JP2016092163A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2016092163A
JP2016092163A JP2014223866A JP2014223866A JP2016092163A JP 2016092163 A JP2016092163 A JP 2016092163A JP 2014223866 A JP2014223866 A JP 2014223866A JP 2014223866 A JP2014223866 A JP 2014223866A JP 2016092163 A JP2016092163 A JP 2016092163A
Authority
JP
Japan
Prior art keywords
gate
layer
electrode
gate electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014223866A
Other languages
English (en)
Inventor
正清 住友
Masakiyo Sumitomo
正清 住友
剛志 井上
Tsuyoshi Inoue
剛志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014223866A priority Critical patent/JP2016092163A/ja
Priority to PCT/JP2015/005450 priority patent/WO2016072074A1/ja
Publication of JP2016092163A publication Critical patent/JP2016092163A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】リカバリ損失の低減を図ることができ、かつ、ゲート電極に印加するゲート電圧を生成するためのドライバ回路の構成が複雑になることを抑制する。
【解決手段】一部のゲート電極15aと残部のゲート電極15bとに互いに独立した電圧が印加されるようにする。そして、一部のゲート電極15aを有する絶縁ゲート構造と残部のゲート電極15bを有する絶縁ゲート構造との閾値電圧が異なるようにし、FWD素子の順方向に電流が流れている状態から当該電流を遮断する際、一部のゲート電極15aに反転層が形成されない第2電圧が印加されると共に残部のゲート電極15bに当該残部のゲート電極15bが配置されるゲート絶縁膜14と接する部分にドリフト層11側から第1不純物領域16に向かう途中位置まで反転層が形成される第1電圧が印加されるようにする。
【選択図】図1

Description

本発明は、絶縁ゲート構造を有する半導体スイッチング素子とフリーホイールダイオード素子(以下、FWD素子という)とが共通の半導体基板に形成された半導体装置に関するものである。
従来より、インバータやコンバータ等の電力変換装置に用いるスイッチング素子として、絶縁ゲート構造の半導体スイッチング素子とFWD素子とが共通の半導体基板に形成された半導体装置が提案されている(例えば、特許文献1参照)。
具体的には、この半導体装置では、n型のドリフト層を構成する半導体基板の表面側にp型のベース層が形成され、半導体基板の裏面側にn型のドレイン層が形成されている。そして、ベース層を貫通してドリフト層に達する複数のトレンチが形成され、トレンチ内には、ゲート絶縁膜を介してゲート電極が埋め込まれている。また、ベース層の表層部には、トレンチと接するようにn型のソース領域が形成されている。さらに、半導体基板の表面側にはベース層およびソース領域と電気的に接続される第1電極が形成され、半導体基板の裏面側にはドレイン層と電気的に接続される第2電極が形成されている。以上のようにして、半導体基板に半導体スイッチング素子(MOSFET素子)が形成されている。
また、上記構成とされていることにより、半導体基板には、n型のドリフト層およびドレイン層とp型のベース層とによってPN接合を有するFWD素子が形成されている。
上記半導体装置では、半導体スイッチング素子として動作させる場合には、ゲート電極にゲート絶縁構造の閾値電圧以上のハイレベルの電圧を印加する。これにより、ソース領域とドリフト層とを繋ぐ反転層が形成され、当該反転層を介して第1、第2電極間に電流が流れる。
また、FWD素子がダイオード動作している際(FWD素子の順方向に電流が流れている際)には、ゲート電極に0V等のローレベルの電圧が印加される。なお、FWD素子が通常のダイオード動作をする際には、第1電極には正の電圧が印加されると共に第2電極に負の電圧が印加される。そして、FWD素子のダイオード動作を停止してオフ状態にする直前には、ゲート電極にゲート絶縁構造の閾値電圧未満の電圧であり、ゲート電極の近傍にソース領域とドリフト層とを繋がない反転層が形成されるミドルレベルの電圧を印加し、FWD素子内の過剰キャリアを減少させる。この状態で、第1電極に負の電圧を印加すると共に第2電極に正の電圧を印加する逆電圧印加を行うことにより、リカバリ動作が行われるが、ドリフト層内の過剰キャリアを予め少なくしているため、リカバリ損失を低減することができる。
特開2011−146555号公報
しかしながら、上記半導体装置では、ゲート電極には、ハイレベル、ローレベル、ミドルレベルの3種類のゲート電圧が印加されるため、3種類のゲート電圧を生成するためのドライバ回路が必要になり、当該ドライバ回路が複雑になるという問題がある。
なお、上記では半導体基板の厚さ方向に電流を流す縦型の半導体装置について説明したが、このような問題は半導体基板の平面方向に電流を流す横型の半導体装置にも同様に発生する。また、半導体基板にコレクタ層およびカソード層が形成された逆導通型IGBT(RC−IGBT)においても同様に発生する。
本発明は上記点に鑑みて、リカバリ損失の低減を図ることができ、かつ、ゲート電極に印加するゲート電圧を生成するためのドライバ回路の構成が複雑になることを抑制できる半導体装置を提供することを目的とする。
上記目的を達成するため、請求項1に記載の発明では、第1導電型のドリフト層(11)と、ドリフト層上に形成された第2導電型のベース層(12)と、ベース層(4)の表層部であって、ベース層を挟んでドリフト層から離間して形成され、ドリフト層よりも高不純物濃度とされた第1導電型の第1不純物領域(16、41)と、第1不純物領域とドリフト層の間に挟まれたベース層の表面に配置されたゲート絶縁膜(14)と、ゲート絶縁膜上に配置されたゲート電極(15a、15b)と、ドリフト層と接触すると共にベース層から離間して形成され、ドリフト層よりも高不純物濃度とされた第1導電型の第2不純物領域(21、43)と、ベース層および第1不純物領域と電気的に接続される第1電極(19)と、第2不純物領域と電気的に接続される第2電極(22)と、を有し、ベース層のうち、ゲート絶縁膜を挟んでゲート電極と反対側に位置する部分に第1不純物領域とドリフト層との間を繋ぐ反転層を形成し、当該反転層を介して第1電極と第2電極との間に電流を流す半導体スイッチング素子を備えていると共に、ベース層とドリフト層とによるPN接合を有し、第1電極と第2電極との間に電流を流すFWD素子を備えている半導体装置において、以下の点を特徴としている。
すなわち、複数のゲート電極は、一部のゲート電極(15a)と残部のゲート電極(15b)とが互いに独立した電圧が印加されるようになっており、第1不純物領域とドリフト層とを繋ぐ反転層を形成するための絶縁ゲート構造の閾値電圧は、複数のゲート電極のうちの一部のゲート電極を有する絶縁ゲート構造の閾値電圧と複数のゲート電極のうちの残部のゲート電極を有する絶縁ゲート構造の閾値電圧とで異なっており、一部のゲート電極および残部のゲート電極にゲート電圧が印加された際、ベース層のうちの一部のゲート電極が配置されるゲート絶縁膜と接する部分に第1不純物領域とドリフト層とを繋ぐ反転層が形成されると共に、ベース層のうちの残部のゲート電極が配置されるゲート絶縁膜と接する部分にドリフト層側から第1不純物領域に向かう途中位置まで反転層が形成されるゲート電圧を第1電圧、ベース層のうちの一部のゲート電極および残部のゲート電極が配置されるトレンチと接する部分に反転層が形成されないゲート電圧を第2電圧としたとき、半導体スイッチング素子に電流を流す際には、一部のゲート電極に第1電圧が印加されると共に残部のゲート電極に第1、第2電圧のいずれか一方が印加され、FWD素子の順方向に電流が流れている状態から当該電流を遮断する際、一部のゲート電極に第2電圧が印加されると共に残部のゲート電極に第1電圧が印加されることを特徴としている。
これによれば、一部のゲート電極を有する絶縁ゲート構造の閾値電圧と残部のゲート電極を有する絶縁ゲート構造の閾値電圧とが異なるようにし、FWD素子がダイオード動作している状態から電流を遮断する際、残部のゲート電極に、半導体スイッチング素子に電流を流す際に一部のゲート電極に印加する第1ゲート電圧と同じ第1電圧を印加している。このため、FWD素子がダイオード動作している状態から電流を遮断する際、ベース層のうちの残部のゲート電極が配置されるゲート絶縁膜と接する部分に第1不純物領域とドリフト層とを繋がない反転層が形成されるため、リカバリ損失の低減を図ることができる。つまり、リカバリ損失の低減を図るために、第1、第2電圧と異なる電圧を必要としない。すなわち、2種類のゲート電圧のみで半導体スイッチング素子およびFWD素子の作動を制御しつつ、リカバリ損失の低減も図ることができる。したがって、ゲート電圧を生成するドライバ回路の構成が複雑になることを抑制できる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
本発明の第1実施形態における半導体装置の断面図である。 図1に示す第1、第2ゲート電極近傍の拡大図である。 図2中のA−A´線に沿った不純物濃度と、B−B´線に沿った不純物濃度との関係を示す図である。 FWD素子がダイオード動作している状態からオフ状態に切り換える際のタイミングチャートである。 導通状態におけるFWD素子の動作状態を示す図である。 注入抑制状態におけるFWD素子の動作状態を示す図である。 リカバリ状態におけるFWD素子の動作状態を示す図である。 電流遮断状態におけるFWD素子の動作状態を示す図である。 図1に示す半導体装置における閾値電圧の1例を示す図である。 注入抑制状態における第2ゲート電極に印加するゲート電圧の1例を示す図である。 本発明の第2実施形態における半導体装置の断面図である。 図8に示す半導体装置の製造工程を示す断面図である。 図9に続く半導体装置の製造工程を示す断面図である。 本発明の第3実施形態における半導体装置の断面図である。 図11Aとは別断面の断面図である。
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
(第1実施形態)
本発明の第1実施形態について図面を参照しつつ説明する。本実施形態では、IGBT素子とFWD素子とが共通の半導体基板に形成された逆導通型IGBT(RC−IGBT)を備える半導体装置について説明する。なお、本実施形態の半導体装置は、例えば、インバータやコンバータ等の電力変換装置に利用されると好適である。
図1に示されるように、半導体装置は、ドリフト層11を構成する半導体基板10を有し、当該ドリフト層11上(半導体基板10の一面10a側)にp型のベース層12が形成されている。そして、ベース層12を貫通してドリフト層11に達するように複数のトレンチ13a、13bが形成され、このトレンチ13a、13bによってベース層12が複数個に分離されている。
なお、各トレンチ13a、13bは、半導体基板10の一面10aの面方向のうちの一方向(図2中紙面奥行き方向)に沿って等間隔に形成されている。また、半導体基板10の一面10aは、ベース層12のうちのドリフト層11と反対側の一面にて構成されている。
そして、各トレンチ13a、13b内は、各トレンチ13a、13bの壁面を覆うように形成されたゲート絶縁膜14と、このゲート絶縁膜14上に形成されたポリシリコン等により構成されるゲート電極15a、15bとにより埋め込まれている。これにより、トレンチゲート構造が構成されている。
ここで、本実施形態では、各トレンチ13a、13b内に形成されたゲート電極15a、15bは、一部のゲート電極15aと残部のゲート電極15bとが異なる第1、第2ゲート端子G1、G2に接続されている。つまり、一部のゲート電極15aと残部のゲート電極15bとは、互いに独立したゲート電圧が印加されるようになっている。以下では、一部のゲート電極を第1ゲート電極15aとすると共に、残部のゲート電極を第2ゲート電極15bとし、第1ゲート電極15aが配置されるトレンチ13aを第1トレンチ13aとすると共に第2ゲート電極15bが配置されるトレンチ13bを第2トレンチ13bとして説明する。なお、本実施形態では、第1ゲート電極15aおよび第2ゲート電極15b(第1トレンチ13aおよび第2トレンチ13b)は、第1、第2トレンチ13a、13bの延設方向と垂直方向(図1中紙面左右方向)において、交互に配置されている。
ベース層12の表層部には、n型のエミッタ領域16と、エミッタ領域16に挟まれるp型のコンタクト領域17とが形成されている。
エミッタ領域16は、ドリフト層11よりも高不純物濃度で構成され、ベース層12内において終端し、かつ、第1、第2トレンチ13a、13bの側面に接するように形成されている。一方、コンタクト領域17は、ベース層12よりも高不純物濃度で構成され、エミッタ領域16と同様に、ベース層12内において終端するように形成されている。
より詳しくは、エミッタ領域16は、第1、第2トレンチ13a、13b間の領域において、第1、第2トレンチ13a、13bの長手方向に沿って第1、第2トレンチ13a、13bの側面に接するように棒状に延設され、第1、第2トレンチ13a、13bの先端よりも内側で終端する構造とされている。また、コンタクト領域17は、2つのエミッタ領域16に挟まれて第1、第2トレンチ13a、13bの長手方向(つまりエミッタ領域16)に沿って棒状に延設されている。なお、本実施形態のコンタクト領域17は、半導体基板10の一面10aを基準としてエミッタ領域16よりも深く形成されている。
ここで、本実施形態では、図1および図2に示されるように、第1トレンチ13aと接するエミッタ領域16の深さは、第2トレンチ13bと接するエミッタ領域16の深さより深くされている。言い換えると、具体的には後述するが、本実施形態の半導体装置では、半導体基板10の厚さ方向に電流が流れるため、ベース層12のうちの電流の流れ方向に沿ったエミッタ領域16とドリフト層11との間の長さは、ゲート絶縁膜14を挟んで第1ゲート電極15aと反対側に位置する部分の方がゲート絶縁膜14を挟んで第2ゲート電極15bと反対側に位置する部分より短くされている。つまり、図3に示されるように、第1トレンチ13aと接するエミッタ領域16と、第2トレンチ13bと接するエミッタ領域16とのピーク濃度の位置が異なるように、各エミッタ領域16が形成されている。
このため、第1ゲート電極15aを有するゲート絶縁構造の閾値電圧Vthと第2ゲート電極15bを有するゲート絶縁構造の閾値電圧Vthとが異なっている。具体的には、第2トレンチ13bと接するエミッタ領域16は、第1トレンチ13aと接するエミッタ領域16より浅く形成されているため、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthは、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vthより高くなっている。なお、本実施形態における絶縁ゲート構造の閾値電圧Vthとは、第1、第2ゲート電極15a、15bにゲート電圧が印加された際、エミッタ領域16とドリフト層11とを繋ぐ反転層を形成するために必要な最小電圧のことである。
また、図1に示されるように、ベース層12(半導体基板10の一面10a)上にはBPSG等で構成される層間絶縁膜18が形成されている。そして、層間絶縁膜18には、エミッタ領域16の一部およびコンタクト領域17を露出させるコンタクトホール18aが形成されている。
層間絶縁膜18上には第1電極19が形成されている。この第1電極19は、コンタクトホール18aを介してエミッタ領域16およびコンタクト領域17と電気的に接続されている。つまり、第1電極19は、IGBT素子におけるエミッタ電極として機能すると共にFWD素子におけるアノード素子として機能する。
ドリフト層11のうちのベース層12側と反対側(半導体基板10の他面10b側)には、p型のコレクタ層20およびn型のカソード層21が形成されている。つまり、IGBT素子とFWD素子とは、半導体基板10の他面10b側に形成される層がコレクタ層20であるかカソード層21であるかによって基本的に区画されている。
コレクタ層20およびカソード層21上(半導体基板10の他面10b)には第2電極22が形成されている。この第2電極22は、IGBT素子においてはコレクタ電極として機能し、FWD素子においてはカソード電極として機能する。
そして、上記のように構成されていることにより、ベース層12およびコンタクト領域17をアノードとし、ドリフト層11、カソード層21をカソードとしてPN接合を有するFWD素子が構成されている。
以上が本実施形成における半導体装置の基本的な構成である。なお、本実施形態では、エミッタ領域16が本発明の第1不純物領域に相当し、カソード層21が本発明の第2不純物領域に相当している。また、n型、n型、n型が本発明の第1導電型に相当し、p型、p型が本発明の第2導電型に相当している。
次に、上記半導体装置における第1、第2ゲート電極15a、15bに印加されるゲート電圧および作動について説明する。なお、本実施形態の半導体装置は、上記のように、第1、第2ゲート電極15a、15bに対して互いに独立したゲート電圧が印加されるようになっている。
まず、第1電極19を接地すると共に第2電極22に正の電圧を印加すると、ベース層12とドリフト層11との間に形成されるPN接合は逆導通状態となる。このため、第1、第2ゲート電極15a、15bに、ローレベル(例えば、0V)の電圧が印加されているときには、PN接合に空乏層が形成され、第1、第2電極19、22間の電流は遮断される。
そして、IGBT素子をオン状態にするには、第1電極19を接地すると共に第2電極22に正の電圧を印加した状態で、第1ゲート電極15aにハイレベルの電圧を印加すると共に、第2ゲート電極15bにローレベルの電圧を印加する。これにより、ベース層12のうちの第1ゲート電極15aが配置される第1トレンチ13aと接している部分に反転層が形成され、当該反転層を介して第1、第2電極19、22間に電流が流れる。
なお、上記のように、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthは、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vthより高くされている。そして、本実施形態において、ハイレベルの電圧とは、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vth以上であって、かつ、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vth未満の電圧である。つまり、第1、第2ゲート電極15a、15bに同時にハイレベルのゲート電圧が印加された場合、エミッタ領域16とドリフト層11とを繋ぐ反転層は、ベース層12のうちの第1トレンチ13aに沿った部分にのみ形成される。本実施形態では、ハイレベルの電圧が本発明の第1電圧に相当し、ローレベルの電圧が本発明の第2電圧に相当している。
また、IGBT素子をオフ状態にし、FWD素子をダイオード動作させる(オン状態にする)際には、第1電極19と第2電極22に印加する電圧をスイッチングし、第1電極19に正の電圧を印加する共に第2電極22を接地する。そして、第1、第2ゲート電極15a、15bにローレベルの電圧を印加する。これにより、ベース層12のうちの第1トレンチ13aと接する部分にも反転層が形成されなくなり、FWD素子がダイオード動作を行う。
次に、FWD素子をダイオード動作させているときから電流を遮断してオフ状態にする際の半導体装置の状態と、第1、第2ゲート電極15a、15bに印加されるゲート電圧との関係について、図4、図5A、図5B、図6A、図6Bを参照しつつ説明する。
FWD素子をダイオード動作させているときから電流を遮断してオフ状態にする際には、図4に示されるように、FWD素子は、導通状態(オン状態)、注入抑制状態、リカバリ状態、電流遮断状態(オフ状態)の順に状態が変化する。
まず、時点T1以前の導通状態では、第1電極19に正の電圧、第2電極22に負の電圧が印加され、第1、第2ゲート電極15a、15bにローレベルのゲート電圧が印加されている。このため、図5Aに示されるように、過剰キャリアがPN接合部に注入され、FWD素子がダイオード動作をする。
そして、時点T1から時点T2の注入抑制状態では、第1ゲート電極15aにローレベルのゲート電圧が印加されつつ、第2ゲート電極15bにハイレベルのゲート電圧(IGBT素子をオンする際に第1ゲート電極15aに印加されるゲート電圧と等しい電圧)が印加される。このため、図5Bに示されるように、第2ゲート電極15bの周辺には、ベース層12内の少数キャリアである電子が引き寄せられ、第2トレンチ13bの側面のうちの第2ゲート電極15bと対応する部分に反転層23が形成される。
具体的には、上記のように、ハイレベルの電圧は、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vth以上であって、かつ、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vth未満の電圧である。つまり、ベース層12のうちの第2トレンチ13bと接する部分に、エミッタ領域16とドリフト層11とを繋がない反転層が形成される。詳述すると、反転層23は、ベース層12における第2トレンチ13bと接する部分のうちのドリフト層11側の部分からエミッタ領域16に向かう途中位置まで形成される。
そして、ベース層12内の少数キャリアが減少したことで電荷中性条件からベース層12内の多数キャリアである正孔も少なくなると共に、ドリフト層11内に蓄積されている電子が反転層23を介して第1電極19から引き抜かれる。
このため、ベース層12の抵抗成分が高くなることで注入効率も低下し、その結果、FWD素子の順方向電圧Vfも増加する。そして、過剰キャリア注入が抑制され、反転層23内の多数キャリアがベース層12内の多数キャリアと再結合する。また、過剰キャリア注入が抑制されたことにより、元々ドリフト層11に多量に注入されることで蓄積されている過剰キャリアがライフタイムのため、存在し切れなくなって消滅していく。
そして、ドリフト層11内の過剰キャリアが少なくなったところで、図5Cに示されるように、第1電極19に負の電圧を印加すると共に、第2電極22に正の電圧を印加する逆電圧印加を行う。これにより、図4中の時点T2から時点T3の期間のリカバリ状態となった後、時点T3以降の電流遮断状態となる(図5D参照)。
この場合、時点T2から時点T3のリカバリ状態では、逆回復電荷が発生するが、時点T1から時点T2の注入抑制状態において、予めドリフト層11内の過剰キャリアを少なくしているため、逆回復電荷を十分に小さな値にすることが可能となる。したがって、リカバリ損失の低減を図ることができる。なお、電流遮断状態では、第2ゲート電極15bにもローレベルのゲート電圧が印加される(図4、図5D参照)。
例えば、図6に示されるように、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vthが8V、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthが25Vとなるように半導体装置を構成したとする。この場合、注入抑制状態では、図7に示されるように、第2ゲート電極15bに15V以上の電圧を印加することにより、第1、第2電極19、22間の電圧が大きくなる。つまり、FWD素子の順方向電圧Vfの絶対値が大きくなる。また、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthが25Vであるため、第2ゲート電極15bに25V以上のゲート電圧を印加すると短絡してしまう。したがって、このような半導体装置では、図4中の時点T1から時点T2の注入抑制状態において、第2ゲート電極15bに15〜25Vのゲート電圧を印加することにより、リカバリ損失の低減を図ることができる。なお、図7は、FWD素子がダイオード動作している際の順方向電流が400A/cmであるときのシミュレーション結果である。
以上が本実施形態における半導体装置の作動である。なお、このような半導体装置は、例えば、通常の半導体製造プロセス工程において、第1トレンチ13aと接するエミッタ領域16を形成するためのイオン注入工程と第2トレンチ13bと接するエミッタ領域16を形成するためのイオン注入工程とを別々の工程として行い、各イオン注入工程における加速電圧等を適宜変更することによって製造される。
以上説明したように、本実施形態では、第1、第2ゲート電極15a、15bに互いに独立したゲート電圧が印加されるようにし、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vthと第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthとが異なるようにしている。そして、FWD素子がダイオード動作している状態から電流を遮断してオフ状態にする際、第2ゲート電極15bに、IGBT素子をオン状態にする際に第1ゲート電極15aに印加するハイレベルのゲート電圧と同じハイレベルの電圧を印加してエミッタ領域16とドリフト層11とを繋がない反転層23を形成することにより、リカバリ損失の低減を図るようにしている。つまり、リカバリ損失の低減を図るために別の電圧を必要としない。すなわち、2種類のゲート電圧のみでIGBT素子およびFWD素子の作動を制御しつつ、リカバリ損失の低減を図ることができる。したがって、ゲート電圧を生成するドライバ回路の構成が複雑になることを抑制できる。
さらに、本実施形態では、第1、第2ゲート電極15a、15bが交互に形成されている。このため、半導体装置をIGBT素子として動作させる場合およびFWD素子として動作させる際に電流集中が発生することを抑制できる。
なお、本実施形態では、IGBT素子とFWD素子とが半導体基板10に形成された半導体装置について説明したが、半導体基板10の裏面側にコレクタ層20を備えず、MOSFET素子とFWD素子とが半導体基板10に形成された半導体装置としてもよい。このような半導体装置としても、同様の効果を得ることができる。
(第2実施形態)
本発明の第2実施形態について説明する。本実施形態は、第1実施形態に対して第1、第2トレンチ13a、13bに配置されるゲート絶縁膜14の厚さを変更したものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態では、図8に示されるように、第2トレンチ13bに配置されるゲート絶縁膜14が第1トレンチ13aに配置されるゲート絶縁膜14より厚くされている。このように、第2トレンチ13bに配置されるゲート絶縁膜14を第1トレンチ13aに配置されるゲート絶縁膜14より厚くすることにより、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthが第1ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthより高くなるようにしてもよい。
このような半導体装置としても、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthが第1ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthより高くなるようにしているため、FWD素子がダイオード動作している状態から電流を遮断してオフ状態にする際、第2ゲート電極15bにハイレベルのゲート電圧を印加して注入抑制状態を構成することにより、上記第1実施形態と同様の効果を得ることができる。
なお、このような半導体装置は次のように製造される。
すなわち、まず、図9(a)に示されるように、半導体基板10を用意し、半導体基板10の一面10aに熱酸化法等によって酸化膜31を形成する。
次に、図9(b)に示されるように、酸化膜31をマスクとして反応性イオンエッチング(RIE)等の異方性エッチングを行うことにより、第1トレンチ13aを形成する。その後、必要に応じて、ケミカルドライエッチング(CDE)等を行うことにより、形成した第1トレンチ13aの壁面のダメージを除去する工程を行う。
続いて、図9(c)に示されるように、熱酸化法等により、第1トレンチ13aに配置されるゲート絶縁膜14を形成する。
そして、図9(d)に示されるように、第1トレンチ13aに配置されたゲート絶縁膜14上にドープトPoly−Siを成膜して第1ゲート電極15aを形成すると共に、再び半導体基板10の一面10a上に酸化膜32を形成する。
次に、図10(a)に示されるように、酸化膜32をマスクとして反応性イオンエッチング(RIE)等の異方性エッチングを行うことにより、第2トレンチ13bを形成する。その後、必要に応じて、ケミカルドライエッチング(CDE)等を行うことにより、形成した第2トレンチ13bの壁面のダメージを除去する工程を行う。
そして、図10(b)に示されるように、熱酸化法等により、第2トレンチ13bに配置されるゲート絶縁膜14を形成する。このとき、例えば、熱酸化法によってゲート絶縁膜14を形成する場合には、図9(c)の工程の熱酸化法より加熱温度を高くしたり加熱時間を長くしたりすることにより、第1トレンチ13aに配置されるゲート絶縁膜14より厚いゲート絶縁膜14を第2トレンチ13bに形成することができる。
その後、図10(c)に示されるように、第2トレンチ13bに配置されたゲート絶縁膜14上にドープトPoly−Siを成膜して第2ゲート電極15bを構成すると共に、再び半導体基板10の一面10a上に酸化膜33を形成する。その後は、特に図示しないが、周知の半導体製造プロセスを行い、ベース層12、エミッタ領域16、コレクタ層20、カソード層21、第1電極19、第2電極22を形成することにより、図8に示す半導体装置が製造される。
(第3実施形態)
本発明の第3実施形態について説明する。本実施形態は、第1実施形態に対して半導体基板10の面方向に電流を流す横型の半導体装置とすると共に、半導体基板10にMOSFET素子およびFWD素子を形成した半導体装置としたものであり、その他に関しては第1実施形態と同様であるため、ここでは説明を省略する。
本実施形態では、図11Aおよび図11Bに示されるように、ドリフト層11の表層部の所定領域にベース層12が形成されていると共に、ベース層12内における所定領域にソース領域41およびコンタクト領域42が形成されている。また、ドリフト層11の表層部には、ベース層12から離間したn型のドレイン層43が形成されている。なお、本実施形態では、ソース領域41が本発明の第1不純物領域に相当し、ドレイン層43が本発明の第2不純物領域に相当している。
そして、半導体基板10の一面10a上には、チャネル幅方向(ベース層12等の長手方向)にゲート絶縁膜14を介して第1、第2ゲート電極15a、15bが延設されている。これら第1、第2ゲート電極15a、15bは、上記第1実施形態と同様に、異なる第1、第2ゲート端子G1、G2に接続され、互いに独立したゲート電圧が印加されるようになっている。
また、半導体基板10の一面10a上には、ソース領域41およびコンタクト領域42に電気的に接続される第1電極19が配置されていると共に、ドレイン層43と電気的に接続される第2電極22が配置されている。なお、図11Aおよび図11Bでは、半導体基板10の一面10aに形成される層間絶縁膜18を省略して示してある。
本実施形態では、このような構造により、プレーナ型の横型MOSFET素子とFWD素子とが共通の半導体基板10に形成されている。このような半導体装置では、MOSFET素子をオン状態にするには、第1ゲート電極15aにハイレベルの電圧を印加してベース層12のうちの第1ゲート電極15aの下方に位置する部分に反転層を形成することにより、第1電極19と第2電極22との間に電流が流れる。具体的には、半導体基板10の面方向(図11Aおよび図11B中紙面左右方向)に沿って電流が流れる。
ここで、本実施形態では、ベース層12のうちの電流の流れ方向に沿ったソース領域41とドリフト層11との間の長さは、ゲート絶縁膜14を挟んで第1ゲート電極15aと反対側に位置する部分の方がゲート絶縁膜14を挟んで第2ゲート電極15bと反対側に位置する部分より短くされている。このため、第2ゲート電極15bを有する絶縁ゲート構造の閾値電圧Vthは、第1ゲート電極15aを有する絶縁ゲート構造の閾値電圧Vthより高くなる。
このように、半導体基板10の面方向に電流を流す横型のMOSFET素子とFWD素子とが共通の半導体基板に形成された半導体装置に本発明を適用しても、FWD素子がダイオード動作している状態から電流を遮断してオフ状態にする際、第2ゲート電極15bにハイレベルのゲート電圧を印加して注入抑制状態を構成することにより、上記第1実施形態と同様の効果を得ることができる。
(他の実施形態)
本発明は上記した実施形態に限定されるものではなく、特許請求の範囲に記載した範囲内において適宜変更が可能である。
例えば、上記各実施形態では、第1導電型をn型とし、第2導電型をp型とした例について説明したが、第1導電型をp型とし、第2導電型をn型とすることもできる。
また、上記各実施形態において、第1ゲート電極15aを有するゲート絶縁構造の閾値電圧Vthと第2ゲート電極15bを有するゲート絶縁構造の閾値電圧Vthとを異ならせるための構造は、適宜変更可能である。特に図示しないが、例えば、ベース層12内において不純物濃度の勾配ができるようにし、ベース層12のうちの第2トレンチ13bに接する部分の不純物濃度が第1トレンチ13aに接する部分の不純物濃度より高くなるようにしてもよい。
また、上記第1、第2実施形態において、第1、第2ゲート電極15a、15bの配置方法は適宜変更可能であり、第1、第2トレンチ13a、13bの延設方向と垂直方向において交互に配置されていなくてもよい。例えば、隣接する第1ゲート電極15aの間に2つの第2ゲート電極15bが配置されるようにしてもよいし、第1ゲート電極15aおよび第2ゲート電極15bがそれぞれ纏められて配置されるようにしてもよい。この場合は、カソード層21上に第2ゲート電極15bが配置されるようにすることが好ましい。同様に、上記第3実施形態においても第1、第2ゲート電極15a、15bの配置方法は適宜変更可能である。
さらに、上記第1、第2実施形態において、IGBT素子をオン状態にする際、第2ゲート電極15bにハイレベルのゲート電圧を印加するようにしてもよい。これによれば、ベース層12のうちの第2トレンチ13bと接する部分にエミッタ領域16とドリフト層11とを繋がない反転層23が形成されるため、当該反転層23を介して電流(電子)は流れないが、当該反転層23によってドリフト層11に正孔を蓄積させ易くできる。このため、IGBT素子をオン状態にしている際のオン電圧の低減を図ることができる。
そして、上記第3実施形態において、IGBT素子およびFWD素子が形成された半導体装置としてもよい。さらに、上記第3実施形態において、半導体基板10に第1、第2トレンチ13a、13bを形成し、当該第1、第2トレンチ13a、13bに第1、第2ゲート電極15a、15bを配置するようにしてもよい。つまり、トレンチゲート構造を有する横型の半導体装置としてもよい。
また、上記各実施形態を適宜組み合わせることもできる。例えば、上記第2実施形態を上記第1、第3実施形態に組み合わせ、ゲート絶縁膜14の厚さを適宜変更するようにしてもよい。
11 ドリフト層
12 ベース層
14 ゲート絶縁膜
15a 第1ゲート電極(一部のゲート電極)
15b 第2ゲート電極(残部のゲート電極)
16 エミッタ領域(第1不純物領域)
19 第1電極
21 カソード層(第2不純物領域)
22 第2電極

Claims (3)

  1. 第1導電型のドリフト層(11)と、
    前記ドリフト層上に形成された第2導電型のベース層(12)と、
    前記ベース層(4)の表層部であって、前記ベース層を挟んで前記ドリフト層から離間して形成され、前記ドリフト層よりも高不純物濃度とされた第1導電型の第1不純物領域(16、41)と、
    前記第1不純物領域と前記ドリフト層の間に挟まれた前記ベース層の表面に配置されたゲート絶縁膜(14)と、
    前記ゲート絶縁膜上に配置されたゲート電極(15a、15b)と、
    前記ドリフト層と接触すると共に前記ベース層から離間して形成され、前記ドリフト層よりも高不純物濃度とされた第1導電型の第2不純物領域(21、43)と、
    前記ベース層および前記第1不純物領域と電気的に接続される第1電極(19)と、
    前記第2不純物領域と電気的に接続される第2電極(22)と、を有し、
    前記ベース層のうち、前記ゲート絶縁膜を挟んで前記ゲート電極と反対側に位置する部分に前記第1不純物領域と前記ドリフト層との間を繋ぐ反転層を形成し、当該反転層を介して前記第1電極と前記第2電極との間に電流を流す半導体スイッチング素子を備えていると共に、
    前記ベース層と前記ドリフト層とによるPN接合を有し、前記第1電極と前記第2電極との間に電流を流すフリーホイールダイオード素子を備えている半導体装置において、
    前記複数のゲート電極は、一部のゲート電極(15a)と残部のゲート電極(15b)とが互いに独立した電圧が印加されるようになっており、
    前記第1不純物領域と前記ドリフト層とを繋ぐ反転層を形成するための絶縁ゲート構造の閾値電圧は、前記複数のゲート電極のうちの一部のゲート電極を有する絶縁ゲート構造の閾値電圧と前記複数のゲート電極のうちの残部のゲート電極を有する絶縁ゲート構造の閾値電圧とで異なっており、
    前記一部のゲート電極および前記残部のゲート電極にゲート電圧が印加された際、前記ベース層のうちの前記一部のゲート電極が配置される前記ゲート絶縁膜と接する部分に前記第1不純物領域と前記ドリフト層とを繋ぐ反転層が形成されると共に、前記ベース層のうちの前記残部のゲート電極が配置される前記ゲート絶縁膜と接する部分に前記ドリフト層側から前記第1不純物領域に向かう途中位置まで反転層が形成される前記ゲート電圧を第1電圧、前記ベース層のうちの前記一部のゲート電極および前記残部のゲート電極が配置される前記ゲート絶縁膜と接する部分に前記反転層が形成されないゲート電圧を第2電圧としたとき、
    前記半導体スイッチング素子に電流を流す際には、前記一部のゲート電極に前記第1電圧が印加されると共に前記残部のゲート電極に前記第1、第2電圧のいずれか一方が印加され、
    前記フリーホイールダイオード素子の順方向に電流が流れている状態から当該電流を遮断する際、前記一部のゲート電極に前記第2電圧が印加されると共に前記残部のゲート電極に前記第1電圧が印加されることを特徴とする半導体装置。
  2. 前記ベース層のうちの電流の流れ方向に沿った前記第1不純物領域と前記ドリフト層との間の長さは、前記ゲート絶縁膜を挟んで前記一部のゲート電極と反対側に位置する部分の長さが前記ゲート絶縁膜を挟んで前記残部のゲート電極と反対側に位置する部分より短くされていることを特徴とする請求項1に記載の半導体装置。
  3. 前記一部のゲート電極下に配置されるゲート絶縁膜は、前記残部のゲート電極下に配置されるゲート絶縁膜より薄くされていることを特徴とする請求項1に記載の半導体装置。

JP2014223866A 2014-11-03 2014-11-03 半導体装置 Pending JP2016092163A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014223866A JP2016092163A (ja) 2014-11-03 2014-11-03 半導体装置
PCT/JP2015/005450 WO2016072074A1 (ja) 2014-11-03 2015-10-29 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014223866A JP2016092163A (ja) 2014-11-03 2014-11-03 半導体装置

Publications (1)

Publication Number Publication Date
JP2016092163A true JP2016092163A (ja) 2016-05-23

Family

ID=55908817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014223866A Pending JP2016092163A (ja) 2014-11-03 2014-11-03 半導体装置

Country Status (2)

Country Link
JP (1) JP2016092163A (ja)
WO (1) WO2016072074A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107887431A (zh) * 2016-09-30 2018-04-06 英飞凌科技股份有限公司 功率半导体装置
US10438852B2 (en) 2016-01-27 2019-10-08 Denso Corporation Semiconductor device
JP2020145341A (ja) * 2019-03-07 2020-09-10 三菱電機株式会社 半導体装置
US10778216B2 (en) 2019-01-04 2020-09-15 Kabushiki Kaisha Toshiba Control circuit, semiconductor device, and electrical circuit device
US11296076B2 (en) 2019-11-01 2022-04-05 Kabushiki Kaisha Toshiba Semiconductor device
US11335787B2 (en) 2019-10-25 2022-05-17 Kabushiki Kaisha Toshiba Semiconductor device
US11563112B2 (en) 2019-11-01 2023-01-24 Kabushiki Kaisha Toshiba Method for controlling semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170345905A1 (en) 2016-05-24 2017-11-30 Infineon Technologies Ag Wide-Bandgap Semiconductor Device with Trench Gate Structures
JP7200739B2 (ja) * 2019-02-21 2023-01-10 株式会社デンソー 半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454146B2 (ja) * 2008-02-14 2014-03-26 トヨタ自動車株式会社 逆導通半導体素子の駆動方法と半導体装置及び給電装置
JP2011146555A (ja) * 2010-01-15 2011-07-28 Toyota Central R&D Labs Inc 半導体素子の駆動方法及びその半導体素子を備えた電力変換装置
JP5229288B2 (ja) * 2010-09-20 2013-07-03 株式会社デンソー 半導体装置およびその制御方法
JP5768395B2 (ja) * 2010-07-27 2015-08-26 株式会社デンソー 半導体装置およびその制御方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10438852B2 (en) 2016-01-27 2019-10-08 Denso Corporation Semiconductor device
CN107887431A (zh) * 2016-09-30 2018-04-06 英飞凌科技股份有限公司 功率半导体装置
CN107887431B (zh) * 2016-09-30 2021-07-27 英飞凌科技股份有限公司 功率半导体装置
US10778216B2 (en) 2019-01-04 2020-09-15 Kabushiki Kaisha Toshiba Control circuit, semiconductor device, and electrical circuit device
JP2020145341A (ja) * 2019-03-07 2020-09-10 三菱電機株式会社 半導体装置
JP7158317B2 (ja) 2019-03-07 2022-10-21 三菱電機株式会社 半導体装置
US11335787B2 (en) 2019-10-25 2022-05-17 Kabushiki Kaisha Toshiba Semiconductor device
US11296076B2 (en) 2019-11-01 2022-04-05 Kabushiki Kaisha Toshiba Semiconductor device
US11563112B2 (en) 2019-11-01 2023-01-24 Kabushiki Kaisha Toshiba Method for controlling semiconductor device
US11837654B2 (en) 2019-11-01 2023-12-05 Kabushiki Kaisha Toshiba Method for controlling semiconductor device

Also Published As

Publication number Publication date
WO2016072074A1 (ja) 2016-05-12

Similar Documents

Publication Publication Date Title
WO2016072074A1 (ja) 半導体装置
JP6459791B2 (ja) 半導体装置およびその製造方法
JP6641983B2 (ja) 半導体装置
JP5103830B2 (ja) 絶縁ゲート型半導体装置
WO2013065247A1 (ja) 半導体装置
JP5194273B2 (ja) 半導体装置
JP2016157934A (ja) 半導体装置
JP2007134625A (ja) 半導体装置およびその製造方法
WO2017199679A1 (ja) 半導体装置
JP2012043890A (ja) 半導体装置
JP6471508B2 (ja) 半導体装置
JP2013251395A (ja) 半導体装置
JP2010135677A (ja) 半導体装置
JP5458595B2 (ja) 半導体装置、スイッチング装置、及び、半導体装置の制御方法。
WO2016114131A1 (ja) 半導体装置
CN107833921B (zh) 开关器件和制造开关器件的方法
JP6996461B2 (ja) 半導体装置
JP5989689B2 (ja) 半導体装置
JP2009038214A (ja) 半導体装置
JP4415767B2 (ja) 絶縁ゲート型半導体素子、及びその製造方法
JP5151175B2 (ja) 半導体装置
WO2019098122A1 (ja) 半導体装置
WO2021220965A1 (ja) 半導体装置
JP7352437B2 (ja) 半導体装置
WO2020054446A1 (ja) 半導体装置