JP2022186736A - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
JP2022186736A
JP2022186736A JP2022157402A JP2022157402A JP2022186736A JP 2022186736 A JP2022186736 A JP 2022186736A JP 2022157402 A JP2022157402 A JP 2022157402A JP 2022157402 A JP2022157402 A JP 2022157402A JP 2022186736 A JP2022186736 A JP 2022186736A
Authority
JP
Japan
Prior art keywords
transistor
light
potential
time
signal line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022157402A
Other languages
English (en)
Inventor
義元 黒川
Yoshimoto Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022186736A publication Critical patent/JP2022186736A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • G01C3/08Use of electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/14Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein a voltage or current pulse is initiated and terminated in accordance with the pulse transmission and echo reception respectively, e.g. using counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/18Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein range gates are used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/34Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】検出精度が高い距離測定装置を提供する。【解決手段】受光素子、第1のトランジスタ、及び第2のトランジスタを有するフォトセンサと、配線と、信号線と、電源線とを備え、配線は、受光素子の一方の電極と電気的に接続し、信号線は、第1のトランジスタのゲート電極と電気的に接続し、電源線は、第2のトランジスタのソース電極又はドレイン電極の一方と電気的に接続し、第1のトランジスタでは、ソース電極又はドレイン電極の一方が第2のトランジスタのゲート電極と電気的に接続し、ソース電極又はドレイン電極の他方が受光素子の他方の電極、及び第2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続する距離測定装置を提供する。【選択図】図1

Description

フォトセンサを有する距離測定装置、距離測定システムに関する。特に、Time-Of
-Flight(TOF)方式を適用した距離測定装置、距離測定システムに関する。
光飛行時間の遅延に依存した検出信号により、光源から被検出物までの距離を把握できる
3次元距離測定システムが注目されている。3次元距離測定システムは、バーチャルキー
ボード、ジェスチャ認識等の機能を有する情報入力デバイス、各種ロボットの視覚センサ
、セキュリティシステム、スマートエアバッグ用センサ、車載用センサ等、広範囲な用途
への応用が期待されている。
距離を測定する方法の一つとして、TOF方式が知られている。TOF方式を用いた距離
測定システムは、光源から被検出物に対して光を照射し、被検出物で反射された光がセン
サに届く際、照射光と反射光との間に生じる光飛行時間の遅延を検出して、光源(距離測
定システム)と被検出物との間の距離を計算によって取得することができる。具体的には
、光源から被検出物までの距離xを、光速c及び遅延時間Δtを用いた以下の式で表すこ
とができる。
Figure 2022186736000002
非特許文献1には、3次元空間での距離測定を行うために、反射赤外光の検出期間を2回
に分けて異なる検出信号を取得し、TOF方式を用いて3次元撮像を行う3次元イメージ
センサが開示されている。
また、非特許文献2では、非特許文献1におけるセンサの構成を応用して、2次元撮像と
、3次元撮像とを、フレーム期間毎に交互に行っている。
S.J.Kim et al,"A Three-Dimensional Time-of-Flight CMOS Image Sensor With Pinned-Photodiode Pixel Structure",IEEE Electron Device Letters,Nov.2010,Vol.31,No.11,pp.1272-1274 S.J.Kim et al,"A 640×480 Image Sensor with Unified Pixel Architecture for 2D/3D Imaging in 0.11um CMOS", 2011 Symposium on VLSI Circuits Digest of Technical Papers,pp.92-93
本発明の一態様は、検出精度が高い距離測定装置を提供することを課題の一とする。本発
明の一態様は、検出精度が高い距離測定システムを提供することを課題の一とする。
本発明の一態様の距離測定装置は、フォトセンサを有し、該フォトセンサは、光源により
被検出物に対する複数回の光照射が行われる期間、又は該光照射終了後の期間における反
射光(具体的には、該光源から照射された光が該被検出物で反射されることで生じる光)
の検出を、複数回行う。該期間の反射光の検出を複数回行うことで、検出精度が高い距離
測定を行うことができる。
本発明の一態様の距離測定装置が備えるフォトセンサは、受光素子において反射光を検出
する。受光素子には、該光照射が行われる期間及び該光照射終了後の期間の双方において
、該反射光が照射される。検出を行わない期間に照射された反射光によって受光素子の電
極の電位に変化が生じると、反射光の検出精度が低下する場合がある。そこで、本発明の
一態様では、反射光の検出を行わない期間における受光素子の電極の電位変化を抑制する
トランジスタを、フォトセンサが備える。これにより、距離測定装置や、該距離測定装置
を用いた距離測定システムにおける、光の検出精度の低下を抑制することができる。
本発明の一態様は、受光素子、第1のトランジスタ、及び第2のトランジスタを有するフ
ォトセンサと、配線と、信号線と、電源線とを備え、配線は、受光素子の一方の電極と電
気的に接続し、信号線は、第1のトランジスタのゲート電極と電気的に接続し、電源線は
、第2のトランジスタのソース電極又はドレイン電極の一方と電気的に接続し、第1のト
ランジスタでは、ソース電極又はドレイン電極の一方が第2のトランジスタのゲート電極
と電気的に接続し、ソース電極又はドレイン電極の他方が受光素子の他方の電極、及び第
2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続する距離測定装置
である。
また、本発明の一態様は、受光素子、第1のトランジスタ、及び第2のトランジスタを有
するフォトセンサと、配線と、信号線と、電源線と、光源とを備え、配線は、受光素子の
一方の電極と電気的に接続し、信号線は、第1のトランジスタのゲート電極と電気的に接
続し、電源線は、第2のトランジスタのソース電極又はドレイン電極の一方と電気的に接
続し、第1のトランジスタでは、ソース電極又はドレイン電極の一方が第2のトランジス
タのゲート電極と電気的に接続し、ソース電極又はドレイン電極の他方が受光素子の他方
の電極、及び第2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続し
、光源は、被検出物に対して一定時間Tの光照射をn回(本明細書中において、n回と記
載した場合、nは2以上の自然数とする)行い、受光素子は、光源から照射された光が被
検出物で反射されることで生じる反射光を検出し、第1のトランジスタは、光照射1回に
つき、一定時間T以上、導通状態となり、かつ、光照射の終了と同時に導通状態が終了し
、フォトセンサが、光源と被検出物との間の距離xに応じた信号を出力する距離測定装置
である。
また、該距離測定装置と、該距離xを、数式(1)を用いて算出する処理部と、を有する
距離測定システムも本発明の一態様である。
Figure 2022186736000003
ただし、数式(1)において、S1は、一定時間Tの光照射がn回行われた後の第1のト
ランジスタのソース電極又はドレイン電極の一方の電位の変化量に応じた検出信号の電圧
を表し、nは、2以上の自然数を表し、cは、光速を表し、kは、定数を表す。
また、本発明の一態様は、受光素子、第1のトランジスタ、及び第2のトランジスタを有
するフォトセンサと、配線と、信号線と、電源線と、光源とを備え、配線は、受光素子の
一方の電極と電気的に接続し、信号線は、第1のトランジスタのゲート電極と電気的に接
続し、電源線は、第2のトランジスタのソース電極又はドレイン電極の一方と電気的に接
続し、第1のトランジスタでは、ソース電極又はドレイン電極の一方が第2のトランジス
タのゲート電極と電気的に接続し、ソース電極又はドレイン電極の他方が受光素子の他方
の電極、及び第2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続し
、光源は、被検出物に対して一定時間の光照射をn回行い、受光素子は、光源から照射さ
れた光が被検出物で反射されることで生じる反射光を検出し、第1のトランジスタは、光
照射1回につき1回、導通状態となり、導通状態は、光照射の終了と同時に開始し、受光
素子における反射光の検出の終了より後に終了し、フォトセンサが、光源と被検出物との
間の距離xに応じた信号を出力する距離測定装置である。
また、該距離測定装置と、該距離xを、数式(2)を用いて算出する処理部と、を有する
距離測定システムも本発明の一態様である。
Figure 2022186736000004
ただし、数式(2)において、S2は、一定時間の光照射がn回行われた後の第1のトラ
ンジスタのソース電極又はドレイン電極の一方の電位の変化量に応じた検出信号の電圧を
表し、nは、2以上の自然数を表し、cは、光速を表し、kは、定数を表す。
また、本発明の一態様は、第1の受光素子、第1のトランジスタ、及び第2のトランジス
タを有する第1のフォトセンサと、配線と、信号線と、電源線と、光源とを備え、配線は
、第1の受光素子の一方の電極と電気的に接続し、信号線は、第1のトランジスタのゲー
ト電極と電気的に接続し、電源線は、第2のトランジスタのソース電極又はドレイン電極
の一方と電気的に接続し、第1のトランジスタでは、ソース電極又はドレイン電極の一方
が第2のトランジスタのゲート電極と電気的に接続し、ソース電極又はドレイン電極の他
方が第1の受光素子の他方の電極、及び第2のトランジスタのソース電極又はドレイン電
極の他方と電気的に接続し、光源は、被検出物に対して一定時間Tの第1の光照射を連続
してn回行い、かつ、一定時間Tの第2の光照射を連続してn回行い、第1の受光素子は
、光源から照射された光が被検出物で反射されることで生じる反射光を検出し、第1のト
ランジスタは、第1の光照射1回につき、一定時間T以上、第1の導通状態となり、かつ
、第1の光照射の終了と同時に第1の導通状態が終了し、第2の光照射1回につき1回、
第2の導通状態となり、第2の導通状態は、第2の光照射の終了と同時に開始し、第1の
受光素子における反射光の検出の終了より後に終了し、フォトセンサが、光源と被検出物
との間の距離xに応じた信号を出力する距離測定装置である。
また、該距離測定装置と、該距離xを、数式(3)を用いて算出する処理部と、を有する
距離測定システムも本発明の一態様である。
Figure 2022186736000005
ただし、数式(3)において、S1は、一定時間Tの第1の光照射がn回行われた後の、
第1のトランジスタのソース電極又はドレイン電極の一方の電位の変化量に応じた検出信
号の電圧を表し、S2は、一定時間Tの第2の光照射がn回行われた後の、第1のトラン
ジスタのソース電極又はドレイン電極の一方の電位の変化量に応じた検出信号の電圧を表
し、nは、2以上の自然数を表し、cは光速を表す。
また、数式(3)を用いて光源と被検出物との間の距離を算出する上記の距離測定装置(
又は距離測定システム)において、第2の受光素子を有する第2のフォトセンサを、第1
のフォトセンサと重畳して備えることが好ましい。複数のフォトセンサを重畳して備える
ことで、フォトセンサが占める面積の縮小を図ることができる。
特に、第1の受光素子と第2の受光素子とが重畳し、第1の受光素子が、第1の波長域の
光を吸収し、第2の受光素子が、第2の波長域の光を吸収し、第1の受光素子及び第2の
受光素子のうち被検出物からの距離が短い一方は、他方が吸収する波長域の光の少なくと
も一部を透過することが好ましい。
例えば、第1の受光素子より第2の受光素子が被検出物に近く、第1の受光素子が、反射
光に含まれる赤外光を検出(吸収)し、第2の受光素子が、該反射光に含まれる可視光を
検出(吸収)し、赤外光を透過する態様が挙げられる。この態様では、例えば、第1のフ
ォトセンサで距離測定を行うと同時に、第2のフォトセンサが2次元情報の取得を行うこ
とができる。また、第2の受光素子が可視光を吸収することで、第1の受光素子に照射さ
れる赤外光以外の光(ノイズとなる光)が低減するため、第1のフォトセンサの検出精度
を高めることができる。
上記に挙げた距離測定装置(又は距離測定システム)において、該配線が、リセット信号
線であることが好ましい。
または、上記に挙げた距離測定装置(もしくは距離測定システム)において、ゲート電極
が、リセット信号線と電気的に接続し、ソース電極又はドレイン電極の一方が、第1のト
ランジスタのソース電極又はドレイン電極の一方、及び第2のトランジスタのゲート電極
と電気的に接続し、ソース電極又はドレイン電極の他方が、リセット電源線と電気的に接
続する第3のトランジスタを有し、かつ、配線が固定電源線であることが好ましい。
上記に挙げた距離測定装置(又は距離測定システム)において、第1のトランジスタの半
導体層は、酸化物半導体を含むことが好ましい。また、第2のトランジスタの半導体層は
、酸化物半導体を含むことが好ましい。また、第3のトランジスタの半導体層は、酸化物
半導体を含むことが好ましい。
また、本発明の一態様は、第1の受光素子、第1のトランジスタ、及び第2のトランジス
タを有する第1のフォトセンサと、第2の受光素子、第3のトランジスタ、及び第4のト
ランジスタを有し、第1のフォトセンサと隣接する第2のフォトセンサと、第1の配線及
び第2の配線と、第1の信号線及び第2の信号線と、第1の電源線及び第2の電源線と、
光源とを備え、第1の配線は、第1の受光素子の一方の電極と電気的に接続し、第1の信
号線は、第1のトランジスタのゲート電極と電気的に接続し、第1の電源線は、第2のト
ランジスタのソース電極又はドレイン電極の一方と電気的に接続し、第1のトランジスタ
では、ソース電極又はドレイン電極の一方が第2のトランジスタのゲート電極と電気的に
接続し、ソース電極又はドレイン電極の他方が第1の受光素子の他方の電極、及び第2の
トランジスタのソース電極又はドレイン電極の他方と電気的に接続し、第2の配線は、第
2の受光素子の一方の電極と電気的に接続し、第2の信号線は、第3のトランジスタのゲ
ート電極と電気的に接続し、第2の電源線は、第4のトランジスタのソース電極又はドレ
イン電極の一方と電気的に接続し、第3のトランジスタでは、ソース電極又はドレイン電
極の一方が第4のトランジスタのゲート電極と電気的に接続し、ソース電極又はドレイン
電極の他方が第2の受光素子の他方の電極、及び第4のトランジスタのソース電極又はド
レイン電極の他方と電気的に接続し、光源は、被検出物に対して一定時間Tの光照射をn
回行い、第1の受光素子及び第2の受光素子は、光源から照射された光が被検出物で反射
されることで生じる反射光を検出し、第1のトランジスタは、光照射1回につき、一定時
間T以上、導通状態となり、かつ、光照射の終了と同時に導通状態が終了し、第3のトラ
ンジスタは、光照射1回につき1回、導通状態となり、導通状態は、光照射の終了と同時
に開始し、第2の受光素子における反射光の検出の終了より後に終了し、フォトセンサが
、光源と被検出物との間の距離xに応じた信号を出力する距離測定装置である。
また、該距離測定装置と、該距離xを、数式(3)を用いて算出する処理部と、を有する
距離測定システムも本発明の一態様である。
Figure 2022186736000006
ただし、数式(3)において、S1は、一定時間Tの光照射がn回行われた後の、第1の
トランジスタのソース電極又はドレイン電極の一方の電位の変化量に応じた検出信号の電
圧を表し、S2は、一定時間Tの光照射がn回行われた後の、第3のトランジスタのソー
ス電極又はドレイン電極の一方の電位の変化量に応じた検出信号の電圧を表し、nは、2
以上の自然数を表し、cは光速を表す。
上記の距離測定装置(又は距離測定システム)において、第1の配線が、第1のリセット
信号線であり、第2の配線が、第2のリセット信号線であることが好ましい。
または、上記の距離測定装置(もしくは距離測定システム)において、第5のトランジス
タ及び第6のトランジスタを有し、第5のトランジスタでは、ゲート電極が、第1のリセ
ット信号線と電気的に接続し、ソース電極又はドレイン電極の一方が、第1のトランジス
タのソース電極又はドレイン電極の一方、及び第2のトランジスタのゲート電極と電気的
に接続し、ソース電極又はドレイン電極の他方が、第1のリセット電源線と電気的に接続
し、第6のトランジスタでは、ゲート電極が、第2のリセット信号線と電気的に接続し、
ソース電極又はドレイン電極の一方が、第3のトランジスタのソース電極又はドレイン電
極の一方、及び第4のトランジスタのゲート電極と電気的に接続し、ソース電極又はドレ
イン電極の他方が、第2のリセット電源線と電気的に接続し、第1の配線が、第1の固定
電源線であり、第2の配線が、第2の固定電源線であることが好ましい。
上記に挙げた距離測定装置(又は距離測定システム)において、第1のトランジスタの半
導体層は、酸化物半導体を含むことが好ましい。また、第2のトランジスタの半導体層は
、酸化物半導体を含むことが好ましい。また、第3のトランジスタの半導体層は、酸化物
半導体を含むことが好ましい。また、第4のトランジスタの半導体層は、酸化物半導体を
含むことが好ましい。
本発明の一態様では、検出精度が高い距離測定装置を提供することができる。また、本発
明の一態様では、検出精度が高い距離測定システムを提供することができる。
距離測定システム及びフォトセンサの一例を示す図。 フォトセンサ及び読み出し回路の一例を示す図。 フォトセンサのタイミングチャートの一例を示す図。 フォトセンサのタイミングチャートの一例を示す図。 フォトセンサのタイミングチャートの一例を示す図。 フォトセンサの一例を示す図。 フォトセンサのタイミングチャートの一例を示す図。 フォトセンサの一例を示す図。 フォトセンサのタイミングチャートの一例を示す図。 フォトセンサの一例を示す図。 フォトセンサの上面図及び断面図。 フォトセンサの一例を示す図。 フォトセンサの上面図。 フォトセンサの断面図。 フォトセンサの作製方法の一例を示す図。 フォトセンサの断面図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
(実施の形態1)
まず、本発明の一態様の距離測定システムを図1(A)に示す。図1(A)に示す距離測
定システム10は、1以上のフォトセンサ30及び1以上の読み出し回路40を有する距
離測定装置20と、処理部50とを有する。距離測定システム10では、フォトセンサ3
0から出力された信号が、読み出し回路40を介して処理部50に入力される。処理部5
0では、該フォトセンサ30と被検出物との間の距離を、該信号に基づき算出する。
処理部50には、演算処理を行うCPU(Central Processing Un
it)やDSP(Digital Signal Processor)等のプロセッサ
ー、及び演算プログラムを保存するメモリ等が含まれる。
本実施の形態では、本発明の一態様の距離測定装置(又は距離測定システム)と、該距離
測定装置(又は距離測定システム)を用いた距離測定方法について、図1(B)、図2乃
至図4を用いて説明する。本発明の一態様の距離測定装置(又は距離測定システム)はT
OF方式を用いて距離を測定することができる。
本発明の一態様の距離測定装置は、受光素子、第1のトランジスタ、及び第2のトランジ
スタを有するフォトセンサと、配線と、信号線と、電源線とを備える。該距離測定装置に
おいて、配線は、受光素子の一方の電極と電気的に接続し、信号線は、第1のトランジス
タのゲート電極と電気的に接続し、電源線は、第2のトランジスタのソース電極又はドレ
イン電極の一方と電気的に接続し、第1のトランジスタでは、ソース電極又はドレイン電
極の一方が第2のトランジスタのゲート電極と電気的に接続し、他方が受光素子の他方の
電極、及び第2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続する
本発明の一態様では、光源が、被検出物に対して一定時間の光照射を複数回(n回、nは
2以上の自然数)行い、フォトセンサが、該光照射が行われる期間又は該光照射終了後の
期間における反射光(具体的には、該光源から照射された光が該被検出物で反射されるこ
とで生じる光)の検出を同じ回数行う。光照射及び反射光の検出を複数回行うことで、距
離に応じた検出信号を高精度で得られるため、より正確な距離を算出することができる。
なお、光源は、本発明の一態様の距離測定装置に含まれていてもよいし、別途設けられて
いてもよい。
また、本発明の一態様の距離測定装置が備えるフォトセンサは、受光素子において反射光
を検出する。受光素子には、光源により光照射が行われる期間及び該光照射終了後の期間
の双方において、該反射光が照射される。検出を行わない期間に照射された反射光によっ
て受光素子の他方の電極の電位に変化が生じると、反射光の検出の精度が低下する場合が
ある。しかし、該フォトセンサは、反射光の検出を行わない期間における受光素子の他方
の電極の電位変化を抑制する第2のトランジスタを備える。これにより、高精度の距離測
定が可能な距離測定装置(さらには高精度の距離測定が可能な距離測定システム)を提供
することができる。
<フォトセンサの構成>
図1(B)に、本発明の一態様の距離測定装置が備えるフォトセンサ100の回路図を示
す。
図1(B)に示すフォトセンサ100は、フォトダイオード102、トランジスタ103
、トランジスタ104、トランジスタ105、及びトランジスタ109を有する。
フォトダイオード102では、一方の電極がリセット信号線PRと電気的に接続し、他方
の電極がトランジスタ103のソース電極又はドレイン電極の他方、及びトランジスタ1
09のソース電極又はドレイン電極の他方と電気的に接続している。本明細書等では、フ
ォトダイオード102の他方の電極、トランジスタ103のソース電極又はドレイン電極
の他方、及びトランジスタ109のソース電極又はドレイン電極の他方が構成するノード
をノード107と記す。
トランジスタ103では、ゲート電極が蓄積信号線TXと電気的に接続し、ソース電極又
はドレイン電極の一方がトランジスタ104のゲート電極、及びトランジスタ109のゲ
ート電極と電気的に接続している。本明細書等では、トランジスタ103のソース電極又
はドレイン電極の一方、トランジスタ104のゲート電極、及びトランジスタ109のゲ
ート電極が構成するノードを、電荷保持ノードFDと記す。
トランジスタ104では、ソース電極又はドレイン電極の一方がフォトセンサ基準信号線
VSと電気的に接続し、ソース電極又はドレイン電極の他方がトランジスタ105のソー
ス電極又はドレイン電極の一方と電気的に接続している。
トランジスタ105では、ゲート電極が選択信号線SEと電気的に接続し、ソース電極又
はドレイン電極の他方がフォトセンサ出力信号線ROと電気的に接続している。
トランジスタ109では、ソース電極又はドレイン電極の一方が電源線VHと電気的に接
続している。
なお、図1(B)に示すフォトダイオード102では、陽極がリセット信号線PRと電気
的に接続し、陰極がトランジスタ103のソース電極又はドレイン電極と電気的に接続し
ているが、これに限定されない。フォトダイオード102において、陰極がリセット信号
線PRと電気的に接続し、陽極がトランジスタ103のソース電極又はドレイン電極と電
気的に接続していてもよい。
受光素子であるフォトダイオード102は、逆方向バイアスが印加される、すなわち陽極
の電位より高い電位が陰極に印加されると、受けた光の量に応じた電流を生成する。した
がって、反射光を検出することで、フォトダイオード102には、光電流が流れる。フォ
トセンサ100に用いるフォトダイオードに限定は無く、pin接合フォトダイオード、
pn接合フォトダイオードなどを適用することができる。
電荷保持ノードFDは、フォトダイオード102が受ける光の量に応じて生成した電流に
より変化する電荷を保持する。また、電荷保持ノードFDにおいて電荷をより確実に保持
するために、電荷保持ノードFDが保持容量と電気的に接続していてもよい。
スイッチング素子であるトランジスタ103は、フォトダイオード102による電荷保持
ノードFDへの電荷蓄積と、電荷保持ノードFDの電荷の保持との切り替えを制御する。
電荷保持ノードFDが、フォトダイオード102に光が照射されることにより生成された
電荷を長時間保持するためには、トランジスタ103のオフ電流が小さいことが好ましい
。例えば、半導体層にアモルファスシリコン、微結晶シリコン、酸化物半導体等を用いる
ことで、トランジスタ103のオフ電流を小さくすることができる。特に、半導体層に酸
化物半導体を用いることで、トランジスタ103のオフ電流を極めて小さくすることがで
きる。
また、電荷保持ノードFDが、フォトダイオード102に光が照射されることにより生成
された電荷を短時間で蓄積するためには、トランジスタ103の移動度が高いことが好ま
しい。例えば、半導体層に、酸化物半導体、多結晶シリコン、単結晶シリコン等を用いる
ことで、トランジスタ103の移動度を高くすることができる。
上記より、トランジスタ103の半導体層に酸化物半導体を用いると、トランジスタ10
3のオフ電流を極めて小さくすることができ、かつ、移動度を高くすることができるため
、特に好ましい。
増幅素子であるトランジスタ104は、電荷保持ノードFDの電位に応じて、電荷保持ノ
ードFDの電圧をフォトセンサ基準信号線VSとフォトセンサ出力信号線RO間の電流値
に変換する動作を行う。トランジスタ104は、オン電流が大きいことや移動度が高いこ
とが好ましく、半導体層に酸化物半導体やシリコン材料等を用いることができ、特に、多
結晶シリコンや単結晶シリコン等のシリコン材料を用いることが好ましい。トランジスタ
104のオン電流が大きい又は移動度が高いと、増幅率を高くできるので、電荷保持ノー
ドFDの微小な電位差、すなわち、フォトダイオード102に照射された光の微小な差も
検出することが可能となる。
トランジスタ105は、フォトセンサ100の出力を制御する。トランジスタ105は、
オン電流が大きいことや移動度が高いことが好ましく、半導体層に酸化物半導体やシリコ
ン材料等を用いることができ、特に、多結晶シリコンや単結晶シリコン等のシリコン材料
を用いることが好ましい。トランジスタ105のオン電流が大きい又は移動度が高いと、
フォトセンサ出力信号線ROの駆動能力が高いので、フォトセンサ出力の読み出し速度を
向上することができる。
トランジスタ109は、トランジスタ103が非導通状態のときに、ゲート電極と、ソー
ス電極又はドレイン電極の他方との電位差を閾値電圧より小さい値に保つ。トランジスタ
109のゲート電極の電位は電荷保持ノードFDの電位と等しく、ソース電極又はドレイ
ン電極の他方の電位は、ノード107の電位と等しい。トランジスタ103が非導通状態
のときに該電位差が閾値電圧より小さい値に保たれることで、電荷保持ノードFDの電位
とノード107の電位とが概ね等しく保持される。したがって、後に説明する反射光検出
を複数回繰り返す際に、反射光検出期間以外における光の影響を抑制することができるた
め、位置検出精度を低下させることなく、光源(距離測定装置、距離測定システム)から
被検出物までの距離を測定することができる。トランジスタ109は、電源線VHとノー
ド107の間の不要な電流注入を防ぐため、オフ電流が小さいことが好ましい。したがっ
て、トランジスタ109の半導体層にアモルファスシリコン、微結晶シリコン、酸化物半
導体等を用いることが好ましい。
なお、オフ電流が小さいことが好ましいトランジスタ103及びトランジスタ109は、
同一の材料で形成されることが好ましい。例えば、トランジスタ103及びトランジスタ
109の半導体層を酸化物半導体とし、同一の工程、材料で作製することで、作製工程の
簡略化を実現できる。また、同様の理由から、オン電流が大きいことや移動度が高いこと
が好ましいトランジスタ104及びトランジスタ105を、同一の材料、同一の構成で形
成することが好ましい。
リセット信号線PRは、電荷保持ノードFDの電位の初期化を制御する信号線である。蓄
積信号線TXは、トランジスタ103を制御する信号線である。フォトセンサ基準信号線
VSは、電源供給配線である。選択信号線SEは、トランジスタ105を制御する信号線
である。電源線VHは、電源供給配線である。フォトセンサ出力信号線ROは、フォトダ
イオード102の電荷蓄積に応じた信号を出力する出力配線である。
また、本発明の一態様に適用することができるフォトセンサ130の回路図を図2(A)
に示す。
図2(A)に示すフォトセンサ130は、フォトダイオード102、トランジスタ103
、トランジスタ104、トランジスタ105、トランジスタ106及びトランジスタ10
9を有する。
フォトダイオード102では、一方の電極が固定電源線RDと電気的に接続し、他方の電
極がトランジスタ103のソース電極又はドレイン電極の他方、及びトランジスタ109
のソース電極又はドレイン電極の他方と電気的に接続している。
トランジスタ106では、ゲート電極がリセット信号線PRと電気的に接続し、ソース電
極又はドレイン電極の一方が、トランジスタ103のソース電極又はドレイン電極の一方
、トランジスタ104のゲート電極、及びトランジスタ109のゲート電極と電気的に接
続し、ソース電極又はドレイン電極の他方が、リセット電源線VRと電気的に接続してい
る。トランジスタ106では、電荷保持ノードFDの電位の初期化を制御する。トランジ
スタ106は、リセット電源線VRから電荷保持ノードFDへの不要な電流注入を防ぐた
め、オフ電流が小さいことが好ましい。したがって、トランジスタ106は、半導体層に
アモルファスシリコン、微結晶シリコン、酸化物半導体等を用いることが好ましい。
なお、図2(A)に示すフォトダイオード102では、陽極が固定電源線RDと電気的に
接続し、陰極がトランジスタ103のソース電極又はドレイン電極と電気的に接続してい
るが、これに限定されない。フォトダイオード102において、陰極が固定電源線RDと
電気的に接続し、陽極がトランジスタ103のソース電極又はドレイン電極と電気的に接
続していてもよい。
<読み出し回路の構成>
図2(B)に、本発明の一態様の距離測定装置が備える読み出し回路120の回路図を示
す。本発明の一態様の距離測定装置が備える読み出し回路の構成は特に限定されない。図
2では、読み出し回路を1個のpチャネル型トランジスタで構成する例を示す。
具体的には、読み出し回路120は、トランジスタ122を有する。トランジスタ122
では、ゲート電極がプリチャージ信号線PCと電気的に接続し、ソース電極又はドレイン
電極の一方が電源供給配線124と電気的に接続し、他方がフォトセンサ出力信号線RO
と電気的に接続している。
なお、1つのフォトセンサ100につき、1つの読み出し回路120を設ける構成や、1
つのフォトセンサ出力信号線ROにつき、1つの読み出し回路120を設ける構成(フォ
トセンサ出力信号線ROを共有する複数のフォトセンサに対して、1つの読み出し回路を
設ける構成)等を適用することができる。
<距離測定方法>
本発明の一態様の距離測定装置(又は距離測定システム)を用いた距離測定方法について
説明する。以下では、光源及びフォトセンサ100(図1(B)参照)を有する距離測定
装置(又は距離測定システム)を用いた距離測定方法について説明する。
なお、タイミングチャートでは、フォトセンサ100の動作をわかりやすく説明するため
、リセット信号線PR、蓄積信号線TX、選択信号線SE、及びフォトセンサ出力信号線
ROには、ハイレベルかローレベルの電位が与えられるものとする。具体的に、リセット
信号線PRには、ハイレベルの電位HPRと、ローレベルの電位LPRが与えられるもの
とし、蓄積信号線TXには、ハイレベルの電位HTXと、ローレベルの電位LTXが与え
られるものとし、選択信号線SEには、ハイレベルの電位HSEと、ローレベルの電位L
SEが与えられるものとし、フォトセンサ出力信号線ROには、ハイレベルの電位HRO
と、ローレベルの電位LROが与えられるものとする。
なお、照射光151のパルスでは、光源から光が照射される期間をハイレベルで表し、照
射されない期間をローレベルで表す。また、反射光152のパルスでは、反射光がフォト
ダイオード102に照射される期間をハイレベルで表し、反射光が照射されない期間をロ
ーレベルで表す。なお、光源から照射される光の強度は一定とする。
[距離測定方法1]
図3に、光源から照射された光である照射光151、照射光151が被検出物で反射され
ることで生じた反射光152、及びフォトセンサ100のタイミングチャートの一例を示
す。
距離測定方法1において、本発明の一態様の距離測定装置は、光源から被検出物に対して
一定時間Tの光照射を2回(n=2)行い、光照射が行われている期間の反射光を検出し
、光の遅延時間に依存する検出信号の電圧S1を取得する。具体的には、時刻T2~時刻
T4(一定時間T)の間に、1回目の光照射(A)及び1回目の反射光検出(A)を行い
、時刻T6~時刻T8(一定時間T)の間に、2回目の光照射(A)及び2回目の反射光
検出(A)を行い、時刻T10~時刻T11の間に、検出信号の電圧S1を取得する。た
だし、光照射(A)及び反射光検出(A)の回数は2回に限られず、3回以上行ってもよ
い。
複数回の光照射(A)において、照射期間の長さは等しい(一定時間Tである)。また、
該1回の照射光の照射期間と1回の反射光の照射期間の長さは等しい(一定時間Tである
)。
複数回の光照射(A)において、光源と被検出物との距離は変わらないものとする。つま
り、照射光が光源から発せられた時刻から、該照射光が被検出物で反射された後、フォト
センサに反射光が入射する時刻までの期間である、時刻T2から時刻T3までの期間と、
時刻T6から時刻T7までの期間は、長さが等しい(遅延時間Δtとする)。
なお、反射光検出(A)は、フォトセンサに反射光が入射する前に開始する。また、反射
光検出(A)は、光照射(A)の終了と同時に終了する。このように反射光検出(A)の
タイミングが決定されるように、リセット信号線PR及び蓄積信号線TXの電位を制御す
る。
(時刻T1~時刻T2:リセット動作)
時刻T1において、リセット信号線PRの電位を、電位LPRから電位HPRに変化させ
、かつ蓄積信号線TXの電位を、電位LTXから電位HTXに変化させることで、フォト
ダイオード102及びトランジスタ103が導通する。電荷保持ノードFDには、リセッ
ト信号線PRの電位HPRが与えられるため、電荷保持ノードFDに保持されている電荷
はリセットされ、初期状態となる電荷量が保持される。なお、時刻T1において、選択信
号線SEには電位LSEが与えられている。
(時刻T2~時刻T4:1回目の光照射(A)及び1回目の反射光検出(A))
時刻T2において、光源から被検出物に対して光の照射を開始し、かつリセット信号線P
Rの電位を、電位HPRから電位LPRに変化させる。ここで、蓄積信号線TXの電位は
、電位HTXのまま維持するため、リセット信号線PRの電位が電位LPRになると、フ
ォトダイオード102に逆方向バイアスの電圧が印加される。
時刻T3において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。逆方向バイアスの電圧が印加された状態のフォトダイオー
ド102に反射光が照射されることで、フォトダイオード102の陰極から陽極に向かっ
て電流が流れ、電荷保持ノードFDの電位が低下する。一定時間において、反射光の強度
が大きいほど電荷保持ノードFDからの電荷の流出も大きくなる(電荷保持ノードFDの
電位の低下が大きくなる)。また、一定強度において、反射光の照射時間が長いほど電荷
保持ノードFDからの電荷の流出も大きくなる(電荷保持ノードFDの電位の低下が大き
くなる)。
時刻T4において、光の照射を終了し、かつ、蓄積信号線TXの電位を、電位HTXから
電位LTXに変化させる。蓄積信号線TXの電位が電位LTXになることで、トランジス
タ103は非導通状態になる。よって、電荷保持ノードFDからフォトダイオード102
への電荷の移動が止まるため、電荷保持ノードFDの電位が定まる。
なお、蓄積信号線TXの電位を、電位HTXから電位LTXに変化させる際、蓄積信号線
TXと電荷保持ノードFDとの間における寄生容量により、電荷保持ノードFDの電位変
化が生じる場合がある。電位変化が大きいと、フォトダイオード102で生成した光電流
に対応した電位を電荷保持ノードFDが正確に保持できないことになる。したがって、寄
生容量の影響を低減するための対策(例えば、トランジスタ103のゲート電極と、ソー
ス電極もしくはドレイン電極との間の容量を小さくする、又は、電荷保持ノードFDに保
持容量を接続する等)を施すことが好ましい。本発明の一態様に係るフォトセンサ100
では、該対策を施し、寄生容量に起因する電荷保持ノードFDの電位変化は無視できるも
のとする。
時刻T5において、フォトダイオード102への反射光の入射が終了する。
ここで、時刻T4~時刻T5の間、トランジスタ103が非導通状態であるため、電荷保
持ノードFDの電位は一定であるが、フォトダイオード102には反射光が照射されてい
るため、ノード107の電位は低下してしまう(図3に示すノード107のパルスの点線
参照)。ノード107と電荷保持ノードFDに電位差が生じると、次にトランジスタ10
3が導通状態になる時刻T6において、ノード107と電荷保持ノードFDの電位が等し
くなるよう、電荷保持ノードFDの電位が低下し、ノード107の電位が上昇する(図3
に示すノード107及び電荷保持ノードFDのパルスの点線参照)。電位変化が大きいと
、1回目の反射光検出(A)の間にフォトダイオード102で生成した光電流に対応した
電位を、電荷保持ノードFDが正確に保持できないことになる。これにより、距離測定装
置、又は該距離測定装置を用いた距離測定システムにおいて正確な距離測定が困難となる
(位置検出精度が低下してしまう)。
しかし、本発明の一態様の距離測定装置は、トランジスタ109を備える。トランジスタ
109は、トランジスタ103が非導通状態のときに、ゲート電極と、ソース電極又はド
レイン電極の他方との電位差を閾値電圧より小さい値に保つ。トランジスタ109のゲー
ト電極の電位は、電荷保持ノードFDの電位と等しく、トランジスタ109のソース電極
又はドレイン電極の他方の電位は、ノード107の電位と等しい。したがって、ノード1
07の電位が低下し、ノード107と電荷保持ノードFDとの電位差が大きくなることを
抑制することができる。これにより、本発明の一態様の距離測定装置(又は距離測定シス
テム)は、位置検出精度が低下することを抑制でき、高精度の距離測定が可能となる。
なお、時刻T4~時刻T5の間におけるノード107の電位変化は、トランジスタ109
の閾値電圧より小さくなるため、トランジスタ109の閾値電圧は0に近いほど好ましく
、0が最も好ましい。また、トランジスタ109のサブスレッショルド特性が良好なほど
、時刻T4~時刻T5の間におけるノード107の電位変化を抑制することができる。た
だし、トランジスタ109の閾値電圧及びサブスレッショルド特性の許容値は、電荷保持
ノードFDの容量、反射光の強度、フォトダイオード102の検出精度等によって決まる
ため、実施者が適宜決定すればよい。
本明細書等において、フォトダイオード102に照射される光とは、実質的に、光源から
の照射光が被検出物で反射されることで生じる反射光を指すものとする。例えば、反射光
は外光等に比べて極めて強度が高いものとする。ただし、時刻T4~時刻T6において、
反射光と同程度かそれ以上に強度が高い外光が一時的にフォトダイオード102に照射さ
れたとしても、本発明の一態様の距離測定装置はトランジスタ109を備えるため、該外
光の影響でノード107の電位が変化すること、さらには電荷保持ノードFDの電位が変
化することを抑制することができる。
(時刻T6~時刻T8:2回目の光照射(A)及び2回目の反射光検出(A))
時刻T6において、光源から被検出物に対して光の照射を開始し、かつ蓄積信号線TXの
電位を、電位LTXから電位HTXに変化させる。
時刻T7において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。フォトダイオード102に反射光が照射されることで、フ
ォトダイオード102の陰極から陽極に向かって電流が流れ、電荷保持ノードFDの電位
が低下する。
時刻T8において、光の照射を終了し、かつ、蓄積信号線TXの電位を、電位HTXから
電位LTXに変化させる。蓄積信号線TXの電位が電位LTXになることで、トランジス
タ103は非導通状態になる。よって、電荷保持ノードFDからフォトダイオード102
への電荷の移動が止まるため、電荷保持ノードFDの電位が定まる。
なお、電荷保持ノードFDの電位は、時刻T8以降は一定となる。時刻T8での電荷保持
ノードFDの電位は、1回目及び2回目の反射光検出(A)(時刻T2~時刻T4及び時
刻T6~時刻T8を指し、以下ではまとめて、反射光検出期間(A)と記す)で、フォト
ダイオード102が生成した光電流に依存する。また、時刻T8での電荷保持ノードFD
の電位に応じて、フォトセンサ100の出力信号が決定する。
時刻T9において、フォトダイオード102への反射光の入射が終了する。
(時刻T10~時刻T11:読み出し動作)
時刻T10において、選択信号線SEの電位を電位LSEから電位HSEに変化させ、ト
ランジスタ105を導通させる。これにより、フォトセンサ基準信号線VSとフォトセン
サ出力信号線ROが、トランジスタ104及びトランジスタ105を介して導通する。す
ると、電荷保持ノードFDの電位に応じた速度で、フォトセンサ出力信号線ROの電位が
フォトセンサ基準信号線VSの電位に近づく。なお、予め、時刻T10以前に、フォトセ
ンサ出力信号線ROの電位をハイレベルの電位HROとしておく。
時刻T11において、選択信号線SEの電位を電位HSEから電位LSEに変化させると
、トランジスタ105が非導通状態となり、フォトセンサ出力信号線ROの電位が決定す
る。
時刻T11におけるフォトセンサ出力信号線ROの電位は、時刻T10~時刻T11にお
けるフォトセンサ出力信号線ROの電位変化の速度に依存する。フォトセンサ出力信号線
ROの電位変化の速度は、トランジスタ104のソース電極及びドレイン電極の間の電流
に依存する。即ち、反射光検出期間(A)にフォトダイオード102に照射される反射光
の強度及び照射時間に依存する。一定時間において反射光の強度が大きいほど、フォトセ
ンサ出力信号線ROの電位変化の速度は遅くなる。また、一定強度において反射光の照射
時間が長いほど、フォトセンサ出力信号線ROの電位変化の速度は遅くなる。フォトセン
サ出力信号線ROの電位変化の速度が遅いほど、時刻T11におけるフォトセンサ出力信
号線ROの電位は高くなる。
ここで、電荷保持ノードFDの電位変化とフォトセンサ出力信号線ROの電位変化の関係
について説明する。反射光検出期間(A)において、フォトダイオード102に照射され
る反射光の強度が高いと、電荷保持ノードFDの電位変化は大きくなる(時刻T8におけ
る電荷保持ノードFDの電位の値は低くなる)。このとき、トランジスタ104のチャネ
ル抵抗が高くなるため、フォトセンサ出力信号線ROの電位変化の速度は遅くなる。した
がって、フォトセンサ出力信号線ROの電位変化は小さくなる(時刻T11におけるフォ
トセンサ出力信号線ROの電位の値は高くなる)。
時刻T11におけるフォトセンサ出力信号線ROの電位を取得することで、反射光検出期
間(A)にフォトダイオード102に照射された反射光の量(反射光の強度の時間積)を
検出信号の電圧S1として得ることができる。ここで、前述の通り、光源から照射される
光の強度は一定であり、反射光検出時にフォトダイオード102に照射される光は、全て
光源からの照射光が被検出物で反射されることで生じる反射光を指すから、時刻T11に
おけるフォトセンサ出力信号線ROの電位は、反射光検出期間(A)の長さに概ね比例す
る。
次に、本発明の一態様の距離測定システムにおける、TOF方式を適用した距離測定方法
について説明する。反射光検出期間(A)から取得した光の遅延時間に依存する検出信号
の電圧S1を用いて、本発明の一態様の距離測定装置(又は距離測定システム)から被検
出物までの距離を測定する方法について示す。
検出信号の電圧S1は、光照射及び反射光検出を行った回数n、定数k、一定時間T、及
び遅延時間Δtを用いて、数式(1-1)で表すことができる。また、光源(距離測定装
置、距離測定システム)から被検出物までの距離xは、光速c及び遅延時間Δtを用いて
、数式(1-2)で表すことができる。この2式より、該距離xは、検出信号の電圧S1
を用いた数式(1-3)で表すことができる。
Figure 2022186736000007
なお、光照射及び反射光検出を行った回数nは、2以上の自然数であり、本実施の形態で
は一例としてn=2とした。また、定数kには、光源が照射する光の強度や波長、フォト
ダイオード102の感度(光電流特性や分光感度)、フォトセンサ100の透過率(セン
サ内でフォトダイオード102に光が達するまでの減衰率)や増幅率、被検出物の反射率
、空気中での光の減衰率等の情報が含まれ、本実施の形態では、被検出物の距離測定前に
予め求められているものとする。
例えば、被検出物と距離測定装置(又は距離測定システム)との距離がわかっている状態
で、被検出物の距離測定を行い、検出信号の電圧S1を取得することで、数式(1-3)
を用いて定数kを求めることができる。
また、時刻T1より前、又は時刻T11より後の、光照射が行われず、かつ反射光が照射
されていない期間に、フォトセンサ100によって光の検出を行い、検出信号の電圧S0
を得てもよい。数式(1-3)において、検出信号の電圧S1から検出信号の電圧S0を
差し引いた値である検出信号の電圧S1’を検出信号の電圧S1の代わりに用いることで
、外光の影響を取り除き、高い精度の距離測定を行うことができる。
以上のように、本発明の一態様の距離測定装置を用いることで、高精度の距離測定を行う
ことができる。また、高精度の距離測定を行う距離測定システムを実現することができる
[距離測定方法2]
図4に、照射光151、反射光152、フォトセンサ100のタイミングチャートの別の
例を示す。
距離測定方法2において、本発明の一態様の距離測定装置は、光源から被検出物に対して
一定時間Tの光照射(B)を2回行い、光照射(B)終了後の期間の反射光を検出し、光
の遅延時間に依存する検出信号の電圧S2を取得する。具体的には、時刻T1~時刻T4
(一定時間T)の間に1回目の光照射(B)を行い、時刻T4~時刻T6の間に1回目の
反射光検出(B)を行い、時刻T7~時刻T9(一定時間T)の間に2回目の光照射(B
)を行い、時刻T9~時刻T11の間に2回目の反射光検出(B)を行い、時刻T12~
時刻T13の間に検出信号の電圧S2を取得する。ただし、光照射(B)及び反射光検出
(B)の回数は2回に限られず、3回以上行ってもよい。
複数回の光照射(B)において、照射期間の長さは等しい(一定時間Tである)。また、
1回の照射光の照射期間と1回の反射光の照射期間の長さは等しい(一定時間Tである)
複数回の光照射(B)において、光源と被検出物との距離は変わらないものとする。つま
り、照射光が光源から発せられた時刻から、該照射光が被検出物で反射された後に、フォ
トセンサに反射光が入射する時刻までの期間である、時刻T1から時刻T2までの期間と
、時刻T7から時刻T8までの期間は、長さが等しい(遅延時間Δtとする)。
なお、反射光検出(B)は、光照射(B)の終了と同時に開始する。また、反射光検出(
B)は、フォトセンサへの反射光の照射の終了より後に終了する。このように反射光検出
(B)のタイミングが決定されるように、リセット信号線PR及び蓄積信号線TXの電位
を制御する。
(時刻T1~時刻T4:1回目の光照射(B))
時刻T1において、光源から被検出物に対して光の照射を開始する。ここで、リセット信
号線PRには電位LPRが与えられており、蓄積信号線TXには、電位LTXが与えられ
ており、選択信号線SEには電位LSEが与えられている。
時刻T2において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。
(時刻T3~時刻T4:リセット動作)
時刻T3において、リセット信号線PRの電位を、電位LPRから電位HPRに変化させ
、かつ蓄積信号線TXの電位を、電位LTXから電位HTXに変化させることで、フォト
ダイオード102及びトランジスタ103が導通する。電荷保持ノードFDには、リセッ
ト信号線PRの電位HPRが与えられるため、電荷保持ノードFDに保持されている電荷
はリセットされ、初期状態となる電荷量が保持される。
(時刻T4~時刻T6:1回目の反射光検出(B))
時刻T4において、光の照射を終了し、かつ、リセット信号線PRの電位を、電位HPR
から電位LPRに変化させる。ここで、蓄積信号線TXの電位は、電位HTXのまま維持
するため、リセット信号線PRの電位が電位LPRになると、フォトダイオード102に
逆方向バイアスの電圧が印加される。逆方向バイアスの電圧が印加された状態のフォトダ
イオード102に反射光が照射されることで、フォトダイオード102の陰極から陽極に
向かって電流が流れ、電荷保持ノードFDの電位が低下する。
時刻T5において、フォトダイオード102への反射光の入射が終了し、電荷保持ノード
FDからフォトダイオード102への電荷の移動が止まり、電荷保持ノードFDの電位が
定まる。
時刻T6において、蓄積信号線TXの電位を、電位HTXから電位LTXに変化させる。
蓄積信号線TXの電位が電位LTXになることで、トランジスタ103は非導通状態にな
る。
(時刻T7~時刻T9:2回目の光照射(B))
時刻T7において、光源から被検出物に対して光の照射を開始する。
時刻T8において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。
ここで、時刻T8~時刻T9の間、トランジスタ103が非導通状態であるため、電荷保
持ノードFDの電位は一定であるが、フォトダイオード102には反射光が照射されてい
るため、ノード107の電位は低下してしまう(図4に示すノード107のパルスの点線
参照)。ノード107と電荷保持ノードFDに電位差が生じると、次にトランジスタ10
3が導通状態になる時刻T9において、ノード107と電荷保持ノードFDの電位が等し
くなるよう、電荷保持ノードFDの電位が低下し、ノード107の電位が上昇する(図4
に示すノード107及び電荷保持ノードFDのパルスの点線参照)。電位変化が大きいと
、1回目の反射光検出(B)の間にフォトダイオード102で生成した光電流に対応した
電位を、電荷保持ノードFDが正確に保持できないことになる。これにより、距離測定装
置や、該距離測定装置を用いた距離測定システムにおいて正確な距離測定が困難となる(
位置検出精度が低下してしまう)。
しかし、本発明の一態様の距離測定装置は、トランジスタ109を備える。トランジスタ
109は、トランジスタ103が非導通状態のときに、ゲート電極と、ソース電極又はド
レイン電極の他方との電位差を閾値電圧より小さい値に保つ。トランジスタ109のゲー
ト電極の電位は、電荷保持ノードFDの電位と等しく、トランジスタ109のソース電極
又はドレイン電極の他方の電位は、ノード107の電位と等しい。したがって、ノード1
07の電位が低下し、ノード107と電荷保持ノードFDとの電位差が大きくなることを
抑制することができる。これにより、本発明の一態様の距離測定装置は、反射光検出期間
以外における光の影響を除去することができるので、位置検出精度が低下することを抑制
でき、高精度の距離測定が可能となる。
なお、時刻T8~時刻T9の間におけるノード107の電位変化は、トランジスタ109
の閾値電圧より小さくなるため、トランジスタ109の閾値電圧は0に近いほど好ましく
、0が最も好ましい。また、トランジスタ109のサブスレッショルド特性が良好な程、
時刻T8~時刻T9の間におけるノード107の電位変化を抑制することができる。ただ
し、トランジスタ109の閾値電圧及びサブスレッショルド特性の許容値は、電荷保持ノ
ードFDの容量、反射光の強度、フォトダイオード102の検出精度等によって決まるた
め、実施者が適宜決定すればよい。
前述の通り、本明細書等において、フォトダイオード102に照射される光とは、実質的
に、光源からの照射光が被検出物で反射されることで生じる反射光を指すものとする。た
だし、時刻T6~時刻T9において、反射光と同程度かそれ以上に強度が高い外光が一時
的にフォトダイオード102に照射されたとしても、本発明の一態様の距離測定装置はト
ランジスタ109を備えるため、該外光の影響でノード107の電位が変化すること、さ
らには電荷保持ノードFDの電位が変化することを抑制することができる。
(時刻T9~時刻T11:2回目の反射光検出(B))
時刻T9において、光の照射を終了し、かつ、蓄積信号線TXの電位を、電位LTXから
電位HTXに変化させる。逆方向バイアスの電圧が印加された状態のフォトダイオード1
02に反射光が照射されることで、フォトダイオード102の陰極から陽極に向かって電
流が流れ、電荷保持ノードFDの電位が低下する。
時刻T10において、フォトダイオード102への反射光の入射が終了し、電荷保持ノー
ドFDからフォトダイオード102への電荷の移動が止まり、電荷保持ノードFDの電位
が定まる。
時刻T11において、蓄積信号線TXの電位を、電位HTXから電位LTXに変化させる
。蓄積信号線TXの電位が電位LTXになることで、トランジスタ103は非導通状態に
なる。
なお、電荷保持ノードFDの電位は、時刻T11以降は一定となる。時刻T11での電荷
保持ノードFDの電位は、1回目及び2回目の反射光検出(B)(時刻T4~時刻T6及
び時刻T9~時刻T11を指し、以下ではまとめて、反射光検出期間(B)と記す)で、
フォトダイオード102が生成した光電流に依存する。また、時刻T11での電荷保持ノ
ードFDの電位に応じて、フォトセンサ100の出力信号が決定する。ただし、本実施の
形態では、フォトダイオード102への反射光の入射が時刻T10で終了しているため、
「電荷保持ノードFDの電位は、時刻T10以降は一定となる。」ともいえる。
(時刻T12~時刻T13:読み出し動作)
時刻T12において、選択信号線SEの電位を電位LSEから電位HSEに変化させ、ト
ランジスタ105を導通させる。これにより、フォトセンサ基準信号線VSとフォトセン
サ出力信号線ROが、トランジスタ104及びトランジスタ105を介して導通する。す
ると、電荷保持ノードFDの電位に応じて、フォトセンサ基準信号線VSからフォトセン
サ出力信号線ROに信号が出力される。なお、予め、時刻T12以前に、フォトセンサ出
力信号線ROの電位をハイレベルの電位HROとしておく。
時刻T13において、選択信号線SEの電位を電位HSEから電位LSEに変化させると
、トランジスタ105が非導通状態となり、フォトセンサ基準信号線VSからフォトセン
サ出力信号線ROへの電荷の移動が停止し、フォトセンサ出力信号線ROの電位が決定す
る。
時刻T13におけるフォトセンサ出力信号線ROの電位は、時刻T12~時刻T13にお
けるフォトセンサ出力信号線ROの電位変化の速度に依存する。フォトセンサ出力信号線
ROの電位変化の速度は、トランジスタ104のソース電極及びドレイン電極の間の電流
に依存する。即ち、反射光検出期間(B)にフォトダイオード102に照射される反射光
の強度及び照射時間に依存する。
したがって、時刻T13におけるフォトセンサ出力信号線ROの電位を取得することで、
反射光検出期間(B)にフォトダイオード102に照射された反射光の量(反射光の強度
の時間積)を検出信号の電圧S2として得ることができる。ここで、前述の通り、光源か
ら照射される光の強度は一定であり、反射光検出時にフォトダイオード102に照射され
る光は、全て光源からの照射光が被検出物で反射されることで生じる反射光を指すから、
時刻T13におけるフォトセンサ出力信号線ROの電位は、反射光検出期間(B)の長さ
に概ね比例する。
次に、本発明の一態様の距離測定システムにおける、TOF方式を適用した距離測定方法
について説明する。反射光検出期間(B)から取得した光の遅延時間に依存する検出信号
の電圧S2を用いて、本発明の一態様の距離測定装置(又は距離測定システム)から被検
出物までの距離を測定する方法について示す。
検出信号の電圧S2は、光照射及び反射光検出を行った回数n、定数k、及び遅延時間Δ
tを用いて、数式(2-1)で表すことができる。また、光源(距離測定装置、距離測定
システム)から被検出物までの距離xは、光速c及び遅延時間Δtを用いて数式(2-2
)で表すことができる。この2式より、該距離xは、検出信号の電圧S2を用いた数式(
2-3)で表すことができる。
Figure 2022186736000008
なお、光照射及び反射光検出を行った回数nは、2以上の自然数であり、本実施の形態で
は一例としてn=2とした。また、定数kは、数式(1-1)の説明の際に挙げた情報と
同様の情報が含まれ、本実施の形態では、被検出物の距離測定前に予め求められているも
のとする。
また、時刻T1より前、又は時刻T13より後の、光照射が行われず、かつ反射光が照射
されていない期間に、フォトセンサ100によって光の検出を行い、検出信号の電圧S0
を得てもよい。数式(2-3)において、検出信号の電圧S2から検出信号の電圧S0を
差し引いた値である検出信号の電圧S2’を検出信号の電圧S2の代わりに用いることで
、外光の影響を取り除き、高い精度の距離測定を行うことができる。
以上のように、本発明の一態様の距離測定装置を用いることで、高精度の距離測定を行う
ことができる。また、高精度の距離測定を行う距離測定システムを実現することができる
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できる。
(実施の形態2)
本実施の形態では、本発明の一態様の距離測定システムを用いた距離測定方法について図
5を用いて説明する。以下では、光源及びフォトセンサ100(図1(B)参照)を有す
る距離測定装置を用いた距離測定方法について説明する。
実施の形態1で説明した距離測定方法を用いて、光源(距離測定装置、距離測定システム
)から被検出物までの距離を知るためには、予め定数kを求めておく必要があった。一方
、本実施の形態で示す距離測定方法によれば、定数kがわからない場合でも、距離を求め
ることができる。
[距離測定方法3]
図5に、照射光151、反射光152、及びフォトセンサ100のタイミングチャートの
一例を示す。
距離測定方法3において、本発明の一態様の距離測定装置は、光源から被検出物に対して
一定時間Tの光照射(A)を2回行い、光照射(A)が行われている期間の反射光を検出
し、光の遅延時間に依存する検出信号の電圧S1を取得した後、光源から被検出物に対し
て一定時間Tの光照射(B)を2回行い、光照射(B)終了後の期間の反射光を検出し、
光の遅延時間に依存する検出信号の電圧S2を取得する。
具体的には、時刻T2~時刻T4(一定時間T)の間に、1回目の光照射(A)及び1回
目の反射光検出(A)を行い、時刻T6~時刻T8(一定時間T)の間に、2回目の光照
射(A)及び2回目の反射光検出(A)を行い、時刻T10~時刻T11の間に、検出信
号の電圧S1を取得し、時刻T12~時刻T15(一定時間T)の間に1回目の光照射(
B)を行い、時刻T15~時刻T17の間に1回目の反射光検出(B)を行い、時刻T1
8~時刻T20(一定時間T)の間に2回目の光照射(B)を行い、時刻T20~時刻T
22の間に2回目の反射光検出(B)を行い、時刻T23~時刻T24の間に、検出信号
の電圧S2を取得する。ただし、光照射(A)(B)及び反射光検出(A)(B)の回数
は2回に限られず、3回以上行ってもよい。
複数回の光照射(A)(B)において、照射期間の長さは等しい(一定時間Tである)。
また、1回の照射光の照射期間と1回の反射光の照射期間の長さは等しい(一定時間Tで
ある)。
複数回の光照射(A)(B)において、光源と被検出物との距離は変わらないものとする
。つまり、照射光が光源から発せられた時刻から、該照射光が被検出物で反射された後に
、フォトセンサに反射光が入射する時刻までの期間である、時刻T2から時刻T3までの
期間、時刻T6から時刻T7までの期間、時刻T12から時刻T13までの期間、及び時
刻T18から時刻T19までの期間は、長さが等しい(遅延時間Δtとする)。
なお、反射光検出(A)は、フォトセンサに反射光が入射する前に開始する。また、反射
光検出(A)は、光照射(A)の終了と同時に終了する。そして、反射光検出(B)は、
光照射(B)の終了と同時に開始する。また、反射光検出(B)は、フォトダイオード1
02への反射光の照射の終了より後に終了する。このように、反射光検出(A)及び反射
光検出(B)のタイミングが決定されるように、リセット信号線PR及び蓄積信号線TX
の電位を制御する。
(時刻T1~時刻T11:検出信号の電圧S1の取得)
時刻T1~時刻T11において、実施の形態1における距離測定方法1(時刻T1~時刻
T11)と同様の方法で検出信号の電圧S1を取得する。詳細は、実施の形態1を参酌で
きる。
(時刻T12~時刻T24:検出信号の電圧S2の取得)
時刻T12~時刻T24において、実施の形態1における距離測定方法2(時刻T1~時
刻T13)と同様の方法で検出信号の電圧S2を取得する。詳細は、実施の形態1を参酌
できる。
ここで、距離測定方法3において、検出信号の電圧S1及び検出信号の電圧S2を取得す
る順に限定は無く、時刻T1~時刻T13において、距離測定方法2と同様の方法で検出
信号の電圧S2を取得した後、時刻T14~時刻T24において、距離測定方法1と同様
の方法で検出信号の電圧S1を取得してもよい。
なお、本実施の形態においては、一例として、光照射(A)が行われ、かつ、フォトダイ
オード102に反射光が照射されている期間(時刻T3~時刻T4や、時刻T7~時刻T
8、言い換えると、時間(T-Δt))に比べて、光照射(B)の終了以後、かつ、フォ
トダイオード102に反射光が照射されている期間(時刻T15~時刻T16や、時刻T
20~時刻T21、言い換えると、時間Δt)が短い場合を示している。そのため、時間
(T-Δt)の間の電荷保持ノードFDの電位変化に比べて、時間Δtの間の電荷保持ノ
ードFDの電位変化は小さい。また、時刻T24におけるフォトセンサ出力信号線ROの
電位は、時刻T11におけるフォトセンサ出力信号線ROの電位に比べて低い。
次に、本発明の一態様の距離測定システムにおける、TOF方式を適用した距離測定方法
について説明する。反射光検出期間(A)(B)から取得した光の遅延時間に依存する検
出信号の電圧S1及び検出信号の電圧S2を用いて、本発明の一態様の距離測定装置(又
は距離測定システム)から被検出物までの距離を測定する方法について示す。
実施の形態1に示した通り、検出信号の電圧S1は、光照射及び反射光検出を行った回数
n、定数k、一定時間T、及び遅延時間Δtを用いて、数式(3-1)で表すことができ
、検出信号の電圧S2は、光照射及び反射光検出を行った回数n、定数k、及び遅延時間
Δtを用いて、数式(3-2)で表すことができる。また、光源(距離測定装置、距離測
定システム)から被検出物までの距離xは、光速c及び遅延時間Δtを用いて、数式(3
-3)で表すことができる。この3式より、該距離xは、検出信号の電圧S1及び検出信
号の電圧S2を用いた数式(3-4)で表すことができる。
Figure 2022186736000009
なお、光照射及び反射光検出を行った回数nは、2以上の自然数であり、本実施の形態で
は一例としてn=2とした。また、定数kには、数式(1-1)の説明の際に挙げた情報
と同様の情報が含まれる。本実施の形態の距離測定方法では、数式(3-4)に示す通り
、定数kの値がわからなくても、距離xを求めることができる。
また、時刻T1より前、又は時刻T24より後の、光照射が行われず、かつ反射光が照射
されていない期間に、フォトセンサ100によって光の検出を行い、検出信号の電圧S0
を得てもよい。検出信号の電圧S1及び検出信号の電圧S2のそれぞれから検出信号の電
圧S0を差し引いた値である検出信号の電圧S1’及び検出信号の電圧S2’を、数式(
3-4)において検出信号の電圧S1及び検出信号の電圧S2の代わりに用いることで、
外光の影響を取り除き、高い精度の距離測定を行うことができる。
以上のように、本発明の一態様の距離測定装置を用いることで、高精度の距離測定を行う
ことができる。また、高精度の距離測定を行う距離測定システムを実現することができる
(実施の形態3)
本実施の形態では、本発明の一態様の距離測定装置(又は距離測定システム)と、該距離
測定装置(又は距離測定システム)を用いた距離測定方法について、図6及び図7を用い
て説明する。本発明の一態様の距離測定装置(又は距離測定システム)はTOF方式を用
いて距離を測定することができる。
本発明の一態様の距離測定装置は、第1の受光素子、第1のトランジスタ、及び第2のト
ランジスタを有する第1のフォトセンサと、第2の受光素子、第3のトランジスタ、及び
第4のトランジスタを有し、第1のフォトセンサと隣接する第2のフォトセンサと、第1
の配線及び第2の配線と、第1の信号線及び第2の信号線と、第1の電源線及び第2の電
源線とを備える。特に、第1の受光素子と第2の受光素子とが隣接することが好ましい。
第1の配線は、第1の受光素子の一方の電極と電気的に接続し、第1の信号線は、第1の
トランジスタのゲート電極と電気的に接続し、第1の電源線は、第2のトランジスタのソ
ース電極又はドレイン電極の一方と電気的に接続し、第1のトランジスタでは、ソース電
極又はドレイン電極の一方が第2のトランジスタのゲート電極と電気的に接続し、他方が
第1の受光素子の他方の電極、及び第2のトランジスタのソース電極又はドレイン電極の
他方と電気的に接続し、第2の配線は、第2の受光素子の一方の電極と電気的に接続し、
第2の信号線は、第3のトランジスタのゲート電極と電気的に接続し、第2の電源線は、
第4のトランジスタのソース電極又はドレイン電極の一方と電気的に接続し、第3のトラ
ンジスタでは、ソース電極又はドレイン電極の一方が第4のトランジスタのゲート電極と
電気的に接続し、他方が第2の受光素子の他方の電極、及び第4のトランジスタのソース
電極又はドレイン電極の他方と電気的に接続する。
本発明の一態様では、光源が、被検出物に対して一定時間の光照射を複数回(n回、nは
2以上の自然数)行い、第1のフォトセンサが、該光照射が行われる期間における反射光
(具体的には、該光源から照射された光が該被検出物で反射されることで生じる光)の検
出を同じ回数行い、第1のフォトセンサと隣接する第2のフォトセンサが、該光照射終了
後の期間における反射光の検出を同じ回数行う。このとき、第1のフォトセンサと第2の
フォトセンサは、実質的に被検出物の同一点における反射光を検出する。光照射及び反射
光の検出を複数回行うことで、距離に応じた検出信号を高精度で得られるため、より正確
な距離を算出することができる。
実施の形態1で説明した距離測定方法を用いて、光源(距離測定装置、距離測定システム
)から被検出物までの距離を知るためには、予め定数kを求めておく必要があった。一方
、本実施の形態で示す距離測定方法によれば、定数kがわからない場合でも、距離を求め
ることができる。
実施の形態2で説明した距離測定方法では、1回の光照射を利用して、該光照射が行われ
る期間又は該光照射終了後の期間のどちらか一方における反射光の検出を行った。また、
光照射(A)(B)において、光源と被検出物との距離は変わらないものとする必要があ
った。一方、本実施の形態で示す距離測定方法は、隣接する2つのフォトセンサを用いる
ことで、1回の光照射を利用して、該光照射が行われる期間及び該光照射終了後の期間の
双方における反射光の検出を行うことができる。したがって、実施の形態2で説明した距
離測定方法に比べて短時間で被検出物の距離を測定することができる。したがって、例え
ば、被検出物が移動体の場合であっても、位置検出精度の低下を抑制することができる。
また、本発明の一態様の距離測定装置が備えるフォトセンサは、受光素子において反射光
を検出する。受光素子には、光源により光照射が行われる期間及び該光照射終了後の期間
の双方において、該反射光が照射されている。検出を行わない期間に照射された反射光に
よって受光素子の他方の電極の電位に変化が生じると、反射光の検出の精度が低下する場
合がある。しかし、該フォトセンサは、反射光の検出を行わない期間における受光素子の
他方の電極の電位変化を抑制するトランジスタを備える。これにより、高精度の距離測定
が可能な距離測定装置(又は距離測定システム)を提供することができる。
<フォトセンサの構成>
図6に本発明の一態様の距離測定装置が備える第1のフォトセンサ100_1及び第2の
フォトセンサ100_2の回路図を示す。
図6に示す第1のフォトセンサ100_1は、フォトダイオード102_1、トランジス
タ103_1、トランジスタ104_1、トランジスタ105_1、及びトランジスタ1
09_1を有する。
フォトダイオード102_1では、一方の電極がリセット信号線PR_1と電気的に接続
し、他方の電極がトランジスタ103_1のソース電極又はドレイン電極の他方、及びト
ランジスタ109_1のソース電極又はドレイン電極の他方と電気的に接続している。本
明細書等では、フォトダイオード102_1の他方の電極、トランジスタ103_1のソ
ース電極又はドレイン電極の他方、及びトランジスタ109_1のソース電極又はドレイ
ン電極の他方が構成するノードをノード107_1と記す。
トランジスタ103_1では、ゲート電極が蓄積信号線TX_1と電気的に接続し、ソー
ス電極又はドレイン電極の一方がトランジスタ104_1のゲート電極、及びトランジス
タ109_1のゲート電極と電気的に接続している。本明細書等では、トランジスタ10
3_1のソース電極又はドレイン電極の一方、トランジスタ104_1のゲート電極、及
びトランジスタ109_1のゲート電極が構成するノードを、電荷保持ノードFD_1と
記す。
トランジスタ104_1では、ソース電極又はドレイン電極の一方がフォトセンサ基準信
号線VSと電気的に接続し、他方がトランジスタ105_1のソース電極又はドレイン電
極の一方と電気的に接続している。
トランジスタ105_1では、ゲート電極が選択信号線SE_1と電気的に接続し、ソー
ス電極又はドレイン電極の他方がフォトセンサ出力信号線RO_1と電気的に接続してい
る。
トランジスタ109_1では、ソース電極又はドレイン電極の一方が電源線VHと電気的
に接続している。
図6に示す第2のフォトセンサ100_2は、フォトダイオード102_2、トランジス
タ103_2、トランジスタ104_2、トランジスタ105_2、及びトランジスタ1
09_2を有する。
フォトダイオード102_2では、一方の電極がリセット信号線PR_2と電気的に接続
し、他方の電極がトランジスタ103_2のソース電極又はドレイン電極の他方、及びト
ランジスタ109_2のソース電極又はドレイン電極の他方と電気的に接続している。本
明細書等では、フォトダイオード102_2の他方の電極、トランジスタ103_2のソ
ース電極又はドレイン電極の他方、及びトランジスタ109_2のソース電極又はドレイ
ン電極の他方が構成するノードをノード107_2と記す。
トランジスタ103_2では、ゲート電極が蓄積信号線TX_2と電気的に接続し、ソー
ス電極又はドレイン電極の一方がトランジスタ104_2のゲート電極、及びトランジス
タ109_2のゲート電極と電気的に接続している。本明細書等では、トランジスタ10
3_2のソース電極又はドレイン電極の一方、トランジスタ104_2のゲート電極、及
びトランジスタ109_2のゲート電極が構成するノードを、電荷保持ノードFD_2と
記す。
トランジスタ104_2では、ソース電極又はドレイン電極の一方がフォトセンサ基準信
号線VSと電気的に接続し、他方がトランジスタ105_2のソース電極又はドレイン電
極の一方と電気的に接続している。
トランジスタ105_2では、ゲート電極が選択信号線SE_2と電気的に接続し、ソー
ス電極又はドレイン電極の他方がフォトセンサ出力信号線RO_2と電気的に接続してい
る。
トランジスタ109_2では、ソース電極又はドレイン電極の一方が電源線VHと電気的
に接続している。
なお、図6に示す第1のフォトセンサ100_1、及び第2のフォトセンサ100_2は
、図1(B)に示すフォトセンサ100と同様の構成としたが、この構成に限られず、例
えば、図2(A)に示すフォトセンサ130と同様の構成とすることができる。
<距離測定方法>
本発明の一態様の距離測定システムを用いた距離測定方法について説明する。以下では、
隣接する第1のフォトセンサ100_1及び第2のフォトセンサ100_2(図6参照)
と、光源とを有する距離測定装置を用いた距離測定方法について説明する。
[距離測定方法4]
図7に、照射光151、反射光152、第1のフォトセンサ100_1、及び第2のフォ
トセンサ100_2のタイミングチャートの一例を示す。
距離測定方法4において、本発明の一態様の距離測定装置では、光源から被検出物に対し
て一定時間Tの光照射を2回行い、第1のフォトセンサ100_1が、該光照射が行われ
ている期間の反射光を検出し、光の遅延時間に依存する検出信号の電圧S1を取得し、か
つ、第2のフォトセンサ100_2が、該光照射終了後の期間の反射光を検出し、光の遅
延時間に依存する検出信号の電圧S2を取得する。
具体的には、時刻T2~時刻T5(一定時間T)の間に、1回目の光照射及び第1のフォ
トセンサ100_1による1回目の反射光検出(A)を行い、時刻T5~時刻T7の間に
、第2のフォトセンサ100_2による1回目の反射光検出(B)を行い、時刻T8~時
刻T10(一定時間T)の間に、2回目の光照射及び第1のフォトセンサ100_1によ
る2回目の反射光検出(A)を行い、時刻T10~時刻T12の間に第2のフォトセンサ
100_2による2回目の反射光検出(B)を行い、時刻T13~時刻T14の間に、検
出信号の電圧S1を取得し、時刻T14~時刻T15の間に、検出信号の電圧S2を取得
する。ただし、光照射及び反射光検出(A)(B)の回数は2回に限られず、3回以上行
ってもよい。
複数回の光照射において、照射期間の長さは等しい(一定時間Tである)。また、1回の
照射光の照射期間と1回の反射光の照射期間の長さは等しい(一定時間Tである)。
本実施の形態では、複数回の光照射において、光源と被検出物との距離は変わらないもの
とする。つまり、照射光が光源から発せられた時刻から、該照射光が被検出物で反射され
た後、フォトセンサに反射光が入射する時刻までの期間である、時刻T2から時刻T3ま
での期間、及び時刻T8から時刻T9までの期間は、長さが等しい(遅延時間Δtとする
)。ただし、本実施の形態で説明する距離測定方法4を適用することで、本発明の一態様
の距離測定装置は、短時間で被検出物の距離を測定することができるため、複数回の光照
射において、光源と被検出物との距離が変化する場合(例えば、被検出物が移動体である
場合)でも、位置検出精度の低下が抑制できる。
なお、反射光検出(A)は、少なくとも、フォトセンサに反射光が入射する前に開始する
。また、反射光検出(A)は、光照射の終了と同時に終了する。そして、反射光検出(B
)は、光照射の終了と同時に開始する。また、反射光検出(B)は、フォトセンサへの反
射光の照射の終了より後に終了する。このように、反射光検出(A)及び反射光検出(B
)のタイミングが決定されるように、リセット信号線PR_1、リセット信号線PR_2
、蓄積信号線TX_1、及び蓄積信号線TX_2の電位を制御する。
(時刻T1~時刻T2:第1のフォトセンサ100_1のリセット動作)
時刻T1において、リセット信号線PR_1の電位を、電位LPRから電位HPRに変化
させ、かつ蓄積信号線TX_1の電位を、電位LTXから電位HTXに変化させることで
、フォトダイオード102_1及びトランジスタ103_1が導通する。電荷保持ノード
FD_1には、リセット信号線PR_1の電位HPRが与えられるため、電荷保持ノード
FD_1に保持されている電荷はリセットされ、初期状態となる電荷量が保持される。な
お、時刻T1において、選択信号線SE_1には電位LSEが与えられており、リセット
信号線PR_2には電位LPRが与えられており、蓄積信号線TX_2には、電位LTX
が与えられており、選択信号線SE_2には電位LSEが与えられている。
(時刻T2~時刻T5:1回目の光照射及び1回目の反射光検出(A))
時刻T2において、光源から被検出物に対して光の照射を開始し、かつリセット信号線P
R_1の電位を、電位HPRから電位LPRに変化させる。ここで、蓄積信号線TX_1
の電位は、電位HTXのまま維持するため、リセット信号線PR_1の電位が電位LPR
になると、フォトダイオード102_1に逆方向バイアスの電圧が印加される。
時刻T3において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。逆方向バイアスの電圧が印加された状態のフォトダイオー
ド102_1に反射光が照射されることで、フォトダイオード102_1の陰極から陽極
に向かって電流が流れ、電荷保持ノードFD_1の電位が低下する。
(時刻T4~時刻T5:第2のフォトセンサ100_2のリセット動作)
時刻T4において、リセット信号線PR_2の電位を、電位LPRから電位HPRに変化
させ、かつ蓄積信号線TX_2の電位を、電位LTXから電位HTXに変化させることで
、フォトダイオード102_2及びトランジスタ103_2が導通する。電荷保持ノード
FD_2には、リセット信号線PR_2の電位HPRが与えられるため、電荷保持ノード
FD_2に保持されている電荷はリセットされ、初期状態となる電荷量が保持される。
(時刻T5~時刻T7:1回目の反射光検出(B))
時刻T5において、光の照射を終了する。第1のフォトセンサ100_1においては、蓄
積信号線TX_1の電位を、電位HTXから電位LTXに変化させる。蓄積信号線TX_
1の電位が電位LTXになることで、トランジスタ103_1は非導通状態になる。よっ
て、電荷保持ノードFD_1からフォトダイオード102_1への電荷の移動が止まるた
め、電荷保持ノードFD_1の電位が定まる。また、第2のフォトセンサ100_2にお
いては、リセット信号線PR_2の電位を、電位HPRから電位LPRに変化させる。こ
こで、蓄積信号線TX_2の電位は、電位HTXのまま維持するため、リセット信号線P
R_2の電位が電位LPRになると、フォトダイオード102_2に逆方向バイアスの電
圧が印加される。逆方向バイアスの電圧が印加された状態のフォトダイオード102_2
に反射光が照射されることで、フォトダイオード102_2の陰極から陽極に向かって電
流が流れ、電荷保持ノードFDの電位が低下する。
時刻T6において、フォトダイオード102_2への反射光の入射が終了し、電荷保持ノ
ードFD_2からフォトダイオード102_2への電荷の移動が止まり、電荷保持ノード
FD_2の電位が定まる。
ここで、時刻T5~時刻T6の間、トランジスタ103_1が非導通状態であるため、電
荷保持ノードFD_1の電位は一定であるが、フォトダイオード102_1には反射光が
照射されているため、ノード107_1の電位は低下してしまう(図7に示すノード10
7_1のパルスの点線参照)。ノード107_1と電荷保持ノードFD_1に電位差が生
じると、次にトランジスタ103_1が導通状態になる時刻T8において、ノード107
_1と電荷保持ノードFD_1の電位が等しくなるよう、電荷保持ノードFD_1の電位
が低下し、ノード107_1の電位が上昇する(図7に示すノード107_1及び電荷保
持ノードFD_1のパルスの点線参照)。電位変化が大きいと、1回目の反射光検出(A
)の間にフォトダイオード102_1で生成した光電流に対応した電位を、電荷保持ノー
ドFD_1が正確に保持できないことになる。これにより、距離測定装置や、該距離測定
装置を用いた距離測定システムにおいて正確な距離測定が困難となる(位置検出精度が低
下してしまう)。
しかし、本発明の一態様の距離測定装置は、トランジスタ109_1を備える。トランジ
スタ109_1は、トランジスタ103_1が非導通状態のときに、ゲート電極と、ソー
ス電極又はドレイン電極の他方との電位差を閾値電圧より小さい値に保つ。トランジスタ
109_1のゲート電極の電位は、電荷保持ノードFD_1の電位と等しく、トランジス
タ109_1のソース電極又はドレイン電極の他方の電位は、ノード107_1の電位と
等しい。したがって、ノード107_1の電位が低下し、ノード107_1と電荷保持ノ
ードFD_1との電位差が大きくなることを抑制することができる。これにより、本発明
の一態様の距離測定装置は、位置検出精度が低下することを抑制でき、高精度の距離測定
が可能となる。
時刻T7において、蓄積信号線TX_2の電位を、電位HTXから電位LTXに変化させ
る。蓄積信号線TX_2の電位が電位LTXになることで、トランジスタ103_2は非
導通状態になる。
(時刻T8~時刻T10:2回目の光照射及び2回目の反射光検出(A))
時刻T8において、光源から被検出物に対して光の照射を開始し、かつ蓄積信号線TX_
1の電位を、電位LTXから電位HTXに変化させる。
時刻T9において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の
距離測定装置に入射し始める。フォトダイオード102_1に反射光が照射されることで
、フォトダイオード102_1の陰極から陽極に向かって電流が流れ、電荷保持ノードF
D_1の電位が低下する。
ここで、時刻T9~時刻T10の間、トランジスタ103_2が非導通状態であるため、
電荷保持ノードFD_2の電位は一定であるが、フォトダイオード102_2には反射光
が照射されているため、ノード107_2の電位は低下してしまう(図7に示すノード1
07_2のパルスの点線参照)。ノード107_2と電荷保持ノードFD_2に電位差が
生じると、次にトランジスタ103_2が導通状態になる時刻T10において、ノード1
07_2と電荷保持ノードFD_2の電位が等しくなるよう、電荷保持ノードFD_2の
電位が低下し、ノード107_2の電位が上昇する(図7に示すノード107_2及び電
荷保持ノードFD_2のパルスの点線参照)。電位変化が大きいと、1回目の反射光検出
(B)の間にフォトダイオード102_2で生成した光電流に対応した電位を、電荷保持
ノードFD_2が正確に保持できないことになる。これにより、距離測定装置や、該距離
測定装置を用いた距離測定システムにおいて正確な距離測定が困難となる(位置検出精度
が低下してしまう)。
しかし、本発明の一態様の距離測定装置は、トランジスタ109_2を備える。トランジ
スタ109_2は、トランジスタ103_2が非導通状態のときに、ゲート電極と、ソー
ス電極又はドレイン電極の他方との電位差を閾値電圧より小さい値に保つ。トランジスタ
109_2のゲート電極の電位は、電荷保持ノードFD_2の電位と等しく、トランジス
タ109_2のソース電極又はドレイン電極の他方の電位は、ノード107_2の電位と
等しい。したがって、ノード107_2の電位が低下し、ノード107_2と電荷保持ノ
ードFD_2との電位差が大きくなることを抑制することができる。これにより、本発明
の一態様の距離測定装置は、反射光検出期間以外における光の影響を除去することができ
るので、位置検出精度が低下することを抑制でき、高精度の距離測定が可能となる。
(時刻T10~時刻T12:2回目の反射光検出(B))
時刻T10において、光の照射を終了する。第1のフォトセンサ100_1においては、
蓄積信号線TX_1の電位を、電位HTXから電位LTXに変化させる。蓄積信号線TX
_1の電位が電位LTXになることで、トランジスタ103_1は非導通状態になる。よ
って、電荷保持ノードFD_1からフォトダイオード102_1への電荷の移動が止まる
ため、電荷保持ノードFD_1の電位が定まる。第2のフォトセンサ100_2において
は、蓄積信号線TX_2の電位を、電位LTXから電位HTXに変化させる。逆方向バイ
アスの電圧が印加された状態のフォトダイオード102_2に反射光が照射されることで
、フォトダイオード102_2の陰極から陽極に向かって電流が流れ、電荷保持ノードF
D_2の電位が低下する。
なお、電荷保持ノードFD_1の電位は、時刻T10以降は一定となる。時刻T10での
電荷保持ノードFD_1の電位は、1回目及び2回目の反射光検出(A)(時刻T2~時
刻T5及び時刻T8~時刻T10を指し、以下、反射光検出期間(A)と記す)で、フォ
トダイオード102_1が生成した光電流に依存する。また、時刻T10での電荷保持ノ
ードFD_1の電位に応じて、第1のフォトセンサ100_1の出力信号が決定する。
時刻T11において、フォトダイオード102_2への反射光の入射が終了し、電荷保持
ノードFD_2からフォトダイオード102_2への電荷の移動が止まり、電荷保持ノー
ドFD_2の電位が定まる。
時刻T12において、蓄積信号線TX_2の電位を、電位HTXから電位LTXに変化さ
せる。蓄積信号線TX_2の電位が電位LTXになることで、トランジスタ103_2は
非導通状態になる。
なお、電荷保持ノードFD_2の電位は、時刻T12以降は一定となる。時刻T12での
電荷保持ノードFD_2の電位は、1回目及び2回目の反射光検出(B)(時刻T5~時
刻T7及び時刻T10~時刻T12を指し、以下、反射光検出期間(B)と記す)に、フ
ォトダイオード102_2が生成した光電流に依存する。また、時刻T12での電荷保持
ノードFD_2の電位に応じて、第2のフォトセンサ100_2の出力信号が決定する。
(時刻T13~時刻T14:第1のフォトセンサ100_1における読み出し動作)
時刻T13において、選択信号線SE_1の電位を電位LSEから電位HSEに変化させ
、トランジスタ105_1を導通させる。これにより、フォトセンサ基準信号線VSとフ
ォトセンサ出力信号線RO_1が、トランジスタ104_1及びトランジスタ105_1
を介して導通する。すると、電荷保持ノードFD_1の電位に応じた速度で、フォトセン
サ出力信号線RO_1の電位がフォトセンサ基準信号線VSの電位に近づく。なお、予め
、時刻T13以前に、フォトセンサ出力信号線RO_1の電位をハイレベルの電位HRO
としておく。
時刻T14において、選択信号線SE_1の電位を電位HSEから電位LSEに変化させ
ると、トランジスタ105_1が非導通状態となり、フォトセンサ出力信号線RO_1の
電位が決定する。
時刻T14におけるフォトセンサ出力信号線RO_1の電位は、時刻T13~時刻T14
におけるフォトセンサ出力信号線RO_1の電位変化の速度に依存する。フォトセンサ出
力信号線RO_1の電位変化の速度は、トランジスタ104_1のソース電極及びドレイ
ン電極の間の電流に依存する。即ち、反射光検出期間(A)にフォトダイオード102_
1に照射される反射光の強度及び照射時間に依存する。
したがって、時刻T14におけるフォトセンサ出力信号線RO_1の電位を取得すること
で、反射光検出期間(A)にフォトダイオード102_1に照射された反射光の量(反射
光の強度の時間積)を検出信号の電圧S1として得ることができる。
(時刻T14~時刻T15:第2のフォトセンサ100_2における読み出し動作)
時刻T14において、選択信号線SE_2の電位を電位LSEから電位HSEに変化させ
、トランジスタ105_2を導通させる。これにより、フォトセンサ基準信号線VSとフ
ォトセンサ出力信号線RO_2が、トランジスタ104_2及びトランジスタ105_2
を介して導通する。すると、電荷保持ノードFD_2の電位に応じて、フォトセンサ基準
信号線VSからフォトセンサ出力信号線RO_2に信号が出力される。なお、予め、時刻
T14以前に、フォトセンサ出力信号線RO_2の電位をハイレベルの電位HROとして
おく。
時刻T15において、選択信号線SE_2の電位を電位HSEから電位LSEに変化させ
ると、トランジスタ105_2が非導通状態となり、フォトセンサ基準信号線VSからフ
ォトセンサ出力信号線RO_2への電荷の移動が停止し、フォトセンサ出力信号線RO_
2の電位が決定する。
時刻T15におけるフォトセンサ出力信号線RO_2の電位は、時刻T14~時刻T15
におけるフォトセンサ出力信号線RO_2の電位変化の速度に依存する。フォトセンサ出
力信号線RO_2の電位変化の速度は、トランジスタ104_2のソース電極及びドレイ
ン電極の間の電流に依存する。即ち、反射光検出期間(B)にフォトダイオード102_
2に照射される反射光の強度及び照射時間に依存する。
したがって、時刻T15におけるフォトセンサ出力信号線RO_2の電位を取得すること
で、反射光検出期間(B)にフォトダイオード102_2に照射された反射光の量(反射
光の強度の時間積)を検出信号の電圧S2として得ることができる。
なお、本実施の形態においては、一例として、光照射が行われ、かつ、フォトダイオード
102_1に反射光が照射されている期間(時刻T3~時刻T5や、時刻T9~時刻T1
0、言い換えると、時間(T-Δt))に比べて、光照射の終了以後、かつ、フォトダイ
オード102_2に反射光が照射されている期間(時刻T5~時刻T6や、時刻T10~
時刻T11、言い換えると、時間Δt)が短い場合を示している。そのため、時間(T-
Δt)の間の電荷保持ノードFD_1の電位変化に比べて、時間Δtの間の電荷保持ノー
ドFD_2の電位変化は小さい。また、時刻T15におけるフォトセンサ出力信号線RO
_2の電位は、時刻T14におけるフォトセンサ出力信号線RO_1の電位に比べて低い
次に、反射光検出期間(A)(B)から取得した光の遅延時間に依存する検出信号の電圧
S1及び検出信号の電圧S2を用いて、本発明の一態様の距離測定装置(又は距離測定シ
ステム)から被検出物までの距離を求める。距離を求める方法としては、実施の形態2と
同様の方法を用いることができる。
以上のように、本発明の一態様の距離測定装置を用いることで、高精度の距離測定を行う
ことができる。また、高精度の距離測定を行う距離測定システムを実現することができる
(実施の形態4)
本実施の形態では、本発明の一態様の距離測定装置(又は距離測定システム)と、該距離
測定装置(又は距離測定システム)を用いた距離測定方法について、図8及び図9を用い
て説明する。本発明の一態様の距離測定装置(又は距離測定システム)は、TOF方式を
用いて距離を測定することができる。
本発明の一態様は、実施の形態1に示したフォトセンサ(第1の受光素子を有する第1の
フォトセンサとも記す)と重畳する、受光素子を有するフォトセンサ(第2の受光素子を
有する第2のフォトセンサとも記す)を備える距離測定装置である。2以上のフォトセン
サを重畳して備えることで、フォトセンサが占める面積の縮小を図ることができる。
特に、第1の受光素子と第2の受光素子とが重畳し、第1の受光素子が、第1の波長域の
光を吸収し、第2の受光素子が、第2の波長域の光を吸収し、第1の受光素子及び第2の
受光素子のうち被検出物からの距離が短い一方の受光素子は、他方の受光素子が吸収する
波長域の光の少なくとも一部を透過することが好ましい。
例えば、第1の受光素子より第2の受光素子が被検出物に近く、第1の受光素子が、反射
光に含まれる赤外光を検出(吸収)し、第2の受光素子が、該反射光に含まれる可視光を
検出(吸収)し、赤外光を透過する態様が挙げられる。第2の受光素子が可視光を吸収す
ることで、第1の受光素子に照射される赤外光以外の光(ノイズとなる光)が低減するた
め、第1のフォトセンサの検出精度を高めることができる。
本実施の形態では、第1の波長域の光を吸収する半導体層を含む第1の受光素子、第1の
トランジスタ、及び第2のトランジスタを有する第1のフォトセンサと、第2の波長域の
光を吸収する半導体層を含む第2の受光素子、及び第3のトランジスタを有する第2のフ
ォトセンサと、第1の配線及び第2の配線と、第1の信号線及び第2の信号線と、電源線
とを備える距離測定装置を例に挙げて説明する。
本実施の形態の距離測定装置において、少なくとも、第1のフォトセンサと第2のフォト
センサは重畳して設けられる。本実施の形態では、第1の受光素子と第2の受光素子は、
重畳して設けられる。例えば、可視光を透過し、特定の波長域の光を吸収する半導体層を
含む第1の受光素子が、可視光を吸収する半導体層を含む第2の受光素子と被検出物との
間に設けられる構成や、特定の波長域の光を透過し、可視光を吸収する半導体層を含む第
2の受光素子が、該特定の波長域の光を吸収する第1の受光素子と被検出物との間に設け
られる構成とすればよい。このような構成とすることで、反射光(光源から照射された光
が被検出物で反射されることで生じる光)に含まれる特定の波長域の光を第1の受光素子
が検出すると同時に、該反射光に含まれる該特定の波長域以外の光を第2の受光素子が検
出する。第1のフォトセンサを、距離測定と2次元情報取得の一方に用い、第2のフォト
センサを、距離測定と2次元情報取得の他方に用いることで、本発明の一態様の距離測定
装置は、被検出物の距離測定と2次元情報の取得とを同時に行うことができる。
また、第1の配線は、第1の受光素子の一方の電極と電気的に接続し、第2の配線は、第
2の受光素子の一方の電極と電気的に接続し、第1の信号線は、第1のトランジスタのゲ
ート電極と電気的に接続し、第2の信号線は、第3のトランジスタのゲート電極と電気的
に接続し、電源線は、第2のトランジスタのソース電極又はドレイン電極の一方と電気的
に接続し、第1のトランジスタでは、ソース電極又はドレイン電極の一方が第2のトラン
ジスタのゲート電極と電気的に接続し、他方が第1の受光素子の他方の電極、及び第2の
トランジスタのソース電極又はドレイン電極の他方と電気的に接続し、第3のトランジス
タでは、ソース電極又はドレイン電極の一方が第2の受光素子の他方の電極と電気的に接
続する。
本発明の一態様では、光源が、被検出物に対して一定時間Tの光照射(A)を複数回(n
回、nは2以上の自然数)行い、かつ、一定時間Tの光照射(B)を同じ回数行う。第1
のフォトセンサは、光照射(A)が行われている期間の反射光を検出することで、光の遅
延時間に依存する検出信号の電圧S1を取得し、かつ、光照射(B)終了後の期間の反射
光を検出することで、光の遅延時間に依存する検出信号の電圧S2を取得する。光照射及
び反射光の検出を複数回行うことで、距離に応じた検出信号を高精度で得られるため、よ
り正確な距離を算出することができる。
本発明の一態様の距離測定装置において、第2のフォトセンサは、光照射(A)開始以後
及び光照射(B)開始以後の期間における反射光の少なくとも一部、好ましくは全部を検
出することで、被検出物の明るさ、色彩等、2次元の情報に応じた検出信号の電圧S3を
取得する。
また、本発明の一態様の距離測定装置が備える第1のフォトセンサは、第1の受光素子に
おいて反射光を検出する。第1の受光素子には、光源により光照射が行われる期間及び該
光照射終了後の期間の双方において、該反射光が照射されている。検出を行わない期間に
照射された反射光によって第1の受光素子の他方の電極の電位に変化が生じると、反射光
の検出の精度が低下する場合がある。しかし、第1のフォトセンサは、反射光の検出を行
わない期間における第1の受光素子の他方の電極の電位変化を抑制する第2のトランジス
タを備える。これにより、高精度の距離測定が可能な距離測定装置を提供することができ
る。
<フォトセンサの構成>
図8(A)に本発明の一態様の距離測定装置が備える第1のフォトセンサ100A及び第
2のフォトセンサ100Bの回路図を示す。第1のフォトセンサ100A及び第2のフォ
トセンサ100Bは少なくとも一部を重ねて設けられる。
また、図8(B)に示すように、フォトダイオード102A及びフォトダイオード102
Bは、重ねて設けられる。具体的には、反射光が、フォトダイオード102Bに先に入射
するように、被検出物とフォトダイオード102Aとの間に、フォトダイオード102B
が設けられている。2つのフォトダイオードを重ねて設けることで、装置におけるフォト
センサが占める面積を縮小することができる。したがって、装置の小型化や、画素の微細
化等を図ることができる。
本実施の形態で示すフォトダイオード102Aは、赤外光を吸収する特性を有する。例え
ば、フォトダイオード102Aの半導体層は、多結晶シリコンや単結晶シリコン等を用い
て形成することができる。つまり、第1のフォトセンサ100Aは、反射光に含まれる赤
外光を利用して、被検出物の距離に応じた検出信号を取得する。
また、フォトダイオード102Bは、赤外光を透過し、可視光を吸収する特性を有する。
例えば、フォトダイオード102Bの半導体層は、アモルファスシリコンや微結晶シリコ
ン等を用いて形成することができる。つまり、第2のフォトセンサ100Bは、反射光に
含まれる可視光を利用して、被検出物の2次元情報に応じた検出信号を取得する。
なお、2つのフォトダイオードの特性はこの組み合わせに限られない。双方を重ねて設け
たときに、一方のフォトダイオードが反射光に含まれる第1の波長域の光を吸収し、他方
のフォトダイオードが反射光に含まれる第1の波長域以外の特定の波長域の光を吸収する
組み合わせであればよい。
図8(A)に示す第1のフォトセンサ100Aは、フォトダイオード102A、トランジ
スタ103A、トランジスタ104A、トランジスタ105A、及びトランジスタ109
Aを有する。
フォトダイオード102Aでは、一方の電極がリセット信号線PR_Aと電気的に接続し
、他方の電極がトランジスタ103Aのソース電極又はドレイン電極の他方、及びトラン
ジスタ109Aのソース電極又はドレイン電極の他方と電気的に接続している。本明細書
等では、フォトダイオード102Aの他方の電極、トランジスタ103Aのソース電極又
はドレイン電極の他方、及びトランジスタ109Aのソース電極又はドレイン電極の他方
が構成するノードをノード107Aと記す。
トランジスタ103Aでは、ゲート電極が蓄積信号線TX_Aと電気的に接続し、ソース
電極又はドレイン電極の一方がトランジスタ104Aのゲート電極、及びトランジスタ1
09Aのゲート電極と電気的に接続している。本明細書等では、トランジスタ103Aの
ソース電極又はドレイン電極の一方、トランジスタ104Aのゲート電極、及びトランジ
スタ109Aのゲート電極が構成するノードを、電荷保持ノードFD_Aと記す。
トランジスタ104Aでは、ソース電極又はドレイン電極の一方がフォトセンサ基準信号
線VSと電気的に接続し、他方がトランジスタ105Aのソース電極又はドレイン電極の
一方と電気的に接続している。
トランジスタ105Aでは、ゲート電極が選択信号線SE_Aと電気的に接続し、ソース
電極又はドレイン電極の他方がフォトセンサ出力信号線RO_Aと電気的に接続している
トランジスタ109Aでは、ソース電極又はドレイン電極の一方が電源線VHと電気的に
接続している。
図8(A)に示す第2のフォトセンサ100Bは、フォトダイオード102B、トランジ
スタ103B、トランジスタ104B、及びトランジスタ105Bを有する。
フォトダイオード102Bでは、一方の電極がリセット信号線PR_Bと電気的に接続し
、他方の電極がトランジスタ103Bのソース電極又はドレイン電極の他方と電気的に接
続している。
トランジスタ103Bでは、ゲート電極が蓄積信号線TX_Bと電気的に接続し、ソース
電極又はドレイン電極の一方がトランジスタ104Bのゲート電極と電気的に接続してい
る。
トランジスタ104Bでは、ソース電極又はドレイン電極の一方がフォトセンサ基準信号
線VSと電気的に接続し、他方がトランジスタ105Bのソース電極又はドレイン電極の
一方と電気的に接続している。
トランジスタ105Bでは、ゲート電極が選択信号線SE_Bと電気的に接続し、ソース
電極又はドレイン電極の他方がフォトセンサ出力信号線RO_Bと電気的に接続している
なお、図8に示す第1のフォトセンサ100Aは、図1(B)に示すフォトセンサ100
と同様の構成としたが、この構成に限られず、例えば、図2(A)に示すフォトセンサ1
30と同様の構成とすることができる。また、第2のフォトセンサ100Bも、図8(A
)に示す構成に限られず、2次元情報の取得が可能な公知のフォトセンサの構成を適用す
ることができる。
<距離測定方法>
本発明の一態様の距離測定システムを用いた距離測定方法について説明する。以下では、
第1のフォトセンサ100A及び第2のフォトセンサ100B(図8参照)と、光源とを
有する距離測定装置を用いた、2次元情報の取得を同時に行う距離測定方法について説明
する。
[距離測定方法5:2次元情報の取得と同時に距離測定を行う方法]
図9に、照射光151、反射光152、第1のフォトセンサ100A、及び第2のフォト
センサ100Bのタイミングチャートの一例を示す。
照射光151、反射光152、及び第1のフォトセンサ100Aのタイミングチャートは
、距離測定方法3にて説明したタイミングチャートと等しい(図5参照)。具体的には、
照射光151、反射光152、リセット信号線PR_A、蓄積信号線TX_A、選択信号
線SE_A、電荷保持ノードFD_A、ノード107A、フォトセンサ出力信号線RO_
Aのパルスは、それぞれ、図5における照射光151、反射光152、リセット信号線P
R、蓄積信号線TX、選択信号線SE、電荷保持ノードFD、ノード107、フォトセン
サ出力信号線ROのパルスと等しい。つまり、本実施の形態で示す第1のフォトセンサ1
00Aにおける距離測定方法は、実施の形態2にて説明した距離測定方法3を参照するこ
とができる。
以下では、第2のフォトセンサ100Bによる2次元情報の取得方法について主に説明し
、同時に行われる第1のフォトセンサ100Aによる距離測定方法について、実施の形態
2を参酌できる部分は説明を省略する。
(時刻T1~時刻T2:第2のフォトセンサ100Bのリセット動作)
時刻T1において、リセット信号線PR_Bの電位を、電位LPRから電位HPRに変化
させ、かつ蓄積信号線TX_Bの電位を、電位LTXから電位HTXに変化させることで
、フォトダイオード102B及びトランジスタ103Bが導通する。電荷保持ノードFD
_Bには、リセット信号線PR_Bの電位HPRが与えられるため、電荷保持ノードFD
_Bに保持されている電荷はリセットされ、初期状態となる電荷量が保持される。なお、
時刻T1において、選択信号線SE_Bには電位LSEが与えられている。
(時刻T2~時刻T25:反射光検出(C))
時刻T2において、リセット信号線PR_Bの電位を、電位HPRから電位LPRに変化
させる。ここで、蓄積信号線TX_Bの電位は、電位HTXのまま維持するため、リセッ
ト信号線PR_Bの電位が電位LPRになると、第2のフォトダイオード102Bに逆方
向バイアスの電圧が印加される。
また、時刻T2において、光源から被検出物に対して光照射(A)が開始され、時刻T3
において、光源からの照射光が被検出物で反射され、反射光が本発明の一態様の距離測定
装置に入射し始める。逆方向バイアスの電圧が印加された状態の第2のフォトダイオード
102Bに反射光が照射されることで、第2のフォトダイオード102Bの陰極から陽極
に向かって電流が流れ、電荷保持ノードFD_Bの電位が低下する。
1回目の光照射(A)は時刻T4まで行われ、その後、時刻T6~時刻T8の間に2回目
の光照射(A)が、時刻T12~時刻T14の間に1回目の光照射(B)が、時刻T18
~時刻T20の間に2回目の光照射(B)が行われる。それにより、時刻T3~時刻T5
の間、時刻T7~時刻T9の間、時刻T13~時刻T16の間、及び時刻T19~時刻T
21の間(以下ではまとめて、反射光検出期間(C)と記す)には、第2のフォトダイオ
ード102Bに反射光が入射する。
時刻T25において、蓄積信号線TX_Bの電位を、電位HTXから電位LTXに変化さ
せる。蓄積信号線TX_Bの電位が電位LTXになることで、トランジスタ103Bは非
導通状態になる。よって、電荷保持ノードFD_Bから第2のフォトダイオード102B
への電荷の移動が止まるため、電荷保持ノードFD_Bの電位が定まる。
なお、電荷保持ノードFD_Bの電位は、時刻T25以降は一定となる。時刻T25での
電荷保持ノードFD_Bの電位は、反射光検出期間(C)に、第2のフォトダイオード1
02Bが生成した光電流に依存する。また、時刻T25での電荷保持ノードFD_Bの電
位に応じて、第2のフォトセンサ100Bの出力信号が決定する。ただし、本実施の形態
では、第2のフォトダイオード102Bへの反射光の入射が時刻T21で終了しているた
め、「電荷保持ノードFD_Bの電位は、時刻T21以降は一定となる。」ともいえる。
(時刻T26~時刻T27:読み出し動作)
時刻T26において、選択信号線SE_Bの電位を電位LSEから電位HSEに変化させ
、トランジスタ105Bを導通させる。これにより、フォトセンサ基準信号線VSとフォ
トセンサ出力信号線RO_Bが、トランジスタ104B及びトランジスタ105Bを介し
て導通する。すると、電荷保持ノードFD_Bの電位に応じて、フォトセンサ基準信号線
VSからフォトセンサ出力信号線RO_Bに信号が出力される。なお、予め、時刻T26
以前に、フォトセンサ出力信号線RO_Bの電位をハイレベルの電位HROとしておく。
時刻T27において、選択信号線SE_Bの電位を電位HSEから電位LSEに変化させ
ると、トランジスタ105Bが非導通状態となり、フォトセンサ基準信号線VSからフォ
トセンサ出力信号線RO_Bへの電荷の移動が停止し、フォトセンサ出力信号線RO_B
の電位が決定する。
時刻T27におけるフォトセンサ出力信号線RO_Bの電位を取得することで、反射光検
出期間(C)に第2のフォトダイオード102Bに照射された反射光の量(反射光の強度
の時間積)を検出信号の電圧S3として得ることができる。
なお、本実施の形態では、時刻T2~時刻T25において、反射光検出(C)を行い、2
回の光照射(A)及び2回の光照射(B)による反射光全てを検出する場合を示したが、
これに限られない。反射光検出(C)では、第1のフォトセンサ100Aが距離測定を行
う間の反射光の一部を検出すれば良く、例えば、時刻T3~時刻T5のみとしてもよい。
ただし、反射光検出(C)において、2回の光照射(A)及び2回の光照射(B)による
反射光全てを検出することで、第2のフォトセンサで、反射光から可視光を吸収した残り
、すなわち赤外光を第1のフォトセンサで検出することができるため、距離測定の精度を
高めることができる(ノイズとなる可視光等が第1のフォトセンサに照射されることを防
止することで、赤外光の検出精度の低下を抑制することができる)。
以上に示したように、本発明の一態様の距離測定装置を用いて、被検出物の2次元情報の
取得と距離測定とを同時に行うことができる。また、2つのフォトダイオードを重ねて設
けることで、装置におけるフォトセンサが占める面積を縮小することができる。したがっ
て、装置の小型化や、画素の微細化等を図ることができる。
なお、本実施の形態では、距離測定方法3を用いて距離測定を行ったが、距離測定方法は
これに限られない。例えば、本実施の形態に示す距離測定装置が、第1のフォトセンサと
隣接するフォトセンサを有する場合は、実施の形態3にて説明した距離測定方法4を用い
て距離測定を行うこともできる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できる。
(実施の形態5)
本実施の形態では、本発明の一態様の距離測定装置について、図10及び図11を用いて
説明する。具体的には、実施の形態1で示したフォトセンサ100をa行b列のマトリク
ス状に配置した距離測定装置について説明する(a、bはそれぞれ独立に2以上の自然数
)。なお、フォトセンサの構成や駆動方法は、実施の形態1及び実施の形態2を参照でき
る。
<構成例1>
図10(A)に示す距離測定装置では、複数のフォトセンサ100がa行b列のマトリク
ス状に配置されている。i行のフォトセンサ100は、リセット信号線PR_i、蓄積信
号線TX_i、及び選択信号線SE_iと電気的に接続している(iは1以上a以下の自
然数)。j列のフォトセンサ100は、フォトセンサ出力信号線RO_j、電源線VH_
j、及びフォトセンサ基準信号線VS_jと電気的に接続している(jは1以上b以下の
自然数)。
図10(A)に示す距離測定装置では、i行のフォトセンサ100が、リセット信号線P
R_i、蓄積信号線TX_i、及び選択信号線SE_iを共有し、j列のフォトセンサ1
00が、フォトセンサ出力信号線RO_j、電源線VH_j、及びフォトセンサ基準信号
線VS_jを共有している。本発明はこの構成に限定されず、リセット信号線、蓄積信号
線、及び選択信号線は、i行にそれぞれ複数本設けても良く、フォトセンサ出力信号線、
電源線、及びフォトセンサ基準信号線は、j列にそれぞれ複数本設けてもよい。
<構成例2>
図10(B)に示す距離測定装置では、複数のフォトセンサ100がa行b列のマトリク
ス状に配置されている。i行のフォトセンサ100は、選択信号線SE_iと電気的に接
続している。j列のフォトセンサ100は、リセット信号線PR_j、蓄積信号線TX_
j、フォトセンサ出力信号線RO_j、電源線VH_j、及びフォトセンサ基準信号線V
S_jと、電気的に接続している。
図10(B)に示す距離測定装置では、i行のフォトセンサ100が、選択信号線SE_
iを共有し、j列のフォトセンサ100が、リセット信号線PR_j、蓄積信号線TX_
j、フォトセンサ出力信号線RO_j、電源線VH_j、及びフォトセンサ基準信号線V
S_jを共有しているが、本発明はこの構成に限定されない。
構成例1や構成例2では、a行b列のマトリクス状に配置されたフォトセンサのうち、リ
セット動作及び反射光検出を行うタイミングが同じである複数のフォトセンサは、蓄積信
号線やリセット信号線を共有することができる。複数のフォトセンサが配線を共有するこ
とで、配線数が減り、駆動回路を簡略化することができる。
ここで、図11(A)にフォトセンサ100の上面図の一例を示し、図11(B)に、図
11(A)の破線A1-A2における断面図を示す。
フォトセンサ100は、リセット信号線PRとして機能する導電膜210と、蓄積信号線
TXとして機能する導電膜211と、選択信号線SEとして機能する導電膜212と、フ
ォトセンサ基準信号線VSとして機能する導電膜213と、フォトセンサ出力信号線RO
として機能する導電膜214と、電源線VHとして機能する導電膜229とを有する。
フォトダイオード102は、順に積層されたp型の半導体膜215と、i型の半導体膜2
16と、n型の半導体膜217とを有する。導電膜210は、フォトダイオード102の
陽極として機能するp型の半導体膜215と電気的に接続している。
導電膜218は、トランジスタ103のゲート電極として機能し、導電膜211と電気的
に接続している。導電膜219は、トランジスタ103のソース電極又はドレイン電極の
一方として機能する。導電膜220は、トランジスタ103のソース電極又はドレイン電
極の他方として機能する。導電膜221は、n型の半導体膜217及び導電膜219と電
気的に接続している。
導電膜222は、トランジスタ104及びトランジスタ109のゲート電極として機能し
、導電膜220と電気的に接続している。導電膜223は、トランジスタ104のソース
電極又はドレイン電極の一方として機能する。導電膜224は、トランジスタ104のソ
ース電極又はドレイン電極の他方、及びトランジスタ105のソース電極又はドレイン電
極の一方として機能する。また、導電膜214は、トランジスタ105のソース電極又は
ドレイン電極の他方として機能する。導電膜212は、トランジスタ105のゲート電極
として機能する。導電膜225は、導電膜223及び導電膜213に電気的に接続してい
る。導電膜237は、トランジスタ109のソース電極又はドレイン電極の一方として機
能する。導電膜238は、トランジスタ109のソース電極又はドレイン電極の他方とし
て機能する。導電膜239は、導電膜229及び導電膜238に電気的に接続している。
導電膜226は、導電膜210に電気的に接続している。導電膜227は、導電膜211
に電気的に接続している。
導電膜212、導電膜218、導電膜222、導電膜225、導電膜226、導電膜22
7、導電膜239は、絶縁表面上に形成された一の導電膜を所望の形状に加工することで
形成することができる。導電膜212、導電膜218、導電膜222、導電膜225、導
電膜226、導電膜227、導電膜239上にはゲート絶縁膜228が形成されている。
また、導電膜210、導電膜211、導電膜213、導電膜214、導電膜219、導電
膜220、導電膜223、導電膜224、導電膜229、導電膜237、導電膜238は
、ゲート絶縁膜228上に形成された一の導電膜を所望の形状に加工することで形成する
ことができる。導電膜210、導電膜211、導電膜213、導電膜214、導電膜21
9、導電膜220、導電膜223、導電膜224、導電膜229、導電膜237、導電膜
238の上には、絶縁膜281及び絶縁膜282が形成されている。絶縁膜281及び絶
縁膜282の上には、導電膜221が形成されている。
トランジスタ103の活性層250には、酸化物半導体を用いることが好ましい。基板2
51側から光が照射されることにより生成された電荷を、長時間保持するためには、フォ
トダイオード102と電気的に接続するトランジスタ103を、オフ電流が極めて小さい
トランジスタで構成する必要がある。そのため、活性層250に酸化物半導体を用いるこ
とでフォトセンサ100の性能を高めることができる。
なお、トランジスタ103がボトムゲート型である場合、図11(A)(B)に示すよう
に、ゲート電極として機能する導電膜218に活性層250が完全に重なる構成とするこ
とが望ましい。上記構成を採用することで、基板251側から入射した光により活性層2
50中の酸化物半導体が劣化することを抑制できる。したがって、トランジスタ103の
閾値電圧がシフトするなどの特性の劣化が引き起こされることを抑制できる。なお、トラ
ンジスタ104、トランジスタ105、及びトランジスタ109についても、上記構成を
採用することで、同様の効果が得られる。
ここで、図10(A)に示した、蓄積信号線TXが行方向に延びて配置される構成の場合
、同じく行方向に延びて配置された、蓄積信号線TXと平行な選択信号線SEが存在する
。選択信号線SEはトランジスタ105のゲート電極と電気的に接続するため、選択信号
線SEの一部をトランジスタ105のゲート電極として用いることができる。このとき、
選択信号線SEと平行な蓄積信号線TXも、トランジスタ105のゲート電極と同一材料
、及び同一工程で形成することができる。しかし、トランジスタのゲート電極に用いる材
料は、ソース電極やドレイン電極に用いる材料と比べて抵抗が高い材料であることが多い
ため、蓄積信号線TXの抵抗は高くなる場合がある。
これに対して、図10(B)に示した構成では、蓄積信号線TXが列方向に延びて配置さ
れる構成である。そのため、行方向に延びて配置される、選択信号線SEとは別の層に形
成された導電膜を用いて、蓄積信号線TXを形成することができる。例えば、図11(A
)に示したように、フォトセンサ100を構成するトランジスタ(トランジスタ103、
トランジスタ104、トランジスタ105、トランジスタ109等)のゲート電極を構成
する導電膜(導電膜212、導電膜218、導電膜222)とは異なる層に形成された導
電膜211によって蓄積信号線TXを形成することができる。導電膜211は、導電膜2
14、導電膜219、導電膜220、導電膜224、導電膜237、導電膜238等、フ
ォトセンサ100を構成するトランジスタのソース電極やドレイン電極と、同一材料、及
び同一工程で形成することができる。そのため、図10(A)で示した構成に比べて蓄積
信号線TXの抵抗が高くなることを抑制することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態6)
本実施の形態では、本発明の一態様の距離測定装置について、図12を用いて説明する。
具体的には、実施の形態4で示した第1のフォトセンサ100A及び第2のフォトセンサ
100B(まとめてフォトセンサ1001と記す)をa行b列のマトリクス状に配置した
距離測定装置について説明する(a、bはそれぞれ独立に2以上の自然数)。なお、フォ
トセンサの構成や駆動方法は、実施の形態4を参照できる。
図12に示す距離測定装置では、複数のフォトセンサ1001がa行b列のマトリクス状
に配置されている。i行のフォトセンサ1001は、リセット信号線PR_A(i)、リ
セット信号線PR_B(i)、蓄積信号線TX_A(i)、蓄積信号線TX_B(i)、
選択信号線SE_A(i)、選択信号線SE_B(i)、電源線VH(i)、及びフォト
センサ基準信号線VS(i)と電気的に接続している(iは1以上a以下の自然数)。j
列のフォトセンサ1001は、フォトセンサ出力信号線RO_A(j)及びフォトセンサ
出力信号線RO_B(j)と電気的に接続している(jは1以上b以下の自然数)。
図12に示す距離測定装置では、i行のフォトセンサ1001が、リセット信号線PR_
A(i)、リセット信号線PR_B(i)、蓄積信号線TX_A(i)、蓄積信号線TX
_B(i)、選択信号線SE_A(i)、選択信号線SE_B(i)、電源線VH(i)
、及びフォトセンサ基準信号線VS(i)を共有している。また、j列のフォトセンサ1
001が、フォトセンサ出力信号線RO_A(j)及びフォトセンサ出力信号線RO_B
(j)を共有している。本発明はこの構成に限定されず、2種類のリセット信号線、2種
類の蓄積信号線、及び2種類の選択信号線は、i行にそれぞれ複数本設けても良く、2種
類のフォトセンサ出力信号線、電源線、及びフォトセンサ基準信号線は、j列にそれぞれ
複数本設けてもよい。
また、図12に示す距離測定装置では、フォトセンサ基準信号線を各行のフォトセンサ1
001において共有する構成を示したがフォトセンサ基準信号線を各列のフォトセンサ1
001において共有する構成としてもよい。
また、図12に示す距離測定装置が有する各行各列のフォトセンサ1001において、フ
ォトダイオード102A及びフォトダイオード102Bは重畳して設けられている。反射
光(光源から照射された光が被検出物で反射されることで生じる光)は、まずフォトダイ
オード102Bに入射し、その後、フォトダイオード102Aに入射する(図8(B)参
照)。
本実施の形態では、フォトダイオード102Aが、赤外光を吸収し、フォトダイオード1
02Bが、可視光を吸収し、かつ、赤外光を透過する構成とする。したがって、フォトセ
ンサ1001に照射された反射光に含まれる可視光が、フォトダイオード102Bに吸収
され、赤外光が、フォトダイオード102Aに吸収される。これにより、第2のフォトセ
ンサ100Bを可視光による2次元の撮像に用い、第1のフォトセンサ100Aを赤外光
による距離測定に用いることができる。
以上に説明したように本実施の形態の構成では、赤外光センサである第1のフォトセンサ
100A及び可視光センサである第2のフォトセンサ100Bを重畳して設けているため
、距離測定装置において、フォトセンサ1001が占める面積を縮小することができる。
その結果、画素の微細化を達成しつつ、2次元の撮像と、TOF方式を適用した距離測定
とを同時に行うことができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態7)
本実施の形態では、本発明の一態様の距離測定装置について、図13及び図14を用いて
説明する。図13は、図12に示すフォトセンサ1001の回路図と同様の構成のフォト
センサの上面図を示す。また、図13の一点鎖線B1-B2、B3-B4に対応する断面
図を、図14(A)に、図13の一点鎖線C1-C2に対応する断面図を、図14(B)
に示す。
図14(A)(B)では、透光性基板300上に、遮光層331と、下地膜332とが設
けられる。
透光性基板300は、可視光及び赤外光に対する透光性を有することが好ましい。例えば
、可視光及び赤外光に対する透光性を有するプラスチック基板や、可視光及び赤外光に対
する透光性を有するガラス基板を用いることができる。
遮光層331は、バックライトからの赤外光及び可視光がフォトダイオード102A及び
フォトダイオード102Bに入射することを防止するためのものである。遮光層331は
赤外光及び可視光が遮光可能なアルミニウム又はクロム等の金属材料を用いて、スパッタ
リング法、CVD法又は塗布法等により成膜し、次いでフォトリソグラフィ法、又はエッ
チング法等を用いて加工して形成することができる。なお、遮光層331は、フォトダイ
オードと重なる領域のみならず、各トランジスタの半導体層と積層する領域にも設けるこ
とが望ましい。遮光層により各トランジスタの半導体層が遮光されることで、バックライ
トからの赤外光及び可視光の入射による、トランジスタの閾値電圧がシフトする等の特性
の劣化を抑制できる。
また、バックライトは、透光性基板300側から、赤外光と可視光を発光することができ
る光源を用いる構成であればよい。具体的には、例えば、赤外光を発光する発光ダイオー
ド及び可視光を発光する発光ダイオードを並べて配置する構成等とすればよい。なお、赤
外光を発光する光源は、別途対向基板側に設けられる構成としてもよい。
下地膜332は、透光性基板300に含まれるNaなどのアルカリ金属やアルカリ土類金
属がフォトダイオード102Aに拡散し、特性に悪影響を及ぼすことを抑制できる。下地
膜332は、CVD法やスパッタリング法等を用いて、酸化シリコン膜、窒化シリコン膜
、酸化窒化シリコン膜、窒化酸化シリコン膜等の透光性及び絶縁性を有する膜を、単層で
又は積層して形成することができる。フォトダイオード102Aの半導体層を形成する際
の形成不良を抑制するため、下地膜332の表面は平坦性が高いことが好ましい。
また、図14(A)(B)では、下地膜332を介した遮光層331上に、フォトダイオ
ード102Aにおけるp型半導体領域303、i型半導体領域304及びn型半導体領域
323が設けられている。図14(A)において、p型半導体領域303、i型半導体領
域304及びn型半導体領域323を構成する半導体層と同じ層には、トランジスタ10
4Aの半導体層を構成するn型半導体領域305及びi型半導体領域306と、トランジ
スタ105Aの半導体層を構成するn型半導体領域307及びi型半導体領域308と、
トランジスタ103Bの半導体層を構成するn型半導体領域309と、が設けられている
フォトダイオード102Aの半導体層(と同じ層で作製される上記各トランジスタの半導
体領域)は、多結晶シリコン等の結晶性シリコンを用いることができる。結晶性シリコン
を有する半導体層で構成されるフォトダイオード102Aは、p型半導体領域303、i
型半導体領域304及びn型半導体領域323が透光性基板300に水平方向に設けられ
る。例えば、成膜された結晶性シリコンを、フォトリソグラフィ法、又はエッチング法等
を用いて加工し、次いで、フォトリソグラフィ法によるマスクを形成した上でイオン注入
法又はイオンドーピング法によりp型又はn型の不純物領域を形成すればよい。
また、フォトダイオード102Aの半導体層(と同じ層で作製される上記各トランジスタ
の半導体領域)は接合、剥離方法により単結晶シリコン等の結晶性シリコンを用いること
ができる。まずシリコンウエハなどの半導体ウエハ中に、水素イオン(H、H 、H
など)、又は水素イオン及びヘリウムイオンを添加して、該半導体ウエハ中に脆化層
を形成する。該半導体ウエハを下地膜332上に接合させ、加熱処理により脆化層で剥離
して、下地膜332上に半導体層を形成する。半導体ウエハの表面から脆化層までの深さ
が半導体層の厚さに相当するので、水素イオン等の添加条件を制御して、半導体層の厚さ
を調整できる。
また、図14(A)(B)では、フォトダイオード102Aの半導体層、トランジスタ1
04A、トランジスタ105A、及びトランジスタ103Bの各半導体層上に、絶縁層3
10が設けられている。絶縁層310上には、フォトセンサ基準信号線VSが設けられて
いる。図14(A)において、フォトセンサ基準信号線VSと同じ層には、i型半導体領
域306上に形成されたゲート電極311と、i型半導体領域308上に形成されたゲー
ト電極312とが、それぞれ絶縁層310を介して設けられている。
さらに、図14(A)(B)では、絶縁層310、ゲート電極311、ゲート電極312
及びフォトセンサ基準信号線VS上に、絶縁層313が設けられている。絶縁層310及
び絶縁層313を介したp型半導体領域303上には、導電層316が設けられている。
導電層316と同じ層には、n型半導体領域305及びn型半導体領域307との間に形
成された導電層314と、n型半導体領域307上に形成されたフォトセンサ出力信号線
RO_Aと、n型半導体領域305及びフォトセンサ基準信号線VSとの間に形成された
導電層315と、n型半導体領域309上に形成された導電層317と、n型半導体領域
323上に形成された導電層324とが、絶縁層310及び絶縁層313を介して設けら
れている。
絶縁層310は、外部よりNaなどのアルカリ金属やアルカリ土類金属がフォトダイオー
ド102A中に拡散し、特性に悪影響を及ぼすことを抑制できる。絶縁層310は、プラ
ズマCVD法やスパッタリング法等を用いて、酸化シリコン膜、酸化窒化シリコン膜、窒
化酸化シリコン膜、又は有機樹脂膜等の透光性及び絶縁性を有する膜を、単層で又は積層
して形成することができる。
ゲート電極311及びゲート電極312と同層に形成される各種配線は、スパッタリング
法又は真空蒸着法等を用いて、導電性を有する金属材料膜を、単層で又は積層して形成す
ればよい。導電性を有する金属材料膜としては、モリブデン、チタン、クロム、タンタル
、タングステン、アルミニウム、銅、ネオジム、スカンジウム等の金属膜、又はこれらを
主成分とする合金材料膜等が挙げられる。
絶縁層313は、プラズマCVD法やスパッタリング法等を用いて、酸化シリコン膜、酸
化窒化シリコン膜、窒化酸化シリコン膜、又は有機樹脂膜等の透光性及び絶縁性を有する
膜を、単層で又は積層して形成する。
導電層314、導電層315、導電層316、及び導電層317は、スパッタリング法又
は真空蒸着法等を用いて、モリブデン、チタン、クロム、タンタル、タングステン、アル
ミニウム、銅、イットリウムなどの金属膜、これらを主成分とする合金材料膜、又は酸化
インジウム等の導電性を有する金属酸化物膜等を、単層で又は積層して形成する。
さらに、図14(A)(B)では、絶縁層313及び導電層316上に、フォトダイオー
ド102Bにおけるp型半導体領域318、i型半導体領域319及びn型半導体領域3
20が設けられている。p型半導体領域318は、端部が、導電層316と重なるように
設けられる。
フォトダイオード102Bの半導体層には、非晶質シリコンを用いることができる。非晶
質シリコンを有する半導体層で構成されるフォトダイオード102Bは、p型半導体領域
318、i型半導体領域319及びn型半導体領域320が透光性基板300に垂直方向
に積層して設けられる。
p型半導体領域318は、p型を付与する不純物元素を含む非晶質シリコンにより形成さ
れる。p型半導体領域318は、13族の不純物元素(例えばボロン(B))を含む半導
体材料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしては、シラ
ン(SiH)、Si、SiHCl、SiHCl、SiCl、SiF
を用いることができる。p型半導体領域318の膜厚は10nm以上50nm以下が好ま
しい。
i型半導体領域319は、非晶質シリコンにより形成される。i型半導体領域319は、
半導体材料ガスを用いて、非晶質シリコンをプラズマCVD法により形成する。半導体材
料ガスとしては、シラン、Si、SiHCl、SiHCl、SiCl、S
iF等を用いることができる。i型半導体領域319の膜厚は300nm以上1000
nm以下が好ましい。
n型半導体領域320は、n型を付与する不純物元素を含む非晶質シリコンにより形成す
る。n型半導体領域320は、15族の不純物元素(例えばリン(P))を含む半導体材
料ガスを用いて、プラズマCVD法により形成する。半導体材料ガスとしては、シラン、
Si、SiHCl、SiHCl、SiCl、SiF等を用いることがで
きる。n型半導体領域320の膜厚は20nm以上300nm以下が好ましい。
そして、図14(A)(B)では、フォトダイオード102B、フォトセンサ出力信号線
RO_A、導電層314、導電層315、導電層316及び導電層317上に、絶縁層3
21が設けられている。絶縁層321を介したn型半導体領域320及び導電層317と
の間には、導電層322が設けられている。
絶縁層321は、プラズマCVD法やスパッタリング法等を用いて、酸化シリコン膜、酸
化窒化シリコン膜、窒化酸化シリコン膜、有機樹脂膜等の透光性及び絶縁性を有する膜を
、単層で又は積層して形成する。絶縁層321は、表面に平坦性を有する絶縁層とするこ
とが好ましい。
導電層322は、透光性を有する導電層であればよく、例えば、インジウム錫酸化物(I
TO、Indium Tin Oxide)、酸化シリコンを含むインジウム錫酸化物(
ITSO)、酸化インジウム酸化亜鉛(Indium Zinc Oxide)等を用い
て形成することができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
(実施の形態8)
本実施の形態では、単結晶シリコン等の半導体膜にチャネルが形成されるトランジスタと
、酸化物半導体層にチャネルが形成されるトランジスタとを有するフォトセンサの作製方
法について図15を用いて説明する。
本実施の形態で説明するフォトダイオード704は、図1(B)等で示したフォトダイオ
ード102として用いることができ、nチャネル型トランジスタ705は、図1(B)等
で示したトランジスタ104、又はトランジスタ105として用いることができ、トラン
ジスタ724は、図1(B)等で示したトランジスタ103、トランジスタ106、又は
トランジスタ109として用いることができる。また、トランジスタ724は、図1(B
)等で示したトランジスタ104、トランジスタ105として用いてもよい。
まず、公知のCMOSの作製方法を用いて、基板700の絶縁表面上に、フォトダイオー
ド704及びnチャネル型トランジスタ705を作製する(図15(A))。本実施の形
態では、一例として、単結晶の半導体基板から分離された単結晶半導体膜を用いて、フォ
トダイオード704及びnチャネル型トランジスタ705を作製する。単結晶の半導体基
板としては、例えば、シリコン基板を用いることができる。
具体的な単結晶半導体膜の作製方法の一例について、簡単に説明する。まず、単結晶の半
導体基板に、電界で加速されたイオンでなるイオンビームを注入し、半導体基板の表面か
ら一定の深さの領域に、結晶構造が乱されることで局所的に脆弱化された脆化層を形成す
る。脆化層が形成される領域の深さは、イオンビームの加速エネルギーとイオンビームの
入射角によって調節することができる。そして、半導体基板と、絶縁膜701が形成され
た基板700とを、間に当該絶縁膜701が挟まるように貼り合わせる。貼り合わせでは
、半導体基板と基板700とを重ね合わせた後、半導体基板と基板700の一部に、1N
/cm以上500N/cm以下、好ましくは11N/cm以上20N/cm以下
程度の圧力を加える。圧力を加えると、その部分から半導体基板と絶縁膜701とが接合
を開始し、最終的には密着した面全体に接合が及ぶ。次いで、加熱処理を行うことで、脆
化層に存在する微小ボイドどうしが結合して、微小ボイドの体積が増大する。その結果、
脆化層において半導体基板の一部である単結晶半導体膜が、半導体基板から分離する。上
記加熱処理の温度は、基板700の歪み点を越えない温度とする。そして、上記単結晶半
導体膜をエッチング等により所望の形状に加工することで、島状の半導体膜702、島状
の半導体膜703を形成することができる。
フォトダイオード704は、絶縁膜701上の島状の半導体膜702を用いて形成されて
おり、nチャネル型トランジスタ705は、絶縁膜701上の島状の半導体膜703を用
いて形成されている。また、フォトダイオード704は、島状の半導体膜702内にp型
の導電性を有する領域727と、i型の導電性を有する領域728と、n型の導電性を有
する領域729とが形成された横型接合タイプである。また、nチャネル型トランジスタ
705は、ゲート電極707を有している。nチャネル型トランジスタ705は、島状の
半導体膜703内に、ゲート電極707と重なる領域を挟むように設けられた一対のn型
の導電性を有する領域を含む。そして、nチャネル型トランジスタ705は、島状の半導
体膜703とゲート電極707の間に、絶縁膜708を有する。nチャネル型トランジス
タ705において、絶縁膜708はゲート絶縁膜として機能する。
なお、i型の導電性を有する領域728は、半導体膜のうち、含まれるp型若しくはn型
を付与する不純物が1×1020cm-3以下の濃度であり、暗伝導度に対して光伝導度
が100倍以上である領域を指す。i型の導電性を有する領域728には、周期表第13
族若しくは第15族の不純物元素を有するものもその範疇に含む。すなわち、i型の半導
体は、価電子制御を目的とした不純物元素を意図的に添加しないときに弱いn型の電気伝
導性を示すので、i型の導電性を有する領域728は、p型を付与する不純物元素を、成
膜時或いは成膜後に、意図的若しくは非意図的に添加されたものをその範疇に含む。
基板700として使用することができる素材に大きな制限はないが、少なくとも、後の加
熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、基板700には
、フュージョン法やフロート法で作製されるガラス基板、石英基板、セラミック基板等を
用いることができる。ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点
が730℃以上のものを用いるとよい。プラスチック等の可撓性を有する合成樹脂からな
る基板は、一般的に上記基板と比較して耐熱温度が低い傾向にあるが、作製工程における
処理温度に耐え得るのであれば用いることが可能である。
なお、本実施の形態では、単結晶の半導体膜を用いてフォトダイオード704とnチャネ
ル型トランジスタ705を作製する例について説明しているが、本発明はこの構成に限定
されない。例えば、絶縁膜701上に気相成長法を用いて形成された多結晶、微結晶の半
導体膜を用いてもよいし、上記半導体膜を公知の技術により結晶化してもよい。公知の結
晶化方法としては、レーザ光を用いたレーザ結晶化法、触媒元素を用いる結晶化法がある
。或いは、触媒元素を用いる結晶化法とレーザ結晶化法とを組み合わせて用いることもで
きる。また、石英のような耐熱性に優れている基板を用いる場合、電熱炉を使用した熱結
晶化法、赤外光を用いたランプアニール結晶化法、触媒元素を用いる結晶化法、950℃
程度の高温アニール法を組み合わせた結晶化法を用いてもよい。
また、図15(A)では、絶縁膜708上に導電膜を形成した後、上記導電膜をエッチン
グ等により所望の形状に加工することで、ゲート電極707と共に、配線711を形成す
る。
次いで、フォトダイオード704、nチャネル型トランジスタ705、配線711を覆う
ように、絶縁膜712を形成する。
絶縁膜712は、単層構造でもよいし、積層構造でもよい。絶縁膜712は、その表面を
CMP法などにより平坦化させてもよい。絶縁膜712は、後の作製工程における加熱処
理の温度に耐えうる材料を用いる。例えば、絶縁膜712の材料としては、酸化シリコン
、窒化シリコン、窒化酸化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミ
ニウムなどを用いることが望ましい。
なお、本明細書において酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多
い物質を指し、また、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い
物質を指す。
次いで、絶縁膜712上に、ゲート電極713を形成する。ゲート電極713は、単層構
造としてもよいし、積層構造としてもよい。
ゲート電極713は、モリブデン、チタン、タンタル、タングステン、アルミニウム、銅
、クロム、ネオジム、スカンジウムから選ばれた元素を含む金属材料、又は上述した元素
を成分とする金属窒化物(窒化チタン、窒化モリブデン、窒化タングステン)等を用いて
形成することができる。
また、ゲート電極713は、インジウム錫酸化物、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化シリコンを添加
したインジウム錫酸化物などの導電性材料を適用することもできる。また、上記導電性材
料と、上記金属材料の積層構造とすることもできる。
また、ゲート絶縁膜714と接するゲート電極713の一層として、窒素を含む金属酸化
物膜、具体的には、窒素を含むIn-Ga-Zn-O膜や、窒素を含むIn-Sn-O膜
や、窒素を含むIn-Ga-O膜や、窒素を含むIn-Zn-O膜や、窒素を含むSn-
O膜や、窒素を含むIn-O膜や、金属窒化膜(InN、SnNなど)を用いることがで
きる。これらの膜は5eV(電子ボルト)以上、好ましくは5.5eV(電子ボルト)以
上の仕事関数を有し、ゲート電極として用いた場合、トランジスタのしきい値電圧をプラ
スにすることができ、所謂ノーマリーオフのスイッチング素子を実現できる。
次いで、ゲート電極713上に、ゲート絶縁膜714を形成した後、ゲート絶縁膜714
上においてゲート電極713と重なる位置に、酸化物半導体層715を形成する(図15
(B))。
ゲート絶縁膜714の膜厚は、1nm以上20nm以下とし、スパッタリング法、MBE
法、CVD法、パルスレーザ堆積法、ALD法等を適宜用いることができる。また、ゲー
ト絶縁膜714は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面が
セットされた状態で成膜を行うスパッタ装置を用いて成膜してもよい。
ゲート絶縁膜714の材料としては、酸化シリコン、酸化ガリウム、酸化アルミニウム、
窒化シリコン、酸化窒化シリコン、酸化窒化アルミニウム、窒化酸化シリコン等を用いる
ことができる。ゲート絶縁膜714は、酸化物半導体層715と接する部分において酸素
を含むことが好ましい。特に、ゲート絶縁膜714は、膜中(バルク中)に少なくとも化
学量論的組成を超える量の酸素が存在することが好ましく、例えば、ゲート絶縁膜714
として、酸化シリコン膜を用いる場合には、SiO2+α(ただし、α>0)とするのが
好ましい。本実施の形態では、ゲート絶縁膜714として、SiO2+α(ただし、α>
0)である酸化シリコン膜を用いる。この酸化シリコン膜をゲート絶縁膜714として用
いることで、酸化物半導体層715に酸素を供給することができ、特性を良好にすること
ができる。さらに、ゲート絶縁膜714は、作製するトランジスタのサイズやゲート絶縁
膜714の段差被覆性を考慮して形成することが好ましい。
また、ゲート絶縁膜714の材料として酸化ハフニウム、酸化イットリウム、ハフニウム
シリケート(HfSix>0、y>0))、窒素が添加されたハフニウムシリケー
ト(HfSiO(x>0、y>0))、ハフニウムアルミネート(HfAl
(x>0、y>0))、酸化ランタンなどのhigh-k材料を用いることでゲートリー
ク電流を低減できる。さらに、ゲート絶縁膜714は、単層構造としてもよいし、積層構
造としてもよい。
酸化物半導体層715は、単層構造としてもよいし、積層構造としてもよい。また、非晶
質構造としてもよいし、結晶性酸化物半導体としてもよい。酸化物半導体層715を非晶
質構造とする場合には、後の作製工程において、酸化物半導体層に熱処理を行うことによ
って、結晶性酸化物半導体層としてもよい。非晶質酸化物半導体層を結晶化させる熱処理
の温度は、250℃以上700℃以下、好ましくは、400℃以上、より好ましくは50
0℃以上、さらに好ましくは550℃以上とする。なお、当該熱処理は、作製工程におけ
る他の熱処理を兼ねることも可能である。
酸化物半導体は、単結晶、多結晶(ポリクリスタル)、又は非晶質(アモルファス)等の
状態をとる。
アモルファス状態の酸化物半導体は、平坦な表面を得ることが比較的容易であるため、該
アモルファス状態の酸化物半導体を用いたトランジスタは、動作させた際のキャリア(電
子)の界面散乱を低減でき、高い電界効果移動度を得ることが比較的容易である。
また、結晶性を有する酸化物半導体は、バルク内欠陥をより低減することができる。該結
晶性を有する酸化物半導体は、表面の平坦性を高めれば、アモルファス状態の酸化物半導
体を用いたトランジスタに比べて高い電界効果移動度を得ることができる。表面の平坦性
を高めるためには、平坦な表面上に酸化物半導体を形成することが好ましい。
酸化物半導体膜は、例えば非単結晶を有してもよい。非単結晶は、例えば、CAAC(C
Axis Aligned Crystal)、多結晶、微結晶、非晶質部を有する。
非晶質部は、微結晶、CAACよりも欠陥準位密度が高い。また、微結晶は、CAACよ
りも欠陥準位密度が高い。なお、CAACを有する酸化物半導体を、CAAC-OS(C
Axis Aligned Crystalline Oxide Semicond
uctor)と呼ぶ。
酸化物半導体膜は、例えばCAAC-OSを有してもよい。CAAC-OSは、例えば、
c軸配向し、a軸または/およびb軸はマクロに揃っていない。
酸化物半導体膜は、例えば微結晶を有してもよい。なお、微結晶を有する酸化物半導体を
、微結晶酸化物半導体と呼ぶ。微結晶酸化物半導体膜は、例えば、1nm以上10nm未
満のサイズの微結晶(ナノ結晶ともいう。)を膜中に含む。
酸化物半導体膜は、例えば非晶質部を有してもよい。なお、非晶質部を有する酸化物半導
体を、非晶質酸化物半導体と呼ぶ。非晶質酸化物半導体膜は、例えば、原子配列が無秩序
であり、結晶成分を有さない。または、非晶質酸化物半導体膜は、例えば、完全な非晶質
であり、結晶部を有さない。
なお、酸化物半導体膜が、CAAC-OS、微結晶酸化物半導体、非晶質酸化物半導体の
混合膜であってもよい。混合膜は、例えば、非晶質酸化物半導体の領域と、微結晶酸化物
半導体の領域と、CAAC-OSの領域と、を有する。また、混合膜は、例えば、非晶質
酸化物半導体の領域と、微結晶酸化物半導体の領域と、CAAC-OSの領域と、の積層
構造を有してもよい。
なお、酸化物半導体膜は、例えば、単結晶を有してもよい。
酸化物半導体膜は、複数の結晶部を有し、当該結晶部のc軸が被形成面の法線ベクトルま
たは表面の法線ベクトルに平行な方向に揃っていることが好ましい。なお、異なる結晶部
間で、それぞれa軸およびb軸の向きが異なっていてもよい。そのような酸化物半導体膜
の一例としては、CAAC-OS膜がある。
酸化物半導体層715は、CAAC-OS膜であるのが好ましい。
CAAC-OS膜に含まれる結晶部は、一辺が100nm未満の立方体内に収まる大きさ
であることが多い。また、透過型電子顕微鏡(TEM:Transmission El
ectron Microscope)による観察像では、CAAC-OS膜に含まれる
結晶部と結晶部との境界は明確ではない。また、TEMによってCAAC-OS膜には明
確な粒界(グレインバウンダリーともいう。)は確認できない。そのため、CAAC-O
S膜は、粒界に起因する電子移動度の低下が抑制される。
CAAC-OS膜に含まれる結晶部は、例えば、c軸がCAAC-OS膜の被形成面の法
線ベクトル又は表面の法線ベクトルに平行な方向になるように揃い、かつab面に垂直な
方向から見て金属原子が三角形状又は六角形状に配列し、c軸に垂直な方向から見て金属
原子が層状又は金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、
それぞれa軸及びb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載
する場合、80°以上100°以下、好ましくは85°以上95°以下の範囲も含まれる
こととする。また、単に平行と記載する場合、-10°以上10°以下、好ましくは-5
°以上5°以下の範囲も含まれることとする。
なお、CAAC-OS膜中の、結晶部の分布が一様でなくてもよい。例えば、CAAC-
OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形成面
の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CAAC
-OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部の結晶性が
低下することもある。
CAAC-OS膜に含まれる結晶部のc軸は、CAAC-OS膜の被形成面の法線ベクト
ル又は表面の法線ベクトルに平行な方向になるように揃うため、CAAC-OS膜の形状
(被形成面の断面形状又は表面の断面形状)によっては、互いに異なる方向を向くことが
ある。また、結晶部は、成膜したとき、又は成膜後に加熱処理などの結晶化処理を行った
ときに形成される。従って、結晶部のc軸は、CAAC-OS膜が形成されたときの被形
成面の法線ベクトルまたは表面の法線ベクトルに平行な方向になるように揃う。
CAAC-OS膜を用いることで、可視光や紫外光の照射によるトランジスタの電気特性
の変動が低減されるため、信頼性の高いトランジスタを得ることができる。
酸化物半導体層715の成膜方法は、スパッタリング法、MBE(Molecular
Beam Epitaxy)法、CVD法、パルスレーザ堆積法、ALD(Atomic
Layer Deposition)法等を適宜用いることができる。また、酸化物半
導体層715は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面がセ
ットされた状態で成膜を行うスパッタリング装置を用いて成膜してもよい。
酸化物半導体層715を形成する際、できる限り酸化物半導体層715に含まれる水素濃
度を低減させることが好ましい。水素濃度を低減させるには、例えば、スパッタリング法
を用いて成膜を行う場合には、スパッタリング装置の成膜室内に供給する雰囲気ガスとし
て、水素、水、水酸基又は水素化物などの不純物が除去された高純度の希ガス(代表的に
はアルゴン)、酸素、及び希ガスと酸素との混合ガスを適宜用いる。
また、成膜室内の残留水分を除去しつつ水素及び水分が除去されたスパッタガスを導入し
て成膜を行うことで、成膜された酸化物半導体層715の水素濃度を低減させることがで
きる。成膜室内の残留水分を除去するためには、吸着型の真空ポンプ、例えば、クライオ
ポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが好ましい。また、
ターボ分子ポンプにコールドトラップを加えたものであってもよい。クライオポンプは、
例えば、水素分子、水(HO)など水素原子を含む化合物(より好ましくは炭素原子を
含む化合物も)等の排気能力が高いため、クライオポンプを用いて排気した成膜室で成膜
した酸化物半導体層715に含まれる不純物の濃度を低減できる。
また、酸化物半導体層715をスパッタリング法で成膜する場合、成膜に用いる金属酸化
物ターゲットの相対密度(充填率)は90%以上100%以下、好ましくは95%以上9
9.9%以下とする。相対密度の高い金属酸化物ターゲットを用いることにより、成膜し
た酸化物半導体層を緻密な膜とすることができる。
また、基板700を高温に保持した状態で酸化物半導体層715を形成することも、酸化
物半導体層715中に含まれうる不純物濃度を低減するのに有効である。基板700を加
熱する温度としては、150℃以上450℃以下とすればよく、好ましくは基板温度が2
00℃以上350℃以下とすればよい。また、成膜時に基板を高温で加熱することで、結
晶性酸化物半導体層を形成することができる。
酸化物半導体層715に用いる酸化物半導体としては、少なくともインジウム(In)あ
るいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好ましい。また
、該酸化物半導体を用いたトランジスタの電気特性のばらつきを減らすためのスタビライ
ザーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビラ
イザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフニ
ウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(Al
)を有することが好ましい。また、スタビライザーとしてジルコニウム(Zr)を有する
ことが好ましい。
また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(
Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム
(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホル
ミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ル
テチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化
物であるIn-Zn系酸化物、Sn-Zn系酸化物、Al-Zn系酸化物、Zn-Mg系
酸化物、Sn-Mg系酸化物、In-Mg系酸化物、In-Ga系酸化物、三元系金属の
酸化物であるIn-Ga-Zn系酸化物、In-Al-Zn系酸化物、In-Sn-Zn
系酸化物、Sn-Ga-Zn系酸化物、Al-Ga-Zn系酸化物、Sn-Al-Zn系
酸化物、In-Hf-Zn系酸化物、In-La-Zn系酸化物、In-Ce-Zn系酸
化物、In-Pr-Zn系酸化物、In-Nd-Zn系酸化物、In-Sm-Zn系酸化
物、In-Eu-Zn系酸化物、In-Gd-Zn系酸化物、In-Tb-Zn系酸化物
、In-Dy-Zn系酸化物、In-Ho-Zn系酸化物、In-Er-Zn系酸化物、
In-Tm-Zn系酸化物、In-Yb-Zn系酸化物、In-Lu-Zn系酸化物、四
元系金属の酸化物であるIn-Sn-Ga-Zn系酸化物、In-Hf-Ga-Zn系酸
化物、In-Al-Ga-Zn系酸化物、In-Sn-Al-Zn系酸化物、In-Sn
-Hf-Zn系酸化物、In-Hf-Al-Zn系酸化物を用いることができる。
なお、酸化物半導体層715は、成膜時に酸素が多く含まれるような条件(例えば、酸素
100%の雰囲気下でスパッタリング法により成膜を行うなど)で成膜して、酸素を多く
含む(好ましくは酸化物半導体が結晶状態における化学量論的組成に対し、酸素の含有量
が過剰な領域が含まれている)膜とすることが好ましい。
また酸化物半導体層715を、成膜する際に用いるスパッタリングガスは水素、水、水酸
基又は水素化物などの不純物が除去された高純度ガスを用いることが好ましい。
酸化物半導体層715としてCAAC-OS膜を適用する場合、該CAAC-OS膜を得
る方法としては、三つ挙げられる。一つ目は、成膜温度を200℃以上450℃以下とし
て酸化物半導体層の成膜を行い、表面に概略垂直にc軸配向させる方法である。二つ目は
、酸化物半導体層を薄い膜厚で成膜した後、200℃以上700℃以下の熱処理を行い、
表面に概略垂直にc軸配向させる方法である。三つ目は、一層目の膜厚を薄く成膜した後
、200℃以上700℃以下の熱処理を行い、二層目の成膜を行い、表面に概略垂直にc
軸配向させる方法である。
成膜後の酸化物半導体膜をフォトリソグラフィ工程により加工して、島状の酸化物半導体
層715が形成される。島状の酸化物半導体層715へ加工するためのレジストマスクを
インクジェットで形成してもよい。レジストマスクをインクジェットで形成するとフォト
マスクを使用しないため、製造コストを低減することができる。
また、酸化物半導体層715に、当該酸化物半導体層715に含まれる過剰な水素(水や
水酸基を含む)を除去(脱水化又は脱水素化)するための熱処理を行うのが好ましい。熱
処理の温度は、300℃以上700℃以下、又は基板の歪み点未満とする。熱処理は減圧
下又は窒素雰囲気下などで行うことができる。
この熱処理によって、n型不純物である水素を酸化物半導体から除去することができる。
例えば、脱水化又は脱水素化処理後の酸化物半導体層715に含まれる水素濃度を、5×
1019/cm以下、好ましくは5×1018/cm以下とすることができる。
なお、脱水化又は脱水素化のための熱処理は、酸化物半導体層の成膜後であればトランジ
スタ724の作製工程においてどのタイミングで行ってもよい。また、脱水化又は脱水素
化のための熱処理は、複数回行ってもよく、他の加熱処理と兼ねてもよい。
なお、脱水化又は脱水素化のための熱処理を酸化物半導体層715の島状への加工前に行
うと、ゲート絶縁膜714に含まれる酸素が熱処理によって放出されるのを防止すること
ができるため好ましい。
熱処理においては、窒素、又はヘリウム、ネオン、アルゴン等の希ガスに、水、水素など
が含まれないことが好ましい。又は、熱処理装置に導入する窒素、又はヘリウム、ネオン
、アルゴン等の希ガスの純度を、6N(99.9999%)以上好ましくは7N(99.
99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1ppm以下)と
することが好ましい。
また、熱処理で酸化物半導体層715を加熱した後、加熱温度を維持、又はその加熱温度
から徐冷しながら同じ炉に高純度の酸素ガス、高純度の亜酸化窒素ガス、又は超乾燥エア
(CRDS(キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場
合の水分量が20ppm(露点換算で-55℃)以下、好ましくは1ppm以下、より好
ましくは10ppb以下の空気)を導入してもよい。酸素ガスもしくは亜酸化窒素ガスに
、水、水素などが含まれないことが好ましい。又は、熱処理装置に導入する酸素ガスもし
くは亜酸化窒素ガスの純度を、6N以上好ましくは7N以上(即ち、酸素ガス又は亜酸化
窒素ガス中の不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好
ましい。酸素ガス又は亜酸化窒素ガスの作用により、脱水化又は脱水素化処理による不純
物の排除工程によって同時に減少してしまった酸化物半導体を構成する主成分材料である
酸素を供給することによって、酸化物半導体層715を高純度化及びi型(真性)化する
ことができる。
また、脱水化又は脱水素化処理を行った酸化物半導体層715に、酸素(少なくとも、酸
素ラジカル、酸素原子、酸素イオン、のいずれかを含む)を導入して膜中に酸素を供給し
てもよい。この工程によって、酸化物半導体層715を高純度化、及びi型(真性)化す
ることができる。高純度化し、i型(真性)化した酸化物半導体層715を有するトラン
ジスタは、電気特性変動が抑制されており、電気的に安定である。
酸素は、酸化物半導体層715に直接導入してもよいし、後に形成される絶縁膜722な
どの他の膜を通過して酸化物半導体層715へ導入してもよい。酸素を他の膜を通過して
導入する場合は、イオン注入法、イオンドーピング法、プラズマイマージョンイオンイン
プランテーション法などを用いればよいが、露出された酸化物半導体層715へ直接酸素
を導入する場合は、上記の方法に加えてプラズマ処理なども用いることができる。
酸化物半導体層715への酸素の導入は、脱水化又は脱水素化処理を行った後であればよ
く、特に限定されない。また、上記脱水化又は脱水素化処理を行った酸化物半導体層71
5への酸素の導入は複数回行ってもよい。
次に、絶縁膜708、絶縁膜712、ゲート絶縁膜714を部分的にエッチングすること
で、島状の半導体膜702、島状の半導体膜703、配線711に達するコンタクトホー
ルを形成する。そして、酸化物半導体層715を覆うように、スパッタ法や真空蒸着法で
導電膜を形成したあと、エッチング等により該導電膜をパターニングすることで、ソース
電極、ドレイン電極、又は配線として機能する導電膜716、導電膜717、導電膜71
8、導電膜719、導電膜720、導電膜721を形成する(図15(C))。
なお、導電膜716及び導電膜717は、島状の半導体膜702に接している。導電膜7
18及び導電膜719は、島状の半導体膜703に接している。導電膜720は、配線7
11及び酸化物半導体層715に接している。導電膜721は、酸化物半導体層715に
接している。
導電膜716、導電膜717、導電膜718、導電膜719、導電膜720、導電膜72
1となる導電膜の材料としては、アルミニウム、クロム、銅、タンタル、チタン、モリブ
デン、タングステンから選ばれた元素、上述した元素を成分とする合金、又は上述した元
素を組み合わせた合金等が挙げられる。また、アルミニウム、銅などの金属膜の下側もし
くは上側にクロム、タンタル、チタン、モリブデン、タングステンなどの高融点金属膜を
積層させた構成としてもよい。また、アルミニウム又は銅は、耐熱性や腐食性の問題を回
避するために、高融点金属材料と組み合わせて用いるとよい。高融点金属材料としては、
モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジウム、イッ
トリウム等を用いることができる。
また、導電膜716、導電膜717、導電膜718、導電膜719、導電膜720、導電
膜721は、単層構造でも、2層以上の積層構造としてもよい。例えば、シリコンを含む
アルミニウム膜の単層構造、アルミニウム膜上にチタン膜を積層する2層構造、チタン膜
と、そのチタン膜上に重ねてアルミニウム膜を積層し、さらにその上にチタン膜を成膜す
る3層構造などが挙げられる。
また、導電膜716、導電膜717、導電膜718、導電膜719、導電膜720、導電
膜721となる導電膜としては、導電性の金属酸化物で形成してもよい。導電性の金属酸
化物としては酸化インジウム、酸化スズ、酸化亜鉛、インジウムスズ酸化物、インジウム
亜鉛酸化物又は該金属酸化物材料にシリコン若しくは酸化シリコンを含ませたものを用い
ることができる。
導電膜形成後に加熱処理を行う場合には、該加熱処理に耐える耐熱性を導電膜に持たせる
ことが好ましい。
なお、導電膜のエッチングの際に、酸化物半導体層715がなるべく除去されないように
それぞれの材料及びエッチング条件を適宜調節する。エッチング条件によっては、島状の
酸化物半導体層715の露出した部分が一部エッチングされることで、溝部(凹部)が形
成されることもある。
なお、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過
した光に多段階の強度をもたせる多階調マスクによって形成されたレジストマスクを用い
てエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマスクは複数
の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形することができる
ため、異なるパターンに加工する複数のエッチング工程に用いることができる。よって、
一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応するレジス
トマスクを形成することができる。よって露光マスク数を削減することができ、対応する
フォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
その後、NO、N、又はArなどのガスを用いたプラズマ処理を行うことが好ましい
。このプラズマ処理によって露出している酸化物半導体層715の表面に付着した水など
を除去する。また、酸素とアルゴンの混合ガスを用いてプラズマ処理を行ってもよい。
次に、図15(C)に示すように、導電膜716、導電膜717、導電膜718、導電膜
719、導電膜720、及び導電膜721と、酸化物半導体層715とを覆うように、絶
縁膜722を形成する。絶縁膜722は、水分や、水素などの不純物を極力含まないこと
が望ましい。絶縁膜722に水素が含まれると、その水素が酸化物半導体層へ侵入し、又
は水素が酸化物半導体層中の酸素を引き抜き、酸化物半導体層のバックチャネル部が低抵
抗化(n型化)してしまい、寄生チャネルが形成されるおそれがある。よって、絶縁膜7
22はできるだけ水素を含まない膜になるように、成膜方法に水素を用いないことが重要
である。
絶縁膜722は、プラズマCVD法、スパッタリング法、又は蒸着法等により成膜するこ
とができる。特に、スパッタリング法など、絶縁膜722に水、水素等の不純物を混入さ
せない方法を適宜用いて形成することが好ましい。
絶縁膜722の材料としては、酸化シリコン、酸化ガリウム、酸化アルミニウム、窒化シ
リコン、酸化窒化シリコン、酸化窒化アルミニウム、窒化酸化シリコン、酸化ハフニウム
、酸化マグネシウム、酸化ジルコニウム、酸化ランタン、酸化バリウム等を用いることが
できる。
絶縁膜722は、単層でも積層でもよく、例えば酸化シリコン膜及び酸化アルミニウム膜
の積層を用いることができる。酸化アルミニウム膜は、水素、水分などの不純物、及び酸
素の両方に対して膜を通過させない遮断効果(ブロック効果)が高く、作製工程中及び作
製後において、変動要因となる水素、水分などの不純物の酸化物半導体層715への混入
、及び酸化物半導体を構成する主成分材料である酸素の酸化物半導体層715からの放出
を防止する保護膜として機能するため好ましく適用することができる。
絶縁膜722は、酸化物半導体層715と接する部分において酸素を含むことが好ましい
。特に、絶縁膜722は、膜中(バルク中)に少なくとも化学量論的組成を超える量の酸
素が存在することが好ましく、例えば、絶縁膜722として、酸化シリコン膜を用いる場
合には、SiO2+α(ただし、α>0)とするのが好ましい。この酸化シリコン膜を絶
縁膜722として用いることで、酸化物半導体層715に酸素を供給することができ、特
性を良好にすることができる。
また、絶縁膜722を積層構造とする場合、酸化物半導体層715と接する酸化物絶縁膜
と、酸化物絶縁膜と接するバリア性の高い絶縁膜と、の積層構造が好ましい。例えば、バ
リア性の高い絶縁膜として、窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜
、又は窒化酸化アルミニウム膜などを用いることができる。バリア性の高い絶縁膜を用い
ることで、酸化物半導体層715内、ゲート絶縁膜714内、或いは、酸化物半導体層7
15と他の絶縁膜の界面とその近傍に、水分又は水素などの不純物が入り込むのを防ぐこ
とができる。
なお、絶縁膜722を形成した後に、加熱処理を施してもよい。加熱処理は、窒素、超乾
燥空気、又は希ガス(アルゴン、ヘリウムなど)の雰囲気下において、好ましくは200
℃以上400℃以下、例えば250℃以上350℃以下で行う。上記ガスは、水の含有量
が20ppm以下、好ましくは1ppm以下、より好ましくは10ppb以下であること
が望ましい。本実施の形態では、例えば、窒素雰囲気下で250℃、1時間の加熱処理を
行う。或いは、水分又は水素を低減させるために酸化物半導体層に対して行った先の加熱
処理と同様に、高温短時間のRTA処理を行ってもよい。酸素を含む絶縁膜722が設け
られた後に、加熱処理が施されることによって、酸化物半導体層に対して行った先の加熱
処理により、酸化物半導体層715に酸素欠損が発生していたとしても、絶縁膜722か
ら酸化物半導体層715に酸素が供与される。そして、酸化物半導体層715に酸素が供
与されることで、酸化物半導体層715において、ドナーとなる酸素欠損を低減すること
が可能である。その結果、酸化物半導体層715をi型に近づけることができ、酸素欠損
によるトランジスタの電気特性のばらつきを軽減し、電気特性の向上を実現することがで
きる。この加熱処理を行うタイミングは、絶縁膜722の形成後であれば特に限定されず
、他の工程、例えば樹脂膜形成時の加熱処理や、透明導電膜を低抵抗化させるための加熱
処理と兼ねることで、工程数を増やすことなく、酸化物半導体層715をi型に近づける
ことができる。
また、酸素雰囲気下で酸化物半導体層715に加熱処理を施すことで、酸化物半導体に酸
素を添加し、酸化物半導体層715中においてドナーとなる酸素欠損を低減させてもよい
。加熱処理の温度は、例えば100℃以上350℃未満、好ましくは150℃以上250
℃未満で行う。上記酸素雰囲気下の加熱処理に用いられる酸素ガスには、水、水素などが
含まれないことが好ましい。又は、加熱処理装置に導入する酸素ガスの純度を、6N(9
9.9999%)以上、好ましくは7N(99.99999%)以上、(即ち酸素中の不
純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい。
或いは、イオン注入法又はイオンドーピング法などを用いて、酸化物半導体層715に酸
素を添加することで、ドナーとなる酸素欠損を低減させてもよい。例えば、2.45GH
zのマイクロ波でプラズマ化した酸素を酸化物半導体層715に添加すればよい。
なお、絶縁膜722上に導電膜を形成した後、該導電膜をパターニングすることで、酸化
物半導体層715と重なる位置にバックゲート電極を形成してもよい。バックゲート電極
を形成した場合は、バックゲート電極を覆うように絶縁膜を形成するのが望ましい。バッ
クゲート電極は、ゲート電極713、或いは導電膜716、導電膜717、導電膜718
、導電膜719、導電膜720、導電膜721と同様の材料、構造を用いて形成すること
が可能である。
バックゲート電極の膜厚は、10nm~400nm、好ましくは100nm~200nm
とする。例えば、チタン膜、アルミニウム膜、チタン膜が積層された構造を有する導電膜
を形成した後、フォトリソグラフィ法などによりレジストマスクを形成し、エッチングに
より不要な部分を除去して、該導電膜を所望の形状に加工(パターニング)することで、
バックゲート電極を形成するとよい。
以上の工程により、トランジスタ724が形成される。
トランジスタ724は、ゲート電極713と、ゲート電極713上のゲート絶縁膜714
と、ゲート絶縁膜714上でゲート電極713と重なる酸化物半導体層715と、酸化物
半導体層715上に形成された一対の導電膜720及び導電膜721とを有する。さらに
、トランジスタ724は、絶縁膜722を、その構成要素に含めてもよい。図15(C)
に示すトランジスタ724は、導電膜720と導電膜721の間において、酸化物半導体
層715の一部がエッチングされたチャネルエッチ構造である。
なお、トランジスタ724はシングルゲート構造のトランジスタを用いて説明したが、必
要に応じて、電気的に接続する複数のゲート電極713を有することで、チャネル形成領
域を複数有する、マルチゲート構造のトランジスタも形成することができる。
本実施の形態は、上記実施の形態と組み合わせて実施することが可能である。
(実施の形態9)
本実施の形態では、実施の形態8とは異なる構造を有する、酸化物半導体層にチャネルが
形成されるトランジスタについて図16を用いて説明する。
なお、図16(A)乃至(D)に示すフォトセンサが備えるフォトダイオード704及び
nチャネル型トランジスタ705は、実施の形態8と同様の構成のため、説明を省略する
図16(A)に示すトランジスタ724aは、チャネル保護膜を有するボトムゲート型の
トランジスタである。
トランジスタ724aは、絶縁膜712上に形成されたゲート電極730と、ゲート電極
730上のゲート絶縁膜731と、ゲート絶縁膜731上においてゲート電極730と重
なる酸化物半導体層732と、ゲート電極730と重なる位置において酸化物半導体層7
32上に形成されたチャネル保護膜733と、酸化物半導体層732上に形成された導電
膜734及び導電膜735とを有する。トランジスタ724aは、導電膜734、導電膜
735、及びチャネル保護膜733上に形成された絶縁膜736を、構成要素に含めても
よい。
チャネル保護膜733を設けることによって、酸化物半導体層732のチャネル形成領域
となる部分に対する、後の工程における、エッチング時のプラズマやエッチング剤による
膜減りなどのダメージを防ぐことができる。従ってトランジスタ724aの信頼性を向上
させることができる。
チャネル保護膜733には、酸素を含む無機材料(酸化シリコン、窒化酸化シリコン、酸
化窒化シリコン、酸化アルミニウム、又は酸化窒化アルミニウムなど)を用いることがで
きる。チャネル保護膜733は、プラズマCVD法や熱CVD法などの気相成長法やスパ
ッタリング法を用いて形成することができる。チャネル保護膜733は成膜後にエッチン
グにより形状を加工する。ここでは、スパッタ法により酸化シリコン膜を形成し、フォト
リソグラフィによるマスクを用いてエッチング加工することでチャネル保護膜733を形
成する。
酸素を含む無機材料をチャネル保護膜733に用いることで、水分又は水素を低減させる
ための加熱処理により酸化物半導体層732中に酸素欠損が発生していたとしても、酸化
物半導体層732にチャネル保護膜733から酸素を供給し、ドナーとなる酸素欠損を低
減することが可能である。よって、チャネル形成領域をi型に近づけることができ、酸素
欠損によるトランジスタ724aの電気特性のばらつきを軽減し、電気特性の向上を実現
することができる。
図16(B)に示すトランジスタ724bは、ボトムコンタクト型のトランジスタである
トランジスタ724bは、絶縁膜712上に形成されたゲート電極741と、ゲート電極
741上のゲート絶縁膜742と、ゲート絶縁膜742上の導電膜743及び導電膜74
4と、ゲート絶縁膜742を間に挟んでゲート電極741と重なる酸化物半導体層745
とを有する。トランジスタ724bは、酸化物半導体層745上に形成された絶縁膜74
6を、構成要素に含めてもよい。
なお、トランジスタ724aやトランジスタ724bは、バックゲート電極を有していて
もよい。
図16(C)に示すトランジスタ724cは、トップコンタクト型のトランジスタである
トランジスタ724cは、絶縁膜712上に形成された酸化物半導体層755と、酸化物
半導体層755上の導電膜753及び導電膜754と、酸化物半導体層755、導電膜7
53及び導電膜754上のゲート絶縁膜752と、ゲート絶縁膜752を間に挟んで酸化
物半導体層755と重なるゲート電極751とを有する。トランジスタ724cは、ゲー
ト電極751上に形成された絶縁膜756を、構成要素に含めてもよい。
図16(D)に示すトランジスタ724dは、トップコンタクト型のトランジスタである
トランジスタ724dは、絶縁膜712上に形成された導電膜763及び導電膜764と
、導電膜763及び導電膜764上の酸化物半導体層765と、酸化物半導体層765、
導電膜763及び導電膜764上のゲート絶縁膜762と、ゲート絶縁膜762を間に挟
んで酸化物半導体層765と重なるゲート電極761とを有する。トランジスタ724d
は、ゲート電極761上に形成された絶縁膜766を、構成要素に含めてもよい。
本実施の形態は、上記実施の形態と組み合わせて実施することが可能である。
FD 電荷保持ノード
FD_1 電荷保持ノード
FD_2 電荷保持ノード
FD_A 電荷保持ノード
FD_B 電荷保持ノード
PR リセット信号線
PR_1 リセット信号線
PR_2 リセット信号線
PR_A リセット信号線
PR_B リセット信号線
RD 固定電源線
RO フォトセンサ出力信号線
RO_1 フォトセンサ出力信号線
RO_2 フォトセンサ出力信号線
RO_A フォトセンサ出力信号線
RO_B フォトセンサ出力信号線
S0~S3 検出信号の電圧
SE 選択信号線
SE_1 選択信号線
SE_2 選択信号線
SE_A 選択信号線
SE_B 選択信号線
T1~T27 時刻
TX 蓄積信号線
TX_1 蓄積信号線
TX_2 蓄積信号線
TX_A 蓄積信号線
TX_B 蓄積信号線
VH 電源線
VR リセット電源線
VS フォトセンサ基準信号線
10 距離測定システム
20 距離測定装置
30 フォトセンサ
40 読み出し回路
50 処理部
100 フォトセンサ
100_1 第1のフォトセンサ
100_2 第2のフォトセンサ
100A 第1のフォトセンサ
100B 第2のフォトセンサ
102 フォトダイオード
102_1 フォトダイオード
102_2 フォトダイオード
102A フォトダイオード
102B フォトダイオード
103 トランジスタ
103_1 トランジスタ
103_2 トランジスタ
103A トランジスタ
103B トランジスタ
104 トランジスタ
104_1 トランジスタ
104_2 トランジスタ
104A トランジスタ
104B トランジスタ
105 トランジスタ
105_1 トランジスタ
105_2 トランジスタ
105A トランジスタ
105B トランジスタ
106 トランジスタ
107 ノード
107_1 ノード
107_2 ノード
107A ノード
109 トランジスタ
109_1 トランジスタ
109_2 トランジスタ
109A トランジスタ
120 読み出し回路
122 トランジスタ
124 電源供給配線
130 フォトセンサ
151 照射光
152 反射光
210 導電膜
211 導電膜
212 導電膜
213 導電膜
214 導電膜
215 半導体膜
216 半導体膜
217 半導体膜
218 導電膜
219 導電膜
220 導電膜
221 導電膜
222 導電膜
223 導電膜
224 導電膜
225 導電膜
226 導電膜
227 導電膜
228 ゲート絶縁膜
229 導電膜
237 導電膜
238 導電膜
239 導電膜
250 活性層
251 基板
281 絶縁膜
282 絶縁膜
300 透光性基板
303 p型半導体領域
304 i型半導体領域
305 n型半導体領域
306 i型半導体領域
307 n型半導体領域
308 i型半導体領域
309 n型半導体領域
310 絶縁層
311 ゲート電極
312 ゲート電極
313 絶縁層
314 導電層
315 導電層
316 導電層
317 導電層
318 p型半導体領域
319 i型半導体領域
320 n型半導体領域
321 絶縁層
322 導電層
323 n型半導体領域
324 導電層
331 遮光層
332 下地膜
700 基板
701 絶縁膜
702 半導体膜
703 半導体膜
704 フォトダイオード
705 nチャネル型トランジスタ
707 ゲート電極
708 絶縁膜
711 配線
712 絶縁膜
713 ゲート電極
714 ゲート絶縁膜
715 酸化物半導体層
716 導電膜
717 導電膜
718 導電膜
719 導電膜
720 導電膜
721 導電膜
722 絶縁膜
724 トランジスタ
724a トランジスタ
724b トランジスタ
724c トランジスタ
724d トランジスタ
727 領域
728 領域
729 領域
730 ゲート電極
731 ゲート絶縁膜
732 酸化物半導体層
733 チャネル保護膜
734 導電膜
735 導電膜
736 絶縁膜
741 ゲート電極
742 ゲート絶縁膜
743 導電膜
744 導電膜
745 酸化物半導体層
746 絶縁膜
751 ゲート電極
752 ゲート絶縁膜
753 導電膜
754 導電膜
755 酸化物半導体層
756 絶縁膜
761 ゲート電極
762 ゲート絶縁膜
763 導電膜
764 導電膜
765 酸化物半導体層
766 絶縁膜
1001 フォトセンサ

Claims (1)

  1. 受光素子、第1のトランジスタ、及び第2のトランジスタを有するフォトセンサと、配線と、信号線と、電源線と、光源とを備え、
    前記配線は、前記受光素子の一方の電極と電気的に接続し、
    前記信号線は、前記第1のトランジスタのゲート電極と電気的に接続し、
    前記電源線は、前記第2のトランジスタのソース電極又はドレイン電極の一方と電気的に接続し、
    前記第1のトランジスタでは、ソース電極又はドレイン電極の一方が前記第2のトランジスタのゲート電極と電気的に接続し、ソース電極又はドレイン電極の他方が前記受光素子の他方の電極、及び前記第2のトランジスタのソース電極又はドレイン電極の他方と電気的に接続し、
    前記光源は、被検出物に対して一定時間Tの光照射をn(nは2以上の自然数)回行い、
    前記受光素子は、前記光源から照射された光が前記被検出物で反射されることで生じる反射光を検出し、
    前記第1のトランジスタは、前記光照射1回につき、前記一定時間T以上、導通状態となり、かつ、前記光照射の終了と同時に前記導通状態が終了し、
    前記フォトセンサが、前記光源と前記被検出物との間の距離xに応じた信号を出力する距離測定装置。
JP2022157402A 2012-03-21 2022-09-30 距離測定装置 Pending JP2022186736A (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012063338 2012-03-21
JP2012063338 2012-03-21
JP2020045041A JP2020109416A (ja) 2012-03-21 2020-03-16 距離測定装置の距離測定方法
JP2021064018A JP2021141328A (ja) 2012-03-21 2021-04-05 半導体装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021064018A Division JP2021141328A (ja) 2012-03-21 2021-04-05 半導体装置

Publications (1)

Publication Number Publication Date
JP2022186736A true JP2022186736A (ja) 2022-12-15

Family

ID=49211499

Family Applications (7)

Application Number Title Priority Date Filing Date
JP2013055961A Expired - Fee Related JP6192957B2 (ja) 2012-03-21 2013-03-19 距離測定装置、距離測定システム
JP2017153895A Active JP6457032B2 (ja) 2012-03-21 2017-08-09 距離測定装置
JP2018236932A Active JP6678226B2 (ja) 2012-03-21 2018-12-19 距離測定装置
JP2020045041A Withdrawn JP2020109416A (ja) 2012-03-21 2020-03-16 距離測定装置の距離測定方法
JP2021064018A Withdrawn JP2021141328A (ja) 2012-03-21 2021-04-05 半導体装置
JP2021165546A Active JP6999062B2 (ja) 2012-03-21 2021-10-07 装置
JP2022157402A Pending JP2022186736A (ja) 2012-03-21 2022-09-30 距離測定装置

Family Applications Before (6)

Application Number Title Priority Date Filing Date
JP2013055961A Expired - Fee Related JP6192957B2 (ja) 2012-03-21 2013-03-19 距離測定装置、距離測定システム
JP2017153895A Active JP6457032B2 (ja) 2012-03-21 2017-08-09 距離測定装置
JP2018236932A Active JP6678226B2 (ja) 2012-03-21 2018-12-19 距離測定装置
JP2020045041A Withdrawn JP2020109416A (ja) 2012-03-21 2020-03-16 距離測定装置の距離測定方法
JP2021064018A Withdrawn JP2021141328A (ja) 2012-03-21 2021-04-05 半導体装置
JP2021165546A Active JP6999062B2 (ja) 2012-03-21 2021-10-07 装置

Country Status (3)

Country Link
US (1) US9541386B2 (ja)
JP (7) JP6192957B2 (ja)
KR (7) KR102055753B1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI575494B (zh) * 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 半導體裝置的驅動方法
JP6603657B2 (ja) 2014-06-09 2019-11-06 株式会社半導体エネルギー研究所 撮像装置
US9881954B2 (en) 2014-06-11 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Imaging device
TWI700823B (zh) * 2014-06-27 2020-08-01 日商半導體能源研究所股份有限公司 攝像裝置及電子裝置
EP3388858A4 (en) * 2015-12-08 2018-12-12 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device, distance measuring device, and distance measurement method
US10573621B2 (en) * 2016-02-25 2020-02-25 Semiconductor Energy Laboratory Co., Ltd. Imaging system and manufacturing apparatus
KR20210029726A (ko) 2018-07-20 2021-03-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 촬상 패널, 촬상 장치
KR20210071952A (ko) 2018-10-11 2021-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 운전자 경고 시스템
JP6641442B1 (ja) * 2018-10-16 2020-02-05 浜松ホトニクス株式会社 光検出素子及び光検出装置
WO2020148601A1 (ja) 2019-01-18 2020-07-23 株式会社半導体エネルギー研究所 表示システム、表示装置、発光装置
EP3820143A4 (en) * 2019-02-27 2021-05-12 Shenzhen Goodix Technology Co., Ltd. IMAGING SYSTEM, AND CORRESPONDING PIXEL NETWORK AND IMAGE SENSOR
KR102558441B1 (ko) 2021-02-09 2023-07-24 정민경 통과 높이 제한 구조물 충돌방지 장치의 제어 방법
KR102463804B1 (ko) 2021-04-16 2022-11-04 클레어픽셀 주식회사 Tof 기반의 거리 측정 장치

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438455A (en) 1981-12-15 1984-03-20 Fuji Photo Film Co., Ltd. Solid-state color imager with three layer four story structure
JPS60183505A (ja) * 1984-03-02 1985-09-19 Nippon Telegr & Teleph Corp <Ntt> ウエハの高さ測定器
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
USRE37360E1 (en) * 1985-09-16 2001-09-11 Fisher & Paykel Electronic motor controls, laundry machines including such controls and/or methods of operating such controls
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
US5001417A (en) * 1987-06-01 1991-03-19 Abbott Laboratories Apparatus for measuring electrolytes utilizing optical signals related to the concentration of the electrolytes
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP2866271B2 (ja) * 1992-12-24 1999-03-08 大井電気株式会社 半導体レーザの安定化装置
JPH06204445A (ja) * 1993-01-01 1994-07-22 Canon Inc 光センサ及びそれを有する画像情報処理装置
KR950012707B1 (ko) * 1993-09-04 1995-10-20 장준승 교류 전원을 이용한 게이트 트리거용 펄스 발생회로
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH11163157A (ja) * 1997-11-26 1999-06-18 Ricoh Co Ltd 半導体装置とその製造方法
US5965875A (en) 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
US6747638B2 (en) 2000-01-31 2004-06-08 Semiconductor Energy Laboratory Co., Ltd. Adhesion type area sensor and display device having adhesion type area sensor
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP2003101871A (ja) * 2001-09-21 2003-04-04 Konica Corp 撮影装置
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3722367B2 (ja) * 2002-03-19 2005-11-30 ソニー株式会社 固体撮像素子の製造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7129466B2 (en) 2002-05-08 2006-10-31 Canon Kabushiki Kaisha Color image pickup device and color light-receiving device
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP4403687B2 (ja) 2002-09-18 2010-01-27 ソニー株式会社 固体撮像装置およびその駆動制御方法
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4298276B2 (ja) * 2002-12-03 2009-07-15 キヤノン株式会社 光電変換装置
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP3711124B2 (ja) * 2003-05-27 2005-10-26 株式会社東芝 光半導体リレー
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
JP2005121398A (ja) * 2003-10-15 2005-05-12 Olympus Corp 光検出装置及びそれを用いた測距装置
JP2005150521A (ja) * 2003-11-18 2005-06-09 Canon Inc 撮像装置およびその製造方法
JP4280822B2 (ja) * 2004-02-18 2009-06-17 国立大学法人静岡大学 光飛行時間型距離センサ
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
JP4474962B2 (ja) * 2004-03-19 2010-06-09 ソニー株式会社 裏面照射型固体撮像素子、電子機器モジュール及びカメラモジュール
JP2005268609A (ja) 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd 多層積層型多画素撮像素子及びテレビカメラ
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP4916101B2 (ja) * 2004-09-01 2012-04-11 キヤノン株式会社 光電変換装置、固体撮像装置及び固体撮像システム
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
CA2708335A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
AU2005302964B2 (en) 2004-11-10 2010-11-04 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP4325557B2 (ja) 2005-01-04 2009-09-02 ソニー株式会社 撮像装置および撮像方法
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
FR2888989B1 (fr) 2005-07-21 2008-06-06 St Microelectronics Sa Capteur d'images
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP4752447B2 (ja) * 2005-10-21 2011-08-17 ソニー株式会社 固体撮像装置およびカメラ
KR101112652B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
JP4631723B2 (ja) * 2006-01-27 2011-02-16 ソニー株式会社 固体撮像装置
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4395150B2 (ja) * 2006-06-28 2010-01-06 富士フイルム株式会社 距離画像センサ
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
US7663165B2 (en) 2006-08-31 2010-02-16 Aptina Imaging Corporation Transparent-channel thin-film transistor-based pixels for high-performance image sensors
JP2008060481A (ja) * 2006-09-01 2008-03-13 Matsushita Electric Ind Co Ltd 固体撮像装置
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
JP4525671B2 (ja) * 2006-12-08 2010-08-18 ソニー株式会社 固体撮像装置
GB2457851B (en) * 2006-12-14 2011-01-05 Ion Torrent Systems Inc Methods and apparatus for measuring analytes using large scale fet arrays
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
JP5108339B2 (ja) * 2007-03-12 2012-12-26 富士フイルム株式会社 固体撮像素子
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
CN101663762B (zh) 2007-04-25 2011-09-21 佳能株式会社 氧氮化物半导体
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5050719B2 (ja) * 2007-08-06 2012-10-17 株式会社デンソー 計測装置
KR20090040158A (ko) 2007-10-19 2009-04-23 삼성전자주식회사 투명한 트랜지스터를 구비한 시모스 이미지 센서
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP2009206356A (ja) * 2008-02-28 2009-09-10 Toshiba Corp 固体撮像装置およびその製造方法
JP2009222573A (ja) * 2008-03-17 2009-10-01 Toyota Central R&D Labs Inc 距離測定装置
US7655966B2 (en) * 2008-03-19 2010-02-02 International Business Machines Corporation High efficiency CMOS image sensor pixel employing dynamic voltage supply
US8730382B2 (en) * 2008-06-04 2014-05-20 Honda Motor Co., Ltd. Charge accumulating and splitting imaging device
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5012782B2 (ja) * 2008-12-12 2012-08-29 ソニー株式会社 撮像装置
US8941617B2 (en) 2008-11-07 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Image input-output device with color layer between photodetector and display elements to improve the accuracy of reading images in color
JP5029624B2 (ja) * 2009-01-15 2012-09-19 ソニー株式会社 固体撮像装置及び電子機器
JP5100670B2 (ja) 2009-01-21 2012-12-19 株式会社半導体エネルギー研究所 タッチパネル、電子機器
WO2010092709A1 (ja) * 2009-02-10 2010-08-19 シャープ株式会社 表示装置
JP2010273095A (ja) * 2009-05-21 2010-12-02 Renesas Electronics Corp 撮像装置
JP2011008601A (ja) 2009-06-26 2011-01-13 Sony Computer Entertainment Inc 情報処理装置および情報処理方法
JP5552768B2 (ja) * 2009-07-27 2014-07-16 ソニー株式会社 固体撮像装置とその製造方法、及び電子機器
KR101565969B1 (ko) * 2009-09-01 2015-11-05 삼성전자주식회사 깊이 정보를 추정할 수 있는 방법과 장치, 및 상기 장치를 포함하는 신호 처리 장치
JP2009296016A (ja) * 2009-09-18 2009-12-17 Renesas Technology Corp 固体撮像素子
WO2011055638A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101810254B1 (ko) * 2009-11-06 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 동작 방법
KR20120116403A (ko) 2009-11-06 2012-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 터치 패널 및 터치 패널의 구동 방법
JP2011128024A (ja) * 2009-12-17 2011-06-30 Sharp Corp 3次元撮像装置
KR102471810B1 (ko) * 2010-01-15 2022-11-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 이를 구동하는 방법
JP2011166477A (ja) * 2010-02-10 2011-08-25 Konica Minolta Opto Inc 固体撮像素子及び画像入力装置
KR101832119B1 (ko) * 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
CN102792677B (zh) * 2010-03-08 2015-08-05 株式会社半导体能源研究所 半导体器件及其制造方法
US8692198B2 (en) * 2010-04-21 2014-04-08 Sionyx, Inc. Photosensitive imaging devices and associated methods
JP2011243862A (ja) * 2010-05-20 2011-12-01 Sony Corp 撮像デバイス及び撮像装置
JP5771079B2 (ja) * 2010-07-01 2015-08-26 株式会社半導体エネルギー研究所 撮像装置
JP5521854B2 (ja) * 2010-07-26 2014-06-18 コニカミノルタ株式会社 撮像装置及び画像入力装置
US8803164B2 (en) 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
JP5745369B2 (ja) * 2010-09-06 2015-07-08 株式会社半導体エネルギー研究所 電子機器
JP2012256819A (ja) 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd 半導体装置
JP6081694B2 (ja) 2010-10-07 2017-02-15 株式会社半導体エネルギー研究所 光検出装置
TWI575494B (zh) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 半導體裝置的驅動方法
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
JP6022777B2 (ja) 2012-02-28 2016-11-09 エスアイアイ・セミコンダクタ株式会社 半導体装置の製造方法
CN104160295B (zh) * 2012-03-09 2017-09-15 株式会社半导体能源研究所 半导体装置的驱动方法
JP6193695B2 (ja) * 2013-09-13 2017-09-06 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2015122398A (ja) * 2013-12-24 2015-07-02 セイコーエプソン株式会社 半導体集積回路装置及びそのレイアウト設計方法
CN107063452B (zh) * 2017-04-07 2018-07-20 电子科技大学 一种单光子雪崩光电二极管电容淬灭电路
JP7031160B2 (ja) * 2017-07-31 2022-03-08 凸版印刷株式会社 距離測定装置

Also Published As

Publication number Publication date
KR102334805B1 (ko) 2021-12-06
JP2013224931A (ja) 2013-10-31
JP2020109416A (ja) 2020-07-16
KR20220075281A (ko) 2022-06-08
JP6457032B2 (ja) 2019-01-23
US9541386B2 (en) 2017-01-10
JP2017223697A (ja) 2017-12-21
JP2019060898A (ja) 2019-04-18
KR102110337B1 (ko) 2020-05-14
JP6192957B2 (ja) 2017-09-06
KR20210053847A (ko) 2021-05-12
KR102249850B1 (ko) 2021-05-10
JP6678226B2 (ja) 2020-04-08
KR20200052865A (ko) 2020-05-15
JP6999062B2 (ja) 2022-01-18
KR102588390B1 (ko) 2023-10-13
US20130250274A1 (en) 2013-09-26
KR20130107245A (ko) 2013-10-01
JP2022000665A (ja) 2022-01-04
KR102402367B1 (ko) 2022-05-30
KR20190142759A (ko) 2019-12-27
JP2021141328A (ja) 2021-09-16
KR102169471B1 (ko) 2020-10-23
KR102055753B1 (ko) 2019-12-13
KR20200123053A (ko) 2020-10-28
KR20210151734A (ko) 2021-12-14

Similar Documents

Publication Publication Date Title
KR102402367B1 (ko) 반도체 장치
US11710794B2 (en) Semiconductor device
US9136297B2 (en) Method for driving semiconductor device
US20200295196A1 (en) Semiconductor device and method for manufacturing the same
KR102250765B1 (ko) 반도체 장치
US9264693B2 (en) Motion recognition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240510