JP3711124B2 - 光半導体リレー - Google Patents

光半導体リレー Download PDF

Info

Publication number
JP3711124B2
JP3711124B2 JP2003148819A JP2003148819A JP3711124B2 JP 3711124 B2 JP3711124 B2 JP 3711124B2 JP 2003148819 A JP2003148819 A JP 2003148819A JP 2003148819 A JP2003148819 A JP 2003148819A JP 3711124 B2 JP3711124 B2 JP 3711124B2
Authority
JP
Japan
Prior art keywords
transistor
terminal
photodiode array
lateral pnp
vertical npn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003148819A
Other languages
English (en)
Other versions
JP2004356702A (ja
Inventor
俊光 加藤
勝 湯村
浩治 鶴村
優 藤森
義和 釜堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003148819A priority Critical patent/JP3711124B2/ja
Publication of JP2004356702A publication Critical patent/JP2004356702A/ja
Application granted granted Critical
Publication of JP3711124B2 publication Critical patent/JP3711124B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フォトダイオードカプラにより駆動されるMOSトランジスタをリレー接点とする半導体リレーに関し、特にバイポーラトランジスタによる放電回路を備える光半導体リレーに関する。
【0002】
【従来の技術】
従来の光半導体リレーの回路の構成を図3に示す。この従来の光半導体リレー30は、同図(a)のように、リレー駆動信号が入力されるフォトダイオードカプラ回路31、このフォトダイオードカプラ回路31の光電流によりスイッチするMOSトランジスタ回路33、及びこのMOSトランジスタのゲート蓄積電荷を放電する放電回路32からなる。
【0003】
フォトダイオードカプラ回路31は、発光素子31aおよびフォトダイオードアレイ31bからなり、リレー駆動信号は、発光素子31aの両端の入力端子30a、30bに入力される。
【0004】
放電回路32は、コレクタおよびエミッタをフォトダイオードアレイ31bの両端に接続する放電トランジスタ34を備える。放電トランジスタ34のベースは、放電用抵抗35が並列接続されたフォトダイオードアレイ31bのカソードに接続される。さらに、ダイオード36が、そのカソードをフォトダイオードアレイ31bのカソードに接続し、放電トランジスタ34のベース・エミッタ間に挿入接続される。
【0005】
MOSトランジスタ回路33のMOSトランジスタ33aは、そのゲート33bが、フォトダイオードアレイ31bのアノードに接続される放電トランジスタ34のコレクタに接続される。さらにMOSトランジスタ33aのソース33dが、放電トランジスタ34のエミッタに接続される。リレー出力となる接点端子30c、30dは、MOSトランジスタ33aのドレイン33cとソース33dである。
【0006】
この従来の光半導体リレーの動作は、フォトダイオードカプラ回路31の発光素子31aに電流を流すリレー駆動信号が入力されると、発光素子31aが発光する。この発光により、フォトダイオードアレイ31bの光起電力による光電流38が流れて、MOSトランジスタ33aのゲート33bに電荷が充電される。すなわち光電流38は、フォトダイオードアレイ31bのアノードから放電トランジスタ34のコレクタ、MOSトランジスタ33aのゲート33b、ソース33d、ダイオード36のアノード、ダイオード36のカソード、フォトダイオードアレイ31bのカソードの経路で流る。この電流によるゲート33bの蓄積電荷により、接点のMOSトランジスタ33aのドレイン33cとソース33d間が「オン状態」となって、リレー接点30c、30d間はクローズとなる。
【0007】
一方、リレー信号が無くなると、発光素子31a流れる電流がゼロとなり、発光素子31aは消光する。すなわちフォトダイオードアレイ31bからの光電流は消滅して、ゲート33bに蓄積された電荷が放電回路32により放電する。
【0008】
この放電は、先ず蓄積された電荷が放電用抵抗35を経由して放電トランジスタ34のベースに流れ込み、放電トランジスタ34の電流増幅率hFEで増幅されたコレクタ電流と成って放電する。ゲートの電荷が放電した接点のMOSトランジスタ33のドレイン33cとソース33d間が「オフ状態」となって、リレー接点間はオープンとなる。
【0009】
なお、ダイオード36は、光電流38が流れているMOSトランジスタ33aの「オン状態」では、放電トランジスタ34のベース・エミッタ間を逆バイアスしてこのトランジスタ34をオフとし、一方、光電流38が消滅した「オフ状態」では、放電用抵抗35を経由する放電電流に対しては高インピーダンスとなってベース電流を大量に流すことができる(例えば、特許文献1参照。)。
【0010】
また、同図(b)に示す従来の他の光半導体リレーの回路例では、放電回路42が放電トランジスタをトランジスタ45、46によるダーリントン接続として構成され、放電トランジスタの電流増幅率hFEがトランジスタ45の電流増幅率hFEとトランジスタ46の電流増幅率hFEの積の値まで実質的に高めて、放電をより速やかに行うものである(例えば、特許文献2参照。)。
【0011】
【特許文献1】
特開2002−50952号公報(図1)
【0012】
【特許文献2】
特開2002−353797号公報(図2)
【0013】
【発明が解決しようとする課題】
上に述べた従来の光半導体リレーは、ゲート蓄積電荷の放電を、トランジスタの電流増幅率hFEにより増幅したコレクタ電流とする放電回路を構成し、MOSトランジスタのターンオフの高速化を図っている。しかし、さらに高速化したリレー作動の実現を図る上には、更なるターンオフ時間の短縮が必要となっていた。
【0014】
この発明は上記の要求に鑑みてなされたもので、ゲート蓄積電荷の放電が急速に且つ効率良く大電流で行われ、高速のターンオフ作動を行う光半導体リレーを提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明の光半導体リレーは、リレー駆動信号により発光または消光する発光素子、およびこの発光素子の光を受光して起電力が発生するフォトダイオードアレイとからなるフォトダイオードカプラ回路と、前記フォトダイオードアレイのアノードに、ダーリントン回路を形成するラテラル型pnpトランジスタのエミッタ部およびバーチカル型npnトランジスタのコレクタ部がそれそれ接続され、前記フォトダイオードアレイのカソードに、前記ラテラル型pnpトランジスタのコレクタ部および前記バーチカル型npnトランジスタのエミッタ部がそれぞれ接続されるトランジスタ放電回路と、このトランジスタ放電回路の前記バーチカル型npnトランジスタのコレクタと前記ラテラル型pnpトランジスタのエミッタとにゲートが接続され、前記バーチカル型npnトランジスタのエミッタにソースが接続され、そのドレインおよび前記ソースをリレー出力端子とするMOSトランジスタとからなることを特徴とするものである。
【0016】
さらに、本発明の光半導体リレーは、ダーリントン回路を形成する前記トランジスタ放電回路は、前記フォトダイオードアレイに第1の抵抗が並列接続され、前記フォトダイオードアレイのアノードに、前記ラテラル型pnpトランジスタのベース端子およびダイオードのアノード端子が接続され、このダイオードのカソード端子に、前記ラテラル型pnpトランジスタのエミッタ端子および前記バーチカル型npnトランジスタのコレクタ端子が接続され、前記フォトダイオードアレイのカソードに、第2の抵抗を介して前記ラテラル型pnpトランジスタのコレクタ端子および前記バーチカル型npnトランジスタのベース端子が共通に接続され、さらに前記バーチカル型npnトランジスタのエミッタ端子も同じく前記フォトダイオードアレイのカソードに接続されることを特徴とするものである。
【0017】
さらに、本発明の光半導体リレーは、ダーリントン回路を形成する前記トランジスタ放電回路は、前記フォトダイオードアレイに抵抗が並列接続され、前記フォトダイオードアレイのアノードに、前記ラテラル型pnpトランジスタのベース端子および第1のダイオードのアノード端子が接続され、この第1のダイオードのカソード端子に、前記ラテラル型pnpトランジスタのエミッタ端子および前記バーチカル型npnトランジスタのコレクタ端子が接続され、前記フォトダイオードアレイのカソードに、前記ラテラル型pnpトランジスタのコレクタ端子および前記バーチカル型npnトランジスタのベース端子が共通に接続され、さらに第2のダイオードのカソード端子も同じく接続され、前記バーチカル型npnトランジスタのエミッタ端子が前記第2のダイオードのアノード端子に接続されることを特徴とするものである。
【0018】
さらに、本発明の光半導体リレーは、前記トランジスタ放電回路の前記ラテラル型pnpトランジスタおよび前記バーチカル型npnトランジスタが、1チップ内に形成されて、前記フォトダイオードカプラ回路および前記MOSトランジスタに接続されることを特徴とするものである。
【0019】
【発明の実施の形態】
以下、本発明の光半導体リレーを接続回路図を用いて詳細に説明する。
【0020】
図1は、本発明の一実施形態の接続構成を示す回路図である。
【0021】
本実施形態の構成の概略は、図1に示すように、リレー駆動信号が入力されるフォトダイオードカプラ回路11と、2つのバイポーラトランジスタ16,17がダーリントン接続される放電回路12と、リレー接点となるMOSトランジスタ接点回路13とから構成される。
【0022】
リレー駆動信号は、フォトダイオードカプラ回路11の発光素子11aに接続される。発光素子11aは、リレー駆動信号の入力に応じて、発光または消光のいずれかをする。この発光素子11aからの発光信号を受光して、フォトダイオードアレイ11bのアノード・カソード間に光起電力が発生する。
【0023】
放電回路12は、フォトダイオードアレイ11bに並列接続される第1の放電抵抗15aと1段目をラテラル型pnpトランジスタ16により、2段目をバーチカル型npnトランジスタ17により構成するダーリントン回路が接続される。すなわち放電回路12は、フォトダイオードアレイ11bのアノードにラテラル型pnpトランジスタ16のベースが接続される。同じくこのフォトダイオードアレイ11bのアノードにダイオード14のアノードが接続される。
【0024】
ダーリントン接続のラテラル型pnpトランジスタ16のエミッタ、および2バーチカル型npnトランジスタ17のコレクタが共通にされて、ダイオード14のカソードに接続される。
【0025】
一方、ラテラル型pnpトランジスタ16のコレクタには、ダーリントン接続するバーチカル型npnトランジスタ17のベース、およびフォトダイオードアレイ11bのカソードに接続する第2の放電抵抗15bの他端が接続される。
【0026】
さらに、バーチカル型npnトランジスタ17のエミッタも第2の放電抵抗15bと共に、フォトダイオードアレイ11bのカソードに接続される。
【0027】
放電回路12のバーチカル型npnトランジスタ17のコレクタは、MOSトランジスタ接点回路13のMOSトランジスタ13aのゲート13bに接続される。一方、同じくトランジスタ17のエミッタは、MOSトランジスタ13aのソース13dに接続される。
【0028】
光半導体リレー10のリレー接点端子10c、10dは、MOSトランジスタ接点回路13のMOSトランジスタ13aのドレイン13cおよびソース13dよりなる。
【0029】
次に、本実施形態の作用、動作を説明する。
【0030】
先ず、リレー駆動信号が無い場合には、フォトダイオードカプラ回路11の発光素子11aは発光しないので、フォトダイオードアレイ11bは光起電力を発生しない。したがって、MOSトランジスタ接点回路13のMOSトランジスタ13aには電気入力が無く、リレー接点端子は、非導通のオープン状態となっている。
【0031】
次に、リレー駆動信号が入力されて、発光素子11aに電流が流れると、発光素子11aが発光する。この発光によりフォトダイオードアレイ11bは光起電力を発生し、フォトダイオードアレイ11bのアノードからダイオード14の順方向に電流が流れ、MOSトランジスタ13aのゲート13bに流れ込む。
【0032】
このとき、放電回路12の1段目のラテラル型pnpトランジスタ16は、ダイオード14の順方向電圧により逆バイアスされてオフとなり、2段目のバーチカル型npnトランジスタ17もそのベースがエミッタと導電位になるので同じくオフとなって、流れ込む電流により電荷がゲート13bに蓄積される。
【0033】
光起電力が発生している間、ゲート13bに電荷が蓄積されて、この電荷によりリレー接点端子のMOSトランジスタ13aのドレイン13cおよびソース13d間が低インピーダンスとなり、この接点端子間が導通のクローズ状態となる。
【0034】
その後、リレー入力信号の入力が無くなると、発光素子11aの発光が無くなり、受光が無いフォトダイオードアレイ11bは光起電力を消滅する。この起電力が無くなると、ラテラル型pnpトランジスタ16のベースがエミッタの電位より低くなる。これによりMOSトランジスタ13aのゲート13bに蓄積されていた電荷が、トランジスタ16のエミッタから流出し、放電抵抗15aを通じて微小なベース電流となって流れ始める。このとき、ラテラル型pnpトランジスタ16の電流増幅率hFEは、微小電流領域で非常に大きい特性を有するので、トランジスタ16のコレクタ電流が、この放電の開始直後に比較的大きな電流値で流れる。
【0035】
さらにこの大きな電流値のコレクタ電流は、2段目のバーチカル型npnトランジスタ17のベース電流となって流れる。バーチカル型npnトランジスタ17は、大電流領域で電流増幅率hFEが大きい特性を有するので、ゲート13bに接続されるトランジスタ17のコレクタから、ゲート13bに蓄積されていた電荷が大電流となって、より速やかにソース13dへ放電される。
【0036】
この大電流によりゲート13bの電荷を放電したMOSトランジスタ13aは、そのドレイン13cおよびソース13d間が、急速に高インピーダンスとなり、接点端子がオープン状態となり、高速のターオフが行われる。
【0037】
本実施形態によれば、リレー駆動信号の入力が無くなった直後で、フォトダイオードアレイ11bの起電力電位が僅かに低下した時点に、順方向のバイアスとなるラテラル型pnpトランジスタ16を、微小なベース電流が流れ始める。このラテラル型pnpトランジスタ16は、その特性から微小電流域において大きな電流増幅率hFEを有しており、この微小なベース電流により比較的大きなコレクタ電流が流れ、2段目のバーチカル型npnトランジスタ17に大きなベース電流を供給することになる。さらにこの大きなベース電流により、大電流領域での大きな電流増幅率hFEをその特性とするバーチカル型npnトランジスタ17のコレクタ電流は、さらに大きな電流となる。すなわちこの大電流のコレクタ電流は、MOSトランジスタ13aのゲート蓄積電荷を放電電流として引き出すことができる。
【0038】
大電流で蓄積電荷が放電されるMOSトランジスタ13aは、そのドレイン13cおよびソース13d間が、急峻に非導通のオープン状態となり、高速のターンオフを実現できる。
【0039】
図2は、本発明の他の実施形態を示す回路図である。
【0040】
図2に示すように、本実施形態は、前述の実施形態における第2の放電抵抗15bを第2のダイオード24bに置き換えた放電回路22を備えるものである。
【0041】
すなわち、1段目のラテラル型pnpトランジスタ26のコレクタには、2段目のバーチカル型npnトランジスタ27のベースが接続されて、これらは共に、フォトダイオードアレイ11bのカソードに接続される。
【0042】
さらに、第2のダイオード24bが、そのカソードをフォトダイオードアレイ11bのカソードに接続して、バーチカル型npnトランジスタ27のベース・エミッタ間に納入接続される。
【0043】
MOSトランジスタ接点回路23のMOSトランジスタ23aは、前述の実施形態と同様に、ゲート23bがラテラル型pnpトランジスタ26のエミッタにも接続しているバーチカル型npnトランジスタ27のコレクタに接続され、ソース23dがバーチカル型npnトランジスタタ27のエミッタに接続される。
【0044】
リレー接点端子20c、20dは、MOSトランジスタ23aのドレイン23cおよびソース23dよりなる。
【0045】
上述の本実施形態の作用、動作は、前述の一実施形態と同様に、リレー駆動信号が無い場合には、フォトダイオードカプラ回路21の発光素子21aは発光しない。したがって、フォトダイオードアレイ21bの光起電力が無く、MOSトランジスタ23aは、非導通のオープン状態である。
【0046】
次に、リレー駆動信号が入力されて、発光素子21aに電流が流れると、これが発光し、フォトダイオードアレイ21bには光起電力が発生する。この起電力によりフォトダイオードアレイ21bのアノードからMOSトランジスタ23aのゲート23bに流れ込み、ゲート23bに電荷が蓄積され、接点端子20c、20d間が導通のクローズ状態となる。
【0047】
その後、リレー駆動信号の入力が無くなると、発光素子21aが消光し、フォトダイオードアレイ21bの光起電力が消滅する。この起電力が無くなると、ゲート23bに蓄積されていた電荷が、微小なベース電流となって流れ始め、微小電流領域で非常に大きい電流増幅率hFE特性を有するラテラル型pnpトランジスタ26のコレクタ電流が、比較的大きな電流値で、放電の開始直後に流れる。
【0048】
このとき、2段目のバーチカル型npnトランジスタ27のベース・エミッタ間は、前述の実施形態とは異なり第2のダイオード24bによる逆方向電圧でバイアスされて損失無しとなる。したがって、ラテラル型pnpトランジスタトランジスタ26のコレクタ電流は、大半がこのバーチカル型npnトランジスタ27のベース電流として流れて、大電流領域で電流増幅率hFEが大きい特性を有するトランジスタ27のコレクタから、ゲート23bに蓄積されていた電荷が大電流となって、より速やかに放電される。
【0049】
この大電流によりゲート23bの電荷を放電したMOSトランジスタ23aは、そのドレイン23cおよびソース23d間が、急速に高インピーダンスとなり、接点端子がオープン状態となり、高速のターオフが行われる。
【0050】
本実施形態によれば、リレー入力信号の入力が無くなった直後に、微小電流域での大きな電流増幅率hFE特性を有するラテラル型pnpトランジスタ26のコレクタ電流の大半が、大電流領域での大きな電流増幅率hFE特性を有するバーチカル型npnトランジスタ27のベース電流となる。この大きなベース電流により、バーチカル型npnトランジスタ27のコレクタから、リレー接点を構成するMOSトランジスタ23aのゲート蓄積電荷をさらに大電流の放電電流として引き出すことができる。したがって、大電流で放電されるMOSトランジスタは、急峻にオープン状態となり、高速のターンオフを実現できる。
【0051】
なお、上述のラテラル型pnpトランジスタおよびバーチカル型npnトランジスタは、1チップ内にそれぞれのプロセスで製造された各トランジスタが配される形態に形成することにより小型化が図られて、大電流用MOSトランジスタチップと共にモールドした高速MOS半導体リレーとして実施することもできる。
【0052】
【発明の効果】
上述のように本発明の光半導体リレーは、リレー接点となるMOSトランジスタのゲート蓄積電荷を、ラテラル型pnpトランジスタとバーチカル型npnトランジスタにより構成するダーリントン回路の放電回路により、急峻に立ち上がる電流増幅率特性による大電流放電し、ターンオフ時間を高速化することが可能となる。
【図面の簡単な説明】
【図1】本発明の一実施形態の回路構成を示す図。
【図2】本発明の他の実施形態の回路構成を示す図。
【図3】従来の光半導体リレーの回路接続を示す図。
【符号の説明】
10、20、30・・・光半導体リレー、
10a、10b、20a、20b、30a、30b、・・・入力端子、
10c、10d、20c、20d、30a、30d・・・出力端子、
11、21、31・・・フォトダイオードカプラ回路、
11a、21a、31a・・・発光素子、
11b、21b、31b・・・フォトダイオードアレイ、
12、22、32、42・・・放電回路、
13、23、33、43・・・MOSトランジスタ接点回路、
13a、23a、33a・・・MOSトランジスタ、
13b、23b、33b・・・MOSトランジスタのゲート、
13c、23c、33c・・・MOSトランジスタのドレイン、
13d、23d、33d・・・MOSトランジスタのソース、
14,24a、24b、36・・・ダイオード、
15a、15b、35・・・放電抵抗、
16、26・・・ラテラル型pnpトランジスタ、
17、27・・・バーチカル型npnトランジスタ、
34、45、46・・・放電トランジスタ。

Claims (4)

  1. リレー駆動信号により発光または消光する発光素子、およびこの発光素子の光を受光して起電力が発生するフォトダイオードアレイとからなるフォトダイオードカプラ回路と、
    前記フォトダイオードアレイのアノードに、ダーリントン回路を形成するラテラル型pnpトランジスタのエミッタ部およびバーチカル型npnトランジスタのコレクタ部がそれそれ接続され、前記フォトダイオードアレイのカソードに、前記ラテラル型pnpトランジスタのコレクタ部および前記バーチカル型npnトランジスタのエミッタ部がそれぞれ接続されるトランジスタ放電回路と、
    このトランジスタ放電回路の前記バーチカル型npnトランジスタのコレクタと前記ラテラル型pnpトランジスタのエミッタとにゲートが接続され、前記バーチカル型npnトランジスタのエミッタにソースが接続され、そのドレインおよび前記ソースをリレー出力端子とするMOSトランジスタとからなることを特徴とする光半導体リレー。
  2. ダーリントン回路を形成する前記トランジスタ放電回路は、前記フォトダイオードアレイに第1の抵抗が並列接続され、
    前記フォトダイオードアレイのアノードに、前記ラテラル型pnpトランジスタのベース端子およびダイオードのアノード端子が接続され、このダイオードのカソード端子に、前記ラテラル型pnpトランジスタのエミッタ端子および前記バーチカル型npnトランジスタのコレクタ端子が接続され、
    前記フォトダイオードアレイのカソードに、第2の抵抗を介して前記ラテラル型pnpトランジスタのコレクタ端子および前記バーチカル型npnトランジスタのベース端子が共通に接続され、さらに前記バーチカル型npnトランジスタのエミッタ端子も同じく前記フォトダイオードアレイのカソードに接続されることを特徴とする請求項1記載の光半導体リレー。
  3. ダーリントン回路を形成する前記トランジスタ放電回路は、前記フォトダイオードアレイに抵抗が並列接続され、
    前記フォトダイオードアレイのアノードに、前記ラテラル型pnpトランジスタのベース端子および第1のダイオードのアノード端子が接続され、この第1のダイオードのカソード端子に、前記ラテラル型pnpトランジスタのエミッタ端子および前記バーチカル型npnトランジスタのコレクタ端子が接続され、
    前記フォトダイオードアレイのカソードに、前記ラテラル型pnpトランジスタのコレクタ端子および前記バーチカル型npnトランジスタのベース端子が共通に接続され、さらに第2のダイオードのカソード端子も同じく接続され、
    前記バーチカル型npnトランジスタのエミッタ端子が前記第2のダイオードのアノード端子に接続されることを特徴とする請求項1記載の光半導体リレー。
  4. 前記トランジスタ放電回路の前記ラテラル型pnpトランジスタおよび前記バーチカル型npnトランジスタが、1チップ内に形成されて、前記フォトダイオードカプラ回路および前記MOSトランジスタに接続されることを特徴とする請求項1、2、3のいずれかに記載の光半導体リレー。
JP2003148819A 2003-05-27 2003-05-27 光半導体リレー Expired - Fee Related JP3711124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003148819A JP3711124B2 (ja) 2003-05-27 2003-05-27 光半導体リレー

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003148819A JP3711124B2 (ja) 2003-05-27 2003-05-27 光半導体リレー

Publications (2)

Publication Number Publication Date
JP2004356702A JP2004356702A (ja) 2004-12-16
JP3711124B2 true JP3711124B2 (ja) 2005-10-26

Family

ID=34045093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003148819A Expired - Fee Related JP3711124B2 (ja) 2003-05-27 2003-05-27 光半導体リレー

Country Status (1)

Country Link
JP (1) JP3711124B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5231118B2 (ja) * 2008-07-24 2013-07-10 ルネサスエレクトロニクス株式会社 受光アンプ回路
WO2011125244A1 (ja) * 2010-04-09 2011-10-13 三菱マテリアル株式会社 焼結体形成用の粘土状組成物、焼結体形成用の粘土状組成物用粉末、焼結体形成用の粘土状組成物の製造方法、銀焼結体及び銀焼結体の製造方法
JP5723303B2 (ja) 2012-01-27 2015-05-27 株式会社東芝 受光回路
US9541386B2 (en) * 2012-03-21 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Distance measurement device and distance measurement system
CN103036550B (zh) * 2012-12-11 2015-09-09 电子科技大学 一种快速放电的光电继电器
CN103312310A (zh) * 2013-05-14 2013-09-18 电子科技大学 一种高速光电继电器
CN105827236A (zh) * 2016-03-09 2016-08-03 合肥汇芯半导体科技有限公司 一种用于驱动硅基雪崩光电二极管的电路结构

Also Published As

Publication number Publication date
JP2004356702A (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
JP3711124B2 (ja) 光半導体リレー
US10847947B2 (en) GaN laser diode drive FET with gate current reuse
JP3620089B2 (ja) Ecl−cmosレベル変換器
JP2009117528A (ja) 光半導体リレー装置
US20100059661A1 (en) Relay circuit
JP3837372B2 (ja) 半導体リレー
US7629567B2 (en) Light receiving circuit having two switched photodiodes
JP3806108B2 (ja) 半導体リレー装置
US20050116146A1 (en) Optical sensor circuit
JP3564235B2 (ja) 半導体リレー回路
JP3488088B2 (ja) 発光ダイオード駆動回路
JP2694808B2 (ja) ソリッドステートリレー
JP2004260047A (ja) 光結合型半導体リレー装置
JP3720038B2 (ja) 半導体リレー装置
JPH06181431A (ja) ソリッドステートリレー
JPH0637618A (ja) 固体素子リレー
JP2002026710A (ja) スイッチ回路、リレー回路及びその駆動方法
JP2004319674A (ja) Mos半導体リレー
JPH05335616A (ja) 高速応答フォトカプラ
JP2932782B2 (ja) 半導体リレー回路
JPH11177401A (ja) スイッチ回路
JPH0645653A (ja) Led駆動回路
JP2002050952A (ja) 半導体リレー及びその製造方法
JPH1154784A (ja) 半導体リレー
JPH11163706A (ja) 半導体リレー

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees