JP5290048B2 - 車両のモータ制御システム - Google Patents

車両のモータ制御システム Download PDF

Info

Publication number
JP5290048B2
JP5290048B2 JP2009118845A JP2009118845A JP5290048B2 JP 5290048 B2 JP5290048 B2 JP 5290048B2 JP 2009118845 A JP2009118845 A JP 2009118845A JP 2009118845 A JP2009118845 A JP 2009118845A JP 5290048 B2 JP5290048 B2 JP 5290048B2
Authority
JP
Japan
Prior art keywords
voltage
motor
torque
control
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009118845A
Other languages
English (en)
Other versions
JP2010268627A (ja
Inventor
伸太郎 辻井
正樹 沓名
崇 小川
堅正 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2009118845A priority Critical patent/JP5290048B2/ja
Publication of JP2010268627A publication Critical patent/JP2010268627A/ja
Application granted granted Critical
Publication of JP5290048B2 publication Critical patent/JP5290048B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Description

この発明は、車両のモータ制御システムに関し、特に、矩形波電圧制御方式でモータを駆動する車両のモータ制御システムに関する。
直流電源を用いて交流電動機を駆動するにはインバータが用いられる。インバータはインバータ駆動回路によってスイッチング制御されており、これにより一般にはパルス幅変調(PWM)波形電圧が交流電動機に印加される。
PWM波形電圧を交流電動機に印加するPWM電流制御では、低回転域であっても滑らかな回転が得られるものの、直流電源の電圧利用率に限界があるという問題がある。これに対しては、弱め界磁電流を交流電動機に与えることにより高回転を得る方法もあるが、銅損が増加してしまうため妥当でない。
一方、交流電動機の駆動制御には、交流電動機に矩形波電圧を印加するという方法もある。この制御方法では、直流電源の電圧利用率を向上させることができ、その結果、高回転域での出力を向上させることができる。また、弱め界磁電流を減少させることができるため、銅損の発生を抑えてエネルギー効率を向上させることができる。さらに、インバータでのスイッチング回数を少なくすることができるため、スイッチング損失も抑えることができるという利点もある。
特開2005−45880号公報(特許文献1)は、PWM波形電圧と矩形波電圧の双方を交流電動機に対して印加可能な構成とし、それらを状況に応じて使い分ける技術において、効率のよい駆動をすることができる駆動制御装置を開示している
特開2005−45880号公報 特開2006−121855号公報 特開2007−166875号公報
ここで、車両のモータ制御システムにおいては、直流電源の電圧を昇圧してインバータに供給し、そのインバータでモータを駆動する構成が知られている。このような車両のモータ制御システムでは、電圧コンバータが昇圧を開始するポイントを各回転速度ごとにトルクしきい値が定められており、モータトルクがそのトルクしきい値に到達したら電圧コンバータに昇圧を行なわせていた。
しかしながら、昇圧開始ポイントは、モータの損失が小さくなるように設定してあるため、矩形波電圧制御を実行している際に、矩形波電圧の位相が深い領域(矩形波電圧の電圧ベクトルがd軸となす角θが大きい領域)から昇圧を開始する場合がある。その場合には、位相θを増加させてトルクも増加しているときに昇圧を開始すると、トルクが急激に変動してしまうトルク外れが起きてしまう。
それゆえ、この発明は、かかる課題を解決するためになされたものであり、その目的は、トルクの急激な変動が抑制された車両のモータ制御システムを提供することである。
この発明は、要約すると、車両のモータ制御システムであって、蓄電装置と、矩形波電圧制御方式でモータの駆動制御を行なうインバータと、インバータに対して蓄電装置の電圧を変換して供給する電圧コンバータと、インバータおよび電圧コンバータを制御する制御装置とを備える。制御装置は、電圧コンバータに電圧変換動作を行なわせて蓄電装置の電圧を昇圧する場合には、電圧コンバータの出力電圧指令値の変化率を、モータからインバータに与える矩形波電圧の位相とモータの出力トルクとの関係に応じて可変に設定する。
この発明によれば、矩形波電圧制御時に昇圧を開始したときに生じるトルク外れを小さく抑えることができるため、車両の快適性が向上する。
この発明の実施の形態に従う車両の概略構成図である。 本実施の形態による車両のモータ制御システムが行なう制御を説明するための図である。 本発明の実施の形態によるモータ制御システムにおける、矩形波電圧制御によるモータ制御構成を説明するブロック図である。 各蓄電装置の使用方法の考え方を説明するための図である。 電圧位相θとトルクTとの関係を示した図である。 図2に基づいて制御が行なわれた場合の動作を説明するための動作波形図である。 本発明の実施の形態によるモータ制御システムにおける、昇降圧コンバータの制御構成を説明するブロック図である。 図7に基づいて制御が行なわれた場合の動作を説明するための動作図である。 図1の制御装置が行なう昇降圧コンバータに対する制御を説明するためのフローチャートである。
以下、この発明の実施の形態について図面を参照して詳しく説明する。なお、図中同一符号は同一または相当部分を示す。
図1は、この発明の実施の形態に従う車両100の概略構成図である。
図1を参照して、この発明の実施の形態に従う車両100は、直流電圧発生部10♯と、平滑コンデンサC0と、インバータ14と、交流モータM1と、制御装置30とを備える。
交流モータM1は、たとえば、電動車両(ハイブリッド自動車、電気自動車や燃料電池車等の電気エネルギによって車両駆動力を発生する自動車をいうものとする)の駆動輪を駆動するためのトルクを発生するための駆動用電動機である。あるいは、この交流モータM1は、エンジンにて駆動される発電機の機能を持つように構成されてもよく、電動機および発電機の機能を併せ持つように構成されてもよい。さらに、交流モータM1は、エンジンに対して電動機として動作し、たとえば、エンジン始動を行ない得るようなものとしてハイブリッド自動車に組み込まれるようにしてもよい。
直流電圧発生部10♯は、直流電源Bと、システムリレーSR1,SR2と、平滑コンデンサC1と、昇降圧コンバータ12とを備える。
直流電源Bは、代表的には、ニッケル水素またはリチウムイオン等の二次電池や電気二重層キャパシタ等の蓄電装置により構成される。直流電源Bが出力する直流電圧Vbは、電圧センサ10によって検知される。
システムリレーSR1は、直流電源Bの正極端子および電源線6の間に接続され、システムリレーSR2は、直流電源Bの負極端子およびアース線5の間に接続される。システムリレーSR1,SR2は、制御装置30からの信号SEによりオン/オフされる。平滑コンデンサC1は、直流電源Bの端子間電圧を平滑化する。
昇降圧コンバータ12は、リアクトルL1と、電力半導体スイッチング素子Q1,Q2と、ダイオードD1,D2とを含む。電力用半導体スイッチング素子Q1およびQ2は、電源線7およびアース線5の間に直列に接続される。スイッチング素子Q1およびQ2のオン・オフは、制御装置30からのスイッチング制御信号S1およびS2によって制御される。
この発明の実施の形態において、電力用半導体スイッチング素子(以下、単に「スイッチング素子」とも称する)としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電源線6の間に接続される。また、平滑コンデンサC0は、電源線7およびアース線5の間に接続される。
インバータ14は、電源線7およびアース線5の間に並列に設けられる、U相上下アーム15と、V相上下アーム16と、W相上下アーム17とから成る。各相上下アームは、電源線7およびアース線5の間に直列接続されたスイッチング素子から構成される。たとえば、U相上下アーム15は、スイッチング素子Q3,Q4から成り、V相上下アーム16は、スイッチング素子Q5,Q6から成り、W相上下アーム17は、スイッチング素子Q7,Q8から成る。また、スイッチング素子Q3〜Q8に対して、逆並列ダイオードD3〜D8がそれぞれ接続されている。スイッチング素子Q3〜Q8のオン・オフは、制御装置30からのスイッチング制御信号S3〜S8によって制御される。
代表的には、交流モータM1は、3相の永久磁石型同期電動機であり、U,V,W相の3つのコイルの一端が中性点に共通接続されて構成される。さらに、各相コイルの他端は、各相上下アーム15〜17のスイッチング素子の中間点と接続されている。
昇降圧コンバータ12は、昇圧動作時には、直流電源Bから供給された直流電圧Vbを昇圧した直流電圧VH(インバータ14への入力電圧に相当するこの直流電圧を、以下、「システム電圧」とも称する)をインバータ14へ供給する。より具体的には、制御装置30からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1のオン期間およびスイッチング素子のQ2のオン期間(または、スイッチング素子Q1,Q2の両方がオフする期間)が交互に設けられ、昇圧比は、これらのオン期間の比に応じたものとなる。あるいは、スイッチング素子Q1およびQ2をオンおよびオフにそれぞれ固定すれば、VH=Vb(昇圧比=1.0)とすることもできる。
また、昇降圧コンバータ12は、降圧動作時には、平滑コンデンサC0を介してインバータ14から供給された直流電圧VH(システム電圧)を降圧して直流電源Bを充電する。より具体的には、制御装置30からのスイッチング制御信号S1,S2に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1,Q2の両方がオフする期間(または、スイッチング素子のQ2のオン期間)とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。
平滑コンデンサC0は、昇降圧コンバータ12からの直流電圧を平滑化し、その平滑化した直流電圧をインバータ14へ供給する。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧VHを検出し、その検出値を制御装置30へ出力する。
インバータ14は、交流モータM1のトルク指令値が正(T>0)の場合には、平滑コンデンサC0から直流電圧が供給されると制御装置30からのスイッチング制御信号S3〜S8に応答した、スイッチング素子Q3〜Q8のスイッチング動作により直流電圧を交流電圧に変換して正のトルクを出力するように交流モータM1を駆動する。また、インバータ14は、交流モータM1のトルク指令値が零の場合(T=0)には、スイッチング制御信号S3〜S8に応答したスイッチング動作により、直流電圧を交流電圧に変換してトルクが零になるように交流モータM1を駆動する。これにより、交流モータM1は、トルク指令値Tによって指定された零または正のトルクを発生するように駆動される。
さらに、車両100の回生制動時には、交流モータM1のトルク指令値Tは負に設定される(T<0)。この場合には、インバータ14は、スイッチング制御信号S3〜S8に応答したスイッチング動作により、交流モータM1が発電した交流電圧を直流電圧に変換し、その変換した直流電圧(システム電圧)を平滑コンデンサC0を介して昇降圧コンバータ12へ供給する。なお、ここで言う回生制動とは、電動車両を運転するドライバーによるフットブレーキ操作があった場合の回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
電流センサ24は、交流モータM1に流れるモータ電流MCRTを検出し、その検出したモータ電流を制御装置30へ出力する。なお、三相電流iu,iv,iwの瞬時値の和は零であるので、図1に示すように電流センサ24は2相分のモータ電流(たとえば、V相電流ivおよびW相電流iw)を検出するように配置すれば足りる。
回転角センサ(レゾルバ)25は、交流モータM1のロータ回転角θmを検出し、その検出したロータ回転角θmを制御装置30へ送出する。制御装置30では、ロータ回転角θmに基づき交流モータM1の回転数(回転速度)Nmtおよび角速度ω(rad/s)を算出できる。なお、回転角センサ25については、ロータ回転角θmを制御装置30にてモータ電圧や電流から直接演算することによって、配置を省略してもよい。
制御装置30は、電子制御ユニット(ECU)により構成され、予め記憶されたプログラムを図示しないCPUで実行することによるソフトウェア処理および/または専用の電子回路によるハードウェア処理により、モータ制御システムの動作を制御する。
代表的な機能として、制御装置30は、入力されたトルク指令値T、電圧センサ10によって検出された直流電圧Vb、電圧センサ13によって検出されたシステム電圧VH、電流センサ24からのモータ電流iv,iwおよび回転角センサ25からのロータ回転角θm等に基づいて、交流モータM1がトルク指令値Tに従ったトルクを出力するように、昇降圧コンバータ12およびインバータ14の動作を制御する。すなわち、昇降圧コンバータ12およびインバータ14を上記のように制御するためのスイッチング制御信号S1〜S8を生成して、昇降圧コンバータ12およびインバータ14へ出力する。
具体的には、昇降圧コンバータ12の昇圧動作時には、制御装置30は、システム電圧VHをフィードバック制御し、システム電圧VHが電圧指令値VHcomに一致するようにスイッチング制御信号S1,S2を生成する。
また、制御装置30は、電動車両が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、交流モータM1で発電された交流電圧を直流電圧に変換するようにスイッチング制御信号S3〜S8を生成してインバータ14へ出力する。これにより、インバータ14は、交流モータM1で発電された交流電圧を直流電圧に変換して昇降圧コンバータ12へ供給する。
さらに、制御装置30は、電動車両が回生制動モードに入ったことを示す信号RGEを外部ECUから受けると、インバータ14から供給された直流電圧を降圧するようにスイッチング制御信号S1,S2を生成し、昇降圧コンバータ12へ出力する。これにより、交流モータM1が発電した交流電圧は、直流電圧に変換され、降圧されて直流電源Bに供給される。
(制御モードの説明)
制御装置30による交流モータM1の制御についてさらに詳細に説明する。本実施の形態によるモータ制御システムでは、インバータ14における電力変換についての3つの制御モード、すなわち、正弦波PWM制御、過変調PWM制御および矩形波電圧制御を切換えて使用する。
図2は、本実施の形態による車両のモータ制御システムが行なう制御を説明するための図である。
図2において、縦軸にはモータのトルクTが示され、横軸にはモータの回転速度Nmtが示されている。ラインW1は、本実施の形態においてPWM制御(正弦波PWM制御および過変調PWM制御)と矩形波電圧制御とを切換える境界を示すラインである。ラインW1よりも回転速度Nmtが小さい領域ではPWM制御が実行され、ラインW1よりも回転速度Nmtが大きい領域では矩形波電圧制御が実行される。
ラインW2は、本実施に形態における昇圧を実施しない領域と実施する領域との境界線を示すラインである。このラインW2よりも回転速度が大きい領域では、昇降圧コンバータ12によって直流電源Bから供給された直流電圧Vbを昇圧した直流電圧VH(システム電圧)をインバータ14へ供給する。このラインW2は、モータ損失が小さくなるようにモータ損失に基づいて設定されている。
なお、本実施の形態における車両のモータ制御システムでは、このラインW2に基づいて昇降圧コンバータ12が昇圧動作を開始するポイントが、各回転速度ごとにトルクしきい値によって定められる。そして、モータトルクがそのトルクしきい値に到達したら昇降圧コンバータ12に昇圧動作を行なわせる。
図3は、本発明の実施の形態によるモータ制御システムにおける、矩形波電圧制御によるモータ制御構成を説明するブロック図である。なお、図3に示す各機能ブロックは、制御装置30による、ハードウェア的あるいはソフトウェア的な処理によって実現される。
図3を参照して、矩形波電圧制御部400は、座標変換部410と、トルク推定部420と、PI演算部430と、矩形波発生器440と、信号発生部450とを含む。
座標変残部410は、回転角センサ25によって検出される交流モータM1の回転角θmを用いた座標変換(3相→2相)により、電流センサ24によって検出あれたV相電流ivおよびW相電流iwを基に、d軸電流Iおよびq軸電流Iを算出する。
トルク推定部420は、座標変換部410によって求められたd軸電流Iおよびq軸電流Iを用いて、交流モータM1の出力トルクを推定する。
トルク推定部420は、たとえば交流モータM1の特性式である下記式(1)に従ってトルク推定値Tを演算する。
T=PΦVsinθ/Lω+P(L−L)Vsin2θ/Lω・・・(1)
(1)式において、Pは極対数であり、Φは逆起定数であり、Vがモータ印加電圧であり(モータ印加電圧V=システム電圧VH×変調率0.78)、Lはd軸インダクタンス[H]であり、Lはq軸インダクタンス[H]であり、ωは角速度[rad/s]である。L,Lはモータの回路定数(モータ定数)として交流モータM1の構成に従って一意に決定される。
また、θは、電圧位相であり、図4に示すように、矩形波電圧制御の電圧ベクトルをモータ制御で一般的に用いられるd−q軸平面上に考えたときに、q軸と電圧ベクトルVとがなす位相角θに相当する。なお、この位相θが大きいことを位相が深いと呼び、位相θが小さいことを位相が浅いとも呼ぶ。
再び図3を参照して、PI演算部430へは、トルク指令値Tに対するトルク推定値Tの偏差ΔT(ΔT=T−T)が入力される。PI演算部430は、トルク偏差ΔTについて所定ゲインによるPI演算を行って制御偏差を求め、求められた制御偏差に応じて矩形波電圧の位相θを設定する。具体的には、正トルク発生(T>0)時には、トルク不足時には電圧位相を大きく(深く)する一方で、トルク過剰時には電圧位相を小さく(浅く)するとともに、負トルク発生(T<0)時には、トルク過剰時には電圧位相を小さく(浅く)するとともに、トルク過剰時には電圧位相を大きく(深く)する。
矩形波発生器440は、PI演算部430によって設定された電圧位相θに従って、各相電圧指令値(矩形波パルス)Vu,Vv,Vwを発生する。信号発生部450は、各相電圧指令値Vu,Vv,Vwに従ってスイッチング制御信号S3〜S8を発生する。インバータ14がスイッチング制御信号S3〜S8に従ったスイッチング動作を行なうことにより、電圧位相θに従った矩形波パルスが、モータの各相電圧として印加される。
図5は、電圧位相θとトルクTとの関係を示した図である。
図5を参照して、電圧位相θが大きく(深く)なるほどトルクTが大きくなる。一方で、システム電圧VHが上昇すると、同じトルクTを出力するために必要な電圧位相θは小さく(浅く)なる。たとえばシステム電圧VHがV1である場合には、トルク指令値Tを実現するための必要な位相は位相θ2であった(図中の点P2)。これに対して、システム電圧VHをV3に昇圧すると、同じトルク指令値Tを実現するための必要な位相は位相θ1まで小さくなる。
その一方で、図2で説明したように、トルクTがトルクしきい値に到達したことによって昇降圧コンバータ12が昇圧動作を開始すると、図5の点P2のように位相θを増加させてトルクTも増加しているときには、図中の点P2から点P1に向かう矢印に沿ってトルクが急激に変化してしまうトルク外れが起こる。
図6は、図2に基づいて制御が行なわれた場合の動作を説明するための動作波形図である。
図6を参照して、横軸には経過時間が示され、縦軸には上から順に昇降圧コンバータ12の出力側電圧(システム電圧VH)、トルクTおよび電圧位相θが示されている。
時刻t10〜時刻t11において矩形波電圧制御を実行することにより、電圧位相θを増加させてトルクTも増加している。そして、時刻t11においてトルクTがトルクしきい値に到達したことによって昇圧動作を開始する。
時刻t11以降においては、昇降圧コンバータ12では、システム電圧VHが所望の目標電圧VHに一致するように、電圧指令値VHcomが設定され、その設定された電圧指令値VHcomに従ってシステム電圧VHのフィードバック制御が実行される。
なお、電圧指令値VHcomは、予め定められた変化率(以下、昇圧レートとも称する)で変化(増加)するように設定される。この昇圧レートは、モータ制御の応答性を考慮して、システム電圧VHできるだけ短時間で目標電圧VHに到達するように設定されている。したがって、システム電圧VHもこの昇圧レートに一致した変化率で増加する。
しかしながら、インバータ14においては、この時刻t11では、電圧位相θが大きく(深く)トルクTも大きい状態となっていることから、この状態で昇圧動作を開始すると、トルク外れが起きてしまう。
そこで、このような昇圧動作の開始時におけるトルク外れを抑制するために、本実施の形態に従うモータ制御システムでは、システム電圧VHを目標電圧VHに一致させるための電圧指令値VHcomの変化率(昇圧レート)を、電圧位相θとトルクTとの関係に応じて可変に設定する構成とする。なお、本構成において、昇圧レートは、以下に述べるように、図5の電圧位相θとトルクTとの関係における各動作点でトルク変化が一定となるように可変に設定される。
図7は、本発明の実施の形態によるモータ制御システムにおける、昇降圧コンバータ12の制御構成を説明するブロック図である。なお、図7に示す各機能ブロックは、制御装置30による、ハードウェア的あるいはソフトウェア的な処理によって実現される。
図7を参照して、コンバータ制御部200は、目標電圧演算部210と、昇圧レート演算部220と、電圧指令制御部230と、デューティ比変換部240と、回転数演算部250とを含む。
回転数演算部250は、回転角センサ25からの出力に基づいて、交流モータM1の回転数Nmt(または角速度ω)を演算する。
目標電圧演算部210には、外部ECUからトルク指令値Tが入力され、回転数演算部250から角速度ωが入力される。目標電圧演算部210は、トルク指令値T*および角速度ωを基にモータ必要電圧(誘起電圧)を演算し、その演算されたモータ必要電圧に応じた目標電圧VHを設定する。
昇圧レート演算部220は、矩形波電圧制御部400(図3)から矩形波電圧の位相θを受け、回転数演算部250から角速度ωを受け、電圧センサ13によって検出されたシステム電圧VHを受ける。そして、昇圧レート演算部220は、電圧位相θ、角速度ωおよびモータ印加電圧V(モータ印加電圧V=システム電圧VH×変調率0.78)を用いて、下記(2),(3)式に従って昇圧レートdV/dtを算出する。
まず、図5に示す電圧位相θとトルクTとの関係における任意の動作点(たとえば図中の点P2)において、昇圧動作によりシステム電圧VHが変化した場合のトルクTの変化は、(2)式のように表わすことができる。なお、下記(2)式は、上記(1)式の特性式に従って演算される矩形波電圧制御時のトルクTをモータ印加電圧Vで微分したものである。
dT/dV=PΦsinθ/Lω+P(L−L)Vsin2θ/Lω
・・・(2)
そして、この(2)式に従って、各動作点においてトルクTの変化が一定となる昇圧レートdV/dtは、下記(3)式により算出することができる。
dT/dV・dV/dt=A A:一定値
dV/dt=A/(dT/dV)
=A/(PΦsinθ/Lω+P(L−L)Vsin2θ/Lω
・・・(3)
したがって、(3)式に従って算出される昇圧レートdV/dtに従って昇圧動作を行なえば、トルクTの変化を一定としながら(すなわち、トルク外れを起こすことなく)目標電圧VHに達する時間を短くすることができる。
そこで、昇圧レート演算部220は、電圧位相θ、角速度ωおよびモータ印加電圧Vを用いて、上記(3)式に従って昇圧レートdV/dtを算出し、その算出した昇圧レートdV/dtを電圧指令制御部230へ出力する。
電圧指令制御部230は、システム電圧VHが、昇圧レート演算部220により算出された昇圧レートdV/dtで変化することによって目標電圧VHに到達するように、電圧指令値VHcomを生成する。
デューティ比変換部240には、電圧指令制御部230から電圧指令値VHcomが入力され、電圧センサ10から直流電圧Vbが入力される。デューティ比変換部240は、システム電圧VHを電圧指令値VHcomに設定するためのデューティ比を演算し、その演算したデューティ比に基づいて昇降圧コンバータ12のスイッチング素子Q1,Q2をオン/オフするためのスイッチング制御信号S1,S2を生成する。そして、デューティ比変換部240は、その生成したスイッチング制御信号S1,S2を昇降圧コンバータ12へ出力する。
図8は、図7に基づいて制御が行なわれた場合の動作を説明するための動作図である。
図8を参照して、横軸には経過時間が示され、縦軸には上から順にシステム電圧VH、トルクTおよび電圧位相θが示されている。時刻t0〜時刻t1の領域においては、トルクTがトルクしきい値に到達していないので、昇降圧コンバータ12は、スイッチング素子Q1がオン状態に設定され、スイッチング素子Q2がオフ状態に設定された上アームオン状態に制御される。この場合、昇圧動作は行なわれず、直流電源Bの直流電圧Vbは、リアクトルL1およびダイオードD1またはスイッチング素子Q1を介してインバータ14に供給される。したがってシステム電圧VHは直流電圧Vbに等しい。
時刻t1においては、トルクTがトルクしきい値に到達したため、昇降圧コンバータ12による昇圧動作が開始される。これによりシステム電圧VHは次第に直流電圧Vbよりも上昇し、昇圧が行なわれる。この時刻t1以降では、上述した方法によって、トルク変化が一定となるように、昇圧レートが矩形波電圧の位相θとトルクTとの関係に応じて可変に設定される。したがって、トルクの急激な変化は発生せず、トルク外れを小さく抑えることができる。
図9は、図1の制御装置30が行なう昇降圧コンバータ12に対する制御を説明するためのフローチャートである。
図9を参照して、ステップS01では、矩形波電圧制御の実行中であるか否かが判断される。矩形波電圧制御の実行中でないとき(ステップS01においてNO)には、処理は終了する。
これに対して、矩形波電圧制御の実行中であるとき(ステップS01においてYES)には、ステップS02においてさらに、昇降圧コンバータ12が昇圧動作を実施中であるか否かが判断される。昇降圧コンバータ12が昇圧未実施の状態に制御されているとき(ステップS02においてNO)には、昇降圧コンバータ12は上アームオン状態に制御される(ステップS06)。
一方、昇降圧コンバータ12が昇圧動作を実施中であるとき(ステップS02においてYES)には、ステップS03において、トルク変化が一定となるように、昇圧レートが矩形波電圧の位相θとトルクTとの関係に応じて可変に設定される。そして、設定された昇圧レートおよび目標電圧VHに基づいて電圧指令値VHcomが生成されると(ステップS04)、システム電圧VHが電圧指令値VHcomに一致するように昇降圧コンバータ12が制御される(ステップS05)。
このように、本実施の形態においては、モータの制御が矩形波電圧制御のときには、トルク変化が一定となるように昇圧レートを可変に設定することでトルク外れを小さく抑えることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
5 アース線、6,7 電源線、10♯ 直流電圧発生部、10,13 電圧センサ、12 昇降圧コンバータ、14 インバータ、15 U相上下アーム、16 V相上下アーム、17 W相上下アーム、24 電流センサ、25 回転角センサ、30 制御装置、100 車両、200 コンバータ制御部、210 目標電圧演算部、220 昇圧レート演算部、230 電圧指令制御部、240 デューティ比変換部、250 回転数演算部、400 矩形波電圧制御部、410 座標変換部、420 トルク推定部、430 PI演算部、440 矩形波発生器、450 信号発生部、B 直流電源、C0,C1 平滑コンデンサ、D1〜D8 逆並列ダイオード、L1 リアクトル、M1 交流モータ、Q1〜Q8 電力用半導体スイッチング素子、SR1,SR2 システムリレー。

Claims (1)

  1. 蓄電装置と、
    矩形波電圧制御方式でモータの駆動制御を行なうインバータと、
    前記インバータに対して前記蓄電装置の電圧を変換して供給する電圧コンバータと、
    前記インバータおよび前記電圧コンバータを制御する制御装置とを備え、
    前記制御装置は、
    前記電圧コンバータに電圧変換動作を行なわせて前記インバータの入力電圧を第1の電圧から第2の電圧に昇圧する場合には、前記電圧コンバータの出力電圧指令値の変化率を、前記入力電圧が前記第2の電圧に達するまでの時間における前記モータの出力トルクの変化が一定となるように、前記インバータから前記モータに与える矩形波電圧の位相と前記モータの出力トルクとの関係に応じて可変に設定する、車両のモータ制御システム。
JP2009118845A 2009-05-15 2009-05-15 車両のモータ制御システム Active JP5290048B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118845A JP5290048B2 (ja) 2009-05-15 2009-05-15 車両のモータ制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118845A JP5290048B2 (ja) 2009-05-15 2009-05-15 車両のモータ制御システム

Publications (2)

Publication Number Publication Date
JP2010268627A JP2010268627A (ja) 2010-11-25
JP5290048B2 true JP5290048B2 (ja) 2013-09-18

Family

ID=43365097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118845A Active JP5290048B2 (ja) 2009-05-15 2009-05-15 車両のモータ制御システム

Country Status (1)

Country Link
JP (1) JP5290048B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5893876B2 (ja) 2011-09-13 2016-03-23 トヨタ自動車株式会社 モータ制御システム
JP5751240B2 (ja) 2012-11-07 2015-07-22 トヨタ自動車株式会社 交流電動機の制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121855A (ja) * 2004-10-25 2006-05-11 Nissan Motor Co Ltd 交流モータ制御装置
JP2006353032A (ja) * 2005-06-17 2006-12-28 Toyota Motor Corp 電圧変換装置
JP4538850B2 (ja) * 2005-12-07 2010-09-08 株式会社デンソー 電気自動車の制御装置
JP2009012680A (ja) * 2007-07-06 2009-01-22 Toyota Motor Corp 車両の制御装置および制御方法

Also Published As

Publication number Publication date
JP2010268627A (ja) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5246508B2 (ja) 電動機駆動装置の制御装置
JP4604820B2 (ja) モータ駆動システムの制御装置
JP4329855B2 (ja) 交流モータの制御装置および交流モータの制御方法
JP5633650B2 (ja) 車両および車両の制御方法
JP4635703B2 (ja) モータ駆動システムの制御装置
JP5633639B2 (ja) 電動機の制御装置およびそれを備える電動車両、ならびに電動機の制御方法
JP5482574B2 (ja) 交流電動機の制御システム
JP2007159368A (ja) モータ駆動システムの制御装置
JP2010088205A (ja) 交流電動機の制御装置
JP2010161907A (ja) モータ駆動制御システムの制御装置
JP2010119268A (ja) インバータの異常検出装置および異常検出方法
JP2014128052A (ja) 車両の制御装置
JP5955761B2 (ja) 車両の制御装置
JP2010246207A (ja) 交流電動機の制御装置
JP2015109770A (ja) 電動機駆動装置
JP5281370B2 (ja) 交流電動機の制御装置
JP5958400B2 (ja) モータ駆動制御装置
JP2009201250A (ja) モータの制御装置
JP4919229B2 (ja) インバータ装置
JP2014050123A (ja) ロータ位置推定装置、電動機制御システムおよびロータ位置推定方法
JP5290048B2 (ja) 車両のモータ制御システム
JP5115202B2 (ja) モータ駆動装置
JP5277846B2 (ja) 交流電動機の制御システム
JP2021114866A (ja) 車両の駆動制御システム
JP2010220306A (ja) モータの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R151 Written notification of patent or utility model registration

Ref document number: 5290048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250