JP2009059710A - 正極活物質およびこれを用いた非水電解質二次電池 - Google Patents

正極活物質およびこれを用いた非水電解質二次電池 Download PDF

Info

Publication number
JP2009059710A
JP2009059710A JP2008283789A JP2008283789A JP2009059710A JP 2009059710 A JP2009059710 A JP 2009059710A JP 2008283789 A JP2008283789 A JP 2008283789A JP 2008283789 A JP2008283789 A JP 2008283789A JP 2009059710 A JP2009059710 A JP 2009059710A
Authority
JP
Japan
Prior art keywords
powder
positive electrode
active material
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008283789A
Other languages
English (en)
Inventor
Kazuya Okabe
一弥 岡部
Ryuji Shiozaki
竜二 塩崎
Akihiro Fujii
明博 藤井
Akishi Ito
明師 伊藤
Hiroshi Yufu
宏 油布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2008283789A priority Critical patent/JP2009059710A/ja
Publication of JP2009059710A publication Critical patent/JP2009059710A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】高率充放電性能及び充放電サイクル性能に優れる高エネルギー密度の非水電解質二次電池を得ることのできる正極活物質、および、高率充放電性能及び充放電サイクル性能に優れる高エネルギー密度の非水電解質二次電池を提供する。
【解決手段】Li−Mn−Ni系複合酸化物を主成分とする正極活物質であって、前記Li−Mn−Ni系複合酸化物のBET法による比表面積が0.3m/g以上1.5m/g以下であることを特徴とする正極活物質およびこれを用いた非水電解質二次電池。
【選択図】図5

Description

<技術分野>
本発明は、正極活物質およびこれを用いた非水電解質二次電池に関する。
<背景技術>
リチウム二次電池等の非水電解質二次電池は高いエネルギー密度を示し、高電圧であることから小型携帯端末や移動体通信装置などへの電源として広く使用されている。リチウム二次電池用正極活物質には、リチウムの挿入・脱離の繰り返しによっても結晶構造が安定で、かつ電気化学的作動容量が大きいことが要求される。作動電圧が4V付近のものとしては、層状構造のリチウムコバルト酸化物やリチウムニッケル酸化物、又はスピネル構造を持つリチウムマンガン酸化物等を基本構成とするリチウム含有遷移金属酸化物が知られている。
現在、4V級の作動電位を有する非水電解質二次電池の正極活物質として、LiCoO、LiNiO、LiMnO、LiMn等のリチウムと遷移金属との複合酸化物が従来より知られている。なかでも、高エネルギー密度を期待できるα−NaFeO構造を有する正極活物質の中で、LiCoO等で表されるリチウムコバルト複合酸化物は民生用のリチウムイオン電池などに広く用いられているが、コバルトが希少金属であり、価格が高いといった問題があった。また、LiNiO等で表されるリチウムニッケル複合酸化物は高温での安定性に欠けるため、安全性の確保が難しいことなどから実用化には至っていない。また、LiMn等で表されるスピネル構造を有するリチウムマンガン酸化物は、安価で、安全性にも優れた正極活物質であるが、リチウムコバルト複合酸化物に比べて重量当たりのエネルギー密度が70%程度にとどまり、一部で実用化はされているものの、広く民生用途で使用されるには至っていない。
一方、LiMnOは、原理的に高い容量が期待でき、安全性にも優れるため、広く検討されてきた。前記LiMnOは、ジグザグ層状構造であるβ−NaMnO型の斜方晶系構造、及び、層状岩塩構造であるα−NaFeO型の単斜晶系構造が知られている。
前記斜方晶形構造のLiMnOは、前記LiMnよりも高い容量を期待できるが、充放電を繰り返すと、徐々にスピネル相への転位が生じることから、充放電サイクルに対する安定性に劣るといった問題点があった。また、前記単斜晶構造のLiMnOは、高率充放電性能が充分でなく、充放電サイクルに伴う容量低下も大きいことが、例えば、Chiang,Y−M.;Sadoway,D.R.;Jang,Y−I.;Huang,B.;Wang,H.High Capacity,Temperature−Stable Lithium Aluminium Manganese Oxide Cathodes for Rechargeable Batteries.Electrochem.Solid−State Lett.2(3),1999,107−110.に報告されている。
これらの問題を解決するため、特開2001−23617号公報では、LiMnOのMnをAl、Fe、Co、Ni、Mg又はCrで1−y(0.5≦y≦1)量置換し、且つ、正極と負極との間に60〜100℃にて4.0V〜4.8Vの電圧を印可して結晶構造の変化を加速し、高率充放電特性を改善する技術が開示されている。しかしながら、これらの技術を用いてもなお、高率充放電特性は十分ではなかった。
更に、前記リチウムマンガン酸化物は、その使用に当たって克服すべき技術課題が多い。特に高温時におけるサイクル性能や保存性能が劣るといった問題があった。
また、LiNiOのNiの一部をMnで置換した構造として、空間群R3/mの結晶構造を有するLiNi1−αMnαを考えたとき、MnによるNiサイトへの置換を確実にするためには、800℃以上の焼成が必要である。ところが、このような高温においては、結晶中のLiが入るべきサイトにNiやMnが入り込んで結晶構造を乱してしまい、容量やサイクル性能が低下してしまうという問題点があった。特開平8−171910号公報では、前記αの値を0.05〜0.30とし、600℃〜800℃で焼成する技術を開示しているが、これらの技術を用いてもなお、サイクル性能は十分ではなかった。
上記の問題を解決手段としてLiNiOのNiの一部をMnとCoで置換したLiMnNiCoの電気化学特性に係わる技術についても公知となっている。例えば、特許第3244314号報には、a,b,cについて0.02≦a≦0.5、0.02≦b/(b+c)≦0.9、b>0.34、a+b+c=1の領域に関するLi複合酸化物の報告がなされている。しかしながら、本発明者らの検討によれば依然として充電時の熱的安定性に劣るといった問題を有している。この理由は定かではないが、該報告におけるLi複合酸化物の作製法が固体同士の機械的混合を経由するためであって、後工程の焼成時においても金属元素の拡散が不完全で、局所的な相分離が生じる結果、熱安定性に劣る結果となっているものと推定される。また原料を過度に粉砕することによって得られるLi複合酸化物の粒子が微細となり、これを正極として電池として用いた場合、正極が電解液と広く接触するために電解液の酸化分解などの副反応が起こり、経時劣化が起こりやすくなるといった問題も有している。
同様に、LiMnNiCo組成のうち、Yoshinari Makimura,Naoaki Yabuuchi,Tsutomu Ohzuku,Yukinori Kayama,Isao Tanaka,and Hirohiko Adachi,Lithium Insertion Material of LiCo1/3Ni1/3Mn1/3for Advanced Batteries;(II)Synthesis and Characterization as a Possible Alternative to LiCoO,The 42th Battery Synposium in Japan,2I18,2I19(2001)にはLiCo0.33Ni0.33Mn0.33組成に関する報告がなされている。このLi複合酸化物は、MnとNiとCoの水溶液にアルカリを添加して沈殿させた共沈化合物と、Li化合物とを混合後、熱処理することで作製される。
しかしながら、該報告には得られたLi複合酸化物に関する物性の規定がなされていないといった問題があった。この種のLi複合酸化物の格子体積は、充電によって収縮し、放電によって拡大するため、放電時における活物質へのLiの取込速度は、充電時におけるLiの引抜速度に比べて著しく小さい。従って、活物質と電解液との接触界面状態といった、正極へのLiの取込速度に強い影響を与える因子に対して最大限の注意を払わなければ、充分な放電性能を持った電池を得ることができない。従って、本活物質を正極に用いた電池を実用化するにあたっては、前記因子を決定する活物質の物性を規定することは必須の要件である。
なお、空間群の表記について、本来「R3m」の数字「3」上にバー(横線)を付して表記すべきところ、本明細書内においては便宜上「R3/m」との表記をもって同一の意味を表すものとした。
本発明は、上記問題点を解決するためになされたものであって、高率充放電性能及び充放電サイクル性能に優れ、高い安全性を有する高エネルギー密度の非水電解質二次電池を得ることのできる正極活物質、および、高率充放電性能及び充放電サイクル性能に優れる高エネルギー密度の非水電解質二次電池を提供することを目的とする。
<発明の開示>
上記の課題を解決するために、本発明者らは鋭意検討の結果、特定の構造を有する正極活物質の物性を特定のものとすることにより、驚くべきことに、優れた電池特性を備える非水電解質二次電池が得られることを見出し、本発明に至った。すなわち、本発明の技術的構成およびその作用効果は以下の通りである。ただし、作用機構については推定を含んでおり、その作用機構の正否は、本発明を制限するものではない。
(1) Li−Mn−Ni系複合酸化物を主成分とする正極活物質であって、前記Li−Mn−Ni系複合酸化物のBET法による比表面積が0.3m/g以上1.5m/g以下であることを特徴とする正極活物質。
(2) 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物であることを特徴とする前記(1)に記載の正極活物質。
(3) 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′
(但し、Mは前記異種元素 ;
x=0.001〜0.1 ; x′=0.001〜0.1 ;
y=0〜0.1 ; y′=0〜0.1 ;
x+x′+y+y′≦0.4; 0≦z≦1)
で示される組成の複合酸化物であることを特徴とする前記(1)に記載の正極活物質。
(4) 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′
(但し、Mは前記異種元素 ;
x=0.01〜0.1 ; x′=0.01〜0.1 ;
y=0〜0.1 ; y′=0〜0.1 ;
x+x′+y+y′≦0.2 ; 0≦z≦1)
で示される組成の複合酸化物であることを特徴とする前記(1)に記載の正極活物質。
(5) 前記異種元素MがB,Mg,Al,Ti,V,Cr,Fe,Co,Cu及びZnから構成される群から選ばれる1種以上であることを特徴とする前記(3)または(4)に記載の正極活物質。
(6) 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が、異種元素並びにホウ素で置換され、次の一般式;
Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′M’ +r′Lis+s′
(但し、M’は前記異種元素 ;
r=0.001〜0.1 ; r′=0.001〜0.1 ; s=0〜0.1 ; s′=0〜0.1 ;
r+r′+s+s′+w+w′≦0.4 ;
w+w′=0.0005〜0.01 ; 0≦t≦1)
で示される組成の複合酸化物であることを特徴とする前記(1)に記載の正極活物質。
(7) 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が、異種元素並びにホウ素で置換され、次の一般式;
Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′r+ r′Lis+s′
(但し、M’は前記異種元素 ;
r=0.01〜0.1 ; r′=0.01〜0.1 ;
s=0〜0.1 ; s′=0〜0.1 ;
r+r′+s+s′+w+w′≦0.2 ;
w+w′=0.0005〜0.01 ; 0≦t≦1)
で示される組成の複合酸化物であることを特徴とする前記(1)に記載の正極活物質。
(8) 前記異種元素M’がMg,Al,Ti,V,Cr,Fe,Co,Cu及びZnから構成される群から選ばれる1種以上であることを特徴とする前記(6)または(7)に記載の正極活物質。
(9) 前記Li−Mn−Ni系複合酸化物が、Li[MnNiCoLiM”]O(M”はMn、Ni、Co、Li以外の元素、d≦c+e+a+b、c+d+e+a+b=1、0≦a≦0.05、0≦b≦0.05、0.2≦c≦0.5、0.02≦e≦0.4)で表される複合酸化物であることを特徴とする前記(1)に記載の正極活物質。

(10) 前記M”が、B,Mg,Al,Ti,V,Cr,Fe,Cu及びZnからなる群から選ばれる少なくとも1種の元素であることを特徴とする前記(9)に記載の正極活物質。
(11) 前記Li−Mn−Ni系複合酸化物が、CuKα線を使用した粉末エックス線回折図の2θ=18.6±1°、36.6±1°、37.8±1°、38.2±1°、44.3±1°、48.4±1°、58.4±1°、64.2±1°、64.8±1°、68.8±1°にピークを有する層状結晶構造であることを特徴とする前記(1)〜(10)のいずれかに記載の正極活物質。
(12) 前記Li−Mn−Ni系複合酸化物は、CuKα線を使用した粉末エックス線回折図の、2θ=18.6±1°における回折ピークに対する2θ=44.1±1°における回折ピークの相対強度比が0.6以上1.1以下であることを特徴とする前記(1)〜(11)のいずれかに記載の正極活物質。
(13) 前記Li−Mn−Ni系複合酸化物は、CuKα線を使用した粉末エックス線回折図の、2θ=18.6±1°における回折ピークの半値幅が0.13°以上0.20°以下であり、かつ、2θ=44.1±1°における回折ピークの半値幅が0.10°以上0.17°以下であることを特徴とする前記(1)〜(12)のいずれかに記載の正極活物質。
(14) 前記Li−Mn−Ni系複合酸化物の粒径が3μm以上20μm以下である前記(1)〜(13)のいずれかに記載の正極活物質。
(15) 前記(1)〜(14)のいずれかに記載の正極活物質を用いた非水電解質二次電池。
本発明者らは、高容量が期待できるLiMnOに着目し、次に、Mnを置換する元素として、Mnに対して固溶が容易で、4V付近を中心とした作動電位を示すことが期待できるNiを選択した。その結果、置換量を50%としたLiMn0.5Ni0.5では、従来のリチウムイオン電池との互換性に優れた4.3V〜3.0Vという作動電位が得られること、及び、140mAh/gという高い放電容量が得られることを確認した。しかしながら、充放電サイクル性能については充分ではなかった。これは、充放電の繰り返しに伴って、正極活物質からMnが溶出し、これが電極界面抵抗の増加を導いているためと推察された。
そこで、本発明者らは、種々の物性を有するLiMn0.5Ni0.5、および、LiMn0.5Ni0.5を構成する元素のうちNi及びMnの一部を他の異種元素で置換したもの(以下、これらをまとめて、Li−Mn−Ni系複合酸化物ともいう)について、充放電サイクル性能との関係を鋭意検討したところ、比表面積の値を特定の範囲とすることにより、驚くべきことに、極めて安定した充放電サイクル性能が得られることがわかった。即ち、前記比表面積の値を1.5m/g以下とすることにより、優れた充放電サイクル性能が得られることがわかった。
この作用効果については、必ずしも明らかではないが、比表面積が減少したことで、正極活物質であるLi−Mn−Ni系複合酸化物が電解質に触れる面積が減少したため、電解液の酸化分解が抑制されたことに加え、前記正極活物質の粒子表面にわずかに吸着した水分が比表面積の減少に伴い減少したため、水分に起因する電池内でのフッ酸(HF)の発生量を低下させ、これらの酸によるMnの溶解反応が起こりにくくなったものと考えられる。
さらに、前記比表面積の値を0.3m/g以上とすることにより、2It(0.5時間率)といった高率放電を行っても、高い放電容量を維持することが認められた。
また、本発明者らは、Li−Mn−Ni系複合酸化物の中でも、LiMn0.5Ni .5を構成する元素のうち、Ni及びMnの一部を他の異種元素で置換したものについて鋭意検討したところ、驚くべきことに、前記異種原子の種類を特定のものとすることで、高率放電特性をさらに大きく改善する効果があることを見いだした。
この作用効果については必ずしも明らかではないが、前記異種元素の原子半径、即ち大きさが、Mn元素やNi元素の原子半径と異なるため、正極活物質を構成している層状構造に影響し、Liイオンの移動経路へ影響を及ぼし、イオン伝導を良好にする効果をもたらしたものと考えられる。また、このため、Mn、Ni以外の異種元素は、その元素の原子半径、即ち大きさが異なることから、大きさの異なる元素の存在により、充放電に伴う活物質結晶の膨張収縮歪みを緩和したものと考えられる。
さらに、特に表面組成が密接に関係することについては、Liイオンの授受が、正極活物質粒子と電解液との界面において行われることと関係しているものと考えられる。
また、本発明者らは、LiMn0.5Ni0.5を合成する際の焼成条件やさらに添加するLi,Mn,Ni以外の異種金属元素の種類と組成比率について鋭意検討を重ねたところ、同一組成の複合酸化物ながらも、焼成条件によって、得られる結晶の構造が大きく異なり、結晶の形態によっては充放電サイクル性能が大きく改善できることがわかった。具体的には、Li−Mn−Ni系複合酸化物がCuKα線を使用した粉末エックス線回折の2θ=18.6±1°、36.6±1°、37.8±1°、38.2±1°、44.3±1°、48.4±1°、58.4±1°、64.2±1°、64.8±1°、68.8±1°にピークを有する層状結晶構造である場合、優れたサイクル性能が得られることを確認した。
この作用効果については必ずしも明らかではないが、前記粉末エックス線回折パターンを示す結晶は、歪みが少なく、結晶の構造自体が安定であるものと考えられる。また、特にCoを添加した場合、更に構造を安定化させる効果があり、このため、前記結晶構造物からのリチウムの引き抜き反応が、より卑な電位で進行しやすくなった結果、充放電容量が向上したものと考えられる。
また、本発明者らは、焼成温度が850℃の場合と1000℃の場合とでは、同じ成分であっても結晶構造が大きく変わり、これに伴って充放電時の電位変化曲線の形状も大きく異なっていることがわかった。特に高率放電性能に対しては、前記焼成時の温度や焼成時間がわずかに変わるだけで、影響を与える。
本発明者らは、このような事実から、焼成条件は活物質の結晶構造に影響を与えているものと考え、焼成で得られた粉末について、CuKα線を使用した粉末エックス線回折測定による回折図の2θ=18.6±1°における回折ピークに対する2θ=44.1±1°における回折ピークの相対強度に着目して鋭意検討した結果、驚くべきことに、前記相対強度が1.1以下であるリチウムマンガンニッケル複合酸化物を正極活物質として用いた場合、高率放電特性が特に改善されることがわかった。
この作用効果については、必ずしも明らかではないが、前記相対強度が1.1以下であることにより、リチウムイオンの固体内の移動が特に容易になったものと考えられる。但し、前記相対強度が0.6より小さくなった場合には、結晶の発達が悪いために、リチウムイオンの固体内の移動が阻害され、充放電サイクル性能が低下する傾向となる。このため、前記相対強度を0.6以上1.1以下とした正極活物質を用いることによって、良好な高率放電性能と良好な充放電サイクル性能とを兼ね備えた非水電解質二次電池を提供することができる。
また、2θ=18.6±1°と2θ=44.1±1°における半値幅は本発明電池に用いる正極活物質結晶の成長性や結晶子径を反映し、半値幅が大きいほど結晶子径は小さくなる関係にあると考えられるが、驚くべきことに、2θ=18.6±1°における回折ピークの半値幅が0.13°〜0.20°であり、かつ、44.1±1°における回折ピークの半値幅が0.10°〜0.17°である場合、特に優れた高率放電特性と充放電サイクル性能が得られることが確認できた。
この作用効果については、必ずしも明らかではないが、2θ=18.6±1°における回折ピークの半値幅が0.20°以下であり、かつ、44.1±1°における回折ピークの半値幅が0.17°以下である場合には、結晶中のLiイオン移動が容易となり、高率放電特性については改善されるものの、結晶の安定性が悪くなるために、充放電サイクル性能が低下するものと考えられる。このため、2θ=18.6±1°における回折ピークの半値幅が0.13°以上であり、かつ、44.1±1°における回折ピークの半値幅が0.10°以上である場合、適度な結晶中のLiイオン移動と十分な結晶の安定性とが得られるため、優れた高率放電特性と充放電サイクル性能を合わせ持つことが可能になる。
<発明を実施するための最良の形態>
以下に、本発明の実施の形態を例示するが、本発明は、以下の実施の形態に限定されるものではない。
本発明に係る正極活物質は、Li−Mn−Ni系複合酸化物を主成分とする正極活物質であって、前記Li−Mn−Ni系複合酸化物のBET法による比表面積(以下、単に比表面積ともいう)が0.3m/g以上1.5m/g以下であることを特徴としている。前記したように、比表面積が1.5m/g以下であることによって、充放電サイクル性能に優れた非水電解質二次電池(以下、単に電池ともいう)を得ることができ、比表面積が0.3m/g以上であることによって、高率充放電性能に優れた電池を得ることができる。
ここで、Li−Mn−Ni系複合酸化物とは、構成元素として、少なくとも、リチウム(Li)、マンガン(Mn)、ニッケル(Ni)、酸素(O)を有する複合酸化物のことをいう。
以下に、本発明におけるLi−Mn−Ni系複合酸化物の好適な形態を説明する。ただし、Li−Mn−Ni系複合酸化物は、以下に例示する形態に限定されない。
Li−Mn−Ni系複合酸化物の第一実施形態は、LiMn0.5Ni0.5で表わされる複合酸化物である。
Li−Mn−Ni系複合酸化物の第二実施形態の1は、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′
(但し、Mは前記異種元素 ;
x=0.001〜0.1 ; x′=0.001〜0.1 ;
y=0〜0.1 ; y′=0〜0.1 ;
x+x′+y+y′≦0.4 ; 0≦z≦1)
で示される組成の複合酸化物である。
x+x′+y+y′≦0.4であることによって、充放電の繰り返しによっても複合酸化物の結晶構造が安定であり、これにより、充放電サイクル性能に優れる。
Li−Mn−Ni系複合酸化物の第二実施形態の2は、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′
(但し、Mは前記異種元素 ;
x=0.01〜0.1 ; x′=0.01〜0.1 ;
y=0〜0.1 ; y′=0〜0.1 ;
x+x′+y+y′≦0.2 ; 0≦z≦1)
で示される組成の複合酸化物である。
x+x′+y+y′≦0.2であることによって、充放電の繰り返しによっても複合酸化物の結晶構造が特に安定であり、これにより、より充放電サイクル性能に優れる。
前記異種元素Mは、Mn、Ni及びLi以外の元素で、Mnと置換しうる元素が好ましい。例えば、B,Be,V,C,Si,P,Sc,Cu,Zn,Ga,Ge,As,Se,Sr,Mo,Pd,Ag,Cd,In,Sn,Sb,Te,Ba,Ta,W,Pb,Bi,Co,Fe,Cr,Ni,Ti,Zr,Nb,Y,Al,Na,K,Mg,Ca,Cs,La,Ce,Nd,Sm,Eu,Tb等が挙げられる。
なかでも、B,Mg,Al,Ti,V,Cr,Fe,Co,Cu及びZnのいずれかを用いると、高率放電性能に特に顕著な効果が得られるため、さらに好ましい。
ここで、Mnの置換量を示すx、yは、0<x+y≦0.2であり、Niの置換量を示すx′、y′は、0<x′+y′≦0.2である。これは、Mnの置換量x+yとNiの置換量x′+y′を増やすと、可逆的に使用可能なリチウム量が減少するためである。
zは、可逆的に使用可能なリチウム量を示し、Mn及びNiに対する異種元素の量が多いほど小さくなる。
ここで、式中、Liy+y′で示される部分のリチウムについては、前記式における組成比を示すものであり、LiMn0.5Ni0.5の基本骨格中におけるリチウム元素の配置状態を示すものではなく、前記基本骨格を構成する元素の一部と置換しているか否かを示すものでもない。
高率放電性能は、0<x′+y′≦0.2、且つ、0<x+y≦0.2の範囲内であれば、Mn及びNiに対する異種元素の量が多いほど向上し、x,x′は、それぞれ0.001以上が好ましく、それぞれ0.01以上が特に好ましい。
Li−Mn−Ni系複合酸化物の第三実施形態の1は、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素並びにホウ素で置換され、次の一般式;
Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′M’ +r′Lis+s′
(但し、M’は前記異種元素 ;
r=0.001〜0.1 ; r′=0.001〜0.1 ;
s=0〜0.1 ; s′=0〜0.1 ;
r+r′+s+s′+w+w′≦0.4 ;
w+w′=0.0005〜0.01 ; 0≦t≦1)
で示される組成の複合酸化物である。
r+r′+s+s′+w+w′≦0.4であることによって、充放電の繰り返しによっても複合酸化物の結晶構造が安定であり、これにより、充放電サイクル性能に優れる。
Li−Mn−Ni系複合酸化物の第三実施形態の2は、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素並びにホウ素で置換され、次の一般式;
Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′M’ +r′Lis+s′
(但し、M’は前記異種元素 ;
r=0.01〜0.1 ; r′=0.01〜0.1 ;
s=0〜0.1 ; s′=0〜0.1 ;
r+r′+s+s′+w+w′≦0.2 ;
w+w′=0.0005〜0.01 ; 0≦t≦1)
で示される組成の複合酸化物である。
r+r′+s+s′+w+w′≦0.2であることによって、充放電の繰り返しによっても複合酸化物の結晶構造が特に安定であり、これにより、より充放電サイクル性能に優れる。
なお、本明細書においては、ホウ素を含んだ正極活物質の組成表現として、
Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′r+ r′Lis+s′
のように、ホウ素を置換された異種元素として表記しているが、前記ホウ素は電池の充放電によって溶解して負極上に析出することがわかっている。にもかかわらず、前記ホウ素は前記高率放電特性を改善する効果があることから、異種元素にホウ素を用いた正極活物質自身が電池内でホウ素を溶出することで、該正極活物質の結晶粒子表面に活性な面を形成する効果があり、これによって高率放電特性を改善する効果があるものと考えられる。
ここで、粒子表面の元素組成を定量する方法のひとつにエックス線光電子分光法(XPS)により粒子をエッチングしながら測る方法がある。一例として、毎秒0.07nmの速度で粒子表面をエッチングした時のBの濃度変化を示した(図1参照)。その結果、本例◆印の試料における粒子の場合、表面から400秒、すなわち、28nm程度までにほとんどのBが集積しているのがわかる。
異種元素M’は、Mn、Ni及びLi以外の元素で、Mnと置換しうる元素が好ましい。例えば、Be,V,C,Si,P,Sc,Cu,Zn,Ga,Ge,As,Se,Sr,Mo,Pd,Ag,Cd,In,Sn,Sb,Te,Ba,Ta,W,Pb,Bi,Co,Fe,Cr,Ni,Ti,Zr,Nb,Y,Al,Na,K,Mg,Ca,Cs,La,Ce,Nd,Sm,Eu,Tb等が挙げられる。
なかでも、Mg,Al,Ti,V,Cr,Fe,Co,Cu及びZnのいずれかを用いると、高率放電性能に特に顕著な効果が得られるため、さらに好ましい。
ここで、Mnの置換量を示すr、s、wは、0<r+s+w≦0.2であり、Niの置換量を示すr′、s′、w′は、0<r′+s′+w′≦0.2である。これは、Mnの置換量r+s+wとNiの置換量r′+s′+w′を増やすと、可逆的に使用可能なリチウム量が減少するためである。
tは、可逆的に使用可能なリチウム量を示し、Mn及びNiに対する異種元素の量が多いほど小さくなる。
高率放電性能は、0<r′+s′+w′≦0.2、且つ、0<r+s+w≦0.2の範囲内であれば、Mn及びNiに対する異種元素の量が多いほど向上し、r,r′は、それ
ぞれ0.001以上が好ましく、それぞれ0.01以上が特に好ましい。
また、Li−Mn−Ni系複合酸化物の第二実施形態および第三実施形態において、前記Mn及びNiの一部をリチウムや異種元素で置換する方法としては、活物質の焼成原料にあらかじめ置換する元素を添加する方法や、LiMn0.5Ni0.5を焼成した後にイオン交換等により異種元素を置換する方法等が挙げられるが、これらに限定されるものではない。
Li−Mn−Ni系複合酸化物の第四実施形態は、Li[MnNiCoLiM”]O(M”はMn、Ni、Co、Li以外の元素、d≦c+e+a+b、c+d+e+a+b=1、0≦a≦0.05、0≦b≦0.05、0.2≦c≦0.5、0.02≦e≦0.4)で表される複合酸化物である。cが0.2を下回るとサイクル性能が悪くなる傾向となり、cが0.5を上回るとサイクル性能が低下する傾向となるばかりでなく、原料の焼成中にLiMnOなどの不純物が比較的低温から安定に生成しやすくなるので好ましくない。eが0.4を上回ると、充電時における熱安定性が低下する傾向となる。aが0.05を上回ると、放電容量が低下する傾向となる。bが0.05を上回ると、放電容量が低下する傾向となる。
さらに、高率充放電特性を改善するため、構成元素の組成比を意図的に変化させて検討した結果、驚くべきことに、特定の異種元素を添加した場合、高率放電特性をさらに大きく改善する効果があることを見いだした。
前記異種元素M”は、Mn、Ni及びLi以外の元素で、Mnと置換しうる元素が好ましい。例えば、B,Be,V,C,Si,P,Sc,Cu,Zn,Ga,Ge,As,Se,Sr,Mo,Pd,Ag,Cd,In,Sn,Sb,Te,Ba,Ta,W,Pb,Bi,Fe,Cr,Ni,Ti,Zr,Nb,Y,Al,Na,K,Mg,Ca,Cs,La,Ce,Nd,Sm,Eu,Tb等が挙げられる。
なかでも、B,Mg,Al,Ti,V,Cr,Fe,Cu及びZnのいずれかを用いると、高率放電性能に特に顕著な効果が得られるため、さらに好ましい。
この作用効果については必ずしも明らかではないが、前記異種元素の大きさが、Mn元素やNi元素の大きさと異なるため、正極活物質を構成している層状構造に影響し、Liイオンの移動経路へ影響を及ぼし、イオン伝導を良好にする効果をもたらしたものと考えられる。
また、Mn、Ni以外の異種元素は、その元素の原子半径、即ち大きさが異なることから、原子半径の異なる元素の存在により、充放電に伴う活物質結晶の膨張収縮歪みを緩和したものと考えられる。
また、Li−Mn−Ni系複合酸化物の第四実施形態において、前記異種元素を前記複合酸化物に取り込む方法としては、焼成原料にあらかじめ置換する元素を添加する方法や、焼成した後にイオン交換等により異種元素を置換する方法等が挙げられるが、これらに限定されるものではない。
以上に、Li−Mn−Ni系複合酸化物の各実施形態を例示したが、Li−Mn−Ni系複合酸化物は、CuKα線を使用した粉末エックス線回折図の2θ=18.6±1°、36.6±1°、37.8±1°、38.2±1°、44.3±1°、48.4±1°、58.4±1°、64.2±1°、64.8±1°、68.8±1°にピークを有しており、これにより優れたサイクル性能が得られる。
また、Li−Mn−Ni系複合酸化物は、前記したように、CuKα線を使用した粉末エックス線回折図において、2θ=18.6±1°と2θ=44.1±1°とに回折ピークを有し、2θ=18.6±1°における回折ピークに対する2θ=44.1±1°における回折ピークの相対強度比が0.6〜1.1であるものが好ましく、また、2θ=18.6±1°における回折ピークの半値幅が0.13°〜0.20°であり、2θ=44.1±1°における回折ピークの半値幅が0.10°〜0.17°であるものが好ましい。
また、Li−Mn−Ni系複合酸化物の粒子径は小さいほど比表面積が増えるため出力特性は出やすくなるが、その他の性能、特に保存性能の低下を防ぐため、また電極作製時の塗工性を考慮して、平均粒径(D50)=3μm〜30μmが好ましく、特に5μm〜20μmが好ましい。この範囲内であれば、電池の保存性能や充放電サイクル性能には大きく影響を与えるものではなく、特に制限されるものではない。これは、前記粒径は結晶の1次粒子の粒径を示すものでなく、2次粒子の粒径を示すものであるためである。参考までに、以下の実施例に用いた正極活物質の平均粒径は全て9〜20μmである。
次に、Li−Mn−Ni系複合酸化物の好適な製造方法を例示する。
Li−Mn−Ni系複合酸化物は、900℃以上の温度で焼成する熱履歴を有することが好ましい。より具体的には、「少なくともLi成分とMn成分とNi成分とを含有するLi−Mn−Ni系複合酸化物前駆体」を900℃以上の温度で焼成してLi−Mn−Ni系複合酸化物を製造することが好ましい。ここで、焼成温度は、900℃〜1100℃が好ましく、950℃〜1025℃が特に好ましい。
焼成温度が900℃を下回ると、Li−Mn−Ni系複合酸化物の比表面積を1.5m/g以下としにくく、サイクル性能が劣った電池が得られやすい。
一方、焼成温度が1100℃を上回ると、Liの揮発によって目標とする組成の複合酸化物が得られにくいなどの作製上の問題や、粒子の高密度化によって電池性能が低下するという問題が生じやすい。これは、1100℃を上回ると、1次粒子成長速度が増加し、複合酸化物の結晶粒子が大きくなりすぎることに起因しているが、それに加えて、局所的にLi欠損量が増大して、構造的に不安定となっていることも原因ではないかと考えられる。
焼成時間は、3時間〜50時間が好ましい。焼成時間が50時間を超えると、Li−Mn−Ni系複合酸化物の比表面積を0.3m/g以上としにくく、高率充放電性能が劣った電池が得られやすい。焼成時間が3時間より少ないと、Li−Mn−Ni系複合酸化物の比表面積を1.5m/g以下としにくく、サイクル性能が劣った電池が得られやすい。
以上に、焼成温度と焼成時間について好ましい範囲を記載したが、得られる複合酸化物の比表面積が、本発明で規定する範囲となるように適宜選択される。
Li−Mn−Ni複合酸化物前駆体は、「マンガン(Mn)化合物とニッケル(Ni)化合物とが水に溶解された水溶液、または、Mn化合物とNi化合物と“異種元素を有する化合物”(前記した異種元素M,M’,M”を含有する化合物であり、以下、[M]化合物とも表記する)とが水に溶解された水溶液に、アルカリ化合物を添加して、Mn−Ni複合共沈物、または、Mn−Ni−[M]複合共沈物を沈殿させる共沈工程」を経由して好適に製造される。
ここで、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル等を、Mn化合物としては、酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン等を好適に挙げることができる。
[M]化合物としては、異種元素がBである場合、ホウ酸等を、異種元素がVである場合、酸化バナジウム等を、異種元素がAlである場合、硝酸アルミニウム等を、異種元素がMgである場合、硝酸マグネシウム等を、異種元素がCoである場合、水酸化コバルト、炭酸コバルト、酸化コバルト、硫酸コバルト、硝酸コバルト等を、異種元素がCrである場合、硝酸クロム等を、異種元素がTiである場合、酸化チタン等を、異種元素がFeである場合、硫酸鉄、硝酸鉄等を、異種元素がCuである場合、硫酸銅、硝酸銅等を、異種元素がZnである場合、硫酸亜鉛、硝酸亜鉛等を、それぞれ挙げることができる。
アルカリ化合物としては、水酸化アンモニウム、水酸化ナトリウム等を挙げることができる。また、アルカリ化合物は、水溶液の形態として添加されるのが好ましい。
以上に説明した共沈工程を経由して得られたMn−Ni複合共沈物またはMn−Ni−[M]複合共沈物(以下、これらをまとめて、単に“複合共沈物”ともいう)とリチウム化合物との混合物をLi−Mn−Ni系複合酸化物前駆体とし、このLi−Mn−Ni系複合酸化物前駆体を前記した焼成条件に基づいて焼成することによって、Li−Mn−Ni系複合酸化物を好適に製造できる。
ここで、Li−Mn−Ni系複合酸化物前駆体は、複合共沈物とリチウム化合物の水溶液から水を蒸発させて乾燥させて得られた混合物を好適に例示できる。
Li化合物としては、水酸化リチウム、炭酸リチウム等を挙げることができる。
本発明の正極活物質は、主成分である前記したLi−Mn−Ni系複合酸化物に加え、他の化合物を混合して用いてもよく、例えば、他のリチウム含有遷移金属酸化物などの1種以上を混合して用いると、高いサイクル性能が得られることがある。
その他のリチウム含有遷移金属酸化物としては、一般式LiMX,LiMN(M、NはIからVIII族の金属、Xは酸素、硫黄などのカルコゲン化合物を示す。)であり、例えばLiCo1−x、LiMn2−x(Mは、IからVIII族の金属(例えは、Li,Ca,Cr,Ni,Fe,Coの1種類以上の元素)等が挙げられる。該リチウム含有遷移金属酸化物の異種元素置換量を示すx値については置換できる最大量まで有効であるが、好ましくは放電容量の点から0≦x≦1である。また、リチウム量を示すy値についてはリチウムを可逆的に利用しうる最大量が有効であり、好ましくは放電容量の点から0≦y≦1である。)が挙げられるが、これらに限定されるものではない。
さらに、他の化合物としては、CuO,CuO,AgO,CuS,CuSO等のI族金属化合物、TiS,SiO,SnO等のIV族金属化合物、V,V12,VO,Nb,Bi,Sb等のV族金属化合物、CrO,Cr,MoO,MoS,WO,SeO等のVI族金属化合物、MnO,Mn等のVII族金属化合物、Fe,FeO,Fe,Ni,NiO,CoO,CoO等のVIII族金属化合物等で表される、例えばリチウム−コバルト系複合酸化物やリチウム−マンガン系複合酸化物等の金属化合物、さらに、ジスルフィド,ポリピロール,ポリアニリン,ポリパラフェニレン,ポリアセチレン,ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等が挙げられるが、これらに限定されるものではない。
正極活物質として、前記したLi−Mn−Ni系複合酸化物以外に、前掲の他の化合物を併用する場合、他の化合物の使用割合は、本発明の効果を損なわない程度であれば限定されるものではないが、その他の成分は全正極活物質中、通常1重量%〜50重量%、好ましくは5重量%〜30重量%である。
次に、本発明の非水電解質二次電池について説明する。本発明の非水電解質二次電池(以下、単に電池ともいう)は、本発明の正極活物質を用いた電池であり、一般的に、少なくとも、本発明の正極活物質を主要構成成分とする正極と、負極材料を主要構成成分とする負極と、電解質塩が非水溶媒に含有された非水電解質とから構成され、通常、正極と負極との間に、セパレータが設けられる。
非水電解質は、一般にリチウム電池等への使用が提案されているものが使用可能である。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。
電解質塩としては、例えば、LiClO,LiBF,LiAsF,LiPF,LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。
さらに、LiBFとLiN(CSOのようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに非水電解質の粘度を下げることができるので、低温特性をさらに高めることができ、より望ましい。
非水電解質における電解質塩の濃度としては、高い電池特性を有する電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2.5mol/lである。
本発明の電池の正極には本発明によるLi−Mn−Ni系複合酸化物で構成された電極が、負極にはグラファイトで構成された電極が好適に使用される。
正極は、本発明による複合酸化物を導電剤および結着剤、さらに必要に応じてフィラーと混練して正極合剤とした後、この正極合剤を集電体としての箔やラス板等に塗布、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより作製される。
負極材料としては、リチウム金属、リチウム合金(リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有するので電解質塩としてリチウム塩を採用した場合に自己放電を少なくでき、かつ充放電における不可逆容量を少なくできるので、負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に,負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。
以下に、好適に用いることのできるグラファイトのエックス線回折等による分析結果を示す;
格子面間隔(d002) 0.333〜0.350nm
a軸方向の結晶子の大きさLa 20nm以上
c軸方向の結晶子の大きさLc 20nm以上
真密度 2.00〜2.25g/cm
また、グラファイトに、スズ酸化物,ケイ素酸化物等の金属酸化物、リン、ホウ素、アモルファスカーボン等を添加して改質を行うことも可能である。特に、グラファイトの表面を上記の方法によって改質することで、電解質の分解を抑制し電池特性を高めることが可能であり望ましい。さらに、グラファイトに対して、リチウム金属、リチウム−アルミニウム,リチウム−鉛,リチウム−スズ,リチウム−アルミニウム−スズ,リチウム−ガリウム,およびウッド合金等のリチウム金属含有合金等を併用することや、あらかじめ電気化学的に還元することによってリチウムが挿入されたグラファイト等も負極活物質として使用可能である。
正極活物質の粉体及び負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、非水電解質電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば、乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、
ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。
以上、正極及び負極の主要構成成分である正極活物質および負極材料について詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。
導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅,ニッケル,アルミニウム,銀,金等)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。
これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総重量に対して0.1重量%〜50重量%が好ましく、特に0.5重量%〜30重量%が好ましい。特にアセチレンブラックを0.1〜0.5μmの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1〜50重量%が好ましく、特に2〜30重量%が好ましい。
前記増粘剤としては、通常、カルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する増粘剤は、例えばメチル化する等してその官能基を失活させておくことが望ましい。増粘剤の添加量は、正極または負極の総重量に対して0.5〜10重量%が好ましく、特に1〜2重量%が好ましい。
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総重量に対して添加量は30重量%以下が好ましい。
正極および負極は、前記正極活物質あるいは負極材料に、必要に応じて導電剤や結着剤を加え、N−メチルピロリドン,トルエン等の有機溶媒に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。
集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性および耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極用集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐還元性の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。
集電体の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発砲体、繊維群の形成体等が用いられる。厚さの限定は特にないが、1〜500μmのものが用いられる。これらの集電体の中で、正極用としては、耐酸化性に優れているアルミニウム箔が、負極用としては、耐還元性および電子伝導性に優れ、安価な銅箔、ニッケル箔、鉄箔、およびそれらの一部を含む合金箔を使用することが好ましい。さらに、粗面表面粗さが0.2μmRa以上の箔であることが好ましく、これにより正極活物質または負極活物質と集電体との密着性は優れたものとなる。よって、このような粗面を有することから、電解箔を使用するのが好ましい。特に、ハナ付き処理を施した電解箔は最も好ましい。さらに、これらの箔に両面塗工する場合、箔の表面粗さが同じ、またはほぼ等しいことが望まれる。
セパレータとしては、優れた高率放電特性を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。セパレータを構成する材料としては、例えばポリエチレン,ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート,ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。
セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
また、セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。
本発明の非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。
さらに、セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。
前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。
前記親溶媒性ポリマーには、強度や物性制御の目的で、架橋体の形成を妨害しない範囲の物性調整剤を配合して使用することができる。前記物性調整剤の例としては、無機フィラー類{酸化ケイ素、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウムなどの金属炭酸塩}、ポリマー類{ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリメチルメタクリレート等}等が挙げられる。前記物性調整剤の添加量は、架橋性モノマーに対して通常50重量%以下、好ましくは20重量%以下である。
前記アクリレートモノマーについて例示すると、二官能以上の不飽和モノマーが好適に挙げられ、より具体例には、2官能(メタ)アクリレート{エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、アジピン酸・ジネオペンチルグリコールエステルジ(メタ)アクリレート、重合度2以上のポリエチレングリコールジ(メタ)アクリレート、重合度2以上のポリプロピレングリコールジ(メタ)アクリレート、ポリオキシエチレン/ポリオキシプロピレン共重合体のジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサメチレングリコールジ(メタ)アクリレート等}、3官能(メタ)アクリレート{トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンのエチレンオキシド付加物のトリ(メタ)アクリレート、グリセリンのプロピレンオキシド付加物のトリ(メタ)アクリレート、グリセリンのエチレンオキシド、プロピレンオキシド付加物のトリ(メタ)アクリレート等}、4官能以上の多官能(メタ)アクリレート{ペンタエリスリトールテトラ(メタ)アクリレート、ジグリセリンヘキサ(メタ)アクリレート等}が挙げられる。これらのモノマーを単独もしくは、併用して用いることができる。
前記アクリレートモノマーには、物性調整等の目的で1官能モノマーを添加することもできる。前記一官能モノマーの例としては、不飽和カルボン酸{アクリル酸、メタクリル酸、クロトン酸、けい皮酸、ビニル安息香酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、メサコン酸、メチレンマロン酸、アコニット酸等}、不飽和スルホン酸{スチレンスルホン酸、アクリルアミド−2−メチルプロパンスルホン酸等}またはそれらの塩(Li塩、Na塩、K塩、アンモニウム塩、テトラアルキルアンモニウム塩等)、またこれらの不飽和カルボン酸をC1〜C18の脂肪族または脂環式アルコール、アルキレン(C2〜C4)グリコール、ポリアルキレン(C2〜C4)グリコール等で部分的にエステル化したもの(メチルマレート、モノヒドロキシエチルマレート、など)、およびアンモニア、1級または2級アミンで部分的にアミド化したもの(マレイン酸モノアミド、N−メチルマレイン酸モノアミド、N,N−ジエチルマレイン酸モノアミドなど)、(メタ)アクリル酸エステル[C1〜C18の脂肪族(メチル、エチル、プロピル、ブチル、2−エチルヘキシル、ステアリル等)アルコールと(メタ)アクリル酸とのエステル、またはアルキレン(C2〜C4)グリコール(エチレングリコール、プロピレングリコール、1,4−ブタンジオール等)およびポリアルキレン(C2〜C4)グリコール(ポリエチレングリコール、ポリプロピレングリコール)と(メタ)アクリル酸とのエステル];(メタ)アクリルアミドまたはN−置換(メタ)アクリルアミド[(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド等];ビニルエステルまたはアリルエステル[酢酸ビニル、酢酸アリル等];ビニルエーテルまたはアリルエーテル[ブチルビニルエーテル、ドデシルアリルエーテル等];不飽和ニトリル化合物[(メタ)アクリロニトリル、クロトンニトリル等];不飽和アルコール[(メタ)アリルアルコール等];不飽和アミン[(メタ)アリルアミン、ジメチルアミノエチル(メタ)アクリルレート、ジエチルアミノエチル(メタ)アクリレート等];複素環含有モノマー[N−ビニルピロリドン、ビニルピリジン等];オレフィン系脂肪族炭化水素[エチレン、プロピレン、ブチレン、イソブチレン、ペンテン、(C6〜C50)α−オレフィン等];オレフィン系脂環式炭化水素[シクロペンテン、シクロヘキセン、シクロヘプテン、ノルボルネン等];オレフィン系芳香族炭化水素[スチレン、α−メチルスチレン、スチルベン等];不飽和イミド[マレイミド等];ハロゲン含有モノマー[塩化ビニル、塩化ビニリデン、フッ化ビニリデン、ヘキサフルオロプロピレン等]等が挙げられる。
前記エポキシモノマーについて例示すると、グリシジルエーテル類{ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル等}、グリシジルエステル類{ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等}、グリシジルアミン類{トリグリシジルイソシアヌレート、テトラグリシジルジアミノフェニルメタン等}、線状脂肪族エポキサイド類{エポキシ化ポリブタジエン、エポキシ化大豆油等}、脂環族エポキサイド類{3,4エポキシ−6メチルシクロヘキシルメチルカルボキシレート、3,4エポキシシクロヘキシルメチルカルボキシレート等}等が挙げられる。これらのエポキシ樹脂は、単独もしくは硬化剤を添加して硬化させて使用することができる。
前記硬化剤の例としては、脂肪族ポリアミン類{ジエチレントリアミン、トリエチレンテトラミン、3,9−(3−アミノプロピル)−2,4,8,10−テトロオキサスピロ[5,5]ウンデカン等}、芳香族ポリアミン類{メタキシレンジアミン、ジアミノフェニルメタン等}、ポリアミド類{ダイマー酸ポリアミド等}、酸無水物類{無水フタル酸、テトラヒドロメチル無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸、無水メチルナジック酸}、フェノール類{フェノールノボラック等}、ポリメルカプタン{ポリサルファイド等}、第三アミン類{トリス(ジメチルアミノメチル)フェノール、2−エチル−4−メチルイミダゾール等}、ルイス酸錯体{三フッ化ホウ素・エチルアミン錯体等}等が挙げられる。
前記イソシアナート基を有するモノマーについて例示すると、トルエンジイソシアナート、ジフェニルメタンジイソシアナート、1,6−ヘキサメチレンジイソシアナート、2,2,4(2,2,4)−トリメチル−ヘキサメチレンジイソシアナート、p−フェニレンジイソシアナート、4,4′−ジシクロヘキシルメタンジイソシアナート、3,3′−ジメチルジフェニル4,4′−ジイソシアナート、ジアニシジンジイソシアナート、m−キシレンジイソシアナート、トリメチルキシレンジイソシアナート、イソフォロンジイソシアナート、1,5−ナフタレンジイソシアナート、trans−1,4−シクロヘキシルジイソシアナート、リジンジイソシアナート等が挙げられる。
前記イソシアナート基を有するモノマーを架橋するにあたって、ポリオール類およびポリアミン類[2官能化合物{水、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等}、3官能化合物{グリセリン、トリメチロールプロパン、1,2,6−ヘキサントリオール、トリエタノールアミン等}、4官能化合物{ペンタエリスリトール、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、テトラメチロールシクロヘキサン、メチルグルコシド等}、5官能化合物{2,2,6,6−テトラキス(ヒドロキシメチル)シクロヘキサノール、ジエチレントリアミンなど}、6官能化合物{ソルビトール、マンニトール、ズルシトール等}、8官能化合物{スークロース等}]、およびポリエーテルポリオール類{前記ポリオールまたはポリアミンのプロピレンオキサイドおよび/またはエチレンオキサイド付加物}、ポリエステルポリオール[前記ポリオールと多塩基酸{アジピン酸、o,m,p−フタル酸、コハク酸、アゼライン酸、セバシン酸、リシノール酸}との縮合物、ポリカプロラクトンポリオール{ポリε−カプロラクトン等}、ヒドロキシカルボン酸の重縮合物等]等、活性水素を有する化合物を併用することができる。
前記架橋反応にあたって、触媒を併用することができる。前記触媒について例示すると、有機スズ化合物類、トリアルキルホスフィン類、アミン類[モノアミン類{N,N−ジメチルシクロヘキシルアミン、トリエチルアミン等}、環状モノアミン類{ピリジン、N−メチルモルホリン等}、ジアミン類{N,N,N′,N′−テトラメチルエチレンジアミン、N,N,N′,N′−テトラメチル1,3−ブタンジアミン等}、トリアミン類{N,N,N′,N′−ペンタメチルジエチレントリアミン等}、ヘキサミン類{N,N,N′N′−テトラ(3−ジメチルアミノプロピル)−メタンジアミン等}、環状ポリアミン類{ジアザビシクロオクタン(DABCO)、N,N′−ジメチルピペラジン、1,2−ジメチルイミダゾール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)等}等、およびそれらの塩類等が挙げられる。
本発明に係る非水電解質二次電池は、電解質を、例えば、セパレータと正極と負極とを積層する前または積層した後に注液し、最終的に、外装材で封止することによって好適に作製される。また、正極と負極とがセパレータを介して積層された発電要素を巻回してなる非水電解質電池においては、電解質は、前記巻回の前後に発電要素に注液されるのが好ましい。注液法としては、常圧で注液することも可能であるが、真空含浸方法や加圧含浸方法も使用可能である。
非水電解質二次電池の外装体の材料としては、ニッケルメッキした鉄やステンレススチール、アルミニウム、金属樹脂複合フィルム等が一例として挙げられる。例えば、金属箔を樹脂フィルムで挟み込んだ構成の金属樹脂複合フィルムが好ましい。前記金属箔の具体例としては、アルミニウム、鉄、ニッケル、銅、ステンレス鋼、チタン、金、銀等、ピンホールのない箔であれば限定されないが、好ましくは軽量且つ安価なアルミニウム箔が好ましい。また、電池外部側の樹脂フィルムとしては、ポリエチレンテレフタレートフィルム,ナイロンフィルム等の突き刺し強度に優れた樹脂フィルムを、電池内部側の樹脂フィルムとしては、ポリエチレンフィルム,ナイロンフィルム等の、熱融着可能であり、かつ耐溶剤性を有するフィルムが好ましい。
非水電解質二次電池の構成については特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン電池やボタン電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。
<実施例>
次に、前記した各実施形態における実施例および比較例を挙げて本発明を具体的に説明するが、本発明は、以下の実施例によって限定されるものではない。
[第一実施形態]
(実施例1−1)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、2θ=18.58度、36.38度、37.68度、38.02度、44.10度、48.24度、58.22度、63.92度、64.10度、64.4度及び67.68度付近にそれぞれ回折ピークが認められ、完全に一致しているわけではないが空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。該粉末のエックス線回折図を図3に示す。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を粉末Aとする。
該粉末Aを正極活物質として用い、次のようにして図2に示す容量約15Ahの角形非水電解質電池を作製した。
正極活物質である粉末A、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVDF)を重量比85:10:5で混合し、溶剤としてN−メチルピロリドンを加え、混練分散し正極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記正極塗布液を厚さ20μmのアルミ箔集電体の両面に塗布し、全体の厚さを230μmに調整し、6.3mAh/cmの容量を持つ正極シートを作製した。前記正極シートを幅61mm、高さ107mmの形状に裁断して、シートの末端に厚さ20μm、幅10mmのアルミニウムリード板を取り付け、正極板7とした。
人造黒鉛(粒径6μm)を負極材料として用い、結着剤であるポリフッ化ビニリデン(PVDF)を前記負極材料に対して10重量%加え、溶剤としてN−メチルピロリドンを加え、混練分散し、負極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記負極塗布液を厚さ10μmの銅箔集電体の両面に塗布し、全体の厚さを180μmに調整し、7mAh/cmの容量を持つ負極シートを作製した。前記負極シートを幅65mm、高さ111mmの形状に裁断して、シートの末端に厚さ10μm、幅10mmの銅リード板を取り付け、負極板9とした。
前記正極板7及び負極板9を150℃で12時間減圧乾燥した。次に、セパレータ8として、幅65mm、高さ111mmの袋形状に裁断したポリエチレン製微多孔膜の袋に前記正極板を挿入し、セパレータ8付き正極板7、負極板9の順でこれらを交互に積層し、40枚のセパレータ8付き正極板7及び41枚の負極板9からなる極群を得た。
前記極群をポリエチレン樹脂からなる絶縁フィルムに包み込み、アルミニウム製の角形電槽10に収納し、安全弁1を有するアルミニウム製の蓋2に取り付けられた正極端子5及び負極端子4に、正極板7及び負極板9のリード板をそれぞれボルトによって接続した。なお、端子5,4はポリプロピレン樹脂からなるガスケット6を用いて前記蓋2との間を絶縁してある。
前記蓋2と電槽10とをレーザー溶接部3においてレーザー溶接し、前記電槽10の中に、エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶剤にLiPFを1mol/l溶解した電解液を65g注入し、封口した後、25℃において、1.5A、4.2V、15時間の定電流定電圧充電を行い、1.5A、終止電圧3Vの定電流放電を行った。このようにして、横70mm、高さ130mm(端子込み高さ136mm)、幅22mmの角形リチウム電池を得た。この電池を実施例1−1の電池とする。
(実施例1−2)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−2の電池とする。
(実施例1−3)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1030℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−3の電池とする。
(実施例1−4)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1060℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−4の電池とする。
(実施例1−5)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−5の電池とする。
(実施例1−6)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、950℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−6の電池とする。
(実施例1−7)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、960℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−7の電池とする。
(実施例1−8)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、980℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は実施例(1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−8の電池とする。
(実施例1−9)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で5時間、酸素雰囲気下で焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.3m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−9の電池とする。
(実施例1−10)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で5時間、酸素雰囲気下で焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.3m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。該粉末のエックス線回折図を図4に示す。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−10の電池とする。
(実施例1−11)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で20時間、酸素雰囲気下で焼成した後、粒子を分級してD50=5μmの粉末とした。BET法により測定した比表面積は1.5m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は実施例(1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例1−11の電池とする。
(比較例1−1)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1.9:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、950℃で3時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.6m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、2θ=18度、37度、39度、45度、61度、65度、67度に回折ピークが認められ、空間群C2/mに属する層状岩塩型の結晶が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.95Ni0.05であることがわかった。該粉末を正極活物質として用いたこと以外は実施例(1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例1−1の電池とする。
(比較例1−2)
硝酸マンガンを含む水溶液に水酸化ナトリウム水溶液を加えて沈殿させ、150℃で加熱、乾燥して、マンガン化合物を得た。水酸化リチウム水溶液に前記マンガン化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、850℃で3時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=10μmの粉末とした。BET法により測定した比表面積は0.4m/gであった。前記粉末のCuKα線によるエックス線回折測定の結果、スピネル構造を有する結晶が合成できていることがわかった。元素分析の結果、該粉末の組成はLi1.05Mn1.95であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例1−2の電池とする。
(比較例1−3)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で3時間、酸素雰囲気下で焼成した後、粒子を分級してD50=3μmの粉末とした。BET法により測定した比表面積は2.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例1−3の電池とする。
(比較例1−4)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、800℃で15時間、酸素雰囲気下で焼成した後、粒子を分級してD50=5μmの粉末とした。BET法により測定した比表面積は2.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例1−4の電池とする。
(比較例1−5)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で24時間、酸素雰囲気下で焼成した後、粒子を分級してD50=5μmの粉末とした。BET法により測定した比表面積は0.2m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す設計容量15Ahの角形リチウム電池を作製した。この電池を比較例1−5の電池とする。
(比較例1−6)
硝酸マンガン及び硝酸ニッケルを、Mn:Niの原子比が1:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1100℃で24時間、酸素雰囲気下で焼成した後、粒子を分級してD50=30μmの粉末とした。BET法により測定した比表面積は0.2m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.5Ni0.5であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例1−6の電池とする。
[第二実施形態]
(実施例2−1)
硝酸マンガン、硝酸ニッケルを、Mn:Niの原子比が0.95:0.95の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル共沈化合物とホウ酸を、元素比Li:Mn:Ni:Bが2:0.95:0.95:0.10となるように添加し、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.4750.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−1の電池とする。
(実施例2−2)
硝酸マンガン、硝酸ニッケル及び酸化バナジウムを、Mn:Ni:Vの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−バナジウム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−バナジウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.4750.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−2の電池とする。
(実施例2−3)
硝酸マンガン、硝酸ニッケル及び硝酸アルミニウムを、Mn:Ni:Alの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−アルミニウム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−アルミニウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Al0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−3の電池とする。
(実施例2−4)
硝酸マンガン、硝酸ニッケル及び硝酸マグネシウムを、Mn:Ni:Mgの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−マグネシウム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−マグネシウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Mg0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−4の電池とする。
(実施例2−5)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−コバルト共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Co0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−5の電池とする。
(実施例2−6)
硝酸マンガン、硝酸ニッケル及び硝酸クロムを、Mn:Ni:Crの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−クロム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−マグネシウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Cr0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−6の電池とする。
(実施例2−7)
硝酸マンガン、硝酸ニッケル及び酸化チタンを、Mn:Ni:Tiの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−チタン共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−チタン共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Ti0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−7の電池とする。
(実施例2−8)
硝酸マンガン、硝酸ニッケル及び硫酸鉄を、Mn:Ni:Feの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−鉄共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−鉄共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn .475Ni0.475Fe0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−8の電池とする。
(実施例2−9)
硝酸マンガン、硝酸ニッケル及び硫酸銅を、Mn:Ni:Cuの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−銅共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−銅共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn .475Ni0.475Cu0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−9の電池とする。
(実施例2−10)
硝酸マンガン、硝酸ニッケル及び硫酸亜鉛を、Mn:Ni:Znの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−亜鉛共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−亜鉛共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Zn0.05であることがわかった。この粉末を粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例2−10の電池とする。
(比較例2−1)
硝酸マンガン、硝酸ニッケル及び硝酸マグネシウムを、Mn:Ni:Mgの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−マグネシウム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−マグネシウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=15μmの粉末とした。BET法により測定した比表面積は0.2m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Mg0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例2−1の電池とする。
(比較例2−2)
硝酸マンガン、硝酸ニッケル及び硝酸マグネシウムを、Mn:Ni:Mgの原子比が0.95:0.95:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−マグネシウム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−マグネシウム共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=6μmの粉末とした。BET法により測定した比表面積は1.9m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.475Mg0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例2−2の電池とする。
[第三実施形態]
(実施例3−1)
硝酸マンガン、硝酸ニッケルを、Mn:Niの原子比が0.95:0.95の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル共沈化合物とホウ酸を元素比Li:Mn:Ni:Bが2.00:0.95:0.95:0.1となるように添加し、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD =9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。該粉末を粉末Bとする。元素分析の結果、該粉末Bの組成はLiMn0.475Ni0.4750.05であることがわかった。
深さ方向分析ではB(ホウ素)は表面に偏析しているのが観測された(図1参照)。該粉末Bを正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−1の電池とする。
(実施例3−2)
硝酸マンガン、硝酸ニッケル、酸化バナジウムを、Mn:Ni:Vの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−バナジウム共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル−バナジウム共沈化合物とホウ酸を元素比Li:Mn:Ni:V:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0. 475Ni0.4740.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−2の電池とする。
(実施例3−3)
硝酸マンガン、硝酸ニッケル、硝酸アルミニウムを、Mn:Ni:Alの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−アルミニウム共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル−アルミニウム共沈化合物とホウ酸を元素比Li:Mn:Ni:Al:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.474Al0.050.001であることがわかった。該粉末を粉末とする。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−3の電池とする。
(実施例3−4)
硝酸マンガン、硝酸ニッケル、硝酸マグネシウムを、Mn:Ni:Mgの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−マグネシウム共沈化合物を得た。水酸化リチウム水溶液にマンガン−ニッケル−マグネシウム共沈化合物とホウ酸を元素比Li:Mn:Ni:Mg:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD =9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.474Mg0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−4の電池とする。
(実施例3−5)
硝酸マンガン、硝酸ニッケル、硝酸コバルトを、Mn:Ni:Coの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−コバルト共沈化合物とホウ酸を元素比Li:Mn:Ni:Co:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.474Co0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−5の電池とする。
(実施例3−6)
硝酸マンガン、硝酸ニッケル、硝酸クロムを、Mn:Ni:Crの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−クロム共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−クロム共沈化合物とホウ酸を元素比Li:Mn:Ni:Cr:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.4 75Ni0.474Cr0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−6の電池とする。
(実施例3−7)
硝酸マンガン、硝酸ニッケル、酸化チタンを、Mn:Ni:Tiの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−チタン共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−チタン共沈化合物とホウ酸を元素比Li:Mn:Ni:Ti:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.4 75Ni0.474Ti0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−7の電池とする。
(実施例3−8)
硝酸マンガン、硝酸ニッケル、硫酸鉄を、Mn:Ni:Feの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−鉄共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−鉄共沈化合物とホウ酸を元素比Li:Mn:Ni:Fe:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0. 474Fe0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−8の電池とする。
(実施例3−9)
硝酸マンガン、硝酸ニッケル、硫酸銅を、Mn:Ni:Cuの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−銅共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−銅共沈化合物とホウ酸を元素比Li:Mn:Ni:Cu:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0. 474Cu0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−9の電池とする。
(実施例3−10)
硝酸マンガン、硝酸ニッケル、硫酸亜鉛を、Mn:Ni:Znの原子比が0.95:0.948:0.1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−亜鉛共沈化合物を得た。水酸化リチウム水溶液に前記マンガン−ニッケル−亜鉛共沈化合物とホウ酸を元素比Li:Mn:Ni:Zn:Bが2:0.95:0.948:0.1:0.002となるように添加し、1000℃で12時間、酸素雰囲気下で本焼成した後、粒子を分級してD50=10μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.474Zn0.050.001であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例3−10の電池とする。
(比較例3−1)
硝酸マンガン、硝酸ニッケルを、Mn:Niの原子比が0.95:0.95の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル共沈化合物とホウ酸を元素比Li:Mn:Ni:Bが2.00:0.95:0.95:0.1となるように添加し、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD =9μmの粉末とした。BET法により測定した比表面積は0.2m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.4750.05であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例3−1の電池とする。
(比較例3−2)
硝酸マンガン、硝酸ニッケルを、Mn:Niの原子比が0.95:0.95の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル共沈化合物を得た。水酸化リチウムに前記マンガン−ニッケル共沈化合物とホウ酸を元素比Li:Mn:Ni:Bが2.00:0.95:0.95:0.1となるように添加し、1000℃で12時間、酸素雰囲気下で焼成した後、粒子を分級してD =4μmの粉末とした。BET法により測定した比表面積は2.4m/gであった。該粉末のCuKα線によるエックス線回折測定の結果、粉末Aと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.475Ni0.4750.05であることがわかった。
該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例3−2の電池とする。
[第四実施形態]
(実施例4−1)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が9:9:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥して、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=20μmの粉末とした。BET法で測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、2θ=18.56度、36.56度、37.76度、38.24度、44.32度、48.4度、58.4度、64.16度、64.8度、68.8度に回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。該粉末のエックス線回折図を図5に示す。元素分析の結果、該粉末の組成はLiMn0.45Ni0.45Co0.1であることがわかった。該粉末を粉末Dとする。
該粉末Dを正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−1の電池とする。
(実施例4−2)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が2:2:1の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.4Ni0.4Co0.2であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−2の電池とする。
(実施例4−3)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が9:9:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で5時間、酸素雰囲気下で焼成した後、分級してD50=20μmの粉末とした。BET法により測定した比表面積は0.3m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.45Ni0.45Co0.1であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−3の電池とする。
(実施例4−4)
硝酸マンガン、硝酸ニッケル及び、硝酸コバルトを、Mn:Ni:Coの原子比が9:9:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で20時間、酸素雰囲気下で焼成した後、分級してD50=5μmの粉末とした。BET法により測定した比表面積は1.5m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.45Ni0.45Co0.1であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−4の電池とする。
(実施例4−5)
硝酸マンガン、硝酸ニッケル、硝酸コバルトを、Mn:Ni:Coの原子比が17:17:4の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウムに該共沈化合物とホウ酸を元素比Li:Mn:Ni:Co:Bが2:0.85:0.85:0.2:0.1となるように添加し、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.10.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−5の電池とする。
(実施例4−6)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び酸化バナジウムを、Mn:Ni:Co:Vの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−バナジウム共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.10.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−6の電池とする。
(実施例4−7)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硝酸アルミニウムを、Mn:Ni:Co:Alの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−アルミニウム共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Al0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−7の電池とする。
(実施例4−8)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硝酸マグネシウムを、Mn:Ni:Co:Mgの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−マグネシウム共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Mg0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−8の電池とする。
(実施例4−9)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硝酸クロムを、Mn:Ni:Co:Crの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−クロム共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Cr0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−9の電池とする。
(実施例4−10)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び酸化チタンを、Mn:Ni:Co:Tiの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−チタン共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Ti0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−10の電池とする。
(実施例4−11)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硫酸鉄を、Mn:Ni:Co:Feの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−鉄共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Fe0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−11の電池とする。
(実施例4−12)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硫酸銅を、Mn:Ni:Co:Cuの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−銅共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Cu0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−12の電池とする。
(実施例4−13)
硝酸マンガン、硝酸ニッケル、硝酸コバルト及び硫酸亜鉛を、Mn:Ni:Co:Znの原子比が17:17:4:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト−亜鉛共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=9μmの粉末とした。BET法により測定した比表面積は0.9m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.425Ni0.425Co0.1Zn0.05であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を実施例4−13の電池とする。
(比較例4−1)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が7:11:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で12時間、酸素雰囲気下で焼成した後、分級してD50=20μmの粉末とした。BET法により測定した比表面積は1.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.35Ni0.55Co0.1であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例4−1の電池とする。
(比較例4−2)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が9:9:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で24時間、酸素雰囲気下で焼成した後、分級してD50=5μmの粉末とした。BET法により測定した比表面積は0.3m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.45Ni0.45Co0.1であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例4−2の電池とする。
(比較例4−3)
硝酸マンガン、硝酸ニッケル及び硝酸コバルトを、Mn:Ni:Coの原子比が9:9:2の割合で含む水溶液に水酸化ナトリウム水溶液を加えて共沈させ、150℃で加熱、乾燥し、マンガン−ニッケル−コバルト共沈化合物を得た。水酸化リチウム水溶液に該共沈化合物を添加し、攪拌後溶媒を蒸発させて乾燥した後、1000℃で3時間、酸素雰囲気下で焼成した後、分級してD50=5μmの粉末とした。BET法により測定した比表面積は2.0m/gであった。
該粉末のCuKα線によるエックス線回折測定の結果、粉末Dと同様な層状構造とみられる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成はLiMn0.45Ni0.45Co0.1であることがわかった。該粉末を正極活物質として用いたこと以外は(実施例1−1)と同様にして図2に示す容量約15Ahの角形リチウム電池を作製した。この電池を比較例4−3の電池とする。
(電池性能試験)
以上の本発明電池及び比較電池を用いて、温度25℃で高率放電性能試験を行い、引き続き、充放電サイクル性能試験を行なった。
高率放電性能試験の条件は、充電は電流7.5A(0.5It)、4.3V、3時間の定電流定電圧充電とし、放電は電流1.5A(0.1It)または30A(2It)、終止電圧3.0Vの定電流放電とした。
充放電サイクル性能試験の条件は、充電は電流7.5A(0.5It)、4.3V、3時間の定電流定電圧充電とし、放電は電流7.5A(0.5It)、終止電圧3.0Vの定電流放電とした。充電後及び放電後には、それぞれ10分の休止モードを挿入した。
高率放電試験において、30Aの電流で放電したときの放電容量の、1.5Aの電流で放電したときの放電容量に対する比を高率放電性能値(%)とした。充放電サイクル性能試験において、放電容量が、前記充放電サイクル性能試験を開始した初期の放電容量に対して80%にまで低下したときのサイクル数をサイクル寿命とした。これらの性能試験の結果を表1〜表4に示す。表中、“半値幅18.6°”とは、2θ=18.6±1°における回折ピークの半値幅を示し、“半値幅44.1°”とは、2θ=44.1±1°における回折ピークの半値幅を示し、“ピーク強度比”とは、2θ=18.6±1°における
回折ピークに対する2θ=44.1±1°における回折ピークの相対強度比を示す。
また、(実施例1−1)の電池について、1.5A(0.1It)で放電を行ったときの放電電圧変化を図6に、(実施例1−10)の電池について、1.5A(0.1It)で放電を行ったときの放電電圧変化を図7に、(実施例4−1)の電池について、1.5A(0.1It)で放電を行ったときの放電電圧変化を図8に示す。
(第一実施形態について)
空間群R3/m類似の層状構造を持つ正極活物質を用いた(実施例1−1)〜(実施例1−11)の電池と、空間群C2/mに属する層状構造を持つ正極活物質を用いた(比較例1−1)の電池とを比較すると、高率放電特性が大きく改善されていることがわかる。また、空間群R3/m類似の層状構造を持つ正極活物質LiMn0.5Ni0.5を用いた電池の中でも、(実施例1−1)〜(実施例1−11)及び(比較例1−3)〜(比較例1−6)とを比較すると、比表面積の値を0.3m/g以上とすることで、高率放電特性が顕著に改善されることがわかる。一方、前記比表面積の値が1.5m/gを越えると、充放電サイクル性能が急激に低下することがわかる。このことから、0.3m/g以上1.5m/g以下の比表面積を有するLiMn0.5Ni0.5を正極活物質に用いると、良好なサイクル寿命と高い高率放電特性を兼ね備えた二次電池が提供できる。
また、同じくLiMn0.5Ni0.5で表される複合酸化物を用い、CuKα線を使用した粉末エックス線回折図の、2θ=18.6±1°における回折ピークに対する2θ=44.1±1°における回折ピークの相対強度比が異なる電池について電池性能を比べると、相対強度比が0.6以上となると、サイクル寿命が大きく向上することが分かる。また、前記相対強度比が1.1を越えると、高率放電特性値が低下する傾向となることがわかる。このことから、前記相対強度比を0.6以上1.1以下とすることにより、特に、良好なサイクル寿命と高い効率放電特性を兼ね備えた電池を提供できる。
また、2θ=18.6±1°における回折ピークの半値幅が0.13°以上であり、かつ、2θ=44.1±1°における回折ピークの半値幅が0.10°以上である場合、良好な高率放電特性が得られることがわかる。また、2θ=18.6±1°における回折ピークの半値幅が0.20°より大きく、かつ、2θ=44.1±1°における回折ピークの半値幅が0.17°より大きい場合、サイクル寿命が低下する傾向となることが分かる。このことから、2θ=18.6±1°における回折ピークの半値幅が0.13〜0.20°であり、かつ、2θ=44.1±1°における回折ピークの半値幅が0.10〜0.17°とすることにより、特に、良好なサイクル寿命と高い効率放電特性を兼ね備えた電池を提供できる。
なお、(比較例1−2)の電池は、高率放電特性が比較的良好なスピネルマンガンを正極の主たる活物質として用いている。この電池においては、スピネルマンガンから期待される通りの高率放電性能が得られていることから、本実施例及び比較例において、放電特性の律速が正極以外の構成要素である電解液や負極等によるものではないことが確認される。
(第二実施形態について)
LiMn0.5Ni0.5を構成するMn及びNiの一部を異種元素で置換した(実施例2−1)〜(実施例2−7)の電池では、類似の物性を持つ正極活物質を用いた(実施例1−2)の電池と比べて、高率放電特性値が大きく向上することがわかる。この作用効果については必ずしも明らかではないが、Ni、Mnと異なる少量の元素による置換は、リチウムイオン移動を向上させる働きがあるものと考えられる。
また、第二実施形態において、比表面積の値が0.3m/gを下回った(比較例2−1)の電池は、高率放電性能値が不十分であった。一方、比表面積の値が1.5m/gを越える(比較例2−2)の電池は、充放電サイクル性能が急激に低下することがわかる。
(第三実施形態について)
また、(実施例3−1)の電池は、(実施例1−1)〜(実施例1−11)の電池に比べて、高率放電特性が高く、ホウ素による元素置換の効果が認められる。
LiMn0.5Ni0.5のMn及びNiの一部を、ホウ素と、それ以外の元素とで置換した(実施例3−2)〜(実施例3−7)の電池では、さらに高率放電性能を改善できることがわかる。これは、Ni及びMn以外の少量の異種元素による置換は、リチウムイオン移動を向上させる働きがあるものと考えられる。
また、第三実施形態において、比表面積の値が0.3m/gを下回った(比較例3−1)の電池は、高率放電性能値が不十分であった。一方、比表面積の値が1.5m/gを越える(比較例3−2)の電池は、充放電サイクル性能が急激に低下することがわかる。
なお、図1にみられるように、エックス線光電子分光法(XPS)によるエッチング時間が約400秒に達すると、ホウ素濃度が粒子内部と同程度にまで低減している。ここで、深さ方向のエッチング速度は0.07nm(秒)である。このことから、本発明の効果を発現させるために必要な正極活物質粒子の表層部の厚さは、高々28nm(=0.028μm)あれば十分であることがわかる。正極活物質の平均粒径が9〜10μmの場合、前記厚さは粒子の直径の約2%に相当する。
(第四実施形態について)
また、LiMn0.5Ni0.5で表わされる複合酸化物にCo成分を加えたLi[MnNiCo]Oで表わされる複合酸化物を正極活物質に用いた(実施例4−1)〜(実施例4−4)の電池では、いずれも放電容量が、(実施例1−1)〜(実施例1−11)の電池に比べて大幅に増加した。また、結晶構造が安定になったためか、サイクル寿命も大きく向上した。
同じ組成式LiMn0.45Ni0.45Co0.1で表わされ、比表面積の異なる複合酸化物を正極活物質に用いた(実施例4−1)、(実施例4−3)、(実施例4−4)、(比較例4−2)、(比較例4−3)について電池性能を比較すると、比表面積が1.5m/gを超えると、サイクル性能が急激に低下することがわかった。また、比表面積が0.3m/gを下回ると、高率放電性能が急激に悪くなることがわかった。このことから、複合酸化物の比表面積の値を0.3m/g以上1.5m/g以下とすることで、良好なサイクル性能と高い高率放電性能を兼ね備える非水電解質二次電池を提供できる。
Ni、Mn、Co以外の異種元素M”を組成に加えたLiMn0.425Ni0.42 Co0.1M”0.05の組成式で表わされる複合酸化物を正極活物質に用いた(実施例4−5)〜(実施例4−10)の電池では、異種元素M”を添加していない(実施例4−1)の電池と比較して高率放電性能値がいずれも向上していることがわかる。この作用効果については必ずしも明らかではないが、Ni、Mnと異なる少量の元素による置換は、リチウムイオン移動を向上させる働きがあるものと考えられる。
ところで、ホウ素を添加した実施例2−1,実施例3−1,実施例4−7の電池を解体し、電池を構成する各構成要素について元素分析を行った結果、負極表面付近からホウ素が検出された。このことから、合成時に添加したホウ素は、Mn及びNiと置換して構造を安定化させる効果よりも、むしろ、正極活物質粒子から溶出し、正極表面の状態を活性に変え、高率放電性能を向上させる効果を発現するものと考えられる。
なお、本発明の層状構造を有する活物質の場合、基本的にはLiは6aサイトに、Mn、Ni、Coは6bサイトに、そしてOは6cサイトを占有しているが、原理的には、Liが6bサイト中に拡散した形態もとりうる。その場合、Liは1価の価数であることから6bサイト中の不足する電荷は6cサイトの増減によって電荷中和される。
上記実施形態2の実施例においては、正極活物質における主構成物質にLi[Mn0. 475Ni0.4750.05]、Li[Mn0.475Ni0.4750.0 ]、Li[Mn0.475Ni0.475Al0.05]、Li[Mn0.4 75Ni0.475Mg0.05]、Li[Mn0.475Ni0.475Co0. 05]、Li[Mn0.475Ni0.475Cr0.05]、Li[Mn0. 475Ni0.475Ti0.05]、Li[Mn0.475Ni0.475Li .05]を用いることを記載したが、その他の異種元素Mを用いた場合についても同様な効果が得られる事が確認された。
上記実施形態3の実施例においては、正極活物質における主構成物質にLi[Mn0. 475Ni0.4750.05]、ホウ素の表面濃度が大きいLi[Mn0.47 Ni0.4750.05]、Li[Mn0.475Ni0.4740.050.001]、Li[Mn0.475Ni0.4740.05Al0.001]、Li[Mn0.475Ni0.4740.05Mg0.001]、Li[Mn0.475Ni0.4740.05Co0.001]、Li[Mn0.475Ni0.474Cr0.050.001]、Li[Mn0.475Ni0.474Ti0.050.001]、を用いることを記載したが、その他の異種元素M’を用いた場合についても同様な効果が得られる事が確認された。
上記実施形態4の実施例においては、正極活物質における主構成物質にLi[Mn0. 45Ni0.45Co0.1]、Li[Mn0.425Ni0.425Co0.10.05]、Li[Mn0.425Ni0.425Co0.10.05]、Li[Mn0.425Ni0.425Co0.1Al0.05]、Li[Mn0.42 Ni0.425Co0.1Mg0.05]、Li[Mn0.425Ni0.425Co0.1Cr0.05]、Li[Mn0.425Ni0.425Co0.1Ti .05]、Li[Mn0.425Ni0.425Co0.1Li0.05]を用いることを記載したが、その他の元素を用いた場合についても同様な効果が得られる事が確認された。
ここでは、負極材料として人造黒鉛を用いた非水電解質二次電池について実施例を挙げたが、同様の効果は、その他の負極材料についても確認された。
なお、本発明は上記実施例に記載された活物質の出発原料、製造方法、正極、負極、電解質、セパレータ及び電池形状などに限定されるものではない。
<産業上の利用可能性>
本発明によれば、上記問題点を解決するためになされたものであって、高率充放電性能及び充放電サイクル性能に優れる高エネルギー密度の非水電解質二次電池を提供できる。
図1は、本発明に用いた正極活物質のエックス線光電子分光法(XPS)による分析結果を示す図であり、図2は、実施例および比較例の電池の一部断面図であり、図3は、実施例1−1の正極活物質のエックス線回折図であり、図4は、実施例1−10の正極活物質のエックス線回折図であり、図5は、実施例4−1の正極活物質のエックス線回折図であ
り、図6は、実施例1−1の電池の放電性能を示す図であり、図7は、実施例1−10の電池の放電性能を示す図であり、図8は、実施例4−1の電池の放電性能を示す図である。
符号の説明
なお、図中の符号、1は安全弁、2は蓋、3はレーザー溶接部、4は負極端子、5は正極端子、6はガスケット、7は正極板、8はセパレータ、9は負極板、10は電槽である。

Claims (15)

  1. Li−Mn−Ni系複合酸化物を主成分とする正極活物質であって、前記Li−Mn−Ni系複合酸化物のBET法による比表面積が0.3m/g以上1.5m/g以下であることを特徴とする正極活物質。
  2. 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  3. 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
    Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′](但し、Mは前記異種元素 ;
    x=0.001〜0.1 ; x′=0.001〜0.1 ;
    y=0〜0.1 ; y′=0〜0.1 ;
    x+x′+y+y′≦0.4 ; 0≦z≦1)
    で示される組成の複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  4. 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が異種元素で置換され、次の一般式;
    Li1−z[Mn0.5−x−yNi0.5−x′−y′x+x′Liy+y′](但し、Mは前記異種元素 ;
    x=0.01〜0.1 ; x′=0.01〜0.1 ;
    y=0〜0.1 ; y′=0〜0.1 ;
    x+x′+y+y′≦0.2 ; 0≦z≦1)
    で示される組成の複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  5. 前記異種元素MがB,Mg,Al,Ti,V,Cr,Fe,Co,Cu及びZnから構成される群から選ばれる1種以上であることを特徴とする請求の範囲第3項または第4項に記載の正極活物質。
  6. 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が、異種元素並びにホウ素で置換され、次の一般式;Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′M’r+ r′Lis+s′
    (但し、M’は前記異種元素 ;
    r=0.001〜0.1 ; r′=0.001〜0.1 ;
    s=0〜0.1 ; s′=0〜0.1 ;
    r+r′+s+s′+w+w′≦0.4 ;
    w+w′=0.0005〜0.01 ; 0≦t≦1)
    で示される組成の複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  7. 前記Li−Mn−Ni系複合酸化物が、LiMn0.5Ni0.5で表される複合酸化物を構成するMn及びNiの一部が、異種元素並びにホウ素で置換され、次の一般式;Li1−t[Mn0.5−r−s−wNi0.5−r′−s′−w′w+w′M’r+ r′Lis+s′
    (但し、M’は前記異種元素 ;
    r=0.01〜0.1 ; r′=0.01〜0.1 ;
    s=0〜0.1 ; s′=0〜0.1 ;
    r+r′+s+s′+w+w′≦0.2 ;
    w+w′=0.0005〜0.01 ; 0≦t≦1)
    で示される組成の複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  8. 前記異種元素M’がMg,Al,Ti,V,Cr,Fe,Co,Cu及びZnから構成される群から選ばれる1種以上であることを特徴とする請求の範囲第6項または第7項に記載の正極活物質。
  9. 前記Li−Mn−Ni系複合酸化物が、Li[MnNiCoLiM”]O(M”はMn、Ni、Co、Li以外の元素、d≦c+e+a+b、c+d+e+a+b=1、0≦a≦0.05、0≦b≦0.05、0.2≦c≦0.5、0.02≦e≦0.4)で表される複合酸化物であることを特徴とする請求の範囲第1項に記載の正極活物質。
  10. 前記M”が、B,Mg,Al,Ti,V,Cr,Fe,Cu及びZnからなる群から選ばれる少なくとも1種の元素であることを特徴とする請求の範囲第9項に記載の正極活物質。
  11. 前記Li−Mn−Ni系複合酸化物が、CuKα線を使用した粉末エックス線回折図の2θ=18.6±1°、36.6±1°、37.8±1°、38.2±1°、44.3±1°、48.4±1°、58.4±1°、64.2±1°、64.8±1°、68.8±1°にピークを有する層状結晶構造であることを特徴とする請求の範囲第1項〜第10項のいずれかに記載の正極活物質。
  12. 前記Li−Mn−Ni系複合酸化物は、CuKα線を使用した粉末エックス線回折図の、2θ=18.6±1°における回折ピークに対する2θ=44.1±1°における回折ピークの相対強度比が0.6以上1.1以下であることを特徴とする請求の範囲第1項〜第11項のいずれかに記載の正極活物質。
  13. 前記Li−Mn−Ni系複合酸化物は、CuKα線を使用した粉末エックス線回折図の、2θ=18.6±1°における回折ピークの半値幅が0.13°以上0.20°以下であり、かつ、2θ=44.1±1°における回折ピークの半値幅が0.10°以上0.17°以下であることを特徴とする請求の範囲第1項〜第12項のいずれかに記載の正極活物質。
  14. 前記Li−Mn−Ni系複合酸化物の粒径が3μm以上20μm以下である請求の範囲第1項〜第13項のいずれかに記載の正極活物質。
  15. 請求の範囲第1項〜第14項のいずれかに記載の正極活物質を用いた非水電解質二次電池。
JP2008283789A 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池 Pending JP2009059710A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008283789A JP2009059710A (ja) 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001071486 2001-03-14
JP2001080434 2001-03-21
JP2001080430 2001-03-21
JP2008283789A JP2009059710A (ja) 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002572660A Division JP4320548B2 (ja) 2001-03-14 2002-03-12 正極活物質およびこれを用いた非水電解質二次電池

Publications (1)

Publication Number Publication Date
JP2009059710A true JP2009059710A (ja) 2009-03-19

Family

ID=27346235

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2002572660A Expired - Lifetime JP4320548B2 (ja) 2001-03-14 2002-03-12 正極活物質およびこれを用いた非水電解質二次電池
JP2008283789A Pending JP2009059710A (ja) 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池
JP2008283790A Pending JP2009059711A (ja) 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2002572660A Expired - Lifetime JP4320548B2 (ja) 2001-03-14 2002-03-12 正極活物質およびこれを用いた非水電解質二次電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008283790A Pending JP2009059711A (ja) 2001-03-14 2008-11-04 正極活物質およびこれを用いた非水電解質二次電池

Country Status (4)

Country Link
EP (1) EP1372202B8 (ja)
JP (3) JP4320548B2 (ja)
TW (1) TW560098B (ja)
WO (1) WO2002073718A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011126771A (ja) * 2009-11-20 2011-06-30 Sumitomo Chemical Co Ltd 遷移金属複合水酸化物およびリチウム複合金属酸化物
US9112228B2 (en) 2009-10-02 2015-08-18 Sumitomo Chemical Company, Limited Lithium-containing metal oxide, and non-aqueous electrolyte secondary battery
JP5967287B2 (ja) * 2013-02-28 2016-08-10 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
WO2018043671A1 (ja) * 2016-08-31 2018-03-08 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) * 2018-02-07 2018-05-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
US10319998B2 (en) 2013-10-03 2019-06-11 Gs Yuasa International Positive active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery and energy storage apparatus
JP2019149371A (ja) * 2018-02-27 2019-09-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1372202B8 (en) * 2001-03-14 2013-12-18 GS Yuasa International Ltd. Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same
DE60237441D1 (de) * 2001-04-20 2010-10-07 Gs Yuasa Corp Ür, anode zur benutzung in einer sekundärbatterie mit wasserfreiem elektrolyt und sekundärbatterie mit wasserfreiem elektrolyt
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
EP1425810A2 (en) * 2001-08-07 2004-06-09 3M Innovative Properties Company Improved cathode compositions for lithium ion batteries
EP1357616B1 (en) 2002-03-25 2012-11-28 Sumitomo Chemical Company, Limited Positive electrode active material for non-aqueous secondary battery
US7241532B2 (en) 2002-03-28 2007-07-10 Mitsubishi Chemical Corporation Positive-electrode material for lithium secondary battery, secondary battery employing the same, and process for producing positive-electrode material for lithium secondary battery
CN100359725C (zh) * 2002-03-28 2008-01-02 三菱化学株式会社 锂二次电池的正极材料、采用它的锂二次电池及制备锂二次电池正极材料的方法
US7316862B2 (en) 2002-11-21 2008-01-08 Hitachi Maxell, Ltd. Active material for electrode and non-aqueous secondary battery using the same
JP4986381B2 (ja) * 2003-01-17 2012-07-25 三洋電機株式会社 非水電解質二次電池
US7556655B2 (en) 2003-03-14 2009-07-07 3M Innovative Properties Company Method of producing lithium ion cathode materials
JP2004296387A (ja) * 2003-03-28 2004-10-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP4578790B2 (ja) * 2003-09-16 2010-11-10 Agcセイミケミカル株式会社 リチウム−ニッケル−コバルト−マンガン−アルミニウム含有複合酸化物の製造方法
FR2873496B1 (fr) * 2004-07-26 2016-04-01 Commissariat Energie Atomique Electrode pour accumulateur au lithium, procede de fabrication d'une telle electrode et accumulateur au lithium comportant une telle electrode
JP4925614B2 (ja) * 2005-06-24 2012-05-09 日立マクセルエナジー株式会社 非水電解質二次電池用の正極、および非水電解質二次電池
CA2613182C (en) * 2005-06-28 2014-04-15 Toda Kogyo Europe Gmbh Method for preparing inorganic compound having a single phase, hexagonal layered crystal structure that is free from cubic-spinel like phases
JP5657970B2 (ja) * 2005-09-27 2015-01-21 石原産業株式会社 リチウム・遷移金属複合酸化物及びそれを用いてなるリチウム電池
WO2007116971A1 (ja) 2006-04-07 2007-10-18 Mitsubishi Chemical Corporation リチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、その噴霧乾燥体およびその焼成前駆体、並びに、それを用いたリチウム二次電池用正極およびリチウム二次電池
JP4963059B2 (ja) * 2006-11-20 2012-06-27 独立行政法人産業技術総合研究所 チタン及びニッケル含有リチウムマンガン系複合酸化物
JP2008235148A (ja) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 非水電解質二次電池
JP2008257992A (ja) * 2007-04-04 2008-10-23 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法、並びに非水系電解質二次電池
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
EP2028704A1 (en) * 2007-07-11 2009-02-25 Toda Kogyo Corporation Process for producing composite cathode active material for non-aqueous electrolyte secondary cell
WO2009031619A1 (ja) 2007-09-04 2009-03-12 Mitsubishi Chemical Corporation リチウム遷移金属系化合物粉体、その製造方法及びその焼成前駆体となる噴霧乾燥体、並びに、それを用いたリチウム二次電池用正極及びリチウム二次電池
JP5640311B2 (ja) 2007-09-28 2014-12-17 住友化学株式会社 リチウム複合金属酸化物および非水電解質二次電池
WO2010015368A1 (en) * 2008-08-04 2010-02-11 Umicore Highly crystalline lithium transition metal oxides
CA2736985A1 (en) * 2008-09-18 2010-03-25 Toda Kogyo Corporation Process for producing lithium manganate particles and non-aqueous electrolyte secondary battery
KR101190226B1 (ko) 2008-11-19 2012-10-11 코스모신소재 주식회사 리튬 이차전지용 양극활물질, 그의 제조방법 및 이를 포함한 리튬 이차전지
JP5487821B2 (ja) * 2009-02-27 2014-05-14 住友化学株式会社 リチウム複合金属酸化物および正極活物質
US20110250499A1 (en) * 2009-04-03 2011-10-13 Hidekazu Hiratsuka Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5272870B2 (ja) * 2009-04-17 2013-08-28 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極及びリチウム二次電池
JP5381330B2 (ja) * 2009-05-27 2014-01-08 住友化学株式会社 電極合剤、電極および非水電解質二次電池
JP5515435B2 (ja) 2009-06-04 2014-06-11 住友化学株式会社 リチウムニッケル複合金属酸化物用原料粉末
KR101729174B1 (ko) * 2009-08-21 2017-04-21 가부시키가이샤 지에스 유아사 리튬 이차전지용 활물질, 리튬 이차전지용 전극, 리튬 이차전지 및 그 제조방법
JP5700274B2 (ja) * 2009-08-21 2015-04-15 株式会社Gsユアサ リチウム二次電池用活物質、リチウム二次電池用電極、リチウム二次電池及びその製造方法
WO2011040383A1 (ja) * 2009-09-30 2011-04-07 戸田工業株式会社 正極活物質粒子粉末及びその製造方法、並びに非水電解質二次電池
CN102639443B (zh) 2009-12-07 2015-04-15 住友化学株式会社 锂复合金属氧化物的制造方法、锂复合金属氧化物及非水电解质二次电池
TWI489682B (zh) * 2009-12-29 2015-06-21 Gs Yuasa Int Ltd 鋰二次電池用活性物質、鋰二次電池用電極、鋰二次電池及其製造方法
JP5546369B2 (ja) 2010-06-25 2014-07-09 千住金属工業株式会社 蓄電デバイス用電極、その製造方法及びその接続方法
US20130065136A1 (en) * 2010-06-25 2013-03-14 Nec Energy Devices, Ltd. Lithium ion secondary battery
CN103069623B (zh) * 2010-08-09 2015-07-22 株式会社村田制作所 电极活性物质及具备该电极活性物质的非水电解质二次电池
US9219273B2 (en) 2010-09-22 2015-12-22 Gs Yuasa International Ltd. Active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP2012146639A (ja) * 2010-12-22 2012-08-02 Tanaka Chemical Corp 非水電解質二次電池用の正極活物質、その製造方法、及びそれを用いた非水電解質二次電池
DE102011005681A1 (de) * 2011-02-15 2012-08-16 Robert Bosch Gmbh Lithium-Ionen Akkumulator und Verfahren zu dess Herstellung
CN102738456A (zh) * 2011-04-07 2012-10-17 锂科科技股份有限公司 锂离子电池正极金属氧化物材料、其制造方法及锂离子电池
WO2012165020A1 (ja) * 2011-05-30 2012-12-06 日本電気株式会社 二次電池用活物質およびそれを使用した二次電池
JP6011838B2 (ja) * 2011-08-31 2016-10-19 トヨタ自動車株式会社 リチウム二次電池
KR101414955B1 (ko) 2011-09-26 2014-07-07 주식회사 엘지화학 안전성 및 수명특성이 향상된 양극활물질 및 이를 포함하는 리튬 이차전지
JP5580284B2 (ja) * 2011-12-26 2014-08-27 株式会社豊田中央研究所 非水系二次電池用正極活物質及び非水系リチウム二次電池
JP5365711B2 (ja) * 2012-02-21 2013-12-11 住友金属鉱山株式会社 ニッケルコバルトマンガン複合水酸化物及びその製造方法
WO2014030764A1 (ja) 2012-08-24 2014-02-27 三井金属鉱業株式会社 スピネル型リチウムマンガンニッケル含有複合酸化物
CN103413931B (zh) * 2013-08-08 2016-01-20 北京大学 硼掺杂的锂离子电池富锂正极材料及其制备方法
JP6614766B2 (ja) * 2014-12-09 2019-12-04 三星エスディアイ株式会社 正極活物質、およびリチウムイオン二次電池
US11228034B2 (en) * 2014-12-09 2022-01-18 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and rechargeable lithium battery
JP6518061B2 (ja) * 2014-12-18 2019-05-22 株式会社エンビジョンAescジャパン リチウムイオン二次電池
DE102015115691B4 (de) * 2015-09-17 2020-10-01 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Lithium-Nickel-Mangan-basierte Übergangsmetalloxidpartikel, deren Herstellung sowie deren Verwendung als Elektrodenmaterial
CN109075336B (zh) * 2016-03-31 2021-07-02 松下知识产权经营株式会社 非水电解质二次电池
JP6983152B2 (ja) * 2016-05-24 2021-12-17 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極
US10249873B2 (en) * 2016-08-03 2019-04-02 Samsung Electronics Co. Ltd. Composite positive active material, positive electrode including the same, and lithium battery including the positive electrode
DE102016214590A1 (de) * 2016-08-05 2018-02-08 Evonik Degussa Gmbh Verfahren zur Herstellung eines Kathodenmateriales mit niedriger BET-Oberfläche und hoher Stampfdichte und spezielles Kathodenmaterial
JP2018006346A (ja) * 2017-08-16 2018-01-11 Jx金属株式会社 リチウムイオン電池用正極活物質、リチウムイオン電池用正極、及び、リチウムイオン電池
JP7271945B2 (ja) * 2018-12-25 2023-05-12 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
EP3910707A4 (en) * 2019-03-15 2022-03-23 Basf Toda Battery Materials LLC ACTIVE MATERIAL OF NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY POSITIVE ELECTRODE, NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY POSITIVE ELECTRODE AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN112510194B (zh) * 2019-09-16 2022-04-15 惠州比亚迪实业有限公司 一种锂离子电池三元正极材料及其制备方法、锂离子电池
KR102292889B1 (ko) * 2019-10-10 2021-08-24 주식회사 에코프로비엠 리튬 복합 산화물 및 이를 포함하는 리튬 이차전지
CN116873870B (zh) * 2023-09-08 2023-11-24 上海联风气体有限公司 一种用于由含有氢氟酸的溶液回收和精制氢氟酸的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125957A (ja) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd 非水電解質二次電池及び正極材料の製造方法
JPH11273677A (ja) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd リチウム二次電池
JP2000195516A (ja) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd リチウム二次電池
JP2000223122A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法、この正極活物質を用いたリチウム二次電池用正極及びその製造方法、この正極を用いたリチウム二次電池及びその製造方法
JP2002145623A (ja) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2002151076A (ja) * 2000-11-14 2002-05-24 Japan Storage Battery Co Ltd 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244314B2 (ja) * 1991-11-13 2002-01-07 三洋電機株式会社 非水系電池
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
JP3874589B2 (ja) * 1994-08-04 2007-01-31 株式会社エスアイアイ・マイクロパーツ 非水電解質二次電池
CA2209933C (en) * 1995-11-24 2005-04-12 Fuji Chemical Industry Co., Ltd. A lithium nickel complex oxide, a process for preparing the same and a positive electrode active material for a secondary battery
JP3613869B2 (ja) * 1996-01-19 2005-01-26 松下電器産業株式会社 非水電解液電池
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JP3890185B2 (ja) * 2000-07-27 2007-03-07 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
EP1372202B8 (en) * 2001-03-14 2013-12-18 GS Yuasa International Ltd. Positive electrode active material and nonaqueous electrolyte secondary cell comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125957A (ja) * 1997-05-08 1999-01-29 Sanyo Electric Co Ltd 非水電解質二次電池及び正極材料の製造方法
JPH11273677A (ja) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd リチウム二次電池
JP2000195516A (ja) * 1998-12-25 2000-07-14 Sanyo Electric Co Ltd リチウム二次電池
JP2000223122A (ja) * 1999-01-29 2000-08-11 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法、この正極活物質を用いたリチウム二次電池用正極及びその製造方法、この正極を用いたリチウム二次電池及びその製造方法
JP2002145623A (ja) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd リチウム含有遷移金属複合酸化物およびその製造方法
JP2002151076A (ja) * 2000-11-14 2002-05-24 Japan Storage Battery Co Ltd 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112228B2 (en) 2009-10-02 2015-08-18 Sumitomo Chemical Company, Limited Lithium-containing metal oxide, and non-aqueous electrolyte secondary battery
JP2011126771A (ja) * 2009-11-20 2011-06-30 Sumitomo Chemical Co Ltd 遷移金属複合水酸化物およびリチウム複合金属酸化物
JP5967287B2 (ja) * 2013-02-28 2016-08-10 日産自動車株式会社 正極活物質、正極材料、正極および非水電解質二次電池
US10319998B2 (en) 2013-10-03 2019-06-11 Gs Yuasa International Positive active material for lithium secondary battery, method for producing the same, electrode for lithium secondary battery, lithium secondary battery and energy storage apparatus
WO2018043671A1 (ja) * 2016-08-31 2018-03-08 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018045758A (ja) * 2016-08-31 2018-03-22 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2018081937A (ja) * 2018-02-07 2018-05-24 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
JP2019149371A (ja) * 2018-02-27 2019-09-05 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7211137B2 (ja) 2018-02-27 2023-01-24 株式会社Gsユアサ 非水電解質二次電池用正極活物質、正極活物質の製造に用いる前駆体の製造方法、正極活物質の製造方法、非水電解質二次電池用正極、及び非水電解質二次電池

Also Published As

Publication number Publication date
JP2009059711A (ja) 2009-03-19
EP1372202B8 (en) 2013-12-18
WO2002073718A1 (fr) 2002-09-19
JPWO2002073718A1 (ja) 2004-07-08
TW560098B (en) 2003-11-01
EP1372202B1 (en) 2013-11-06
EP1372202A4 (en) 2005-07-27
JP4320548B2 (ja) 2009-08-26
EP1372202A1 (en) 2003-12-17

Similar Documents

Publication Publication Date Title
JP4320548B2 (ja) 正極活物質およびこれを用いた非水電解質二次電池
JP4635386B2 (ja) 正極活物質およびこれを用いた非水電解質二次電池
JP4541709B2 (ja) 正極活物質およびそれを用いた非水電解質電池
JP4956883B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP4556377B2 (ja) 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池
JP3991189B2 (ja) 正極活物質及びその製造方法並びにそれを用いた二次電池
JP5812190B2 (ja) リチウムイオン二次電池用活物質及びリチウムイオン二次電池
WO2013047569A1 (ja) リチウム過剰型のリチウム金属複合酸化物
JP3960167B2 (ja) リチウム二次電池用電極の製造方法及びリチウム二次電池の製造方法、並びに、これらを用いたリチウム二次電池用電極及びリチウム二次電池
JP2013206552A (ja) 活物質及びリチウムイオン二次電池
KR20160080866A (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지
JP4415521B2 (ja) 非水電解質電池
KR20160002200A (ko) 복합양극활물질, 이를 채용한 양극 및 리튬전지, 및 그 제조방법
JP4649801B2 (ja) リチウム二次電池用正極活物質及びそれを用いたリチウム二次電池
JP2002270152A (ja) リチウム二次電池
JP2003051308A (ja) リチウム二次電池用正極活物質およびその製造方法、並びに、リチウム二次電池
JP2003197190A (ja) 非水電解質二次電池
JP2003197256A (ja) 非水電解質二次電池
JP3968771B2 (ja) 非水電解質電池
JP2003197255A (ja) 非水電解質二次電池
JP2003007298A (ja) 正極活物質及びその製造方法並びにそれを用いた二次電池
JP2002352803A (ja) リチウム二次電池
JP4306147B2 (ja) 非水電解質電池
JP4752135B2 (ja) リチウム電池
JP2002352860A (ja) リチウム二次電池

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702