JP2017135255A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2017135255A
JP2017135255A JP2016013713A JP2016013713A JP2017135255A JP 2017135255 A JP2017135255 A JP 2017135255A JP 2016013713 A JP2016013713 A JP 2016013713A JP 2016013713 A JP2016013713 A JP 2016013713A JP 2017135255 A JP2017135255 A JP 2017135255A
Authority
JP
Japan
Prior art keywords
electrode
region
gate
gate electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016013713A
Other languages
English (en)
Other versions
JP2017135255A5 (ja
JP6414090B2 (ja
Inventor
規行 柿本
Noriyuki Kakimoto
規行 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016013713A priority Critical patent/JP6414090B2/ja
Priority to PCT/JP2016/087505 priority patent/WO2017130597A1/ja
Priority to CN201680073924.1A priority patent/CN108475675B/zh
Priority to US15/770,258 priority patent/US10438852B2/en
Publication of JP2017135255A publication Critical patent/JP2017135255A/ja
Publication of JP2017135255A5 publication Critical patent/JP2017135255A5/ja
Application granted granted Critical
Publication of JP6414090B2 publication Critical patent/JP6414090B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • H01L29/7396Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions
    • H01L29/7397Vertical transistors, e.g. vertical IGBT with a non planar surface, e.g. with a non planar gate or with a trench or recess or pillar in the surface of the emitter, base or collector region for improving current density or short circuiting the emitter and base regions and a gate structure lying on a slanted or vertical surface or formed in a groove, e.g. trench gate IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/868PIN diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/87Thyristor diodes, e.g. Shockley diodes, break-over diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Conversion In General (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

【課題】あらゆる電流領域においてリカバリ特性の向上と順電圧の低減とを両立した半導体装置を提供する。
【解決手段】逆導通スイッチング素子10は、IGBT素子11とダイオード素子12とが並設される。ダイオード素子は、アノード電極78とカソード電極71との間で第1ドリフト領域73aとアノード領域76aとがpn接合し、第1ドリフト領域にあって、アノード領域とは離間した第1サブアノード74aを有する。ゲート電極82にゲート電圧が印加されることにより、アノード領域と第1サブアノードに挟まれた第2バリア領域75aに反転層が生じる。ゲート電極は、第1ゲート電圧が入力される第1ゲート電極82aと、第1ゲート電圧とは独立して制御され第1ゲート電圧の反極性となる第2ゲート電圧が入力される第2ゲート電極82bと、を有する。
【選択図】図2

Description

スイッチング素子と逆導通ダイオードとが設けられた半導体装置に関する。
特許文献1に記載のように、逆導通型の絶縁ゲートバイポーラトランジスタ(RC−IGBT)において、IGBT素子領域をオフ状態に切り替えてダイオード素子領域に還流電流が流れる際に、絶縁トレンチゲート電極に負電圧を印加する半導体装置が知られている。
これによれば、アノード領域から流出したホールが絶縁トレンチゲート電極に沿ってドリフト層に注入されやすくなり、順方向電圧降下(以下、順電圧という)を低減できるとされている。
特開2011−238975号公報
特許文献1に記載の動作を実現するためには、IGBT素子領域とダイオード素子領域のいずれがオン状態にあるかを判定し、ゲート電圧の極性を切り替える必要がある。例えば一般的なモータ駆動用のインバータ回路などでは、ゲート電圧の極性をモータ電気角周期で切り替えることになる。IGBT素子領域およびダイオード素子領域のいずれがオン状態であるかは、例えば出力電流の正負で判定することができる。しかしながら、インバータ回路のように短い周期で出力電流の正負が切り替わる態様において、電流センサの公差によっては、出力電流の正負判定が精度よく行えない電流領域が生じてしまう。この電流領域は出力電流がゼロ近傍の低電流領域である。
従来、出力電流の正負が判定不能なこのような電流領域では、システム全体の動作の安定性を考慮してIGBT素子領域がオン状態にあると仮定している。一般的なRC−IGBTにおけるダイオード素子領域はゲート電極に電圧が印加されるゲート干渉を抑制するためにゲート電極の電位がアノード電位に固定されているが、出力電流の極性によってダイオード素子領域に負電圧を印加する態様では電圧の固定はできない。よって、出力電流の正負が判定不能なこのような電流領域ではダイオード素子領域のゲート電極に正電圧が印加されることになる。このため、ダイオード素子領域の順電圧が増大してしまう虞がある。
本発明は、上記問題点を鑑みてなされたものであり、あらゆる電流領域においてリカバリ特性の向上と順電圧の低減とを両立した半導体装置を提供することを目的とする。
ここに開示される発明は、上記目的を達成するために以下の技術的手段を採用する。なお、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、発明の技術的範囲を限定するものではない。
上記目的を達成するために、本発明は、同一の半導体基板(70,90)にダイオード素子(12)とスイッチング素子(11)とが並列して形成された逆導通スイッチング素子(10,20)と、逆導通スイッチング素子に形成される複数のゲート電極(82)にゲート電圧を印加する駆動部(30,40)と、主にスイッチング素子に電流が流れる順導通モードと、主にダイオード素子に電流が流れる逆導通モードと、のいずれのモードで駆動しているかを判定するモード判定部(50)と、を備え、
ダイオード素子は、第1導電型の第1不純物領域(72a,73a,75a)と、第1不純物領域に接合して形成された第2導電型の第2不純物領域(76a,91)と、第1不純物領域と電気的に接続される第1電極(71,95)と、第2不純物領域と電気的に接続される第2電極(78,94)と、さらに、第1不純物領域にあって、第2不純物領域とは離間しつつ第1電極と第2電極との間の電流経路に形成された第2導通型の第3不純物領域(74a,93)と、を有し、ゲート電極に所定のゲート電圧が印加されることにより、第2不純物領域と第3不純物領域に挟まれた第1不純物領域におけるバリア領域(75a,92)に反転層が生じるものであり、
スイッチング素子は、ダイオード素子と共通した第1電極および第2電極を有するとともに、ゲート電極に所定のゲート電圧が印加されることによりオンの状態とされて第1電極と第2電極との間に電流が流れるものであり、
複数のゲート電極は、スイッチング素子をオンの状態とする第1ゲート電圧が入力される第1ゲート電極(82a)と、第1ゲート電圧とは独立して制御され、第1電極の電位と同一、もしくは、第1電極の電位を基準として第1ゲート電圧の極性と反対の極性となる第2ゲート電圧が入力される第2ゲート電極(82b)と、を有し、
ダイオード素子に属するゲート電極は、少なくとも第2ゲート電極を含み、スイッチング素子に属するゲート電極は、少なくとも第1ゲート電極を含み、第1電極と第2電極との間を流れる電流に基づいて、モード判定部により、逆導通モードと判定された際、もしくは、逆導通モードか順導通モードかを判定できない際、第2ゲート電極に、第2ゲート電圧が印加されることを特徴としている。
これによれば、逆導通モードにおいて順電圧を低減できることに加えて、逆導通モードか順導通モードかを判定できない際にも、ダイオード素子の順電圧を低減することができる。なお、逆導通モードか順導通モードかを判定できない際に、万一順導通モードであったとしても、モードの判定ができない電流領域においては、IGBT素子の出力電流が十分小さいので、IGBT素子のコレクタ−エミッタ間の飽和電圧の増大は限定的である。したがって、本発明を採用することにより、従来に較べて、逆導通モードか順導通モードかを判定できない際の順電圧の増大に起因する損失を低減することができる。
第1実施形態に係るインバータの概略構成を示す回路図である。 図3に示すII−II線に沿う断面であり、第1素子あるいは第2素子の詳細の構造を示す断面図である。 第1素子あるいは第2素子の詳細の構造を示す上面図である。 駆動部が第1素子あるいは第2素子に対して印加するゲート電圧のパターンを示す表である。 ゲート電圧の印加タイミングを示すタイミングチャートである。 ゲート電圧の印加タイミングを示すタイミングチャートである。 ゲート電圧の印加タイミングを示すタイミングチャートである。 第2実施形態に係る第1素子あるいは第2素子の詳細の構造を示す断面図である。 第3実施形態に係る第1素子あるいは第2素子の詳細の構造を示す断面図である。 横型ダイオードの構造を示す断面図である。
以下、本発明の実施の形態を図面に基づいて説明する。なお、以下の各図相互において、互いに同一もしくは均等である部分に、同一符号を付与する。
(第1実施形態)
最初に、図1を参照して、本実施形態に係る半導体装置の概略構成について説明する。
本実施形態では、ダイオード素子および絶縁ゲートバイポーラトランジスタ素子(IGBT素子)が同一の半導体基板に形成された逆導通絶縁ゲートバイポーラトランジスタ(RC−IGBT)が、半導体装置たるインバータに適用される形態について説明する。
図1に示すように、インバータ100は、2つの逆導通絶縁ゲートバイポーラトランジスタ10,20と、各逆導通絶縁ゲートバイポーラトランジスタ10,20のゲート電極にゲート電圧を印加するための駆動部30,40と、各逆導通絶縁ゲートバイポーラトランジスタ10,20の駆動状態を判定するモード判定部50と、を備えている。
図1に示すように、インバータ100は、電源電圧VCCとグランドGNDの間に2つの逆導通絶縁ゲートバイポーラトランジスタ10,20が直列に接続されて構成されている。2つの逆導通絶縁ゲートバイポーラトランジスタ10,20の接続点には負荷200が接続されている。以下の記載では、2つの逆導通絶縁ゲートバイポーラトランジスタ10,20のうち、負荷200に対して電源電圧VCC側のものを第1素子10と称し、グランドGND側のものを第2素子20と称する。つまり、第1素子10がインバータ100における上アームを構成し、第2素子20が下アームを構成している。第1素子10および第2素子20は、特許請求の範囲に記載の逆導通スイッチング素子に相当する。
第1素子10は、スイッチング素子に相当するIGBT素子11と、ダイオード素子12とを有している。ダイオード素子12は、いわゆるフライホイールダイオードであり、IGBT素子11におけるエミッタからコレクタに向かって順方向となるように、IGBT素子11に並列に接続されている。
第2素子20は第1素子10と等価であり、IGBT素子21とダイオード素子22とを有している。ダイオード素子22は、IGBT素子21におけるエミッタからコレクタに向かって順方向となるようにIGBT素子21に並列に接続されている。
第1素子10および第2素子20はダブルゲート構造の逆導通スイッチング素子であり2種類のゲート電極を有している。第1素子10および第2素子20の詳しい素子構造については図2および図3とともに追って詳述する。
駆動部は、第1素子10へのゲート電圧の印加を制御する第1駆動部30と、第2素子20へのゲート電圧の印加を制御する第2駆動部40とを有している。第1駆動部30および第2駆動部40の構造は互いに等価である。本実施形態における駆動部30,40は、図1に示すように、それぞれ2つのゲート配線に接続され、ダブルゲート構造を有する第1素子10および第2素子のそれぞれのゲート電極に独立したゲート電圧を印加することができるようになっている。具体的には、一方のゲート電極(後述する第1ゲート電極82a)にはエミッタ電圧Veと+V1の2値が入力でき、他方のゲート電極(後述する第2ゲート電極82b)には+V1、Veおよび−V2の3値が入力できる。なお、+V1とは、エミッタ電圧Veを基準として正の電圧であり、−V2とはエミッタ電圧Veを基準として負の電圧である。
なお、特許請求の範囲に記載の第1ゲート電圧とは+V1に相当し、第2ゲート電圧とは、Veもしくは−V2に相当する。
モード判定部50は、第1素子10および第2素子20の動作モードを判定している。ここで、動作モードとは、絶縁ゲートバイポーラトランジスタにおいて、主にIGBT素子に電流が流れているか、あるいは主にダイオード素子に電流が流れているか、を区別するものである。以下の記載では、主にIGBT素子に電流が流れて動作している状態を順導通モードと称し、主にダイオード素子に電流が流れて動作している状態を逆導通モードと称する。
本実施形態におけるモード判定部50は、負荷200に流れる電流の向きに基づいて第1素子10および第2素子20の動作モードを判定している。インバータ100は、負荷200と直列接続された負荷電流検出部60を備えている。負荷電流検出部60は、負荷200を流れる負荷電流Iを、方向を含めて検出する電流計である。負荷電流検出部60は、負荷電流Iが第1素子10と第2素子20との接続点から負荷200に向かって流れる場合を正の電流とし、その逆を負の電流としてモード判定部50に出力している。
モード判定部50は、負荷電流検出部60から出力される負荷電流Iの正負に基づいて動作モードを判定している。具体的には、負荷電流Iが正の場合には、主に、第1素子10(上アーム)におけるIGBT素子11および第2素子20(下アーム)におけるダイオード素子22に電流が流れている状態である。よって、モード判定部50は、第1素子10の動作モードを順導通モードと判定し、第2素子20の動作モードを逆導通モードと判定する。一方、負荷電流Iが負の場合には、主に、第1素子10におけるダイオード素子12および第2素子20におけるIGBT素子21に電流が流れている状態である。よって、モード判定部50は、第1素子10の動作モードを逆導通モードと判定し、第2素子20の動作モードを順導通モードと判定する。モード判定部50が動作モードを判定可能な電流レベルよりも負荷電流Iが小さいと、モード判定部50は素子10あるいは素子20の動作モードを判定できないが、そのような場合にはモード判定不可である旨を駆動部30,40に通知する。
モード判定部50は、素子10,20の動作モード、あるいはモード判定不可である旨を駆動部30,40に通知する。そして駆動部30,40は、動作モードも応じてゲート電極にゲート電圧を印加する。
次に、図2を参照して、第1素子10および第2素子20の詳しい構造について説明する。なお、第1素子10と第2素子20とは互いに等価な逆導通絶縁ゲートバイポーラトランジスタであるからこれらの区別なく説明するが、図1と共通する要素については第1素子10に付した符号と相互に対応付ける。また、図2において、半導体基板70のうちp導電型となる不純物拡散層にハッチングを付しているが、n導電型となる不純物拡散層のハッチングを省略している。
本実施形態における逆導通スイッチング素子たる逆導通絶縁ゲートバイポーラトランジスタは、図2に示すように、第1主面70aとその裏面である第2主面70bを有する半導体基板70に形成されている。スイッチング素子としての機能を奏するIGBT素子11とダイオードとしての機能を奏するダイオード素子12は同一の半導体基板70にそれぞれ形成されている。
第1主面70aには、例えばアルミニウムから成るカソード電極71が形成されている。カソード電極71は、ダイオード素子12におけるカソード端子あるいはIGBT素子11におけるコレクタ端子に相当し、カソード電極71がこれらを互いに兼用している。また、カソード電極71は、特許請求の範囲における第1電極に相当している。
また、図2に示すように、半導体基板70における第1主面70aの表層においてカソード電極71に接触するようにn導電型のカソード領域72aが形成されている。また、カソード領域72aと同一層にp導電型のコレクタ領域72bが形成されている。コレクタ領域72bはカソード電極71に接触しつつカソード領域72aに隣接している。IGBT素子11とダイオード素子12との境界近傍では、ダイオード素子12がIGBT11として作用し得る。また、IGBT素子11がダイオード素子12として作用し得る。本実施形態では、機能としてIGBT素子11とダイオード素子12が混在する領域を混成領域と称し、カソード領域72aとコレクタ領域72bの界面をダイオード部12とIGBT部11の境界と称する。カソード領域72aは、特許請求の範囲における第1不純物領域の一部に相当している。
カソード領域72a上にn導電型の第1ドリフト領域73aが積層され、コレクタ領域72b上にn導電型の第2ドリフト領域73bが積層されている。第1ドリフト領域73aおよび第2ドリフト領域73bの名称を便宜的に別にしているが、これらの領域73a、73bは実質同一の不純物拡散層からなる連続した領域である。第1ドリフト領域73aは、特許請求の範囲における第1不純物領域の一部に相当している。
第1ドリフト領域73a上にp導電型の第1サブアノード74aが積層され、第2ドリフト領域73b上にp導電型の第2サブアノード74bが積層されている。第1サブアノード74aおよび第2サブアノード74bの名称を便宜的に別にしているが、これらのサブアノード74a、74bは実質同一の不純物拡散層からなる連続した領域である。なお、第1サブアノード領域74aおよび第2サブアノード領域74bは、特許請求の範囲に記載の第3不純物領域に相当している。
第1サブアノード74a上にn導電型の第1バリア領域75aが積層され、第2サブアノード74b上にn導電型の第2バリア領域75bが積層されている。第1バリア領域75aおよび第2バリア領域75bの名称を便宜的に別にしているが、これらのバリア領域75a、75bは実質同一の不純物拡散層からなる連続した領域である。第1バリア領域75aは、特許請求の範囲における第1不純物領域の一部に相当している。
第1バリア領域75a上にp導電型のアノード領域76aが積層され、第2バリア領域75b上にp導電型のボディ領域76bが積層されている。アノード領域76aおよびボディ領域76bの名称を便宜的に別にしているが、本実施形態におけるこれらの領域76a、76bは実質同一の不純物拡散層からなる連続した領域である。なお、アノード領域76aは、特許請求の範囲における第2不純物領域に相当する。
なお、特許請求の範囲に記載の第1不純物領域とは、カソード領域72a、第1ドリフト領域73a、第1バリア領域75aを含むn導電型の領域である。そして、ダイオード素子12は、第1サブアノード74aが第2不純物領域たるアノード領域76aから離間しつつ第1不純物領域内に埋め込まれた構造となっている。第1サブアノード74aは、第1ドリフト領域73aとアノード領域76aとの間を流れる電流の電流経路に形成されている。
ダイオード素子12において、上記した第1サブアノード74aおよび第1バリア領域75aが形成されていることにより、アノード領域76aから第1ドリフト領域73aへのホールの注入が抑制され、ダイオード素子12に印加される電圧が順バイアスから逆バイアスに切り替わった際における逆電流が制限される。このため、第1サブアノード74aおよび第1バリア領域75aが形成されていないダイオードに較べて逆回復電流を小さくできるのでリカバリ特性を向上させることができる。ただし、第1サブアノード74aおよび第1バリア領域75aにより形成されるpn接合がダイオード素子12の順方向電流の流れを阻害するため順電圧VFは大きくなる。
また、第2主面70bの表層には、ボディ領域76bに囲まれるようにn導電型のエミッタ領域77が形成されている。そして、エミッタ領域77、ボディ領域76b、およびアノード領域76aに接触するようにして第2主面70b上にアノード電極78が形成されている。アノード電極78は、ダイオード素子12におけるアノード端子あるいはIGBT素子11におけるエミッタ端子に相当している。また、アノード電極78は、特許請求の範囲における第2電極に相当する。
図2に示すように、IGBT素子11は、不純物拡散層として、コレクタ領域72b、第2ドリフト領域73b、第2サブアノード74b、第2バリア領域75b、ボディ領域76bおよびエミッタ領域77を有している。一方、ダイオード素子12は、不純物拡散層として、カソード領域72a、第1ドリフト領域73a、第1サブアノード74a、第1バリア領域75aおよびアノード領域76aを有している。
実質同一の層に位置する各不純物拡散層は、IGBT素子11およびダイオード素子12の電気的特性の要求に応じて、対応する領域の不純物濃度を互いに異なる濃度とすることを妨げるものではなく、これらの領域の不純物濃度は適宜設定されるべきである。
さらに、この逆導通絶縁ゲートバイポーラトランジスタは、第2主面70bから半導体基板70の厚さ方向に形成されてドリフト領域73a,73bに達するトレンチゲート80を有している。トレンチゲート80は、IGBT素子11にあってはボディ領域76b、第2バリア領域75b、第2サブアノード74bを貫通して第2ドリフト領域73bに達し、ダイオード素子12にあってはアノード領域76a、第1バリア領域75a、第1サブアノード74aを貫通して第1ドリフト領域73aに達している。
トレンチゲート80は、第2主面70bから半導体基板70の厚さ方向に延びてドリフト領域73a,73bに達するまで掘られたトレンチの内面に成膜された絶縁膜81と、トレンチを埋めるように形成された導電性のゲート電極82から成る。ゲート電極82とエミッタ電極78は絶縁膜81を介しているため互いに絶縁されている。また、IGBT素子11に形成されたエミッタ領域77はトレンチゲート80に接するように形成され、ゲート電極82にアノード電極78よりも高い電圧が印加されるとボディ領域76bおよび第2サブアノード74bにチャネルが形成されてアノード電極78とカソード電極71の間にIGBT動作による出力電流が流れる。
本実施形態における複数のゲート電極82は、第1ゲート電極82aと第2ゲート電極82bの2つのゲート電極とに分類される。第1ゲート電極82aは第1ゲートパッドG1に接続されている。第2ゲート電極82bは第2ゲートパッドG2に接続されている。第1ゲート電極82aと第2ゲート電極82bにはそれぞれ独立した電圧が印加される。図1に示すように、第1駆動部30は、第1素子11における第1ゲート電極82aおよび第2ゲート電極82bに電圧を供給している。同様に、第2駆動部40は、第2素子21における第1ゲート電極82aおよび第2ゲート電極82bに電圧を供給している。
ところで、p導電型のアノード領域76aおよびボディ領域76bと、n導電型の第1、第2バリア領域75a,75bと、p導電型の第1、第2サブアノード74a,74bは、pnp型の寄生トランジスタを形成している。n導電型のバリア領域75a,75bは、ホールにとってはp導電型の領域に対してポテンシャル障壁となるが、ゲート電極82に印加される電圧(ゲート電圧)によってその障壁高さを制御することができるようになっている。
すでに説明したように、第2ゲート電極82bには特に、アノード電極78(特許請求の範囲に記載の第2電極に相当し、IGBTではエミッタ電極と称される)の電圧よりもV2だけ低い電圧を印加できるようになっている。すなわち、第2ゲート電極82bの電位を、アノード電極78に対して負電位にすることができるようになっている。これにより、バリア領域75a,75bのポテンシャル障壁を消失するように障壁高さを変動させることができる。これにより、ダイオード素子11は、第1バリア領域75aが反転してアノード領域76a、第1バリア領域75aおよび第1サブアノード74aが一体的なp導電型の領域と見なせる。つまり、ダイオード素子12は単純なpn接合ダイオードとなり、第1サブアノード74aが形成されたダイオードに較べて順電圧VFを低減することができる。
本実施形態において、ゲート電圧V2は、少なくとも第1バリア領域75aにチャネルを生じさせることができる値に設定されている。換言すれば、電圧V2は、ダイオード素子12において、アノード領域76aと、第1バリア領域75aと、第1サブアノード74aとにより形成される寄生トランジスタの閾値電圧Vth以上となるように設定されている。一方、ゲート電圧V1は、IGBT素子11において、ボディ領域76bにチャネルを生じさせることのできる値に設定されている。換言すれば、ゲート電圧V1はスイッチング素子たるIGBTをオンの状態にすることのできる電圧に設定されている。
なお、本実施形態におけるn導電型は、特許請求の範囲に記載の第1導電型に相当し、p導電型は第2導電型に相当する。導電型の関係性は互いに逆であっても良い。この場合、アノードとカソードの関係も逆になる。
次に、図3を参照して、本実施形態における第1素子10および第2素子20の平面レイアウトについて説明する。なお、第1素子10と第2素子20とは互いに等価な逆導通絶縁ゲートバイポーラトランジスタであるからこれらの区別なく説明する。また、符号について、図1および図2と共通する要素は第1素子10に付した符号と相互に対応付ける。図3におけるII−II線に沿う断面が図2に相当する。
図3に示すように、本実施形態における絶縁ゲートバイポーラトランジスタは、ゲート電極82がストライプ状に形成されている。ゲートパッドG1,G2とゲート電極82とを互いに電気的に接続するゲート配線83は、IGBT素子11あるいはダイオード素子12が形成された素子領域上において、ゲート電極82の延設方向に沿って形成されている。ゲート配線83は、第1ゲートパッドG1と第1ゲート電極82aとを接続する第1ゲート配線83aと、第2ゲートパッドG2と第2ゲート電極82bとを接続する第2ゲート配線83bとを含む。
上記したように、第1ゲート電極82aには、アノード電極78(すなわち、エミッタ電極)の電位Ve、および、Veを基準にして正の電圧+V1が印加可能とされている。また、第2ゲート電極82bには、Ve、+V1、そしてVeを基準にして負の電圧−V2が印加可能とされている。
この絶縁ゲートバイポーラトランジスタにおいて、IGBT素子11のゲート電極82には第1ゲート電極82aと第2ゲート電極82bの両方が含まれる。そして、ダイオード素子12のゲート電極82には第2ゲート電極82bのみが割り当てられている。つまり、IGBT素子11は、IGBTをオンの状態にするゲート電圧V1が少なくとも印加可能にされているとともに、ゲート電圧V1の印加とは独立してゲート電圧−V2が印加可能にされている。また、ダイオード素子12は、ゲート電圧−V2が少なくとも印加可能にされている。
また、図3に示すように、IGBT素子11とダイオード素子12との境界近傍の領域、すなわち混成領域には、第2ゲート電極82bが割り当てられている。つまり、混成領域には、+V1と−V2の両方が印加可能になっている。
なお、IGBT素子11が形成された領域では、図3に示すように、ゲート配線83の延設方向に直交する方向において、第1ゲート電極82aと第2ゲート電極82bとが交互に配置されていることが好ましい。もちろん、同種のゲート電極82が互いに隣り合うように配置しても構わないが、第1ゲート電極82aと第2ゲート電極82bとが交互に配置されていることによって、後に詳述するターンオフに係るスイッチング速度を速くする効果をより大きくすることができる。また、発熱源を分散させることができるので、熱的に有利である。
また、ゲート電極82は、必ずしも全てのゲート電極82が第1ゲート電極82aあるいは第2ゲート電極82bに属する必要はなく、いくつかのゲート電極82がアノード電極78に短絡された間引き構造としても良い。アノード電極78に短絡されたゲート電極82の電位はアノード電圧(エミッタ電圧に相当)に固定されるので、素子10,20全体としてゲート容量を小さくすることができる。これにより、素子10,20を駆動するために必要な駆動部30,40のドライブ能力を抑制することができる。
次に、図4を参照して、本実施形態における半導体装置、とくに第1素子10および第2素子20の動作とともに、作用効果について説明する。図4は、第1ゲート電極82aおよび第2ゲート電極82bに印加されるゲート電圧を、第1素子10あるいは第2素子20の動作モードに対応して図示したものである。第1素子10と第2素子20とは互いに等価であるから、とくに断らない限り第1素子10について説明する。
素子10の状態には、図4に示すA〜Dの状態がある。状態Aは、負荷電流Iが十分大きく、順導通モードで動作中であることが判定可能な状態である。状態Bは、実際は順導通モードであるものの、負荷電流Iが動作モードを判定可能なレベルに比べて小さく、モード判定部50が順導通モードか逆導通モードかを判定できない状態である。状態Cは、状態Bは、実際は逆導通モードであるものの、負荷電流Iが動作モードを判定可能なレベルに比べて小さく、順導通モードか逆導通モードかを判定できない状態である。状態Dは、負荷電流Iが十分大きく、逆導通モードで動作中であることが判定可能な状態である。
状態Aにおいて、駆動部30は、第1ゲート電極82aと第2ゲート電極82bの両方に電圧+V1を印加する。状態Aは素子10が順導通モードで駆動中であり、IGBTとしての機能が期待される。よって、IGBT素子11が形成された領域に属する第1ゲート電極82aと第2ゲート電極82bの両方に電圧+V1を印加することによりIGBTとして動作させることができる。一方、ダイオード素子12が形成された領域に属する第2ゲート電極82bにも+V1が印加される。本実施形態においては、ダイオード素子12の属するゲート電極82はすべて第2ゲート電極82bであり、IGBT素子11との境界近傍である混成領域にも+V1が印加される。よって、混成領域をIGBTとして機能させることができる。
状態Bおよび状態Cにおいて、駆動部30は、第1ゲート電極82bに電圧+V1を印加するとともに、第2ゲート電極82bに電圧−V2を印加する。状態Bおよび状態Cは、モード判定部50では素子10がいずれの動作モードで動作中かを判定できない電流領域である。仮に、素子10が順導通モードであった(状態B)とすれば、IGBT素子11に属する第1ゲート電極82aには電圧+V1が印加されているので、IGBTとして正しく動作させることができる。また、IGBT素子11に属する第2ゲート電極82bに電圧−V2が印加されているので、IGBT素子11のターンオフ時において、ボディ領域76bにホールが流入しやすい状態となる。すなわち、第2ドリフト領域73bの存在するホールがボディ領域76bに移動しやすくなり、ターンオフに係るスイッチング速度を速くすることができる。
一方、仮に素子10が逆導通モードであった(状態C)としても、ダイオード素子12の属する第2ゲート電極82bには電圧−V2が印加されているので、順電圧VFを低減する効果を奏することができる。また、上記のとおり、IGBT素子11をIGBTとして動作させるために第1ゲート電極82aには電圧+V1が印加されているが、IGBT素子11とダイオード素子12との境界近傍である混成領域にも第2ゲート電極82bによって電圧−V2が印加されているので、第1ゲート電極82aに電圧+V1が印加されることによるゲート干渉を抑制することができる。すなわち、ダイオード素子12をダイオードとして確実に機能させることができる。
状態Dにおいて、駆動部30は、第1ゲート電極82bにエミッタ電圧Veを印加するとともに、第2ゲート電極82bに電圧−V2を印加する。状態Dは素子10が逆導通モードで駆動中であり、ダイオードとしての機能が期待される。よって、ダイオード素子12が形成された領域に属する第2ゲート電極82bに電圧−V2を印加することにより順電圧VFを低減する効果を奏することができる。一方、第1ゲート電極82aにはエミッタ電圧Veが印加されている。このため、第1ゲート電極82aはエミッタ電圧Veを基準に負電圧が印加される場合に較べて、負電圧を印加する機能は第2ゲート電極82b側だけでよく、回路規模を小さくできる。
次に、図5〜図7を参照して、第2ゲート電極82bにゲート電圧−V2を印加する具体的なタイミングについて、3通りの例で説明する。なお、図5〜7における負荷電流Iは図1に示す負荷電流Iと同義であり、負荷電流Iは第1素子10と第2素子20との接続点から負荷200に向かって流れる場合を正の電流としている。また、第1ゲート電極82aに印加されるゲート電圧はIGBT素子11をIGBTとしてスイッチング動作させるためのものであり、PWM基準信号に同期してハイレベルとローレベルとを繰り返しているとする。
<PWM基準信号に同期する実施例>
図5に示すように、この例では、第2ゲート電極82bに印加されるゲート電圧も、第1ゲート電極82aと同様にPWM基準信号に同期して印加される。PWM基準信号のHigh/Lowは、上アームを構成する第1素子10に対応するものと、下アームを構成する第2素子20に対応するものとで互いに反転した関係になっている。PWM基準信号がHighの期間において、図4に示すゲート電圧が有効となり、PWM基準信号がLowの期間はエミッタ電圧Veがゲート電圧として各ゲート電極82に入力される。
時刻t1〜時刻t2において、モード判定部50は、第1素子10が順導通モードであり、第2素子20が逆導通モードであると判定する。したがって、第1素子10は状態Aで動作する。つまり、PWM基準信号に同期してハイレベルが+V1とされ、ローレベルがVeとされるPWM制御されたゲート電圧が第1ゲート電極82aと第2ゲート電極82bの両方に印加される。一方、第2素子20は状態Dで動作する。つまり、第1ゲート電極82aには、常にエミッタ電圧Veが印加され、第2ゲート電極82bには、ハイレベルがVeとされローレベルが−V2とされるPWM制御されたゲート電圧が印加される。
時刻t2〜時刻t3において、モード判定部50は、第1素子10および第2素子20の動作モードを判定することができない。したがって、第1素子10および第2素子20は、状態Bまたは状態Cで動作する。つまり、第1ゲート電極82aには、ハイレベルが+V1とされローレベルがVeとされるPWM制御されたゲート電圧が印加される。第2ゲート電極82bには、ハイレベルがVeとされローレベルが−V2とされるPWM制御されたゲート電圧が印加される。
時刻t3〜時刻t4において、モード判定部50は、第1素子10が逆導通モードであり、第2素子20が順導通モードであると判定する。したがって、第1素子10は状態Dで動作し、第2素子20が状態Aで動作する。ゲート電圧は、時刻t1〜時刻t2における第1素子10と第2素子20との関係と逆の関係にある。
時刻t4〜時刻t5において、モード判定部50は、第1素子10および第2素子20の動作モードを判定することができない。したがって、第1素子10および第2素子20は、状態Bまたは状態Cで動作する。つまり、ゲート電圧は、時刻t2〜時刻t3と同様に変化する。
この例では、状態Cあるいは状態Dの逆導通モードにおいて、ダイオード素子12にエミッタ電圧Veに対して負の電圧−V2を印加するので順電圧VFを低減することができる。これに加えて、一般的な駆動回路にて実施される通り、第1素子10に入力されるPWM基準信号と、第2素子20に入力されるPWM基準信号が、同時にHighにならないように、双方がLowとなるデットタイムが一定時間設定されていることより、逆導通絶縁ゲートバイポーラトランジスタのリカバリ期間にダイオード素子12に印加するゲート電圧をVeにしておくことができるため、常に−V2が印加された状態に比べてリカバリ損失を低減することができる。
<常に負電圧が印加される実施例>
図6に示すように、この例では、状態B〜Dにおいて第2ゲート電極82bに印加されるゲート電圧が−V2であるとき、PWM基準信号に依らず常に電圧−V2が印加される。この例でも、ダイオード素子12にエミッタ電圧Veに対して負の電圧−V2を印加するので順電圧VFを低減することができる。また、IGBT素子11においてボディ領域76bへホールが流入しやすい状況をつくることができ、ターンオフに係るスイッチング速度を速くすることができる。ただし、上述したPWM基準信号に同期する動作に比べて、V2の大きさを小さく設定することが好ましい。これは、V2の大きさを過剰に設定すると逆導通によるダイオード電流が大きい状態では、ダイオード素子12におけるリカバリ損失が大きくなるためである。この例のように、PWM基準信号に依らず常に電圧−V2が印加されるような態様は、順電圧VFによる損失の低減効果が高いが、リカバリ損失も増大する虞があるため、システム全体の駆動損失に占める順電圧VFによる損失の割合が大きいシステムにおいて有効である。
<ダイオード電流の大きさに依存して負電圧が印加される例>
PWM基準信号に依らず常に電圧−V2が印加される態様では、上記したように、ダイオード電流が大きい場合にリカバリ損失が増大してしまう虞がある。これを解決するため、この例では、図7に示すように、ダイオード電流、ひいては負荷電流Iに閾値を設ける。負荷電流Iの大きさが閾値より小さい場合には第2ゲート電極82bに電圧−V2が印加され、負荷電流Iの大きさが閾値以上の場合は、第2ゲート電極82bに電圧Veが印加される。これにより、ダイオード電流が大きい場合のリカバリ損失を低減することができる。
(第2実施形態)
第1実施形態において説明した第1素子10、第2素子20たる逆導通絶縁ゲートバイポーラトランジスタに加えて、図8に示すように、n導電型のピラー領域79を有していることが好ましい。ピラー領域79は、半導体基板70の第2主面70bから厚さ方向に延び、アノード領域76aあるいはボディ領域76bを貫通して第1バリア領域75a、第2バリア領域75bに至るように形成されている。ピラー領域79は、第1、第2バリア領域75a,75bと同一の導電型の不純物がドープされた拡散層であり、ピラー領域79とバリア領域75a,75bとは略同電位である。
ピラー領域79を有することにより、アノード電極78とカソード電極71の間に順バイアスが印加されると、アノード電極78とピラー領域79は金属−半導体接合面を介して短絡する。ピラー領域79と第1バリア領域75aはほぼ同電位であるため、第1バリア領域75aとアノード電極78の電位差は金属−半導体接合面での電圧降下とほぼ等しくなる。金属−半導体接合面での電圧降下は、アノード領域76aと第1バリア領域75aの間のpn接合のビルトイン電圧よりも小さいので、アノード領域76aから第1ドリフト領域73aへのホールの注入が抑制される。
アノード電極78とカソード電極71の間の電圧が順バイアスから逆バイアスに切り替わると、ダイオード素子12では、順バイアスの印加時においてアノード領域76aから第1ドリフト領域73aへのホールの注入が抑制されているから、リカバリ電流が小さく、リカバリ時間が短い。
また、このダイオード素子12では、アノード電極78とカソード電極71の間に逆バイアスが印加されると、第1サブアノード74aと第1ドリフト領域73aの間のpn接合の界面から伸びる空乏層によって耐圧が確保される。すなわち、このダイオード素子12によれば、逆バイアスに対する耐圧を向上することができる。
なお、本実施形態ではピラー領域79がIGBT素子11にも形成される例を示したが、少なくともダイオード素子12に形成されていればホール注入抑制効果を奏することができる。このため、必ずしもIGBT素子11にピラー領域79が形成されている必要はない。
(第3実施形態)
第1実施形態において図3を参照して平面レイアウトについて説明した間引き構造について、本実施形態において具体的に説明する。本実施形態では、第2実施形態において説明したように、ピラー領域79を備える態様であって、図9に示すように、ダイオード素子12において、互いに隣り合うゲート電極82をアノード電極78と短絡させないようになっている。換言すれば、アノード電極78と短絡したゲート電極82に隣接するゲート電極82は、第2ゲート電極82bに割り当てられている。これによれば、ダイオード素子12に形成された第1バリア領域75aは、少なくとも一つの第2ゲート電極82bに、絶縁膜81を介して接しているので、ダイオード素子12は、第2ゲート電極82bに負電圧−V2が印加されることによる順電圧VFの低減効果を奏することができる。また、間引き構造によるゲート容量の低減効果を奏することもできる。
なお、本実施形態では、逆導通絶縁ゲートバイポーラトランジスタがピラー領域79を有する構成について説明したが、第1実施形態のようにピラー領域79を有さない構造についても同様である。
(その他の実施形態)
以上、本発明の好ましい実施形態について説明したが、本発明は上記した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上記した各実施形態では、トレンチゲート80を有する縦型の絶縁ゲートバイポーラトランジスタを例に説明したが、必ずしもトレンチ型のゲート電極82を有する構造である必要はないし縦型である必要もない。図10に示すように、横型素子についても本発明を適用可能である。バリア領域とゲート電極とを有するダイオードは、図10に示すように、n導電型の半導体基板90における一面90aの表層に、p導電型のアノード領域91が形成されている。そして、アノード領域91を取り囲むように、n導電型のバリア領域92が一面90aに一部が露出しつつ形成されている。さらに、バリア領域92を挟んでアノード領域91の反対側にサブアノード93が形成されている。アノード領域91には金属製のアノード電極94が一面90aにおいて接合されている。また、アノード領域91、バリア領域92およびサブアノード93が形成されていない半導体基板90の一面90aにカソード電極95が接合されている。
ダイオード電流はアノード電極94とカソード電極95の間を流れる。この例では、カソード電極95が接合されたn導電型の半導体基板が特許請求の範囲に記載の第1不純物領域に相当し、アノード電極94が接合されたアノード領域91が特許請求の範囲に記載の第2不純物領域に相当する。つまり、ダイオード電流はカソード電極95近傍の半導体基板とアノード領域91の間を流れ、その電流経路にサブアノード93とバリア領域92が位置している。この横型のダイオードは、さらに、バリア領域92が露出した一面90a上に、絶縁膜96を介してゲート電極97が形成されている。第1実施形態において説明した縦型のダイオード素子12と同様に、横型のダイオードでも、バリア領域92を有することによりリカバリ特性を向上させることができ、ゲート電極97にアノード領域91の電位に対して負の電圧を印加することにより順電圧VFを低減することができる。よって、第1実施形態と同様に、モード判定部50が順導通モードか逆導通モードかを判定できない場合には、ゲート電極97に負の電圧を印加することにより第1実施形態と同様の効果を奏することができる。
また、上記した各実施形態において、負電圧−V2を入力するタイミングでエミッタ電圧Veを印加するに留めることもできる。この場合は、負電圧印加による順電圧VFの低減効果は小さいものの、ダイオード素子12に電圧+V1が印加されることはないので、+V1が印加されることに起因するダイオード特性の悪化、とくに順電圧VFの増加を抑制することができる。
また、上記した各実施形態において、ダイオード素子12に並列するスイッチング素子としてIGBT素子11を採用する例について説明したが、スイッチング素子は例えばMOSFETであっても良い。MOSFETの場合、図2、図8および図9に示すスイッチング素子領域(上記した各実施形態ではIGBT素子11)のコレクタ領域72bがn導電型のドレイン領域となり、スイッチング素子とダイオード素子を兼ねた領域となる。つまり、スイッチング素子領域とダイオード素子12とを作り分けることはしなくともよい。なお、図2、図8および図9に示したエミッタ領域77はソース領域となる。このような態様では、実質的にスイッチング素子として機能する領域と、ダイオードとして機能する領域とが並列に形成された状態にある。
また、上記した各実施形態では、ゲート電極82がストライプ状に形成された例について説明したが、少なくとも第1ゲート電極82aと第2ゲート電極82bとに分けられていれば任意形状で良く、例えば格子状に形成されていても良い。
また、逆導通スイッチング素子におけるIGBT素子11,21側には必ずしもバリア領域92およびサブアノード93を形成する必要はなく、ダイオード素子12,22側においてもサブアノード93は全面ではなく部分的に形成されていても良い。
また、上記した各実施形態では、IGBT素子11,21における第1電極および第2電極と、ダイオード素子21,22における第1電極および第2電極とが、素子内においてそれぞれ共通のゲートパッドG1,G2に接続される例について説明した。しかしながら、互いの電極は素子外において接続されても良く、特許請求の範囲に記載の、ダイオード素子と共通した第1電極および第2電極、との表現は、第1素子10あるいは第2素子20外部での接続も含むものである。
さらに、上記した各実施形態では、スイッチング素子領域とダイオード素子において第1電極71が共通して形成される例について説明したが、IGBT素子11,21におけるコレクタ電極と、ダイオード素子21,22におけるカソード電極とをそれぞれ別体として形成してもよく、互いの電極が第1素子10あるいは第2素子20外部で接続される場合も含むものである。
また、上記した各実施形態では、スイッチング素子領域とダイオード素子において第2電極78が共通して形成される例について説明したが、IGBT素子11,21におけるエミッタ電極と、ダイオード素子21,22におけるアノード電極とをそれぞれ別体として形成してもよく、互いの電極が第1素子10あるいは第2素子20外部で接続される場合も含むものである。
10…第1素子,11…IGBT素子,12…ダイオード素子,20…第2素子,21…IGBT素子,22…ダイオード素子,30…第1駆動部,40…第2駆動部,50…モード判定部,100…インバータ(半導体装置),200…負荷

Claims (8)

  1. 同一の半導体基板(70,90)にダイオード素子(11)とスイッチング素子(12)とが並列して形成された逆導通スイッチング素子(10,20)と、
    前記逆導通スイッチング素子に形成される複数のゲート電極(82)にゲート電圧を印加する駆動部(30,40)と、
    主に前記スイッチング素子に電流が流れる順導通モードと、主に前記ダイオード素子に電流が流れる逆導通モードと、のいずれのモードで駆動しているかを判定するモード判定部(50)と、を備え、
    前記ダイオード素子は、
    第1導電型の第1不純物領域(72a,73a,75a)と、
    前記第1不純物領域に接合して形成された第2導電型の第2不純物領域(76a,91)と、
    前記第1不純物領域と電気的に接続される第1電極(71,95)と、
    前記第2不純物領域と電気的に接続される第2電極(78,94)と、
    さらに、前記第1不純物領域にあって、前記第2不純物領域とは離間しつつ前記第1電極と前記第2電極との間の電流経路に形成された第2導通型の第3不純物領域(74a,93)と、を有し、
    前記ゲート電極に所定のゲート電圧が印加されることにより、前記第2不純物領域と前記第3不純物領域に挟まれた前記第1不純物領域におけるバリア領域(75a,92)に反転層が生じるものであり、
    前記スイッチング素子は、
    前記ダイオード素子と共通した前記第1電極および前記第2電極を有するとともに、前記ゲート電極に所定のゲート電圧が印加されることによりオンの状態とされて前記第1電極と前記第2電極との間に電流が流れるものであり、
    前記複数のゲート電極は、
    前記スイッチング素子をオンの状態とする第1ゲート電圧が入力される第1ゲート電極(82a)と、
    前記第1ゲート電圧とは独立して制御され、前記第2電極の電位と同一、もしくは、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性となる第2ゲート電圧が入力される第2ゲート電極(82b)と、を有し、
    前記ダイオード素子に属する前記ゲート電極は、少なくとも前記第2ゲート電極を含み、前記スイッチング素子に属する前記ゲート電極は、少なくとも前記第1ゲート電極を含み、
    前記第1電極と前記第2電極との間を流れる電流に基づいて、前記モード判定部により、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、前記第2ゲート電極に、前記第2ゲート電圧が印加される半導体装置。
  2. 前記駆動部は、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、ハイレベルとローレベルの2値を少なくとも有しPWM制御されたゲート電圧を前記第2ゲート電極に印加するものであり、
    前記ローレベルは、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性である請求項1に記載の半導体装置。
  3. 前記駆動部は、前記逆導通モードと判定された際、もしくは、前記逆導通モードか前記順導通モードかを判定できない際、常に前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧を前記第2ゲート電極に印加する請求項1に記載の半導体装置。
  4. 前記駆動部は、前記逆導通モードと判定された際、前記第1電極と前記第2電極との間に流れるダイオード電流の大きさが所定の閾値以上の場合に、前記第2電極の電位と同一のゲート電圧を前記第2ゲート電極に印加し、
    前記ダイオード電流の大きさが所定の閾値より小さい場合に、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧を前記第2ゲート電極に印加する請求項1に記載の半導体装置。
  5. 前記ダイオード素子が形成される領域と、前記スイッチング素子が形成される領域との境界となる混成領域における前記ゲート電極は、前記第2電極の電位を基準として前記第1ゲート電圧の極性と反対の極性であるゲート電圧が印加可能である請求項1〜4のいずれか1項に記載の半導体装置。
  6. 前記ダイオード素子が形成される領域と、前記スイッチング素子が形成される領域との境界となる混成領域における前記ゲート電極は、前記第1ゲート電圧が印加可能である請求項1〜5のいずれか1項に記載の半導体装置。
  7. 前記スイッチング素子に属する前記ゲート電極は、前記第2ゲート電極を含む請求項1〜6のいずれか1項に記載の半導体装置。
  8. 前記駆動部は、前記逆導通モードと判定された際、前記第1ゲート電極に印加されるゲート電圧を前記第2電極の電位と同一とする請求項1〜7のいずれか1項に記載の半導体装置。
JP2016013713A 2016-01-27 2016-01-27 半導体装置 Active JP6414090B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016013713A JP6414090B2 (ja) 2016-01-27 2016-01-27 半導体装置
PCT/JP2016/087505 WO2017130597A1 (ja) 2016-01-27 2016-12-16 半導体装置
CN201680073924.1A CN108475675B (zh) 2016-01-27 2016-12-16 半导体装置
US15/770,258 US10438852B2 (en) 2016-01-27 2016-12-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016013713A JP6414090B2 (ja) 2016-01-27 2016-01-27 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018182142A Division JP6652173B2 (ja) 2018-09-27 2018-09-27 半導体装置

Publications (3)

Publication Number Publication Date
JP2017135255A true JP2017135255A (ja) 2017-08-03
JP2017135255A5 JP2017135255A5 (ja) 2018-02-01
JP6414090B2 JP6414090B2 (ja) 2018-10-31

Family

ID=59398955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016013713A Active JP6414090B2 (ja) 2016-01-27 2016-01-27 半導体装置

Country Status (4)

Country Link
US (1) US10438852B2 (ja)
JP (1) JP6414090B2 (ja)
CN (1) CN108475675B (ja)
WO (1) WO2017130597A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622350B2 (en) 2018-02-14 2020-04-14 Fuji Electric Co., Ltd. Semiconductor device
JP2020061429A (ja) * 2018-10-09 2020-04-16 三菱電機株式会社 半導体装置
CN111416598A (zh) * 2019-01-04 2020-07-14 株式会社东芝 控制电路、半导体装置以及电路装置
JP2021048338A (ja) * 2019-09-20 2021-03-25 株式会社東芝 半導体装置及び半導体回路
JP2021103707A (ja) * 2019-12-24 2021-07-15 株式会社デンソー 半導体装置
JP2021118603A (ja) * 2020-01-24 2021-08-10 三菱電機株式会社 半導体モジュール
US11107910B2 (en) 2018-02-14 2021-08-31 Fuji Electric Co., Ltd. Semiconductor device
US11257910B2 (en) 2019-10-11 2022-02-22 Fuji Electric Co., Ltd. Semiconductor device including transistor portion and diode portion
JP2022049998A (ja) * 2020-09-17 2022-03-30 株式会社東芝 半導体装置
US11296076B2 (en) 2019-11-01 2022-04-05 Kabushiki Kaisha Toshiba Semiconductor device
US11380784B2 (en) 2018-02-14 2022-07-05 Fuji Electric Co., Ltd. Semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717432B2 (ja) * 2017-07-18 2020-07-01 富士電機株式会社 半導体装置
JP7352437B2 (ja) 2019-10-25 2023-09-28 株式会社東芝 半導体装置
JP7352443B2 (ja) * 2019-11-01 2023-09-28 株式会社東芝 半導体装置の制御方法
JP7335190B2 (ja) 2020-03-23 2023-08-29 株式会社東芝 半導体装置
CN115117163A (zh) 2021-03-22 2022-09-27 株式会社东芝 半导体装置
DE102022107009A1 (de) 2022-03-24 2023-09-28 Infineon Technologies Ag Dual-gate-leistungshalbleitervorrichtung und verfahren zum steuern einer dual-gateleistungshalbleitervorrichtung
CN116504822B (zh) * 2023-05-29 2024-02-09 上海林众电子科技有限公司 基于沟槽栅的逆导型igbt

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2008278552A (ja) * 2007-04-25 2008-11-13 Denso Corp ブリッジ回路における縦型mosfet制御方法
JP2009065105A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 給電装置とその駆動方法
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP2011238975A (ja) * 2011-08-29 2011-11-24 Toyota Motor Corp 半導体装置とその半導体装置を備えている給電装置の駆動方法
JP2014063960A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828112A (en) * 1995-09-18 1998-10-27 Kabushiki Kaisha Toshiba Semiconductor device incorporating an output element having a current-detecting section
JP4765252B2 (ja) * 2004-01-13 2011-09-07 株式会社豊田自動織機 温度検出機能付き半導体装置
DE102008045410B4 (de) * 2007-09-05 2019-07-11 Denso Corporation Halbleitervorrichtung mit IGBT mit eingebauter Diode und Halbleitervorrichtung mit DMOS mit eingebauter Diode
JP4840370B2 (ja) 2008-01-16 2011-12-21 トヨタ自動車株式会社 半導体装置とその半導体装置を備えている給電装置の駆動方法
EP2251904B1 (en) * 2008-02-14 2019-01-16 Toyota Jidosha Kabushiki Kaisha Driving method for reverse conducting semiconductor element, semiconductor device, and feeding device
JP2010263149A (ja) 2009-05-11 2010-11-18 Toyota Motor Corp 半導体装置
JP5858914B2 (ja) * 2010-08-04 2016-02-10 ローム株式会社 パワーモジュールおよび出力回路
JP2013026534A (ja) 2011-07-25 2013-02-04 Toyota Central R&D Labs Inc 半導体装置
JP5742672B2 (ja) 2011-11-02 2015-07-01 株式会社デンソー 半導体装置
JP6064371B2 (ja) 2012-05-30 2017-01-25 株式会社デンソー 半導体装置
JP2014073055A (ja) * 2012-10-01 2014-04-21 Denso Corp 電子回路
JP5949646B2 (ja) 2013-04-10 2016-07-13 株式会社デンソー 半導体装置
GB2520617B (en) * 2013-10-22 2020-12-30 Abb Schweiz Ag RC-IGBT with freewheeling SiC diode
US9960165B2 (en) * 2013-11-05 2018-05-01 Toyota Jidosha Kabushiki Kaisha Semiconductor device having adjacent IGBT and diode regions with a shifted boundary plane between a collector region and a cathode region
JP6459791B2 (ja) 2014-07-14 2019-01-30 株式会社デンソー 半導体装置およびその製造方法
JP2016092163A (ja) 2014-11-03 2016-05-23 株式会社デンソー 半導体装置
JP6350298B2 (ja) 2015-01-21 2018-07-04 株式会社デンソー 半導体装置
JP6439460B2 (ja) 2015-01-23 2018-12-19 株式会社デンソー 駆動装置
CN104835841B (zh) * 2015-05-08 2018-10-26 邓华鲜 Igbt芯片的结构
DE112015006874T5 (de) * 2015-09-03 2018-05-30 Mitsubishi Electric Corporation Leistungswandler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008072848A (ja) * 2006-09-14 2008-03-27 Mitsubishi Electric Corp 半導体装置
JP2008278552A (ja) * 2007-04-25 2008-11-13 Denso Corp ブリッジ回路における縦型mosfet制御方法
JP2009065105A (ja) * 2007-09-10 2009-03-26 Toyota Motor Corp 給電装置とその駆動方法
JP2009253004A (ja) * 2008-04-07 2009-10-29 Toyota Motor Corp 半導体素子と半導体装置とその駆動方法
JP2011238975A (ja) * 2011-08-29 2011-11-24 Toyota Motor Corp 半導体装置とその半導体装置を備えている給電装置の駆動方法
JP2014063960A (ja) * 2012-09-24 2014-04-10 Denso Corp 半導体装置

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11107910B2 (en) 2018-02-14 2021-08-31 Fuji Electric Co., Ltd. Semiconductor device
US11949005B2 (en) 2018-02-14 2024-04-02 Fuji Electric Co., Ltd. Semiconductor device
US11380784B2 (en) 2018-02-14 2022-07-05 Fuji Electric Co., Ltd. Semiconductor device
US10622350B2 (en) 2018-02-14 2020-04-14 Fuji Electric Co., Ltd. Semiconductor device
JP2020061429A (ja) * 2018-10-09 2020-04-16 三菱電機株式会社 半導体装置
JP7002431B2 (ja) 2018-10-09 2022-01-20 三菱電機株式会社 半導体装置
US10778216B2 (en) 2019-01-04 2020-09-15 Kabushiki Kaisha Toshiba Control circuit, semiconductor device, and electrical circuit device
JP2020109901A (ja) * 2019-01-04 2020-07-16 株式会社東芝 制御回路、半導体装置及び電気回路装置
CN111416598A (zh) * 2019-01-04 2020-07-14 株式会社东芝 控制电路、半导体装置以及电路装置
JP2021048338A (ja) * 2019-09-20 2021-03-25 株式会社東芝 半導体装置及び半導体回路
JP7353891B2 (ja) 2019-09-20 2023-10-02 株式会社東芝 半導体装置及び半導体回路
US11257910B2 (en) 2019-10-11 2022-02-22 Fuji Electric Co., Ltd. Semiconductor device including transistor portion and diode portion
US11296076B2 (en) 2019-11-01 2022-04-05 Kabushiki Kaisha Toshiba Semiconductor device
JP2021103707A (ja) * 2019-12-24 2021-07-15 株式会社デンソー 半導体装置
JP7302469B2 (ja) 2019-12-24 2023-07-04 株式会社デンソー 半導体装置
JP2021118603A (ja) * 2020-01-24 2021-08-10 三菱電機株式会社 半導体モジュール
JP7233387B2 (ja) 2020-01-24 2023-03-06 三菱電機株式会社 半導体モジュール
JP2022049998A (ja) * 2020-09-17 2022-03-30 株式会社東芝 半導体装置
JP7456902B2 (ja) 2020-09-17 2024-03-27 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
CN108475675B (zh) 2022-03-15
WO2017130597A1 (ja) 2017-08-03
JP6414090B2 (ja) 2018-10-31
US20180308757A1 (en) 2018-10-25
CN108475675A (zh) 2018-08-31
US10438852B2 (en) 2019-10-08

Similar Documents

Publication Publication Date Title
JP6414090B2 (ja) 半導体装置
JP6652173B2 (ja) 半導体装置
US8890252B2 (en) Semiconductor device having switching element and free wheel diode and method for controlling the same
JP6117640B2 (ja) 半導体装置及び駆動システム
JP5229288B2 (ja) 半導体装置およびその制御方法
JP4387119B2 (ja) 半導体装置
JP4632068B2 (ja) 半導体装置
JPWO2016030966A1 (ja) 半導体素子
JP5488256B2 (ja) 電力用半導体装置
JP6658021B2 (ja) 半導体装置
JP6565815B2 (ja) 半導体装置
JP6226101B2 (ja) 半導体集積回路
JP2018014418A (ja) 半導体装置
JP2014063960A (ja) 半導体装置
TW201511222A (zh) 半導體裝置
JP6413467B2 (ja) 半導体装置
JP5072043B2 (ja) 半導体装置
CN106663658B (zh) 半导体集成电路
JP2015181178A (ja) 半導体装置
JP3491049B2 (ja) 整流素子およびその駆動方法
JP2015095467A (ja) 逆導通igbt
JP6579273B2 (ja) 半導体集積回路
JP2012156370A (ja) 半導体装置
US20230018508A1 (en) Insulated gate bipolar transistor, motor control unit, and vehicle
JP2017139790A (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6414090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250