパルス幅が決定し、インバータ6の出力電力が決定する。
 LPF12は、dq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を入力として、高周波帯域をカットし、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)を出力する。
 電流制御器2は、dq軸電流指令値(i 、i )、電圧指令値(V d_dcpl_flt、V q_dcpl_flt)及びdq軸電流(i、i)を入力として、制御演算を行い、dq軸電圧指令値(V 、V )を出力する。
 座標変換器3は、dq軸電圧指令値(V 、V )及び磁極位置検出器9の検出値θを入力として、下記の式(1)を用いて、当該回転座標系のdq軸電圧指令値(V 、V )を固定座標系のu、v、w軸の電圧指令値(V 、V 、V )に変換する。
Figure JPOXMLDOC01-appb-M000001
 PWM変換器4は、入力される電圧指令値(V 、V 、V )に基づき、インバータ6のスイッチング素子の制御信号を生成し、インバータ6に出力する。スイッチング素子は、PWMのパルス信号に基づいてオン及びオフを切り換えられる。PWM変換器4は、式(2)を用いて、電圧指令値(V 、V 、V )をUVW相のパルス幅(t、t、t)に変換する。
Figure JPOXMLDOC01-appb-M000002
 ただし、TはPWMキャリア周期を示す。
 バッテリ5は、二次電池を含む直流電源であり、本例の車両の動力源となる。インバータ6は、MOSFETやIGBT等のスイッチング素子(図示しない)を対に接続した回路を複数接続した三相インバータ回路により構成されている。各スイッチング素子には、パルス幅(t、t、t)の制御信号が入力される。そして、当該スイッチング素子のスイッチング動作により、直流電源の直流電圧が交流電圧(V、V、V)に変換され、モータ8に入力される。またモータ8が発電機として動作する場合には、インバータ6はモータ8から出力される交流電圧を直流電圧に変換しバッテリ5に出力する。これによりバッテリ5が充電される。
 電流センサ7は、U相及びV相にそれぞれ設けられ、相電流(i、i)を検出し、座標変換器10に出力する。w相の電流は、電流センサ7により検出されず、代わりに、座標変換器10は、入力された補正後の相電流(i、i)に基づき、下記の式(3)を用いて、w相の相電流を算出する。
Figure JPOXMLDOC01-appb-M000003
 なお、w相の相電流について、w相に電流センサ7を設け、当該電流センサ7により検出してもよい。
 モータ8は、多相モータであり、インバータ6に接続される。またモータ8は発電機としても動作する。磁極位置検出器9はモータ8に設けられ、モータ8の磁極の位置を検出する検出器であり、検出値(θ)を回転数演算器11に出力する。回転数演算器11は、磁極位置検出器9の検出値(θ)からモータ8の角周波数(ω)を演算する。
 座標変換器10は、3相2相変換を行う制御部であり、相電流(i、i、i)及び磁極位置検出器9の検出値θを入力として、下記の式4により、固定座標系の相電流(i、i、i)を回転座標系の相電流(i、i)に変換する。
Figure JPOXMLDOC01-appb-M000004
 そして、当該相電流(i、i)が電流制御器2に入力されることにより、本例のインバータ制御装置は所定のゲインの電流制御ループによる制御を行う。
 次に、電圧検出器13に故障が生じた場合における、本例の制御について説明する。電圧検出器13は、バッテリ5からインバータ6に入力される直流電力を検出するセンサであって、検出電圧を、電流電圧マップ1、PWM変換器4及び異常検出器14に出力する。異常検出器14は、電圧検出器13の検出電圧に基づいて、電圧検出器14の故障を検出し、電圧検出器13が故障している場合に、電圧検出器13の異常を示す異常信号を電圧固定部15に送信する。異常検出器14による電圧検出器13の異常の検出は、例えば以下の方法により行われる。
 例えば、バッテリ12は、直列接続された複数の電池セル(図示しない)により構成され、それぞれの電池セルには、当該電池セルの電圧を管理するセルコントローラ(図示しない)がそれぞれ接続されている。セルコントローラは接続された電池セルの電圧を検出する。各セルコントローラの検出電圧の総和をとることで、バッテリ12の電圧を算出することができるため、各セルコントローラのうち電圧を検出する部分が、電圧検出器13に相当する。そして、異常検出器14により、各セルコントローラの検出電圧がそれぞれ比較され、その比較結果から、セルコントローラの電圧検出機能の異常を検出することができる。例えば、異常検出器14は、各セルコントローラの検出電圧の平均電圧を演算し、当該平均電圧とそれぞれの検出電圧との電圧差を演算する。異常が生じているセルコントローラの検出電圧は異常な電圧値をとり、平均電圧との電圧差が他の正常な電圧差と比較して大きくなるため、当該電圧差から異常を検出すればよい。
 電圧固定部15は、異常検出器14にから異常信号を受信した場合に、電圧検出器13から電流電圧マップ1に入力される検出電圧(Vdc)を基準電圧(Vdc_l)に固定し、電圧検出器13からPWM変換器4に入力される検出電圧(Vdc)を基準電圧(Vdc_h)に固定する。基準電圧(Vdc_l)は、インバータ6へ入力される直流電圧の取りうる電圧値のうち最も低い電圧であり、インバータ6の動作を保障するための下限領域に基づき設定される電圧値である。
 ここで、インバータ6には、制御動作を保障する入力電圧の範囲が設計段階により予め設定されている。そして、制御動作を保障する入力電圧の範囲は、性能保障電圧により規定される性能保障電圧範囲、又は、作動保障電圧により規定される作動保障電圧範囲を示す。性能保障電圧範囲は、その電圧範囲内であればインバータ6の性能を保障する電圧範囲である。一方、作動保障電圧範囲は、その電圧範囲内でインバータ6の性能を保障することはできないが、フェール等によらずにインバータ6の動作をすることができる、電圧範囲であって、性能保障電圧範囲より広い電圧範囲を示す。
 入力電圧の範囲を性能保障電圧範囲に対応させて設定する場合には、基準電圧(Vdc_l)は性能保障電圧範囲のうち最も低い電圧に設定される。また、入力電圧の範囲を作動保障電圧範囲に対応させて設定する場合には、基準電圧(Vdc_l)は作動保障電圧範囲のうち最も低い電圧に設定される。なお、基準電圧(Vdc_l)は、必ずしも性能保障電圧範囲又は作動保障電圧範囲のうち、最も低い電圧値と等しい電圧値にする必要はなく、当該最も低い電圧より高い電圧値にしてもよい。すなわち基準電圧(Vdc_l)は、性能保障電圧範囲又は作動保障電圧範囲の下限領域に基づいて設定されればよい。
 入力電圧の範囲を性能保障電圧範囲に対応させて設定する場合には、基準電圧(Vdc_h)は性能保障電圧範囲のうち最も高い電圧に設定される。また、入力電圧の範囲を作動保障電圧範囲に対応させて設定する場合には、基準電圧(Vdc_h)は作動保障電圧範囲のうち最も高い電圧に設定される。なお、基準電圧(Vdc_h)は、必ずしも性能保障電圧範囲又は作動保障電圧範囲のうち、最も高い電圧値と等しい電圧値にする必要はなく、当該最も高い電圧値より低い電圧値にしてもよい。たたし、基準電圧(Vdc_h)は、少なくとも基準電圧(Vdc_l)より高い電圧に設定される。すなわち、性能保障電圧範囲又は作動保障電圧範囲の上限領域に基づいて設定されればよい。ただし、当該上限領域は上記の下限領域より高い電圧領域に設定される。
 電流電圧マップ1には、バッテリ5の直流電圧がそのまま入力されず、基準電圧(Vdc_l)が入力され、電圧電流マップ1は、当該基準電圧(Vdc_l)に基づいて、格納されたマップを参照し、dq軸電流指令値(i 、i )及びdq軸非干渉電圧指令値(V d_dcpl、V q_dcpl)を算出する。これにより、電圧検出器13に異常が生じた場合に、電流電圧マップ1に入力される電圧は、バッテリ5の直流電圧より低い基準電圧(Vdc_l)になる。そのため、電圧電流マップ1が、バッテリ5の実際の電圧より大きい電圧を参照して指令値を出力することが無くなり、インバータ6における電力不足を防ぐことができる。
 また、PWM変換器4には、バッテリ5の直流電圧がそのまま入力されず、基準電圧(Vdc_h)が入力され、PWM変換器4は、当該基準電圧(Vdc_h)に基づいて、インバータ6の制御信号のパルス幅を設定する。上記の式2において、PWM変換器4に入力される電圧(Vdc)は、分母の位置にある。そのため、当該分母を小さい値に設定した場合に、電圧指令値(V 、V 、V )の変動に対して、パルス幅(t、t、t)の変動が大きくなる。そして、パルス幅(t、t、t)の変動の幅は、PWM変換器4に入力される電圧を、保障電圧範囲のうち最も低い電圧に固定した場合に最も大きくなる。
 電圧検出器13の異常が検出された場合に、PWM変換器4は、基準電圧(Vdc_l)より高い電圧である基準電圧(Vdc_h)を入力電圧とし、パルス幅を設定する。これにより、制御信号のパルス幅が頻繁に大きく変動することがなくなるため、ループゲインが低い状態となり制御の安定性を図ることができる。
 例えば、インバータ6の保障電圧範囲を200~400Vとし、PWM変換器4への入力電圧を保障電圧範囲の下限値(200V)に固定した場合と、比較して、PWM変換器4への入力電圧を保障電圧範囲の上限値(400V)に固定した場合には、ある所定の範囲の電圧指令値(V 、V 、V )に対するパルス幅の変動の大きさにより示される制御の安定性が、約2倍、向上する。
 上記のように、本例は、異常検出器14が電圧検出器13の異常を検出した場合に、電圧固定部15により、電流電圧マップ1に入力される検出電圧(Vdc)を、基準電圧(Vdc_l)に固定し、PWM変換器4に入力される検出電圧(Vdc)を、基準電圧(Vdc_l)より高い電圧である基準電圧(Vdc_h)に固定する。これにより、電流電圧マップ1が、実際のバッテリ5の電圧より大きい電圧を参照して指令値を算出しないため、インバータ6において電力不足に陥ることを回避することができる。また、PWM変換器4により生成される制御信号のパルス幅の変動を抑制することができるため、ループゲインが高い状態となることを防ぎ、ゲイン余裕を大きくとることができ、その結果として、制御の安定性を向上させることができる。
 また、本例のインバータ制御装置に対して、電流制御の高応答性及びインバータ6の運転範囲の広域化が求められた場合に、本例のインバータ制御装置は、高い応答性を確保するためにループゲインを高くし、ゲイン余裕が少ない状態に回路設計される。そして、インバータ6の出力電圧に対してバッテリ5の直流電圧の余裕が無く、本例のインバータ制御装置は高変調率で運転する。本例は、上記のように、異常検出器14が電圧検出器13の異常を検出した場合に、インバータ6における電力不足を回避しつつ、ゲイン余裕を大きくとることができるため、電流制御の高応答性及びインバータ6の運転範囲の広域化に対応するように回路設計した場合においても、電圧検出器13の異常時に、制御を不安定になることを防ぐことができる。
 また本例は、異常検出器14が電圧検出器13の異常を検出した場合に、電圧固定部15により、WM変換器4に入力される検出電圧(Vdc)を、インバータ6の保障電圧範囲の上限領域に基づいて設定される基準電圧(Vdc_h)に固定する。これにより、PWM変換器4により生成される制御信号のパルス幅の変動を抑制することができるため、ループゲインが高い状態となることを防ぎ、ゲイン余裕を大きくとることができ、その結果として、制御の安定性を向上させることができる。
 なお、本例の基準電圧(Vdc_l)は、性能保障電圧の下限の電圧、又は作動保障電圧の下限の電圧に対応し、基準電圧(Vdc_h)は、性能保障電圧の上限の電圧、又は作動保障電圧の条件の電圧に対応する。また、本例は、基準電圧(Vdc_l)を、性能保障電圧の下限の電圧以下であり、かつ、作動保障電圧の下限の電圧以上である電圧と対応させ、基準電圧(Vdc_h)を、性能保障電圧の上限の電圧以上であり、かつ、作動保障電圧の上限の電圧以下である電圧と対応させて、設定してもよい。 本例の電圧検出器13は本発明の「電圧検出手段」に相当し、電流電圧マップ1が「目標値算出手段」に、電流制御器2、座標変換器3及びPWM変換器4が「インバータ制御手段」に、異常検出器14が「異常検出手段」に、電圧固定部15が「電圧固定手段」に相当する。また本例の基準電圧(Vdc_l)が本発明の「第1の保障電圧」に、基準電圧(Vdc_h)が本発明の「第2の保障電圧」に相当する。
1…電流電圧マップ
2…電流制御器
3…座標変換器
4…PWM変換器
5…バッテリ
6…インバータ
7…電流センサ
8…モータ
9…磁極位置検出器
10…座標変換器
11…回転数演算器
12…LPF
13…電圧検出部
14…異常検出器
15…電圧固定部

Claims (3)

  1. 直流電源から入力される直流電力を交流電力に変換するインバータの直流電圧を検出する電圧検出手段と、
    前記電圧検出手段の検出電圧に基づき、前記インバータから出力される交流電流の目標値を算出する目標値算出手段と、
    前記検出電圧と前記目標値に基づき、前記インバータに含まれるスイッチング素子の制御信号を生成し、前記インバータを制御するインバータ制御手段と、
    前記電圧検出手段の異常を検出する異常検出手段と、
    前記異常検出手段により前記異常を検出した場合に、前記目標値を算出するための前記検出電圧を、前記インバータの性能を保障する保障電圧範囲の下限領域に基づき設定される第1の保障電圧に固定し、前記制御信号を生成するための前記検出電圧を、前記第1の保障電圧より高い電圧である第2の保障電圧に固定する電圧固定手段とを備えることを特徴とするインバータ制御装置。
  2. 前記第2の保障電圧は、前記インバータの性能を保障する保障電圧範囲の上限領域に基づき設定されることを特徴とする請求項1記載のインバータ制御装置。
  3. 電圧検出手段により、インバータに入力される直流電源の直流電圧を検出する電圧検出工程と、
    前記電圧検出工程により検出された前記直流電源の検出電圧に基づいて、前記インバータから出力される交流電流の目標値を算出する工程と、
    前記検出電圧と前記目標値に基づき、前記インバータに含まれるスイッチング素子の制御信号を生成する工程と、
    前記制御信号に基づき、前記スイッチング素子のオン及びオフを制御し、前記直流電源の直流電力を交流電力に変換する工程と、
    前記電圧検出手段の異常を検出する異常検出工程と、
    前記異常検出工程により前記異常を検出した場合に、前記目標値を算出するための前記検出電圧を、前記インバータの性能を保障する保障電圧範囲の下限領域に基づき設定される第1の保障電圧に固定し、前記制御信号を生成するための前記検出電圧を、前記第1の保障電圧より高い電圧である第2の保障電圧に固定する工程とを含むことを特徴とするインバータ制御方法。
PCT/JP2011/069913 2010-09-24 2011-09-01 インバータ制御装置及びインバータ制御方法 WO2012039258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180045926.7A CN103141022B (zh) 2010-09-24 2011-09-01 逆变器控制装置和逆变器控制方法
JP2012534979A JP5522262B2 (ja) 2010-09-24 2011-09-01 インバータ制御装置及びインバータ制御方法
EP11826704.6A EP2621079B1 (en) 2010-09-24 2011-09-01 Inverter control device and inverter control method
US13/816,377 US8976560B2 (en) 2010-09-24 2011-09-01 Inverter control device and inverter control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010213311 2010-09-24
JP2010-213311 2010-09-24

Publications (1)

Publication Number Publication Date
WO2012039258A1 true WO2012039258A1 (ja) 2012-03-29

Family

ID=45873748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069913 WO2012039258A1 (ja) 2010-09-24 2011-09-01 インバータ制御装置及びインバータ制御方法

Country Status (5)

Country Link
US (1) US8976560B2 (ja)
EP (1) EP2621079B1 (ja)
JP (1) JP5522262B2 (ja)
CN (1) CN103141022B (ja)
WO (1) WO2012039258A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104131A (zh) * 2013-04-11 2014-10-15 铃木株式会社 电池充电/放电控制设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101272955B1 (ko) * 2011-12-07 2013-06-12 기아자동차주식회사 환경자동차용 모터 제어 방법
JP6362349B2 (ja) * 2014-02-19 2018-07-25 日立オートモティブシステムズ株式会社 電動モータの駆動制御装置
JP6149884B2 (ja) * 2014-08-28 2017-06-21 株式会社デンソー 電圧コンバータ制御装置
US10897220B2 (en) * 2015-05-21 2021-01-19 Nissan Motor Co., Ltd. Motor control device and motor control method
JP6439658B2 (ja) * 2015-11-10 2018-12-19 株式会社デンソー 電圧センサ異常診断装置
JP6465848B2 (ja) * 2016-09-21 2019-02-06 キヤノン株式会社 モータ制御装置、シート搬送装置及び画像形成装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191198A (ja) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd モータ駆動装置の直流電圧検出値補正方法、モータ駆動制御装置
JP2005117756A (ja) 2003-10-06 2005-04-28 Nissan Motor Co Ltd 直流電圧検出回路の故障診断装置およびモータ制御システム
JP2010119228A (ja) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp 自動変速機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593973B2 (ja) * 2004-05-26 2010-12-08 トヨタ自動車株式会社 モータ駆動装置
JP4075863B2 (ja) * 2004-06-07 2008-04-16 株式会社デンソー 電動トルク使用型車両
JP4400389B2 (ja) * 2004-09-21 2010-01-20 株式会社デンソー 駆動モータ制御装置
JP5109290B2 (ja) * 2006-05-30 2012-12-26 トヨタ自動車株式会社 電動機駆動制御システムおよびその制御方法
JP5091535B2 (ja) * 2007-04-26 2012-12-05 三洋電機株式会社 モータ制御装置
CN103026612B (zh) * 2010-07-27 2015-06-03 三菱电机株式会社 交流旋转机的控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191198A (ja) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd モータ駆動装置の直流電圧検出値補正方法、モータ駆動制御装置
JP2005117756A (ja) 2003-10-06 2005-04-28 Nissan Motor Co Ltd 直流電圧検出回路の故障診断装置およびモータ制御システム
JP2010119228A (ja) * 2008-11-13 2010-05-27 Mitsubishi Electric Corp 自動変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2621079A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104104131A (zh) * 2013-04-11 2014-10-15 铃木株式会社 电池充电/放电控制设备
US9809224B2 (en) 2013-04-11 2017-11-07 Suzuki Motor Corporation Battery charge/discharge control apparatus

Also Published As

Publication number Publication date
EP2621079B1 (en) 2020-08-26
JP5522262B2 (ja) 2014-06-18
US20130141953A1 (en) 2013-06-06
US8976560B2 (en) 2015-03-10
EP2621079A1 (en) 2013-07-31
CN103141022A (zh) 2013-06-05
EP2621079A4 (en) 2017-08-02
CN103141022B (zh) 2015-09-16
JPWO2012039258A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
JP5091535B2 (ja) モータ制御装置
JP5133834B2 (ja) 交流電動機の制御装置
JP5715777B2 (ja) 永久磁石同期モータの制御方法
JP5522262B2 (ja) インバータ制御装置及びインバータ制御方法
US8232753B2 (en) Control device for electric motor drive apparatus
EP2731260B1 (en) Inverter control device and inverter control method
EP2733844B1 (en) Vehicle and method for controlling vehicle
US9590551B2 (en) Control apparatus for AC motor
JP2006320039A (ja) モータ駆動システムの制御装置
JP2007159368A (ja) モータ駆動システムの制御装置
US20180241340A1 (en) Motor drive control device
JP2010268626A (ja) 電源装置およびそれを備える電動車両
US20140217941A1 (en) Motor control system
JP2010246182A (ja) インバータの故障検知装置
JP2010239790A (ja) 回転電機制御装置
JP2010200527A (ja) モータ駆動システムの制御装置
JP5204463B2 (ja) モータ制御装置
JP2013038970A (ja) モータ制御装置
JP2009273302A (ja) 電動モータの制御装置
JP2010124662A (ja) モータ駆動システム
JP2021168567A (ja) モータ駆動システム
JP2019161748A (ja) インバータの制御方法及びインバータ制御装置
JP5686110B2 (ja) 交流電機駆動システムの制御装置
JP6221824B2 (ja) 電力変換器の制御装置
JP2010239812A (ja) 電源装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180045926.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11826704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13816377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011826704

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012534979

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE